

SCHOOL OF MECHANICAL ENGINEERING

M.Tech Automotive Engineering

Curriculum & Syllabi (2022-2023 batch onwards)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

• Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

- **World class Education:** Excellence in education, grounded in ethics and critical thinking, for improvement of life.
- **Cutting edge Research:** An innovation ecosystem to extend knowledge and solve critical problems.
- **Impactful People:** Happy, accountable, caring and effective workforce and students.
- **Rewarding Co-creations:** Active collaboration with national & international industries & universities for productivity and economic development.
- **Service to Society:** Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

• To be a leader in imparting world class education in Mechanical Engineering, leading to nurturing of scientists and technologists of highest caliber who would engage in sustainable development of the globe.

MISSION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

- To create and maintain an environment fostering excellence in instruction & learning, Research and Innovation in Mechanical Engineering and Allied Disciplines.
- To equip students with the required knowledge and skills to engage seamlessly in higher educational and employment sectors ensuring that societal demands are met.

M. Tech Automotive Engineering

PROGRAMME OUTCOMES (POs)

PO_1: Having an ability to apply mathematics and science in engineering applications.

PO_2: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment.

PO_3: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information.

PO_4: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice.

PO_5: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems.

PO_6: Having adaptive thinking and adaptability in relation to environmental context and sustainable development.

PO_7: Having a clear understanding of professional and ethical responsibility.

PO_8: Having a good cognitive load management skills related to project management and finance.

M. Tech Automotive Engineering

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (Automotive Engineering) programme, graduates will be able to

PSO1: Compute, Design, Simulate & analyse various Automotive engineering systems taken into account the social, economic and environmental implications for the current and future mobility.

PSO2: Practice a multidisciplinary approach to solve real-world automotive problems.

PSO3: Independently carry out research / investigation to solve practical problems and write / present a substantial technical report/document.

M. Tech Automotive Engineering

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.
- Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies in engineering or management.
- 6. Graduates will pursue career paths in teaching or research.

Master of Technology in Automotive Engineering School of Mechanical Engineering

Programme Credit Structure	Credits	Discipline Elective Courses	12
Discipline Core Courses Skill Enhancement Courses	24 05	MAUE601L Engine Design and Develop- ment	3003
Discipline Elective Courses	12	MAUE602L Battery and Fuel Cell	3003
Open Elective Courses	03	MAUE603L Vehicle and Engine Testing	3003
Project/ Internship	26	MAUE604L Vehicle Maintenance and Diag-	3003
Total Graded Credit Requirement	70	nostics	
		MAUE605L Vehicle Aerodynamics	3003
Discipline Core Courses	24	MAUE606L Vehicle Crashworthiness	3003
	LTPC	MAUE607L Design of Vehicle Drivelines	3003
MMAT502L Advanced Mathematical Meth-	3003	MAUE608L Noise, Vibration and Harshness	3003
ods		MAUE608P Noise, Vibration and Harshness	0 0 2 1
MAUE501L Automotive Body and Chassis Systems	3003	Lab MAUE609L Computational Fluid Flow and Heat Transfer	3003
MAUE502L Engine Combustion and Emis-	3003	MCDM504L Finite Element Methods	3003
sion		MCDM504P Finite Element Methods Lab	0 0 2 1
MAUE502P Engine Combustion and Emis-	0 0 2 1	MAUE611L Vehicle Safety and Lighting	3003
sion Lab		MADEOTTE Venicle Salety and Lighting	3003
MAUE503L Automotive Electrical and Elec- tronics	3003	Open Elective Courses	03
MAUE503P Automotive Electrical and Elec-	0 0 2 1		
tronics Lab		Engineering Disciplines Social Sciences	
MAUE504L Automotive Transmission Sys-	3003		
tem		Project and Internship	26
MAUE505L Vehicle Dynamics	3003		
MAUE505P Vehicle Dynamics Lab	0 0 2 1	MAUE696J Study Oriented Project	02
MAUE506L Hybrid Electric Vehicles	3003	MAUE697J Design Project	02
		MAUE698J Internship I/ Dissertation I	10
Skill Enhancement Courses	05	MAUE699J Internship II/ Dissertation II	12
MENG501P Technical Report Writing	0 0 4 2		
MSTS501P Qualitative Skills Practice	0 0 3 1.5		
MSTS502P Quantitative Skills Practice	0 0 3 1.5		

Discipline Core Courses

Course Code	Course Title	L	Т	Ρ	С				
MMAT502L	Advanced Mathematical Methods	3	0	0	3				
Pre-requisite	NIL	Syll	abus	versi	on				
			1.0)					
Course Objective									
	e students with sufficient exposure to advanced mat	thema	tical r	netho	bds				
	nat are relevant to engineering research.								
2. Improving the computational skills of students by giving sufficient knowledge of									
•	and numerical techniques useful for solving problems a	rising	in Me	chani	cal				
Engineerin									
•	the knowledge of real time applications of Autonom		•		on-				
•	ems of ordinary differential equations and partial differential	ntial e	quatic	ons.					
Course Outcome									
	ourse students are able to								
•	and analyse a variety of tools for solving linear s	ystem	s and	find	ing				
•	s of these systems.	- 1	f						
	d use the numerical techniques needed for the s	olutio	n of	a giv	en				
•	g problems d and correlate the analytical and numerical methods								
	te their ability to write coherent mathematical proofs an	d scie	ntific						
	needed to communicate the results obtained from o			terne	ion				
models.				Jyuut					
	te the understanding of how physical phenomena are r	nodell	ed bv						
	rential equations	negen	ou by						
	envalue Problems		5 h	ours					
•	value problems-Eigenvalues and Eigenvectors-G	ersch	gorin	Circ	les				
•	ser method, Power method, Inverse Power method.		0						
Module: 2 Iter	ation Methods		6 h	ours					
Sturm sequence,	Jacobi method, Given's method, Householder method,	Defla	tion, L	ancz	o's				
method.									
Module: 3 Cal	culus of Variations		9 h	ours					
Euler-Lagrange's	equation -Isoperimetric problems, Rayleigh-Ritz r	metho	d -	Galer	kin				
method.									
Module: 4 Sys	tem of First Order Ordinary Differential Equations		6 h	ours					
•	Homogeneous linear systems with constant coefficient			nomo	bus				
systems - Phase F	Plane Phenomena - Critical Points - Stability for linear s	ystem	S.						
Module: 5 Nor	llinear systems		6 h	ours					
	ints of nonlinear systems-Stability by Liapunov's met	thod -	- Non	- Line	ear				
Mechanics: Conse	-								
	tial Differential Equations			ours					
	Second-Order Partial Differential Equations, Significan			acteris	stic				
	Form, Sturm–Liouville problems and Eigen function ex	pansi							
Module: 7 Way	ve equation			ours					
	a land a state of the second state of the seco			I f	rce				
Displacements in	a long string – a long string under its weight – a bar w	•							
Displacements in on one end – fre	e vibrations of a string. Method of Separation of val	•							
Displacements in on one end – fre method of Laplace	e vibrations of a string. Method of Separation of val	•	s, Sol		by				

٦

			Total L	ecture hours	45 hours
Тех	kt Book(s)				
1	Differential Equations: Theory, Technic	que and Pr	actice,	G.F. Simmons,	, S. G. Krantz,
	Tata Mc GrawHill Publishing, 2007. (To			,	
2	Elements of Partial differential equation		Snedo	lon, Dover Pub	lications, New
	York, 2006. (Topics from Chapters 3, 5	,			
3	Numerical Methods for Scientific and	•			
	Iyengar, R. K. Jain, New Age Interna	tional publis	shers, 7	th edition, Ne	w Delhi, 2019.
	(Topics from Chapter 3, 7)				
4	Introductory Methods of Numerical An	•	S. Sast	try, PHI Pvt. Lt	d., 5th Edition,
	New Delhi, 2015. (Topics from Chapter	,			
5	The Calculus of Variations, Bruce van	Brunt, Sprin	nger, 20	004. (Topics fro	om Chapters 2,
	4, 5)				
Ref	ference Books				
1	Differential Equations and Dynamical	Systems,	Lawren	ce Perko, 3rd	ed., Springer-
	Verlag, 2001.				
2	An introduction to Ordinary Differenti	-	is, Jarr	nes C. Robinso	on, Cambridge
	University Press, New York, 2008 (4th	. ,			
3	Elementary Applied Partial Differentia	al Equations	s, Rich	ard Haberman,	Prentice Hall
	International, 1998.				
4	Numerical Analysis, R. L. Burden and	J. D. Faire	s, 10th	Edition, Cene	gage Learning,
	India edition, 2015.				
Мо	de of Evaluation: Continuous Assessme	ent Tests, F	inal Ass	sessment Test,	Digital
Ass	signments, Quizzes.				-
Red	commended by Board of Studies	05-07-202	2		
App	proved by Academic Council	No. 67	Date	08-08-2022	
		1			

Г

Course Code	Course Title	L	Т	Ρ	С
MAUE501L	Automotive Body and Chassis Systems	3	0	0	3
Pre-requisite	NIL	Sylla	abus	vers	ion
			1.0)	
Course Objectiv	es				
 To introdu 	ice vehicle chassis structure				
To introdu	ice automotive suspension systems				
To broade	en the importance of conventional and advanced braking	g syste	ems		
To introdu	ice steering systems				
Course Outcom					
	nt shall be able to:				
	nd suggest a suitable chassis layout, frame and body	constru	uction	type	; for
different o					
	suitable chassis layout for commercial vehicles.				
	e and analyze various types of steering systems				
	d analyze a suitable suspension system for different typ				
	Identify and Design suitable type of braking system f	or diffe	erent	types	s of
vehicles					
	N				
	Body			<u>7 ho</u>	
	convertibles, limousine, estate car, racing and spo				
	r's visibility, tests for visibility, methods of improving vis			-	
	fety design, safety equipment for cars. Car body co				
	e making, initial tests, crash tests on full scale mod	iei, Di	immie	es, a	na
Instrumentation.	Deste			<u> </u>	
Module:2 Bus			- D.	<u>5 ho</u>	
	single decker, double-decker, two level and articulat ght, engine location, entrance and exit location, se				
	etails: frame construction, double skin construction, type				
	s, Conventional and integral type construction.	5 01 11	icial 3	ecilo	115
	mercial Vehicles			5 ho	urs
	flat platform, drop side, fixed side, tipper body, t	anker	body		
	the body types. Dimensions of driver's seat relation to co				
design.	de body types. Dimensions of driver's seat relation to d	51101015	. Dhv		ab
Module:4 Chas				7 ho	ure
	layout, with reference to Power Plant location and drive	vario	nie tv		
21	cting on vehicle frame, Constructional details and ma	,			
	. Integral construction, Monocoque, Back bone.			Tarri	<i>.</i> ,
	ring System			6 ho	lire
	netry: castor, camber, king pin inclination, toe-in. condi	tions fo	or true		
•	s during steering, steering geometry, Ackermann a				•
	tional details of steering linkages, different types of st				•
	and layouts, turning radius, wheel wobble, power assis				
by wire	and layouts, turning radius, wheel wobble, power assis	sieu si	cenné	J. Ole	
	pension System			6 ho	lire
	sion system, types of suspension, suspension spri	nas c	onstri		
	acteristics of leaf, coil and torsion bar springs, indepe				
	ion, pneumatic suspension, shock absorbers. MF				
suspension	אוסטועבוס. אוסטועבוס, אוסטע מאסטועבוס. אור	v uail	יריםאי	00	30
-	king System			6 ho	lire
	brakes, drum brakes and disc brakes, constructiona	l detai	le th		
	of dual brake system, Anti-lock braking system, ele			•	
making, concept	or unar prace system, Anti-lock praking system, ele		nav		6

distribution, parking brake, vacuum assisted system, air brake system, retarded engine brakes, eddy retarders, Electronic stability control								
			orary Issues	3		3 hours		
			т			45 h a una		
			10	otal Lecture hou	urs:	45 hours		
Tax	t Deek	(-)						
	t Book	· /		<u> </u>				
1.						nglin, McGraw Hill Education;		
			/ 2017); McGra	aw Hill Education	า			
Ref	ference							
1.	Heinz I	Heisler, "Ad	vanced Vehicl	e Technology", ((2011),	Butterworth-Heinemann. ISBN –		
	0 7506	51318,						
2	"Autom	otive Tech	nology: A S	systems Approa	ich", C	Cengage Learning; 7th edition		
	(Janua	ry 1, 2019)						
	John F	enton, "Veh	icle Body layo	out and analysis	" (1982	?), Mechanical Engg. Publication		
3	Ltd., Lo	ondon.		-				
4	Newtor	n Steeds an	d Garret, "Mot	or Vehicles" 13tl	n Editio	n, Butterworth, London, 2005.		
5	R.K.Ra	ajput, "A	Text–Book	of Automobile	Engine	ering",(2018),Laxmi Publications		
		Limited.			0			
Мо	de of Ev	aluation: CA	AT, Assignmer	nt, Quiz, FAT				
Red	commen	ded by Roa	rd of Studies	27-07-2022				
		y Academic		No. 67	Date	08-08-2022		
		y noadenne		140. 07	Date	00 00-2022		

Course Code	Course Title		L	Т	Р	С
MAUE502L	Engine Combustion and Emi	ssion	3	0	0	3
Pre-requisite	NIL		Syllab	-	-	
				1.0		
Course Objective						
•	n the understanding of engine and its work	ina				
	ne the importance of engine components					
	ce fuel supply, cooling and lubrication syste	ems				
	n the importance of air motion and combus		desian			
	ce new engine technology		0			
Course Outcome)					
At the end	of the course, the student will be able to					
1. Understan	d the combustion phenomena of premi	xed and diff	usion d	comb	usti	on
systems						
2. Determine	fuel rating and ignition systems					
Design sui	table combustion chamber with enhanced	air motion and	d better	mixi	ng	
4. Adopt new	emission control technologies				-	
5. Validate th	e engine emission characteristics with BS	norms				
	and measurement of emission analysers					
7. Analysing	the cylinder pressure data to determine var	rious combust	tion par	amet	ers	
	duction to Engines				hou	
	l working, Engine operating Cycles–Idea	I and Fuel A	Air Cycl	es,	Eng	ine
Classifications						
	gine Combustion				hou	
	ustion, Phases of Ignition, Flame Propagat	tion – Factors	s, Flame	e Str	uctu	ire,
	Cycle to Cycle Variations				1	
	igine Combustion	Dalay -			hou	
•	istion, Heat Release Rate analysis, Ignitic			Fue	i sp	ay
	Penetration, Spray angle, Droplet distribution	on anu ⊑vapo	ration		hou	
		nition Fuel F	Dotingo	4	ΠΟΙ	JIS
	conation Concepts, Knock types, Surface Ic	gnition, ruei r	taungs	6	hai	IFO
	es of Nitrogen Emission ormation, NO formation in SI Engines, N	Ov formation	n in Cl		hou	
Controlling Techni				Eng	JILIES	, –
	Irned Hydrocarbon and CO Emission			6	hou	irs
	Formation, Flame Quenching and Oxidation	HC emission	ns in SI			
	nism in Diesel Engines – Controlling Techniq			<u> </u>		
	culate Emissions and Exhaust gas	dee eaalyti	0.001110		hou	irs
	ment			•		
	lates, Diesel Engine Particulates, Particula	ate Distributio	n, Soot	Forr	nati	on.
	Condensation Emission Testing Methods					
Traps – DPF, DO		,	- ,			
Module:8 Conte				2	hou	Jrs
<u>р</u>	_ 					
	Total Lecture hours:			45	hou	Jrs
Text Book(s)						
John B Heyw	vood, "Internal Combustion Engine Funda	amentals", (2	018), N	/IcGr	aw	Hill
1. Education.	-		-			
Reference Books						
	"Internal Combustion Engine", (2017), 4th E	Edition. McGr	aw Hill I	Educ	atio	n.
, server and						

Stephen R Turns, "An Introduction to Combustion: Concepts and Applications", (2021), McGraw Hill Education, 4 th Edition.						
James D Halderman, "Automotive Fuel and Emissions Control Systems", (2015), Prentice Hall, 4 th Edition						
Klingenberg H, "Automobile Exha	aust Emission Te	sting", (20)12), Springer.			
Mode of Evaluation: CAT, Written assignment, Quiz and FAT						
commended by Board of Studies	27-07-2022					
proved by Academic Council	No. 67	Date	08-08-2022			
	McGraw Hill Education, 4 th Editic James D Halderman, "Automo Prentice Hall, 4 th Edition Klingenberg H, "Automobile Exha de of Evaluation: CAT, Written as commended by Board of Studies	McGraw Hill Education, 4 th Edition. James D Halderman, "Automotive Fuel and Prentice Hall, 4 th Edition Klingenberg H, "Automobile Exhaust Emission Te de of Evaluation: CAT, Written assignment, Quiz a	McGraw Hill Education, 4 th Edition. James D Halderman, "Automotive Fuel and Emissions Prentice Hall, 4 th Edition Klingenberg H, "Automobile Exhaust Emission Testing", (20 de of Evaluation: CAT, Written assignment, Quiz and FAT commended by Board of Studies 27-07-2022			

Course Code	Τ	Course Title				Т	Р	С
MAUE502P	Engine Com	bustion and l		Lah	0	0	2	1
Pre-requisite	NIL			Lub	-	abus		•
					Cym	<u>1.(</u>		
Course Objectiv	/es							
	en the understanding	of engine and	its worki	na				
	ine the importance of			-9				
	uce fuel supply, cooli	v .		ms				
	en the importance of				r desig	gn		
5. To introdu	uce new engine techr	nology				-		
Course Outcom								
	d of the course, the s							
	nd the combustion	phenomena	of premix	ed and di	ffusion	n com	nbust	ion
systems								
	e fuel rating and ignit							
	itable combustion ch		hanced a	air motion ar	nd bett	ter mi	xing	
	w emission control te							
	he engine emission o			orms				
	n and measurement		•				- 4	
7. Analysing	the cylinder pressur		mine vari		stion p	baram	eters	5
Indicative Expe	rimonte							
	e, heat balance and	emission analy	isis of S I	Engine				
	e, heat balance and							
	and assembling an							
ŭ	ty testing (Calorific va							
	ty testing (Flash, Fire							
	essure measurement							
	on control through E							
	on control through In							
	ssion control through			el				
10. NOx and H	C emission control th	rough ethanol	blended g	gasoline				
		То	tal Labo	ratory Houi	rs 30) houi	ſS	
Text Book(s)								
	wood, "Internal Com	bustion Engine	e Fundam	nentals", (20)18), N	/lcGra	w Hi	II
Education.								
Reference Book		— · · · · · · · · · · · · · · · · · · ·						
	n, "Internal Combustion							
	Turns, "An Introduction		lion: Con	cepts and A	ppiica	tions	, (20	21),
	<u>l Education, 4th Editi</u> Halderman, "Automo			ne Control	Suct	omo"	(20	15)
	Ill, 4th Edition		. LIII2210		Jyst	ems ,	(20	10),
	g H, "Automobile Exh	aust Emission	Testina"	(2012) Sn	rinaer			
	nent: CAT, Written as			· / /	inger.			
	y Board of Studies	27-07-2022		1				
Approved by Aca		No. 67	Date	08-08-202	22			
			Date					

Course Code	Course Title	L	Т	Ρ	С
MAUE503L	Automotive Electrical and Electronics	3	0	Р 0	3
Pre-requisite	NIL	Syllab	-	-	-
Fie-lequisite		Synai	<u>1.0</u>	613	
Course Object			1.0		
	art basic knowledge of vehicle electrical and electronic sys	toms to	tho c	stude	ont
	elop an understanding on the power generation, sto				
	es involved in the vehicle.	laye al	u ui	IIIZa	lion
	g an understanding on the communication and net	vorking	2000	na	tho
	al and electronic systems in the vehicle.	working	anic	'nıg	uie
	ble the students to investigate and design the sen	sina ar	nd a	ctua	tion
	es involved in the vehicle.	sing a	iu a	Jua	lion
p100033					
Course Outco	me:				
1. Gain the	e knowledge of construction and working of batteries				
2. Underst	and the working of charging and starting systems				
	e knowledge and skills of the automotive wiring design an	d ignitio	n sys	tem	
4. Acquirir	ig the sensing technique and working of automotive sense	ors			
	and the working of engine management system and oth		ronic	con	itrol
unit in th	ne vehicle				
6. Gain the	e skills on the recent development in the area of autom	otive el	ectro	nic a	and
electrica	al systems				
7. Underst	and the real-time of working of the various sensors w	ith its c	hara	cteri	stic
features	3				
	ttery			6 ho	
	iple and construction of Lead Acid Battery, Choice of ba		r auto	omo	tive
	haracteristics of Battery, Battery Rating, Capacity and Effi	ciency.			
	arting and Charging System and Electric Drives			6 ho	
	of Starter Motor, Starter Motor types, construction and ch				
	sms, Starter Switches and Solenoids Charging s				
	d Alternators, types, construction and Characteristics, \setminus	/oltage	and	Curr	rent
	t –out relays and regulators.				
	ring and Lighting System			6 ho	
	ring Harnesses, Insulated and Earth Return System, Po			•	
	, Connectors and its types, Head Lamp and Indicator La		struct	ion a	and
	, focusing of head lamps, Anti–Dazzling and Dipper Detail	S.			
	nsors and Actuators			6 ho	
	s and actuator: Manifold Absolute Pressure sensor, kno				
	gas temperature, Exhaust Oxygen level sensor, Throt	•			
	dal position sensor and crankshaft position sensor, Air	mass	flow	sens	sor.
	per motors and relays, piezo actuators.		_		
	ering wheel angle sensor, Vibration and acceleration	sensor	s, P	ress	ure
	and RPM sensors, torque sensors.				
	ectronic Engine Management System			<u>6 ho</u>	
	r And Microcomputer controlled devices in automobiles				
	c engine control: Input, output devices, electronic fuel co	•		-	-
•	ing modes, electronic ignition systems, and Spark	advance	e co	rrec	lion
schemes.					
	ectric Management System and Dash Board		e	6 ho	urs
	strumentation	1			
	system, Antilock braking system, traction control				
•	stem, electronic steering control, transmission contro		•		
avoiding system	m, low tire pressure warning system. Warning system	i, ariver	INTO	ima	uon

	system, instrument cluster ECU, types of indication in the cluster, Bus system, CAN and LIN communication, Horns, wiper system and its types, keyless entry system.							
		Ignition System			6 hours			
Spa	ark Plug	s, Constructional details and	Types, Battery Coil a	nd Magne	to-Ignition System			
Cir	cuit deta	ils and Components, non–Co	ntact-type Ignition T	riggering o	levices, Capacitive			
		gnition, Distributor-less Igniti	on System.					
Мо	dule:8	Contemporary Issues			3 hours			
			Total Lectur	e hours:	45 hours			
Tex	kt Book	(S)						
1.	Tom D	Denton, Automobile Electrica	al and Electronic sy	/stems (2	017), 5 th Edition.,			
	Roulete	edge, Taylor & Francis Group		-				
Re	ference							
1.	William Scienc	B.Ribben, Understanding A e.	utomotive Electronic	cs (2017),	8 th edition., Elsevier			
2.	Bosch 5	Automotive Electrics and Aut	omotive Electronics,	2014, ISE	3N: 978-3-658-01783-			
3.	•	alderman, and C. D. Mitche	ell. 2005. Automotive	electricit	v and electronics. 6 th			
		., Pearson/Prentice Hall.	,		,			
Мо	Mode of Evaluation: CAT, Written assignment, Quiz and FAT							
Re	commer	ided by Board of Studies	27-07-2022					
Approved by Academic Council No. 67 Date 08-08-2022								

Cou	rse Code		С	ourse Title)		L	Т	Ρ	С
MAU	IE503P	Autor	notive Elec	trical and	Electroni	cs Lab	0	0	2	1
Pre-	requisite	NIL					Syll	abus	versi	on
								1.0)	
Cou	rse Objectiv	/es								
	. The impo									
2	2. The purpo		us electronic	c sensor an	d actuato	r systems ir	n any r	noder	n	
	automotiv	/e.								
0										
	rse Outcom									
	. Determine . Explain th					initoring the	ir signa	ais.		
2		le puipose	or passive re	straint sys	lems					
Indic	cative Exper	rimonts								
1.			agnostic Too							
2.			ement-Therm		hermiste					
3.			leasurement			, 1(10, 11				
4.	Strain Mea			•						
5.	Speed Mea									
6.		leasureme	nt							
7.		leasuremer								
8.		sity Measur								
9.			stepper and	servo mot	or control					
10.	Basic Auto	motive Elec	ctrical Wiring							
				Тс	otal Labo	ratory Hou	rs 30) hour	S	
Text	Book(s)									
1.			⁻ oday's Tec				and	Electro	onics,	,
			Manual Pacl	k. Cengage	e Learning	j, 2014.				
	rence Book									
1.			. Sensors a	and actuate	ors: contro	ol system ir	strum	entatio	on. C	RC
_	Press, 200					(1000) ond				
2.	Jurgen, Ro	onald K. "Au	tomotive ele	ectronics ha	andbook."	(1999) 2 ^m	Edition	1.		
Mode	e of assessn	nent: CAT, V	Written assig	gnment, Qu	iz and FA	T				
Reco	ommended b	v Board of	Studies	27-07-20	22					
	oved by Aca			No. 67	Date	08-08-202	22			

Course Code	Course Title		L	Т	Ρ	С
MAUE504L	Automotive Transmission System		3	0	0	3
Pre-requisite	NIL		Sylla	abus	versi	on
_				1.0)	
Course Objectiv	/es					
1. To provid	e the students with sufficient background to und	erstand t	he ne	ed for	r vario	ous
modern d	rivelines and their components.					
2. To enable	e the students to understand different types of cl	utches ar	nd gea	arbox	es.	
To help th	ne students design the car and truck gearboxes.		-			
Course Outcom						
	Completion of this course, students will be able					
-	nd also select a suitable clutch for a given vehic					
	and design of the gearbox for any given vehicle.					
	the knowledge of various special purpose vehicle					
	ne need and function of a semi and fully automat		nissio	n syst	em.	
	end and also develop new transmission systems					
	nd the latest technology in transmission syster	ns, inclu	ding l	nybrid	elec	;tric
vehicles.						
	-					
Module:1 Clut			<u></u>		7 ho	
	cessity of clutch in an automobile, types of cl					
	h, cone clutch, centrifugal clutch, hydraulic					
	Clutch - adjustment, Clutch troubles and their	causes,	requ	ireme	nts c	of a
	aterial, clutch lining.					
Module:2 Fluid					<u>4 ho</u>	
	dvantages and limitations, construction details					
	erformance characteristics. Means used to r	educe di	rag to	orque	in t	uid
coupling. Module:3 Trac	ctive Performance				7 ho	
		tractiva	offort			
	nces to Motion of the Automobile, Traction,	tractive	enon	Pend	Jinai	ice
Module:4 Gear	ion grade ability, drawbar pull.				6 ho	ure
	ansmissions, Necessity of gearbox, Construction	nal data	ilo of			
					•	
	ant-mesh gearbox, Synchromesh gear. Desirable sfer case, overdrive.		n əsp	eeu a	4spe	eu
Module:5 Drive					5 ho	ure
	thrust and torque reaction. Hotchkiss drive. To	rauo tubo	drive			
	Universal joints. Final drives – different types,					
	axle. Rear axle construction – full floating, three					
	nents. Differential – conventional type, non-slip t			•		
Module:6 Auto	matic Transmission	ype. Dille			6 ho	ure
	rive - Torque Converter: Principal of torque con	version	sinalo			
	torque converters, performance characteri					
	ils of typical hydraulic transmission drives. Ley					
drives.	is of typical hydraulic transmission drives. Ee	yiana, vvi		iyuro	lorqu	
	mission: Planetary gearboxes - Ford T-model,	Cotal and	- Wilc	on G	ear h	ox.
	ssion, hydrostatic transmission, continuously va					
	dal - Relative merits and demerits when					
transmission.		npui o	0	20110	01100	
	i-automatic Transmission				8 ho	urs
	s: advantages and disadvantages, principles o	f hydrost	atic c			
•	working of typical hydrostatic drives, Janney	•			•	
	working of typical figurostatic unives, Jalliey	riyuruste		190. L	-1000	Juan

drives: advantages and limitations, principles of Ward Leonard system of control Modern electric drive for buses and performance characteristics. Semi automatic transmissions – Dual clutch transmission, Direct shift gearbox, Multimode manual transmission, Tiptronic transmission, Paddle shift gearbox.

Мо	dule:8	Contemporary Issues			2 hours
		Tota	I Lecture ho	urs:	45 hours
Тех	kt Book	(s)			
1.	Robert	fisher, Kücükay, F., Jürge	ens, G., Naj	ork, R.,	Pollak, B, "The Automotive
	Transn	nission book", 2015, Springe	r- ISBN 978-	3-319-05	263-2.
Ref	ference	Books			
1.	Song I	M., Automotive Transmissio	ns Design T	heory Ar	nd Applications 2021, Springer-
	97898 ⁻	11567056.			
2	Naunh	eimer, H., Bertsche, B., F	Ryborz, J., N	Jovak, V	V. "Automotive Transmissions-
	Funda	mentals, Selection, Design	and Applic	ation", 2	011,Springer-ISBN 978-3-642-
	16214-	-5.			
Mo	de of Ev	aluation: CAT, Written assig	nment, Quiz	and FAT	
		-			
		nded by Board of Studies	27-07-2022		
App	proved b	y Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title	L	т	Р	С
MAUE505L	Vehicle Dynamics	3	0		3
Pre-requisite	NIL	-	abus	-	-
			1.0		
Course Objectiv	es:				
 To enable vehicle dy To enable aspects a control an To prepa mechanis To demor NVH pers Course Outcome	e students to understand the role of tire characteristics a mamics e the students to understand vehicle performance nd the issues involved in it such as braking, traction, d stability re the students to understand significance of steer ms for vehicle dynamics. Instrate how to apply fundamentals of vibrations and pective along with importance of modal analysis and traction	, hand road ho ing an acousti ansfer	lling a olding d sus ics for path a	and r , veh spens r veh analys	ride icle sion icle sis
various tir 2. Compute of two and 3. Demonstr lateral and 4. Compute 5. Outline th 6. Evaluate using app	e models for vehicle dynamic simulations. maximum traction, optimum braking distribution and s d three axle vehicles ate the application of fundamental governing equat d vertical dynamics and able to use state space approa steady state and transient response of vehicle during of e role of suspension in roll over stability. the role of suspension for vibration isolation, rattle spa ropriate mathematical models. he current literature and the necessity of moder	tability ons fo ch. ornerin ace and	of the r long ng. d road	e veh gitudii I hold	icle nal, ling
	••••			• •	
Introduction to V construction-Tyre resistance-Corne tractive and bra cornering force, F Tyre performance	Mechanics ehicle Dynamics- Vehicle and Tyre co-ordinate syste forces and moments-Tyre-slip & skid phenomen ring properties of tyres- Tyre models- Julien's tyre king effort, Temple & Von Schippe approach of ty Friction Ellipse concept, Magic Formula tyre model for e on wet surfaces-Ride properties of tyres.	on gri model ⁄re stri	yre ty p and for c ing m	d roll ombir odel moti	and ling ned for ion.
	jitudinal Dynamics		T	6 ho	
	aracteristics-Maximum tractive effort-Power plant Braking performance-Study of tractor-semitrailer-Anti ystem				
	ral Dynamics			6 ho	
deducing govern speed cornering- vehicle- neutral s	ork and governing equations for vehicle in space-Nece ing equations for ground vehicles. Bicycle Model-Low State space approach-Steaty state handling charac steer-understeer-oversteer. Steady state gains from B rehicle handling tests.	/ speed	d turn s of t	ing-H wo a	ligh axle
Module:4 Vehi	cle Stability			4 ho	urs
-	ity and steering conditions-Understeer gradient – Ha ansient response-Mimuro plot-Roll over stability analys	•	respo	nse c	of a
Module:5 Stee	ring and Suspension Mechanisms			6 ho	urs

				1			
Steering geometry and mechanism, steering mechanism optimization- Four wheel steering- Solid Axle suspension-Independent suspension-Roll center and Roll axis-Roll mement distribution-Car tyre relative angles-Caster theory- Role of suspension and nonlinearity of tyres on vehicle roll and its effect on Understeer co-efficient							
Module:6 Vertical Dynamics				6 hours			
Vehicle ride characteristics-Human response to vibration-Vehicle ride models-Quarter car model- pitch and bounce model- Suspension performance for ride-vibration isolation, suspension travel, Road holding. Active and Semi-active suspensions. Introduction to random vibration. ISO road roughness and road profiles-RMS acceleration of sprung mass of vehicle for random road excitation.							
Module:7 Introduction to Noise, Vil	bration and I	larshnes	S	6 hours			
Fundamentals of Acoustics, Noise a analysis- Transfer path analysis- Single							
Module:8 Contemporary Issues				2 hours			
	Tota	al Lecture	hours	45 hours			
Text Book(s)							
1. J. Y. Wong (2008), "Theory of Gi Inc., New York, 2008	round Vehicle	es", 4 th Ed	ition, Jo	hn Wiley and Sons			
2. Thomas D Gillespie, Fundamenta International, Warrendale, 2021	ls of Vehicle	Dynamics	s, 2 nd Re	evised Edition, SAE			
Reference Books							
1. Reza N Jazar "Vehicle Dynami International Publishing AG, Switz		and Appli	cation",	3 rd Edition, Springer			
2 Katsuhiko Ogata, "Modern Control	Engineering"	,5 th Editior	n, Prenti	ce Hall,Pearson,2015.			
3. C. Sujatha, "Vibration and Acoustics: Measurements and Signal Analysis", McGraw Hill Education (India) Private limited, 2017.							
Mode of Evaluation: CAT, Written assig	gnment, Quiz	and FAT					
Recommended by Board of Studies	27-07-2022						
Approved by Academic Council	No. 67	Date	08-08-	2022			

Cou	Irse Code		Course Title			L	Т	Ρ	С
MA	UE505P	Vel	hicle Dynamics	Lab		0	0	2	1
Pre	-requisite	NIL				Syll	abus	versi	on
							1.0)	
	Irse Objective								
		ents to carry out		virtual exp	erimental	meas	surem	ents	for
vehi	cular system a	and its subsystems							
_									
	Irse Outcome								
Upo	n Successful	Completion of this I	Lab course, Stud	lents will b	e able to				
4	Indoratond ar	ad upo the macaura	montovotores	uch oc det		ion cu	otom	voria	
		nd use the measure ers, accelerometers					stern,	vanc	us
1	types of excite	ers, accelerometers	, microphones in	i real time	experimer	ns.			
2	Carry out virtu	al testing using CA	RSIM software t	o quantify	its perforn	nance	hand	dling	
	and ride qualit			0 quantity	its periori	lance	, nan	uniy	
	and nue quant	.y.							
Indi	cative Challe	nging Experimen	ts						
1.		of test set up for s					31	nours	
2.		l Modal Analysis a						nours	
3.		n of structural trans		VH study	of a		31	nours	
	passenger c			,					
4.	Quantificatio	on of Vibro-acoustic	transfer function	for NVH	study of a		31	nours	
	passenger c				•				
5.		of test set up for sig						nours	
6.		e measurement in a	a passenger car o	during diffe	erent		3 I	nours	
	operating co								
7.		vibration measurer				car		nours	
8.		al modelling of ride	models for suspe	ension per	formance		3 ł	nours	
	using Matlab								
9.		le testing & stability						nours	
10.	Vibro-acoust	tic analysis of a cor						nours	
				otal Labo	ratory Ho	urs	30	hour	5
Moc	le of assessm	ent: CAT, Written a	issignment, Quiz	and FAT					
		Described Of all	07 07 0000						
		/ Board of Studies	27-07-2022		00.00.00	200			
Арр	roved by Acad	demic Council	No. 67	Date	08-08-20)22			

	Course Code	Course Title	L	Т	Р	С
Pre-requisite NIL Syllabus version Course Objectives 1.0 To provide the students with sufficient knowledge on series, parallel and full hybrid architectures of automobile vehicles. 1.0 2. To enable the students to understand the concept of electric drive trains, hybrid architectures and hybrid power plant specifications. 3. To help the students to understand the concept of sizing the drive system, energy storage and their alternatives, energy management and control system. 4. Analyze the various power electronics implemented in the electric vehicles. 5. To introduce the concepts of various controllers and charging system in EV. Course Outcome 1. Possess the knowledge of series, parallel, plug-in and full hybrid vehicle architectures. 2. Acquire, analyze, configure and control of DC, induction, permanent magnet, switch reluctance motor drives and compute their efficiency. 3. Explain the requirements and outline the working of power electronics in EV systems 5. Describe the latest technologies present in a charging system for EV Module:1 Hybrid vehicle architectures 5 hours Hybrid vehicle architectures 5 hours S hours All electric range of grants and combine domiga variable electric and hybrid vehicles Series configuration locomotive drives – series parallel switching – load tracking architecture = Plug-in hybrid architectures – commercially available electric and hybrid vehicles Series configuratin docomovery split with shift Module:2			3	-	-	3
1. To provide the students with sufficient knowledge on series, parallel and full hybrid architectures of automobile vehicles. 2. To enable the students to understand the concept of electric drive trains, hybrid architectures and hybrid power plant specifications. 3. To help the students to understand the concept of sizing the drive system, energy storage and their alternatives, energy management and control system. 4. Analyze the various power electronics implemented in the electric vehicles. 5. To introduce the concepts of various controllers and charging system in EV. Course Outcome 1. Possess the knowledge of series, parallel, plug-in and full hybrid vehicle architectures. 2. Acquire, analyze, configure and control of DC, induction, permanent magnet, switch reluctance motor drives and compute their efficiency. 3. Explain the requirements and outline the working of power electronics in EV systems 4. Understand about working principle and features of EV battery system 5. Describe the latest technologies present in a charging system for EV Module:1 Hybrid vehicle architectures S hours Hybrid vehicle architectures – commercially available electric and hybrid architecture = pre transmission parallel and combined configurations – Mild hybrid – power assist – dual mode power split – power split with shift Module:2 Energy management and control for HEV 6 hours All electric range = Engine dominant blended strategy – Electric dominant strategie – classification oi energy managem			-	-	-	-
Course Objectives 1. To provide the students with sufficient knowledge on series, parallel and full hybrid architectures of automobile vehicles. 2. To enable the students to understand the concept of electric drive trains, hybrid architectures and hybrid power plant specifications. 3. To help the students to understand the concept of sizing the drive system, energy storage and their alternatives, energy management and control system. 4. Analyze the various power electronics implemented in the electric vehicles. 5. To introduce the concepts of various controllers and charging system in EV. Course Outcome 1. Possess the knowledge of series, parallel, plug-in and full hybrid vehicle architectures. 2. Acquire, analyze, configure and control of DC, induction, permanent magnet, switch reluctance motor drives and compute their efficiency. 3. Explain the requirements and outline the working of power electronics in EV systems 4. Understand about working principle and features of EV battery system 5. Describe the latest technologies present in a charging system for EV Module:1 Hybrid architectures – Commercially available electric and hybrid vehicle architectures – arage extender and full hybrid systems – Parallel hybrid architectures Plug-in hybrid architectures – Commercially available electric and hybrid vehicles. Series configuration locomotive drives – series parallel switching – load tracking architecture = Pre transmission parallel and combine donfigurations – Mild hybrid – power assist – dual mode power spit – power spit with shift Module:2 Energy m						
architectures of automobile vehicles. 2. To enable the students to understand the concept of electric drive trains, hybrid architectures and hybrid power plant specifications. 3. To help the students to understand the concept of sizing the drive system, energy storage and their alternatives, energy management and control system. 4. Analyze the various power electronics implemented in the electric vehicles. 5. To introduce the concepts of various controllers and charging system in EV. Course Outcome 1. Possess the knowledge of series, parallel, plug-in and full hybrid vehicle architectures. 2. Acquire, analyze, configure and control of DC, induction, permanent magnet, switch reluctance motor drives and compute their efficiency. 3. Explain the requirements and outline the working of power electronics in EV systems 4. Understand about working principle and features of EV battery system 5. Describe the latest technologies present in a charging system for EV Module:1 Hybrid vehicle architectures — Commercially available electric and hybrid architectures Plug-in hybrid architectures – Commercially available electric and hybrid vehicles Series configuration locomotive drives – series parallel switching – load tracking exchitect range – Engine dominant blended strategy – Electric dominant strategy – Hybrid vehicle architectures in Introduction to energy management strategies – lassification of energy management system in HEV Module:3 Electric vehicle architectures in the optimization strategies – classification of energy management system in HEV Module:3 Electric Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operafing principle – DC Motor – Brushless DC Motor sin EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operafing principle – DC Motor – Brushless DC Motor Dive System in EV – Module:3 Electric Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operafing pr	Course Objectiv	/es				
 2. To enable the students to understand the concept of electric drive trains, hybrid architectures and hybrid power plant specifications. 3. To help the students to understand the concept of sizing the drive system, energy storage and their alternatives, energy management and control system. 4. Analyze the various power electronics implemented in the electric vehicles. 5. To introduce the concepts of various control of DC, induction, permanent magnet, switch reluctance motor drives and compute their efficiency. 3. Explain the requirements and outline the working of power electronics in EV systems 4. Understand about working principle and features of EV battery system 5. Describe the latest technologies present in a charging system for EV Module:1 Hybrid vehicle architectures – Commercially available electric and hybrid vehicle architectures – range extender and full hybrid systems – Parallel hybrid vehicle architectures – range extender and full hybrid systems – Parallel hybrid architecture Pre transmission parallel and combined configurations – Mild hybrid – power assist – dual mode power split – power split with shift Module:3 Energy management and control for HEV Module:3 Electric vehicle architectures – rule based and optimization strategies – classification of energy management strategies – rule based and optimization strategies – classification of energy management strategies – rule based and optimization strategies – classification of strategies – Introduction to various electric Drivetrain – Positioning of Module:3 Electric vehicle architectures Module:3 Electric vehicle architectures A tracking – Prower Flow Control in Electric Drivetrain – Positioning of Module:5 Power flow control and opterating principle – DC Motor – Brushless DC Motor – Transmission types of Kotors in EV – Characteristics features of EV motors – Torque Spee Characteristics – Com	1. To provid	e the students with sufficient knowledge on series, pa	rallel a	and fu	ill hyb	orid
architectures and hybrid power plant specifications. 3. To help the students to understand the concept of sizing the drive system, energy storage and their alternatives, energy management and control system. 4. Analyze the various power electronics implemented in the electric vehicles. 5. To introduce the concepts of various controllers and charging system in EV. Course Outcome 1. Possess the knowledge of series, parallel, plug-in and full hybrid vehicle architectures. 2. Acquire, analyze, configure and control of DC, induction, permanent magnet, switch reluctance motor drives and compute their efficiency. 3. Explain the requirements and outline the working of power electronics in EV systems 4. Understand about working principle and features of EV battery system 5. Describe the latest technologies present in a charging system for EV Module:1 Hybrid vehicle architectures			drive	trains	s, hył	orid
 storage and their alternatives, energy management and control system. Analyze the various power electronics implemented in the electric vehicles. To introduce the concepts of various controllers and charging system in EV. Course Outcome Possess the knowledge of series, parallel, plug-in and full hybrid vehicle architectures. Acquire, analyze, configure and control of DC, induction, permanent magnet, switch reluctance motor drives and compute their efficiency. Explain the requirements and outline the working of power electronics in EV systems Understand about working principle and features of EV battery system Describe the latest technologies present in a charging system for EV Module:1 Hybrid vehicle architectures — Commercially available electric and hybrid vehicles series configuration locomotive drives – series parallel switching – load tracking architecture – Pre transmission parallel and combined configurations – Mild hybrid – power assist – dual mode power split – power split with shift Module:2 Energy management and control for HEV 6 hours All electric range – Engine dominant blended strategy – Electric dominant strategies – lation of energy management strategies – rule based and optimization strategies – classification of energy management strategies – rule based and optimization strategies – classification of energy management strategies – rule based and optimization strategies – classification of energy management strategies – rule based and optimization strategies – cleaktic vehicles – power flow control in electric drive-train topologies – frasmission types for EV – Power Flow Control in Electric Drivetrain – Positioning of Motors – Vehicle Performance – Tractive Effort Module:3 Electric Motors in EV – Power Flow Control in Electric components –						
 Analyže the various power electronics implemented in the electric vehicles. To introduce the concepts of various controllers and charging system in EV. Course Outcome Possess the knowledge of series, parallel, plug-in and full hybrid vehicle architectures. Acquire, analyze, configure and control of DC, induction, permanent magnet, switch reluctance motor drives and compute their efficiency. Explain the requirements and outline the working of power electronics in EV systems Understand about working principle and features of EV battery system Describe the latest technologies present in a charging system for EV Module:1 Hybrid vehicle architectures formercially available electric and hybrid architectures on a commercially available electric and hybrid architectures on a commercially available electric and hybrid architecture – Pre transmission parallel and combined configurations – Mild hybrid – power assist – dual mode power split – power split with shift Module:2 Iencry management and control for HEV 6 hours All electric range – Engine dominant blended strategy – Electric dominant strategy – Hybrid vehicle control strategies – Introduction to energy management strategies – classification of energy management strategies – rule based and optimization strategies – classification of botters Basic concept of electric traction – introduction to various electric drive-train topologies – power flow control in electric drive-train topologies – fuel efficiency analysis – Electric Module:3 Iectric Motors in EV Module:4 Electric Motors in EV Power Flow Control in Electric Drivetrain – Positioning of Motors – Vehicle Performance – Tractive Effort Module:4 Electric Motors in EV Components – Drive system Efficiency – Elvo Motor – Brushless DC Motor – Brushless DC Motor – Surduction to Power electronic components – Nover Electronic 		, ,			, ene	rgy
Course Outcome 1. Possess the knowledge of series, parallel, plug-in and full hybrid vehicle architectures. 2. Acquire, analyze, configure and control of DC, induction, permanent magnet, switch reluctance motor drives and compute their efficiency. 3. Explain the requirements and outline the working of power electronics in EV systems 4. Understand about working principle and features of EV battery system 5. Describe the latest technologies present in a charging system for EV Module:1 Hybrid vehicle architectures – range extender and full hybrid systems – Parallel hybrid architectures Plug-in hybrid architectures – Commercially available electric and hybrid vehicles Series configuration locomotive drives – series parallel switching – load tracking architecture – Pre transmission parallel and combined configurations – Mild hybrid – power assist – dual mode power split – power split with shift Module:2 Energy management and control for HEV 6 hours All electric range – Engine dominant blended strategy – Electric dominant strategy – Hybrid vehicle control strategies – Introduction to energy management strategies – real-time working of energy management system in HEV Module:3 Module:3 Electric tractite crive-train topologies – fuel efficiency analysis – Electric Proyulsion unit – Introduction to electric components used in electric vehicles – ransmission types for EV – Power Flow Control in Electric Drivetrain – Positioning of Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operating principle – DC Motor – Brushless DC Motor – BLDC Motor Sin EV – Characteristi						
1. Possess the knowledge of series, parallel, plug-in and full hybrid vehicle architectures. 2. Acquire, analyze, configure and control of DC, induction, permanent magnet, switch reluctance motor drives and compute their efficiency. 3. Explain the requirements and outline the working of power electronics in EV systems 4. Understand about working principle and features of EV battery system 5. Describe the latest technologies present in a charging system for EV Module:1 Hybrid vehicle architectures 7. hybrid vehicle architectures 5 hours Hybrid vehicle architectures – range extender and full hybrid systems – Parallel hybrid vehicles series configuration locomotive drives – series parallel switching – load tracking architecture – Pre transmission parallel and combined configurations – Mild hybrid – power assist – dual mode power split – power split vith shift Module:2 Energy management and control for HEV 6 hours All electric range – Engine dominant blended strategy – Electric dominant strategies – latient working of energy management strategies – rule based and optimization strategies – ceal-time working of energy management system in HEV Module:3 Electric vehicle architectures 6 hours Basic concept of electric traction – introduction to various electric Drive-train topologies – power flow control in electric drive-train topologies – fue efficiency analysis – Electric Prours Transmission types for EV – Power Flow Control in Electric Drivetrain – Positioning of Motors in EV – Characteristics feature	5. To introdu	uce the concepts of various controllers and charging sys	tem in	EV.		
1. Possess the knowledge of series, parallel, plug-in and full hybrid vehicle architectures. 2. Acquire, analyze, configure and control of DC, induction, permanent magnet, switch reluctance motor drives and compute their efficiency. 3. Explain the requirements and outline the working of power electronics in EV systems 4. Understand about working principle and features of EV battery system 5. Describe the latest technologies present in a charging system for EV Module:1 Hybrid vehicle architectures 7. hybrid vehicle architectures 5 hours Hybrid vehicle architectures – range extender and full hybrid systems – Parallel hybrid vehicles series configuration locomotive drives – series parallel switching – load tracking architecture – Pre transmission parallel and combined configurations – Mild hybrid – power assist – dual mode power split – power split vith shift Module:2 Energy management and control for HEV 6 hours All electric range – Engine dominant blended strategy – Electric dominant strategies – latient working of energy management strategies – rule based and optimization strategies – ceal-time working of energy management system in HEV Module:3 Electric vehicle architectures 6 hours Basic concept of electric traction – introduction to various electric Drive-train topologies – power flow control in electric drive-train topologies – fue efficiency analysis – Electric Prours Transmission types for EV – Power Flow Control in Electric Drivetrain – Positioning of Motors in EV – Characteristics feature						
architectures. 2. Acquire, analyze, configure and control of DC, induction, permanent magnet, switch reluctance motor drives and compute their efficiency. 3. Explain the requirements and outline the working of power electronics in EV systems 4. Understand about working principle and features of EV battery system 5. Describe the latest technologies present in a charging system for EV Module:1 Hybrid vehicle architectures 5 hours Hybrid vehicle architectures – range extender and full hybrid systems – Parallel hybrid architectures Plug-in hybrid architectures – commercially available electric and hybrid vehicles Series configuration locomotive drives – series parallel switching – load tracking architecture – Pre transmission parallel and combined configurations – Mild hybrid – power assist – dual mode power split – power split with shift Module:2 Energy management and control for HEV 6 hours All electric range – Engine dominant blended strategy – Electric dominant strategy – Hybrid vehicle control strategies – rule based and optimization strategies – real-time working of energy management system in HEV 6 hours Module:3 Electric vehicle architectures 6 hours Basic concept of electric traction – introduction to various electric drive-train topologies – power flow control in electric drive-train topologies – fuel efficiency analysis – Electric Propulsion unit – Introduction to electric components used in electric vehicles – Transmission types for EV – Power Flow Control in Electric Drivetrain – Positioning of Motors in EV – Characteristics features o						
reluctance motor drives and compute their efficiency. 3. Explain the requirements and outline the working of power electronics in EV systems 4. Understand about working principle and features of EV battery system 5. Describe the latest technologies present in a charging system for EV Module:1 Hybrid vehicle architectures Shours Hybrid vehicle architectures – range extender and full hybrid systems – Parallel hybrid architectures Plug-in hybrid architectures – commercially available electric and hybrid vehicles Series configuration locomotive drives – series parallel switching – load tracking architecture – Pre transmission parallel and combined configurations – Mild hybrid – power sists – dual mode power spilt with shift Module:2 Energy management and control for HEV 6 hours All electric range – Engine dominant blended strategy – Electric dominant strategy – Hybrid vehicle control strategies – rule based and optimization strategies – classification of energy management strategies – rule based and optimization strategies – classification of energy management system in HEV Module:3 Electric vehicle architectures 6 6 hours Basic concept of electric traction – introduction to various electric drive-train topologies – power flow control in electric drive-train topologies – fuel efficiency analysis – Electric Propulsion unit – Introduction to electric components used in electric vehicles – Transmission types for EV – Power Flow Control in Electric Drivetrain – Positioning of Module:4 Electric Motors in EV / Y hours Types of Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operating principle – DC Motor – PMSM – Advantages and comparison of motors – Drive system Efficiency – EV Motor Cooling Module:5 Power Electronics in EV / C hours Electric Drive Components – Introduction to Power flow control in Stategies – Construction and operating principle – DC Motor – PMSM – Advantages and comparison of motors – Drive system Efficiency – EV Motor Cooling Module:5 Power Ele			full h	ybrid	vehi	cle
 Explain the requirements and outline the working of power electronics in EV systems Understand about working principle and features of EV battery system Describe the latest technologies present in a charging system for EV Module:1 Hybrid vehicle architectures is a charging system for EV Module:2 enchitectures – range extender and full hybrid systems – Parallel hybrid architectures Plug-in hybrid architectures – commercially available electric and hybrid architecture – Pre transmission parallel and combined configurations – Mild hybrid – power assist – dual mode power split – power split with shift Module:2 Energy management and control for HEV 6 hours All electric range – Engine dominant blended strategy – Electric dominant strategy – Hybrid vehicles control strategies – Introduction to energy management strategies – classification of energy management strategies – rule based and optimization strategies – real-time working of energy management system in HEV Module:3 Electric vehicle architectures introduction to various electric drive-train topologies – power flow control in electric drive-train topologies – fuel efficiency analysis – Electric Propulsion unit – Introduction to electric components used in electric vehicles – Transmission types for EV – Power Flow Control in Electric Drivetrain – Positioning of Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Components – Electronic and operating principle – DC Motor Cooling Module:5 Power Electronics in EV Characteristics – Drive system Efficiency – EV Motor Cooling Module:5 Power Electronics in EV = CRegulation and Voltage Conversion – Motor Drives Performance parameters of DC-DC conversion – Step-up and step-down converters with RL load – Switching mode regulators – Comparison of converters – Voltage conversion – Motor Drives Performance parameters of DC-DC conversion – Step-up and			nent m	nagne	t, swi	tch
 Understand about working principle and features of EV battery system Describe the latest technologies present in a charging system for EV Module:1 Hybrid vehicle architectures 5 hours Hybrid vehicle architectures – range extender and full hybrid systems – Parallel hybrid architectures Plug-in hybrid architectures – Commercially available electric and hybrid architecture Pre transmission parallel and combined configurations – Mild hybrid – power assist – dual mode power split – power split with shift Module:2 Energy management and control for HEV 6 hours All electric range – Engine dominant blended strategy – Electric dominant strategy – Hybrid vehicle control strategies – rule based and optimization strategies – classification of energy management strategies – rule based and optimization strategies – classification of energy management strategies – rule based and optimization strategies – real-time working of energy management system in HEV Module:3 Electric vehicle architectures 6 hours Basic concept of electric traction – introduction to various electric drive-train topologies – power flow control in electric drive-train topologies – fuel efficiency analysis – Electric Propulsion unit – Introduction to electric components used in electric vehicles – Transmission types for EV – Power Flow Control in Electric Drivetrain – Positioning of Motors – Vehicle Performance – Tractive Effort Module:4 Electric Motors in EV / Anours Types of Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operating principle – DC Motor – Brushless DC Motor – Brushless DC Motor – Drive system Efficiency – EV Motor Cooling Module:5 Power Electronics in EV / Characteristics network components – Never Electronic components – Introduction to Power electronic components – Power Performance parameters of DC-C conversion – AC Induction – PMSM – Advan						
5. Describe the latest technologies present in a charging system for EV Module:1 Hybrid vehicle architectures S hours Hybrid vehicle architectures – range extender and full hybrid systems – Parallel hybrid architectures Plug-in hybrid architectures – Commercially available electric and hybrid vehicles Series configuration locomotive drives – series parallel switching – load tracking architecture – Pre transmission parallel and combined configurations – Mild hybrid – power assist – dual mode power split – power split with shift Module:2 Energy management and control for HEV 6 hours All electric range – Engine dominant blended strategy – Electric dominant strategy – Hybrid vehicle control strategies – Introduction to energy management strategies – classification of energy management strategies – rule based and optimization strategies – classification of energy management system in HEV 6 hours Module:3 Electric vehicle architectures 6 hours Basic concept of electric traction – introduction to various electric drive-train topologies – power flow control in electric drive-train topologies – fuel efficiency analysis – Electric Propulsion unit – Introduction to electric components used in electric vehicles – Transmission types for EV – Power Flow Control in Electric Drivetrain – Positioning of Motors – Vehicle Performance – Tractive Effort 7 hours Types of Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operating principle – DC Motor – Brushless DC Motor – BLDC Motor Control – Switched Reluctance Motor – AC Induction – PMSM – Advantages and comparison of motors – Driv				ו EV s	syster	ns
Module:1 Hybrid vehicle architectures 5 hours Hybrid vehicle architectures – range extender and full hybrid systems – Parallel hybrid architectures Plug-in hybrid architectures – Commercially available electric and hybrid vehicles Series configuration locomotive drives – series parallel switching – load tracking architecture – Pre transmission parallel and combined configurations – Mild hybrid – power assist – dual mode power split – power split with shift 6 hours Module:2 Inergy management and control for HEV 6 hours All electric range – Engine dominant blended strategy – Electric dominant strategy – Hybrid vehicle control strategies – Introduction to energy management strategies – real-time working of energy management system in HEV 6 hours Module:3 Electric vehicle architectures 6 hours Basic concept of electric traction – introduction to various electric drive-train topologies – power flow control in electric drive-train topologies – fuel efficiency analysis – Electric Propulsion unit – Introduction to electric components used in electric vehicles – Transmission types for EV – Power Flow Control in Electric Drivetrain – Positioning of Motors - Vehicle Performance – Tractive Effort 7 hours Module:4 Electric Motors in EV 7 hours Types of Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operating principle – DC Motor – Brushless DC Motor – BLDC Motor Control – Switched Reluctance Motor – AC Induction – PMSM – Advantages and comparison of motors – Drive system Efficiency – EV Motor Cooling 6 hours						
Hybrid vehicle architectures – range extender and full hybrid systems – Parallel hybrid architectures Plug-in hybrid architectures – Commercially available electric and hybrid vehicles Series configuration locomotive drives – series parallel switching – load tracking architecture – Pre transmission parallel and combined configurations – Mild hybrid – power assist – dual mode power split – power split with shift Module:2 Energy management and control for HEV 6 hours All electric range – Engine dominant blended strategy – Electric dominant strategy – Hybrid vehicle control strategies – Introduction to energy management strategies – classification of energy management system in HEV 6 hours Module:3 Electric vehicle architectures 6 hours Basic concept of electric traction – introduction to various electric drive-train topologies – power flow control in electric drive-train topologies – fuel efficiency analysis – Electric 7 hours Module:4 Electric Motors in EV 7 hours Types of Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operating principle – DC Motor – Brushess DC Motor – BLDC Motor Control – Switched Reluctance Motor – AC Induction – PMSM – Advantages and companison of motors – Drive system Efficiency – EV Motor Cooling 6 hours Module:5 Power Electronics in EV 6 hours Electric Drive components – Introduction to Power electronic components – Power Power Split Electric Drive Control – Switched Reluctance Motor – AC Inductor – Brushless DC Motor – BLDC	5. Describe	the latest technologies present in a charging system for	EV			
Hybrid vehicle architectures – range extender and full hybrid systems – Parallel hybrid architectures Plug-in hybrid architectures – Commercially available electric and hybrid vehicles Series configuration locomotive drives – series parallel switching – load tracking architecture – Pre transmission parallel and combined configurations – Mild hybrid – power assist – dual mode power split – power split with shift Module:2 Energy management and control for HEV 6 hours All electric range – Engine dominant blended strategy – Electric dominant strategy – Hybrid vehicle control strategies – Introduction to energy management strategies – classification of energy management system in HEV 6 hours Module:3 Electric vehicle architectures 6 hours Basic concept of electric traction – introduction to various electric drive-train topologies – power flow control in electric drive-train topologies – fuel efficiency analysis – Electric 7 hours Module:4 Electric Motors in EV 7 hours Types of Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operating principle – DC Motor – Brushess DC Motor – BLDC Motor Control – Switched Reluctance Motor – AC Induction – PMSM – Advantages and companison of motors – Drive system Efficiency – EV Motor Cooling 6 hours Module:5 Power Electronics in EV 6 hours Electric Drive components – Introduction to Power electronic components – Power Power Split Electric Drive Control – Switched Reluctance Motor – AC Inductor – Brushless DC Motor – BLDC	Module:1 Hybr	rid vehicle architectures			5 hor	ire
architectures Plug-in hybrid architectures – Commercially available electric and hybrid vehicles Series configuration locomotive drives – series parallel switching – load tracking architecture – Pre transmission parallel and combined configurations – Mild hybrid – power assist – dual mode power split – power split with shift Module:2 Energy management and control for HEV 6 hours All electric range – Engine dominant blended strategy – Electric dominant strategy – Hybrid vehicle control strategies – Introduction to energy management strategies – classification of energy management strategies – rule based and optimization strategies – classification of energy management system in HEV Module:3 Electric vehicle architectures 6 hours Basic concept of electric traction – introduction to various electric drive-train topologies – power flow control in electric drive-train topologies – fuel efficiency analysis – Electric Propulsion unit – Introduction to electric components used in electric vehicles – Transmission types for EV – Power Flow Control in Electric Drivetrain – Positioning of Motors – Vehicle Performance – Tractive Effort Module:4 Electric Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operating principle – DC Motor – Brushless DC Motor – BLDC Motor Control – Switched Reluctance Motor – AC Induction – PMSM – Advantages and comparison of motors – Drive system Efficiency – EV Motor Cooling Module:5 Power Electronics in EV / Characteristicn – Netro – Motor Cooling Module:6 Power Source – DC Regulation and Voltage Conversion – Motor Drives Performance parameters of DC-DC conversion – Step-up and step-down converters with RL load – Switching mode regulators – Comparison of converters – Inverter's introduction Principle of operation – Three phase inverters – Voltage control of three phase inverter Module:6 Electric Vehicle Batteries / Drives – Control – Battery types (Lithium ion, Metal air, etc) – Battery parameters – Battery			is – F			
vehicles Series configuration locomotive drives – series parallel switching – load tracking architecture – Pre transmission parallel and combined configurations – Mild hybrid – power assist – dual mode power split – power split with shift Module:2 Energy management and control for HEV 6 hours All electric range – Engine dominant blended strategy – Electric dominant strategy – Hybrid vehicle control strategies – Introduction to energy management strategies – classification of energy management strategies – rule based and optimization strategies – classification of energy management system in HEV Module:3 Electric vehicle architectures 6 hours Basic concept of electric traction – introduction to various electric drive-train topologies – power flow control in electric drive-train topologies – fuel efficiency analysis – Electric Propulsion unit – Introduction to electric components used in electric vehicles – Transmission types for EV – Power Flow Control in Electric Drivetrain – Positioning of Motors – Vehicle Performance – Tractive Effort Module:4 Electric Motors in EV Types of Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operating principle – DC Motor – Brushless DC Motor – BLDC Motor Control – Switched Reluctance Motor – AC Induction – PMSM – Advantages and comparison of motors – Drive system Efficiency – EV Motor Cooling Module:5 Power Electronics in EV Electric Drive Components – Introduction to Power electronic components – Power Electric Drive Components – Introduction to Power electronic components – Power Electric Drive Components – Introduction to Power electronic components – Power Electric Drive Components – Introduction to Power electronic components – Power Electric Drive Components – Introduction to Power electronic components – Power Electric Drive Components – Introduction to Power electronic components – Power Electric Drive Switching mode regulators – Comparison of converters – Inverter's introduction Principle of						
architecture – Pre transmission parallel and combined configurations – Mild hybrid – power assist – dual mode power split – power split with shift Module:2 Energy management and control for HEV 6 hours All electric range – Engine dominant blended strategy – Electric dominant strategy – Hybrid vehicle control strategies – Introduction to energy management strategies – classification of energy management strategies – rule based and optimization strategies – real-time working of energy management system in HEV Module:3 Electric vehicle architectures 6 hours Basic concept of electric traction – introduction to various electric drive-train topologies – power flow control in electric drive-train topologies – fuel efficiency analysis – Electric Propulsion unit – Introduction to electric components used in electric vehicles – Transmission types for EV – Power Flow Control in Electric Drivetrain – Positioning of Module:4 Electric Motors in EV 7 hours Types of Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operating principle – DC Motor – Brushless DC Motor BLDC Motor Control – Switched Reluctance Motor – AC Induction – PMSM – Advantages and comparison of motors – Drive system Efficiency – EV Motor Cooling Module:5 Power Electronics in EV 6 hours Electric Drive Components – Introduction to Power electronic components – Power Electronic Switches DC Drives – DC Regulation and Voltage Conversion – Motor Drives Performance parameters of DC-DC conversion – Step-up and step-down converters with RL load – Switching mode regulators – Comparison of converters – Inverter's introduction Principle of operation – Three phase inverters – Voltage control of three phase inverter Module:6 Electric Vehicle Batteries – Voltage control of three phase inverter Module:6 Electric Vehicle Batteries – Voltage control of three phase inverter						
Module:2Energy management and control for HEV6 hoursAll electric range – Engine dominant blended strategy – Electric dominant strategy – Hybridvehicle control strategies – Introduction to energy management strategies – classification ofenergy management strategies – rule based and optimization strategies – real-time workingof energy management system in HEVModule:3Belectric vehicle architectures6 hoursBasic concept of electric traction – introduction to various electric drive-train topologies –power flow control in electric drive-train topologies – fuel efficiency analysis – ElectricPropulsion unit – Introduction to electric components used in electric vehicles –Transmission types for EV – Power Flow Control in Electric Drivetrain – Positioning ofModule:4Electric Motors in EVTypes of Motors in EV – Characteristics features of EV motors – Torque SpeedCharacteristics – Construction and operating principle – DC Motor – Brushless DC Motor –BLDC Motor Control – Switched Reluctance Motor – AC Induction – PMSM – Advantagesand comparison of motors – Drive system Efficiency – EV Motor CoolingModule:5Power Electronics in EVCheves – DC Regulation and Voltage Conversion – Motor DrivesPerformance parameters of DC-DC conversion – Step-up and step-down converters with RLLoad – Switching mode regulators – Comparison of converters – Inverter's introductionPrinciple of operation – Three phase inverters – Voltage control of three phase inverterModule:6Electric Vehicle Batteries7 hoursBattery range – Battery types (Lithi						
All electric range – Engine dominant blended strategy – Electric dominant strategy – Hybrid vehicle control strategies – Introduction to energy management strategies – classification of energy management strategies – rule based and optimization strategies – real-time working of energy management system in HEV Module:3 Electric vehicle architectures 6 hours Basic concept of electric traction – introduction to various electric drive-train topologies – power flow control in electric drive-train topologies – fuel efficiency analysis – Electric Propulsion unit – Introduction to electric components used in electric vehicles – transmission types for EV – Power Flow Control in Electric Drivetrain – Positioning of Motors – Vehicle Performance – Tractive Effort Module:4 Electric Motors in EV 7 hours Types of Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operating principle – DC Motor – Brushless DC Motor – BLDC Motor Control – Switched Reluctance Motor – AC Induction – PMSM – Advantages and comparison of motors – Drive system Efficiency – EV Motor Cooling Module:5 Power Electronics in EV 6 hours Electric Drive Components – Introduction to Power electronic components – Power Electronic Switches DC Drives – DC Regulation and Voltage Conversion – Motor Drives Performance parameters of DC-DC conversion – Step-up and step-down converters with RL load – Switching mode regulators – Comparison of converters – Inverter's introduction Principle of operation – Three phase inverters – Voltage control of three phase inverter Module:6 Electric Vehicle Batteries <td>assist – dual moo</td> <td>le power split – power split with shift</td> <td></td> <th>-</th> <th></th> <td></td>	assist – dual moo	le power split – power split with shift		-		
vehicle control strategies – Introduction to energy management strategies – classification of energy management strategies – rule based and optimization strategies – real-time working of energy management system in HEV Module:3 Electric vehicle architectures 6 hours Basic concept of electric traction – introduction to various electric drive-train topologies – power flow control in electric drive-train topologies – fuel efficiency analysis – Electric Propulsion unit – Introduction to electric components used in electric vehicles – Transmission types for EV – Power Flow Control in Electric Drivetrain – Positioning of Motors – Vehicle Performance – Tractive Effort Module:4 Electric Motors in EV 7 hours Types of Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operating principle – DC Motor – Brushless DC Motor – BLDC Motor Control – Switched Reluctance Motor – AC Induction – PMSM – Advantages and comparison of motors – Drive system Efficiency – EV Motor Cooling Module:5 Power Electronics in EV 6 hours Electric Drive Components – Introduction to Power electronic components – Power Electronic Switches DC Drives – DC Regulation and Voltage Conversion – Motor Drives Performance parameters of DC-DC conversion – Step-up and step-down converters with RL load – Switching mode regulators – Comparison of converters – Inverter's introduction Principle of operation – Three phase inverters – Voltage control of three phase inverter Module:6 Electric Vehicle Batteries 7 hours Battery range – Battery types (Lithium ion, Metal air, etc) – Battery parameters – Battery						
energy management strategies – rule based and optimization strategies – real-time working of energy management system in HEV Module:3 Electric vehicle architectures 6 hours Basic concept of electric traction – introduction to various electric drive-train topologies – power flow control in electric drive-train topologies – fuel efficiency analysis – Electric Propulsion unit – Introduction to electric components used in electric vehicles – Transmission types for EV – Power Flow Control in Electric Drivetrain – Positioning of Motors – Vehicle Performance – Tractive Effort Module:4 Electric Motors in EV 7 hours Types of Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operating principle – DC Motor – Brushless DC Motor – BLDC Motor Control – Switched Reluctance Motor – AC Induction – PMSM – Advantages and comparison of motors – Drive system Efficiency – EV Motor Cooling Module:5 Power Electronics in EV 6 hours Electric Drive Components – Introduction to Power electronic components – Power Electronic Switches DC Drives – DC Regulation and Voltage Conversion – Motor Drives Performance parameters of DC-DC conversion – Step-up and step-down converters with RL load – Switching mode regulators – Comparison of converters – Inverter's introduction Principle of operation – Three phase inverters – Voltage control of three phase inverter Module:6 Electric Vehicle Batteries 7 hours Battery range – Battery types (Lithium ion, Metal air, etc) – Battery parameters – Battery						
of energy management system in HEV Module:3 Electric vehicle architectures 6 hours Basic concept of electric traction – introduction to various electric drive-train topologies – power flow control in electric drive-train topologies – fuel efficiency analysis – Electric Propulsion unit – Introduction to electric components used in electric vehicles – Transmission types for EV – Power Flow Control in Electric Drivetrain – Positioning of Motors – Vehicle Performance – Tractive Effort Module:4 Electric Motors in EV 7 hours Types of Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operating principle – DC Motor – Brushless DC Motor – BLDC Motor Control – Switched Reluctance Motor – AC Induction – PMSM – Advantages and comparison of motors – Drive system Efficiency – EV Motor Cooling Module:5 Power Electronics in EV 6 hours Electric Drive Components – Introduction to Power electronic components – Power Electronic Switches DC Drives – DC Regulation and Voltage Conversion – Motor Drives Performance parameters of DC-DC conversion – Step-up and step-down converters with RL load – Switching mode regulators – Comparison of converters – Inverter's introduction Principle of operation – Three phase inverters – Voltage control of three phase inverter 7 hours Module:6 Electric Vehicle Batteries 7 hours Battery range – Battery types (Lithium ion, Metal air, etc) – Battery parameters – Battery 7 hours						
Module:3Electric vehicle architectures6 hoursBasic concept of electric traction – introduction to various electric drive-train topologies – power flow control in electric drive-train topologies – fuel efficiency analysis – Electric Propulsion unit – Introduction to electric components used in electric vehicles – Transmission types for EV – Power Flow Control in Electric Drivetrain – Positioning of Motors – Vehicle Performance – Tractive EffortModule:4Electric Motors in EV7 hoursTypes of Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operating principle – DC Motor – Brushless DC Motor – BLDC Motor Control – Switched Reluctance Motor – AC Induction – PMSM – Advantages and comparison of motors – Drive system Efficiency – EV Motor CoolingModule:5Power Electronics in EV6 hoursElectric Drive Components – Introduction to Power electronic components – Power Electronic Switches DC Drives – DC Regulation and Voltage Conversion – Motor Drives Performance parameters of DC-DC conversion – Step-up and step-down converters with RL load – Switching mode regulators – Comparison of converters – Inverter's introduction Principle of operation – Three phase inverters – Voltage control of three phase inverter7 hoursModule:6Electric Vehicle Batteries7 hoursBattery range – Battery types (Lithium ion, Metal air, etc) – Battery parameters – Battery	•••	•	– rea	l-time	work	ing
Basic concept of electric traction – introduction to various electric drive-train topologies – power flow control in electric drive-train topologies – fuel efficiency analysis – Electric Propulsion unit – Introduction to electric components used in electric vehicles – Transmission types for EV – Power Flow Control in Electric Drivetrain – Positioning of Motors – Vehicle Performance – Tractive Effort Module:4 Electric Motors in EV Types of Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operating principle – DC Motor – Brushless DC Motor – BLDC Motor Control – Switched Reluctance Motor – AC Induction – PMSM – Advantages and comparison of motors – Drive system Efficiency – EV Motor Cooling Module:5 Power Electronics in EV Electric Drive Components – Introduction to Power electronic components – Power Electric Drive Components – DC Regulation and Voltage Conversion – Motor Drives Performance parameters of DC-DC conversion – Step-up and step-down converters with RL Ioad – Switching mode regulators – Comparison of converters – Inverter's introduction Principle of operation – Three phase inverters – Voltage control of three phase inverter Module:6 Electric Vehicle Batteries 7 hours Battery range – Battery types (Lithium ion, Metal air, etc) – Battery parameters – Battery					<u></u>	
power flow control in electric drive-train topologies – fuel efficiency analysis – Electric Propulsion unit – Introduction to electric components used in electric vehicles – Transmission types for EV – Power Flow Control in Electric Drivetrain – Positioning of Motors – Vehicle Performance – Tractive EffortModule:4Electric Motors in EV7 hoursTypes of Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operating principle – DC Motor – Brushless DC Motor – BLDC Motor Control – Switched Reluctance Motor – AC Induction – PMSM – Advantages and comparison of motors – Drive system Efficiency – EV Motor CoolingModule:5Power Electronics in EV6 hoursElectric Drive Components – Introduction to Power electronic components – Power Electronic Switches DC Drives – DC Regulation and Voltage Conversion – Motor Drives Performance parameters of DC-DC conversion – Step-up and step-down converters with RL load – Switching mode regulators – Comparison of converters – Inverter's introduction Principle of operation – Three phase inverters – Voltage control of three phase inverter7 hoursModule:6Electric Vehicle Batteries7 hoursBattery range – Battery types (Lithium ion, Metal air, etc) – Battery parameters – Battery			<u> </u>			
Transmission types for EV – Power Flow Control in Electric Drivetrain – Positioning of Motors – Vehicle Performance – Tractive Effort Module:4 Electric Motors in EV 7 hours Types of Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operating principle – DC Motor – Brushless DC Motor – BLDC Motor Control – Switched Reluctance Motor – AC Induction – PMSM – Advantages and comparison of motors – Drive system Efficiency – EV Motor Cooling Module:5 Power Electronics in EV 6 hours Electric Drive Components – Introduction to Power electronic components – Power Electronic Switches DC Drives – DC Regulation and Voltage Conversion – Motor Drives Performance parameters of DC-DC conversion – Step-up and step-down converters with RL load – Switching mode regulators – Comparison of converters – Inverter's introduction Principle of operation – Three phase inverters – Voltage control of three phase inverter 7 hours Module:6 Electric Vehicle Batteries 7 hours Battery range – Battery types (Lithium ion, Metal air, etc) – Battery parameters – Battery	power flow cont	rol in electric drive-train topologies - fuel efficiency	analy	'sis –	Elec	tric
Motors – Vehicle Performance – Tractive Effort 7 hours Module:4 Electric Motors in EV 7 hours Types of Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operating principle – DC Motor – Brushless DC Motor – BLDC Motor Control – Switched Reluctance Motor – AC Induction – PMSM – Advantages and comparison of motors – Drive system Efficiency – EV Motor Cooling Module:5 Power Electronics in EV 6 hours Electric Drive Components – Introduction to Power electronic components – Power Electronic Switches DC Drives – DC Regulation and Voltage Conversion – Motor Drives Performance parameters of DC-DC conversion – Step-up and step-down converters with RL load – Switching mode regulators – Comparison of converters – Inverter's introduction Principle of operation – Three phase inverters – Voltage control of three phase inverter Module:6 Electric Vehicle Batteries 7 hours Battery range – Battery types (Lithium ion, Metal air, etc) – Battery parameters – Battery						
Module:4Electric Motors in EV7 hoursTypes of Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operating principle – DC Motor – Brushless DC Motor – BLDC Motor Control – Switched Reluctance Motor – AC Induction – PMSM – Advantages and comparison of motors – Drive system Efficiency – EV Motor CoolingModule:5Power Electronics in EV6 hoursElectric Drive Components – Introduction to Power electronic components – Power Electronic Switches DC Drives – DC Regulation and Voltage Conversion – Motor Drives Performance parameters of DC-DC conversion – Step-up and step-down converters with RL load – Switching mode regulators – Comparison of converters – Inverter's introduction Principle of operation – Three phase inverters – Voltage control of three phase inverter7 hoursModule:6Electric Vehicle Batteries7 hoursBattery range – Battery types (Lithium ion, Metal air, etc) – Battery parameters – Battery8 hours			in –	Positio	oning	OT
Types of Motors in EV – Characteristics features of EV motors – Torque Speed Characteristics – Construction and operating principle – DC Motor – Brushless DC Motor – BLDC Motor Control – Switched Reluctance Motor – AC Induction – PMSM – Advantages and comparison of motors – Drive system Efficiency – EV Motor CoolingModule:5Power Electronics in EV6 hoursElectric Drive Components – Introduction to Power electronic components – Power Electronic Switches DC Drives – DC Regulation and Voltage Conversion – Motor Drives Performance parameters of DC-DC conversion – Step-up and step-down converters with RL load – Switching mode regulators – Comparison of converters – Inverter's introduction Principle of operation – Three phase inverters – Voltage control of three phase inverter7 hoursModule:6Electric Vehicle Batteries7 hoursBattery range – Battery types (Lithium ion, Metal air, etc) – Battery parameters – Battery					7 ho	
Characteristics – Construction and operating principle – DC Motor – Brushless DC Motor – BLDC Motor Control – Switched Reluctance Motor – AC Induction – PMSM – Advantages and comparison of motors – Drive system Efficiency – EV Motor CoolingModule:5Power Electronics in EV6 hoursElectric Drive Components – Introduction to Power electronic components – Power Electronic Switches DC Drives – DC Regulation and Voltage Conversion – Motor Drives Performance parameters of DC-DC conversion – Step-up and step-down converters with RL load – Switching mode regulators – Comparison of converters – Inverter's introduction Principle of operation – Three phase inverters – Voltage control of three phase inverter7 hoursModule:6Electric Vehicle Batteries7 hoursBattery range – Battery types (Lithium ion, Metal air, etc) – Battery parameters – Battery8 attery			<u></u> т			
BLDC Motor Control – Switched Reluctance Motor – AC Induction – PMSM – Advantages and comparison of motors – Drive system Efficiency – EV Motor Cooling Module:5 Power Electronics in EV 6 hours Electric Drive Components – Introduction to Power electronic components – Power Electronic Switches DC Drives – DC Regulation and Voltage Conversion – Motor Drives Performance parameters of DC-DC conversion – Step-up and step-down converters with RL load – Switching mode regulators – Comparison of converters – Inverter's introduction Principle of operation – Three phase inverters – Voltage control of three phase inverter 7 hours Battery range – Battery types (Lithium ion, Metal air, etc) – Battery parameters – Battery 7 hours	V 1					
and comparison of motors – Drive system Efficiency – EV Motor CoolingModule:5Power Electronics in EV6 hoursElectric Drive Components – Introduction to Power electronic components – PowerElectronic Switches DC Drives – DC Regulation and Voltage Conversion – Motor DrivesPerformance parameters of DC-DC conversion – Step-up and step-down converters with RLload – Switching mode regulators – Comparison of converters – Inverter's introductionPrinciple of operation – Three phase inverters – Voltage control of three phase inverterModule:6Electric Vehicle Batteries7 hoursBattery range – Battery types (Lithium ion, Metal air, etc) – Battery parameters – Battery						
Module:5Power Electronics in EV6 hoursElectricDriveComponents – Introduction to Power electronic components – PowerElectronicSwitchesDCDrives – DCRegulationand VoltageConversion – Motor DrivesPerformanceparameters of DC-DC conversion – Step-up and step-down converters with RLloadSwitchingmoderegulatorsComparison of converters – Inverter's introductionPrinciple of operation – Three phase inverters – Voltage control of three phase inverterModule:6Electric Vehicle BatteriesBatteryrange – Batterytypes(Lithium ion, Metal air, etc) – Batteryparameters – Battery				- Auv	antag	<i>j</i> c3
Electric Drive Components – Introduction to Power electronic components – PowerElectronic Switches DC Drives – DC Regulation and Voltage Conversion – Motor DrivesPerformance parameters of DC-DC conversion – Step-up and step-down converters with RLload – Switching mode regulators – Comparison of converters – Inverter's introductionPrinciple of operation – Three phase inverters – Voltage control of three phase inverterModule:6Electric Vehicle BatteriesBattery range – Battery types (Lithium ion, Metal air, etc) – Battery parameters – Battery					6 ho	urs
Electronic Switches DC Drives – DC Regulation and Voltage Conversion – Motor Drives Performance parameters of DC-DC conversion – Step-up and step-down converters with RL load – Switching mode regulators – Comparison of converters – Inverter's introduction Principle of operation – Three phase inverters – Voltage control of three phase inverter Module:6 Electric Vehicle Batteries 7 hours Battery range – Battery types (Lithium ion, Metal air, etc) – Battery parameters – Battery			npone			
Performance parameters of DC-DC conversion – Step-up and step-down converters with RL load – Switching mode regulators – Comparison of converters – Inverter's introduction Principle of operation – Three phase inverters – Voltage control of three phase inverter Module:6 Electric Vehicle Batteries Pattery range – Battery types (Lithium ion, Metal air, etc) – Battery parameters – Battery						
load – Switching mode regulators – Comparison of converters – Inverter's introductionPrinciple of operation – Three phase inverters – Voltage control of three phase inverterModule:6Electric Vehicle BatteriesBattery range – Battery types (Lithium ion, Metal air, etc) – Battery parameters – Battery		• •				
Principle of operation – Three phase inverters – Voltage control of three phase inverter Module:6 Electric Vehicle Batteries 7 hours Battery range – Battery types (Lithium ion, Metal air, etc) – Battery parameters – Battery						
Module:6 Electric Vehicle Batteries 7 hours Battery range – Battery types (Lithium ion, Metal air, etc) – Battery parameters – Battery						
						urs
Terminology (SOC, SOH, DOC, etc) - Construction of Lithium ion (Li) battery - Working -						
	Terminology (SC	C, SOH,DOC, etc) – Construction of Lithium ion (Li) k	oattery	<u>/ – W</u>	orking	g —

						ttery Pack design – Battery gement of Batteries – Types –		
Cha	aracteris	stics features and working. E	Battery Mana	geme	nt S	System (BMS) – Architecture of		
BM	IS – Des	sign Consideration of BMS B	attery State E	Estima	atior	n Methods		
-		Electric Vehicle Charg				6 hours		
						ndamental principle of wireless		
	00	00				ween Conductive and Inductive		
-	<u> </u>	chemes of EV – Wireless cha	arging metho	ds for	EV			
Мо	dule:8	Contemporary Issues				2 hours		
		Tota	I Lecture ho	urs:		45 hours		
Tex	xt Book	(s)						
1.		enton, (2020) Electric and H	ybrid Vehicle	s. Ro	utle	dge Publication.		
2.						18). Modern electric, hybrid		
		c, and fuel cell vehicles. CRC			`	,		
Re	ference	Books	•					
1.	Patel,	N., Bhoi, A. K., Padmanaba	an, S., & Hol	m-Nie	else	n, J. B. (Eds.). (2021). Electric		
	vehicle	es: modern technologies and	trends. Sprir	nger.				
2.	Soylu,	S. (Ed.). (2011). Electric ve	hicles: mode	lling a	and	simulations. BoD–Books on		
	Demai	nd.						
Мо	Mode of Evaluation: CAT, Written assignment, Quiz and FAT							
Re	commer	nded by Board of Studies	27-07-2022					
		by Academic Council	No. 67	Date	;	08-08-2022		
		*				-		

Skill Enhancement Courses

Cour	rse code		C	Course ⁻	Title		L	T	Ρ	С
MEN	G501P		Technie	cal Repo	ort Writing	g	0	0	4	2
Pre-	requisite	Nil					Syl	abus	s ver	sion
								1	.0	
Cour	rse Objective	es								
1.To	develop writi	ng skills for	preparing	technica	al reports.					
2. To	analyze and	evaluate ge	eneral and	comple	x technica	l information.				
3. To	enable profi	ciency in dra	afting and	presenti	ing reports					
	•		0		5 1					
Cour	rse Outcome	}								
	he end of the		student w	/ill be abl	le to					
						nar, vocabulary	and s	style.		
	oply the advar		-		-	•		,		
•	terpret inform		•		•	•				
	emonstrate th		•	• •	• •					
						0113.				
o. im	prove the abi	muy or prese	ining tech	nical rep	JUILS.					
- الم مرا		marta								
Indic	ative Experi Basics of T		ommunia	ation						
1.	General and									
١.	Process of c				municatio	0				
	Vocabulary			5 01 0011	Innunicatio					
2.	Word usage		words Ph	nasal ve	rhs					
۷.	Punctuation	and Proof r	reading		105					
	Advanced (odding							
3.	Shifts: Voice		erson Nun	nber						
0.	Clarity: Pror				unclear m	odifiers				
	Elements o									
4.			-	ng unne	cessary w	ords, Avoiding	cliché	s and	d slar	ŋ
	Sentence cl			0	,	· 0				0
	The Art of o	condensati	on							
5.	Steps to effe	ective precis	s writing,							
	Paraphrasin	<u> </u>	U							
6.						ristics and Cat				
7.			d Prewriti	ing : purp	oose, audi	ence, sources	of info	rmat	ion,	
· ·	organizing t									
8.	Data Visual									
						gery - Info gra	ohics			
9.	Systematiz				•				4-	
						Diverse Techr				400
10.						iterature reviev cles and e-con		erend	se siy	/ies,
	Structure o			ini waya	izines, Aru		leni			
11		-	wledgemo	ant - Aha	stract/Sum	mary – Introdu	ction	Mat	oriale	s and
11			•			igestions/Reco) anu
	Writing the				131011 - 349	190310113/11000	minel	iudil	113	
12.	Thesis state	-	-	•	oherence					
						Revising the a	nstran	t		
13.	Avoiding Pla					i to violity the a	Juan	~		
	Supplemen	-								
1/		•	anany De	<i>c</i>						
14.	Appendix -	$n \alpha e x - c \eta \alpha$	ssarv - r	eterence	es – Riblioc	graphy - Notes				

	Presenting Technical Reports						
	Planning, creating anddigital pres	sentation of re	eports				
		Tota	al Labora	tory hours :	60 hours		
Text	Book(s)						
1.	Raman, Meenakshi and Sange Principles and Practice, Third edi						
Refe	rence Books						
1.	Aruna, Koneru, (2020). English Language Skills for Engineers. McGraw Hill Education, Noida.						
2.	Rizvi,M. Ashraf (2018)Effective Hill Education, Chennai.	Technical C	ommunic	ation Second	Edition. McGraw		
3.	Kumar, Sanjay and Pushpalatha, for Engineers, Oxford University I	· / •	ish Langı	uage and Corr	nmunication Skills		
4.	Elizabeth Tebeaux and Sam Dragga, (2020).The Essentials of Technical Communication, Fifth Edition, Oxford University Press.						
Mode	e of Evaluation : Continuous Asses	sment Tests	Quizzes	. Assignment.	Final		
	ssment Test			,;			
	ommended by Board of Studies	19-05-2022					
	oved by Academic Council	No. 66	Date	16-06-2022			
	oved by Academic Council	110.00	Dale	10-00-2022			

MOTOFAID	de	Course Title	L	T	P	С
MSTS501P		Qualitative Skills Practice	0	0	3	1.5
Pre-requisi	te	Nil	Sylla	abus	s ver	sion
				1.	0	
Course Obj						
		p the quantitative ability for solving basic level problems	i.			
2. To	improv	e the verbal and professional communication skills.				
Course Out	tcome					
At the end	of the	course, the student will be able to				
1. Exe	ecute a	ppropriate analytical skills.				
2. Sol	ve pro	plems pertaining to quantitative and reasoning ability.				
3. Lea	arn bet	ter vocabulary for workplace communication.				
4. Der	monstr	ate appropriate behavior in an organized environment.				
 	Rusi	ness Etiquette: Social and Cultural Etiquette; Writing	<u> </u>			
Module:1		pany Blogs; Internal Communications and Planning:	-		9 hc	ure
module. I	-	ng press release and meeting notes			5 110	Juis
Value Man		Netiquette, Customs, Language, Tradition, Building a	bloa	De	velo	pina
		AQs', Assessing Competition, Open and objective Cor	-			-
	•	derstanding the audience, Identifying, Gathering Infor				
		cting plan, Progress check, Types of planning, Write			-	
-		ne Point –summarize your subject in the first paragraph				-
relevant to y			,	,		
Module:2	Time	management skills			3 hc	ours
Prioritizatior	n, Proc	rastination, Scheduling, Multitasking, Monitoring, Workir	ng un	der	pres	sure
and adherin	a to de	adlines	•			
	9 10 40					
	0					
Module:3	Prese	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing			7 hc	ours
	Prese mate	entation skills – Preparing presentation; Organizing			7 hc	ours
Module:3	Prese mate with	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing		the		
Module:3 10 Tips to Test, Blue	Prese mate with prepar sky thi	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction, body and conclusion, Use of Fo	sing nt, U	se o	Elev of Co	ator olor,
Module:3 10 Tips to Test, Blue Strategic pr	Prese mate with prepar sky thi resenta	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction , body and conclusion, Use of Fo ation, Importance and types of visual aids, Animation	sing nt, U to ca	lse o aptiv	Elev of Co ate y	ator olor, your
Module:3 10 Tips to Test, Blue Strategic pr audience, [Prese mate with prepar sky thi resenta Design	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction, body and conclusion, Use of Fo ntion, Importance and types of visual aids, Animation of posters, Setting out the ground rules, Dealing v	sing nt, U to ca	lse o aptiv	Elev of Co ate y	ator olor, your
Module:3 10 Tips to Test, Blue Strategic pr audience, [Prese mate with prepar sky thi resenta Design	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction , body and conclusion, Use of Fo ation, Importance and types of visual aids, Animation	sing nt, U to ca	lse o aptiv	Elev of Co ate y	ator olor, your
Module:3 10 Tips to Test, Blue Strategic pr audience, [Prese mate with prepar sky thi esenta Design ontrol o Quar	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction, body and conclusion, Use of Fo ntion, Importance and types of visual aids, Animation of posters, Setting out the ground rules, Dealing v	sing nt, U to ca	se o aptiv nter	Elev of Co ate y	ator blor, your ons,
Module:3 10 Tips to Test, Blue Strategic pr audience, I Staying in c Module:4	Prese mate with prepar sky thi resenta Design ontrol o Quan Prog	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction , body and conclusion, Use of Fo tion, Importance and types of visual aids, Animation of posters, Setting out the ground rules, Dealing v of the questions, Handling difficult questions. titativeAbility-L1–Numberproperties; Averages; ressions; Percentages; Ratios	sing nt, U to ca with i	lse o aptiv nter	Elev of Co ate y ruption	ator olor, your ons, ours
Module:3 10 Tips to Test, Blue Strategic pr audience, E Staying in c Module:4 Number of	Prese mate with prepar sky thi esenta Design ontrol o Quan Prog	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction, body and conclusion, Use of Fo ation, Importance and types of visual aids, Animation of posters, Setting out the ground rules, Dealing v of the questions, Handling difficult questions. htitativeAbility-L1–Numberproperties; Averages; ressions; Percentages; Ratios , Factorials, Remainder Theorem, Unit digit position, T	sing nt, U to ca with i	lse o aptiv nter 1 digit	Elev of Co ate y ruption	ator olor, your ons, ours
Module:3 10 Tips to Test, Blue Strategic pr audience, E Staying in c Module:4 Number of Averages, N	Prese mate with prepar sky thi resenta Design ontrol o Quan Prog factors Weight	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction , body and conclusion, Use of Fo tion, Importance and types of visual aids, Animation of posters, Setting out the ground rules, Dealing v of the questions, Handling difficult questions. titativeAbility-L1–Numberproperties; Averages; ressions; Percentages; Ratios	sing nt, U to ca with i Fens ressio	se of aptivner	Elev of Co ate y ruption 1 ho Harn	ator olor, your ons, ours iition, nonic
Module:3 10 Tips to Test, Blue Strategic pr audience, E Staying in c Module:4 Number of Averages, N	Prese mate with prepar sky thi resenta Design ontrol of Quan Prog factors Weight a, incr	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction , body and conclusion, Use of Fo ation, Importance and types of visual aids, Animation of posters, Setting out the ground rules, Dealing v of the questions, Handling difficult questions. titativeAbility-L1–Numberproperties; Averages; ressions; Percentages; Ratios , Factorials, Remainder Theorem, Unit digit position, T ed Average, Arithmetic Progression, Geometric Prog	sing nt, U to ca with i Fens ressio	se of aptivner	Elev of Co ate y ruption 1 ho Harn	ator olor, your ons, ours sition, nonic
Module:3 10 Tips to Test, Blue Strategic pr audience, E Staying in c Staying in c Module:4 Number of Averages, N Progression	Prese mate with prepar sky thi resenta Design ontrol o Quan Prog factors Weight	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction , body and conclusion, Use of Fo ation, Importance and types of visual aids, Animation of posters, Setting out the ground rules, Dealing v of the questions, Handling difficult questions. titativeAbility-L1–Numberproperties; Averages; ressions; Percentages; Ratios , Factorials, Remainder Theorem, Unit digit position, T ed Average, Arithmetic Progression, Geometric Prog	sing nt, U to ca with i Fens ressio	se of aptivner	Elev of Co ate y ruption 1 ho Harn	ator olor, your ons, ours sition, nonic and
Module:3 10 Tips to Test, Blue Strategic pr audience, E Staying in c Module:4 Number of Averages, N Progression proportions. Module:5	Prese mate with prepar sky thi resenta Design ontrol o Quan Prog factors Weight n, incr	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction , body and conclusion, Use of Fo ation, Importance and types of visual aids, Animation of posters, Setting out the ground rules, Dealing v of the questions, Handling difficult questions. ItitativeAbility-L1–Numberproperties; Averages; ressions; Percentages; Ratios , Factorials, Remainder Theorem, Unit digit position, T ed Average, Arithmetic Progression, Geometric Prog ease and Decrease or Successive increase, Type oning Ability - L1 – Analytical Reasoning	sing nt, U to ca with i Fens ressiones o	se o aptiv nter 1 digit on, f ra	Elev of Co ate y ruption 1 ho pos Harn atios	ator olor, your ons, ours sition, nonic and
Module:3 10 Tips to Test, Blue Strategic pr audience, I Staying in c Staying in c Module:4 Number of Averages, N Progression proportions. Module:5 Data Arrang	Prese mate with prepar sky thi resenta Design ontrol o Quan Prog factors Weight n, incr	entation skills – Preparing presentation; Organizing rials; Maintaining and preparing visual aids; Dealing questions e PowerPoint presentation, Outlining the content, Pas nking, Introduction , body and conclusion, Use of Fo ation, Importance and types of visual aids, Animation of posters, Setting out the ground rules, Dealing v of the questions, Handling difficult questions. titativeAbility-L1–Numberproperties; Averages; ressions; Percentages; Ratios , Factorials, Remainder Theorem, Unit digit position, T ed Average, Arithmetic Progression, Geometric Prog ease and Decrease or Successive increase, Type	sing nt, U to ca with i Fens ressiones o	se o aptiv nter 1 digit on, f ra	Elev of Co ate y ruption 1 ho pos Harn atios	ator olor, your ons, ours sition, nonic and

Synonyms & Antonyms, One word substitutes, Word Pairs, Spellings, Idioms, Sentence completion, Analogies.

	Total Lecture hours: 45 hours
Ref	erence Books
1.	Kerry Patterson, Joseph Grenny, Ron McMillan and Al Switzler, (2017).2 nd Edition, Crucial Conversations: Tools for Talking when Stakesare High .McGraw-Hill Contemporary, Bangalore.
2.	Dale Carnegie,(2016).How to Win Friends and Influence People. Gallery Books, New York.
3.	Scott Peck. M, (2003). Road Less Travelled. Bantam Press, New York City.
4.	SMART, (2018). Place Mentor, 1 st edition. Oxford University Press, Chennai.
5.	FACE, (2016). Aptipedia Aptitude Encyclopedia. Wiley publications, Delhi.
6.	ETHNUS, (2013). Aptimithra. McGraw – Hill Education Pvt .Ltd, Bangalore.
Wel	osites:
1.	www.chalkstreet.com
2.	www.skillsyouneed.com
3.	www.mindtools.com
4.	www.thebalance.com
5.	www.eguru.ooo
Moc Tes	le of Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final Assessment t
Rec	ommended by Board of Studies 19-05-2022
App	roved by Academic Council No.66 Date 16-06-2022

Course Coo	de	Course Title	L	Т	P	С
MSTS502P		Quantitative Skills Practice	0	0	3	1.5
Pre-requisit	te	Nil	Sy	llabu	s ver	sion
				1	.0	
Course Obj	jective	s:	•			
1. To a	develo	p the students' advanced problem solving skills.				
2. To e	enhan	ce critical thinking and innovative skills.				
Course Out	tcome					
		of the course, the student will be able to				
	ito nos	itive impression during official conversations and inte	orvio	NG		
		te comprehending skills of various texts.		NJ.		
		vanced level thinking ability in general aptitude.				
· ·		notional stability to tackle difficult circumstances.				
4. Deve	elop el					
Madulard	Resu	me skills – Resume Template; Use of power	verb	s;	0 4	
Module:1	Туре	s of resume; Customizing resume			2 r	nours
Structure of	a stan	dard resume, Content, color, font, Introduction to P	ower	verbs	s and	Write
up, Quiz o	on typ	es of resume, Frequent mistakes in customizi	ng r	esum	e, La	ayout-
Understandi	ing diff	erent company's requirement, Digitizing career portf	olio.			
Module:2	Inter	view skills – Types of interview; Techniques to f	ace		3 ł	nours
	remo	ote interviews and Mock Interview				
Structured	and u	nstructured interview orientation, Closed questic	ons a	ind h	ypoth	etical
questions, I	ntervie	wers' perspective, Questions to ask/not ask during	g an	interv	view, `	Video
interview, R	ecorde	ed feedback, Phone interview preparation, Tips to c	ustor	nize p	orepa	ration
for personal	intervi	ew, Practice rounds.				
	Emot	ional Intelligence - L1 – Transactional Analysis;	Brair	ו ו		
Module:3		ning; Psychometric Analysis; SWOT analysis			12 ł	nours
Introduction,	, Con	tracting, ego states, Life positions, Individual E	Brains	tormi	ng, C	Group
Brainstormir	ng, Ste	epladder Technique, Brain writing, Crawford's S	lip w	riting	appr	oach,
Reverse bra	ainstorr	ning, Star bursting, Charlette procedure ,Round rob	in bra	ainsto	rming	, Skill
Test, Persor	nality T	est, More than one answer, Unique ways, SWOT a	nalysi	S.		
		ntitative Ability - L3–Permutation - Combin				
Module:4		ability; Geometry and menstruation; Trigono arithms; Functions; Quadratic Equations; Set The		ry;	14 ł	nours
Countina. G	-	g, Linear Arrangement, Circular Arrangements, C		onal	Proba	ability.
-	•	Dependent Events, Properties of Polygon, 2D &				•
		and distances, Simple trigonometric functions, Intro		•		
	•	arithms, Introduction to functions, Basic rules of func-			•	
	•	ns, Rules & probabilities of Quadratic Equations, Ba				-
Diagram.	1-200			2.1001		
Module:5		oning ability - L3 – Logical reasoning; Data Anal	ysis		7 4	nours
module.5	and I	nterpretation			11	10013

C UI	aiomo	Dingry logic Sequential output tracing Crypta arithmatic Data Suffic	ionay Data
-	•	Binary logic, Sequential output tracing, Crypto arithmetic, Data Sufficen-Advanced, Interpretation tables, pie charts & bar chats.	siency, Data
inter	protatic		
Мос	lule:6	Verbal Ability - L3 – Comprehension and Critical reasoning	7 hours
Rea	ding co	mprehension, Para Jumbles, Critical Reasoning (a) Premise and Cor	nclusion,
(b) A	Assump	tion & Inference, (c) Strengthening & Weakening an Argument.	
			_
		Total Lecture hours:	45 hours
Refe	erence		
1.		el Farra and JIST Editors,(2011).Quick Resume & Cover Letter Book se an Effective Resume in Just One Day. Jist Works, Saint Paul, Min	
2.		Daniel E, (2003).The Art of Questioning: An Introduction to C ng. Pearson, London.	ritical
3.		Allen, (2015).Getting Things done: The Art of Stress-Free productivit in Books, New York City.	y.
4.	SMAR	T, (2018). Place Mentor 1 st edition. Oxford University Press, Chenna	i.
5.	FACE	, (2016).Aptipedia Aptitude Encyclopedia. Wileypublications, Delhi.	
6.	ETHN	US, (2013).Aptimithra. McGraw-Hill Education Pvt Ltd, Bangalore.	
Wek	sites:		
1.	www.c	halkstreet.com	
2.	www.s	killsyouneed.com	
3.	www.r	nindtools.com	
4.	<u>www.t</u>	hebalance.com	
5.	<u>www.</u> e	eguru.ooo	
Asse	essmen		
		ded by Board of Studies 19-05- 2022	
Арр	roved b	y Academic Council No.66 Date 16-06-2022	

Discipline Elective Courses

Course Code	Course Title	L	Т	Р	С	
MAUE601L	Engine Design and Development	3	0	0	3	
Pre-requisite	-	-	versi	-		
	NIL	• • • •	1.			
Course Objective	28	1		-		
	who take this course be able to					
1. To provid	e sufficient background of engine design and developm	nent.				
2. To broad	en the understanding constraints in the engine design.					
	the basic knowledge of the concepts in engin	e de	sign	and		
developm	o i o		Ũ			
	en the understanding of Sizing and design of major con	npone	nts			
	e the students to apply the knowledge modern pollution	•				
		59510				
Course Outcome						
	course, the student will be able to					
	the fundamental knowledge of engine component desig	jn and	i			
developm						
	concepts considering material, loads on engine compo	onent	desigi	n and		
developm						
•	he Lubrication and crankcase breathing system capaci	ty				
4. Impart the	e knowledge to develop the pollution control system.					
		1				
	ne Maps, Customers and Market	L		<u>5 ho</u>		
	uirements - Regulatory and technological constraints a					
	ng customer requirement to technical profile - Pack					
	ability / durability, regulatory, production volume, ment – Engine Mapping – Developing reliable and dur					
	nisms – Engine Development Process		ingine	5 — VV	cai	
Module:2 Engi				7 ho	urs	
	que curve – displacement – number of cylinders - cyli	nder a	arrang	gemer	nt –	
	– Bore spacing - Bore to stroke ratio optimization – C					
design - Valve arr	angement - Cooling type- air cooled-liquid cooled – oil	cooled	1 – Lu	ubricat	tion	
	ystem – injectors – Fuel Pumps - Spark Plug	1				
	c and Cylinder Head			5 ho		
5	Choice of Materials and Manufacturing - Monolithic b					
	- Design constraints - Cylinder block layout design - (
-	id head mating – head gasket – Thermal loads – Engi	ne be	aring	aesig	n –	
	- Types – Material Selection g of major engine components			8 ho	urs	
	– Material Selection – Connecting Rod Design - Cr	ank S	Shaft			
Balancing – Bearing Load and Design - CAM shafts – location - CAM Drive type and						
configuration – Wear Characterization and Design						
Module:5 Cylinder head 7 hours						
Head Design - Valve sizing Intake and Exhaust valves- Valve train - Intake port swirl and						
tumble, Intake port and manifold length - Exhaust port and exhaust manifold length						
Module:6 Cooling and Lubrication systems 5 hours						
	kcase Capacity - Pump type, sump size and location		icatio	on circ	;uit,	
	I scavenging, Crankcase ventilation, windage, breathing					
	Imp capacity and temperature control, Circuit design ar	ia ana	IYSIS	6 6 6		
Module:7 Fly W	/heel and Engine Accessories, Pollution control			6 ho	urs	
	Accessory Systems - Alternator, Starter and Compre	essor	(Air	Η\/Δ	<u>- ((</u>	
	(Power Steering Hydraulic Pump)- Power take off -					
					,	

Co	Converters – Particulate Traps - EGR							
Module:8 Contemporary Issues 21						2 hours		
Total Lecture hours:						45 hours		
Tex	Text Book(s)							
1.	1. Kevin Hog and Brain Dondlinger "Vehicular Engine Design", 2016 Springer Publications							
Re	ference	Books						
1.	Engine	ering Know-How in Engin	e Design (Part 1	to 24), SA	E, USA.			
0	SAE S	P-1071, Applications and	Developments in	New Eng	ine Design and	Components,		
2.	^{2.} SAE Publications, USA							
Mode of Evaluation: CAT, Written assignment, Quiz and FAT								
Recommended by Board of Studies 27-07-2022								
Ар	Approved by Academic Council No. 67 Date 08-08-2022							

	Course Code Course Title L T P							
Course Objectives: 1.0 Course Objectives: 1.0 1. To broaden the importance of Battery and Fuel cell. 2. To enable the students to understand the importance of Battery and Fuel cell. 3. To assist the students to know about Battery performance and selection Battery and Fuel cell. 3. To assist the students to identify the Advanced Batteries for Electric Vehicles Course Outcome: Upon Successful Completion of this course , Students will be able to 1. Acquire and analyze the various type's battery and Fuel cell. 2. Characterize various Battery and Fuel cell performance. 3. To maintain and inspect various Battery types and Fuel cell. 4. To develop battery and fuel cell for the modern requirements 5. To apply the advanced batteries for electric vehicles Module:1 Introduction 5 hour Introduction to Battery - Battery types - Fundamentals of electrochemical cells - Definition derivation of Nernst equation 6 hour Module:2 Battery Performance and selection 6 hour Battery Performance and Test - Battery Installation - Selection of Battery Fault Detection deardization - Battery Design - Battery Management System - Battery Fault Detection dearter for Automatice application. 8 hour Module:3 Lead acid battery Foromance - Charge Characteristics of Li-lon Batteries - Thin-Film, Solid State Li-lon Batteries - Conclusions and Fulure Trendes 6 hour Modul	MAUE602L	Battery and Fuel Cell		0	0	3		
Course Objectives: 1. To broaden the importance of Battery and Fuel cell. 2. To easist the students to understand the importance of Battery and Fuel cell. 3. To assist the students to know about Battery performance and selection Battery and Fuel cell. 4. To gain the basic knowledge about Lithium-Ion Batteries. 5. To help the students to identify the Advanced Batteries for Electric Vehicles Course Outcome: Upon Successful Completion of this course , Students will be able to 1. Acquire and analyze the various Battery and Fuel cell. 2. Characterize various Battery and Fuel cell performance. 3. To maintain and inspect various Battery types and Fuel cell. 4. To develop battery and fuel cell for the modern requirements 5. To apply the advanced batteries for electric vehicles Module:1 Introduction Introduction to Battery - Battery types - Fundamentals of electrochemical cells - Definition derivation of Nernst equation Module:2 Battery performance and selection 6 hour Battery Performance Measurements, Factors Affecting Battery for Automotive application. 8 hour Module:3 Lead acid battery Eastery Management System - Battery Fault Detectoro Maintenance and Tes				Syllabus version				
1. To broaden the importance of Battery and Fuel cell. 2. To enable the students to understand the importance of Battery and Fuel cell. 3. To assist the students to know about Battery performance and selection Battery and Fuel cell. 4. To gain the basic knowledge about Lithium-Ion Batteries. 5. To help the students to identify the Advanced Batteries for Electric Vehicles Course Outcome: Upon Successful Completion of this course ,Students will be able to 1. Acquire and analyze the various type's battery and Fuel cell. 2. Characterize various Battery and Fuel cell performance. 3. To maintain and inspect various Battery types and Fuel cell. 4. To develop battery and fuel cell for the modern requirements 5. To apply the advanced batteries for electric vehicles Module:1 Introduction 5 hour Introduction to Battery - Battery types - Fundamentals of electrochemistry - galvanic am electrolytic cells, differences -Thermodynamics of electrochemical cells - Definition derivation of Nernst equation 6 hour Module:2 Battery performance and selection 6 hour Theory of operation - cell construction - battery construction - Discharge performance - Charge methods - Temperature effects and limitations - service life - storagy entrodes - Thermistry - Construction of Cylindrical and Prismatic Li-lon Cell satteries - Li-lon Batteries - Chione Batteries - Charge Characteristics of Li-lon Batteries Safety Testing of Cyli				1.	.0			
 2. To enable the students to understand the importance of Battery and Fuel cell. 3. To assist the students to know about Battery performance and selection Battery and Fuel cell. 4. To gain the basic knowledge about Lithium-Ion Batteries. 5. To help the students to identify the Advanced Batteries for Electric Vehicles Course Outcome: Upon Successful Completion of this course ,Students will be able to 1. Acquire and analyze the various type's battery and Fuel cell. 2. Characterize various Battery and Fuel cell performance. 3. To maintain and inspect various Battery types and Fuel cell. 4. To develop battery and fuel cell for the modern requirements 5. To apply the advanced batteries for electric vehicles Module:1 Introduction Introduction to Battery types - Fundamentals of electrochemistry - galvanic and electrolytic cells, differences -Thermodynamics of electrochemical cells - Definition derivation of Nernst equation Module:2 Battery performance and selection for Automotive application. Battery Performance Maesurements, Factors Affecting Battery Performance - Batter Standardization - Battery Installation - Selection of Battery for Automotive application. Module:3 Lead acid battery for Construction – Discharge performance - Charge methods – Temperature effects and limitations – service life – storage methods – Temperature effects and limitations – service life – storage Module:4 Lithium-Ion Batteries for Electric Vehicles for Nortal Elevis Conclusions and Future Trends Module:5 Advanced Batteries for Electric Vehicles for Devine Batteries - Linion Batteries - Conclusions and Future Trends Module:5 Advanced Batteries for Electric Contencical Systems, Cell Design an Performance Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Solium-Betteries - Lithium-	Course Objectiv	es:						
 3. To assist the students to know about Battery performance and selection Battery and Fuel cell. 4. To gain the basic knowledge about Lithium-Ion Batteries. 5. To help the students to identify the Advanced Batteries for Electric Vehicles Course Outcome: Upon Successful Completion of this course, Students will be able to 1. Acquire and analyze the various type's battery and Fuel cell. 2. Characterize various Battery and Fuel cell performance. 3. To maintain and inspect various Battery types and Fuel cell. 4. To develop battery and fuel cell for the modern requirements 5. To apply the advanced batteries for electric vehicles Module:1 Introduction	1. To broade	en the importance of Battery and Fuel cell.						
 3. To assist the students to know about Battery performance and selection Battery and Fuel cell. 4. To gain the basic knowledge about Lithium-Ion Batteries. 5. To help the students to identify the Advanced Batteries for Electric Vehicles Course Outcome: Upon Successful Completion of this course, Students will be able to 1. Acquire and analyze the various type's battery and Fuel cell. 2. Characterize various Battery and Fuel cell performance. 3. To maintain and inspect various Battery types and Fuel cell. 4. To develop battery and fuel cell for the modern requirements 5. To apply the advanced batteries for electric vehicles Module:1 Introduction		•	and Fu	el cel	11.			
Fuel cell. 4. To gain the basic knowledge about Lithium-Ion Batteries. 5. To help the students to identify the Advanced Batteries for Electric Vehicles Course Outcome: Upon Successful Completion of this course ,Students will be able to 1. Acquire and analyze the various type's battery and Fuel cell. 2. Characterize various Battery and Fuel cell performance. 3. To maintain and inspect various Battery types and Fuel cell. 4. To develop battery and fuel cell for the modern requirements 5. To apply the advanced batteries for electric vehicles Module:1 Introduction Introduction to Battery - Battery types - Fundamentals of electrochemistry - galvanic and electrolytic cells, differences -Thermodynamics of electrochemical cells - Definition derivation of Nernst equation Module:2 Battery performance and selection 6 hours Battery Performance Measurements, Factors Affecting Battery Performance - Batter Standardization - Battery Management System - Battery Fault Detection Maintenance and Test - Battery Installation - Selection of Battery for Automotive application. Module:3 Lead acid battery S hour General Characteristics - Chemistry - Construction – Discharge performance - Charge methods – Temperature effects and limitations – service life – storage characteristics – maintenance requirements – Failure modes 6 hour General Characteristics Description of the Electrochemic						nd		
 4. To gain the basic knowledge about Lithium-Ion Batteries. 5. To help the students to identify the Advanced Batteries for Electric Vehicles Course Outcome: Upon Successful Completion of this course ,Students will be able to 1. Acquire and analyze the various type's battery and Fuel cell. 2. Characterize various Battery and Fuel cell performance. 3. To maintain and inspect various Battery types and Fuel cell. 4. To develop battery and fuel cell for the modern requirements 5. To apply the advanced batteries for electric vehicles Module:1 Introduction I Battery types - Fundamentals of electrochemistry - galvanic and electrolytic cells, differences -Thermodynamics of electrochemical cells - Definition derivation of Nernst equation Module:2 Battery performance and selection 6 hourn Battery Performance Measurements, Factors Affecting Battery Performance - Batter Standardization - Battery Installation - Selection of Battery for Automotive application. Module:3 Lead acid battery = failure installation - Selection of Battery for Automotive application. Module:4 Lithium-Ion Batteries for Electric Vehicles 6 hourn Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-Ion Cell and Batteries - Li-Ion Batteries for Electric Vehicles 6 hourn General Characteristics Description of the Electrochemical System, Solid State Li-Ion Batteries for Electric Vehicles 6 hourn General Characteristics Description of the Electrochemical System, Solid Destres 7 June-Film, Solid State Li-Ion Batteries - Conclusions and Future Trends Module:5 Advanced Batteries for Electric Vehicles 6 hourn General Characteristics Description of the Electrochemical System, Cell Design an Performance Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Bet Batteries - Lithium/Inon Sulfide Batteries Module:6 Fuel cells 6 hourn<td></td><td>and bladents to know about ballory portormanos and be</td><td>//00101</td><td>Dati</td><th>lory u</th><td>na</td>		and bladents to know about ballory portormanos and be	//00101	Dati	lory u	na		
5. To help the students to identify the Advanced Batteries for Electric Vehicles Course Outcome: Upon Successful Completion of this course, Students will be able to 1. Acquire and analyze the various type's battery and Fuel cell. 2. Characterize various Battery and Fuel cell performance. 3. To maintain and inspect various Battery types and Fuel cell. 4. To develop battery and fuel cell for the modern requirements 5. To apply the advanced batteries for electric vehicles Module:1 Introduction S nom Introduction to Battery - Battery types - Fundamentals of electrochemistry - galvanic ann electrolytic cells, differences - Thermodynamics of electrochemical cells - Definition deletrolytic cells, differences - Thermodynamics of electrochemical cells - Definition Battery Performance Measurements, Factors Affecting Battery Performance - Batter Standardization - Battery Design – Battery Management System - Battery Fault Detection Module:1 Lead actid battery Nodule:2 Lead actid battery Nodule:3 Lead actid battery Reneral Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-lon Cell and Batteries - Li-lon Battery Performance - Charge Characteristics of Li-lon Battery erformance - Charge Characteristics of Li-lon Battery erformance - Charge Characteristics of Li-lon C		a hasia knowladza abaut Lithium Ian Dattavias						
Course Outcome: Upon Successful Completion of this course ,Students will be able to 1. Acquire and analyze the various type's battery and Fuel cell. 2. Characterize various Battery and Fuel cell performance. 3. To maintain and inspect various Battery types and Fuel cell. 4. To develop battery and fuel cell for the modern requirements 5. To apply the advanced batteries for electric vehicles Module:1 Introduction Introduction to Battery - Battery types - Fundamentals of electrochemical cells - Definition derivation of Nernst equation Module:2 Battery performance and selection Module:3 Istery performance and selection of Battery Performance - Battery Standardization - Battery Design – Battery Management System - Battery Fault Detection Maintenance and Test - Battery Installation - Selection of Battery for Automotive application. Module:3 Lead acid battery Neodule:3 Lead acid battery Module:4 Lithum-Ion Batteries Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-lon Cell and Batteries - Li-lon Battery Performance - Charage Characteristics of Li-lon Batteries - Softury Performance - Charage Characteristics of Li-lon Batteries General Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-lon Cell and Batteries - Li-lon Battery Performance - Charage Characteristics of Li-lon Batteries	•	•						
Upon Successful Completion of this course ,Students will be able to 1. Acquire and analyze the various type's battery and Fuel cell. 2. Characterize various Battery and Fuel cell performance. 3. To maintain and inspect various Battery types and Fuel cell. 4. To develop battery and fuel cell for the modern requirements 5. To apply the advanced batteries for electric vehicles Module:1 Introduction 5 hours Introduction to Battery - Battery types - Fundamentals of electrochemistry - galvanic anne electrolytic cells, differences -Thermodynamics of electrochemical cells - Definition derivation of Nernst equation 6 hours Module:2 Battery performance and selection 6 hours Battery Performance Measurements, Factors Affecting Battery Performance - Batter Standardization - Battery Design – Battery Management System - Battery Fault Detection Module:3 Module:3 Lead acid battery 8 hours Theory of operation – cell construction – battery construction – Discharge performance - Charge methods – Temperature effects and limitations – service life – storage characteristics – maintenance requirements – failure modes Module:4 Lithium-Ion Batteries 6 hours General Characteristics - Chemistry Performance - Charge Characteristics of Li-lon Batteries safety Testing of Cylindrical C/LiCoO2 Batteries - Polymer Li-lon Batteries - Solium-Batteries - Solium-Batteries 6 hours General Characteristics Description of the Electrochemical Systems, Cell Design and Performance characteristics of - Meatl/Air Batteries - Zinc/Bromine Batteries - Sodium-Betteries <td></td> <td>•</td> <td>c Vehi</td> <td>cles</td> <th></th> <td></td>		•	c Vehi	cles				
 Acquire and analyze the various type's battery and Fuel cell. Characterize various Battery and Fuel cell performance. To maintain and inspect various Battery types and Fuel cell. To develop battery and fuel cell for the modern requirements To apply the advanced batteries for electric vehicles Module:1 Introduction Shoury - Battery types - Fundamentals of electrochemistry - galvanic and electrolytic cells, differences - Thermodynamics of electrochemical cells - Definition derivation of Nernst equation Module:2 Battery performance and selection 6 hours Battery Performance Measurements, Factors Affecting Battery Performance - Battery Standardization - Battery Installation - Selection of Battery Fault Detection Module:3 Lead acid battery Module:4 Lithium-Ion Batteries Module:4 Lithium-Ion Batteries Module:5 Advanced Battery Performance - Charge methods - Temperature effects and limitations - service life - storage characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-lon Cell and Batteries - Li-lon Batteries - Conclusions and Future Trends Module:5 Advanced Batteries for Electric Vehicles 6 hours General Characteristics of - Metal/Air Batteries - Polyme Li-lon Batteries - Sodium-Batteries for Electric Vehicles 6 hours General Characteristics of Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Batteries Module:6 Fuel cells 6 hours Module:7 Types of Fuel Cells 6 hours Module:7 Upges of Fuel Cells 1 for Electric Vehicles 6 hours General Characteristics of uel cells - technology: low and high temperature fuel Cells Fuel Cells Module:7 Types of Fuel Cells 6 hours Eucle Cell reacton kinetics: Introduction to electrode kinetics - performance fuel cells of the cells, efficiency of fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cells General Characteristics of - Metal/Air Batteries - Jinc/Bromin								
 Characterize various Battery and Fuel cell performance. To maintain and inspect various Battery types and Fuel cell. To develop battery and fuel cell for the modern requirements To apply the advanced batteries for electric vehicles Module:1 Introduction to Battery - Battery types - Fundamentals of electrochemistry - galvanic and electrolytic cells, differences -Thermodynamics of electrochemical cells - Definition derivation of Nernst equation Module:2 Battery performance and selection 6 hour: Battery Performance Measurements, Factors Affecting Battery Performance - Battery Standardization - Battery Design – Battery Management System - Battery Fault Detection Module:3 Lead acid battery 8 hour: Theory of operation - cell construction - battery construction – Discharge performance - Charge methods – Temperature effects and limitations – service life – storage characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-Ion Cell: and Batteries - Li-Ion Battery Performance - Charge Characteristics of Li-Ion Batteries Safety Testing of Cylindrical C/LiCoO2 Batteries - Polymer Li-Ion Batteries - Thin-Film, Solid State Li-Ion Batteries - Conclusions and Future Trends Module:5 Advanced Batteries for Electric Vehicles 6 hour: General Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Batteries Module:6 Fuel cells 6 hour: General Characteristics of secription of the Electrochemical Systems, Cell Design and Performance - Linkinetics: Introduction and overview of fuel cells - technology: low and high temperature fuel Cells Fuel Cells Fuel cell reacton kinetics: Introduction to electrode kinetics – performance echaracteristic of fuel cells, fuel cell, solid oxide fuel cell, Direct Methanol Operated fuel cells General Characteristics of secription of the Electrochemical Systems, Cell Design and Performance	•	•	e to					
3. To maintain and inspect various Battery types and Fuel cell. 4. To develop battery and fuel cell for the modern requirements 5. To apply the advanced batteries for electric vehicles Module:1 Introduction 5 hours Introduction to Battery - Battery types - Fundamentals of electrochemistry - galvanic and electrolytic cells, differences -Thermodynamics of electrochemical cells - Definition derivation of Nernst equation 6 hours Module:2 Battery performance and selection 6 hours Battery Performance Measurements, Factors Affecting Battery Performance - Batters Standardization - Battery Design – Battery Management System - Battery Fault Detection Module:3 Lead acid battery 8 hours 8 hours Theory of operation - cell construction - battery construction – Discharge performance - Charge methods – Temperature effects and limitations – service life – storage 6 hours General Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-lon Cells 6 hours General Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-lon Batteries and Batteries - Li-lon Batteries for Electric Vehicles 6 hours General Characteristics Description of the Electrochemical Systems, Cell Design am Performance Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Betteries General Characteristics Description of the Electrochemical Systems, Cell Design am Performance Characteristis of fuel cells - technology: low and high temperature f	1. Acquire a	nd analyze the various type's battery and Fuel cell.						
3. To maintain and inspect various Battery types and Fuel cell. 4. To develop battery and fuel cell for the modern requirements 5. To apply the advanced batteries for electric vehicles Module:1 Introduction 5 hours Introduction to Battery - Battery types - Fundamentals of electrochemistry - galvanic and electrolytic cells, differences -Thermodynamics of electrochemical cells - Definition derivation of Nernst equation 6 hours Module:2 Battery performance and selection 6 hours Battery Performance Measurements, Factors Affecting Battery Performance - Batters Standardization - Battery Design – Battery Management System - Battery Fault Detection Module:3 Lead acid battery 8 hours 8 hours Theory of operation - cell construction - battery construction – Discharge performance - Charge methods – Temperature effects and limitations – service life – storage 6 hours General Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-lon Cells 6 hours General Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-lon Batteries and Batteries - Li-lon Batteries for Electric Vehicles 6 hours General Characteristics Description of the Electrochemical Systems, Cell Design am Performance Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Betteries General Characteristics Description of the Electrochemical Systems, Cell Design am Performance Characteristis of fuel cells - technology: low and high temperature f	2. Character	ize various Battery and Fuel cell performance.						
4. To develop battery and fuel cell for the modern requirements 5. To apply the advanced batteries for electric vehicles Module:1 Introduction 5 hours Introduction to Battery - Battery types - Fundamentals of electrochemistry - galvanic and electrolytic cells, differences -Thermodynamics of electrochemical cells - Definition derivation of Nernst equation Module:2 Battery performance and selection 6 hours Battery Performance Measurements, Factors Affecting Battery Performance - Batters Tstandardization - Battery Design – Battery Management System - Battery Fault Detection Module:3 Lead acid battery 8 hours Theory of operation – cell construction – battery construction – Discharge performance - Charge methods – Temperature effects and limitations – service life – storage characteristics - maintenance requirements – failure modes Module:4 Lithium-Ion Batteries 6 hours General Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-Ion Cells and Batteries - Li-Ion Battery Performance - Charge Characteristics of Li-Ion Batteries - Conclusions and Future Trends Module:5 Advanced Batteries for Electric Vehicles 6 hours General Characteristics Description of the Electrochemical Systems, Cell Design and Performance Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Betteries Bodule:5 Introduction to electrode kinetics – performance characteristics of fuel cells - technology: low and high temperature fuel Cells Module:6 Fuel cells	3. To mainta	in and inspect various Battery types and Fuel cell.						
5. To apply the advanced batteries for electric vehicles Module:1 Introduction Introduction to Battery - Battery types - Fundamentals of electrochemistry - galvanic and electrolytic cells, differences - Thermodynamics of electrochemical cells - Definition derivation of Nernst equation 6 hours Module:2 Battery performance and selection 6 hours Battery Performance Measurements, Factors Affecting Battery Performance - Battery Standardization - Battery Design – Battery Management System - Battery Fault Detection Maintenance and Test - Battery Installation - Selection of Battery for Automotive application. Module:3 Lead acid battery 8 hours Theory of operation – cell construction – battery construction – Discharge performance - Charge methods – Temperature effects and limitations – service life – storage characteristics – maintenance requirements – failure modes 6 hours General Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-lon Batteries - Li-lon Battery Performance - Charge Characteristics of Li-lon Batteries and Eutries - Conclusions and Future Trends 6 hours Module:5 Advanced Batteries for Electric Vehicles 6 hours General Characteristics Description of the Electrochemical Systems, Cell Design and Performance Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Betteries - Lithum/Iron Sulfide Batteries 6 hours Module:5 Fuel cells 6 hours Module:6 Fuel cells <td></td> <td></td> <td></td> <td></td> <th></th> <td></td>								
Module:1 Introduction 5 hours Introduction to Battery - Battery types - Fundamentals of electrochemistry - galvanic and electrolytic cells, differences - Thermodynamics of electrochemical cells - Definition derivation of Nernst equation 6 hours Module:2 Battery performance and selection 6 hours Battery Performance Measurements, Factors Affecting Battery Performance - Batter Standardization - Battery Design – Battery Management System - Battery Fault Detection Maintenance and Test - Battery Installation - Selection of Battery for Automotive application. Module:3 Lead acid battery 8 hours Theory of operation – cell construction – battery construction – Discharge performance - Charge methods – Temperature effects and limitations – service life – storage (characteristics - maintenance requirements – failure modes 6 hours Module:4 Lithium-Ion Batteries 6 hours General Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-lon Batteries - Li-lon Batteries - Conclusions and Future Trends 6 hours Module:5 Advanced Batteries for Electric Vehicles 6 hours General Characteristics Description of the Electrochemical Systems, Cell Design and Performance Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Betteries Batteries - Lithium/Iron Sulfide Batteries 6 hours Introduction and overview of fuel cells - technology: low and high temperatur								
Introduction to Battery - Battery types - Fundamentals of electrochemistry - galvanic and electrolytic cells, differences -Thermodynamics of electrochemical cells - Definition derivation of Nernst equation Module:2 Battery performance and selection 6 hours Module:2 Battery Performance Measurements, Factors Affecting Battery Performance - Batter Standardization - Battery Design – Battery Management System - Battery Fault Detection Maintenance and Test - Battery Installation - Selection of Battery for Automotive application. Module:3 Lead acid battery 8 hours Theory of operation - cell construction - battery construction - Discharge performance - Charge methods - Temperature effects and limitations - service life - storage characteristics - maintenance requirements - failure modes 6 hours Module:4 Lithium-Ion Batteries 6 hours General Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-lon Cell: and Batteries - Li-lon Battery Performance - Charge Characteristics of Li-lon Batteries and Eutrements - Polymer Li-lon Batteries - Thin-Film, Solid State Li-lon Batteries - Conclusions and Future Trends 6 hours Module:5 Advanced Batteries for Electric Vehicles 6 hours General Characteristics Description of the Electrochemical Systems, Cell Design and Performance Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Betz Module:6 Fuel cells 6 hours Module:6 Fuel cells - technology: low and high tem								
Introduction to Battery - Battery types - Fundamentals of electrochemistry - galvanic and electrolytic cells, differences -Thermodynamics of electrochemical cells - Definition derivation of Nernst equation Module:2 Battery performance and selection 6 hours Module:2 Battery Performance Measurements, Factors Affecting Battery Performance - Batter Standardization - Battery Design – Battery Management System - Battery Fault Detection Maintenance and Test - Battery Installation - Selection of Battery for Automotive application. Module:3 Lead acid battery 8 hours Theory of operation - cell construction - battery construction - Discharge performance - Charge methods - Temperature effects and limitations - service life - storage characteristics - maintenance requirements - failure modes 6 hours Module:4 Lithium-Ion Batteries 6 hours General Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-lon Cell: and Batteries - Li-lon Battery Performance - Charge Characteristics of Li-lon Batteries and Eutrements - Polymer Li-lon Batteries - Thin-Film, Solid State Li-lon Batteries - Conclusions and Future Trends 6 hours Module:5 Advanced Batteries for Electric Vehicles 6 hours General Characteristics Description of the Electrochemical Systems, Cell Design and Performance Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Betz Module:6 Fuel cells 6 hours Module:6 Fuel cells - technology: low and high tem	Modulo:1 Intro	duction			5 bc	lire		
electrolytic cells, differences -Thermodynamics of electrochemical cells - Definition Module:2 Battery performance and selection 6 hours Battery Performance - Battery Performance - Battery Standardization - Battery Design – Battery Management System - Battery Fault Detection Maintenance and Test - Battery Installation - Selection of Battery for Automotive application. Module:3 Lead acid battery 8 hours Theory of operation – cell construction – battery construction – Discharge performance - Charge methods – Temperature effects and limitations – service life – storage characteristics – maintenance requirements – failure modes Module:4 Lithium-Ion Batteries 6 hours General Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-Ion Cell: and Batteries - Li-Ion Battery Performance - Charge Characteristics of Li-Ion Batteries - Soldius and Future Trends Module:5 Advanced Batteries for Electric Vehicles 6 hours General Characteristics Description of the Electrochemical Systems, Cell Design and Performance - Characteristics of security of fuel cells - technology: low and high temperature fuel Cells Module:6 Fuel cells 6 hours Module:6 Fuel cells 6 hours Fuel cell vers: alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cells			nietry -	aalv				
derivation of Nernst equation Module:2 Battery performance and selection 6 hour Battery Performance Measurements, Factors Affecting Battery Performance - Batter Standardization - Battery Design – Battery Management System - Battery Fault Detection Maintenance and Test - Battery Installation - Selection of Battery for Automotive application. Module:3 Lead acid battery 8 hours Theory of operation – cell construction – battery construction – Discharge performance - Charge methods – Temperature effects and limitations – service life – storage characteristics – maintenance requirements – failure modes Module:4 Lithium-Ion Batteries 6 hours General Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-Ion Celland Batteries - Li-Ion Battery Performance - Charge Characteristics of Li-Ion Batteries Safety Testing of Cylindrical C/LiCoO2 Batteries - Polymer Li-Ion Batteries - Thin-Film, Solid State Li-Ion Batteries - Conclusions and Future Trends Module:5 Advanced Batteries for Electric Vehicles 6 hours General Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Betteries - Sodium-Betteries - Sodium-Betteries - Conclusions and Future Trends Module:6 Fuel cells 6 hours Introduction and overview of fuel cells - technology: low and high temperature fuel Cells 6 hours Introduction and overview of fuel cells - techno								
Module:2 Battery performance and selection 6 hours Battery Performance Measurements, Factors Affecting Battery Performance - Battery Standardization - Battery Design – Battery Management System - Battery Fault Detection Management System - Battery Fault Detection Maintenance and Test - Battery Installation - Selection of Battery for Automotive application. Module:3 Lead acid battery 8 hours Theory of operation – cell construction – battery construction – Discharge performance - Charge methods – Temperature effects and limitations – service life – storage characteristics – maintenance requirements – failure modes 6 hours Module:4 Lithium-lon Batteries 6 hours General Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-lon Batteries - Li-lon Battery of Cylindrical C/LiCoO2 Batteries - Polymer Li-lon Batteries - Thin-Film, Solid State Li-lon Batteries - Conclusions and Future Trends Module:5 Advanced Batteries for Electric Vehicles 6 hours General Characteristics Description of the Electrochemical Systems, Cell Design and Performance - Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Beta Batteries - Lithium/Iron Sulfide Batteries 6 hours General Characteristics of fuel cells - technology: low and high temperature fuel Cells 6 hours Fuel cells 6 hours			00113		Jenni	lion,		
Battery Performance Measurements, Factors Affecting Battery Performance - Battery Standardization - Battery Design – Battery Management System - Battery Fault Detection Maintenance and Test - Battery Installation - Selection of Battery for Automotive application. Module:3 Lead acid battery 8 hours Theory of operation – cell construction – battery construction – Discharge performance - Charge methods – Temperature effects and limitations – service life – storage characteristics – maintenance requirements – failure modes 8 hours Module:4 Lithium-Ion Batteries 6 hours General Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-Ion Cells and Batteries - Li-Ion Battery Performance - Charge Characteristics of Li-Ion Batteries Safety Testing of Cylindrical C/LiCoO2 Batteries - Polymer Li-Ion Batteries - Thin-Film, Solid State Li-Ion Batteries - Conclusions and Future Trends Module:5 Advanced Batteries for Electric Vehicles 6 hours General Characteristics Description of the Electrochemical Systems, Cell Design and Performance Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Bett Batteries - Lithium/Iron Sulfide Batteries 6 hours Module:5 Fuel cells 6 hours Introduction and overview of fuel cells - technology: Iow and high temperature fuel Cells 6 hours Fuel cells, efficiency of fuel cell, fuel cell stack, fuel cell power plant: fuel processor, fue cell power section, power conditioner 6 hours Fuel cell types: alkaline fuel cell, p					6 hc	ours		
Standardization - Battery Design – Battery Management System - Battery Fault Detection Maintenance and Test - Battery Installation - Selection of Battery for Automotive application. Module:3 Lead acid battery 8 hours Theory of operation - cell construction - battery construction - Discharge performance - Charge methods - Temperature effects and limitations - service life - storage characteristics - maintenance requirements - failure modes 6 hours Module:4 Lithium-Ion Batteries 6 hours General Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-Ion Cells and Batteries - Li-Ion Battery Performance - Charge Characteristics of Li-Ion Batteries Safety Testing of Cylindrical C/LiCoO2 Batteries - Polymer Li-Ion Batteries - Thin-Film, Solid State Li-Ion Batteries - Conclusions and Future Trends Module:5 Advanced Batteries for Electric Vehicles 6 hours General Characteristics Description of the Electrochemical Systems, Cell Design and Performance Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Betz 6 hours Introduction and overview of fuel cells - technology: low and high temperature fuel Cells 6 hours Fuel cells, efficiency of fuel cell, fuel cell stack, fuel cell power plant: fuel processor, fue cell power section, power conditioner 6 hours Module:6 Fuel Cells 6 hours Fuel cell types: alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cells 6 hours </td <td>Battery Performa</td> <td>ance Measurements Factors Affecting Battery Per</td> <td>formar</td> <td>ice</td> <th></th> <td></td>	Battery Performa	ance Measurements Factors Affecting Battery Per	formar	ice				
Maintenance and Test - Battery Installation - Selection of Battery for Automotive application. Module:3 Lead acid battery 8 hours Theory of operation - cell construction - battery construction - Discharge performance - Charge methods - Temperature effects and limitations - service life - storage characteristics - maintenance requirements - failure modes - Storage Module:4 Lithium-Ion Batteries 6 hours General Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-Ion Cell: and Batteries - Li-Ion Battery Performance - Charge Characteristics of Li-Ion Batteries Safety Testing of Cylindrical C/LiCoO2 Batteries - Polymer Li-Ion Batteries - Thin-Film, Solid State Li-Ion Batteries - Conclusions and Future Trends Module:5 Advanced Batteries for Electric Vehicles 6 hours General Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Beta 6 hours General Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Beta 6 hours General Characteristics of fuel cells - technology: low and high temperature fuel Cells Fuel cells Introduction and overview of fuel cells - technology: low and high temperature fuel Cells Fuel cells Fuel cells, efficiency of fuel cell, fuel cell stack, fuel cell power plant: fuel processor, fuecell power section, power conditioner 6 hours Fuel cell types: alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cells 6 hours<	Standardization -	Battery Design – Battery Management System - Bat	terv Fa	ault E	Detect	tion.		
Module:3 Lead acid battery 8 hours Theory of operation – cell construction – battery construction – Discharge performance – Charge methods – Temperature effects and limitations – service life – storage characteristics – maintenance requirements – failure modes ————————————————————————————————————								
Theory of operation – cell construction – battery construction – Discharge performance – Charge methods – Temperature effects and limitations – service life – storage characteristics – maintenance requirements – failure modes Module:4 Lithium-Ion Batteries 6 hours General Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-lon Cells and Batteries - Li-lon Battery Performance - Charge Characteristics of Li-lon Batteries Safety Testing of Cylindrical C/LiCoO2 Batteries - Polymer Li-lon Batteries - Thin-Film, Solid State Li-lon Batteries is - Conclusions and Future Trends Module:5 Advanced Batteries for Electric Vehicles 6 hours General Characteristics Description of the Electrochemical Systems, Cell Design and Performance - Lithium/Iron Sulfide Batteries 6 hours Module:6 Fuel cells 6 hours Introduction and overview of fuel cells - technology: low and high temperature fuel Cells 6 hours Fuel 40 cell reaction kinetics: Introduction to electrode kinetics – performance characteristics of fuel cell, fuel cell stack, fuel cell power plant: fuel processor, fue cell power section, power conditioner 6 hours Module:7 Types of Fuel Cells 6 hours Fuel cell types: alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell 6 hours General Characteristic of solid oxide fuel cells: planar, tubular, Types of solid oxide fuel cells. High temperature, intermediate temperature, single chamber solid oxide fuel cells, Problems with fuel cells.								
characteristics – maintenance requirements – failure modes Module:4 Lithium-Ion Batteries 6 hours General Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-Ion Cells and Batteries - Li-Ion Battery Performance - Charge Characteristics of Li-Ion Batteries Safety Testing of Cylindrical C/LiCoO2 Batteries - Polymer Li-Ion Batteries - Thin-Film, Solid State Li-Ion Batteries - Conclusions and Future Trends Module:5 Advanced Batteries for Electric Vehicles 6 hours General Characteristics Description of the Electrochemical Systems, Cell Design and Performance - Lithium/Iron Sulfide Batteries 6 hours Batteries - Lithium/Iron Sulfide Batteries 6 hours Module:6 Fuel cells 6 hours Introduction and overview of fuel cells - technology: low and high temperature fuel Cells 6 hours Fuel 40 cell reaction kinetics: Introduction to electrode kinetics – performance characteristics 6 hours Fuel 40 cells efficiency of fuel cell, fuel cell stack, fuel cell power plant: fuel processor, fue 6 hours Fuel cells, efficiency of fuel cells, fuel cell stack, fuel cell power plant: fuel processor, fue 6 hours Generative cell types: alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cells 6 hours Generative cell cells 6 hours 6 hours Fuel cell types: a			arge r	berfor	mand	ce –		
Module:4Lithium-Ion Batteries6 hoursGeneral Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-Ion Cellsand Batteries - Li-Ion Battery Performance - Charge Characteristics of Li-Ion BatteriesSafety Testing of Cylindrical C/LiCoO2 Batteries - Polymer Li-Ion Batteries - Thin-Film, SolidState Li-Ion Batteries - Conclusions and Future TrendsModule:5Advanced Batteries for Electric VehiclesModule:5Advanced Batteries for Electric VehiclesGeneral Characteristics Description of the Electrochemical Systems, Cell Design and Performance Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Beta Batteries - Lithium/Iron Sulfide BatteriesModule:6Fuel cellsModule:7Fuel cellsIntroduction and overview of fuel cells - technology: low and high temperature fuel Cells Fuel cells, efficiency of fuel cell, fuel cell stack, fuel cell power plant: fuel processor, fue cell power section, power conditionerModule:7Types of Fuel CellsFuel cell types: alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cells Geometries of solid oxide fuel cells: planar, tubular, Types of solid oxide fuel cells: High temperature, intermediate temperature, Single chamber solid oxide fuel cells. Problems with fuel cells.	Charge method	s – Temperature effects and limitations – serv	ice lif	е –	stor	age		
General Characteristics - Chemistry - Construction of Cylindrical and Prismatic Li-Ion Cells and Batteries - Li-Ion Battery Performance - Charge Characteristics of Li-Ion Batteries Safety Testing of Cylindrical C/LiCoO2 Batteries - Polymer Li-Ion Batteries - Thin-Film, Solid State Li-Ion Batteries - Conclusions and Future Trends Module:5 Advanced Batteries for Electric Vehicles General Characteristics Description of the Electrochemical Systems, Cell Design and Performance Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Beta Batteries - Lithium/Iron Sulfide Batteries Module:6 Fuel cells Module:9 6 hours Introduction and overview of fuel cells - technology: low and high temperature fuel Cells Fuel 40 cell reaction kinetics: Introduction to electrode kinetics – performance characteristics of fuel cells, efficiency of fuel cell, fuel cell stack, fuel cell power plant: fuel processor, fue cell power section, power conditioner Module:7 Types of Fuel Cells Fuel cell types: alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cells Geometries of solid oxide fuel cells: planar, tubular, Types of solid oxide fuel cells: High temperature, intermediate temperature ,Single chamber solid oxide fuel cells, Problems with fuel cells.	characteristics -	maintenance requirements – failure modes				-		
and Batteries - Li-Ion Battery Performance - Charge Characteristics of Li-Ion Batteries Safety Testing of Cylindrical C/LiCoO2 Batteries - Polymer Li-Ion Batteries - Thin-Film, Solid State Li-Ion Batteries - Conclusions and Future Trends Module:5 Advanced Batteries for Electric Vehicles General Characteristics Description of the Electrochemical Systems, Cell Design and Performance Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Beta Batteries - Lithium/Iron Sulfide Batteries Module:6 Fuel cells Module:6 Fuel cells Module:7 Types of fuel cells - technology: low and high temperature fuel Cells Fuel cells, efficiency of fuel cell, fuel cell stack, fuel cell power plant: fuel processor, fue cell power section, power conditioner Module:7 Types of Fuel Cells Fuel cell types: alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell molten carbonate fuel cell, solid oxide fuel cell, Direct Methanol Operated fuel cells Geometries of solid oxide fuel cells: planar, tubular, Types of solid oxide fuel cells: High temperature, intermediate temperature, Single chamber solid oxide fuel cells, Problems with fuel cells.								
Safety Testing of Cylindrical C/LiCoO2 Batteries - Polymer Li-Ion Batteries - Thin-Film, Solid State Li-Ion Batteries - Conclusions and Future Trends Module:5 Advanced Batteries for Electric Vehicles 6 hours General Characteristics Description of the Electrochemical Systems, Cell Design and Performance Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Beta Batteries - Lithium/Iron Sulfide Batteries Module:6 Fuel cells Introduction and overview of fuel cells - technology: low and high temperature fuel Cells Fuel cells, efficiency of fuel cell, fuel cell stack, fuel cell power plant: fuel processor, fue cell power section, power conditioner Module:7 Types of Fuel Cells Fuel cell types: alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell molten carbonate fuel cell, solid oxide fuel cell, Direct Methanol Operated fuel cells Geometries of solid oxide fuel cells: planar, tubular, Types of solid oxide fuel cells: High temperature, intermediate temperature, Single chamber solid oxide fuel cells, Problems with fuel cells.	General Characte	eristics - Chemistry - Construction of Cylindrical and F	' rismat	ic Li-	-lon C	Cells		
State Li-Ion Batteries - Conclusions and Future Trends Module:5 Advanced Batteries for Electric Vehicles 6 hours General Characteristics Description of the Electrochemical Systems, Cell Design and Performance Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Beta Batteries - Lithium/Iron Sulfide Batteries 6 hours Module:6 Fuel cells 6 hours Introduction and overview of fuel cells - technology: low and high temperature fuel Cells Fuel A0 cell reaction kinetics: Introduction to electrode kinetics – performance characteristics of fuel cells, efficiency of fuel cell, fuel cell stack, fuel cell power plant: fuel processor, fue cell power section, power conditioner Module:7 Types of Fuel Cells 6 hours Fuel cell types: alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell cells 6 hours Geometries of solid oxide fuel cells: planar, tubular, Types of solid oxide fuel cells: High temperature, intermediate temperature, Single chamber solid oxide fuel cells, Problems with fuel cells. Fuel cells, Problems with fuel cells.	and Batteries - I	Li-Ion Battery Performance - Charge Characteristics	of Li-le	on B	atterie	es -		
Module:5Advanced Batteries for Electric Vehicles6 hoursGeneral Characteristics Description of the Electrochemical Systems, Cell Design and Performance Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Beta Batteries - Lithium/Iron Sulfide BatteriesModule:6Fuel cells6 hoursModule:6Fuel cells6 hoursIntroduction and overview of fuel cells - technology: low and high temperature fuel Cells Fuel 40 cell reaction kinetics: Introduction to electrode kinetics – performance characteristics of fuel cells, efficiency of fuel cell, fuel cell stack, fuel cell power plant: fuel processor, fue cell power section, power conditionerModule:7Types of Fuel Cells6 hoursFuel cell types: alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cells geometries of solid oxide fuel cells: planar, tubular, Types of solid oxide fuel cells: High temperature, intermediate temperature ,Single chamber solid oxide fuel cells, Problems with fuel cells.	Safety Testing of	Cylindrical C/LiCoO2 Batteries - Polymer Li-Ion Batterie	es - Th	in-Fi	lm, So	olid-		
General Characteristics Description of the Electrochemical Systems, Cell Design and Performance Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Beta Batteries - Lithium/Iron Sulfide Batteries Module:6 Fuel cells 6 hours Introduction and overview of fuel cells - technology: low and high temperature fuel Cells Fuel Cells Fuel 40 cell reaction kinetics: Introduction to electrode kinetics – performance characteristics of fuel cells, efficiency of fuel cell, fuel cell stack, fuel cell power plant: fuel processor, fue cell power section, power conditioner Module:7 Types of Fuel Cells 6 hours Fuel cell types: alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cells 6 hours Geometries of solid oxide fuel cells: planar, tubular, Types of solid oxide fuel cells: High temperature, intermediate temperature, Single chamber solid oxide fuel cells, Problems with fuel cells.								
Performance Characteristics of - Metal/Air Batteries - Zinc/Bromine Batteries - Sodium-Beta Batteries - Lithium/Iron Sulfide Batteries Module:6 Fuel cells 6 hours Introduction and overview of fuel cells - technology: low and high temperature fuel Cells 6 hours Fuel 40 cell reaction kinetics: Introduction to electrode kinetics – performance characteristics of fuel cells, efficiency of fuel cell, fuel cell stack, fuel cell power plant: fuel processor, fue cell power section, power conditioner 6 hours Module:7 Types of Fuel Cells Fuel cell types: alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cells Geometries of solid oxide fuel cells: planar, tubular, Types of solid oxide fuel cells: High temperature, intermediate temperature ,Single chamber solid oxide fuel cells, Problems with fuel cells.								
Batteries - Lithium/Iron Sulfide Batteries Module:6 Fuel cells 6 hours Introduction and overview of fuel cells - technology: low and high temperature fuel Cells Fuel 40 cell reaction kinetics: Introduction to electrode kinetics – performance characteristics of fuel cells, efficiency of fuel cell, fuel cell stack, fuel cell power plant: fuel processor, fuel cell power section, power conditioner 6 hours Module:7 Types of Fuel Cells 6 hours Fuel cell types: alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cells 6 hours Geometries of solid oxide fuel cells: planar, tubular, Types of solid oxide fuel cells: High temperature, intermediate temperature, Single chamber solid oxide fuel cells, Problems with fuel cells. 9 solid oxide fuel cells, Problems with fuel cells.					•			
Module:6Fuel cells6 hoursIntroduction and overview of fuel cells - technology: low and high temperature fuel CellsFuel 40 cell reaction kinetics: Introduction to electrode kinetics – performance characteristicsof fuel cells, efficiency of fuel cell, fuel cell stack, fuel cell power plant: fuel processor, fuecell power section, power conditionerModule:7Types of Fuel CellsFuel cell types: alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cellmolten carbonate fuel cell, solid oxide fuel cell, Direct Methanol Operated fuel cells:Geometries of solid oxide fuel cells: planar, tubular, Types of solid oxide fuel cells: Highfuel cells.			teries -	- Sod	lium-E	3eta		
Introduction and overview of fuel cells - technology: low and high temperature fuel Cells Fuel 40 cell reaction kinetics: Introduction to electrode kinetics – performance characteristics of fuel cells, efficiency of fuel cell, fuel cell stack, fuel cell power plant: fuel processor, fue cell power section, power conditioner Module:7 Types of Fuel Cells 6 hours Fuel cell types: alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cells Geometries of solid oxide fuel cells: planar, tubular, Types of solid oxide fuel cells: High temperature, intermediate temperature ,Single chamber solid oxide fuel cells, Problems with fuel cells.								
Fuel 40 cell reaction kinetics: Introduction to electrode kinetics – performance characteristical of fuel cells, efficiency of fuel cell, fuel cell stack, fuel cell power plant: fuel processor, fuel cell power section, power conditioner Module:7 Types of Fuel Cells 6 hours Fuel cell types: alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cells molten carbonate fuel cell, solid oxide fuel cell, Direct Methanol Operated fuel cells: Geometries of solid oxide fuel cells: planar, tubular, Types of solid oxide fuel cells: High temperature, intermediate temperature ,Single chamber solid oxide fuel cells, Problems with fuel cells.								
of fuel cells, efficiency of fuel cell, fuel cell stack, fuel cell power plant: fuel processor, fuel cell power section, power conditioner Module:7 Types of Fuel Cells 6 hours Fuel cell types: alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cells 6 hours molten carbonate fuel cell, solid oxide fuel cells: planar, tubular, Types of solid oxide fuel cells: High temperature, intermediate temperature ,Single chamber solid oxide fuel cells, Problems with fuel cells.								
Cell power section, power conditioner Module:7 Types of Fuel Cells 6 hours Fuel cell types: alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell molten carbonate fuel cell, solid oxide fuel cell, Direct Methanol Operated fuel cells Geometries of solid oxide fuel cells: planar, tubular, Types of solid oxide fuel cells: High temperature, intermediate temperature ,Single chamber solid oxide fuel cells, Problems with fuel cells.		•						
Module:7Types of Fuel Cells6 hoursFuel cell types: alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell molten carbonate fuel cell, solid oxide fuel cell, Direct Methanol Operated fuel cells Geometries of solid oxide fuel cells: planar, tubular, Types of solid oxide fuel cells: High temperature, intermediate temperature ,Single chamber solid oxide fuel cells, Problems with fuel cells.			fuel p	roce	ssor,	fuel		
Fuel cell types: alkaline fuel cell, polymer electrolyte fuel cell, phosphoric acid fuel cell molten carbonate fuel cell, solid oxide fuel cell, Direct Methanol Operated fuel cells Geometries of solid oxide fuel cells: planar, tubular, Types of solid oxide fuel cells: High temperature, intermediate temperature ,Single chamber solid oxide fuel cells, Problems with fuel cells.								
molten carbonate fuel cell, solid oxide fuel cell, Direct Methanol Operated fuel cells Geometries of solid oxide fuel cells: planar, tubular, Types of solid oxide fuel cells: High temperature, intermediate temperature ,Single chamber solid oxide fuel cells, Problems with fuel cells.			<u> </u>	<u> </u>				
Geometries of solid oxide fuel cells: planar, tubular, Types of solid oxide fuel cells: High temperature, intermediate temperature ,Single chamber solid oxide fuel cells, Problems with fuel cells.		· · ·						
temperature, intermediate temperature ,Single chamber solid oxide fuel cells, Problems with fuel cells.								
fuel cells.								
	•	rmediate temperature, Single chamber solid oxide fuel	cells,	Probl	iems	with		
Module:8 Contemporary issues 2 hours					<u> </u>			
	wodule:8 Con	itemporary issues			2 ho	ours		

		То	tal Lecture hours:		45 hours		
Tex	Text Book(s)						
1.	1. David Linden and Thomas B. Reddy — Hand Book of Batteries Third EditionII, McGraw-Hill, NY, 2010						
Ret	Reference Books						
1.	Robert A. Huggins Advanced Batteries - Material Science Aspects, Springer Publications, NY 2009						
	D.A.J. Rand, P.T. Moseley, J. Garche , C.D. Parker, Valve Regulated Lead Acid Batteries, Elsevier Publications, USA, 2004						
Mode of Evaluation: CAT, Written assignment, Quiz and FAT							
Ree	Recommended by Board of Studies 27-07-2022						
Арр	proved by Aca	demic Council	No. 67	Date	08-08-2022		

	Course Title		T	P	C
MAUE603L	Vehicle and Engine Testing	3	0	0	3
Pre-requisite	NIL	Syll	abus		ion
Course Objectiv			1.0	J	
	es stand and interpret EEC, ECE, FMVSS, AIS and		R rea	ulati	ne
	homologation of vehicles for both domestic and exp		•		
	nts, guidelines, various parameters, test instruments				
•	pmologation tests			aone	
	stand the requirements and guidelines of Static a	nd Dy	namic	test	inc
	s of the vehicle and vehicle components and perform the				
	tand and gain knowledge about various safety protoc				0
	es and testing regulations related to HEV, EV and retro				
	d the regulations and testing protocols of vehicle's lig	ghting	and s	ignal	ing
systems					
Course Outcome					
	e course, the student will be able to he vehicle and identify its regulation according to th	no tuno	nron	0000	
CMVR	The vehicle and identity its regulation according to the	ie type	; prop	osec	1 11
-	the Static and Dynamic tests according to IS and A	AIS re	nulatio	ns a	anc
	analysis report		gulutit		
	nd the safety protocols of vehicle's energy storage s	vstems	and	perfo	orm
	ests to meet CoP	,			
4. Understa	nd the safety systems of EV sub systems and perfo	orm va	rious	tests	to
meet CoF					
-	he vehicle for retrofitting (both HEV and EV), identif	y its r	egulat	ion a	anc
•	arious tests				
6. Penonn v	rarious tests on vehicle's lighting and signaling devices				
Module:1 CMV	R and Homologation			6 hc	ur
	Vehicles, Homologation and its types, Regulations o	verviev	v (FF		
	CMVR), Type approval Scheme, Homologation for e				
	us Parameters, Instruments and Types of test tracks	onport,	Com		<i>,</i> ,
Production, variou					
				<u> </u>	
Module:2 Stati	c Tests			6 ho	
Module:2 Stati Static Testing - T	c Tests Fyre Tread Depth Test, Vehicle Weightment (IS:1182	,		stalla	tio
Module:2 │ Stati Static Testing - ⊺ (IS:15796), Rear	c Tests Fyre Tread Depth Test, Vehicle Weightment (IS:1182 view mirror installation (AIS:002), Tell Tales (AIS:126)	, Exter	nal Pr	stalla oject	tio ior
Module:2 Stati Static Testing - ⊺ (IS:15796), Rear Wheel Guard, A	c Tests Tyre Tread Depth Test, Vehicle Weightment (IS:1182 view mirror installation (AIS:002), Tell Tales (AIS:126) wrangement of Foot Controls For M1 Vehicle, A	, Exter	nal Pr	stalla oject	tio ior
Module:2 │Stati Static Testing - ↑ (IS:15796), Rear Wheel Guard, <i>A</i>	c Tests Fyre Tread Depth Test, Vehicle Weightment (IS:1182 view mirror installation (AIS:002), Tell Tales (AIS:126)	, Exter	nal Pr	stalla oject	tio ior
Module:2 Stati Static Testing - (IS:15796), Rear Wheel Guard, A Measurement of V	c Tests Tyre Tread Depth Test, Vehicle Weightment (IS:1182 view mirror installation (AIS:002), Tell Tales (AIS:126) wrangement of Foot Controls For M1 Vehicle, A	, Exter	nal Pr	stalla oject	ior ion
Module:2 Stati Static Testing - (IS:15796), Rear Wheel Guard, A Measurement of M Module:3 Dyna	c Tests Fyre Tread Depth Test, Vehicle Weightment (IS:1182 view mirror installation (AIS:002), Tell Tales (AIS:126) Arrangement of Foot Controls For M1 Vehicle, A /ehicle – Drive away chassis	, Éxter ngle &	nal Pr & Din	stalla oject nensi 7 ho	ior ion
Module:2 Stati Static Testing - 1 (IS:15796), Rear Wheel Guard, A Measurement of M Module:3 Dyna	c Tests Tyre Tread Depth Test, Vehicle Weightment (IS:1182 view mirror installation (AIS:002), Tell Tales (AIS:126) Arrangement of Foot Controls For M1 Vehicle, A /ehicle – Drive away chassis	, Exter ngle &	nal Pr & Din 3028)	stalla oject nensi 7 hc , Inte	ior ior on our
Module:2 Stati Static Testing - (IS:15796), Rear Wheel Guard, A Measurement of M Module:3 Dyna Dynamics Testing Noise (AIS:020),	c Tests Tyre Tread Depth Test, Vehicle Weightment (IS:1182 view mirror installation (AIS:002), Tell Tales (AIS:126) arrangement of Foot Controls For M1 Vehicle, A /ehicle – Drive away chassis mic Tests g: Hood Latch, Gradeability (AIS:003), Pass-by Nois	, Éxter ngle & se (IS: e Diar	nal Pr & Din 3028) neter,	stalla oject nensi 7 hc , Inte Coc	ior ion our eric
Module:2 Stati Static Testing - (IS:15796), Rear Wheel Guard, A Measurement of Module:3 Dyna Dynamics Testing Noise (AIS:020), Performance, Sp	c Tests Tyre Tread Depth Test, Vehicle Weightment (IS:1182 view mirror installation (AIS:002), Tell Tales (AIS:126) Arrangement of Foot Controls For M1 Vehicle, A /ehicle – Drive away chassis mic Tests g: Hood Latch, Gradeability (AIS:003), Pass-by Nois Turning Circle Diameter & Turning Clearance Circle	, Éxter ngle & se (IS: e Diar Maxi	nal Pr & Din 3028) neter, mum	stalla oject nensi 7 hc , Inte Coc Spe	tio ior ion our eric elin
Module:2 Stati Static Testing - T (IS:15796), Rear Wheel Guard, A Measurement of M Module:3 Dyna Dynamics Testing Noise (AIS:020), Performance, Sp Acceleration Test	c Tests	, Éxter ngle & se (IS: e Diar Maxi ABS Te	nal Pr & Din 3028) neter, mum est (IS	stalla oject nensi 7 ho , Inte Coo Spe	tio ion ion eric eric 64
Module:2 Stati Static Testing - T (IS:15796), Rear Wheel Guard, A Measurement of M Module:3 Dyna Dynamics Testing Noise (AIS:020), Performance, Sp Acceleration Test Broad band / Na	c Tests	, Exter ngle & se (IS: e Diar Maxi ABS Te iesel),	nal Pr & Din 3028) neter, mum est (IS India	stalla oject nensi 7 ho , Inte Coc Spe :146 n dri	tio ior ion our eric olin eec 64 vin
Module:2 Stati Static Testing - 1 (IS:15796), Rear Wheel Guard, A Measurement of M Module:3 Dyna Dynamics Testing Noise (AIS:020), Performance, Sp Acceleration Test Broad band / Na cycle, Vehicle ma	c Tests Tyre Tread Depth Test, Vehicle Weightment (IS:1182 view mirror installation (AIS:002), Tell Tales (AIS:126) varangement of Foot Controls For M1 Vehicle, A /ehicle – Drive away chassis mic Tests g: Hood Latch, Gradeability (AIS:003), Pass-by Nois Turning Circle Diameter & Turning Clearance Circle peedo-meter Calibration (IS:11827), Range Test, x, Coast-down test (IS:14785), Brakes Performance A rrow band EMI Test. Engine power test (petrol & d	, Exter ngle & se (IS: e Diar Maxi ABS Te iesel),	nal Pr & Din 3028) neter, mum est (IS India	stalla oject nensi 7 ho , Inte Coc Spe :146 n dri	tio ion our our olin eeo 64 vin in

Safety Requirements of Traction Batteries (AIS : 048) - Electrical Tests - Short Circuit Test -Overcharge Test - Mechanical Tests- Vibration Test - Shock Test - Roll-Over Test (Battery Module) - Penetration Test (Cell Level or Battery module) - Battery Parameters - Capacity Test - Charge Retention Test - Conformity of Production (COP) - Rated Capacity - Battery Performance Testing (ISO:12405,18243,15118)

Module:5	Electric Vehicle and Retrofit Testing	7 hours
Requireme	nts of a vehicle with regard to its electrical safet	y (AIS: 38) - Safety requirements
with respec	t to the electric power train of motor vehicles c	of categories as defined in Rule 2
(u) of CM	/R - Safety requirements with respect to the	Rechargeable Electrical Energy
Storage Sy	stem (REESS), of motor vehicles categories as	defined in Rule 2 (u) of CMVR -
Measureme	ent of Electrical Energy Consumption (AIS:39) -	Measurement of Max Power and
30 min Pov	ver (AIS:041) - Method of Measuring the Range	e for Electric Vehicles (AIS:040) -
Electromag	netic Compatibility of the Motor Vehicle (AIS	S: 003 – part 3) - CMVR Type
approval fo	r Electric Vehicles (AIS:049)	

CMVR type approval for HEV (AIS:102 part-1, part-2), Type approval of Vehicles retrofitted with HEV (AIS:123 part-1&2), Test for EV kit for Conversion (AIS:123 part 3), Test for Electric Vehicle Conductive AC Charging System (AIS:138), and Test for Electric vehicle conductive DC charging system (AIS:138)

Module:6 Engine Testing	6 hours
Engine Testing and Performance: Automotive and stati	ionary diesel engine testing and
related standards. Engine power and efficiencies.	Range Test, Maximum Speed,
Acceleration Test, Coast-down test, Engine power test (pe	etrol & diesel), Indian driving cycle,
Vehicle mass emission, Evaporative emission (petrol vehic	les)

Module:7Lighting and Signaling Devices6 hoursVehicle Lighting Testing (AIS:009, AIS:010, AIS:037): Installation requirement for lighting –
front and rear, signaling and reflective devices Installation, Conspicuity and Reflective
Marking, Photometry Test: Performance requirement for lighting, signaling and reflective
devices - Head lamp, Front lamp, direction indicator lamp, signaling lamp and Warning
triangles

triai	ngles		
Мо	dule:8	Contemporary Issues	2 hours
		Total Lecture hours:	45 hours
Tex	t Book((s)	
4	A.J.Ma	rtyr, M.A.Plint, Engine Testing Theory and Pr	actice, SAE International, Third
1.	Edition	, 2007.	
Ref	erence	Books	
1.	ISO tes	st standards – 26262, 12405, 18243, 15118, 182	43
2.	Automo	otive Industry Standards test standards (AIS)– 0	03, 004, 008, 009, 010, 014, 020,
Ζ.	037, 03	38, 039, 040, 041, 048, 049	
3.	Indian	Standards (IS) – 14785, 14664, 3028, 15796, 14	495, 15627, 1884, 7079, 8654
4.	Safety	Regulations – Society of Indian Automotive Man	ufacturers
5.	ECE ar	nd EEC regulations / Standards	
Mod	de of Ev	aluation: CAT, Written assignment, Quiz and FA	Т
-			

Recommended by Board of Studies	27-07-2022		
Approved by Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title	1	Т	Ρ	С
MAUE604L	Vehicle Maintenance and Diagnostics	3	0	0	3
Pre-requisite	NIL	Svll	abus	-	ion
			1.0		
Course Objectiv	es:	.1			
	e the students with sufficient background to understand	the in	mporta	ance	of
	aintenance, its types and their diagnostics techniques.		•		
	students with the knowledge of engine and sub-system	mainte	enance	э.	
	he students to have in-depth knowledge about on-	board	diagr	nosti	cs,
chassis sy	stem diagnostics and electrical system diagnostics.				
Course Outcome					
	he knowledge of overall vehicle maintenance and its	s types	s, on	and	off-
	nostics and engine and its sub-system maintenance.				
	ate the application of oscilloscope and on-boa	rd di	agnos	tics	for
automobile					liles
	n in-depth knowledge about the diagnostics of engir arging and starting systems, lubrication systems air				
systems.	arging and starting systems, inducation systems an	suppiy	anu	EVII	ausi
	knowledge of chassis system maintenance and	variou	s dia	anos	stics
	s applied to brakes, steering and suspension systems.	Variou	o ulu	gnot	,
	nd analyze the maintenance and diagnostics of electric	cal sv	stem i	nclu	dina
	uise control diagnostics, airbags diagnostics, advanc				
	e diagnostics.			0	
Module:1 Intro	duction			7 ho	ours
	nance, types of maintenance: preventive and breakc				
	naintenance, preparation of check lists. Inspection sche				
	eets and other forms, safety precautions in maintenan				
	agnostic Techniques - diagnostic process - diagn				
	ostic techniques - electrical diagnostic techniques - fa	iuit co	des -	on a	ind
Module:2 Engi	tics - Data sources			7 ho	
	ngine components: cylinder head, valve train, cylinder	r blool			
•	crankshaft assembly; cleaning and inspection of er				•
reconditioning of	· · ·	igine	comp	oner	113,
	ne subsystem maintenance			7 ho	ours
		/stem:			
•	at. Lubrication system maintenance, Anticorrosion				
additives					
	loscope diagnostics and On-board			7 ho	ours
U	nostics				
	- Oscilloscopes - Scanners - Fault code readers - I				
	ors - Ignition System - Other components - A first pe	rspect	ive -	Petro	ol /
	d diagnostics monitors - a second perspective				
Module:5 Engi		<u></u>		5 ho	
-	gine operation - Fuel system - Ignition - Emission - Fu	-			
	management - Fault finding information - air supply ar	id exh	aust s	yste	ms
	tion - batteries - starting system - charging system.			5 6 -	
	sis System – maintenance and nostics			5 ho	urs
	intenance of clutch, gear box, universal joints, propell	or cho	ft diff	oron	tial
	and maintenance of brake – disc and drum brakes, s				
•	ms, wheel alignment, vehicle body maintenance - Diag		•		
supprision syste	no, moor alignmont, veniore body maintenance - Diag	,	, <u>,,,,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

		prakes diagnostics - tract n diagnostics	ion control	diagnosti	ics - steering diagnos	tics -
Мо	dule:7	Electrical System			5	hours
Ele	ctronic	components and circuits dia	ignosis - mult	iplexing -	- lighting - diagnosing aι	ıxiliary
sys	stem fau	llts - in car entertainment s	ecurity and c	ommunic	ation - body electrical s	ystem
fau	lts - d	agnosing instruments sys	tem faults -	HVAC	diagnostics - Cruise d	control
dia	gnostics	- Air bags and belt tensions	s diagnostics		-	
Мо	dule:8	Contemporary Issues			2	hours
		Tot	tal Lecture ho	ours:	45	hours
Tex	kt Book	(s)				
1.	Autom	otive Technician Training, T	om Denton, T	aylor and	d Francis, New York,	
	2015					
Ret	ference	Books				
1.	Autom	obile Electrical and Electr	onic System	s : Auto	omotive Technology - `	Vehicle
		nance and Repair, Tom Der				
2.		ced Automotive Fault Diagne				Vehicle
		nance and Repair, Tom Der				
Мо	de of Ev	/aluation: CAT, Written assiູ	jnment, Quiz	and FAT		
		nded by Board of Studies	27-07-2022			
Re	commer	ided by Doard Of Studies				
1		ded by Board of Studies	27-07-2022			

Course Code	Course Title	L	Т	Ρ	С
MAUE605L	Vehicle Aerodynamics	3	0	0	3
Pre-requisite	NIL	Syl	labus	vers	ion
			1.	0	
Course Objectiv					
 To provid of road version 	e the students with sufficient background to understan	d the	e aero	dynan	nics
	e the students to understand the dynamics of the vel	nicles	s influ	enced	ł hv
aerodyna	•	noice	5 11110	CHOCO	. Dy
	he students to understand aerodynamics of vehicles	to h	elp ir	stab	ilitv.
	d comfort.		•		,
4. To teach	students how to measure and test vehicles using different	nt teo	chniqu	les.	
Course Outcom					
	knowledge of basic principles of road vehicle		dynar	nics	and
	nce analysis of cars, light trucks and commercial vehicle				
	the aerodynamics drag, various resistances and to a	arrive	e at le	esser	fuel
	ion of vehicles.				
	the knowledge of basic of flow over vehicles and re id analyzing for stability safety and comfort.	SIST	ince i	o ver	licie
	the performance of high speed race cars, o	omn	nercia	l veh	nicle
	mics and to demonstrate the various measurement and				
	utomobiles.		g		14.00
5. Design, s	imulate and analyse the flow over cars using compute	ation	fluid	dynan	nics
	and to calculate the lift and drag forces through various				
Module:1 Intro	duction to Road Vehicle Aerodynamics			5 ho	ours
Basic principles of	of road vehicle aerodynamics; evolution of road vehicles			shap	es;
Basic principles of streamlining era	of road vehicle aerodynamics; evolution of road vehicles; ; parametric studies; one-volume bodies; bathtub b	odies	s; cor	shap nmero	es; cial
Basic principles of streamlining era vehicles; motorcy	of road vehicle aerodynamics; evolution of road vehicles; ; parametric studies; one-volume bodies; bathtub b /cles; shape and detail optimization; futuristic trends; pe	odies	s; cor	shap nmero	es; cial
Basic principles of streamlining era vehicles; motorcy of cars and light	of road vehicle aerodynamics; evolution of road vehicles; ; parametric studies; one-volume bodies; bathtub b /cles; shape and detail optimization; futuristic trends; pe Trucks.	odies	s; cor	shapo nmero analy	es; cial rsis
Basic principles of streamlining era vehicles; motorcy of cars and light Module:2 In M	of road vehicle aerodynamics; evolution of road vehicles; ; parametric studies; one-volume bodies; bathtub b /cles; shape and detail optimization; futuristic trends; pe Trucks. otion Dynamics	odie: rforn	s; cor nance	shapo nmero analy 7 ho	es; cial ⁄sis ours
Basic principles of streamlining era vehicles; motorcy of cars and light Module:2 In M Vehicle equation	of road vehicle aerodynamics; evolution of road vehicles; ; parametric studies; one-volume bodies; bathtub b /cles; shape and detail optimization; futuristic trends; pe Trucks. otion Dynamics of motion; aerodynamic drag; tire rolling resistance; c	odie: rforn	s; cor nance ng re:	shapo nmero analy 7 ho sistano	es; cial rsis ours ce;
Basic principles of streamlining era vehicles; motorcy of cars and light Module:2 In M Vehicle equation effective mass;	of road vehicle aerodynamics; evolution of road vehicles; ; parametric studies; one-volume bodies; bathtub b /cles; shape and detail optimization; futuristic trends; pe Trucks. otion Dynamics of motion; aerodynamic drag; tire rolling resistance; c traction diagram; acceleration capability and vehic	odie: rforn limbi	s; cor nance ng re elastic	shapo nmero analy 7 ho sistano ity; f	es; cial sis ours ce; uel
Basic principles of streamlining era vehicles; motorcy of cars and light Module:2 In M Vehicle equation effective mass; consumption and	of road vehicle aerodynamics; evolution of road vehicles; ; parametric studies; one-volume bodies; bathtub b vcles; shape and detail optimization; futuristic trends; pe Trucks. otion Dynamics of motion; aerodynamic drag; tire rolling resistance; c traction diagram; acceleration capability and vehic economy; gear-ratio re-matching; EPA driving cycles	odie: rforn limbi	s; cor nance ng re elastic	shapo nmero analy 7 ho sistano ity; f	es; cial rsis ours ce; uel
Basic principles of streamlining era vehicles; motorcy of cars and light Module:2 In M Vehicle equation effective mass; consumption and combined; low fu	of road vehicle aerodynamics; evolution of road vehicles; ; parametric studies; one-volume bodies; bathtub b vcles; shape and detail optimization; futuristic trends; pe <u>Trucks.</u> <u>otion Dynamics</u> of motion; aerodynamic drag; tire rolling resistance; c traction diagram; acceleration capability and vehic d economy; gear-ratio re-matching; EPA driving cycles el consumption strategies.	odie: rforn limbi	s; cor nance ng re elastic	shapo nmerc analy 7 ho sistano sistano sity; fi nighwa	es; cial 'sis ours ce; uel ay,
Basic principles of streamlining era vehicles; motorcy of cars and light Module:2 In M Vehicle equation effective mass; consumption and combined; low fu Module:3 Dire	of road vehicle aerodynamics; evolution of road vehicles; ; parametric studies; one-volume bodies; bathtub b /cles; shape and detail optimization; futuristic trends; pe Trucks. otion Dynamics of motion; aerodynamic drag; tire rolling resistance; c traction diagram; acceleration capability and vehic d economy; gear-ratio re-matching; EPA driving cycles el consumption strategies. ctional Stability, Safety and Comfort	odie: rform limbi cle – ur	s; cor nance ng re: elastic ban, l	shap nmerc analy 7 ho sistan ity; fi nighwa 7 ho	es; cial rsis ours ce; uel ay, ours
Basic principles of streamlining era vehicles; motorcy of cars and light Module:2 In M Vehicle equation effective mass; consumption and combined; low fu Module:3 Dire Flow field around	of road vehicle aerodynamics; evolution of road vehicles; ; parametric studies; one-volume bodies; bathtub b vcles; shape and detail optimization; futuristic trends; pe Trucks. of motion; aerodynamic drag; tire rolling resistance; c traction diagram; acceleration capability and vehic economy; gear-ratio re-matching; EPA driving cycles el consumption strategies. ctional Stability, Safety and Comfort d a vehicle; interior and exterior flows; attached, separa	odie: rforn limbi cle u – ur	s; cor nance ng re: elastic ban, l and o	shap mmerc analy 7 ho sistan sistan ity; fi nighwa 7 ho scillati	es; cial rsis ours ce; uel ay, ours ing
Basic principles of streamlining era vehicles; motorcy of cars and light Module:2 In M Vehicle equation effective mass; consumption and combined; low fu Module:3 Direct Flow field around flows; aerodynam	of road vehicle aerodynamics; evolution of road vehicles; ; parametric studies; one-volume bodies; bathtub b /cles; shape and detail optimization; futuristic trends; pe Trucks. otion Dynamics of motion; aerodynamic drag; tire rolling resistance; c traction diagram; acceleration capability and vehic d economy; gear-ratio re-matching; EPA driving cycles el consumption strategies. ctional Stability, Safety and Comfort	odies rform limbi cle ur – ur ated iors;	s; cor nance ng re- elastic ban, l and o stabili	shap mmerc analy 7 ho sistan sistan ity; fr nighwa 7 ho scillati ty inde	es; cial sis ours ce; uel ay, ours ing ex;
Basic principles of streamlining era vehicles; motorcy of cars and light Module:2 In M Vehicle equation effective mass; consumption and combined; low fu Module:3 Direct Flow field around flows; aerodynan passing maneuv visibility impairm	of road vehicle aerodynamics; evolution of road vehicles; ; parametric studies; one-volume bodies; bathtub b vcles; shape and detail optimization; futuristic trends; pe Trucks. of motion; aerodynamic drag; tire rolling resistance; c traction diagram; acceleration capability and vehic d economy; gear-ratio re-matching; EPA driving cycles el consumption strategies. ctional Stability, Safety and Comfort d a vehicle; interior and exterior flows; attached, separa nic forces and moments; cornering and side wind behav ers; spoiler design; safety and aesthetics; water and ent; ventilation, air flow and odor removal. Engine ar	odies rform limbi cle ur – ur ated iors; dirt	s; cor nance ng re- elastic ban, l and o stabili accur	shap nmerc analy 7 ho sistan ity; fi nighwa 7 ho scillati ty indo nulatio	es; cial sis ours ce; uel ay, ours ing ex; on;
Basic principles of streamlining era vehicles; motorcy of cars and light Module:2 In M Vehicle equation effective mass; consumption and combined; low fu Module:3 Dire Flow field around flows; aerodynam passing maneuv visibility impairm radiators; HVAC	of road vehicle aerodynamics; evolution of road vehicles; ; parametric studies; one-volume bodies; bathtub b vcles; shape and detail optimization; futuristic trends; pe Trucks. Dion Dynamics of motion; aerodynamic drag; tire rolling resistance; c traction diagram; acceleration capability and vehic d economy; gear-ratio re-matching; EPA driving cycles el consumption strategies. Ctional Stability, Safety and Comfort d a vehicle; interior and exterior flows; attached, separa hic forces and moments; cornering and side wind behav ers; spoiler design; safety and aesthetics; water and ent; ventilation, air flow and odor removal. Engine ar systems.	odies rform limbi cle ur – ur ated iors; dirt	s; cor nance ng re- elastic ban, l and o stabili accur	shap nmerc analy 7 ho sistan ity; fi nighwa 7 ho scillati ty indo nulatic coolir	es; cial sis purs ce; uel ay, purs ing ex; on; ng;
Basic principles of streamlining era vehicles; motorcy of cars and light Module:2 In M Vehicle equation effective mass; consumption and combined; low fu Module:3 Direct Flow field around flows; aerodynam passing maneuv visibility impairm radiators; HVAC Module:4 Race	of road vehicle aerodynamics; evolution of road vehicles; ; parametric studies; one-volume bodies; bathtub b vcles; shape and detail optimization; futuristic trends; pe Trucks. of Dynamics of motion; aerodynamic drag; tire rolling resistance; c traction diagram; acceleration capability and vehic d economy; gear-ratio re-matching; EPA driving cycles el consumption strategies. ctional Stability, Safety and Comfort d a vehicle; interior and exterior flows; attached, separa nic forces and moments; cornering and side wind behav ers; spoiler design; safety and aesthetics; water and ent; ventilation, air flow and odor removal. Engine ar systems. a Car, High Performance and Commercial Vehicles	odies rform limbi cle u – ur ated iors; dirt nd in	s; cor nance ng re- elastic ban, l ban, l and o stabili accur terior	shap mmerc analy 7 ho sistan ity; fr nighwa 7 ho scillati ty inde coolir coolir 6 ho	es; cial sis ours ce; uel ay, ours ex; on; ex; on; on;
Basic principles of streamlining era vehicles; motorcy of cars and light Module:2 In M Vehicle equation effective mass; consumption and combined; low fu Module:3 Direct Flow field around flows; aerodynan passing maneuv visibility impairm radiators; HVAC Module:4 Race Race cars: From	of road vehicle aerodynamics; evolution of road vehicles; ; parametric studies; one-volume bodies; bathtub b vcles; shape and detail optimization; futuristic trends; pe Trucks. of Dynamics of motion; aerodynamic drag; tire rolling resistance; c traction diagram; acceleration capability and vehic d economy; gear-ratio re-matching; EPA driving cycles el consumption strategies. ctional Stability, Safety and Comfort d a vehicle; interior and exterior flows; attached, separa nic forces and moments; cornering and side wind behav ers; spoiler design; safety and aesthetics; water and ent; ventilation, air flow and odor removal. Engine ar systems. a Car, High Performance and Commercial Vehicles t wings, Rear wings, Weight distribution, Over steer	odies rform limbi cle ur ated iors; dirt nd in and	s; cor nance ng re- elastic ban, l and o stabili accur terior	shap mmerci analy 7 ho sistan- ity; fi nighwa 7 ho scillati ty indo scillati ty indo nulatic coolir 6 ho er ste	es; cial sis ce; uel ay, ours ex; on; ng; ours eer,
Basic principles of streamlining era vehicles; motorcy of cars and light Module:2 In M Vehicle equation effective mass; consumption and combined; low fu Module:3 Dire Flow field around flows; aerodynan passing maneuv visibility impairm radiators; HVAC Module:4 Race Race cars: From Center of gravi	of road vehicle aerodynamics; evolution of road vehicles; ; parametric studies; one-volume bodies; bathtub b vcles; shape and detail optimization; futuristic trends; pe Trucks. of motion; aerodynamic drag; tire rolling resistance; c traction diagram; acceleration capability and vehic economy; gear-ratio re-matching; EPA driving cycles el consumption strategies. ctional Stability, Safety and Comfort d a vehicle; interior and exterior flows; attached, separa nic forces and moments; cornering and side wind behav ers; spoiler design; safety and aesthetics; water and ent; ventilation, air flow and odor removal. Engine ar systems. 2 Car, High Performance and Commercial Vehicles t wings, Rear wings, Weight distribution, Over steer ty effects, Slip streaming. Commercial vehicle aer	ated iors; dirt nd in and rodyr	s; cor nance ng re- elastic ban, l and o stabili accur terior	shap mmerc analy 7 ho sistan- sistan- sity; fi nighwa 7 ho scillati ty inde coolir coolir coolir 6 ho er ste s: Tru	es; cial sis ce; uel ay, ong; ex; on; ng; er, uck
Basic principles of streamlining era vehicles; motorcy of cars and light Module:2 In M Vehicle equation effective mass; consumption and combined; low fu Module:3 Direct Flow field around flows; aerodynam passing maneuv visibility impairm radiators; HVAC Module:4 Race Race cars: From Center of gravi	of road vehicle aerodynamics; evolution of road vehicles; ; parametric studies; one-volume bodies; bathtub b vcles; shape and detail optimization; futuristic trends; pe Trucks. Dion Dynamics of motion; aerodynamic drag; tire rolling resistance; c traction diagram; acceleration capability and vehic d economy; gear-ratio re-matching; EPA driving cycles el consumption strategies. Ctional Stability, Safety and Comfort d a vehicle; interior and exterior flows; attached, separa- nic forces and moments; cornering and side wind behav ers; spoiler design; safety and aesthetics; water and ent; ventilation, air flow and odor removal. Engine ar systems. 2 Car, High Performance and Commercial Vehicles t wings, Rear wings, Weight distribution, Over steer ty effects, Slip streaming. Commercial vehicle aer mprovements in design, Different styles of trailers. Effect	ated iors; dirt nd in and rodyr	s; cor nance ng re- elastic ban, l and o stabili accur terior	shap mmerc analy 7 ho sistan- sistan- sity; fi nighwa 7 ho scillati ty inde coolir coolir coolir 6 ho er ste s: Tru	es; cial sis ce; uel ay, ong; ex; on; ng; er, uck
Basic principles of streamlining era vehicles; motorcy of cars and light Module:2 In M Vehicle equation effective mass; consumption and combined; low fu Module:3 Direct Flow field around flows; aerodynam passing maneuw visibility impairm radiators; HVAC Module:4 Race Race cars: From Center of gravit Aerodynamics, In truck and trailer,	of road vehicle aerodynamics; evolution of road vehicles; ; parametric studies; one-volume bodies; bathtub b vcles; shape and detail optimization; futuristic trends; pe Trucks. Dion Dynamics of motion; aerodynamic drag; tire rolling resistance; c traction diagram; acceleration capability and vehic d economy; gear-ratio re-matching; EPA driving cycles el consumption strategies. Ctional Stability, Safety and Comfort d a vehicle; interior and exterior flows; attached, separa nic forces and moments; cornering and side wind behav ers; spoiler design; safety and aesthetics; water and ent; ventilation, air flow and odor removal. Engine ar systems. Car, High Performance and Commercial Vehicles It wings, Rear wings, Weight distribution, Over steer ty effects, Slip streaming. Commercial vehicle aer mprovements in design, Different styles of trailers. Effe fairings.	ated iors; dirt nd in and rodyr	s; cor nance ng re- elastic ban, l and o stabili accur terior	shap mmerc analy 7 ho sistan ity; fr nighwa 7 ho scillati ty indo coolir coolir 6 ho er ste s: Tru betwe	es; cial sis ours ce; uel ay, ours ing ex; on; er, ing; er, icck
Basic principles of streamlining eral vehicles; motorcy of cars and light Module:2 In M Module:2 In M Vehicle equation effective mass; consumption and combined; low fue Module:3 Module:3 Dired Flow field around flows; aerodynamics, liver diators; HVAC Module:4 Race cars: From Center of gravia Aerodynamics, litruck and trailer, Module:5 Measure	of road vehicle aerodynamics; evolution of road vehicles; parametric studies; one-volume bodies; bathtub b vcles; shape and detail optimization; futuristic trends; pe Trucks. otion Dynamics of motion; aerodynamic drag; tire rolling resistance; c traction diagram; acceleration capability and vehic d economy; gear-ratio re-matching; EPA driving cycles el consumption strategies. ctional Stability, Safety and Comfort d a vehicle; interior and exterior flows; attached, separa nic forces and moments; cornering and side wind behavior ers; spoiler design; safety and aesthetics; water and ent; ventilation, air flow and odor removal. Engine ar systems. a Car, High Performance and Commercial Vehicles t wings, Rear wings, Weight distribution, Over steer ty effects, Slip streaming. Commercial vehicle aer mprovements in design, Different styles of trailers. Effe fairings. surement and Testing Techniques	ated iors; dirt nd in and rodyr ect of	s; cor nance ng re- elastic ban, l and o stabili accur terior Undanics f gap	shap mmerci analy 7 ho sistan- ity; fi nighwa 7 ho scillati ty indo coolin 6 ho er ste s: Tru betwe 6 ho	es; cial sis ce; uel ay, ours ex; on; ng; er, uck een ours
Basic principles of streamlining era vehicles; motorcy of cars and light Module:2 In M Vehicle equation effective mass; consumption and combined; low fu Module:3 Dire Flow field around flows; aerodynam passing maneuv visibility impairm radiators; HVAC Module:4 Race Race cars: From Center of gravi Aerodynamics, In truck and trailer, Module:5 Meas	of road vehicle aerodynamics; evolution of road vehicles; parametric studies; one-volume bodies; bathtub b vcles; shape and detail optimization; futuristic trends; pe Trucks. otion Dynamics of motion; aerodynamic drag; tire rolling resistance; c traction diagram; acceleration capability and vehic d economy; gear-ratio re-matching; EPA driving cycles el consumption strategies. ctional Stability, Safety and Comfort d a vehicle; interior and exterior flows; attached, separa nic forces and moments; cornering and side wind behav ers; spoiler design; safety and aesthetics; water and ent; ventilation, air flow and odor removal. Engine ar systems. 2 Car, High Performance and Commercial Vehicles t wings, Rear wings, Weight distribution, Over steer ty effects, Slip streaming. Commercial vehicle aer mprovements in design, Different styles of trailers. Effe fairings. 3 urement and Testing Techniques d on-road testing techniques; classification and design	ated iors; dirt nd in and rodyr ect of	s; cor nance ng re- elastic ban, l and o stabili accur terior Und- namics f gap wind	shap mmercianaly 7 ho sistan- sistan- sistan- sistan- sistan- sistan- sistan- ty inde coolin 7 ho scillati ty inde coolin 6 ho s: Tru betwe 6 ho tunne	es; cial sis ce; uel ay, ours ing ex; on; ng; ours eer, uck een ours els;
Basic principles of streamlining era vehicles; motorcy of cars and light Module:2 In M Vehicle equation effective mass; consumption and combined; low fu Module:3 Direct Flow field around flows; aerodynam passing maneuv visibility impairm radiators; HVAC Module:4 Race Race cars: From Center of gravi Aerodynamics, In truck and trailer, Module:5 Meas Wind tunnel and instrumentation a	of road vehicle aerodynamics; evolution of road vehicles; parametric studies; one-volume bodies; bathtub b vcles; shape and detail optimization; futuristic trends; pe Trucks. otion Dynamics of motion; aerodynamic drag; tire rolling resistance; c traction diagram; acceleration capability and vehic d economy; gear-ratio re-matching; EPA driving cycles el consumption strategies. ctional Stability, Safety and Comfort d a vehicle; interior and exterior flows; attached, separa nic forces and moments; cornering and side wind behav ers; spoiler design; safety and aesthetics; water and ent; ventilation, air flow and odor removal. Engine ar systems. 2 Car, High Performance and Commercial Vehicles t wings, Rear wings, Weight distribution, Over steer ty effects, Slip streaming. Commercial vehicle aer mprovements in design, Different styles of trailers. Effe fairings. 3 urement and Testing Techniques d on-road testing techniques; classification and design and data acquisition; wind tunnel components and corre	odies rform limbi cle u – ur ated iors; dirt nd in and rodyr ect of n of ction	s; cor nance ng re- elastic ban, l and o stabili accur terior Undo accur terior gap wind s; roa	shap mmercianaly 7 ho sistand ity; fi nighwa 7 ho scillati ty indo coolin 6 ho er ste s: Tru betwe 6 ho tunne d testi	es; cial sis ours ce; uel ay, ours ing ex; ours er, uck eer, uck een ours els; ing
Basic principles of streamlining eral vehicles; motorcy of cars and light Module:2 In M Module:2 In M Vehicle equation effective mass; consumption and combined; low fue Module:3 Module:3 Dired Flow field around flows; aerodynamer radiators; HVAC Module:4 Race cars: From Center of gravit Aerodynamics, Intruck and trailer, Module:5 Meas Wind tunnel and instrumentation a methods; cross-v Module:4	of road vehicle aerodynamics; evolution of road vehicles; parametric studies; one-volume bodies; bathtub b vcles; shape and detail optimization; futuristic trends; pe <u>Trucks.</u> of motion; aerodynamic drag; tire rolling resistance; c traction diagram; acceleration capability and vehic economy; gear-ratio re-matching; EPA driving cycles el consumption strategies. ctional Stability, Safety and Comfort d a vehicle; interior and exterior flows; attached, separa hic forces and moments; cornering and side wind behav ers; spoiler design; safety and aesthetics; water and ent; ventilation, air flow and odor removal. Engine ar systems. c Car, High Performance and Commercial Vehicles t wings, Rear wings, Weight distribution, Over steer ty effects, Slip streaming. Commercial vehicle aer mprovements in design, Different styles of trailers. Effe fairings. surement and Testing Techniques d on-road testing techniques; classification and design and data acquisition; wind tunnel components and correvind and engine cooling tests; soiling, water and dirt acc	odies rform limbi cle u – ur ated iors; dirt nd in and rodyr ect of n of ction	s; cor nance ng re- elastic ban, l and o stabili accur terior Undo accur terior gap wind s; roa	shap mmercianaly 7 ho sistand ity; fi nighwa 7 ho scillati ty indo coolin 6 ho er ste s: Tru betwe 6 ho tunne d testi	es; cial sis ours ce; uel ay, ours ing ex; ours er, uck eer, uck een ours els; ing
Basic principles of streamlining era vehicles; motorcy of cars and light Module:2 In M Vehicle equation effective mass; consumption and combined; low fu Module:3 Direct Flow field around flows; aerodynam passing maneuv visibility impairm radiators; HVAC Module:4 Race Race cars: From Center of gravi Aerodynamics, In truck and trailer, Module:5 Meas Wind tunnel and instrumentation a methods; cross-v measurements of	of road vehicle aerodynamics; evolution of road vehicles; parametric studies; one-volume bodies; bathtub b vcles; shape and detail optimization; futuristic trends; pe Trucks. otion Dynamics of motion; aerodynamic drag; tire rolling resistance; c traction diagram; acceleration capability and vehic d economy; gear-ratio re-matching; EPA driving cycles el consumption strategies. ctional Stability, Safety and Comfort d a vehicle; interior and exterior flows; attached, separa nic forces and moments; cornering and side wind behav ers; spoiler design; safety and aesthetics; water and ent; ventilation, air flow and odor removal. Engine ar systems. 2 Car, High Performance and Commercial Vehicles t wings, Rear wings, Weight distribution, Over steer ty effects, Slip streaming. Commercial vehicle aer mprovements in design, Different styles of trailers. Effe fairings. 3 urement and Testing Techniques d on-road testing techniques; classification and design and data acquisition; wind tunnel components and corre	odies rform limbi cle u – ur ated iors; dirt nd in and rodyr ect of n of ction	s; cor nance ng re- elastic ban, l and o stabili accur terior Undo accur terior gap wind s; roa	shap mmercianaly 7 ho sistand ity; fi nighwa 7 ho scillati ty indo coolin 6 ho er ste s: Tru betwe 6 ho tunne d testi	es; cial sis ours ce; uel ay, ours ex; on; ours eer, uck een ours eer, uck een ours eer, uck

Continuity, Navier-s basic steps in CFD					
smoothing and se	nsitivity checks; t	urbulence m	odels; E	ddy viscosity a	
viscosity models; RA Module:7 Vehicle		•		ethous.	5 hours
Biomass - process			inal colic	l wasta wood	
Availability, proper					
performance and		15105, 51018	ye, nanc	and dispe	ensing, salely
aspects. Challenges					0 h a
Module:8 Conte	mporary issues				2 hours
			Total L	ecture hours:	45 hours
Text Book(s)					
1. Theory and Ap	plications of Aeroo	dynamics for	Ground	Vehicles, (2014	4) T.
Yomi Obidi. Put	lished by SAE with	ISBN 978-0-	7680-21	11-0.	
Reference Books	-				
	r aerodynamics,(ng with ISBN 978-1	,	edition- S	imon McBeath	. Published by
	of Road Vehicles, W		Rutterwort	h and Co 1998	
					•
Mode of Evaluation:	CAT, Written assig	nment, Quiz	and FAT		
		nment, Quiz 25-07-2022			
Mode of Evaluation: Recommended by E Approved by Acade	Board of Studies	-		08-08-2022	

Course Code	Course Title	L	Т	Р	С
MAUE606L	Vehicle Crashworthiness	3	0	0	3
Pre-requisite	NIL	-	llabus		
Tre-requisite		Oy	<u>1.</u>		
Course Objective	25.			0	
	e basic knowledge about Vehicle Crashworthiness	and ATE	S.		
	the students to identify the various testing r			Veh	icle
Crashwort		-			
	he students to know about vehicle collision models.		–		
	en the knowledge about the pedestrian safety a	and veh	icle Er	gono	mic
aspects. 5 To study v	arious of vehicle safety systems and Injury mechan	isms			
0. 10 01003 1					
Course Outcome):				
On completion of	this course, the student will be able to				
=	nd analyze the various testing procedures of Vehi	cle Cras	hworth	iness	for
different					
0	ion of collision.				
	various vehicle crashworthiness models d the requirement for vehicle safety system for th	o modo	n roqu	iromo	onto
	e ergonomics aspects		niequ	lieme	51115
	is injury Mechanisms for evaluating crash severity.				
	ppropriate dummies for different crash tests				
Module:1 Safet	y and Crashworthiness			4 ho	urs
Structures - Constructures - Constructures,	fety - The Automobile Structure Materials and Ch rashworthiness Goals - Crashworthiness Re Crashworthiness Tests, Crashworthiness M chicle structures for crashworthiness – Active and pa	quireme ⁄lodels	nts, A Requi	Achiev	ving
	h Testing Types and Configurations		,	6 ho	urs
Types of crash, (frontal rigid barrie	Crash testing standards-FMVSS, EURO NCAP, T r test, Offset frontal barrier test, Side impact crash rements for crash testing –star ratings- Instru	test, r	oll over	⁻ - Te	sts,
Module:3 Vehic	cle Collision Models			9 ho	urs
Central Collision- Non central Collis relative motion-C	- Perfect plastic impact- Perfect elastic impact- C central head on collision, oblique collision, collision sion-non-central head on offset collision, Kelvin's hange in vehicle speeds-Total crush energy, V everity assessment. Problems involving vehicle col	agains theorem ehicle i	fixed , Appli	obsta catior	icle, n of
	strian Safety and Ergonomics			6 ho	urs
Human impact to	rgonomics in Automotive safety- Locations of co olerance- Determination of Injury thresholds, Se ance. Study of crash dummies				
Module:5 Vehic	cle Safety Systems			6 ho	urs
Head restraints, steering controls Damageability cri rearward field of	quirements, Restraint systems used in automobiles Air bags - Use of energy absorbing systems - - Design of seats for safety- types of seats-Im teria in bumper designs - Types of safety glass vision in automobiles - Types of rear view mirrors - Hinges and latches, etc - External Projections,	Impact portance and the and the	protect ε of Βι r requi ir asse	ion fi impei reme ssme	rom rs - nts, ent -

sys	tems Re	ear/front/side under run prote	ection devices		
Мо	dule:6	Injury Mechanisms			6 hours
Me Abo Me join	chanism dominal chanics it injurie	ns - Compression Injuries - Injury Mechanisms-Thorac ms- Injury Mechanisms of th	TensionExten cic –Lumbar ne Lower extre	sion Inju Spine Ir emity suc	bdural Hematoma- Neck Injury iries- Lateral Bending Injuries- njuryMechanisms-Pelvic Injury ch as Knee joint injuries, Ankle ow Speed Crush InjuriesHigh
Мо	dule:7	Introduction to Dummies			6 hours
		of an ATDs-Hybrid II Dumr Side Impact Dummies - Dur			Dummy Family - CRABI Infant
	dule:8	Contemporary Issues			2 hours
		Tot	al Lecture ho	ours:	45 hours
Te>	t Book	(s)			
1.	Matthe	w Huang, "Vehicle Crash Me	echanics", CR	C Press	2002.
2.		u Bois, Clifford C. Chou and tion", American Iron and Stee			shworthiness and Occupant
Ref	ference	Books			
1.	Jorge /	A.C.Ambrosio, "Crashworthir tional Centre for Mechanical	ness Energy M Sciences, Sp	lanagen oringer W	nent and Occupant Protection", /ien New York,2001
2	Naraua	an Yoganandan, Alan M chanics and Prevention, Thir	. Nahum, J	ohn W	. Melvin, "Accidental Injury
Mo		valuation: CAT, Written assig			
			27-07-2022		
Red	commer	nded by Board of Studies			

MAUE607L	Course Title	L	Т	Ρ	С
	Design of Vehicle Drivelines	3	0	0	3
Pre-requisite	NIL	Syll	abus	versi	on
			1.0)	
Course Objectiv	/es				
1. To make	students understand the different components of driveline	e syst	ems.		
2. To make	the students be familiar with the different design aspects	of dri	veline		
compone					
3. To introdu	uce the student to the systematic design procedure adopt	ted in	indus	tries.	
Course Outcom					
	course, the students will be able to				
	end the different components of driveline systems.		_		
-	the dimensions of driveline components subjected to	stati	c and	fatig	jue
loads.					
•	the critical dimensions of components in the different trai	nsmis	sion t	ypes.	
4. Encompa	ss the modern design tools being followed in industries.				
Modulard Inter	duction to Transmission & Drivaling Systems	I		1	180
	duction to Transmission & Driveline Systems	tore		4 hou	
	driveline systems: clutch, gearbox, hydraulic coupling ssion, automatic transmission system, transfer case,				
shafts and prope		une	ential	s, ui	ive
Module:2 Clut				6 hoi	ire
	ch, band clutch, multi-disk clutch, clutch design and anal	veie		0 1101	112
	ertrain Integration System	y515	1	7 hou	ire
	tes to motion of the automobile, traction, tractive effort, p	orforn			
	deability, drawbar pull- necessity of gearbox, desirable ra				
	s - matching engine and transmission system using ro				~ -
					xle
loudo, total luto	and overall dear ratio- selecting the largest powertrain				
smallest powert	and overall gear ratio- selecting the largest powertrain ratio selecting the intermediate gears- gears	ratio,	selec	ting [•]	the
-	rain ratio, selecting the intermediate gears- gears	ratio,	selec		the
requirement – de	rain ratio, selecting the intermediate gears- gears sign	ratio,	selec - fu	cting Inctio	the nal
requirement – de Module:4 Auto	rain ratio, selecting the intermediate gears- gears sign matic Transmission	ratio, hift	selec - fu	ting inctio 7 ho i	the nal u rs
requirement – de Module:4 Auto Level of automa	rain ratio, selecting the intermediate gears- gears sign matic Transmission tion, gear shift mode, stepped and continuously varia	ratio, hift able t	selec - fu	ting inctio 7 hou nissio	the nal urs ns,
Module:4AutoLevel of automasynchronizer gea	rain ratio, selecting the intermediate gears- gears sign matic Transmission ition, gear shift mode, stepped and continuously varia arboxes, epicyclical gearboxes, continuously variable tr	ratio, hift able t ansm	selec - fu ransm	ting inctio 7 hou nissio i (CV	the nal urs ns, T)-
requirement – deModule:4AutoLevel of automasynchronizer geadesign and anal	rain ratio, selecting the intermediate gears- gears sign matic Transmission ition, gear shift mode, stepped and continuously varia arboxes, epicyclical gearboxes, continuously variable tr ysis of planetary geartrains, gear ratios and clutch eng	ratio, hift able t ansm agem	selec - fu ransm	ting inctio 7 hou nissio i (CV	the nal urs ns, T)-
requirement – deModule:4AutoLevel of automasynchronizer geadesign and analyclutch torques in	rain ratio, selecting the intermediate gears- gears sign matic Transmission tion, gear shift mode, stepped and continuously varia arboxes, epicyclical gearboxes, continuously variable tr ysis of planetary geartrains, gear ratios and clutch eng- steady-state condition, torque analysis in shifting process	ratio, hift able t ansm agem	selec - fu ransm ission ent so	rting Inctio 7 hou nissio 1 (CV chedu	the nal urs ns, T)- ule,
requirement – deModule:4AutoLevel of automasynchronizer geadesign and analyclutch torques inModule:5Hydr	rain ratio, selecting the intermediate gears- gears sign matic Transmission tion, gear shift mode, stepped and continuously varia arboxes, epicyclical gearboxes, continuously variable tr ysis of planetary geartrains, gear ratios and clutch engi- steady-state condition, torque analysis in shifting process rodynamic Transmission	ratio, hift able t ansm agem s	selec - fu ransm ission ent so	ting Inctio 7 hou hissio (CV chedu 7 hou	the nal urs ns, T)- ule, ule,
Module:4AutoLevel of automasynchronizer geadesign and analiclutch torques inModule:5HydeFluid coupling –	rain ratio, selecting the intermediate gears- gears sign matic Transmission tion, gear shift mode, stepped and continuously varia arboxes, epicyclical gearboxes, continuously variable tr ysis of planetary geartrains, gear ratios and clutch eng- steady-state condition, torque analysis in shifting process rodynamic Transmission principles - performance characteristics – advantages -	ratio, hift able t asm agem s – limit	selec - fu ransm ission ent so tations	rting inctio 7 hou hissio (CV chedu chedu 7 hou s – di	the nal ns, T)- ule, urs rag
Module:4AutoLevel of automasynchronizer geadesign and analyclutch torques inModule:5HydrFluid coupling –torque – reduction	rain ratio, selecting the intermediate gears- gears sign matic Transmission tion, gear shift mode, stepped and continuously varia arboxes, epicyclical gearboxes, continuously variable tr ysis of planetary geartrains, gear ratios and clutch eng- steady-state condition, torque analysis in shifting process rodynamic Transmission principles - performance characteristics – advantages - n of drag torque. Torque converter - principles - performa	ratio, hift able t asm agem s – limit	selec - fu ransm ission ent so tations	rting inctio 7 hou hissio (CV chedu chedu 7 hou s – di	the nal ns, T)- ule, urs rag
requirement – deModule:4AutoLevel of automasynchronizer geadesign and analyclutch torques inModule:5HydrFluid coupling –torque – reductio– advantages – I	rain ratio, selecting the intermediate gears- gears sign matic Transmission tion, gear shift mode, stepped and continuously varia arboxes, epicyclical gearboxes, continuously variable tr ysis of planetary geartrains, gear ratios and clutch eng- steady-state condition, torque analysis in shifting process rodynamic Transmission principles - performance characteristics – advantages - n of drag torque. Torque converter - principles - performa mitations – multi and poly stage torque converters	ratio, hift able t asm agem s – limit	selec - fu ransm ission ent so tations charac	rting inctio 7 hou nissio (CV chedu chedu 7 hou s – di cterist	the nal ns, T)- ule, rag tics
Module:4AutoLevel of automasynchronizer geadesign and analiclutch torques inModule:5HyduFluid coupling –torque – reduction– advantages – IModule:6Hydu	rain ratio, selecting the intermediate gears- gears sign matic Transmission tion, gear shift mode, stepped and continuously variable arboxes, epicyclical gearboxes, continuously variable tr ysis of planetary geartrains, gear ratios and clutch engi- steady-state condition, torque analysis in shifting process rodynamic Transmission principles - performance characteristics – advantages - n of drag torque. Torque converter - principles - performa- mitations – multi and poly stage torque converters rostatic Drive and Electric Drive	ratio, hift able t agem s – limit ance c	selec - fu ransm ission ent so tations charac	ting inctio <u>7 hou</u> nissio (CV chedu chedu <u>7 hou</u> s – di cterist	the nal urs ns, T)- ule, urs rag tics
Module:4AutoLevel of automasynchronizer geadesign and analiclutch torques inModule:5HydrFluid coupling –torque – reductio– advantages – IiModule:6Hydrostatic drive	rain ratio, selecting the intermediate gears- gears sign matic Transmission tion, gear shift mode, stepped and continuously variable arboxes, epicyclical gearboxes, continuously variable tr ysis of planetary geartrains, gear ratios and clutch eng- steady-state condition, torque analysis in shifting process rodynamic Transmission principles - performance characteristics – advantages - n of drag torque. Torque converter - principles - performa- mitations – multi and poly stage torque converters rostatic Drive and Electric Drive – various types of hydrostatic transmission – principle	ratio, hift able t ansm agem s – limit ance c	selec - fu ransm ission ent so tations charac	rting inctio 7 hou hissio (CV chedu chedu 7 hou s – du cterist 6 hou ges a	the nal nal ns, ns, T)- ule, ule, rag tics
Module:4AutoLevel of automasynchronizer geadesign and analyclutch torques inModule:5HydrFluid coupling –torque – reductio– advantages – liModule:6Hydrostatic drivelimitations-com	rain ratio, selecting the intermediate gears- gears sign matic Transmission tion, gear shift mode, stepped and continuously variable arboxes, epicyclical gearboxes, continuously variable tr ysis of planetary geartrains, gear ratios and clutch eng- steady-state condition, torque analysis in shifting process rodynamic Transmission principles - performance characteristics – advantages – n of drag torque. Torque converter - principles - performa- mitations – multi and poly stage torque converters rostatic Drive and Electric Drive – various types of hydrostatic transmission – principle parison of hydrostatic transmission with hydrodyna	ratio, hift able t ansm agem s – limit ance o e - ad amic	selec - fu ransm ission ent so tations charac vanta transi	rting inctio 7 hou nissio i (CV chedu chedu 7 hou s – di cterist 6 hou ges a missio	the nal urs ns, ns, T)-ule, urs rag tics urs and on-
Module:4AutoLevel of automasynchronizer geadesign and analyclutch torques inModule:5HydroFluid coupling –torque – reduction– advantages – InModule:6Hydrostatic driverlimitations – comconstruction – advantages – In	rain ratio, selecting the intermediate gears- gears sign matic Transmission tion, gear shift mode, stepped and continuously variable arboxes, epicyclical gearboxes, continuously variable tr ysis of planetary geartrains, gear ratios and clutch eng- steady-state condition, torque analysis in shifting process rodynamic Transmission principles - performance characteristics – advantages – n of drag torque. Torque converter - principles - performa mitations – multi and poly stage torque converters rostatic Drive and Electric Drive – various types of hydrostatic transmission – principle parison of hydrostatic transmission with hydrodyna working principle of Janny hydrostatic drive - electric	ratio, hift able t ansm agem s - limit ance c - ad amic amic anive	selec - fu ransm ission ent so tations charac vanta transi	rting inctio 7 hou nissio i (CV chedu chedu 7 hou s – di cterist 6 hou ges a missio	the nal urs ns, T)- ule, ule, rag cics urs and on-
Module:4AutoModule:4AutoLevel of automasynchronizer geadesign and analiclutch torques inModule:5HydrFluid coupling –torque – reduction– advantages – IiModule:6HydrHydrostatic drivelimitations – comconstruction – andearly and modifie	rain ratio, selecting the intermediate gears- gears sign matic Transmission tion, gear shift mode, stepped and continuously variable arboxes, epicyclical gearboxes, continuously variable tr ysis of planetary geartrains, gear ratios and clutch engi- steady-state condition, torque analysis in shifting process rodynamic Transmission principles - performance characteristics – advantages - n of drag torque. Torque converter - principles - performa- mitations – multi and poly stage torque converters rostatic Drive and Electric Drive – various types of hydrostatic transmission – principle parison of hydrostatic transmission with hydrodyna working principle of Janny hydrostatic drive - electric ed Ward Leonard control system – advantages and limitation	ratio, hift able t ansm agem s - limit ance c - ad amic amic anive	selec - fu ransm ission ent so tations charac vanta transi e- prir	ting inctio 7 hou hissio (CV chedu chedu 7 hou s – du cterist 6 hou ges a missio nciple	the nal nal ns, T)- ule, rag tics and on- of
Module:4 Auto Level of automa synchronizer gea design and analiclutch torques in Module:5 Module:5 Hydro Fluid coupling – torque – reduction – advantages – If Module:6 Module:6 Hydro Hydrostatic driver limitations – com construction – and early and modifie Module:7 Diff	rain ratio, selecting the intermediate gears- gears sign matic Transmission tion, gear shift mode, stepped and continuously variable arboxes, epicyclical gearboxes, continuously variable try sis of planetary geartrains, gear ratios and clutch eng- steady-state condition, torque analysis in shifting process rodynamic Transmission principles - performance characteristics – advantages - n of drag torque. Torque converter - principles - performa- mitations – multi and poly stage torque converters rostatic Drive and Electric Drive – various types of hydrostatic transmission – principle parison of hydrostatic transmission with hydrodyna working principle of Janny hydrostatic drive - electric ed Ward Leonard control system – advantages and limitate perentials and Final drives	ratio, hift able t aasm agem s - limit ance c - ad amic c drive tions	selec - fu ransm ission ent so tations charac vanta transi transi - prir	rting inctio 7 hou nissio (CV chedu chedu 7 hou s – di cterist 6 hou ges a missio nciple 6 hou	the nal nal ns, ns, T)- ule, rag tics and on- of
Module:4AutoLevel of automasynchronizer geadesign and analyclutch torques inModule:5HydrFluid coupling –torque – reductio– advantages – liModule:6HydrHydrostatic drivelimitations – comconstruction – andearly and modifieModule:7DiffeWorking principil	rain ratio, selecting the intermediate gears- gears sign matic Transmission tion, gear shift mode, stepped and continuously variable arboxes, epicyclical gearboxes, continuously variable tr ysis of planetary geartrains, gear ratios and clutch engu- steady-state condition, torque analysis in shifting process rodynamic Transmission principles - performance characteristics – advantages – n of drag torque. Torque converter - principles - performa- mitations – multi and poly stage torque converters rostatic Drive and Electric Drive – various types of hydrostatic transmission – principle parison of hydrostatic transmission with hydrodyna working principle of Janny hydrostatic drive - electric d Ward Leonard control system – advantages and limitate e- friction free differential, differential with internal filterential site and Final drives	ratio, hift able t ansm agem s - limit ance c - ad amic - ad amic - ad amic - ad amic - ad amic - ad amic - ad - ad	selec - fu ransm ission ent so tations charac vanta transi e- prir	rting inctio 7 hou nissio (CV chedu 7 hou chedu 7 hou 6 hou ges a missio nciple 6 hou f-lock	the nal urs ns, ns, T)- ule, urs rag cics urs and on- of urs ing
Module:4 Auto Level of automa synchronizer gea design and analy clutch torques in Module:5 Hydro Fluid coupling – torque – reduction – advantages – li Module:6 Hydrostatic driver limitations -com construction – and modified Module:7 Module:7 Differ Working principil differential- final	rain ratio, selecting the intermediate gears- gears sign matic Transmission tion, gear shift mode, stepped and continuously variable arboxes, epicyclical gearboxes, continuously variable try ysis of planetary geartrains, gear ratios and clutch engi- steady-state condition, torque analysis in shifting process rodynamic Transmission principles - performance characteristics – advantages - n of drag torque. Torque converter - principles - performa- mitations – multi and poly stage torque converters rostatic Drive and Electric Drive – various types of hydrostatic transmission – principle parison of hydrostatic transmission with hydrodyna working principle of Janny hydrostatic drive - electric ad Ward Leonard control system – advantages and limitaties e- friction free differential, differential with internal fu- drives - performance limits, transmission ratios -	ratio, hift able t ansm agem s - limit ance c - ad amic - ad amic - ad amic - ad amic - ad amic - ad amic - ad - ad	selec - fu ransm ission ent so tations charac vanta transi e- prir	rting inctio 7 hou nissio (CV chedu 7 hou chedu 7 hou 6 hou ges a missio nciple 6 hou f-lock	the nal urs ns, ns, T)- ule, urs rag cics urs and on- of urs ing
Module:4 Auto Level of automa synchronizer gea design and analy clutch torques in Module:5 Hydro Fluid coupling – torque – reduction – advantages – If Module:6 Mydrostatic driver limitations -com construction and early and modified Module:7 Diffed Working principal differential- final differential locks locks	rain ratio, selecting the intermediate gears- gears sign matic Transmission tion, gear shift mode, stepped and continuously variable arboxes, epicyclical gearboxes, continuously variable tr ysis of planetary geartrains, gear ratios and clutch eng- steady-state condition, torque analysis in shifting process rodynamic Transmission principles - performance characteristics – advantages - n of drag torque. Torque converter - principles - performa mitations – multi and poly stage torque converters rostatic Drive and Electric Drive – various types of hydrostatic transmission – principle parison of hydrostatic transmission with hydrodyna working principle of Janny hydrostatic drive - electric ed Ward Leonard control system – advantages and limitat per friction free differential, differential with internal f drives - performance limits, transmission ratios - and locking differentials, types of self-locking differential	ratio, hift able t ansm agem s - limit ance c - ad amic - ad amic - ad amic - ad amic - ad amic - ad amic - ad - ad	selec - fu ransm ission ent so tations charac vanta transi e- prir	ting inctio 7 hou hissio (CV chedu chedu 7 hou s – du cterist 6 hou ges a missio 6 hou f-lock	the nal nal ns, ns, T)- ule, urs rag cics and on- of urs ars,
Module:4 Auto Level of automa synchronizer gea design and analy clutch torques in Module:5 Hydro Fluid coupling – torque – reduction – advantages – If Module:6 Mydrostatic driver limitations -com construction and early and modified Module:7 Diffed Working principal differential- final differential locks locks	rain ratio, selecting the intermediate gears- gears sign matic Transmission tion, gear shift mode, stepped and continuously variable arboxes, epicyclical gearboxes, continuously variable try ysis of planetary geartrains, gear ratios and clutch engi- steady-state condition, torque analysis in shifting process rodynamic Transmission principles - performance characteristics – advantages - n of drag torque. Torque converter - principles - performa- mitations – multi and poly stage torque converters rostatic Drive and Electric Drive – various types of hydrostatic transmission – principle parison of hydrostatic transmission with hydrodyna working principle of Janny hydrostatic drive - electric ad Ward Leonard control system – advantages and limitaties e- friction free differential, differential with internal fu- drives - performance limits, transmission ratios -	ratio, hift able t ansm agem s - limit ance c - ad amic - ad amic - ad amic - ad amic - ad amic - ad amic - ad - ad	selec - fu ransm ission ent so tations charac vanta transi e- prir	rting inctio 7 hou nissio (CV chedu 7 hou chedu 7 hou 6 hou ges a missio nciple 6 hou f-lock	the nal nal ns, ns, T)- ule, urs rag cics and on- of urs ars,
Module:4 Auto Level of automa synchronizer gea design and analy clutch torques in Module:5 Hydro Fluid coupling – torque – reduction – advantages – If Module:6 Mydrostatic driver limitations -com construction and early and modified Module:7 Diffed Working principal differential- final differential locks locks	rain ratio, selecting the intermediate gears- gears sign matic Transmission tion, gear shift mode, stepped and continuously variable arboxes, epicyclical gearboxes, continuously variable tr ysis of planetary geartrains, gear ratios and clutch eng- steady-state condition, torque analysis in shifting process rodynamic Transmission principles - performance characteristics – advantages - n of drag torque. Torque converter - principles - performa mitations – multi and poly stage torque converters rostatic Drive and Electric Drive – various types of hydrostatic transmission – principle parison of hydrostatic transmission with hydrodyna working principle of Janny hydrostatic drive - electric ed Ward Leonard control system – advantages and limitat per friction free differential, differential with internal f drives - performance limits, transmission ratios - and locking differentials, types of self-locking differential	ratio, hift able t ansm agem s - limit ance c - ad amic - ad amic - ad amic - ad amic - ad amic - ad amic - ad - ad	selec - fu ransm ission ent so tations charac vanta transi e- prir	ting inctio 7 hou hissio (CV chedu chedu 7 hou s – du cterist 6 hou ges a missio 6 hou f-lock	the nal urs ns, T)- ule, urs rag rag rics urs and on- of urs ars, urs

Tex	Text Book(s)							
1.	T. Kenneth Garrett, Kenneth Newton and William Steeds, "The Motor Vehicle" 13th							
	Edition, Butterworth -Heinemann	Limited, Londo	on, 2005.					
Ret	ference Books							
1.	1. Heinz Heisler, "Advanced Vehicle Technology", second edition, Butterworth – Heinemann, New York, 2002							
2.	Dr. N. K. Giri, "Automobile Mecha	anics", Seventh	reprint,	Khanna Publishers, Delhi, 2005				
Мо	de of Evaluation: CAT, Written ass	signment, Quiz	and FAT					
Ree	commended by Board of Studies	27-07-2022						
Арр	proved by Academic Council No. 67 Date 08-08-2022							

Course Code Course Title L					С
MAUE608L	Noise, Vibration and Harshness	3	0	0	3
Pre-requisite	NIL	Sv	llabus	s versi	on
				.0	
Course Objectiv	/es	.1	•		
	he students to understand the different sources of nois	e fro	m aut	omobi	es.
-	engine noise, vehicle structural noise, aerodynamic no				
	reduction techniques	,			,
	e the students to identify the role of NVH engineers	in o	determ	nining	the
	f noise and vibration, noise quality, and developmer				
vehicle.			÷		
To assist	the students with sound measurement, single degree f	reed	om of	vibrati	on,
test facilit	ies for measuring noise and vibration, and processing th	ie no	ise sig	gnals.	
Course Outcom					
	e rize various sources of automotive noise and their reduc	tion	n outr	mohil	26
	the knowledge of the role of NVH engineers in a new ve				53
	arious sound and vibration measurement methods, inc				and
	ate response of a single degree of freedom applied to v				and
	he hands-on experience of using semi-anechoic rooms				and
	ads simulators to measure various types of noise and vit			,	
0	ne role of transducers, acoustics holography, and vari			mentat	ion
	for analyzing the NVH of vehicle systems				
6. Compute	sampling, statistical, and frequency analysis of var	ious	data	obtair	ned
during N∖	/H measurements.				
	omobile noise pollution			5 ho	
Automobiles Noi	ise pollution - Engine Noise, Transmission Noise, Vehi	cle s	tructu	ral No	ise,
	bise, Exhaust Noise.				
	in the Automotive Industry			6 ho	
	e and vibration. Design features. Common problems. M				
	noise requirements. Target vehicles and objective ta		s. Dev	/elopm	ent
<u> </u>	vehicle programme and the altering role of NVH enginee	rs.			
Module:3 Hum				<u>5 ho</u>	
	nd measurement. Human sensitivity and weighting fact				√ Η.
	d sources, Acoustical resonances. Properties of acoustic	: mai	erials		
Module:4 Vibra				<u>7 ho</u>	
	tion in automotive, Transient and steady-state response				
•	applied to vehicle systems. Transmissibility, Magnificat	ION 18	actor.	wodes	3 01
vibration analysis	Facilities and Instrumentation			7 ho	uro
			nooho	7 ho	
-	lation: rolling roads (dynamometers), road simulators, se c. Transducers, signal conditioning and recording syst				
	d Intensity technique, Acoustic Holography, Statistical E				sau
Module:6 Sign		.nerg	улпа	6 ho	ure
	ig and resolution. Statistical analysis. Frequency analys	is C	amnh		
	is, coherence and correlation functions.		anpb		<i>.</i> ,
	control Strategies & comfort			7 ho	urs
	Noise path analysis. Noise reduction in Automobile	s V	ibratic		
	n of Experiments, Optimization of Dynamic chara				
	elmholtz resonators. Active control techniques.				
	temporary Issues			2 ho	urs

	Тс	otal Lecture ho	ours:	45 hours				
Tex	xt Book(s)							
1.								
2.	. István L. Vér, Leo L. Beranek, Noise and Vibration Control Engineering: Principles and Applications, 2006, John Wiley.							
Re	ference Books							
1.	M. L. Munjal, 2014, Noise and Vi	bration Control	, World S	cientific Press: Singapore				
2.	Norton M P, Fundamental of Noi	se and Vibratio	n, Cambr	idge University Press, 2003.				
Мо	Mode of Evaluation: CAT, Written assignment, Quiz and FAT							
Re	commended by Board of Studies	27-07-2022						
Ap	proved by Academic Council							

Course Code Course Title L T						Т	Ρ	С	
	JE608P		ibration and Harshness Lab				0	2	1
Pre-	requisite	NIL				Syllabus version			
	•						1.0		
Cou	rse Objectiv	es							
	1. To acquire	e hands-on experience	by carrying	g out vir	tual and ex	perim	ental	vibra	ation
		measurements on a ve							
					-				
Cou	rse Outcome	e							
		nd the vehicle vibrati							
		neters, microphones, ar				l-time	expe	rime	nts.
		nowledge in analyzing							
3		ands-on experience us		ic rooms	and rolling	road	l simu	lator	s to
	measure v	arious noises and vibra	ations.						
	cative Exper					<u> </u>	\		
1.		tion on simple automoti				MATL	AB).		
2.		H Simple simulations (I							
3.		icle sound quality meas							
4.		ation response analysis					S.		
5.		e measurement in an a							
6.		ise measurement of dif			ns sound lev	el me	eter.		
7.		bration measurement u							
8.		posite automotive part v	vibration me	asureme	nt at differer	nt enc	cond	lition	S
	using accele								
9.		posite automotive part	noise measu	irement a	at anechoic	rooms	s using	g	
	microphone					-			
10		chassis vibration meas		ng accele	erometers/vi	brome	eter.		
11.		VH performance analys							
11.		ion of acceleration sens	or instrume	ntations	and prepara	tion fo	or real	-time	÷
	vibration tes	0				<u> </u>			
12.		ion of noise sensor inst	rumentations	s and pre	eparation for	real-	time n	oise	
	testing.								
			Tot	al Labo	ratory Hour	s 30) hou	rs	
				·					
Mod	e of assessm	ent: CAT, Written assig	nment, Quiz	z and FA	1				
Rec	ommended by	y Board of Studies	27-07-2022	2					
			No. 67	Date	08-08-202	2			
	Approved by Academic Council No. 67 Date 08-08-2022								

Course Code	Course Title		LT	Р	С
MAUE609L Computational Fluid Flow and Heat Transfer 3 0					3
				0 versi	-
				0	<u> </u>
Course Objecti	Ves		•		
The objective of					
-	students with sufficient background to und	lerstand	the mat	hemati	ical
	on of the governing equations of fluid flow and he			nomaa	our
-	students to understand the fundamental co			nt	
	i techniques.	noopto			
	ents to the computational complicities on various	turbulen	ce models	S.	
- 1	1 1				
Course Outcon	10				
At the end of the	course, the student will be able to:				
					ľ
1. Apply mathe	matics and engineering fundamentals to identify	the natur	re of comp	olex	
fluid flow ar	d heat transfer problems and to formulate go	verning	equations	s to	
represent the					
-	formulate the appropriate discretization te	chniques	s based	on th	ıe
	I nature of the governing equations.				
3. Solve fluid fl	ow and heat transfer problems (diffusion) using fi	nite diffe	rence met	hod.	
	low and heat transfer problems (convection-dif	ifusion) ເ	using finit	e volu	me
method.					
	knowledge of algorithm for pressure-velocity cou	upling for	r compres	sible	
	MPLE, SIMPLER, SIMPLEC, PISO and etc.		<i>.</i>		
-	suggest the type of turbulence models to be	chosen	for IC en	gine	
subsystems.					
Module:1 Gov	erning Equations of Fluid flow and			4 hou	urs
	t Transfer				are
	on engineering applications, Merits of CFD.	. Vector	calculus	Intec	aral
transform theore	ems, Reynolds transport theorem, substantial	derivativ	e. Conse	rvation	of
	im and energy equations in conservation an	d non-c	onservatio	on forr	ns.
Physical bounda					
	hematical Nature of the Governing			6 hou	urs
	ations and discretization methods				
	of PDE - elliptic, parabolic and hyperbolic to				
	aspects of discretization, Different discretization e, finite volume, finite element and spectral meth		ques – m	roduci	.1011
	te difference method	Juus.		8 hou	ure
		lifforonce	operator		
	e discretization (FDM), Taylor series method, d ard and central differences, Explicit, Implicit and				
Finite difference solution to steady and unsteady 1-D and 2-D diffusion problems. Different types of errors - consistency, accuracy, and stability.					
	te volume method			8 hou	urs
	ce, upwind, quick, exponential, hybrid and p	ower lay	N schem		
	olume solution to 1-D and 2-D convection-diffusi			- i a	130
	Ition Algorithm for Pressure-velocity		0110.	6 hou	urs
	pling			0 1100	
	The pressure velocity corrections, The pres	ssure c	orrection	equati	on
•• •	ER, SIMPLEC, PISO algorithms.		0.100001	Squat	. ,

Мо	dule:6 Turbulence Modelling				8 hours			
Nature, Description and Characterization of turbulent flow, Reynolds averaging,								
Re	Reynolds averaged N-S equations, Eddy viscosity hypothesis, Reynolds Stress Transport							
Eq	uations. First order closures: k-a	two equation r	models,	SST k	ω model. Large Eddy			
Sin	nulations.							
Мо	dule:7 Application of CFD in IC	C engines			3 hours			
Flo	w through manifolds, valves and	l ports, Element	s of air	motion	in engines. Outline of			
	d dynamic models, application of	available comm	ercial c	odes to	engine processes with			
-	without chemical reactions.							
Мо	dule:8 Contemporary Issues				2 hours			
					4 - 1			
		otal Lecture hou	irs:		45 hours			
Tex	t Book(s)							
1.	John D. Anderson, JR., Comput McGraw Hill Education, Fifth rep				cs with Applications,			
2	 Joel H. Ferziger, Milovan Perić, and Robert L. Street., Computational Methods for Fluid Dynamics, Springer, 4th edition, 2020. 							
Reference Books								
Re	erence Books							
Re	ference Books K. Muralidhar, and T. Sundaraja		l Fluid f	low and	Heat Transfer, second			
		n, Computationa			Heat Transfer, second			
	K. Muralidhar, and T. Sundaraja	n, Computationa ng House, New [Delhi, 20)14.	- -			
1	K. Muralidhar, and T. Sundaraja edition (reprint), Narosa Publishi	n, Computationa ng House, New I era, Introduction	Delhi, 20 to Con)14. iputatior	al Fluid Dynamics, An:			
1	K. Muralidhar, and T. Sundaraja edition (reprint), Narosa Publishin H.K Versteeg and W Malalasek	n, Computationa ng House, New I era, Introduction nd edition, Prent	Delhi, 20 to Con ice Hall)14. iputatior India, 2	al Fluid Dynamics, An:			
1 2 Mo	K. Muralidhar, and T. Sundaraja edition (reprint), Narosa Publishi H.K Versteeg and W Malalasek The Finite Volume Method, seco	n, Computationa ng House, New I era, Introduction nd edition, Prent	Delhi, 20 to Con ice Hall)14. iputatior India, 2	al Fluid Dynamics, An:			
1 2 Mo Re	K. Muralidhar, and T. Sundaraja edition (reprint), Narosa Publishi H.K Versteeg and W Malalasek The Finite Volume Method, seco de of Evaluation: CAT, Written as	n, Computationa ng House, New E era, Introduction nd edition, Prent signment, Quiz a	Delhi, 20 to Con ice Hall)14. iputatior India, 2	al Fluid Dynamics, An: 010.			

	rse Code	Course Title	L 3	Т	P 0	С
	MCDM504L Finite Element Methods					3
Pre-	Pre-requisite NIL Syllabus Versio					
	01			1.0		
	rse Objectiv					
i ne m	nain objective	es of this course are to:				
		tudents understand the mathematical and physical ment Method (FEM) as applied to solid mechanics ar	•	•		
2. li	ntroduce stu	dents to the theory of elasticity				
		nts the characteristics of various elements in st selection of suitable elements for the problems being			the	rma
4. lı	ntroduce stu	dents to various field problems and the discretization	of the	proble	m	
5. N	Make the stu	dents derive finite element equations for simple and c	omple	ex elem	ents	;
Cou	Irse Outcom	16 :				
		course, the student will be able to:				
		owledge of mathematics and engineering to solve pengineering by approximate and numerical methods	oroblei	ms in s	struc	tura
2. E	Employ vario	us formulation methods in FEM.				
3. A	Apply suitabl	e boundary conditions to a global equation for ba s, stress and strains induced.	ars, tr	usses	to s	solve
		e boundary conditions to a global equation for beams s, stress and strains induced.	s and	frames	s to s	solve
s	symmetric pro	r 2D and 3D structural problems using CST element oblems with triangular elements. Evaluate heat trans and fin like structures.				
	Analyze the symmetric co	Vector Variable problems using Plane stress, Pl nditions	ane S	Strain	and	Axi
7. C	Demonstrate	the use of Finite element analysis in Production Production	cesses	6		
Mod	ule:1 Fu	undamental concepts			6 ho	urs
Module:1Fundamental concepts6 hoursPhysical problems, Finite Element Analysis as Integral part of Computer Aided Design;. Stresses and Equilibrium; Boundary Conditions; Strain-Displacement Relations; Stress – strain relations, Linear and nonlinear material laws; Temperature Effects; Definition of Tensors and indicial notations; Deformation gradients; Classification of different types of deformations; Degree of Freedom; Field Problem and their degree of freedom. Solid Mechanics Problems and Fluid Mechanics Problems. Deformations and stresses in bars, thin beams, thick beams, plane strain- plane stress hypothesis, thin plate, thick plate, axisymmetric bodies; Approximate nature of most of these deformation (nonlinear).						
Mod		eneral Techniques and Tools of Displacement ased Finite Element Analysis		(6 ho	urs
proce Eleme	ematical mo dure, Interp ent Solutions	odels, Approximate solutions, Minimization pro olation polynomial method, Nodal approximation b. Strong or classical form of the problem and weak of lerkin's and Weighted residual approaches; Shap	metho r Vari	od and ational	d Fi forn	nite n of

functions for 1D, 2D & 3D applications; Use of shape (interpolation) functions to represent general displacement functions and in establishment of coordinate and geometrical transformations; Hermite, Lagrange and other interpolation functions.

Module:3	One Dimensional Problems: Bars & Trusses	6 hours				
	Local and global coordinate systems; Transformation of					
three dimens	three dimensional spaces; Finite Element stiffness matrix and load vector of a basic					
element in loo	cal coordinate system using energy approach; Assembly	of Global Stiffness				
Matrix and Lo	bad vector; Treatment of boundary conditions; Solution a	algorithms of linear				
	es; Example problems in trusses; Formulation of dynamic					
	Extraction of modal frequencies and mode shape.	j , j				
,						
Module:4	One Dimensional Problems – Beams and Frames	7 hours				
Finite Elemen	t Modeling of a basic beam element in local coordinate sy	stem using energy				
approach; Foi	mulation of element matrices; Assembly of the Global Stif	fness Matrix, Mass				
	pad vector; Treatment of boundary Conditions; Euler Be					
	Timoshenko (thick) beam element; Beam element arbitrari					
	e frames and in space as space frame analysis (3D); Sol					
	s.; extraction of modal frequencies and mode shape.	adon algonanno or				
Module:5	Two Dimensional Analysis – Scalar Variable	6 hours				
	Problems	•				
Formulation c	f 2D problems using Partial Differential Equations; Soluti	on algorithm using				
	ole; Constant Strain Triangles (CST); Bilinear Quadrilater					
0, 1	natrices; Modelling boundary conditions; Solving the field	<i>,</i> 0				
	n automotive cooling fin, engine cover; Torsion of a non-cir	-				
		culai shall elc.				
Module:6	Vector Variable problems - Plane stress, Plane	6 hours				
module.o	Strain and Axi-symmetric Analysis	0 nouis				
Equilibrium eq	quation formulation – Energy principle and formulating the	element matrices -				
Plane stress						
	Elements; Natural co-ordinate system; Higher Order Ele					
	for Axisymmetric Problems; Hexahedral and tetrahedr					
	atic and cubic elements in 1D, 2D and 3D; Numerical integ	gration of functions;				
Gauss and oti	ner integration schemes. C0 and C1 continuity elements.					
Module:7	Analysis of Production Processes	6 hours				
	of metal casting – Special considerations, latent heat					
	ie stepping procedures – Crank – Nicholson algorithm –					
	asic concepts of plasticity – Solid and flow formulation –					
	formulation – FE Analysis of metal cutting, chip s	separation chiena,				
incorporation	of strain rate dependency.					
Module:8	Contemporary Issues	2 hours				
	· · · · · · · · · · · · · · · · · · ·					
	Total Lecture hours:	45 hours				
Text Book(s)					
	P, Finite Element Analysis, Prentice Hall of India, 2013					
		ation with ANOVO				
	Moaveni, Finite Element Analysis, Theory and Applic	auon with ANSYS,				
	Fifth Edition, 2021					
Reference E	SOOKS					
1 Robert	D. Cook, David S. Malkus, Michael E. Plesha, Robert J.	Witt,Concepts and				

	Applications of Finite Element Analysis, John Wiley & Sons, Incl.2002.						
2	S.S.Rao, Finite element method in Engineering, 2011, Butterworth Heinemann						
3	J.N Reddy, An introduction to the	e Finite Eleme	ent Metho	d, 2017, Mcgraw Hill			
4	Tirupathi R. Chandrapatla, Ashok D. Belegundu, Introduction to Finite Element in						
	Engineering Pearson 4 th Edition,	2011					
Mod	le of Evaluation: CAT ,Written Assi	ignment, Quiz	z and FAT				
Rec	ommended by Board of Studies	27-07-2022					
Арр	roved by Academic Council	No. 67 Date 08-08-2022					

Cours	Course Code Course Title				L	Т	Ρ	С
MCE	DM504P	Finite Elem	Element Methods Lab			0	2	1
Pre-	requisite	NIL			Syllabus version			
	-					1	.0	
Cou	rse Objecti	ves			-			
1.		the student's skills in I		hat can be us	ed and	imple	emente	ed for
		ngineering applications.						
2.		op proficiency in the a					(mode	eling,
	analysis, a	and interpretation of res	sults) to realistic	c engineering	proble	ns		
0.000								
	rse Outcon		and analyza th		for true	fr		
1.		ate the ability to create ctures, machine parts, a						
		ires like Ansys, Matlab		gcomponents	using	gener	ai-pui	pose
2		ate the ability to evaluate		t FEA analysi	e rocul	te for	dosiar	h and
۷.		ate the ability to evaluate of purposes		analys	5 16501	13 101	uesigi	anu
	evaluation	r purposes						
Indie	cative Expe	eriments						
1.		alysis of a bar without o	considering self	-weight	4 ho	ours		
2.		self-weight on stress of			4 ho	ours		
3.	Stress an	alysis of the tapered ro	d		4 h	ours		
4.		ensional truss problem			4 ho	ours		
5.		noment and shear force	e diagram of va	rious		ours		
	beams		U					
6.	Plane stre	ess and plane strain and	alysis		4 ho	ours		
7.	Modal, ha	irmonic and transient a	nalysis on bar,	beam and	3 ho	ours		
	plates		-					
8.	Axi-symm	etric analysis				ours		
			Total Labora			nours		
		ment: Continuous asse		Oral examina	tion an	d othe	ers	
Recommended by Board of Studies 27-07-2022								
		by Board of Studies	No. 67	Date		3-2022		

Course Code	Course Title		L	Т	Ρ	С
MAUE611L Vehicle Safety and Lighting 3 0						3
Pre-requisite	NIL		Sylla	abus	versi	on
				1.0)	
Course Objectiv						
	ice vehicle passive and active safety sys					
	n the understanding crash testing and li					
	e basic knowledge of lighting of automoten the importance of vehicle safety and li					
	the students to apply the knowledge mo		eteme			
	The students to apply the knowledge me	Jucini venicie 3y	Sterns			
Course Outcom	9					
	cessful Completion of this course , Stude	ents will be able	e to			
	owledge about safety and vehicle structu					
	e human response to impact response s					
,	ne performances of vehicle safety system	ns and lighting				
	e the modern lighting system					
5. Develop ti	he modern vehicle safety and lighting sy	stems				
Madulard Intra	duction to cofety and Valsials	1			<u> </u>	
	duction to safety and Vehicle ctural crashworthiness				6 hou	urs
	ty-Active and passive safety, Driver a	l Jesistance sveta	me ir		mohi	امد
	erminology. Balance of stiffness and tou					
	cteristics of vehicle structures, Design					
	udies, Optimization of vehicle structures			, .		
Module:2 Cras					7 hou	urs
Types of impacts	, and Impact with rebound, movable ba	rrier tests, Ana	lysis a	and si	mulat	ion
	ier impacts, Roll over crash tests, Beh					
	notographic analysis of impact tests, I		uireme	ents fo	or cra	ash
	Frontal Pole Impact, Pedestrian Impact.	1			7 6 6 1	
	nomics and Human response to				7 hou	urs
	rgonomics in Automotive safety, Loca	tions of contro	ols A	nthroi	ome	rtv
	olerance, Determination of Injury three					
-	ance, Application of Trauma for analys		•		•	
-	crash and modeling and simulation studi	•				
Module:4 Vehi	cle safety systems				6 hou	urs
-	equirements, Restraints systems used a					
	Air bags used in automobiles, Use					
	act protection from steering controls, D					
	comobiles. Importance of Bumpers in au		•			
	Introduction to the types of safety g vision in automobiles, Types of rear v					
	Hinges and latches etc.			a550	551110	
<u> </u>	damentals of light, vision and	1			7 hou	urs
colo	•					
Electromagnetic	radiation and light, Propagation of	light, Spectral	sensit	tivity	of lig	ght,
Measures of radiation and light, Standard elements for optical control. Illuminant						
Measures of ra	calculations, Derivation of luminous flux from luminous intensity, flux transfer and inter					
Measures of ra calculations, Der	ivation of luminous flux from luminous					
Measures of ra calculations, Der reflection, lumina	ivation of luminous flux from luminous ance calculations, discomfort glare, e	yes as an opt	ical s	ystem	n, vis	ual
Measures of ra calculations, Der reflection, lumina processing, lightir	ivation of luminous flux from luminous ance calculations, discomfort glare, e ng for results, modes of appearance, Po	yes as an opt inters for lighting	tical s g devi	ysterr ces. N	n, vis Jature	ual e of
Measures of ra calculations, Der reflection, lumina processing, lightir	ivation of luminous flux from luminous ance calculations, discomfort glare, e	yes as an opt inters for lighting	tical s g devi	ysterr ces. N	n, vis Jature	ual e of

Module:6 Light Measurements, Testing equipment calibration and	6 hours				
photometric practice					
Basics of standards and detectors, spectral measurements and Colorimetry, illuminant meters and luminance meters, colorimeters. Fundamentals of equipment used for light measurement in Automotive field; Gonio - Photometer, Reflecto-meter, Colorimeter, Integrating sphere, types, application, coordinates system, Types of sensors and working principle, construction, characteristics etc. used in different equipment. National and					
international Regulations, test requirements and testing p					
Module:7 New Technology in Automotive	4 hours				
lighting					
Technology progress in automotive lighting, Gas Disch lighting system, Daylight running lamps	narges lamps, LED, adoptive front				
Module:8 Contemporary Issues	2 hours				
Total Losting house					
Total Lecture hours:	45 hours				
Text Book(s)					
1. Jullian Happian-Smith 'An Introduction to Moder	n Vehicle Design' Butterworth –				
 Heinemann , ISBN 07506 5044 3. 2002 2. Burkard Wördenweber · Jörg Wallaschek · Peter Bo 	wce · Donald Hoffman 'Automotive				
Lighting and Human Vision' ISBN 978-3-540-36696					
York. 2007					
Reference Books					
1. Ulrich Seiffert and Lothar Wech, "Automotive safety I ISBN 978-0-7680-1798-4, 2007					
2. Paul Du Bois et al., "Vehicle Crashworthiness and O	ccupant Protection", American Iron				
and Steel Institute, Southfield, Michigan 48075, 2004					
3. Watts, A. J., et al "Low speed Automobile Accidents"	Lawyers and Judges 2003.				
4. Edward .A, "Lamps and Lighting", Hodder & Stoughte	on, London, 1993.				
Mode of Evaluation: CAT, Written assignment, Quiz and I	FAT				
Recommended by Board of Studies 27-07-2022					
Approved by Academic Council No.67 Date	e 08-08-2022				

Project and Internship

Cours	e Code	Co	urse Title			L	Т	Р	С	
MAUE696J		Study Oriented Project			•	•	02			
Pre-requisite		NIL		J = = 1		Syllabus vers				
					1.0					
	e Objective									
1.		nt will be able to analys	e and inter	oret publis	shed litera	ture f	or inf	orma	ition	
	pertaining to niche areas.									
2.	2. Scrutinize technical literature and arrive at conclusions.									
3.	3. Use insight and creativity for a better understanding of the domain of interest.									
Cours	e Outcome):								
	1. Retrieve, analyse, and interpret published literature/books providing information								tion	
	related to niche areas/focused domains.									
2.	2. Examine technical literature, resolve ambiguity, and develop conclusions.									
3.	3. Synthesize knowledge and use insight and creativity to better understand the domain of interest.									
4.	 Publish the findings in the peer reviewed journals / National / International Conferences. 									
Modu	Module Content (Project durat					ion: One semester)				
This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty.										
Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation										
and project reviews – Presentation in the National / International Conference on Science, Engineering Technology.										
Recon	nmended by	/ Board of Studies	27-07-202	2						
Approved by Academic Council			No. 67	Date	08-08-20	22				

Course Code		Course Title			L	Т	Р	С	
MAUE697J		Design Project						02	
Pre-requisite NIL		¥	<u></u>			Syllabus version			ion
							1.0)	
	se Objectivo								
1.	Students v	vill be able to design a pro	totype or pro	ocess or	experime	ents.			
2. Describe and demonstrate the techniques a				kills nece	essary for	r the p	roject	t.	
3.	Acquire kn	owledge and better under	standing of c	design sy	ystems.				
Cours	se Outcome	:							
 Develop new skills and demonstrate the ability to upgrade a prototype to a design prototype or working model or process or experiments. Utilize the techniques, skills, and modern tools necessary for the project. Synthesize knowledge and use insight and creativity to better understand and improve design systems. Publish the findings in the peer reviewed journals / National / Internationa Conferences. 									
3.	Synthesize improve de Publish th	e knowledge and use ir esign systems. ne findings in the peer	nsight and o	creativity	to bett	er un	dersta		
3. 4.	Synthesize improve de Publish th	e knowledge and use ir esign systems. ne findings in the peer	nsight and o	creativity journals	to bett	er [°] un onal /	dersta Inte	rnatio	onal
3. 4. <u>Modu</u> Stude	Synthesize improve de Publish th Conference Ie Content nts are ex ypes to des	e knowledge and use ir esign systems. ne findings in the peer	reviewed	creativity journals (Proje	to bett / Natic ct durati	er [°] un onal / <u>on: O</u> abilit	dersta Inte ne se	rnatio emes deve	onal ter) elop
3. 4. Modu Studer prototy proces Mode studer and p	Synthesize improve de Publish th Conference Ie Content Its are exp ypes to des ss. of Evaluation	e knowledge and use in esign systems. ne findings in the peer es. Dected to develop new ign prototype or working tion: Evaluation involves tered. Assessment on the ws – Presentation in the	skills and o skills and o models rela	creativity journals (Proje demonst ated to a views by Report to	to bett / Nation ct duration trate the an engine the fac be sub	er un onal / on: O abilit eering ulty w mitted	dersta Inte ne se y to prod	emes deve luct o hom	ter) elop br a
3. 4. Modu Studer prototy proces Mode studer and p Engine	Synthesize improve de Publish th Conference Ie Content Its are exp ypes to des ss. of Evaluat nt has regis roject review eering Tech	e knowledge and use in esign systems. ne findings in the peer es. bected to develop new ign prototype or working tion: Evaluation involves tered. Assessment on the ws – Presentation in the nology.	skills and o skills and o models rela	creativity journals (Proje demonst ated to a views by Report to	to bett / Nation ct duration trate the an engine the fac be sub	er un onal / on: O abilit eering ulty w mitted	dersta Inte ne se y to prod	emes deve luct o hom	ter) elop or a the

Cours	e Code		Course Title			L	т	Р	С	
MAUE698J		Interr	Internship I/ Dissertation I					10		
		NIL				Svll	abus	vers		
						<u> </u>	1.0			
Cours	e Objective	es:								
To pro	vide sufficie	ent hands-on learn	ing experience r	elated to t	the desig	n, dev	elopn	nent	and	
•		e product / process		ce the tec	hnical ski	ll sets	in the	e cho	sen	
field ar	nd also to gi	ive research orienta	ation.							
Cours	e Outcome	:								
1.	Consideral	bly more in-depth k	nowledge of the	major sub	ject/field o	of stuc	ły, inc	ludin	g	
	deeper insight into current research and development work.									
2.	•	ility to use a holistic	•		dently and	d crea	tively			
	identify, formulate and deal with complex issues.									
		isness of the ethica	•		•					
4.	4. Publications in the peer reviewed journals / International Conferences will be an									
	added adv	antage.								
Modul	e Content		(F	Project du	iration: o	ne se	mest	er)		
1.	 Dissertation may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities. 									
2.	2. Dissertation should be individual work.									
3.	Carried out inside or outside the university, in any relevant industry or research institution.									
4.	 Publications in the peer reviewed journals / International Conferences will be an added advantage. 									
Mode of Evaluation: Assessment on the project - Dissertation report to be submitted,										
presen	itation, proje	ect reviews and Fin	al Oral Viva Exa	mination.						
Recom	Recommended by Board of Studies 27-07-2022									
Approv	/ed by Acad	lemic Council	No. 67	Date	08-08-20)22				

Course Code		(Course Title			L	Т	Р	С	
MAUE699J		Internship II/ Dissertation II						12		
Pre-requisite		NIL				Syllabus version			ion	
Pre-requisite										
Cours	se Objective	es:								
To pro	ovide sufficie	ent hands-on learning	g experience r	elated to	the desigi	n, dev	elopn	nent	and	
analys	sis of suitabl	le product / process s	o as to enhan	ce the tec	hnical ski	ll sets	in the	e cho	sen	
field.										
Cours	se Outcome):								
		completion of this cou	rse students w	ill be able	to					
1.	Formulate	specific problem s	statements fo	r ill-defin	ed real	life p	roble	ms ۱	with	
	reasonable	e assumptions and co	nstraints.							
2.		Perform literature search and / or patent search in the area of interest.								
3.	Conduct e	experiments / Design	and Analysis	/ solution	iterations	and	docur	ment	the	
	results.									
4.	Perform error analysis / benchmarking / costing.									
5.	Synthesize	e the results and arrive	e at scientific c	onclusion	s / produc	cts / so	olutior	۱.		
6.	Document	the results in the form	n of technical r	eport / pre	esentation					
Modu	le Content			(Proj	ect durat	ion: o	ne se	mes	ter)	
 Dissertation may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities. Dissertation should be individual work. 										
3.										
	institution.									
4.										
added advantage.										
Mode of Evaluation: Assessment on the project - Dissertation report to be submitted,										
presentation, project reviews and Final Oral Viva Examination.										
Recor	mmended by	/ Board of Studies	27-07-2022							
Appro	ved by Acad	demic Council	No. 67	Date	08-08-20)22				