

SCHOOL OF MECHANICAL ENGINEERING

M.Tech Mechatronics

Curriculum & Syllabi (2022-2023 batch onwards)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

• Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

- **World class Education:** Excellence in education, grounded in ethics and critical thinking, for improvement of life.
- **Cutting edge Research:** An innovation ecosystem to extend knowledge and solve critical problems.
- **Impactful People:** Happy, accountable, caring and effective workforce and students.
- **Rewarding Co-creations:** Active collaboration with national & international industries & universities for productivity and economic development.
- **Service to Society:** Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

• To be a leader in imparting world class education in Mechanical Engineering, leading to nurturing of scientists and technologists of highest caliber who would engage in sustainable development of the globe.

MISSION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

- To create and maintain an environment fostering excellence in instruction & learning, Research and Innovation in Mechanical Engineering and Allied Disciplines.
- To equip students with the required knowledge and skills to engage seamlessly in higher educational and employment sectors ensuring that societal demands are met.

M. Tech Mechatronics

PROGRAMME OUTCOMES (POs)

PO_1: Having an ability to apply mathematics and science in engineering applications.

PO_2: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment.

PO_3: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information.

PO_4: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice.

PO_5: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems.

PO_6: Having adaptive thinking and adaptability in relation to environmental context and sustainable development.

PO_7: Having a clear understanding of professional and ethical responsibility.

PO_8: Having a good cognitive load management skills related to project management and finance.

M. Tech Mechatronics

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (Mechatronics) programme, graduates will be able to

PSO1: Compute, Design, Simulate & analyse various Automotive engineering systems taken into account the social, economic and environmental implications for the current and future mobility.

PSO2: Practice a multidisciplinary approach to solve real-world automotive problems.

PSO3: Independently carry out research / investigation to solve practical problems and write / present a substantial technical report/document.

M. Tech Mechatronics

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.
- Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies in engineering or management.
- 6. Graduates will pursue career paths in teaching or research.

Master of Technology in Mechatronics School of Mechanical Engineering

Programme Credit Structure	Credits	Discipline Elective Courses	12
Discipline Core Courses Skill Enhancement Courses Discipline Elective Courses Open Elective Courses Project/ Internship Total Graded Credit Requirement	24 05 12 03 26 70	MMHA601L Machine Vision Systems MMHA602L Mobile and Autonomous Robots MMHA603L MEMS and Microsystems MMHA604L Data acquisition and Digital Sig- nal Processing MMHA605L Embedded systems MMHA606L Autotronics and Vehicle Intelli-	3003
Discipline Core Courses	24 L T P C	gence MMHA607L Intelligent Systems	3003
MMHA501L Advanced Sensors and Instru- mentation	3 0 0 3	MMHA608L Wireless Sensor Networks MMHA609L Virtual Reality and Haptics	2 1 0 3 3 0 0 3
MMHA501P Advanced Sensors and Instru- mentation Lab	0 0 2 1	MMHA610L Condition Monitoring Tech- niques MMHA611L Bio-Mechatronics	3003 3003
MMHA502L Actuators and Drives MMHA503L Robot dynamics and Program-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MMHA612L Internet of Things and Smart Manufacturing	3003
ming MMHA503P Robot dynamics and Program- ming Lab	0 0 2 1	MMHA613L Manufacturing Automation MMHA613P Manufacturing Automation Lab	3 0 0 3 0 0 2 1
MMHA504L System Design and Control MMHA505L Industrial Controllers	3 0 0 3 3 0 0 3	MMHA614L Fluid Power System Design MMHA614P Fluid Power System Design Lab	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
MMHA505P Industrial Controllers Lab MMHA506L Advanced Control Systems	0 0 2 1 3 0 0 3	Open Elective Courses	03
MMHA507L Industrial Process Automation MMHA507P Industrial Process Automation Lab	2 0 0 2 0 0 2 1	Engineering Disciplines Social Sciences	
	05	Project and Internship	26
Skill Enhancement Courses	05	MMHA696J Study Oriented Project	02
MENG501P Technical Report Writing MSTS501P Qualitative Skills Practice MSTS502P Quantitative Skills Practice	0 0 4 2 0 0 3 1.5 0 0 3 1.5	MMHA697J Design Project MMHA698J Internship I/ Dissertation I MMHA699J Internship II/ Dissertation II	02 10 12
	0001.0		14

Discipline Core Courses

Course Coo	le Course Title		L	Т	Ρ	С
MMHA501L	Advanced Sensors and Instrumentatio	n	3	0	0	3
Pre-requisit			Syll	abus	vers	ion
				1.	0	
Course Obj						
	ves of the course are to:					
	liarize with sensors used in engineering					
2. Unde	erstand the signal conditioning circuits					
Course Ou	teomo :					
	on of this course student should be able to:					
1. Unde typic	erstand the input-output configuration, static and c al measurement systems.	-				
meas	the transduction principles of typical transdu surement applications related to force, pressure, level, erature, displacement, speed, etc.					
3. Dem digita	onstrate the principle of operation and applications of Il sensors.				nagno	etic,
5. Com	onstrate the recent trends and advances in the measu prehend the role of signal conditioning circuits				isition	in
	surement systems. / the typical sensors suitable for different industrial ap	plication	IS.			
Module:1	Introduction to Instrumentation systems				6 ho	urs
	ents of instrumentation systems, Input-Output confi	iguration	ı. Er	ror s		
	- standards, static and dynamic characteristics of instr					
	General Transduction Principles for measurement applications	t			6 ho	ours
	n principle – Resistive, Capacitive, Inductive, Pie ovoltaic, Thermoelectric, Acoustic and Hall effect.	zoresis	tive,	Piez	oelec	tric,
Module:3	Construction and operation of typical instruments				6 ho	urs
	asurement applications - temperature, pressure, vib		force	. acc		
	ion, velocity, angular velocity, humidity, tactile, flow ar					,
Module:4	Advanced sensors technologies and applications				6 ho	urs
	nic sensors, Fiber optic sensor, Magnetic sensors, E ments, Ultrasonic sensors, Micro sensors, Bio sensors		ansd	ucers	s, LAS	SER
Module:5	Smart sensor systems and applications				6 ho	ours
General arc	hitecture of a smart sensor – Self calibration – echniques – Web based instrumentation-Applications.		s se	nsors		
Module:6	Signal conditioning and Data Acquisition				6 ho	urs
Operational	Amplifiers, Amplifiers, bridges, filters, analog-to dig Elements of data acquisition system, basics of Virtual	-	•		o-anal	og
Module:7	Industrial Applications of sensors and instrument	ation			7 ho	ours
	systems					
	systems easurement in machine tools, Position measurement o	of end e	effect	ors ir	n robo	ots -

hior	modiaal	applications accordudica				
DIOI	neuicai	applications- case studies				
Мо	dule:8	Contemporary Issues				2 hours
			1	otal Lectu	ure hours	45 hours
Тех	t Book	(s)				
1.	Bentley	/ JP, Principles of measure	ement systems, F	Pearson Pu	ublishers., 20 ⁻	12.
2.		O. Doebelin, "Measureme o 5 th edition, 2008.	ent System Appli	cation & D	esign", (2008)	3), McGraw Hill
Ref	erence	Books				
1.	D. Patr Edition	anabis, "Principles of Indu ,	strial Instrumenta	ation", (20 ⁻	10), Tata McC	Graw-Hill, Third
2.		6. Webster, HalitEren, "Me Second Edition, CRC Pre	,	rumentatio	n, and Senso	ors Handbook",
3.	D. V. S	. Murty, "Transducers and	Instrumentation"	', (2010), I	PHI Learning	Pvt. Ltd.
4.		aylor, ["] Data Acquisition for ss Media	Sensor Systems	s", (2013), S	Springer Scie	nce &
Mo	de of Ev	aluation: CAT ,Written Ass	signment, Quiz a	nd FAT		
Red	commen	ded by Board of Studies	27-07-2022			
App	proved b	y Academic Council	No. 67	Date	08-08-2022	

Coul	rse Code		Course Title			L	Т	Ρ	С
MMH	A501P	Advanced Sense	ors and Instrum	nentation L	_ab	0	0	2	1
Pre-	requisite	NIL				Syll	abus	versi	on
							1.0)	
Cour	rse Objective	S							
		the course are to:							
		with sensors used in							
2	. Understand	the signal condition	ing circuits						
	rse Outcome								
		his course student sh			lunamia	aha	racta	inting	of
I		d the input-output o	conliguration, st	auc and d	iynamic	cna	racter	ISUCS	01
2		surement systems. transduction princ	sinles of typic	al transdu		isod	in i	nduct	rial
Z		ent applications relate							
		e, displacement, spe	· · · · · · · · · · · · · · · · · · ·	sure, ievei,	now, a	CCCIC	auor	, וסוץ	ue,
3		te the principle of op		lications of	opto el	ectro	nic n	nadne	tic
Ū	digital sens		eraderi and app		0,000	000.0		agno	,
4		te the recent trends a	and advances in	the measu	rement	syste	ems.		
		nd the role of sig						sition	in
		ent systems.		-					
6	. Apply the t	ypical sensors suitab	le for different in	dustrial app	olication	IS.			
	ative Experie								
1.		nt of speed and displa			otary ser	nsors			
2.		orque measurement u		je.					
3.		asurement systems							
4.		e measurement using							
5.		d acceleration measu	rements using.	Jsing peizo		c sen	sor.		
6.		midity measurement.					a al		
7.	sensors.	complete signal	condition circu	it for ten	nperatu	ie a	and	press	ure
8.		a acquisition systems	and interfacing	concore w	ith com	nutor			
9.		ynamic characteristic					•		
9. 10.		t of data logging usin							
10.	Developmen	t of data logging doin		chi sonwai	C				
			Total L	aboratory	Hours	30	hour	S	
Text	Book(s)								
1.	Bentlev IP	Principles of measure	ement systems	Pearson Pi	ublisher	s., 20	12		
2.		Principles of measure				-			
	rence Books					, _ 0			
1.		is, "Principles of Ind	dustrial Instrume	entation". ((2010).	Tata	McG	iraw-H	Hill.
	Third Edition	-		, ((,				,
2.		, oster, HalitEren, "Mea	asurement, Instru	umentation	, and Se	ensor	s Har	ndboo	k",
		ond Edition, CRC Pre							,
3.		oster, HalitÉren, "Mea		umentation	, and Se	ensor	s Har	ndboo	k",
	(2014), Seco	nd Edition, CRC Pre	SS.						
4.	H.R. Taylor,	"Data Acquisition for	Sensor Systems	s", (2013), S	Springe	r Scie	ence a	<u>k</u>	
	Business Me	dia							
Mode		ent: Continuous Asse	ssment and Fina	al Assessm	ent Tes	st			
Reco	ommended by oved by Acad	Board of Studies	27-07-2022 No.67		•	8-20			

Course Code	Course Title	L	Т	Р	С
MMHA502L	Actuators and Drives	3	0	0	3
Pre-requisite	NIL	-	-	versi	-
		J	1.		
Course Objectives	S:			-	
The Objectives of t					
	the fundamental concepts of electro-mechanica	l and	flui	d pov	wer
	and pneumatics) systems				
2. Demonstrat	e the students with the actuators in the area of hyd	raulics	s, pne	eumat	ics,
	hanical systems and associated equipment's used for				
	knowledge of several drives for the different actu			ene	•••
	s, etc. and they come up with energy saving so	lutions	s in	indust	trial
systems					
	and apply fundamental concepts to the modeling, and				
	motors, stepper motors, brushless DC motors, sole	noids,	and	hydra	ulic
and pneum	atic actuators.				
Course Outerant					
Course Outcome					
The student should		tha h	vdro	مانور	and
	/ concepts, architecture and principles concerning	the h	yura	uncs a	DUF
pneumatic s	ey concepts and principles concerning modeling, ana	lucio	and	contro	l of
	motors, stepper motors, brushless dc motors, and sol			CONTIO	
	nethods of control algorithms, fault detection and diagr				
	e set of potential mechanisms and control solutions for		nces	s	
	reness about actuators, drives and control elements for				IS
	f actuators and its associated drivers for several working				
	nowledge about the architecture and working prin				lost
	ectrical motor types	•			
8. Choose and	d use hydraulic, pneumatic, electrical actuators and dri	ives			
Module:1 Hydra	ulic Actuators			7 ho	urs
	sification of actuators, Hydraulic pumps and supply	sourc	ces,	Hydra	ulic
actuators - Linear a	actuator – Types - Single acting, Double acting specia	l cylind	ders ·	- tande	эm,
Rodless, Telescop	vic, mounting details, cushioning mechanism, Rotai	ry acti	uator	s, pov	wer
packs –accumulato	ors.				
	natic Actuators			7 ho	
	teristics and applications, Air generation, treatmen				
	lter, regulator, lubricator, Pneumatic cylinders, Pneum	natic r	notor	s, Stro	oke
Speed Regulation	of Pneumatic Actuators.				
		1			
	ol and Regulation Elements			7 ho	
-	ation Elements – Basics of Direction control valves,			•	
	sic structure of pneumatic and hydraulic systems – Ele	ectro p	neur	natic a	and
Electronydraulic sy	stems and controls.				
Modulo: A Electri	ical DC actuatora			6 hc	
	ical DC actuators	trol to	ohni	6 ho	
	g principle, characteristics, classification, Speed con			•	
mode.	ns - Speed, direction and position control using H-	unda			VIVI
Module:5 Electr	ical AC actuators			6 ho	lire
				0 110	u13

AC Motor- Working principle, Speed torque characteristics, Speed control and braking, Single and three phases DC drives – Speed control of three phase induction motor – chopper drives - Need for V/ F drives - Energy saving AC drives Applications.

Module:6	Other Electrical actuators	5 hours
Stepper Mo	tor - Drive circuits for speed and position control - Servo m	notors – Linear
motors – Re	elays- Power convertors	

Module:7 Smart Materials Actuators

5 hours Smart materials and their application for sensing and actuation, Piezoelectric actuator -Linear actuators Hybrid actuators - Applications, shape memory alloys actuator, magnetostrictive actuators, Electrostrictive actuators, Electro - and magnetorheological fluid actuators – Case study.

Module:8 Contemporary Issues

2 hours

		Тс	otal Lec	ture hours:	45 hours					
Tex	Text Book(s)									
1.	1. Antony Esposito, Fluid Power Systems and Control (2013), Prentice-Hall.									
Ref	Reference Books									
1.	1. A. K. Gupta, S. K. Arora, Industrial automation and Robotics (2013), University Science Press.									
2.	W. Bolton, Mechatronics: Electric Engineering (2011), Pearson Edu		stems ii	n Mechanica	al and Electrical					
3.	Andre Veltman, Duco W.J. Pulle, (2007), Springer.	, R.W. De Donck	er, Fund	lamentals of	Electrical Drives					
4.	D. Patranabis, Principles of Indus	trial Instrumentati	on (2010	0), Tata McG	Graw-Hill.					
Мос	de of Evaluation: CAT ,Written Ass	ignment, Quiz an	d FAT							
Rec	commended by Board of Studies	27-07-2022								
Арр	proved by Academic Council	No.67	Date	08-08-2022	2					

Course Code	Course Title	L	Т	Р	С
MMHA503L	Robot Dynamics and Programming	3	0	0	3
Pre-requisite	NIL	-	-	versi	-
•		-	1.		
Course Objective					
The Objectives of t					
	ne modelling, simulation, and control of spatial multi-	degre	e-ot-i	reedo	m
robotic man	inpulators. inematics and dynamics of robotic manipulators.				
	awareness about the trajectory planning and control of	of robe	ntic a	rm	
Course Outcome	:				
	g the course, the student will be able to:				
	specifications of various types of Industrial Robots.				
	ropriate end effectors for various applications.				
	ematics of various manipulator configurations				
	equired trajectory planning for the given task.				
	propriate control system for robotic arm. program for various robotic applications.				
o. Prepare tre	program for various robotic applications.				
	luction to Industrial robot			<u>5 ho</u>	
	ustrial robotics – Components of robotics system – Ty II – Types of robotics configurations – DOF of serial ar			s – vv	ork
	c motion of robot manipulator – Tool centre point – Ro			ector.	
Grippers and Tools				00101.	
Module:2 Robot	t Kinematics			6 ho	urs
Position analysis a	and finite rotation and translation - Homogeneous ma	atrices	s – C)irect	and
	s: Two link planner, PUMA 560, Stanford arm, Se	CARA	anc	Stev	vart
Platform.					
Module:3 Veloci	ity and statics of robot manipulators			6 ho	ure
	r velocity vector and matrix – Forward and inverse	veloc	vitv k		
	s and force analysis of robot manipulator – Identifying				
space.		g onig	Jaran	.,	on
	nics of robots			6 ho	
	of links - equation of motion - Forward and inverse				bot
manipulator – Lagr	angian formulation of motion – Rigid link Recursive Ac	celera	ation.		
Modulo:5 Troise	tony planning			6 ho	uro
	t ory planning rajectory planning – Joint space trajectory planning		rtesi	6 ho	
	– Blending – Continuous trajectory recording (Trajectory				aue
				9/	
Module:6 Manip	ulator control			6 ho	urs
	ol method – Disturbance rejection – PD and PID contro	ol – C	ompi		
torque control – Ad	laptive control – Feedback linearization for under actua	ated s	yster	ns.	
	D Language			8 ho	
	basic commands-Motion Instructions-Pick and pla				
	anual mode, automatic mode, subroutine command b				-
		roblen		Indus	
	ots - Pick and Place – Machine tending – Painting –	weid	ng –	Iettiin	y –

Assembly – Service Robot application: Underwater robot –surgical robot – autonomous guided vehicle

Мо	dule:8 Contemporary Issues				2 hours
		1	Fotal Lectur	e hours:	45 hours
Tex	kt Book(s)				
1.	Craig, John J., Introduction to F Inc.	Robotics: Mechar	nics and Col	ntrol (200	5), Prentice Hall
Re	ference Books				
1.	Mark W.Spong, M. Vidyasaga publication.	ar, Robotics Dy	ynamics an	d contro	l (2008), Wiley
2.	AshitavaGhosal: Robotics- Fur University Press.	ndamental Conc	cepts and	Analysis	(2014), Oxford
3.	S.R.Deb, Robotics Technology a	nd Flexible Autor	nation (2010), Tata M	c-Graw Hill.
4.	J.P.Merlet, Parallel Robots (2005	5), Springer	•		
5.	S K SAHA: Introduction to Robot Digits): 978-93-329-0280-0. ISBN	(w Hill Edu	cation. ISBN (13
Мо	de of Evaluation: CAT ,Written Ass	signment, Quiz a	ind FAT		
Re	commended by Board of Studies	27-07-2022			
Ар	proved by Academic Council	No.67	Date	08-08-202	22

Cou	rse Code		Course Title)		L	Т	Ρ	С
MMH	HA503P	Robot Dynam	ics and Prog	grammin	ig Lab	0	0	2	1
Pre-	requisite	NIL				Sylla	abus	vers	ion
							1.0)	
	rse Objective								
	•	the course are to:							
1		he modelling, simula	ation, and co	ontrol of	spatial mult	i-degr	ee-of-	freed	lom
_	robotic mar	•		_					
		inematics and dynar							
		e awareness about th	e trajectory p	lanning a	and control o	of robc	otic ari	m.	
	rse Outcome			. I . I					
		g the course, the stu							
		e specifications of val							
		propriate end effector nematics of various n							
	,	equired trajectory pla		0					
		propriate control sys			SK.				
		e program for various							
	cative Experiment								
1.	•	nulation of Four Bar	Crank-Rocke	r. Crank-	Crank, and	Rocke	er-Ro	cker	
		using MTAB Sim-me			,				
2.		e DH parameters for			ising Mat-La	b			
3.		erse kinematic probl							
4.		sition, velocities and					gurati	on.	
5.		f Robot for Arc Weldi							r
	and Circular		•	•		-		•	
6.	Measure the	Tool centre point for	the given too	ol or grip	ber				
7.		Industrial robot to fo							
8.		Industrial robot to dr							
9.		Industrial robot to dr				lain			
10.	Simulate wor	rk cell for CNC tendir	ng using Rapi	id Progra	mming				
11.	Simulate wor	rk cell for Pelletizing	and De-Pelle	tizing us	ing Rapid P	rograr	nming		
	I		Tot	al Labor	atory Hours	S	30 h	ours	
Text	Book(s)								
1.	Craig, John Inc.	J., Introduction to Re	obotics: Mecl	hanics ai	nd Control (2005),	Pren	tice	Hall
Refe	rence Books								
1.		ong, M. Vidyasaga	r, Robotics	Dynami	cs and cor	ntrol	(2008), W	'iley
2.		sal: Robotics- Funda	mental Conc	ents and	Analysis (?	014)	Oxfor	4	
	University Pr					J), '	2,000	-	
3.		botics Technology a	nd Flexible A	utomatio	n (2010). Ta	ta Mc-	Graw	Hill	
4.		Parallel Robots (2005			, ru				
5.		ntroduction to Roboti		n (2016).	McGraw Hill	Educ	ation.	ISBI	1
		78-93-329-0280-0.				-		-	
Mode		ent: Continuous Asse			sessment Te	st			
		Board of Studies	27-07-2022						
	oved by Acad		No.67	Date	08-08-202	2			

Course Code	Course Title	L	Т	Ρ	С
MMHA504L	System Design and Control	3	0	0	3
Pre-requisite	NIL	Sylla	abus	versi	on
			1.0		
Course Objective					
The Objectives of					
	awareness about the mechatronics design process				
	students to system modelling and system identificatio	n of m	echat	ronic	
systems.					
	nterest in students for mathematical simulation of the o	ynam	ICS OF		
systems.	dente to apply the above in a real time inductrial applie	otion			
	dents to apply the above in a real time industrial applic	alion			
Course Outcome	:				
	his course student should be able to:				
	mechatronic system.				
	e concepts of system and modelling techniques				
	oftware for simulating dynamic systems				
	principles and analysis of basic control systems.				
	timization methods in physical systems				
Examine th	e above for various industrial measurement and contr	ol app	licatic	ons	
Madulaid Intra				<u> </u>	
	luction to Mechatronics systems			<u>6 ho</u>	urs
	chatronics system – Key elements – Mechatronics Des chatronics designs – Model based system design.	sign pr	ocess	5 —	
	chationics designs – Model based system design.				
Module:2 Conc	epts of system and modelling			6 ho	urs
	s - modelling of systems - model representations - blo	ck dia			
	ace representation - system identification technique				
nonlinear models.					
	lling of physical systems			<u>6 ho</u>	
	athematical models: mechanical, electrical, electrom	echan	ical, ⁻	Thern	nal,
Hydraulic and Pne	umatic systems.				
Madula 4 Cimul	ation			6 6 6	
Module:4 Simul				6 ho	
response of 1 st and	 types – hardware in loop simulations – time respons 2ndorder systems - simulation of systems in software 	e para	nmon	ะเร-แ .+	me
		CITVILO	men		
Module:5 Basic	control systems			6 ho	urs
	Control System – Open loop and Closed loop system	ns – (Chara		
	and PID Controllers –Implementation issues of PID (
	uning of controllers.				
	<u>v</u>				
Module:6 Analy	sis of systems			8 ho	urs
	requency domain analysis of the systems using Routh				I
	quency domain analysis –Gain margin – Phase margir	n - Boo	le Plo	ot —	
Polar Plot – Nyquis	st stability criterion.				
	n optimization	in at a	a 4 I	5 ho	
	oblem formulation - constraints – overview of optim	IIZATIO	n tech	nniqu	es-
	nechatronics systems. se studies on building mechatronics systems for meas	uromo	nt an	d con	trol
Suse Studies. Ca	se studies on building meenationies systems for meas	arente	an an		

app	lications					
Мос	dule:8	Contemporary Issues				2 hours
			Тс	otal Lectu	re hours:	45 hours
Tex	t Book(s)				
1.		sshetty and Richard A. Koll ge learning India Pvt. Ltd.	k, Mechatronics S	system Des	sign (2012)), 2 nd edition,
Ref	erence	Books				
1.		ton, Mechatronics - Elec ering (2010), Pearson Edu	•	stems in	Mechanica	al and Electrical
2.		a, Modern Control Enginee		tice Hall o	f India Pvt.	Ltd.
3.	FaridG India P	olnaraghi, Benjamin C. Ku vt Ltd	o, Automatic Con	trol systen	ns (2014),	9 th edition, Wiley
4.		C Karnopp, Donald L. N John Wiley & Sons.	largolis Ronald	d C. Rose	enberg, Sy	vstem dynamics"
		aluation: CAT ,Written Ass	<u> </u>	d FAT		
		ded by Board of Studies	27-07-2022			20
Арр	roved b	y Academic Council	No.67	Date	08-08-202	22

Course Code Course Title L T P C							
MMHA505L	Industrial Controllers	3	0	0	3		
Pre-requisite	NIL	-	labus	-	•		
		• .	1.0				
Course Objective	s :						
The Objectives of							
	functions of various controllers used in industrial auto	omatio	on svs	tems			
	architecture, programming of microcontroller and						
devices.							
3. Discuss the	e architecture and functions of PLC systems and lear	ו PLC	progr	amm	ing.		
			1 0				
Course Outcome):						
The student should	d be able to						
1. Compare th	ne architecture and functions of micro-computing syst	ems f	or indu	ustria	al		
application	S.						
	architecture 8051 Microcontroller.						
	rocontroller assembly language programs.						
	interfacing techniques with 8051 microcontroller						
	architecture and functions of PLC and program PLC						
	ection of industrial controllers, communications stand	ards a	and dis	tribu	ted		
control syst							
	uction to programmable controllers			-	ours		
	ollers for industrial automation – General description of						
	ssors, microprocessors, microcontrollers, Programma	able L	.ogic C	contro	oller		
(PLC) and soft PL	Cs.						
	tecture of Microcontrollers				ours		
	chitecture of typical microcontroller. Overview of the	arch	itectur	e of	high-		
end processors.							
Modulo:2 Mioro	oontrollor programming			6 6	ours		
	controller programming ⁻ uction sets; Addressing modes; Timers and counters	·· / ^ ^ ^	ombly				
programs with algo		, ASS	embly	lang	uage		
programs with aigt							
Module:4 Interfa	acing with 8051			6 h	ours		
	iterrupt programming, interfacing with keyboards,	l EDe					
•	ensors, motor drivers, etc.		, LOD	з, л	003.		
Module:5 Progra	ammable Logic Controllers			6 h	ours		
	_C; Configuring I/O modules; memory, programmi	na de	vices				
scan; Soft PLCS;		.g uu	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	P. 0	grann		
, , , , , , , , , , , , , , , , , , ,							
	rogramming			6 h	ours		
Module:6 PLC P		anipu	lations	-			
Module:6 PLC P	nods; Timers and counters, math instructions, data m	anipu	lations	-			
Module:6 PLC P	nods; Timers and counters, math instructions, data m	anipu	lations	-			
Module:6 PLC P Programming meth PID control functio	nods; Timers and counters, math instructions, data m	anipu	lations	and			
Module:6PLC PProgramming methPID control functionModule:7	nods; Timers and counters, math instructions, data m ns.			and 7 h	ours		
Module:6PLC PProgramming methPID control functionModule:7IndustCommunication	nods; Timers and counters, math instructions, data m ns. t rial Communication standards and HMI	d dis	tribute	and 7 h	ours		
Module:6PLC PProgramming methPID control functionModule:7IndustCommunication	nods; Timers and counters, math instructions, data m ns. t rial Communication standards and HMI tandards; HMI/MMI, overview of supervisory and	d dis	tribute	and 7 h	ours		
Module:6PLC PProgramming methPID control functioModule:7IndustCommunication ssystems.Case S	nods; Timers and counters, math instructions, data m ns. t rial Communication standards and HMI tandards; HMI/MMI, overview of supervisory and	d dis	tribute	and 7 h	ours		
Module:6 PLC P Programming meth PID control functio Module:7 Indust Communication s systems. Case S industrial cases.	nods; Timers and counters, math instructions, data m ns. t rial Communication standards and HMI tandards; HMI/MMI, overview of supervisory and	d dis	tribute	7 h d co r va	ours		

	Total Lecture hours: 45 hours
Тех	kt Book(s)
1.	David Calcutt, Frederick Cowan, Hassan Parchizadeh, 8051 Microcontroller: An Applications Based Introduction (2003), Newnes,
2.	Manish K Patel, The 8051 Microcontroller Based Embedded Systems, (2017), Tata McGraw-Hill Publishing Co Ltd.
3.	Frank D Petruzella, Programmable Logic Controllers Paperback (2010), 4th edition, McGraw-Hill Higher Education.
Ref	ference Books
1.	Yu-Cheng Liu, Glenn A. Gibson, Microcomputer Systems: The 8086 / 8088 Family – Architecture, Programming and Design (2007), Second Edition, Prentice Hall of India.
2.	Mohamed Ali Mazidi, Janice GillispieMazidi, RolinMcKinlay, The 8051 Microcontroller and Embedded Systems: Using Assembly and C (2011), Second Edition, Pearson Education.
3.	W. Bolton, Programmable Logic Controller (2015), Elsevier-Newnes publication, 6th edition.
4.	A. K. Gupta, S. K. Arora, Industrial Automation and Robotics (2013), 3 rd edition, Lakshmi Publications, India.
Мо	de of Evaluation: CAT ,Written Assignment, Quiz and FAT
	commended by Board of Studies 27-07-2022
Ар	proved by Academic Council No.67 Date 08-08-2022

Cou	rse Code		Course Title)		L	Т	Р	С
	IA505P		ial Controlle			0	0	2	1
Pre-	requisite	NIL				Syll	abus	versi	on
							1.0)	
Cou	rse Objective	S				•			
The	Objectives of t	the course are to:							
		functions of various of							
2		architecture, program	mming of m	icrocont	roller and ir	nterfac	cing v	/ith fi	eld
	devices.			. .		-			
		e architecture and fun	ictions of PL	C system	is and learn	PLC p	orogra	mmin	g.
	rse Outcome	l ha ahla ta							
	student should	t be able to the architecture and fu	unations of m	ioro oom	puting over	ma fa	r indu	strial	
I	applications				iputing syste	1115 10	r mau:	strial	
2		architecture 8051 Mi	icrocontroller						
		rocontroller assembly							
		interfacing technique							
		architecture and fun				vith la	dder lo	ogic.	
6	. Outline sel	ection of industrial co	ontrollers, co	mmunica	ations stand	ards a	and di	stribu	ted
	control syst								
	ative Experin								
1.		mming of microcontr							
2.		display interfacing wi							
3.		cle and motor speed		g microc	ontroller.				
5.		unications using micr							
6.		nming for simple cont		ons with	ogic, timers,	coun	ters,		
7		lation and math instru							
7. 8.		put and output field of electro-pneumatic							
0. 9.		ottle filling system usi		Iyuraulic	systems.				
9. 10.		nalog field devices w							
10.	Internating / (allaho	atory Hours	- 30	hours	•	
Toxt	Book(s)		101			5 30	nour	>	
		itt, Frederick Cowai	n Hassan	Darchiza	deb 8051	Micro	contro		۸n
1.		Based Introduction (2				WICIO	contre	лет.	
2.		atel, The 8051 Micro			bedded Sv	stems	(201	7) T	ata
<u> </u>		Publishing Co Ltd				otonno	, (201	, , , ,	ata
3.		ruzella, Programmat	ole Logic Co	ntrollers	Paperback	(2010)), 4th	editi	on,
		Higher Education.	5			`	,,		,
Refe	rence Books								
1.	Yu-Cheng Li	u, Glenn A. Gibson,	Microcompu	iter Syste	ems: The 80)86 / 8	8088 I	amily	y —
		Programming and D							
2.		i Mazidi, Janice Gillis							۶r
		ed Systems: Using A	ssembly and	I C (201 ⁻	I), Second E	dition	, Pear	son	
	Education.	<u> </u>	0 1 1 1	0045					<u></u>
3.	-	Programmable Logic	Controller (2015), E	Isevier-New	nes p	ublica	tion,	oth
1	edition.	C I/ Arona listicaturi	Autom -ti		hatian (0040) ord -	diti		
4.	•	S. K. Arora, Industria	a Automation	i and Ko	botics (2013), 3 [™] €	aition	,	
Made		olications, India.	eemont and	Final Ac	Cocomont To	et			
		ent: Continuous Asse Board of Studies	27-07-2022			้อเ			
	oved by Acad		No.67	Date	08-08-202	2			
, thh	Cred by Addu		110.07	Date	00-00-202	-			

Course Code	Course Title	L	Т	Ρ	С
MMHA506L	Advanced Control Systems	3	0	0	3
Pre-requisite	NIL	Sylla	abus	vers	sion
			1.0)	
Course Objective	9S :				
 To review specification 	 the continuous time control system design withous 	h rea	alistic	sy	stem
2. To design	a digital control system for a continuous system model.				
To provide	e knowledge of state variable models and fundament	tal no	otions	of	state
feedback o					
	e understanding of different control algorithms consid	ering	nonlii	near	ities,
uncertainit	ies and robustness.				
Course Outcome					
On the completior	of this course the student will be able to:				
	ntinuous time control system design with realistic system	n spe	cificat	ions	5.
	f discrete system response using Z-Transform.				
	ollability/ observability of a system.				
	igital Controller with realistic system specifications.				
0	state feedback control law for a time domain specificat	lon.			
	d control system design for for non linear systems.				
	nd the basics of optimal control, robust control, predicti	ve coi	ntrol	<u> </u>	
	ical Control Systems			-	ours
	ck systems and design of PID Controllers - Design		ntrolle	ers l	ising
Root Loci and Boo	le plots – Lead, Lag, Lag-lead and parallel compensate	ors.			
Modulov2 Digita	Control Systems			6 h	
	I Control Systems		reat		ours
	ding – Z-transform - Correlation between time respons	e and	τοοι	loca	uons
$\frac{11}{2}$ S plane and Z p	lane – Direct design in Z and W plane.				
Modulo:3 Digita	I Controller Design			6 h	ours
	n – Design via pole placement - digital PID controller de	ooian		0 11	ours
State space desig	n – Design via pole placement - digital PID controller di	esign			
Module:4 State	Space Analysis			6 h	ours
			<u>a a h vi</u>		
	esentations – conversion from transfer function mo ations – Controllability – Observability.	uer –	SOIVI	ng i	lime-
invariant state equ	iations – Controllability – Observability.				
Module:5 Contr	ol System Design in State Space			6 h	ours
	ontrollers in state space - design of servo and regulator	v con	troller		
observers.	shiroliers in state space - design of serve and regulator	y 0011	uonei	3 – .	State
Module:6 Nonli	near and Predictive Control			6 h	ours
	non-linear system, phase plane method - Liapunov's	stahi	ity cr		
	criterion - Model reference and predictive control				
estimators – Kalm	•	oyou	51110	0.	alo
Module:7 Super	visory Level Systems			7 h	ours
	daptive control, optimal control, robust control, m	ulti-va	riable		
systems.					
-	ntrol of motion and other dynamics of mechatronics syst	ems			
Module:8 Conte	mporary Issues			2 h	ours
		I			

	Total Lecture hours:	45 hours
Тех	kt Book(s)	
1.	K. Ogata, Modern Control Engineering, (2010) Prentice Hall of India Pr Delhi.	vt. Ltd., New
Ref	ference Books	
1.	Gene F. Franklin, J. D. Powell, A E Naeini, Feedback Control of Dyr (2008) Pearson India.	namic Systems,
2.	K. Ogata, Discrete-Time Control Systems, (2009) Prentice Hall of India Delhi.	Pvt. Ltd., New
3.	Alok Sinha, Linear Systems: Optimal and Robust Control, (2007) Taylor &	& Francis.
4.	Brian D. O. Anderson and John B. Moore, Optimal Control: Linear Qua (2007) Dover Publications	dratic Methods,
5.	H.K. Khalil, Nonlinear Systems, (2001) Prentice Hall.	
Mo	de of Evaluation: CAT ,Written Assignment, Quiz and FAT	
Red	commended by Board of Studies 27-07-2022	
App	proved by Academic Council No.67 Date 08-08-2022	

Course Code		Course Title		L	T	Р	С
MMHA507L		Process Autor	nation	2	0	0	2
Pre-requisite	NIL	1100000 Autor		Sylla	-	-	_
				Cyna	1.		
Course Objectives :	<u>l</u>					•	
The Objectives of the	course are to						
1. Impart knowled	dge on PLC, Supe	rvisory control a	nd factory auto	omation			
Course Outcome :							
At the end of the cour	rse, students shoul	d be able to					
1 Evolain the Inc	dustrial process au	tomation and its	strategy				
	he Modes of comp						
	le automation syste			the ind	ustrv	,	
	dustrial networks fo						1
5. Design a HMI for industry automation system							
6. Apply automation systems in different industrial processes							
	-	-					
	ial Process Autor						ours
Need for process au	9						ts of
process automation in		beverage, oil/ga	s and chemica	al indus	tries.		
	ation strategy			_			ours
Physical architecture					roces	ss co	ontrol
systems-continuous a	•			iew.	1	4 4	
	ation system cont						ours
Modes of computer c and functional feature	-	auction, Archited	cture and corr	iponent	s, C	ontro	ollers
Module:4 SCADA					<u> </u>	4 h	ours
Introduction, Archited		ents Controlle	rs and functi	ional fe	l atur		
technology, Interfacing					Jatur	03,	INI O
	ial Communicatio		9			4 h	ours
Serial communication				al netwo	orks		
Device Net - Profibus							
Module:6 Operato	or consoles and in	nterfaces				4 h	ours
HMI Basics, Types,	Applications of H	luman Machine	e Interface -	HMI F	roce	essin	g -
Interaction styles and							
conceptual models H			CI - security a	iccessit	oility	ofι	Iser
interfaces, evaluation		nputing.					
Module:7 Case St							ours
Case studies on appli		ion systems in d	ifferent industi	rial proc	esse		
Module:8 Contem	porary Issues	Tai	al Lecture ho				ours
Text Book(s)				Juis.		<u>30 II</u>	ours
1. B. R. Mehta and	Y. J. Reddy, Ind	ustrial Process	Automation S	Systems	s De	sign	and
Implementation, E	Isevier Inc. 2015.						
Reference Books							
1. K.L.Sharma, Over	rview of Industrial F	Process Automa	tion, Elsevier,	2011			
2. Frank Lamb, Indu	ustrial Automation:	Hands On, McG	raw-Hill Profe	ssional	, 201	3	
Mode of Evaluation: C	AT ,Written Assigr	nment, Quiz and	I FAT				
Recommended by Bo	ard of Studies	27-07-2022					
Approved by Academ		No.67	Date 08-	08-202	2		

Course Code	C C	ourse Title			L	Τ	Ρ	С
MMHA507P	Industrial Pro	ocess Automa	ation La	b	0	0	2	1
Pre-requisite	NIL				Sylla	bus	vers	sion
						1.	0	
Course Obje								
	es of the course are to:							
1. Impar	knowledge on PLC, Supe	ervisory contro	l and fac	ctory auton	nation			
Course Outo								
	the course, students shou							
	n the Industrial process a							
	nstrate the Modes of com							
3. Design a simple automation system using PLC and SCADA for the industry								
4. Explain the Industrial networks for developing the communication Infrastructure								
	n a HMI for industry autom	-						
6. Apply	automation systems in dif	ferent industria	al proces	ses				
la dia atiwa Es								
Indicative Ex								
	nation of bottle filling syste							
	opment of HMI interface v		<u> </u>					
	Programming for Elevator							- 4'
	mentation of SCADA for	supervisory	control	of Boller	plant	in si	Imula	ation
	mentation of DCS for	overall centr		omont for	ton i	n 0	imul	otion
	nment	overall contr		ement lac	lory i	ns	Imula	alion
	acing HMI with internet for	controlling a r	emote n	rocess				
				ratory Ho	urs ?	0 hc	oure	
		10		i ator y 110		5 110	Jul 3	
Text Book(s								
	Mehta and Y. J. Reddy,	Industrial Prov	cess Aut	omation S	vstem	s De	sian	and
Imnle	mentation, Elsevier Inc. 20)15			yotorna	5 00	Jigii	and
Reference B								
	harma, Overview of Indus	rial Process A	utomatic	n Eleovia	r 2014	1		
	Lamb, Industrial Automat						012	
	essment: Continuous Asse					ai, Z	013	
	ed by Board of Studies	27-07-202			551			
	Academic Council	No.67	_ Date	08-08-20	122			
Approved by		NU.07	Date	00-00-20	22			

Skill Enhancement Courses

Cour	urse code Course Title L T P C									С
MEN	G501P		Technie	cal Repo	ort Writing	g	0	0	4	2
Pre-	requisite	Nil					Syl	abus	s ver	sion
								1	.0	
Cour	rse Objective	es								
1.To	develop writi	ng skills for	preparing	technica	al reports.					
2. To	analyze and	evaluate ge	eneral and	comple	x technica	l information.				
3. To	enable profi	ciency in dra	afting and	presenti	ing reports					
	•		0		5 1					
Cour	rse Outcome	}								
	he end of the		student w	/ill be abl	le to					
						nar, vocabulary	and s	style.		
	oply the advar		-		-	•		,		
•	terpret inform		•		•	•				
	emonstrate th		•	• •	• •					
						0113.				
o. im	prove the abi	muy or prese	ining tech	nical rep	JUILS.					
- الم مرا		marta								
Indic	ative Experi Basics of T		ommunia	ation						
1.	General and									
١.	Process of c				municatio	0				
	Vocabulary			5 01 0011	Innunicatio					
2.	Word usage		words Ph	nasal ve	rhs					
۷.	Punctuation	and Proof r	reading		105					
	Advanced (odding							
3.	Shifts: Voice		erson Nun	nber						
0.	Clarity: Pror				unclear m	odifiers				
	Elements o									
4.			-	ng unne	cessary w	ords, Avoiding	cliché	s and	d slar	ŋ
	Sentence cl			0	,	· 0				0
	The Art of o	condensati	on							
5.	Steps to effe	ective precis	s writing,							
	Paraphrasin	<u> </u>	U							
6.						ristics and Cat				
7.			d Prewriti	ing : purp	oose, audi	ence, sources	of info	rmat	ion,	
· ·	organizing t									
8.	Data Visual									
						gery - Info gra	ohics			
9.	Systematiz				•				4-	
						Diverse Techr				400
10.						iterature reviev cles and e-con		erend	se siy	/ies,
	Structure o			ini waya	izines, Aru		leni			
11		-	wledgemo	ant - Aha	stract/Sum	mary – Introdu	ction	Mat	oriale	s and
11			•			igestions/Reco) anu
	Writing the				131011 - 349	190310113/11000	minel	iudil	113	
12.	Thesis state	-	-	•	oherence					
						Revising the a	nstran	t		
13.	Avoiding Pla					i to violity the a	Juan	~		
	-	-								
1/	4. Appendix – Index – Glossary – References – Bibliography - Notes									
14.	Appendix -	$n \alpha e x - c \eta \alpha$	ssarv - r	eterence	es – Riblioc	praphy - Notes				

	Presenting Technical Reports					
	Planning, creating anddigital pres	sentation of re	eports			
		Tota	al Labora	tory hours :	60 hours	
Text	Book(s)					
1.	1. Raman, Meenakshi and Sangeeta Sharma, (2015).Technical Communication: Principles and Practice, Third edition, Oxford University Press, New Delhi.					
Refe	rence Books					
1.	Aruna, Koneru, (2020). Englis Education, Noida.	h Language	Skills f	or Engineers	. McGraw Hill	
2.	Rizvi,M. Ashraf (2018)Effective Hill Education, Chennai.	Technical C	ommunic	ation Second	Edition. McGraw	
3.	Kumar, Sanjay and Pushpalatha, for Engineers, Oxford University I	· / •	ish Langı	uage and Corr	nmunication Skills	
4.	Elizabeth Tebeaux and Sam Communication, Fifth Edition, Ox	00 .		he Essential	s of Technical	
Mode	e of Evaluation : Continuous Asses	sment Tests	Quizzes	. Assignment.	Final	
	ssment Test			,;		
	ommended by Board of Studies	19-05-2022				
	oved by Academic Council	No. 66	Date	16-06-2022		
	oved by Academic Council	110.00	Dale	10-00-2022		

MOTOFAID	Course Code Course Title L T P						
MSTS501P		Qualitative Skills Practice	0	0	3	1.5	
Pre-requisi	te	Nil	Sylla	abus	s ver	sion	
				1.	0		
Course Obj							
		p the quantitative ability for solving basic level problems	i.				
2. To	improv	e the verbal and professional communication skills.					
Course Out	tcome						
At the end	of the	course, the student will be able to					
1. Exe	ecute a	ppropriate analytical skills.					
2. Sol	ve pro	plems pertaining to quantitative and reasoning ability.					
3. Lea	arn bet	ter vocabulary for workplace communication.					
4. Der	monstr	ate appropriate behavior in an organized environment.					
 	Rusi	ness Etiquette: Social and Cultural Etiquette; Writing	<u> </u>				
Module:1		pany Blogs; Internal Communications and Planning:	-		9 hc	ure	
module. I	-	ng press release and meeting notes			5 110	Juis	
Value Man		Netiquette, Customs, Language, Tradition, Building a	bloa	De	velo	pina	
		AQs', Assessing Competition, Open and objective Cor	-			-	
	•	derstanding the audience, Identifying, Gathering Infor					
		cting plan, Progress check, Types of planning, Write			-		
-		ne Point –summarize your subject in the first paragraph				-	
relevant to y			,	,			
Module:2	Time	management skills			3 hc	ours	
Prioritizatior	n, Proc	rastination, Scheduling, Multitasking, Monitoring, Workir	ng un	der	pres	sure	
and adherin	a to de	adlines	•				
	9 10 40						
	0						
Module:3	Prese	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing			7 hc	ours	
	Prese mate	entation skills – Preparing presentation; Organizing			7 hc	ours	
Module:3	Prese mate with	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing		the			
Module:3 10 Tips to Test, Blue	Prese mate with prepar sky thi	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction, body and conclusion, Use of Fo	sing nt, U	se o	Elev of Co	ator olor,	
Module:3 10 Tips to Test, Blue Strategic pr	Prese mate with prepar sky thi resenta	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction , body and conclusion, Use of Fo ation, Importance and types of visual aids, Animation	sing nt, U to ca	lse o aptiv	Elev of Co ate y	ator olor, your	
Module:3 10 Tips to Test, Blue Strategic pr audience, [Prese mate with prepar sky thi resenta Design	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction, body and conclusion, Use of Fo ntion, Importance and types of visual aids, Animation of posters, Setting out the ground rules, Dealing v	sing nt, U to ca	lse o aptiv	Elev of Co ate y	ator olor, your	
Module:3 10 Tips to Test, Blue Strategic pr audience, [Prese mate with prepar sky thi resenta Design	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction , body and conclusion, Use of Fo ation, Importance and types of visual aids, Animation	sing nt, U to ca	lse o aptiv	Elev of Co ate y	ator olor, your	
Module:3 10 Tips to Test, Blue Strategic pr audience, [Prese mate with prepar sky thi esenta Design ontrol o Quar	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction, body and conclusion, Use of Fo ntion, Importance and types of visual aids, Animation of posters, Setting out the ground rules, Dealing v	sing nt, U to ca	se o aptiv nter	Elev of Co ate y	ator blor, your ons,	
Module:3 10 Tips to Test, Blue Strategic pr audience, I Staying in c Module:4	Prese mate with prepar sky thi resenta Design ontrol o Quan Prog	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction , body and conclusion, Use of Fo tion, Importance and types of visual aids, Animation of posters, Setting out the ground rules, Dealing v of the questions, Handling difficult questions. titativeAbility-L1–Numberproperties; Averages; ressions; Percentages; Ratios	sing nt, U to ca with i	lse o aptiv nter	Elev of Co ate y ruption	ator olor, your ons, ours	
Module:3 10 Tips to Test, Blue Strategic pr audience, E Staying in c Module:4 Number of	Prese mate with prepar sky thi esenta Design ontrol o Quan Prog	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction, body and conclusion, Use of Fo ation, Importance and types of visual aids, Animation of posters, Setting out the ground rules, Dealing v of the questions, Handling difficult questions. htitativeAbility-L1–Numberproperties; Averages; ressions; Percentages; Ratios , Factorials, Remainder Theorem, Unit digit position, T	sing nt, U to ca with i	lse o aptiv nter 1 digit	Elev of Co ate y ruption	ator olor, your ons, ours	
Module:3 10 Tips to Test, Blue Strategic pr audience, E Staying in c Module:4 Number of Averages, N	Prese mate with prepar sky thi resenta Design ontrol o Quan Prog factors Weight	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction , body and conclusion, Use of Fo tion, Importance and types of visual aids, Animation of posters, Setting out the ground rules, Dealing v of the questions, Handling difficult questions. titativeAbility-L1–Numberproperties; Averages; ressions; Percentages; Ratios	sing nt, U to ca with i Fens ressio	se of aptivner	Elev of Co ate y ruption 1 ho Harn	ator olor, your ons, ours iition, nonic	
Module:3 10 Tips to Test, Blue Strategic pr audience, E Staying in c Module:4 Number of Averages, N	Prese mate with prepar sky thi resenta Design ontrol of Quan Prog factors Weight a, incr	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction , body and conclusion, Use of Fo ation, Importance and types of visual aids, Animation of posters, Setting out the ground rules, Dealing v of the questions, Handling difficult questions. titativeAbility-L1–Numberproperties; Averages; ressions; Percentages; Ratios , Factorials, Remainder Theorem, Unit digit position, T ed Average, Arithmetic Progression, Geometric Prog	sing nt, U to ca with i Fens ressio	se of aptivner	Elev of Co ate y ruption 1 ho Harn	ator olor, your ons, ours sition, nonic	
Module:3 10 Tips to Test, Blue Strategic pr audience, E Staying in c Staying in c Module:4 Number of Averages, N Progression	Prese mate with prepar sky thi resenta Design ontrol o Quan Prog factors Weight	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction , body and conclusion, Use of Fo ation, Importance and types of visual aids, Animation of posters, Setting out the ground rules, Dealing v of the questions, Handling difficult questions. titativeAbility-L1–Numberproperties; Averages; ressions; Percentages; Ratios , Factorials, Remainder Theorem, Unit digit position, T ed Average, Arithmetic Progression, Geometric Prog	sing nt, U to ca with i Fens ressio	se of aptivner	Elev of Co ate y ruption 1 ho Harn	ator olor, your ons, ours sition, nonic and	
Module:3 10 Tips to Test, Blue Strategic pr audience, E Staying in c Module:4 Number of Averages, N Progression proportions. Module:5	Prese mate with prepar sky thi resenta Design ontrol o Quan Prog factors Weight n, incr	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction , body and conclusion, Use of Fo ation, Importance and types of visual aids, Animation of posters, Setting out the ground rules, Dealing v of the questions, Handling difficult questions. ItitativeAbility-L1–Numberproperties; Averages; ressions; Percentages; Ratios , Factorials, Remainder Theorem, Unit digit position, T ed Average, Arithmetic Progression, Geometric Prog ease and Decrease or Successive increase, Type oning Ability - L1 – Analytical Reasoning	sing nt, U to ca with i Fens ressiones o	se o aptiv nter 1 digit on, f ra	Elev of Co ate y ruption 1 ho pos Harn atios 8 ho	ator olor, your ons, ours sition, nonic and	
Module:3 10 Tips to Test, Blue Strategic pr audience, I Staying in c Staying in c Module:4 Number of Averages, N Progression proportions. Module:5 Data Arrang	Prese mate with prepar sky thi resenta Design ontrol o Quan Prog factors Weight n, incr	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction , body and conclusion, Use of Fo ation, Importance and types of visual aids, Animation of posters, Setting out the ground rules, Dealing v of the questions, Handling difficult questions. titativeAbility-L1–Numberproperties; Averages; ressions; Percentages; Ratios , Factorials, Remainder Theorem, Unit digit position, T ed Average, Arithmetic Progression, Geometric Prog ease and Decrease or Successive increase, Type	sing nt, U to ca with i Fens ressiones o	se o aptiv nter 1 digit on, f ra	Elev of Co ate y ruption 1 ho pos Harn atios 8 ho	ator olor, your ons, ours sition, nonic and	

Synonyms & Antonyms, One word substitutes, Word Pairs, Spellings, Idioms, Sentence completion, Analogies.

	Total Lecture hours: 45 hours
Ref	erence Books
1.	Kerry Patterson, Joseph Grenny, Ron McMillan and Al Switzler, (2017).2 nd Edition, Crucial Conversations: Tools for Talking when Stakesare High .McGraw-Hill Contemporary, Bangalore.
2.	Dale Carnegie,(2016).How to Win Friends and Influence People. Gallery Books, New York.
3.	Scott Peck. M, (2003). Road Less Travelled. Bantam Press, New York City.
4.	SMART, (2018). Place Mentor, 1 st edition. Oxford University Press, Chennai.
5.	FACE, (2016). Aptipedia Aptitude Encyclopedia. Wiley publications, Delhi.
6.	ETHNUS, (2013). Aptimithra. McGraw – Hill Education Pvt .Ltd, Bangalore.
Wel	osites:
1.	www.chalkstreet.com
2.	www.skillsyouneed.com
3.	www.mindtools.com
4.	www.thebalance.com
5.	www.eguru.ooo
Moc Tes	le of Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final Assessment t
Rec	ommended by Board of Studies 19-05-2022
App	roved by Academic Council No.66 Date 16-06-2022

Course Coo	de	Course Title	L	Т	P	С
MSTS502P		Quantitative Skills Practice	0	0	3	1.5
Pre-requisit	Pre-requisite Nil			llabu	s ver	sion
Course Obj	jective	s:				
1. To a	develo	p the students' advanced problem solving skills.				
2. To e	enhano	ce critical thinking and innovative skills.				
Course Out	tcome					
At the	e end o	of the course, the student will be able to				
1. Crea	te pos	itive impression during official conversations and inte	ervie	NS.		
2. Dem	onstra	te comprehending skills of various texts.				
3. Impro	ove ad	vanced level thinking ability in general aptitude.				
4. Deve	elop en	notional stability to tackle difficult circumstances.				
	-					
Module:1		me skills – Resume Template; Use of power s of resume; Customizing resume	verb	os;	2 ł	nours
Structure of	a stan	dard resume, Content, color, font, Introduction to P	ower	verbs	s and	Write
		es of resume, Frequent mistakes in customizi				
-	• •	erent company's requirement, Digitizing career portf	•			
Module:2	•	view skills – Types of interview; Techniques to f			3 h	ours
	remote interviews and Mock Interview					
Structured a	and u	nstructured interview orientation, Closed questio	ns a	and h	iypoth	etical
questions, li	ntervie	wers' perspective, Questions to ask/not ask during	g an	interv	view, `	Video
interview, R	ecorde	d feedback, Phone interview preparation, Tips to c	ustor	nize p	orepai	ration
for personal	intervi	ew, Practice rounds.				
	Emot	ional Intelligence - L1 – Transactional Analysis;	Brair	า		
Module:3		ning; Psychometric Analysis; SWOT analysis			12 h	nours
Introduction,	, Cont	racting, ego states, Life positions, Individual E	Brains	stormi	ng, C	Group
Brainstormir	ng, Ste	epladder Technique, Brain writing, Crawford's S	lip w	riting	appr	oach,
Reverse bra	ainstorr	ning, Star bursting, Charlette procedure ,Round rob	in bra	ainsto	rming	, Skill
Test, Persor	nality T	est, More than one answer, Unique ways, SWOT ar	nalysi	s.		
Module:4 Quantitative Ability - L3–Permutation - Combinat Probability; Geometry and menstruation; Trigonom Logarithms; Functions; Quadratic Equations; Set Theo					14 h	nours
Counting, Grouping, Linear Arrangement, Circular Arrangements, Conditional Probability,						
	•	Dependent Events, Properties of Polygon, 2D &				•
		and distances, Simple trigonometric functions, Intro		•		
Basic rules of logarithms, Introduction to functions, Basic rules of functions, Understanding						
Quadratic Equations, Rules & probabilities of Quadratic Equations, Basic concepts of Venn						
Diagram.	1	,,		r		
Module:5		oning ability - L3 – Logical reasoning; Data Analy nterpretation	ysis		7 ł	ours

C UI	aiomo	Dingry logic Sequential output tracing Crypta arithmatic Data Suffic	ionay Data			
-	•	Binary logic, Sequential output tracing, Crypto arithmetic, Data Sufficen-Advanced, Interpretation tables, pie charts & bar chats.	siency, Data			
inter	pretatic	in-Advanced, interpretation tables, pie charts & bar chars.				
Мос	lule:6	Verbal Ability - L3 – Comprehension and Critical reasoning	7 hours			
Rea	ding co	mprehension, Para Jumbles, Critical Reasoning (a) Premise and Cor	nclusion,			
(b) A	Assump	tion & Inference, (c) Strengthening & Weakening an Argument.				
			_			
		Total Lecture hours:	45 hours			
Refe	erence					
1.		el Farra and JIST Editors,(2011).Quick Resume & Cover Letter Book se an Effective Resume in Just One Day. Jist Works, Saint Paul, Min				
2.	Flage Daniel E, (2003).The Art of Questioning: An Introduction to Critical Thinking. Pearson, London.					
3.	David Allen, (2015).Getting Things done: The Art of Stress-Free productivity. Penguin Books, New York City.					
4.	SMAR	T, (2018). Place Mentor 1 st edition. Oxford University Press, Chenna	i.			
5.	FACE	, (2016).Aptipedia Aptitude Encyclopedia. Wileypublications, Delhi.				
6.	ETHNUS, (2013).Aptimithra. McGraw-Hill Education Pvt Ltd, Bangalore.					
Wek	sites:					
1.	www.c	halkstreet.com				
2.	www.skillsyouneed.com					
3.	www.mindtools.com					
4.	www.thebalance.com					
5.	<u>www.</u> e	eguru.ooo				
Asse	essmen					
		ded by Board of Studies 19-05- 2022				
Арр	roved b	y Academic Council No.66 Date 16-06-2022				

Discipline Elective Courses

Course Code	Course Title	L	т	Ρ	С
MMHA601L	Machine Vision Systems	3	0	0	3
Pre-requisite	NIL	Syll	abus		ion
Course Obiesti			1.	0	
Course Objectiv					
2	f the course are to: students to the fundamentals of image formation;				
	hage processing techniques for computer vision				
	nd the shape and region analysis.				
	an appreciation for various issues in the design of o	compl	iter v	ision	and
object rec	ognition systems; and	•			
	he student with programming experience from imp	lemer	iting	comp	outer
	l object recognition applications.				
Course Outcom	-				
	this course student should be able to:	•	b		I
1. Demonstr vision sys	ate the image processing and image analysis techn	iques	by a	mac	nine
,	ate the possibilities and limitations of application of im	iane r	vroces	seina	and
computer		aye p	1000	song	and
	arious image enhancement and restoration techniques.				
	colour image processing, image compression, image	e seg	menta	ation	and
represent		-			
	the techniques for image enhancement and image resto	oratior	۱.		
6. Interpret i	mage segmentation and representation techniques.				
Module:1 Intro	du ationa			E h	
	Aachine Vision and Computer Vision – HMI			5 110	ours
Module:2 Hard	ware Components			7 h	ours
	nalog, Digital- CID, CCD, CMOS, Camera Calibration	n - Fi	rame		
Manual & Auto sl					
Module:3 Light	ing System			5 h/	ours
	ers, Lighting sources, selection - Lighting Techniques -	Type	and s		
<u>Lighting parametric</u>		. , , , , , , , , , , , , , , , , , , ,		01000	
Module:4 Image	e Acquisition			7 h	ours
	terfaces, Camera Computer Interfaces, Specifications a	ind se	lectio	n	
Module:5 Image					ours
	Digital Image-Filtering technique -Processing of bir				
	ation- thresholding-connectivity-noise reduction-edg	je d	etecti	on-re	gion
growing and region	on splitting - binary and gray morphology operations.				
Module:6 Image	e Analysis			7 h	ours
	on-Texture Analysis -Pattern recognition, image res	solutio	on-de		
	rocessing, Template Matching -Decision Making, 3				
Techniques					
Modulo:7 Pract	ical Applications			1 h	ours
	achine vision in Automotive Industries, Manufacturing,	Flectr	onice		
			UNICS	,	ung,
	Biomedical, Robotics, Agricultural Applications.				
Pharmaceutical,	emporary Issues			0 1-	ours

					1		
		Тс	otal Lectu	ure hours:	45 hours		
Tex	Text Book(s)						
1.	E. R. Davies, ,(Machine Vision Press.	: Theory, <i>I</i>	Algorithm	s, Practica	lities (2014Academic		
Re	ference Books						
1.	Alexander Hornberg, Handbook on	Machine Vi	sion (200	6), Wiley.			
2.	Milan Sonka, Vaclav Hlavac, Roger Boyle, Image Processing Analysis and machine Vision (2014), Cengage Learning.						
3.	3. Rafael C. Gonzalez, Richard Eugene Woods, Digital Image Processing (2009), Pearson						
4.	4. Herbert Freeman, Machine Vision: Algorithms, Architectures and Systems (2012), Academic Press.						
Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT							
Re	commended by Board of Studies	27-07-2022	2				
Ар	proved by Academic Council	No.67	Date	08-08-202	22		

Course Code	Course Title	L	Т	Ρ	С
MMHA602L	Mobile and Autonomous Robots	3	0	0	3
Pre-requisite	NIL	Syll	abus	vers	sion
			1.	.0	
Course Objectiv					
	the course are to;				
	e basic concepts of Mobile Robot and its types.				
	ous types of locomotion and its kinematics behavior. In the important of localization and its associated senso	r ovot	om		
	ous path planning algorithm and task allocation.	syst	em.		
Course Outcom	e:				
	he course, the student will be able to:				
	e various types of autonomous system and its challenge	s.			
2. Identify the	e types of locomotion and its kinematic constrain.				
	e suitable sensors for localizations in mobile robotics system				
	path planning with various algorithm and task allocati	on pr	obler	n in I	multi
robotic sys					
5. Discuss va	arious application of service and industrial autonomous	robot	ic sys	tem.	
Module:1 Introd	luction			6 h	ours
		<u> </u>	omno		
	bot – Master and slave - Autonomous Robot tic system – challenges in autonomous robot – redur				
	ous robotic system.	luant	man	ipulai	01 -
Module:2 Loco	motion			6 ho	ours
Types of locomot	ion – Key issues in locomotion –Wheeled mobile robo	t – ty	oes o		
	vheel configurations - biomimetic locomotion				
Module:3 Kinen					ours
	ot – car-link mobile robot – Degree of mobility- Insta	ntane	ous	Cente	er of
Rotation					
Module:4 Perce	ntion			6 h	ours
	- Heading Sensors- Ground-Based RF Beacons and	CDG	2 50		
	ioning- Odometry- Active Beacon Navigation Systems				
and Torque Calcu			unia	IR, O	izing
Module:5 Local	ization			7 h	ours
Self-localizations	and mapping - Challenges in localizations – IR based l	ocaliz	ation	s – v	ision
based localization	ns - Ultrasonic based localizations -Map representation	n and	Мар	build	ding-
Map based localized	zation scheme – other localization systems				
	ing, Navigation and Collaborative Robots				ours
	ompetences for Navigation: Planning and Reacting: P				
	position , Potential field – Obstacle avoidance: Bug algo			algor	itnm
- vector neid hist	ogram – Dynamic window approach - Navigation Archi	leciur	es		
Module:7 Multi	robots and its application			4 h	oure
	robots and its application	sk al	ocati		ours fault
Leader based mu	robots and its application Iti robot system – leader less mobile robot system - ta m robotics. Applications - Military mobile robots – U			on –	fault

Мо	Module:8 Contemporary Issues 2						
Tot	Total Lecture hours: 45 hours						
Тех	xt Book(s)						
1.	Roland Siegwart, Illah Reza Nourbakhsh, Davidescaramuzza: Autonomous Mobile Robots, (2011). The MIT Press. ISBN: 9780262						
Re	ference Books						
1.	FarbodFahimi, Autonomous Robots Modeling, Path Planning and control, (2009), Springer. ISBN: 9780387095370.						
2.	2. Bruno Siciliano, OussamaKhatib, Handbook of Robotics 2ndedition, (2016), Springer. ISBN: 9783319325507.						
3.	3. Shuzhi Sam Ge, Autonomous Mobile Robots: Sensing, Control, Decision making and Applications (2006), CRC Press, Taylor and Francis Group.						
4.	4. Jitendra R. Rao, Ajith K. Gopal, Mobile Intelligent Autonomous Systems, (2012), CRC Press, Taylor and Francis Group. ISBN: 9781439863008.						
5.	5. Krzysztof Kozlowski, Robot Motion and Control, (2012), Springer. ISBN: 9781447123422.						
	Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT						
	commended by Board of Studies 27-07-2022						
Ар	proved by Academic Council No.67 Date 08-08-202	2					

Course Code	Course Title	L	т	Ρ	С	
MMHA603L	MEMS and Microsystems	3	0	0	3	
Pre-requisite	NIL	Syllabus version				
Course Objective			1	.0		
Course Objective The Objectives of						
	ling the concept of MEMS and Microsystems.					
	he diverse technological and functional approaches					
	insight on micro sensors, actuators and micro fluidics					
Course Outcom						
-	his course student should be able to: te the micro fabrication techniques					
	ether using a MEMS based solution is the relevant and	hes	t annr	nach	1	
	most suitable manufacturing process, actuators, senso					
	e knowledge on general properties of Microfluidics and	phy	sics ir	nvolve	ed in	
5. Design & a	nalyze the microfabrication techniques in Bio electro m I MEMs Fluid structure interaction in Microflow devices		anical	syste	ems	
-						
	luction to MEMS and micro system design			-	ours	
MEMS and micro technologies.	system definition, Material Properties, Structural be	ehav	ior, F	abric	ation	
Module:2 Senso	ors used in MEMs and microsystems			6 h	ours	
Different types of transduction, feed	sensors used for MEMS and microsystems, sensi back systems.	ng r	netho	ds, s	ignal	
Module:3 Micro	actuators			6 h	ours	
	nd working of micro-actuators-Thermal actuators-SM	/IA a	ctuate	ors-P	'iezo-	
electric Actuators-	Electrostatic actuators-micro grippers-micro motors.					
Module:4 Micro	fluidics			6 h	ours	
	cale transport, different components of a micro fluidic s	vste	m	•		
	· · · ·					
¥	n aspects of MEMs and microsystems				ours	
0	ccelerometers-vibration control of a plate -part of a r	nicro	o syste	em)-ľ	Micro	
mirror design -iviic	ro dispenser design.					
Module:6 Bio el	ectro mechanical systems			7 h	ours	
	nicro systems, –examples of micro systems in biolo	ogy-	ab-or			
	micro scale with examples.				•	
Module:7 Optica	al MEMs and micro systems			5 h	ours	
Micro opto-electro	nic devices, micro optical switches, micro optical arrays	s in	solar	bane	s	
Module:8 Conte	mporary Issues			2 h	ours	
	Total Lecture h	ours	: 4	5 hoi	urs	
Text Book(s)			•			
1. Stephen D.Se	nturia, Microsystem Design (2007), Springer Science.					

Ref	Reference Books							
1.	James J. Allen, Micro Electro Mechanical System Design (2005), CRC Press, Taylor & Francis Group.							
2.	Jacopo Iannacci, Practical Guide to RF-MEMS (2013), John Wiley & Sons Ltd.							
3.	MinhangBao, Analysis and Desig	n Principles of MI	EMS devi	ces (2005), Elsevier.				
4.	Marc J. Madou, Fundamentals of	Microfabrication	and Nano	technology, (2011), CRC				
5.	Tai-Ran Hsui, MEMS & Microsyst Engineering (2008), John Wiley a		nufacture	and Nano scale				
6.	V. Choudhary, K. Iniewski, MEMS Press, (2017).	S: Fundamental T	echnolog	y and Applications, CRC				
Mo	de of Evaluation: CAT ,Written Ass	ignment, Quiz ai	nd FAT					
Red	Recommended by Board of Studies 27-07-2022							
App	Approved by Academic Council No.67 Date 08-08-2022							

Course Code	Course Title	L	Т	Р	С	
MMHA604L	Data Acquisition and Digital Signal Processing	3	0	0	3	
Pre-requisite	NIL	Syl	labus	vers	ion	
		1.0				
Course Objectiv	es : tand the mathematical representations of continuou	ic tim	o dia	oroto	timo	
	representations.	is um	e, uis	siele	ume	
0	e Discrete time systems using Z - transform.					
	and implement IIR filters and FIR filters					
0	knowledge and ability to use the appropriate to	ols lik	e dig	ital s	ignal	
	s to build DSP systems for real time problems.		0		0	
Course Outcome						
	n of this course the student will be able to:	ontoti	ono o	nd ite		
limitations	d the continuous time, discrete time and digital repres	entati	0115 8		5	
	d the Z transform and analyze the System response.					
	d implement IIR filtering operations with the real time	constr	aints.			
	IR filter for specific digital signal applications.					
	ding the DAQ Hardware and Software requirements a	nd its				
implement						
	ns of Signal processing techniques to speech signals.			_		
	e techniques, skills and modern technical tools necess	sary fo	or engi	neeri	ng	
practice to	design and simulate a DSP systems.					
Module:1 Discr	ete Systems and Signals			4 h	ours	
	nals – classification –continuous and discrete system	ns – A	Analoc			
and Digital to ana				,	5	
Module:2 Data	Acquisition systems:			5 h	ours	
	ardware and Software –Concepts of Data Acquisition a	and te	rmino		0010	
				- 37		
	system Implementation				ours	
	re, Installing drivers -Configuring the Hardware – add		ng the	hard	ware	
Digital and Analog	gl/O function – Buffered I/O – Real time Data Acquisiti	on.				
Module:4 Discr	etization of signals			8 h	ours	
	gitizing Analog Signals, Z-Transformation- Fast Fourie	er tran	sform			
Quantization nois		or train		, / 110	enig,	
	,					
Module:5 Filter					ours	
	imal FIR filters – design of filters withsimultaneous c					
frequency respon FIR filter.	se – Optimizationmethods for designing IIR filters, co	mpari	son o	f opti	mum	
Modulo:6 Signa	I Processing Hardware	<u> </u>		<u> </u>	ours	
	I Processing Hardware rs, different forms of FIRHardware, De-multiplexing ar	d mul	tiplovi		ours	
	uencysynthesizer.	iu mul	upiexi	ny,		
Module:7 Appli	cations of DSP			5 h	ours	
					and	

Мо	dule:8 Contemporary Issues	2 hours
	Total Lecture hours:	45 hours
Tex	kt Book(s)	
1.	Patrick H. Garrett, Advanced Instrumentation and Computer I/O Dea Accuracy Decision	sign: Defined
2.	Control and Process Applications (2013), 2nd edition, Wiley. John G. Proakis, Dimitris G. Manolakis, Digital Signal Processing (2007 Prentice Hall.	7), 3rd edition
Re	ference Books	
1.	John Park and Steve Mackay, Practical Data Acquisition for Instrumenta Systems(2006), Elsevier	tion and Control
2.	S. Gupta and J P Gupta, Data Acquisition and Process Control (19 Society of America	994), Instrument
3.	Dimitris G. Manolakis, Vinay K. Ingle, Stephen M. Kogon, Statistical and Processing(2005) Artech House, Inc.	Adaptive Signal
4.	S.K.Mitra, Digital Signal Processing (2006), 3rd edition, Tata Mc-graw Hi	II
	de of Evaluation: CAT ,Written Assignment, Quiz and FAT	
	commended by Board of Studies 27-07-2022	

Т

0

L

3

С

3

Ρ

0

Syllabus version 1.0

methodologies for embedded system development.	
Course Outcome :	
 On the completion of this course the student will be able to: 1. Understand the characteristics and concepts of embedded system. 2. Understand the architecture of hardware embedded system 3. Interpret the bus protocols involved in interfacing with memory blocks. 4. Understand the steps of embedded system programming. 5. Compare the concepts of RTOS with general purpose OS. 6. Design hardware components/architecture for embedded system applica 7. Design a component or a product applying all the relevant standards with constraints in practical case studies. 	
Medulard Introduction to Embedded Systems	2 6 6 1 1 1 1
Module:1 Introduction to Embedded Systems Definition, history and applications of Embedded System - Concept of Real tin	3 hours
Embedded System Design - Design Process - Quality Attributes.	ne Systems -
Module:2 Embedded System Architecture	7 hours
Instruction Set Architecture - CISC and RISC instruction set architecture - Bas	
Processor/Microcontroller Architecture - DSP Processors – Harvard Architecture System Architecture - I/0 Sub-system – Coprocessors and Hardware Architecture Enhancement	ure - Memory
Module:3 Designing Embedded Computing Platform	7 hours
Bus Protocols – Bus Organization - Memory Devices and their Characteristics - UVROM, EEPROM, Flash Memory, DRAM - I/O Devices – Component Interfaci and I/O device Interfacing	
Module:4 Programming Embedded Systems	7 hours
Program Design - Design Patterns for Embedded Systems - Programming	
Desired Language Characteristics - Object Oriented Programming - Use o Languages - Compiling, Assembling, Linking, Debugging - Program Validation a	f High Level
Module:5 Operating System	7 hours
Basic Features of an Operating System - Kernel Features - Real-time Kernels	
and Threads - Context Switching –Scheduling - Inter-process Communication Memory Management.	
MedularC Embedded System Development	7 hours
Module:6Embedded System DevelopmentDesign Methodologies – Requirement Analysis and Use case Modeling - StatObject and Class Structuring - Dynamic Modeling - Architectural DesignSoftware Partitioning - Hardware-software Integration - Fault-tolerance TReliability Evaluation Techniques	- Hardware-
Proceedings of the 67th Academic Council (08.08.2022)	999

Course Title

Embedded Systems

1. To give an emphasis on the characteristics and hardware architecture of embedded

2. To provide essential knowledge on various steps involved in executing a higher level

3. To provide the essential knowledge in the operating systems and design

Course Code

Pre-requisite

Course Objectives :

NIL

system and real time operating systems.

language and development of required software.

MMHA605L

Мо	dule:7	Case Studies				5 hours
		mples of embedded syste tomated Teller Machine (A		kjet Printer,	Set-top Box, Elev	ator Control
Мо	dule:8	Contemporary Issues				2 hours
				Total	Lecture hours:	45 hours
Tex	xt Book	(S)				
1.		Wolf, Computers as Com , (2009), Morgan Kaufma		ciples of E	mbedded Comput	ing System
Re	ference					
1.		R., Embedded microproce ss, Elsevier Science	essor Systems	– Real Wor	ld Design, (2002),	3rd Ed,
2.	C.M. K	rishna, Kang G. Shin, Rea	al Time system	s, (2009), N	/IcGraw Hill	
3.	Frank '	Vahid, Tony Givagis, Emb	edded System	Design. (20	009), Wiley Editior	າ.
Мо	de of Ev	aluation: CAT ,Written As	signment, Qui	z and FAT	· · ·	
Re	commer	ded by Board of Studies	27-07-2022			
Ap	proved b	y Academic Council	No.67	Date	08-08-2022	

		_		_				
Course Code	Course Title	L	Т	Ρ	С			
MMHA606L	Autotronics and Vehicle Intelligence	3	0	0	3			
Pre-requisite	NIL	Syllabus version 1.0						
Course Objective			1.0					
The Objectives of								
	the automotive electronics							
2. Introduce t	he different vehicle systems							
Study the i	mportance of vehicle intelligence system							
Course Outcom								
	his course student should be able to:	ro on	d tran	adua	oro			
	nsive fundamental and technical knowledge of senso o vehicles and vehicle intelligence.	ns an	u tran	Isauc	ers			
	nderstand, analyze and use various SI and CI Manager	ment s	system	าร				
	se numerical coding for system modelling and simulation							
	f automotive sensors and actuators for a specific appli							
	a suitable controller for energy management in electric			vehic	les			
6. Acquire Kn	owledge on several intelligent vehicle system and safe	ty sys	tems					
Meduleid Autor	notive Fundamentals		1	Cha				
	its – Drive train – suspension system, ABS, Steering S	vetom		6 ho	urs			
	its – Drive train – suspension system, ADO, Oteering O	ystem						
Module:2 Fuel S	Supply System			6 ho	urs			
	tem - components, electronic fuel injection -Throttle	e bod						
	CRDI. Fuel Ignition System - Electronic ignition sy							
types – Battery, m	agneto ignition systems – Electronic spark timing contr	ol						
Module:3 Auton	notive Sensors			6 ho				
	xygen sensors, crankshaft angular position sensor, t	omno						
	ssure sensor, Mass air flow sensor, Manifold Absolute							
	polant level sensors, Brake fluid level sensors -							
characteristics, ad	vantage and their applications	•						
	e Management system	D		<u>6 ho</u>				
	tics, Exhaust emission control, Catalytic Converters, Ne	ew De	velop	ment	s in			
engine manageme	ent, adaptive Cruise control							
Module:5 Contr	ol of Electric and hybrid vehicles			6 ho	urs			
	batteries electric motor and controller, regenerative b	oraking						
	CNG electric hybrid vehicle – Hybrid Vehicle case studi							
	notive Safety Sensor applications			6 ho	urs			
	nsing/wiper activation system, drowsy-driver sensing s							
	tems, Passive Sensor Safety system - Side Impact Ser	nsing,	front i	mpa	CT			
sensing system.								
Module:7 Intelli	gent Vehicle System			7 ho	urs			
	osystems. Vision based autonomous road vehicles	Obi						
	Collision warning and avoidance system – Tyre pressure warning system, security systems,							
Emergency Electr	onic braking. Intelligent Vehicle Systems – Unmanne							
Vehicle Platooning	l.							

Мо	dule:8 Contemporary Issues	2 hours
	Total Lecture hours:	45 hours
Тех	t Book(s)	
1.	William B.Ribben, Understanding Automotive Electronic: An Engineering P (2012), Elsevier Science.	erspective
Ref	erence Books	
1.	Tom Denton, Automobile Electrical and Electronic systems (2013), Roule & Francis Group.	tedge, Taylor
2.	Tom Denton, Automobile Mechanical and Electrical Systems (2011), Tay Group	lor & Francis
3.	Gianfranco Pistoia, Electric and Hybrid Vehicles: Power Sources, Models, S Infrastructure and the Market (2010), Elsevier.	Sustainability,
4.	Ronald K.Jurgen, Electric and Hybrid-electric vehicles (2011), SAE Internat	ional.
Mo	de of Evaluation: CAT ,Written Assignment, Quiz and FAT	
Red	commended by Board of Studies 27-07-2022	
App	proved by Academic Council No.67 Date 08-08-2022	

Course Code	Course Title	I	т	Р	С
MMHA607L	Intelligent Systems	3	0	0	3
Pre-requisite	NIL	-	labu	s vers	sion
•				1.0	
Course Objective	s:				
The Objectives of					
	owledge about different searching techniques and defir				_
-	concept of representing knowledge of ANN architect	ure,	fuzzy	logic	and
genetic alg	orithm				
Course Outcome	.				
	ourse, students should be able to				
	e characteristics of AI systems with different search	ina 1	echr	niaues	and
algorithms					
J	mple AI system				
	te the Genetic algorithms programming				
	id techniques for Industrial Applications of intelligent sy				
5. Evaluate th	e applications of types of AI algorithms for real time inc	dustr	ial ap	oplicat	ions
Madula 4				<u> </u>	
	set theory and fuzzy logic system	-	ional		ours
	Fuzzy Set theory – Operations of Fuzzy sets – Fuzzy – Fuzzification – Defuzzification –Decision making I				
functions – Rule b		ogic	- 101	CHIDE	isiip
Module:2 Adapt	ive fuzzy systems			6 h	ours
Performance inde	x – Modification of rule base – Modification of memb	ber s	hip f	unctio	ons –
	ification of rule base and membership functions		•		
	uction to artificial neural networks				ours
	Neural networks - Neural network architectures -				
	rons -Back propagation algorithm and its variants -	- Dif	terer	nt type	es of
learning					
Module:4 Mappi	ing and recurrent networks			7 h	ours
	ion – Cognitron and Neocognitron - Hopfield Ne	t- K	ohon		
	daptive Resonance Theory.		011011		1010
U					
Module:5 Genet	ic algorithms				ours
	enetic algorithm -initialization, selection, mutatior	n ar	nd te	ermina	ation-
classification of ge	netic programming				
Module:6 Hybrid			_		ours
	ems – genetic neuro systems – genetic fuzzysyste				
Probabilistic neura	search – Monte-carlo techniques – Radial basis fund	cuon	– Ga	aussia	IN —
Module:7 Indus	trial Applications of intelligent systems			⊿ h	ours
	y logic, Neural network and Genetic algorithm in Mech	atror	ics a		
				1-1-100	
Module:8 Conte	mporary Issues			2 h	ours
	Total Lecture hours	s:		45 h	ours
					5415

Text Book(s)							
1.	I. Timothy J.Ross, Fuzzy Logic with Engineering Applications (2016), Wiley 4 th edition.						
Re	ference Books						
1.	David E. Goldberg, Genetic Algorithm in Search Optimization and Machine Learning (2013), Pearson Education.						
2.	Rajasekaran, S., Vijayalakshmil algorithms (2011), Prentice Hall (al networ	rks, Fuzzy logic and Genetic			
Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT							
Ree	Recommended by Board of Studies 27-07-2022						
Арр	proved by Academic Council	No.67	Date	08-08-2022			

Course Code	Course Title	L	т	Р	С
MMHA608L	Wireless Sensor Networks	2	1	0	3
Pre-requisite	NIL	Sy	llabus		ion
Course Objective			1.	.0	
Course Objective The Objectives of					
	the characteristics, basic concepts and systems issues	s in ۱	Nirele	ss ser	isor
networks					
2. Illustrate a	rchitecture and protocols in wireless sensor networks				
	e trends and latest development of the technologies in t				
	broad coverage of challenges and latest research re	sult	s relat	ed to	the
design and	management of wireless sensor networks				
Course Outcome	2'				
	completing the course the student should be able to:				
	e sensor networks for various application setups.				
	ate the design space and conduct trade-off analysis be	etwe	en per	forma	nce
and resou					
	e suitable medium access protocols and radio hardward				
	d analysis of energy efficiency and power control in WS e Operating system and Sensor Network Platforms And				
	e Operating system and Sensor Network Platforms And		515		
Module:1 Introc	luction to Wireless Sensor Networks			4 ho	urs
Introduction, Appl	ications of Wireless Sensor Networks, WSN Standar	ds,	IEEE	802.1	5.4,
Zigbee. Network	Architectures and Protocol Stack - Network arch				
classification of W	SN, protocol stack for WSN.				
Madula 2 Winal	and Transmission Technology and Systems			4 6 6	
	ess Transmission Technology and Systems /, Available Wireless Technologies Wireless Sensor	Tect	nolog	4 ho	
	, Hardware and Software, Sensor Taxonomy, WN Oper				
	, , , , , , , , , , , , , , , , , , , 		,		
	Im Access Control Protocols for Wireless Sensor			4 ho	urs
Netwo	Drks MAC Protocols, MAC Protocols for WSNs, Contentio		aaad	protoo	
	fulti-Access with Signaling - Data-Gathering MA				
	Energy Adaptive Clustering Hierarchy, B-MAC, S-M				
Protocol for Large					
	yment and Configuration			4 ho	
	ocalization and Positioning, Coverage and Connectiv	∕ity,	Single	-hop	and
	tion, Self-Configuring Localization Systems.	ti.		otonio	. in
0 0	es and Design Issues in Wireless Sensor Networks, R Networks, Routing protocols: data centric, hierarchi		0	•	
	uting etc. Querying, Data Dissemination and Gathering		locali	JII Da	seu
energy enicient to		<u> </u>			
Module:5 Energ	y Efficiency and Power control			4 ho	urs
	efficiency and power control in WSN, passive p	oowe	er cor	iserva	tion
mechanisms, activ	e power conservation mechanisms				
Madulas	ting Systems For Winsless Concern Naturales	<u> </u>		A 1- 0	
	ating Systems For Wireless Sensor Networks	0.01	Decto	4 ho	
Memory and IO m	n Design Issues, TinyOS, Contiki – Task managem anagement	ent,	P1010	unead	ıs,

Мо	dule:7	Sensor Network Platfor	rms And Tool	S		4 hours
		de Hardware – Tmote, Node-level Simulators, Sta		•	llenges, Node	e-level Software
	,	,		5 5		
Мо	dule:8	Contemporary Issues				2 hours
				Total Leo	cture hours:	30 hours
				Total Tut	orial hours:	15 hours
Tex	kt Book(s)				
1.		Sohraby, Daniel Minoli, ⁻ bls and Applications", Wile		ireless Sen	sor Networks,	Technology,
Re	ference	Books				
1.	0	Karl, Andreas Willig, ks", John Wiley, 2005	"Protocols A	nd Archite	ctures for W	/ireless Sensor
2.	Jun Zh Wiley, 2	eng, Abbas Jamalipour, ' 2009.	"Wireless Sen	sor Network	s: A Networkir	ng Perspective",
3.	lan F. A	Akyildiz, Mehmet Can Vur	ran, "Wireless	Sensor Netv	vorks", Wiley, 2	2010
4.	Ibrahie	m M. M. El Emary, S. Ra ications", CRC Press Tay	amakrishnan, ʻ	Wireless Se	ensor Network	
Мо		aluation: CAT ,Written As				
Re	commen	ded by Board of Studies	27-07-2022			
Ap	proved b	y Academic Council	No.67	Date	08-08-2022	

Course Code	Course Title	L	Т	Ρ	С
MMHA609L	Virtual Reality and Haptics	3	0	0	3
Pre-requisite	NIL	Syll		versi	on
			1	.0	
Course Objective					
-	the course are to: o overview of the opportunities and the main issues r	rolato	d to	docian	inc
	pping VR/AR systems architectures, both in local and				
	I) contexts, and to the development of VR/AR a				
	perspective and approach.	appilo		o m a	
	ate the principles and multidisciplinary features of virtua	l reali	ty.		
3. Understan	d the technology for multimodal user interaction and p	perce	otion	in VR	, ir
	he visual, audial and haptic interface and behavior.				
	te the VR system framework and development tools.				
	numan touch perception and Tactile Proprioception.				
	e haptic components and virtual models.	roolity	,		
7. Analyse in	e significance of knowledge on haptic and augmented r	reality	-		
Course Outcom					
	this course student should be able to:				
	amine, and develop software that reflects fundamenta	al tech	niqu	es for	the
	I deployment of VR experiences.		-		
	ow VR systems work using modern technology.				
	develop, explain, and defend the use of particula	ar de	signs	s for	VF
experience					
	the benefits and drawbacks of specific VR techniques or				
-	nd examine state-of-the-art VR design problems and nd academia.	solu	lions	ITOTT	une
	d control haptic devices and learn the salient propert	ies of	hum	nan to	ıcł
	that are necessary to be recreated in virtual environme				
	te the use of modeling software that used in		hapti	c dev	vice
developme	nt.				
Module:1 Intro	duction to Virtual reality			6 ha	
Virtual reality con	duction to Virtual reality cepts – virtual world and real world – Interface to virtu	al wo	rld (ir	6 ho	
	of interaction – Applications.			iputo t	
Module:2 Hapt				6 ho	
	rtance of Touch - Tactile Proprioception - Tactua				
Kinesthetic Inter	aces - Tactile Interfaces - Human Haptics - Ov	/ervie	w of	exist	ing
applications.	n of Hentie devices			Cha	
applications. Module:3 Desig	In of Haptic devices	Arabit	o otur	6 ho	
applications. Module:3 Designation Virtual Reality Inp	ut and Virtual Reality Output parameters - Computing /				
applications. Module:3 Designation Virtual Reality Inp					
applications. Module:3 Desig Virtual Reality Inp - Haptic assembly	ut and Virtual Reality Output parameters - Computing /				VF
applications. Module:3 Design Virtual Reality Inp - Haptic assembly Module:4 Kine	ut and Virtual Reality Output parameters - Computing / architecture - Haptic Interface Design – Kinesthetic de natics and dynamics	vices.		es for 6 ho	VF
applications. Module:3 Design Virtual Reality Inp - Haptic assembly Module:4 Kine	ut and Virtual Reality Output parameters - Computing / architecture - Haptic Interface Design – Kinesthetic de natics and dynamics ansformation Matrices - Transformation Invariants - F	vices.		es for 6 ho	VR
applications. Module:3 Design Virtual Reality Inp - Haptic assembly Module:4 Kine Homogeneous Tr Force Smoothing	ut and Virtual Reality Output parameters - Computing / architecture - Haptic Interface Design – Kinesthetic de natics and dynamics ansformation Matrices - Transformation Invariants - F and Mapping	vices.		es for <u>6 ho</u> putatic	VF urs
applications. Module:3 Design Virtual Reality Inp - Haptic assembly Module:4 Kine Homogeneous Tr Force Smoothing Module:5 Geor	ut and Virtual Reality Output parameters - Computing / architecture - Haptic Interface Design – Kinesthetic de matics and dynamics ansformation Matrices - Transformation Invariants - F and Mapping metric Modeling	vices.	Com	es for 6 ho putatic 7 ho	vr urs
applications. Module:3 Designed Virtual Reality Inp- - Haptic assembly Module:4 Kine Homogeneous Tr Force Smoothing Module:5 Geor Virtual Object Shi	ut and Virtual Reality Output parameters - Computing / architecture - Haptic Interface Design – Kinesthetic de natics and dynamics ansformation Matrices - Transformation Invariants - F and Mapping	vices.	Com	es for 6 ho putatic 7 ho	VF urs

Module:6	Virtual Reality Program	ming			6 hours
Human Fa	ctors in Virtual Reality, Pro	gramming Hapt	ic Virtual En	vironments, c	alibration.
Module:7	Teleoperation				6 hours
	ation and Transparency, T	raditional Applic	ations and E	Emerging App	lications of VR
– Master a	nd slave mechanism				
				I	
Module:8	Contemporary Issues				2 hours
		T	otal Lectur	e hours:	45 hours
Text Book	(S)			·	
1 Jahres			O va mina au a m		
	rince, Essential Virtual Rea	ility Fast (2012).	, Springer.		
Reference	BOOKS				
1. Grigor	eBurdea, Philippe Coiffet,	Virtual Reality	Technology	(2006) 2nd	edition Wilev
India.		ritidal riteanty	i connoiogy	(2000), 2114	
2. John v	rince, Virtual Reality Syster	ms (2007), Pear	son Educati	on.	
3. Matjaz	Mihelj, Jonezpodobnik, Ha	optics for virtual	reality and to	ele operation	(2012)
Spring			round and t	ole operation	(===),
4. B. Har	naford, A. M. Okamura, H	andbook of Rob	otics (2008)	, Springer	
Mode of E	aluation: CAT ,Written As	signment, Quiz	and FAT	·	
Recomme	nded by Board of Studies	27-07-2022			
Approved I	by Academic Council	No.67	Date	08-08-2022	

Course Code	Course Title						
MMHA610L	Condition Monitoring Techniques	3	0	0	3		
Pre-requisite	Nil	Sy	llabus		sion		
Course Obie ative			1.	.0			
Course Objective The Objectives of							
	the basics of various condition monitoring methods						
	selection of condition monitoring techniques for variou	is an	nlicati	ons			
	basic understanding with case studies on different fault				nod.		
Course Outcome	9:						
On completion of t	his course student should be able to:						
1. Demonstra	te the basic knowledge about various condition mo	nitor	ing m	etho	ds in		
	e with the established procedures.						
	e different types of sensor design and its application						
	e signal processing methods and its working prin	ciple	es in	time	and		
frequency				-			
	d the basic knowledge of surface, subsurface and d						
	which enables to carry out various inspection in a procedures.	CCOL	dance	e witi	n the		
	te the various types of machine learning algorit	hms	annli	icatio	n in		
	nonitoring methods	11115	арри	oatic	// ///		
Condition							
Module:1 Condi	tion monitoring techniques			6 h	ours		
Condition Monito	ring in manufacturing industries; Noise monitoring,	We	ear ar	nd d	lebris		
	ring in manufacturing industries; Noise monitoring, graphy, Cracks monitoring, Ultrasonic techniques - Cas			nd d	lebris		
Analysis, Thermoo	graphy, Cracks monitoring, Ultrasonic techniques - Cas						
Analysis, Thermoo Module:2 Senso	graphy, Cracks monitoring, Ultrasonic techniques - Cas	e sti	udies.	6 h	ours		
Analysis, Thermoo Module:2 Senso Accelerometers,	praphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for	e stu	udies. easure	6 h emer	i ours nt of		
Analysis, Thermoo Module:2 Senso Accelerometers, displacement, velo	praphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for pocity and acceleration; Temperature transducers, radia	e stu	udies. easure	6 h emer	i ours nt of		
Analysis, Thermoo Module:2 Senso Accelerometers,	praphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for pocity and acceleration; Temperature transducers, radia	e stu	udies. easure	6 h emer	i ours nt of		
Analysis, Thermog Module:2 Sense Accelerometers, displacement, velo thermal imaging d	praphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for ocity and acceleration; Temperature transducers, radia evices.	e stu	udies. easure	6 h emer eters	nt of and		
Analysis, Thermoo Module:2 Senso Accelerometers, displacement, velo thermal imaging d Module:3 Signa	graphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for pocity and acceleration; Temperature transducers, radia evices.	e stu	udies. easure pyrom	6 h emer eters 6 h	nt of s and		
Analysis, Thermoo Module:2 Senso Accelerometers, displacement, velo thermal imaging d Module:3 Signa Study of periodic a	praphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for poity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical	e stu	udies. easure pyrom	6 h emer eters 6 h	nt of s and		
Analysis, Thermoo Module:2 Senso Accelerometers, displacement, velo thermal imaging d Module:3 Signa Study of periodic a	graphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for pocity and acceleration; Temperature transducers, radia evices.	e stu	udies. easure pyrom	6 h emer eters 6 h	nt of s and		
Analysis, Thermog Module:2 Sense Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a	praphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for pocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical and power spectral density functions.	e stu	udies. easure pyrom	6 h emer eters 6 h auto	ours and s and ours o and		
Analysis, Thermoo Module:2 Senso Accelerometers, displacement, velo thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa	graphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for poity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical and power spectral density functions.	e stu	udies. easure pyrom	6 h emer eters 6 h auto	ours and s and ours o and		
Analysis, Thermoo Module:2 Senso Accelerometers, displacement, velo thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa	praphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for pocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical and power spectral density functions.	e stu	udies. easure pyrom	6 h emer eters 6 h auto	ours and s and ours o and		
Analysis, Thermog Module:2 Sense Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Failur	praphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for pocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical ind power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance	e stu	easure pyrom erties,	6 h eters 6 h auto 6 h	ours and ours and ours		
Analysis, Thermood Module:2 Sensor Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Failur Maintenance Prince	graphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for pointy and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical and power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance ciples, Failure mode analysis - Equipment down time an	e stu	easure pyrom erties,	6 h eters 6 h auto 6 h	ours and ours and ours		
Analysis, Thermood Module:2 Sensor Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Failur Maintenance Prince	praphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for pocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical ind power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance	e stu	easure pyrom erties,	6 h eters 6 h auto 6 h	ours and ours and ours		
Analysis, Thermood Module:2 Senso Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Failur Maintenance Prince analysis - conditio	 graphy, Cracks monitoring, Ultrasonic techniques - Cas brs for condition monitoring strain gauges, eddy current probes, LVDT for pocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance ciples, Failure mode analysis - Equipment down time and pased maintenance. 	e stu	easure pyrom erties,	6 h eters 6 h auto 6 h reako	ours and ours and ours down		
Analysis, Thermog Module:2 Sense Accelerometers, displacement, velo thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Failur Maintenance Princ analysis - conditio Module:6 Machi	 graphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for bocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys ciples, Failure mode analysis - Equipment down time at an based maintenance. ne Condition monitoring	e stu model tion	udies. easure pyrom erties, sis - B	6 h eters 6 h auto 6 h reak	ours ours ours ours down		
Analysis, Thermood Module:2 Sensor Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Failur Maintenance Prince analysis - condition Module:6 Machin Vibration, Acoustion	graphy, Cracks monitoring, Ultrasonic techniques - Case or s for condition monitoring strain gauges, eddy current probes, LVDT for boty and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical pand power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance ciples, Failure mode analysis - Equipment down time at an based maintenance. ne Condition monitoring cemission and vibro-acoustics signal analysis; intellige	e stu model tion	udies. easure pyrom erties, sis - B	6 h eters 6 h auto 6 h reak	ours ours ours ours down		
Analysis, Thermog Module:2 Sense Accelerometers, displacement, velo thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Failur Maintenance Princ analysis - conditio Module:6 Machi	graphy, Cracks monitoring, Ultrasonic techniques - Case or s for condition monitoring strain gauges, eddy current probes, LVDT for boty and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical pand power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance ciples, Failure mode analysis - Equipment down time at an based maintenance. ne Condition monitoring cemission and vibro-acoustics signal analysis; intellige	e stu model tion	udies. easure pyrom erties, sis - B	6 h eters 6 h auto 6 h reak	ours ours ours ours down		
Analysis, Thermood Module:2 Senso Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Failur Maintenance Prince analysis - condition Module:6 Machi Vibration, Acoustice system, Case stude	<pre>graphy, Cracks monitoring, Ultrasonic techniques - Cas ors for condition monitoring strain gauges, eddy current probes, LVDT for ocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical and power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance ciples, Failure mode analysis - Equipment down time ar on based maintenance. ne Condition monitoring c emission and vibro-acoustics signal analysis; intellige lies.</pre>	e stu mition	udies. easure pyrom erties, sis - B	6 h eters 6 h auto 6 h reako 6 h	ours and ours and ours down		
Analysis, Thermood Module:2 Sensor Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Failur Maintenance Prince analysis - condition Module:6 Machi Vibration, Acoustic system, Case stude Module:7 Machi	graphy, Cracks monitoring, Ultrasonic techniques - Cases for condition monitoring strain gauges, eddy current probes, LVDT for pocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical and power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance ciples, Failure mode analysis - Equipment down time at an based maintenance. ne Condition monitoring cemission and vibro-acoustics signal analysis; intellige lies.	e stu ion tion prop is.	udies. easure pyrom erties, sis - B ult det	6 h eters 6 h auto 6 h reako 6 h reako 7 h	ours o and o urs o and o urs down ours on		
Analysis, Thermood Module:2 Sensor Accelerometers, displacement, veloc displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Maintenance Prince analysis - condition Vibration, Acoustion System, Case stude Module:7 Machin Vibration, Acoustion Stude Module:7 Machin	graphy, Cracks monitoring, Ultrasonic techniques - Cases for condition monitoring strain gauges, eddy current probes, LVDT for bocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical pand power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance ciples, Failure mode analysis - Equipment down time and the based maintenance. ne Condition monitoring c emission and vibro-acoustics signal analysis; intellige lies.	e stu ion tion prop is.	udies. easure pyrom erties, sis - B ult det	6 h eters 6 h auto 6 h reako 6 h reako 7 h	ours o and o urs o and o urs down ours on		
Analysis, Thermood Module:2 Sensor Accelerometers, displacement, veloc thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Failur Maintenance Prince analysis - condition Module:6 Machi Vibration, Acoustic system, Case stuce Module:7 Machi	graphy, Cracks monitoring, Ultrasonic techniques - Cases for condition monitoring strain gauges, eddy current probes, LVDT for bocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical pand power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance ciples, Failure mode analysis - Equipment down time and the based maintenance. ne Condition monitoring c emission and vibro-acoustics signal analysis; intellige lies.	e stu ion tion prop is.	udies. easure pyrom erties, sis - B ult det	6 h eters 6 h auto 6 h reako 6 h reako 7 h	ours ours ours ours down		
Analysis, Thermog Module:2 Senso Accelerometers, displacement, velo thermal imaging d Module:3 Signa Study of periodic a cross correlation a Module:4 Signa Time domain and Module:5 Failur Maintenance Princ analysis - condition Module:6 Machi Vibration, Acoustic system, Case stud Vibration, Acousti system, Case stud	graphy, Cracks monitoring, Ultrasonic techniques - Cases for condition monitoring strain gauges, eddy current probes, LVDT for bocity and acceleration; Temperature transducers, radia evices. I processing and random signals, probability distribution, statistical pand power spectral density functions. I Analysis Frequency domain and Time-frequency domain analys e Analysis and Maintenance ciples, Failure mode analysis - Equipment down time and the based maintenance. ne Condition monitoring c emission and vibro-acoustics signal analysis; intellige lies.	e stu ion tion prop is.	udies. easure pyrom erties, sis - B ult det	6 h eters 6 h auto 6 h reako 6 h cectio	ours ours ours ours down ours ours		

	Total Lec	ture hours:				45 hours
Tex	kt Book(s)					
1.	EthemAlpaydin, Introduction 1 Cambridge, London.	to Machine	Learning	(2010), The	e MIT	Press,
Rei	ference Books					
1.	K. P. Soman, Data mining theor	y and practic	e (2006), P	rentice-Hall of	India.	
2.	Amiya RanjanMohanty , Machine (2015), CRC Press	ery Condition	Monitoring	Principles an	d Practic	es
3.	Mishra, R.C., Pathak, K., Mainte Hall of India.	enance Engi	neering and	I Managemen	t (2012),	Prentice
4.	Clarence W. De Silva, Sensors CRC Press – Taylor and Francis		rs: Control	System Instru	mentatio	n (2007),
5.						rehensive
Мо	de of Evaluation: CAT ,Written As	signment, Q	uiz and FA	Γ		
Ree	commended by Board of Studies	27-07-2022				
App	proved by Academic Council	No.67	Date	08-08-2022	2	

Course	Code	Course Title	L	Т	Ρ	С
MMHA	611L	Bio-Mechatronics	3	0	0	3
Pre-rec	luisite	NIL	Sy	llabus		sion
2011/00	Ohiostivo			1.	.0	
	Objectives of t	s : he course are to:				
		knowledge about Bio mechanics, Bio sensors and ac	tuato	ors an	nd bic)-
	mechatroni		uuu	510, un		
2.	Impart the b	bio assist devices.				
		ifferent types, bio imaging and processing.				
4.	Understand	about bio mechatronics devices and their functions.				
0						
	e Outcome	: his course student should be able to:				
		te the basic knowledge about the Bio mechanics	Ri	o sen	sore	and
		and bio- mechatronics devices.	', Di	0 301	5015	ana
		different bio imaging and processing.				
3.	Analyze the	Signal processing with bio sensors and actuators.				
		odern medical measurement devices.				
		the properties of bio assist devices.				
6.	Understand	modern bio-mechatronics devices and its requiremen	its.			
Module		echanics			6 h	ours
		omechanics, Musculoskeletal and orthopedic bio	mec	hanics	-	
	mic, Rehabi		moo	namoc	<i>'</i> , <i>'</i>	inan
5	,					
Module		ensors and Actuators			-	ours
		mechatronics, Electrodes - Types, - Measurement			ress	ure -
Blood (Sas analyze	rs: pH of blood,Smart actuators for biological applicat	ions			
Module	.3 Modic	al Measurements			6 h	ours
		sound -Pulmonary function measurements -spiromete	r -fin	aer-tir		
	GSR measu			gor up	/ 0/11	notor
,						
Module		l Processing				ours
	0	s, Signal acquisition and signal processing-Isolation	barr	riers, E	3io-Ir	nage
process	sing					
Module	LE Sanaa	my Appint Davison			6 h	
		ory Assist Devices mplants, Optical Prosthetics, VisualNeuroprosthese	26	Son		ours
		bry aids, Tactile devices for visually challenged.	- 55	- 001	aib	aseu
- Jerenn	o, 1 (oopii ale					
Module	e:6 Active	and Passive Prosthetic Limbs			7 h	ours
ntroduo	ction to pros	sthetics,Passive Prosthetics – walking dynamics, Knee	e anc	foot		
	•	prosthesis - Control of Prosthetic Arms and Hands, Le	g Me	echani	sms,	
Ankle–F	Foot Mecha	nisms, Prosthesis Suspension				
Module		ble mechatronics devices				0
		ible mechatronics devices Kidney, Wireless capsule endoscope, Wearable Exos	kolo	tal rab		ours
		hand rehabilitation,	NCIE		aviiil	auon
youn,		nana renubilitation,				
Module	e:8 Conte	mporary Issues			2 h	ours
		mporary Issues				2 h

	Total Lecture hours: 45 hours							
Тех	t Book(s)							
1.	Graham M. Brooker, "Introduction	n to Bio-Mechatro	nics", Sci	Tech Publis	shing, 2012.			
Ref	erence Books							
1.	Leslie Cromwell, Fred J. Weibel Measurements", II edition, Pearso		-	ledical Instr	umentation and			
2.	Raymond Tong Kaiyu . "Bio-mech Publishing, CRC Press, 2011.	natronics in Medic	ine and H	ealthcare" F	Pan Stanford			
Мос	de of Evaluation: CAT ,Written Ass	ignment, Quiz an	nd FAT					
Rec	commended by Board of Studies	27-07-2022						
App	proved by Academic Council	No.67	Date	08-08-202	2			

Course Code	Course Title	L	Т	Ρ	С
MMHA612L	Internet of Things and Smart Manufacturing	3	0	0	3
Pre-requisite	NIL	Sylla		versi	on
O			1.0		
Course Objective					
The Objectives of t	l our MES environment in the context of the ISA95 star	ndarde			
	the concepts of Industrial Internet of Things, and Clo			ina -	The
	e exposed to the architectures, and various framework				
Computing			or an		Juu
	n insight into the application of cloud computing	in m	anufa	actur	ing,
enabling hi	gh level integration of product development phases. It	gives a	ın ide	a ab	out
	ols and methodologies used for cloud based product m				
	o offer learners an introduction to Industry 4.0 (or the				
	ions in the business world. Learners will gain deep				
	is being harnessed from data and appreciate what n	ieeds to	o be	done	e in
5. Implement	ercome some of the challenges. Virtualization				
J. Implement					
Course Outcome	:				
	nis course student should be able to:				
	anufacturing operations and determine the lines of	f respo	onsibi	lity a	and
	tegration between operations and logistics systems.				
	loud concepts in a sustainable and global product deve				_
3. Understand	1	envir	onme	ent	for
	e manufacturing.	Justa	10 -	امم ا	
	I the opportunities, challenges brought about by Inc ns and individuals should prepare to reap the benefits.		4.0 a	na r	IOW
	ine the various systems used in a manufacturing plant		eir ro	ole in	an
Industry 4.0					un
	a prototype of the IoT/cloud system design.				
	the smartness in Smart Factories, Smart cities, smart	produc	ts an	id sn	nart
services.inc	dustrial controllers	-			
Module:1 Introd				6 ho	
	et of Things (IoT), common definitions, IoT applicati	ons, ai	nd fu	nctic	nal
view.					
Modulo:2 Intern	at of Things and Internet Technology			6 ho	
	et of Things and Internet Technology Semantic Technologies, Networking and Communicati	ion Tec			
oloud computing,	ociliantic reciniologics, networking and communicati			gica	
Module:3 Conte	mporary Manufacturing Paradigms			6 ho	urs
	mporary Manufacturing Paradigms Networked, Reconfigurable and Cloud manufacturing.			6 ho	urs
	mporary Manufacturing Paradigms Networked, Reconfigurable and Cloud manufacturing.			6 ho	urs
Concept of Agile, N Module:4 IoT Er	Networked, Reconfigurable and Cloud manufacturing. abled Manufacturing System			6 ho	urs
Concept of Agile, N Module:4 IoT Er Architecture of IoT	Networked, Reconfigurable and Cloud manufacturing.	ig inform		6 ho	urs
Concept of Agile, N Module:4 IoT Er	Networked, Reconfigurable and Cloud manufacturing. abled Manufacturing System	ng inform		6 ho	urs
Concept of Agile, Module:4 IoT Er Architecture of IoT logic of IoT-MS.	Networked, Reconfigurable and Cloud manufacturing. abled Manufacturing System -MS, Integration framework of Real-time manufacturin	ng inforr	matio	<mark>6 ho</mark> n, W	urs ′ork
Concept of Agile, Module:4 IoT Er Architecture of IoT Iogic of IoT-MS. Module:5 Cloud	Networked, Reconfigurable and Cloud manufacturing. abled Manufacturing System -MS, Integration framework of Real-time manufacturin based Manufacturing Resource configuration		natio	6 ho n, W 6 ho	urs ′ork urs
Concept of Agile, NModule:4IoT ErArchitecture of IoTlogic of IoT-MS.Module:5CloudConcept of cloud n	Networked, Reconfigurable and Cloud manufacturing. abled Manufacturing System -MS, Integration framework of Real-time manufacturin based Manufacturing Resource configuration manufacturing,Real-time production information perce		natio	6 ho n, W 6 ho	urs ′ork urs
Concept of Agile, NModule:4IoT ErArchitecture of IoTlogic of IoT-MS.Module:5CloudConcept of cloud n	Networked, Reconfigurable and Cloud manufacturing. abled Manufacturing System -MS, Integration framework of Real-time manufacturin based Manufacturing Resource configuration		natio	6 ho n, W 6 ho	urs ′ork urs

Concepts of Industry 4.0 standard, Real-time information based scheduling, capacity planning, material planning, Real-time production monitoring techniques with smart sensors, Configuration of smart shop floor, traceability and call back of defective products

Module:7 Case Studies 6 hours Case studies on applications of IoT in different industrial progressions like virtual visibility maturity model etc. Module:8 Contemporary Issues 2 hours **Total Lecture hours:** 45 hours Text Book(s) Yingfeng Zhang, Fei Tao, Optimization of Manufacturing Systems using the Internet of 1. Things, Academic Press- Technology & Engineering, 2016. **Reference Books** Jiafu Wan, IztokHumar, Dagiang Zhang, Industrial IoT Technologies and Applications, 1. Springer, 17-Aug-2016. K. Wang, Y. Wang, J.O. Strandhagen, T. Yu, Advanced Manufacturing and Automation 2. V, WIT Press, 2016 OvidiuVermesan and Peter Friess, Internet of Things – From Research and Innovation 3. to Market Deployment, River Publishers, 2014. Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT Recommended by Board of Studies 27-07-2022

Approved by Academic Council No.67 Date 08-08-2022

Course Code	Course Title	L	Т	Ρ	С
MMHA613L	Manufacturing Automation	3	0	0	3
Pre-requisite	NIL	Syll		s vers	ion
<u> </u>			1.	.0	
Course Objective					
The Objectives of	the course are to: fundamentals of automation strategy in manufacturing.				
	computer aided process planning and CNC part		nram	mina	for
	g components.		gram	iiiiig	101
	n manufacturing support systems and outline inte	elliger	nt ar	nd di	gital
manufactu		•			
Course Outcome					
	of this course, the student will be able to: concept of automation and assess the degree of auto	matio	n		
	ocess planning for industrial components for production				
	IC technology for computer aided manufacturing and		are th	ne Mo	bile
	omous RoboticsCNC codes for part programming.	• •			
	material handling / storage systems and automated ins		on sys	stems	5.
	acturing support systems for productivity improvement				
6. Critique on	intelligent manufacturing system and digital enterprise	S.			
Module:1 Auto	mation			5 hc	ours
	mation principles and strategies, basic elements of a	advan	ced		
	manufacturing systems				,
0					
	outer Aided Process Planning				ours
	rocess planning, Generative, variant, hybrid CAPP, Ma				
	Anufacturing resource planning (MRP II), production p		ng ar	nd coi	ntrol
system, master pr	oduction schedule, Capacity planning, Shop floor contr	01.			
Module:3 Com	puter Aided Manufacturing			6 hc	ours
	y, Part family, Sensor technologies, Automated insp	ectior	n an	d tes	ting,
Coordinate measu	ring machines, Machine vision, Rapid prototyping.				
Madula A.	noted haveling and stars and stars			7 6 4	
	nated handling and storage system al handling systems – AGV, Transfer mechanism -	Buff	ore	7 hc	
	sfer lines, Robots in material handling, Automated st				
	 – carousel storage – Automatic data capture – ba 				
Automated assem	•				0,77
	ling and Simulation for Manufacturing Plant			7 hc	ours
	nation I for system Modeling, Building Mathematical Model	ofa	manı	Ifactu	irina
	ools- Use of Fuzzy decision making and Artificial I				
	omation, AI in manufacturing systems	, eara			•
5	,				
	facturing support Systems			6 hc	
	uring, Building blocks of FMS, FMS layout, F			•	
	0,	lufacti	uring	, ag	gile
manufacturing, Ce	Ilular manufacturing,				
Module:7 Intelli	gent Manufacturing Systems			6 hc	ours
	Jene			5 110	

Artificial Intelligence based systems, Knowledge - Based Systems, Expert Systems Technology, Agent Based Technology, Virtual Business, e-Commerce Technologies, Global Manufacturing Networks, Digital enterprise technologies. Introduction to PLM.

Мо	dule:8	Contemporary Issues				2 hours
			То	tal Lectur	e hours:	45 hours
Tex	t Book	(S)				
1.		P. Grover, Automation acturing (2016), Fourth Edi	•		nd Com	puter Integrated
Ref	erence	Books				
1.	P. Rad Interna	hakrishnan, S. Subramany ttional.	/an, V. Raju, CAD	/CAM/CIM	(2011), N	lew age
2.	Mikell	P. Grover, Enory W. Jr Zim	mers, CAD/CAM	(2006), Pe	arson Ed	ucation.
3.	P. N. R	ao, CAD/CAM: Principles	and Applications (2010), Tat	a Mc Gra	w Hill.
4.		hein Chang, Richard A. W acturing (2009), Pearson E) Wang, C	omputer A	Aided
Mod		aluation: CAT, Written Ass		nd FAT		
Rec	commer	ided by Board of Studies	27-07-2022			
App	proved b	y Academic Council	No.67	Date	08-08-20	22

Cour	se Code	Course Title	L	Т	Р	С
	IA613P	Manufacturing Automation Lab	0	0	2	1
Pre-r	requisite	NIL	Syll	abus	versi	on
	•			1.0		
Cour	se Objective	S				
		the course are to:				
		fundamentals of automation strategy in manufacturing.				
2		omputer aided process planning and CNC part	pro	gramn	ning	for
2		g components. n manufacturing support systems and outline int	olligor	at on	ط الم	ital
5	manufactur		eiligei	it and	u uiy	Ilai
	manalaotai					
Cour	se Outcome					
Upor	completion c	f this course, the student will be able to:				
		concept of automation and assess the degree of auto		n		
		pcess planning for industrial components for production				
3		C technology for computer aided manufacturing and	prepa	are the	e Mot	olle
Δ		omous RoboticsCNC codes for part programming. material handling / storage systems and automated ins	nectic	n eve	toms	
		acturing support systems for productivity improvement		/1 3y3	iems.	
		intelligent manufacturing system and digital enterprise				
	•					
Indic	ative Experi					
1.		ogramming – Step Turning, taper turning, thread cutt	ing, g	roovin	g, line	ear
0		nterpolation through canned cycle programming.				
2.		ogramming – Mirroring and pocket milling				
3. 4.		ogram generation using 3D model.	ting	nduat		
4.	simulation pa	automated production system simulation for a cas	sung	nausi	ry us	ing
5.		ssembly sequence for a bearing assembly unit using a	assem	blv si	mulat	ion
•	package.					
6.		analyze any one material handling system using mate	erial fl	ow sin	nulatio	on
		Total Laboratory Hours	s 30	hours	5	
Text	Book(s)		-			
1.	Mikell P (Grover, Automation, Production Systems and Co	omput	er In	teara	ted
1.		g (2016), Fourth Edition, Pearson Education.	Jinput		logia	icu
Refe	rence Books					
1.	D Dadhakri	shnan, S. Subramanyan, V. Raju, CAD/CAM/CIM	(201	1) N		200
1.	International	• •	(201	1), IN	GM 5	ige
2.		over, Enory W. Jr Zimmers, CAD/CAM (2006), Pearson	Educ	ation.		
3.		AD/CAM: Principles and Applications (2010), Tata Mc				
4.		Chang, Richard A. Wysk, Hsu-Pin (Ben) Wang, Compu				
	Manufacturir	ng (2009), Pearson Education.				
		ent: Continuous Assessment and Final Assessment Te	st			
		Board of Studies 27-07-2022				
Appr	oved by Acad	emic Council No.67 Date 08-08-202	2			

ImmHA614P Fluid Power System Design Lab 0 0 0 1 Pre-requisite NIL Syllabus version Course Objectives 1.0 The Objectives of the course are to: 1.0 1. Provide comprehensive introduction to fluid power system design including both hydraulics and pneumatics. 2. Acquire the knowledge on the fundamental elements of fluid power and properties of fluid, 3. Understand fluid power and differentiate hydraulic and pneumatic systems for their application in industry 7 Course Outcome 0 0 0 10 On completion of this course the students will be able to 1. 1. Understand the fundamental principles and analytical modeling of fluid power components and its symbols, circuits, and systems. 2. Acquire knowledge of the applications of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems. 4. Demonstrate the production of compressed air and its distribution. 5. Understand court hydraulic sfilters and sealers, types of filter elements,- construction and working of fluir in hydraulic unit 5. Design and analyze the pneumatic system and its advantages in industrial applications. 1. Single acting and double acting cylinder using DCV 2. Automatic reciprocation of double acting cylinder using electrical push button switch using meter out circuit 5. Or gate	Cou	rse Code	Course Title	L	Т	Ρ	С	
Image: Course Objectives 1.0 Course Objectives of the course are to: 1. Provide comprehensive introduction to fluid power system design including both hydraulics and pneumatics. 2. Acquire the knowledge on the fundamental elements of fluid power and properties of fluid, 3. Understand fluid power and differentiate hydraulic and pneumatic systems for their application in industry Course Outcome 0 On completion of this course the students will be able to 1. Understand the fundamental principles and analytical modeling of fluid power components and its symbols, circuits, and systems. 2. Acquire knowledge of the applications of fluid power in various engineering fields. 3. Study the benefits and limitations of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems. 4. Demonstrate the production of compressed air and its distribution. 5. Understand components of hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages in industrial applications. 1. Single acting and double acting cylinder using DCV 2. Automatic reciprocation of double acting cylinder 3. Situkiton switch using meter out circuit 4. Controlling the double acting hydraulic cylinder using electrical push button switch using meter out circuit 3. Simulation of Electro-Hydraulic systems. 9. Simulation of Electro-Hydraulic systems. 9. Simulation of Electro-Hydraulic systems. 30 h	MMF	HA614P	Fluid Power System Design Lab	0	0	2	1	
Course Objectives The Objectives of the course are to: 1. Provide comprehensive introduction to fluid power system design including both hydraulics and pneumatics. 2. Acquire the knowledge on the fundamental elements of fluid power and properties of fluid, 3. Understand fluid power and differentiate hydraulic and pneumatic systems for their application in industry Course Outcome On completion of this course the students will be able to 1. Understand the fundamental principles and analytical modeling of fluid power components and its symbols, circuits, and systems. 2. Acquire knowledge of the applications of fluid power in various engineering fields. 3. Study the benefits and limitations of fluid power in various engineering fields. 4. Demonstrate the production of compressed air and its distribution. 5. Understand components of hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages in industrial applications. 1. Single acting and double acting cylinder using DCV 2. Acquire the hydraulic rotary actuator using electrical push button switch using meter out circuit 4. Controlling the double acting hydraulic cylinder using electrical push button switch using meter out circuit 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of Electro-Phydraulic systems. 9. Simulation of Sequencing circuits.	Pre-	requisite	NIL	Sylla	abus	versi	on	
The Objectives of the course are to: 1. Provide comprehensive introduction to fluid power system design including both hydraulics and pneumatics. 2. Acquire the knowledge on the fundamental elements of fluid power and properties of fluid. 3. Understand fluid power and differentiate hydraulic and pneumatic systems for their application in industry Course Outcome On completion of this course the students will be able to 1. Understand the fundamental principles and analytical modeling of fluid power components and its symbols, circuits, and systems. 2. Acquire knowledge of the applications of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems. 4. Demostrate the production of compressed air and its distribution. 5. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of fluir in hydraulic unit 6. Understand components of hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages in industrial applications. 1. Single acting and double acting cylinder using DCV 2. Acquire the double acting cylinder using electrical push button switch using meter out circuit 4. Controlling the double acting hydraulic cylinder using electrical push button switch manually 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of Electro-Pneumatic systems. <t< th=""><th></th><th></th><th></th><th></th><th>1.0</th><th>)</th><th></th></t<>					1.0)		
1. Provide comprehensive introduction to fluid power system design including both hydraulics and pneumatics. 2. Acquire the knowledge on the fundamental elements of fluid power and properties of fluid. 3. Understand fluid power and differentiate hydraulic and pneumatic systems for their application in industry Course Outcome On completion of this course the students will be able to 1. Understand the fundamental principles and analytical modeling of fluid power components and its symbols, circuits, and systems. 2. Acquire knowledge of the applications of fluid power in various engineering fields. 3. Study the benefits and limitations of fluid power in various engineering fields. 3. Understand about hydraulic filters and sealers, types of filter elements, - construction and working of filter in hydraulic unit 6. Understand components of hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages 8. Demostrate the production of double acting cylinder 9. Single acting and double acting cylinder using DCV 1. Single acting and double acting cylinder using electrical push button switch using meter out circuit 4. Controlling the hydraulic rotary actuator using electrical push button switch manually 5. Ord gate operation using single								
hydraulics and pneumatics. 2. Acquire the knowledge on the fundamental elements of fluid power and properties of fluid, 3. Understand fluid power and differentiate hydraulic and pneumatic systems for their application in industry Course Outcome On completion of this course the students will be able to 1. Understand the fundamental principles and analytical modeling of fluid power components and its symbols, circuits, and systems. 2. Acquire knowledge of the applications of fluid power in various engineering fields. 3. Study the benefits and limitations of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems. 4. Demonstrate the production of compressed air and its distribution. 5. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic unit 6. Understand components of hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages 7. Design and analyze the pneumatic system and its advantages 7. Design and analyze the pneumatic system and its advantages 7. Design and analyze the pneumatic system and its advantages 7. Design and double acting cylinder 1. Single acting and double acting cylinder using DCV 2. Automatic reciprocation of double acting cylinder 3. Controlling the hydraulic rotary actuator using electrical push button switch manually 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of Electro-Pneumatic systems. 9. Simulation of Electro-Inplanulic systems. 9. Simulation of Electro-Inplanulic systems. 9. Simulation of PLC based electro pneumatic sequencing circuits 7. Total Laboratory Hours 3. Others 7. Darke Book(s) 7. James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox 9. Publishing Ltd.								
 Ácquire the knowledge on the fundamental elements of fluid power and properties of fluid, Understand fluid power and differentiate hydraulic and pneumatic systems for their application in industry Course Outcome On completion of this course the students will be able to Understand the fundamental principles and analytical modeling of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems. Acquire knowledge of the applications of fluid power in various engineering fields. Study the benefits and limitations of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems. Understand about hydraulic filters and sealers, types of filter elements, construction and working of filter in hydraulic systems and its advantages Design and analyze the pneumatic system and its advantages in industrial applications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using meter out circuit Or gate & AND gate operation using single acting cylinder. Simulation of Bectro-Hydraulic systems. Simulation of Electro-Hydraulic systems. Simulation of Electro-Hydraulic systems. Simulation of Electro-Hydraulic systems. Simulation of Electro-Hydraulic systems. Simulation of PLC based electro pneumatic sequencing circuits Total Laboratory Hours James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishing Ltd. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd.	1							
fluid, 3. Understand fluid power and differentiate hydraulic and pneumatic systems for their application in industry Course Outcome On completion of this course the students will be able to 1. Understand the fundamental principles and analytical modeling of fluid power components and its symbols, circuits, and systems. 2. Acquire knowledge of the applications of fluid power in various engineering fields. 3. Study the benefits and limitations of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems. 4. Demonstrate the production of compressed air and its distribution. 5. Understand components of hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages in industrial applications. Indicative Experiments 1. Single acting and double acting cylinder using DCV 2. Automatic reciprocation of double acting cylinder using electrical push button switch using meter out circuit 4. Controlling the hydraulic rotary actuator using electrical push button switch using meter out circuit 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of sequencing circuits. 7. Simulation of Sequencing circuits. 7. Simulation of Electro-Hydraulic systems. 9. Simulation of PLC based electro pneumatic sequencing circuits Total Laboratory Hours	0							
 Understand fluid power and differentiate hydraulic and pneumatic systems for their application in industry Course Outcome On completion of this course the students will be able to Understand the fundamental principles and analytical modeling of fluid power components and its symbols, circuits, and systems. Acquire knowledge of the applications of fluid power in various engineering fields. Study the benefits and limitations of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems. Demonstrate the production of compressed air and its distribution. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic unit Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic systems and its advantages Design and analyze the pneumatic system and its advantages in industrial applications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using meter out circuit Or gate & AND gate operation using single acting cylinder. Simulation of Electro-Hydraulic systems. Simulation of Electro-pneumatic systems. Simulation of PLC based electro pneumatic sequencing circuits Total Laboratory Hours James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books James R. Daines, Fluid Power Chrol (2012), Cambridge International Science Publishing Ltd. 	2							
application in industry Course Outcome On completion of this course the students will be able to 1. Understand the fundamental principles and analytical modeling of fluid power components and its symbols, circuits, and systems. 2. Acquire knowledge of the applications of fluid power in various engineering fields. 3. Study the benefits and limitations of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems. 4. Demonstrate the production of compressed air and its distribution. 5. Understand about hydraulics filters and sealers, types of filter elements, construction and working of filter in hydraulic usit 6. Understand components of hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages in industrial applications. Indicative Experiments 1. Single acting and double acting cylinder using DCV 2. Automatic reciprocation of double acting cylinder using electrical push button switch using meter out circuit 4. Controlling the double acting hydraulic cylinder using electrical push button switch using meter out circuit 5. Simulation of Electro-Hydraulic systems. 9. Simulation of Electro-pneumatic systems. 9. Simulation of Electro-pneumatic systems. 9. Simulation of PLC based electro pneumatic sequencing circuits Total Laboratory Hours 30 hours	3	,	I fluid power and differentiate hydraulic and pneumation	ic svs	tems	for th	heir	
Course Outcome On completion of this course the students will be able to 1. Understand the fundamental principles and analytical modeling of fluid power components and its symbols, circuits, and systems. 2. Acquire knowledge of the applications of fluid power in various engineering fields. 3. Study the benefits and limitations of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems. 4. Demonstrate the production of compressed air and its distribution. 5. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic unit 6. Understand components of hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its davantages 8. Controlling the hydraulic rotary actuator using DCV 2. Actomatic reciprocation of double acting cylinder 3. Controlling the hydraulic rotary actuator using electrical push button switch using meter out circuit 4. Controlling the double acting hydraulic cylinder using electrical push button switch using meter out circuit 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of Electro-Hydraulic systems. 9. Simulation of Electro-Hydraulic systems. 10 Simulation of PLC based electro pneumatic sequencing circuits Text Book(s) 1. James L.Johnson, Introduction to Fluid power(2003),	Ū							
On completion of this course the students will be able to 1. Understand the fundamental principles and analytical modeling of fluid power components and its symbols, circuits, and systems. 2. Acquire knowledge of the applications of fluid power in various engineering fields. 3. Study the benefits and limitations of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems. 4. Demonstrate the production of compressed air and its distribution. 5. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic unit 6. Understand components of hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages in industrial applications. Indicative Experiments 1. 2. Automatic reciprocation of double acting cylinder 3. Controlling the hydraulic rotary actuator using electrical push button switch using meter out circuit 4. Controlling the double acting hydraulic cylinder using electrical push button switch manually 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of Electro-Hydraulic systems. 9. Simulation of Electro-Hydraulic systems. 10 Simulation of PLC based electro pneumatic sequencing circuits Text Book(s) 1 <		••	, ,					
1. Understand the fundamental principles and analytical modeling of fluid power components and its symbols, circuits, and systems. 2. Acquire knowledge of the applications of fluid power in various engineering fields. 3. Study the benefits and limitations of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems. 4. Demonstrate the production of compressed air and its distribution. 5. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages in industrial applications. 1. Single acting and double acting cylinder using DCV 2. Automatic reciprocation of double acting cylinder 3. Controlling the hydraulic rotary actuator using electrical push button switch using meter out circuit 4. Controlling the double acting hydraulic cylinder using electrical push button switch using meter out circuit 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of sequencing circuits. 7. Simulation of Electro-Hydraulic systems. 9. Simulation of PLC based electro pneumatic sequencing circuits 7. Simulation of PLC based electro pneumatic sequencing circuits 8. Simulation of PLC based electro pneumatic sequencing circuits 9. Simulation of PLC based electro pneumatic sequencing circuits 1. James L.Johns	Cou	rse Outcome						
 components and its symbols, circuits, and systems. Acquire knowledge of the applications of fluid power in various engineering fields. Study the benefits and limitations of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems. Demonstrate the production of compressed air and its distribution. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic systems and its advantages Design and analyze the pneumatic system and its advantages in industrial applications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using meter out circuit Or gate & AND gate operation using single acting cylinder. Simulation of Electro-Hydraulic systems. Simulation of Electro-Hydraulic systems. Simulation of Electro-Hydraulic systems. Simulation of Electro-Hydraulic systems. Simulation of PLC based electro pneumatic sequencing circuits Total Laboratory Hours 30 hours Text Book(s) James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. Ahmed Abu Hanieh, Fluid Power: Control (2012), Cambridge International Science Publishing Ltd. 								
 Acquire knowledge of the applications of fluid power in various engineering fields. Study the benefits and limitations of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems. Demonstrate the production of compressed air and its distribution. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic unit Understand components of hydraulic systems and its advantages Design and analyze the pneumatic system and its advantages in industrial applications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using meter out circuit Controlling the double acting hydraulic cylinder using electrical push button switch using meter out circuit Or gate & AND gate operation using single acting cylinder. Simulation of basic pneumatic systems. Simulation of Electro-Phydraulic systems. Simulation of Electro-Hydraulic systems. Simulation of PLC based electro pneumatic sequencing circuits James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd. 	1			ing o	f fluio	d bo	wer	
 Study the benefits and limitations of fluid power compared with other power transmission technologies and Interface PLC with hydraulic and pneumatic systems. Demonstrate the production of compressed air and its distribution. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic unit Understand components of hydraulic systems and its advantages Design and analyze the pneumatic system and its advantages in industrial applications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using meter out circuit Controlling the double acting hydraulic cylinder using electrical push button switch manually Or gate & AND gate operation using single acting cylinder. Simulation of sequencing circuits. Simulation of Electro-Hydraulic systems. Simulation of Electro-Hydraulic systems. Simulation of Electro-pneumatic systems. Simulation of PLC based electro pneumatic sequencing circuits James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd. 	0			~!~~~	ina fi	ماطم		
transmission technologies and Interface PLC with hydraulic and pneumatic systems. 4. Demonstrate the production of compressed air and its distribution. 5. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic unit 6. Understand components of hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages in industrial applications. Indicative Experiments 1. Single acting and double acting cylinder using DCV 2. Automatic reciprocation of double acting cylinder 3. Controlling the hydraulic rotary actuator using electrical push button switch using meter out circuit 4. Controlling the double acting hydraulic cylinder using electrical push button switch using meter out circuit 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of basic pneumatic and hydraulic circuits. 7. Simulation of Electro-Hydraulic systems. 9. Simulation of Electro-pneumatic systems. 9. Simulation of PLC based electro pneumatic sequencing circuits 7. Total Laboratory Hours 30 hours 7. Text Book(s) 1. James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. 7. Reference Books 7. James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. 2. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd.							wor	
 4. Demonstrate the production of compressed air and its distribution. 5. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages in industrial applications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using meter out circuit Controlling the double acting hydraulic cylinder using electrical push button switch using meter out circuit Controlling the double acting hydraulic cylinder using electrical push button switch using meter out circuit Simulation of basic pneumatic and hydraulic circuits. Simulation of Electro-Hydraulic systems. Simulation of PLC based electro pneumatic sequencing circuits India Laboratory Hours James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd. 	0							
 5. Understand about hydraulics filters and sealers, types of filter elements,- construction and working of filter in hydraulic unit 6. Understand components of hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages in industrial applications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using meter out circuit Controlling the double acting hydraulic cylinder using electrical push button switch using meter out circuit Or gate & AND gate operation using single acting cylinder. Simulation of basic pneumatic and hydraulic circuits. 7. Simulation of sequencing circuits. 8. Simulation of Electro-Hydraulic systems. 9. Simulation of PLC based electro pneumatic sequencing circuits Total Laboratory Hours 30 hours Text Book(s) James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox publishers. 2. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd. 	4					01011	.0.	
 and working of filter in hydraulic unit 6. Understand components of hydraulic systems and its advantages 7. Design and analyze the pneumatic system and its advantages in industrial applications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using meter out circuit Controlling the double acting hydraulic cylinder using electrical push button switch using meter out circuit Gontrolling the double acting hydraulic cylinder using electrical push button switch using meter out circuit Or gate & AND gate operation using single acting cylinder. Simulation of basic pneumatic and hydraulic circuits. Simulation of Electro-Hydraulic systems. Simulation of Electro-Hydraulic systems. Simulation of PLC based electro pneumatic sequencing circuits Total Laboratory Hours 30 hours Text Book(s) James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd. 					,- con	struct	tion	
 7. Design and analyze the pneumatic system and its advantages in industrial applications. Indicative Experiments Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using meter out circuit Controlling the double acting hydraulic cylinder using electrical push button switch using meter out circuit Controlling the double acting hydraulic cylinder using electrical push button switch using meter out circuit Controlling the double acting hydraulic cylinder using electrical push button switch manually Or gate & AND gate operation using single acting cylinder. Simulation of basic pneumatic and hydraulic circuits. Simulation of sequencing circuits. Simulation of Electro-Pneumatic systems. Simulation of PLC based electro pneumatic sequencing circuits Total Laboratory Hours 30 hours Text Bock(s) James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd. 		and workin	g of filter in hydraulic unit					
applications. Indicative Experiments 1. Single acting and double acting cylinder using DCV 2. Automatic reciprocation of double acting cylinder 3. Controlling the hydraulic rotary actuator using electrical push button switch using meter out circuit 4. Controlling the double acting hydraulic cylinder using electrical push button switch manually 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of basic pneumatic and hydraulic circuits. 7. Simulation of sequencing circuits. 8. Simulation of Electro-Hydraulic systems. 9. Simulation of PLC based electro pneumatic sequencing circuits Total Laboratory Hours 30 hours Text Book(s) 1. James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books 1. James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. 2. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd.								
Indicative Experiments 1. Single acting and double acting cylinder using DCV 2. Automatic reciprocation of double acting cylinder 3. Controlling the hydraulic rotary actuator using electrical push button switch using meter out circuit 4. Controlling the double acting hydraulic cylinder using electrical push button switch manually 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of basic pneumatic and hydraulic circuits. 7. Simulation of sequencing circuits. 8. Simulation of Electro-Phydraulic systems. 9. Simulation of PLC based electro pneumatic sequencing circuits Total Laboratory Hours 30 hours Text Book(s) 1. James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books 1. James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. 2. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd.	7	•	• • •	tages	in i	ndust	rial	
 Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using meter out circuit Controlling the double acting hydraulic cylinder using electrical push button switch manually Or gate & AND gate operation using single acting cylinder. Simulation of basic pneumatic and hydraulic circuits. Simulation of sequencing circuits. Simulation of Electro-Hydraulic systems. Simulation of PLC based electro pneumatic sequencing circuits Simulation of PLC based electro pneumatic sequencing circuits James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd. 		application	S					
 Single acting and double acting cylinder using DCV Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using meter out circuit Controlling the double acting hydraulic cylinder using electrical push button switch manually Or gate & AND gate operation using single acting cylinder. Simulation of basic pneumatic and hydraulic circuits. Simulation of sequencing circuits. Simulation of Electro-Hydraulic systems. Simulation of PLC based electro pneumatic sequencing circuits Simulation of PLC based electro pneumatic sequencing circuits James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd. 	India	otivo Expori	nonto					
 Automatic reciprocation of double acting cylinder Controlling the hydraulic rotary actuator using electrical push button switch using meter out circuit Controlling the double acting hydraulic cylinder using electrical push button switch manually Or gate & AND gate operation using single acting cylinder. Simulation of basic pneumatic and hydraulic circuits. Simulation of sequencing circuits. Simulation of Electro-Hydraulic systems. Simulation of Electro-pneumatic systems. Simulation of PLC based electro pneumatic sequencing circuits Total Laboratory Hours 30 hours Text Book(s) James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd. 								
 Controlling the hydraulic rotary actuator using electrical push button switch using meter out circuit Controlling the double acting hydraulic cylinder using electrical push button switch manually Or gate & AND gate operation using single acting cylinder. Simulation of basic pneumatic and hydraulic circuits. Simulation of sequencing circuits. Simulation of Electro-Hydraulic systems. Simulation of Electro-pneumatic systems. Simulation of PLC based electro pneumatic sequencing circuits Simulation of PLC based electro pneumatic sequencing circuits Total Laboratory Hours 30 hours James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd. 								
out circuit				n switc	h usir	na me	eter	
 manually 5. Or gate & AND gate operation using single acting cylinder. 6. Simulation of basic pneumatic and hydraulic circuits. 7. Simulation of sequencing circuits. 8. Simulation of Electro-Hydraulic systems. 9. Simulation of Electro-pneumatic systems. 10 Simulation of PLC based electro pneumatic sequencing circuits Total Laboratory Hours 30 hours Text Book(s) 1. James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books 1. James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. 2. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd. 	-		, , , , , , , , , , , , , , , , , , ,			5		
 Or gate & AND gate operation using single acting cylinder. Simulation of basic pneumatic and hydraulic circuits. Simulation of sequencing circuits. Simulation of Electro-Hydraulic systems. Simulation of Electro-pneumatic systems. Simulation of PLC based electro pneumatic sequencing circuits James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd. 	4.	Controlling t	he double acting hydraulic cylinder using electrical	push	butto	n swi	itch	
 6. Simulation of basic pneumatic and hydraulic circuits. 7. Simulation of sequencing circuits. 8. Simulation of Electro-Hydraulic systems. 9. Simulation of Electro-pneumatic systems. 10 Simulation of PLC based electro pneumatic sequencing circuits Total Laboratory Hours 30 hours Text Book(s) 1. James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books 1. James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. 2. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd.								
 7. Simulation of sequencing circuits. 8. Simulation of Electro-Hydraulic systems. 9. Simulation of Electro-pneumatic systems. 10 Simulation of PLC based electro pneumatic sequencing circuits Total Laboratory Hours 30 hours Text Book(s) 1. James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books 1. James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. 2. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd. 								
 8. Simulation of Electro-Hydraulic systems. 9. Simulation of Electro-pneumatic systems. 10 Simulation of PLC based electro pneumatic sequencing circuits Total Laboratory Hours 30 hours Text Book(s) James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd. 	6.	Simulation of	basic pneumatic and hydraulic circuits.					
 9. Simulation of Electro-pneumatic systems. 10 Simulation of PLC based electro pneumatic sequencing circuits Total Laboratory Hours 30 hours Text Book(s) 1. James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books 1. James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. 2. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd. 	7.	Simulation of	sequencing circuits.					
10 Simulation of PLC based electro pneumatic sequencing circuits Total Laboratory Hours 30 hours Text Book(s) 1. James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books 1. James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. 2. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd.	8.	Simulation of	Electro-Hydraulic systems.					
Total Laboratory Hours 30 hours Text Book(s) 30 hours 1. James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books 30 hours 1. James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. 2. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd.	9.	Simulation of	Electro-pneumatic systems.					
Text Book(s) 1. James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books 1. James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. 2. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd.	10	Simulation of	PLC based electro pneumatic sequencing circuits					
 James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd. 			Total Laboratory Hours	s 30	hour	5		
 James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. Reference Books James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd. 	Text	Book(s)						
 Reference Books James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart-willcox Publishers. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd. 			nson, Introduction to Fluid power(2003) Delmar Thom	sonle	earnir	na Inc		
Publishers. 2. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd.			,			35		
2. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd.	1.		aines, Fluid Power: Hydraulics and Pneumatics (2012), Goo	dhea	rt-wille	сох	
Publishing Ltd.	_							
	2.			ational	Scie	nce		
	3.			ligher	Ed.			

4.	M GalalRabie, Fluid power engineering (2009), Mc-Graw Hill.					
Mod	Mode of Assessment: Continuous Assessment and Final Assessment Test					
Reco	ommended by Board of Studies	27-07-2022				
Appr	Approved by Academic Council No.67 Date 08-08-2022					

Т

0

L

3

Ρ

0

С

3

MMHA614L	Fluid Power System Design	3	0	0	3
Pre-requisite	NIL	Sy	llabus		sion
			1	.0	
Course Objective					
hydraulics a	the course are to: mprehensive introduction to fluid power system de and pneumatics. • knowledge on the fundamental elements of fluid pow	•		•	
-	I fluid power and differentiate hydraulic and pneumat in industry	tic s	ystem	s for	thei
Course Outcom	9:				
 Understand component Acquire known Study the transmissic Demonstra Understand and working Understand 	his course the students will be able to d the fundamental principles and analytical model s and its symbols, circuits, and systems. owledge of the applications of fluid power in various en benefits and limitations of fluid power compared on technologies and Interface PLC with hydraulic and p te the production of compressed air and its distribution d about hydraulics filters and sealers, types of filter eler g of filter in hydraulic unit d components of hydraulic systems and its advantages d analyze the pneumatic system and its advantages	igine wit neu men	ering th oth matic ts,- co	fields ner p syste onstru	owei ms. ctior
	uction to Fluid Power				ours
Transmission and	Ilics vs Pneumatics – ISO symbols - Application multiplication of force - Basic properties of hydraulic loss – Power - absolute pressure and Temperature - g	flui	ds - s	tatic I	heac
Modulo:2 Hydra	ulic and Pneumatic Power Supply Source			6 h	ours
	graphic symbol- pump types -pump flow and pressure		mp dr		
	p efficiency –air compressor- graphic symbol-co				
Module:3 Contro	al Elements			8 h	ours
	valves - Pressure control valves - Flow control Valve	<u> </u>	lectro		
components - Valv forces on spool v	valves a fressure control valves a flow control valve re configurations, General valve analysis, valve lap, flo valves. Series and parallel pressure compensation f ysis and Design, Time delay valve, Proportional and S	ow fo flow	orces a contr	and la ol va	atera
Module:4 Circui	te			6 h	
DCV controlling s circuits, Synchroni out and Bleed-off	ts single acting, double acting cylinder - Regenerative zation circuits, and accumulator sizing. Intensifier circu circuits; Fail Safe and Counter balancing circuits- r circuits - AND and OR valve circuit	uits,	Meter	high -in, M	eter-
Module:5 Desig	n of Circuits			6 h	ours
Design and anal consideration for	ysis of typical hydraulic and pneumatic circuits sequential circuits-intuitive circuit design method ircuit design using KV method- compound circuit o	d-ca	scade	n me met	ethoc thod-
	Proceedings of the 67th Academic Council (08.08.2022))			1018

Course Title

Fluid Power System Design

Course Code

MMHA614L

٦

Module:6 Electro-Hydraulic and Electro-Pneumatic systems	7 hours						
Electrical control of pneumatic and hydraulic circuits-use of relays, timers, counters,							
Programmable logic control of hydraulic and pneumatic circuits, PLC ladder diagram for							
	Applications in						
Assembly, Feeding, Metalworking, materials handling and plastic working.							
Module:7 Fluid Power System Maintenance	5 hours						
Introduction, Sealing Devices - Reservoir System - Filters and Strainers							
Filters - Wear of Moving Parts - Gases in Hydraulic Fluids - Temperative	ature Control –						
Troubleshooting							
Module:8 Contemporary Issues	2 hours						
Total Lecture hours	s: 45 hours						
Text Book(s)							
4 James J. Jahrson, Introduction to Fluid neuron(2002), Delmon Themson J							
1. James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson L	earning inc.						
Reference Books							
1. James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), G	oodheart-willcox						
Publishers.							
2. Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge Intern	ational Science						
Publishing Ltd.							
3. Anthony Esposito, Fluid Power with Applications (2010), Pearson Higher	⁻ Ed.						
4. M GalalRabie, Fluid power engineering (2009), Mc-Graw Hill.							
Mode of Evaluation: CAT ,Written Assignment, Quiz and FAT							
Recommended by Board of Studies 27-07-2022							
Approved by Academic Council No.67 Date 08-08-2022							

Г

Project and Internship

Cours	se Code	Co	Course Title				Т	Ρ	С
MMHA696J		Study Oriented Project						02	
Pre-requisite NIL		NIL				Syllabus version			
						1.0			
	se Objectiv								
1. The student will be able to analyse and interpret published liter							or inf	orma	ation
pertaining to niche areas.									
2. Scrutinize technical literature and arrive at conclusions.									
3.	Use insigh	t and creativity for a bett	er understa	nding of t	he domain	of in	terest	•	
Cours	e Outcome):							
		analyse, and interpret	published	literature	/books pr	ovidir	ig inf	orma	ation
	related to	niche areas/focused don	nains.		-		-		
2.	Examine t	echnical literature, resolv	e ambiguity	, and dev	velop conc	lusior	IS.		
3.	Synthesize	e knowledge and use ins	sight and cre	ativity to	better und	ersta	nd the	e dor	nain
	of interest	÷	·	·					
4.	Publish th	ne findings in the pe	er reviewed	d journal	ls / Natio	nal /	Inte	rnati	onal
	Conference	es.		-					
Modu	le Content			(Proj	ect durati	on: C	ne se	emes	ster)
		towards reading publish s under the guidance of a		e or boc	ks related	to n	iche	area	s or
Mode	of Evaluat	ion: Evaluation involves	periodic rev	iews by t	he faculty	with v	/hom	the	
studer	nt has regist	ered. Assessment on the	e project – F	Report to	be submitt	ed, p	resen	tatior	ו
	-	vs – Presentation in the I	Vational / In	tornation	al Confere		<u> </u>		
	roject reviev		valional / In	ternationa		nce o	n Scie	ence,	
and pr	roject reviev eering Tech		National / In	lemationa		nce o	n Scie	ence,	
and pr Engine	eering Tech		27-07-202			nce o	n Scie	ence,	

Course Code		Cou	rse Title			L	т	Ρ	С
ММН/	A697J	Desig	n Project						02
Pre-requisite NIL						Sylla	abus	vers	ion
							1.0)	
Cours	se Objectiv	es:							
1.	Students v	vill be able to design a pro	ototype or p	rocess or	experime	ents.			
2. Describe and demonstrate the techniques and skills necessary f					essary fo	r the p	oroject	t.	
3.	Acquire kr	owledge and better under	rstanding of	f design s	systems.				
Cours	se Outcome):							
	prototype	ew skills and demonstrat or working model or proce	ess or exper	riments.					.9
3.	Synthesize improve de	techniques, skills, and mo e knowledge and use in esign systems. ne findings in the peen es.	nsight and	creativity	y to bett	er un	dersta		
3. 4.	Synthesize improve de Publish th	e knowledge and use ir esign systems. ne findings in the peer	nsight and	creativity	y to bett	ter un	dersta	rnatio	ona
3. 4. <u>Modu</u> Stude	Synthesize improve de Publish th Conference Ile Content nts are ex ypes to des	e knowledge and use ir esign systems. ne findings in the peer	nsight and r reviewed	creativity journals (Proje demons	y to bett s / Nations dect durations strate the	ional / ion: O	dersta Inte ne se	rnatio emes deve	ona te
3. 4. Stude prototy proces Mode studer and p	Synthesize improve de Publish th Conference Ile Content nts are ex ypes to des ss. of Evalua nt has regis	e knowledge and use in esign systems. The findings in the peer res. pected to develop new sign prototype or working tion: Evaluation involves tered. Assessment on the ws – Presentation in the	nsight and r reviewed skills and models re periodic re	creativity journals (Proje demons elated to eviews by Report t	y to bett s / Nation ect duration strate the an engin y the fac o be sub	ional / ion: O e abilit eering culty w mitted	idersta Inte ne se y to prod vith w , pres	mes deve luct o hom	elo br th tio
3. 4. Studer prototy process Mode studer and pr Engine	Synthesize improve de Publish th Conference Ile Content Ile Content Ile Content Ile Content Ile Content Ints are ex ypes to des ss. of Evalua int has regis roject review eering Tech	e knowledge and use in esign systems. ne findings in the peer es. pected to develop new sign prototype or working tion: Evaluation involves tered. Assessment on the ws – Presentation in the nology.	nsight and r reviewed skills and models re periodic re	creativity journals (Proje demons elated to eviews by Report t Internatio	y to bett s / Nation ect duration strate the an engin y the fac o be sub	ional / ion: O e abilit eering culty w mitted	idersta Inte ne se y to prod vith w , pres	mes deve luct o hom	telo br th tio

Course Code			Course Title			L	т	Р	С
MMHA698J		Interr	Internship I/ Dissertation I					10	
Pre-requisite NIL			<u></u>			Syllabus version			
•							1.0		
	e Objective								
		ent hands-on learni	÷ .		•		•		
-		e product / process		ce the tec	hnical ski	ll sets	in the	e cho	sen
field ar	nd also to gi	ive research orienta	ation.						
Cours	e Outcome):							
1	Consideral	hly more in death k	nowledge of the	major aub	ioot/field	ofotu	hu inc	Judio	
١.		bly more in-depth k ight into current res	-	-	-	JI Slut	ay, inc	Juan	ig
2		ility to use a holistic		•		d croa	tivolv		
Ζ.	•	rmulate and deal wi	•		uentry and		lively		
З		usness of the ethica	•		developm	ont w	ork		
		in the peer review	•		•			an	
1.	added adv	-		ornational	Connoron	1000 1		an	
Modul	e Content		(F	Project du	iration: o	ne se	mest	er)	
 Dissertation may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis o data, software development, applied research and any other related activities. 									
2.	Dissertatio	n should be individ	ual work.						
3.	 Carried out inside or outside the university, in any relevant industry or research institution. 								
 Publications in the peer reviewed journals / International Conferences will be an added advantage. 									
		tion: Assessment ect reviews and Fin			ition repo	ort to	be sı	ubmit	ted,
Recom	nmended by	/ Board of Studies	27-07-2022						
		demic Council	No. 67	Date	08-08-20	022			

Course Code		(Course Title			L	Т	Р	С	
MMHA699J		Internship II/ Dissertation II						12		
Pre-requisite NIL						Svl	labus	vers	ion	
	Jquiono					Cyn	1.0		1011	
Cours	se Objective	es:								
To provide sufficient hands-on learning experience related to the design, development a						and				
-	sis of suitabl	le product / process s	o as to enhan	ce the tec	hnical ski	ll sets	in the	e cho	sen	
field.										
Cours	se Outcome):								
Upon	successful o	completion of this cou	rse students w	ill be able	to					
1.	Formulate	specific problem s	statements fo	r ill-defin	ed real	life p	oroble	ms \	with	
	reasonable	e assumptions and co	nstraints.							
2.	Perform lite	erature search and / c	or patent searc	h in the a	rea of inte	rest.				
3.	Conduct e	experiments / Design	and Analysis	/ solution	iterations	and	docui	ment	the	
	results.									
4.	Perform er	ror analysis / benchm	arking / costin	g.						
5.	Synthesize	e the results and arrive	e at scientific c	onclusion	s / produc	cts / so	olutior	۱.		
6.	Document	the results in the form	n of technical r	eport / pre	esentation					
Modu	le Content			(Proj	ect durat	ion: o	one se	mes	ter)	
1.	 Dissertation may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities. 									
3.							arch			
	institution.						,			
4.		ns in the peer review	ved journals /	Internation	onal Conf	ferenc	es w	ill be	an	
	added adva	antage.								
Mada	of Fuchas		the project	Diacort	tion	unt 4 -	ha -:	ula vez itu	tod	
	Mode of Evaluation: Assessment on the project - Dissertation report to be submitted, presentation, project reviews and Final Oral Viva Examination.									
Recor	mmended by	/ Board of Studies	27-07-2022							
Appro	ved by Acad	demic Council	No. 67	Date	08-08-20)22				