

SCHOOL OF ELECTRONICS ENGINEERING

M. Tech Nanotechnology

(M.Tech MNT)

Curriculum

(2019-2020 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research. MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

To be a leader by imparting in-depth knowledge in Electronics Engineering, nurturing engineers, technologists and researchers of highest competence, who would engage in sustainable development to cater the global needs of industry and society.

MISSION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

- Create and maintain an environment to excel in teaching, learning and applied research in the fields of electronics, communication engineering and allied disciplines which pioneer for sustainable growth.
- Equip our students with necessary knowledge and skills which enable them to be lifelong learners to solve practical problems and to improve the quality of human life.

M. Tech. Nanotechnology

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.

2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.

3. Graduates will function in their profession with social awareness and responsibility.

4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.

5. Graduates will be successful in pursuing higher studies in engineering or management.

6. Graduates will pursue career paths in teaching or research.

M. Tech Nanotechnology

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment

PO_03: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information

PO_04: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice

PO_05: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems

PO_06: Having adaptive thinking and adaptability in relation to environmental context and sustainable development

PO_07: Having a clear understanding of professional and ethical responsibility

PO_08: Having a good cognitive load management skills related to project management and financ

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (Nanotechnology) programme, graduates will be able to

PSO1: Evolving crucial understanding of Physics & Chemistry of solids, Quantum physics of nanostructures, Nano-electronics and Nano-photonics.

PSO2 : Concentrating on specific skills on Synthesis of nanomaterials, thin film deposition and their characterization.

PSO3: Solve research gaps and provide solutions to socio-economic, and environmental problems.

Category-wise Credit distribution

Category	Credits
University core (UC)	27
Programme core (PC)	19
Programme elective (PE)	18
University elective (UE)	6
Bridge course (BC)	
Total credits	70

Detailed curriculum

(as given in the student curriculum view – in the order of UC, UE, PC and PE). Courses need not be listed under UE.

University Core - 27 Credits

S.	Course Code	Course Title	L	Т	Ρ	J	C
No							
1.	MAT6001	Advanced Statistical	2	0	2	0	3
		Methods					
2.	ENG5001 and	Technical English I and	{0	0	2	0	2
	ENG5002	Technical English II	0	0	2	0}	
	(or) EFL5097	(or) Foreign Language	2	0	0	0	
3.	STS5001	Soft Skills	0	0	0	0	1
4.	STS5002	Soft Skills	0	0	0	0	1
5.	SET5001	SET Project-I	0	0	0	0	2
6.	SET5002	SET Project-II	0	0	0	0	2
7.	ECE6099	Master's Thesis	0	0	0	0	16

University Elective – 6 Credits

		-	L	J	U
1 University Ele	ctive [#] -	١	1	-	6

All courses offered by other M.Tech Programmes / PE of M.Tech (Nanotechnology)

Programme Core – 19 Credits

S. 0	Course Code	Course Title	L	T	Р	J	С
1	ECE5031	Quantum Physics for Nanostructures	2	0	0	0	2
2	ECE5032	Physics and Chemistry of Solids	2	0	0	0	2
3	ECE5033	Synthesis of Nanomaterials and Thin Film Deposition	2	0	2	4	4
4	ECE 5034	Nanomaterial Characterization Techniques	3	0	2	0	4
5	ECE 6032	Nanoelectronics	2	0	2	4	4
6	ECE 6033	Nanophotonics	3	0	0	0	3

Programme Electives - 18 Credits

S.N	Course	Course Title	т	т	р	т	C
0	Code	Course ritte	L	T	T	J	C
1	ECE 5035	Semiconductor Device Physics and Technology	2	0	0	4	3
2	ECE5036	MEMS to NEMS	2	0	0	4	3
4	ECE 5037	Nanosensors	3	0	0	0	3
5	ECE 5038	Carbon Nanomaterials	3	0	0	0	3
6	ECE 5039	Lithographic Techniques for Device Fabrication	3	0	0	0	3
7	ECE 5040	Plasmonics	2	0	0	4	3
8	ECE 6031	Nanomagnetism- Fundamentals and Applications	3	0	0	0	3
9	ECE 6034	Energy Technologies	3	0	0	0	3
10	ECE 6035	Spintronics	2	0	0	4	3
11	ECE6039	Nanoelectronic Circuit Design	3	0	0	0	3

Syllabus

Course Code		Course Title			PJ	С
MAT600	01	ADVANCED STATISTICAL METHODS		2 0	20	3
Pre-requisite	e 1	nil	Syllabus	versio	n	
						2.0
Course Obje	ectives:					
 To provid in variou To analys To apply making u Expected Coon Under Analy Interp proble Perfori description 	de stude de stude se distrif estimat using van ourse Ou rstand th vze data oret and em rm large val for a ibe and noise, s	Ints with a framework that will help them choose the appropri- nalysis situations. butions and relationships of real-time data. ion and testing methods to make inference and modelling tec- rious techniques including multivariate analysis. Intermet we value of statistics as a discipline and its relevance for Engin- using appropriate graphical methods and numerical summari- communicate the outcomes of estimation and hypothesis te e sample test and small sample testing of Hypothesis as wel- population parameter for real time data. verify mathematical considerations for analyzing time series stationarity, auto-covariance, autocorrelation ; apply various ding the regression with ARMA models	iate descrip chniques for neering es ests in the c ll as calcul es, includir techniques	context ate cor of tim	on of a fide cepta	a ence s of
Module:1	Basic St	atistical Tools for Analysis:			4 ha	bur
Multiple Corr Regression D	relation, Diagnosti	Fitting of simple and Multiple Linear regression, Explanation	on and Assu	mptior	is of	
Module:2	Statistic	al inference :			9 ha	ours
Basic Concep tests for Mear Variances, Cl	ots, Norr ns and P hi-squar	nal distribution-Area properties, Steps in tests of significance Proportions, Small sample tests –t-test for Means, F test for E e test for independence of Attributes.	e –large san quality of	nple tes	sts-Z	
Module:3	Modelli	ng and Forecasting Methods:			9 ha	ours
Introduction: Smoothing, I Moving Aver Probability I	Concep Linear a rages, Fo models f	ot of Linear and Non Liner Forecasting model ,Concepts and Compound Growth model, Fitting of Logistic curve precasting accuracy tests. for time series: Concepts of AR, ARMA and ARIMA model	s of Trend and their ls.	, Expo Applic	nen	tial ns,
Module:4 I	Design o	of Experiments:			6 ha	ours
Analysis of v	ariance	- one and two way classifications – Principle of design of ex	periments.	CRD -		
RBD – LSD,	Concep	ts of 22 and 23 factorial experiments	1			
Module:5	Conten	nporary issues:			2 ho	ours
Lecture by In	dustry E	Experts				
-	-					

Tot	al Lecture hours:		30 hours
Tex	t Book(s)		
1.	Applied Statistics and Probability for Engineers, 6ed, (2016),Douglas C. Montg C. Runger, John Wiley & Sons	omery G	eorge
2	Time Series Analysis and Its Applications With R Examples (2017), by Shumw Stoffer, David S. Springer publications	ay, Robe	ert H.,
Ref	erence Books		
1.	The Elements of Statistical Learning: Data Mining, Inference, and Prediction, S (Springer Series in Statistics)(2017), by Trevor Hastie and Robert Tibshirani	econd Ec	lition
2	Introduction to Probability and Statistics: Principles and Applications for Engine Computing Sciences(2017), Mc.Grawhill education by J. Susan Milton and Jess	eering an e Arnold	ld the
Mo	de of Evaluation		
	Digital Assignments, Quiz, Continuous Assessments, Final Assessment 7	ſest	
List	of Challenging Experiments (Indicative)		
1.	Computing Summary Statistics using real time data		2 hours
2	plotting and visualizing data using Tabulation and Graphical Representations.		2 hours
3	Applying simple linear and multiple linear regression models to real dataset; computing and interpreting the coefficient of determination for scale data.		2 hours
4.	Testing of hypothesis for Large sample tests for real-time problems.		2 hours
5.	Testing of hypothesis for Small sample tests for One and Two Sample mean a paired comparison (Pre-test and Post-test)	nd	2 hours
6.	Testing of hypothesis for Small Sample tests for F-test		2 hours
7	Testing of hypothesis for Small Sample tests for Chi-square test		2 hours
8	Applying Time series analysis-Trends. Growth ,Logistic, Exponential models		2 hours
9	Applying Time series model AR ,ARMA and ARIMA and testing Forecasting accuracy tests.	r >	2 hours
10	Performing ANOVA (one-way and two-way), CRD, RBD and LSD for real dataset.		2 hours
11	Performing 22 factorial experiments with real time Applications		2 hours
12	Performing 23 factorial experiments with real time Applications		2 hours
	Total Laboratory	/ Hours	24 hours
Mo	de of Evaluation	L	

Weekly Assessments, Final Assessment Test						
Recommended by Board of Studies	11-08-2017					
Approved by Academic Council	No.46	Date	24-08-17			

Course code	Course title	L T P J C					
ENG5001	Fundamentals of Communication Skills	0 0 2 0 1					
Pre-requisite	Not cleared EPT (English Proficiency Test)	Syllabus version					
		1.0					
Course Objectives	5:						
1. To enable learne	rs learn basic communication skills - Listening, Speaking, Re	ading and Writing					
2. To help learners	apply effective communication in social and academic contex	xt					
3. To make student	is comprehend complex English language through listening ar	id reading					
Expected Course	Outcome:						
1. Enhance the liste	ening and comprehending skills of the learners						
2.Acquire speaking	g skills to express their thoughts freely and fluently						
3.Learn strategies f	or effective reading						
4. Write grammatic	al correct sentences in general and academic writing						
5. Develop technic	al writing skills like writing instructions, transcoding etc.,						
		0.1					
Module:1 Listen	ling	8 hours					
Understanding Cor	iversation						
Listening to Speech	hes Guide and the second						
Listening for Speci	tic Information						
Module:2 Speak	ing	4 hours					
Exchanging Inform	nation						
Describing Activiti	es, Events and Quantity						
Module:3 Read	ing	6 hours					
Identifying Informa	ation						
Inferring Meaning							
Interpreting text	~						
Module:4 Writin	ng: Sentence	8hours					
Basic Sentence Str	ucture						
Connectives	~						
Transformation of	Sentences						
Synthesis of Senter	nces						
Module:5 Writin	ng: Discourse	4hours					
Instructions							
Paragraph							
Transcoding							
		20 h					
Total Lasture hav		30 nours					
Total Lecture nou	ITS:						
1 Dedator Chu	is Thereas Clamentage and Cillia Countingham Fa	a fa a Umman					
I. Redston, Chi	Tis, Theresa Clementson, and Gline Cunningnam. Fac	ceziace Opper					
Deference Deel-	nuueni s book. 2015, Cantoriuge University Press.						
1 Chris Juzzwielz	Stanning Stanger A guided annroach to writing contanges on	d Dorographs					
Chris Juzwiak .Stepping Stones: A guided approach to writing sentences and Paragraphs							
(Second Edition), 2012, Library of Congress.							
2. Uniford A whiteomb & Leslie E whiteomb, Effective Interpersonal and Team Communication Skills for Engineers, 2013, John Wildy, & Song, Inc., Hobeken, New Jarsey							
3 ArunDatil U	ank Fiikman & Ena Bhattacharva Naw Madia Commun	ication Skills for					
J. Alunrath, He	nk Eijkman œEna Dhattacharya, New Weuta Commun	ication Skills 101					

			1 DA					
	Engineers and IT Professionals, 2012, IGI Global, Hershey PA.							
4.	Judi Brownell, Listening: Attitudes, Principles and Skills, 2016, 5 th Edition, Routledge:USA							
5.	John Langan, Ten Steps to Impro	ving College Rea	ading Skills	s, 2014, 6^{m} Ed	ition, Townsend			
	Press:USA							
6.	Redston, Chris, Theresa Clements	on, and Gillie Cu	ınningham.	Face2face Upp	per Intermediate			
	Teacher's Book. 2013, Cambridge	University Press.						
	Authors, book title, year of publica	tion, edition num	ber, press,	place				
Mod	le of Evaluation: CAT / Assignmen	t / Quiz / FAT / F	Project / Sei	ninar				
			5					
List	of Challenging Experiments (Inc	licative)						
1.	Familiarizing students to adjective	es through brains	torming adj	ectives with	2 hours			
	all letters of the English alphabet	and asking them	to add an ac	ljective that				
	starts with the first letter of their r	name as a prefix.						
2	Malaina atau dan ta idan tifa dhaina a		<u>Clauitan an d</u>	X7 - 1	4 1			
2.	Making students identify their pee	er who lack Pace,	Clarity and	volume	4 nours			
	during presentation and respond u	ising Symbols.						
3	Using Picture as a tool to enhance	learners speakin	g and writin	ng skills	2 hours			
5.		fied ners speaking	5 und writin	ig skills	2 110015			
4.	Using Music and Songs as tools t	o enhance pronui	nciation in t	he target	2 hours			
	language / Activities through VIT	Community Rad	io	-				
5.	Making students upload their Self	- introduction vic	leos in Vim	eo.com	4 hours			
6.	Brainstorming idiomatic expression	ons and making th	nem use the	se in to their	4 hours			
	writings and day to day conversat	ion						
7.	Making students Narrate events b	y adding more de	scriptive ad	ljectives and	4 hours			
	add flavor to their language / Acti	vities through VI	T Commun	ity Radio				
8	Identifying the root cause of stage	e fear in learners a	and providin	ng remedies	4 hours			
	to make their presentation better							
9	Identifying common Spelling & S	entence errors in	Letter Writ	ing and other	2 hours			
	day to day conversations							
10.	Discussing FAQ's in interviews w	with answers so th	at the learn	er gets a	2 hours			
	better insight in to interviews / Ac	tivities through V	/IT Commu	inity Radio				
	Total Practical Hours 30 hours							
Mode of evaluation: Online Quizzes, Presentation, Role play, Group Discussions, Assignments,								
Mini Project								
Recommended by Board of Studies 22-07-2017								
App	Approved by Academic CouncilNo. 46Date24-8-2017							

Course code		Course title	L T P J C
ENG5002		Professional and Communication Skills	0 0 2 0 1
Pre-requisite		ENG5001	Syllabus version
			1.1
Course Object	ctives	:	
1. To enable s	tuden	ts to develop effective Language and Communication Skills	
2. To enhance	stud	ents' Personal and Professional skills	
3. To equip th	e stuc	lents to create an active digital footprint	
		-	
Expected Con	urse (Dutcome:	
1. Improve in	nter-p	ersonal communication skills	
2. Develop p	roble	m solving and negotiation skills	
3. Learn the	styles	and mechanics of writing research reports	
4. Cultivate	better	public speaking and presentation skills	
5. Apply the	acqui	ired skills and excel in a professional environment	
Module:1	Pers	onal Interaction	2hours
Introducing O	neseli	t- one's career goals	
Activity: SWO	DT A	nalysis	
		· · · · · · · · · · · · · · · · · · ·	
Module:2	Inter	rpersonal Interaction	2 hours
Interpersonal	Comr	nunication with the team leader and colleagues at the workpl	ace
A ativitan Dala	Dlar	a / Mirra a / Slait	
Activity: Kole	Plays	s/Mime/Skit	
Module:3	Soci	al Interaction	2 hours
Use of Social	Medi	a. Social Networking gender challenges	
Activity: Crea	ting I	inkedIn profile blogs	
	uiiig i		
Module:4	Résu	ımé Writing	4 hours
			inouis
Identifying jo	b requ	irement and key skills	
Activity: Prep	are ar	n Electronic Résumé	
	-		
Module:5	Inter	rview Skills	4 hours
Placement/Job	o Inter	rview, Group Discussions	I
Activity: Moc	k Inte	erview and mock group discussion	
Module:6	Repo	ort Writing	4 hours
Language and	Mec	hanics of Writing	
Activity: Writ	ing a	Report	
	u		
Module:7	Stud	y Skills: Note making	2hours
Summarizing	the re	port	
Activity: Abst	tract.	Executive Summary, Synopsis	
	7	J/ J 1	

Mod	lule:8	Interpreting skills	2 hours
Inter	pret data	in tables and graphs	
Activ	vity: Trai	ascoding	
Mod	lule:9	Presentation Skills	4 hours
Oral	Presenta	tion using Digital Tools	
A			
Activ	vity: Ora	presentation on the given topic using appropriate non-verbal cues	
Mod	lule:10	Problem Solving Skills	4 hours
Prob	lem Solv	ing & Conflict Resolution	
Actr	vity: Case	e Analysis of a Challenging Scenario	201
		Total Lactura hours	SUNOURS
Tort	Dealr(a)	Total Lecture nours.	
Text	Bhatnac	ar Nitin and Mamta Bhatnagar, Communicative English For Enginee	rs And
	Professi	onals, 2010. Dorling Kindersley (India) Pyt. Ltd.	
Refe	rence Bo	ooks	
	Jon Kir	kman and Christopher Turk, Effective Writing: Improving Scientific,	Technical and
	Busines	s Communication, 2015, Routledge	
	Diana E	Bairaktarova and Michele Eodice, Creative Ways of Knowing in Eng	gineering, 2017,
	Springe	r International Publishing	
	Clifford	A Whitcomb & Leslie E Whitcomb. Effective Interpersor	al and Team
	Commu	nication Skills for Engineers, 2013, John Wiley & Sons, Inc., Hoboke	en: New Jersey.
			-
	ArunPa	til, Henk Eijkman & Ena Bhattacharya, New Media Communica	tion Skills for
	Enginee	ers and IT Professionals, 2012, IGI Global, Hershey PA.	
Mod	e of Eval	uation: CAT / Assignment / Quiz / FAT / Project / Seminar	
widu		daton. CAT / Assignment / Quiz / TAT / Troject / Seminar	
List	of Chall	enging Experiments (Indicative)	
1.	SWOT	Analysis – Focus specially on describing two strengths and two	2 hours
	weakne	SSES	
2.	Role Pla	ays/Mime/Skit Workplace Situations	4 hours
3.	Use of S	Social Media – Create a LinkedIn Profile and also write a page or	2 hours
	two on	areas of interest	
	-		
4.	Prepare	an Electronic Résumé and upload the same in vimeo	2 hours
5.	Group of	liscussion on latest topics	4 hours
6	Report	Writing – Real-time reports	2 hours
7	Writing	an Abstract, Executive Summary on short scientific or research	4 hours
0	articles	ding Interment the given areas about or discusses	2 hours
Ŏ	1 ransco	ung – merpret me given graph, chart or magram	∠ nours

9	4 hours						
10	4 hours						
	30 hours						
Mod	le of evaluation: : Online Quizzes,	Presentation, Role	play, Gro	up Discussions,	Assignments,		
Mini	i Project						
Recommended by Board of Studies 22-07-2017							
App	Approved by Academic CouncilNo. 47Date05-10-2017						

Course code	Course Title L T									
GER5001	Deutsch für Anfänger									
Pre-requisite	NIL	Syllabus version								
		v.1								
Course Objectives	· · · · · · · · · · · · · · · · · · ·									
The course gives st	udents the necessary background to:									
1. enable stud	ents to read and communicate in German in their day to day	ife								
2. become ind	ustry-ready									
3. make them	understand the usage of grammar in the German Language									
	understand the usage of granning in the Commun Dangauger									
Expected Course	Outcome									
The students will b	e able to									
1 arouto the basics	of Cormon language in their day to day life									
2 understand the ac	or Oerman language in their day to day life.									
2. understand the co	injugation of different forms of the Neural and apply articles appr									
5. understand the ru	he to identify the gender of the Nouns and apply articles apply	opriatery.								
4. apply the German	f language skin in writing corresponding letters, E-Mans etc.	and To from a								
5.create the talent of	of translating passages from English-German and vice versa a	ind to frame								
simple dialogues ba	ased on given situations.									
Module:1		3 hours								
Einleitung, Begrüs	sungsformen, Landeskunde, Alphabet, Personalpronomen,	Verb Konjugation,								
Zahlen (1-100), W-	-fragen, Aussagesätze, Nomen – Singular und Plural									
Lernziel:										
Elementares Verst	ändnis von Deutsch, Genus- Artikelwörter									
Module:2		3 hours								
Koniugation der V	erben (regelmässig /unregelmässig) die Monate, die Wochent	age. Hobbys.								
Berufe. Jahreszeite	n. Artikel. Zahlen (Hundert bis eine Million). Ja-/Nein- Frag	e. Imperativ mit								
Sie	, , (· · · · ·								
Lernziel :										
Sätze schreiben, üb	er Hobbys erzählen, über Berufe sprechen usw.									
,										
Module:3		4 hours								
Possessivpronomer	Negation Kasus- AkkusatityundDatiy (bestimmter un	vestimmter Artikel)								
tronnnhoro vorbon	Modelverben Adjektive Ubrzeit Prönesitionen Mehlze	itan Labanamittal								
Ceträulte	Modalverben, Aujektive, Onizen, Frapositionen, Manize	iteli, Lebelisiinittei,								
Getranke										
Lernziel :										
Sätze mit Modalve	rben, Verwendung von Artikel, über Länder und Sprachen	sprechen, über eine								
Wohnung beschrei	ben.									
Module:4		6 hours								
Übersetzungen : (E	Deutsch – Englisch / Englisch – Deutsch)									
Lernziel :										
Grammatik – Wort	schatz – Übung									
	-									
Module:5		5 hours								
Leseverständnis.M	indmap machen, Korrespondenz- Briefe. Postkarten. E-Mail	I								
Lernziel :										
										

Wortschatzbildung und aktiver Sprach gebrauch

Module:6

Aufsätze :

Meine Universität, Das Essen, mein Freund oder meine Freundin, meine Familie, ein Fest in Deutschland usw

Module:7

Dialoge:

- a) Gespräche mit Familienmitgliedern, Am Bahnhof,
- b) Gespräche beim Einkaufen ; in einem Supermarkt ; in einer Buchhandlung ;
- c) in einem Hotel an der Rezeption ;ein Termin beim Arzt.

Treffen im Cafe

Module:8

Guest Lectures/Native Speakers / Feinheiten der deutschen Sprache, Basisinformation über die deutschsprachigen Länder

Total Lecture hours:30

30 hours

2 hours

3 hours

4 hours

Text Book(s)

1.	Studio d A	41	Deutsch	als	Fremdsprache,	Hermann	Funk,	Christina	Kuhn,	Silke
	Demme : 2	012	2							
Ref	erence Book	s								

1101	
1	Netzwerk Deutsch als Fremdsprache A1, Stefanie Dengler, Paul Rusch, Helen Schmtiz, Tanja
	Sieber, 2013

2 Lagune ,Hartmut Aufderstrasse, Jutta Müller, Thomas Storz, 2012.

3 Deutsche SprachlehrefürAUsländer, Heinz Griesbach, Dora Schulz, 2011

4	ThemenAktuell 1, HartmurtAufderstrasse, Heiko Bock, MechthildGerdes, Jutta Müller und
	Helmut Müller, 2010
	www.goethe.de

wirtschaftsdeutsch.de
hueber.de

klett-sprachen.de

www.deutschtraning.org

Mode of Evaluation: CAT / Assignment / Quiz / Seminar / FAT						
Recommended by Board of Studies	04-03-2016					
Approved by Academic Council	41	Date	17-06-2016			

Course cod	e	Course Title				
FRE5001		FRANCAIS FONCTIONNEL	2 0 0 0 2			
Pre-requisite		Nil Sy	labus version			
			1.0			
Course Objec	tives	:				
The course giv	ves st	udents the necessary background to:				
1. demons	strate	e competence in reading, writing, and speaking basic Fren	ch, including			
knowle	edge	of vocabulary (related to profession, emotions, food	, workplace,			
sports/l	hobb	ies, classroom and family).				
2. achieve	e pro	ficiency in French culture oriented view point.				
Expected Cou	irse (Jutcome:				
1 remember 1	VIII D bor ti	e able 10 na daily life communicative situations via personal pronouns, emi	abatic			
r. remem	ne e	alutations negations interrogations etc	matic			
2 create o	comr	nunicative skill effectively in French language via regular / irregu	lar verbs			
3. demons	strate	comprehension of the spoken / written language in translating si	mple			
sentenc	ces.		F			
4. underst	tand	and demonstrate the comprehension of some particular new range	of unseen			
written	mat	erials.				
5. demons	strate	e a clear understanding of the French culture through the language	studied.			
Module:1 S	aluer	, Se présenter, Etablir des contacts	3 hours			
Les Salutations	s, Le	s nombres (1-100), Les jours de la semaine, Les mois de l'année	, Les Pronoms			
Sujets, Les Pro	onon	ns Toniques, La conjugaison des verbes réguliers, La conjugais	on des verbes			
irreguliers- avo	01r / 0	etre / aller / venir / faire etc.				
Modulo 2 D	rása	ntor qualqu'un Charabar un(a) aarraspondant(a) Domanda	3 hours			
	es no	uvelles d'une personne	5 110015			
	cs in	avenes a une personne.				
La con	jugai	son des verbes Pronominaux, La	Négation,			
L'interrogation	n ave	c 'Est-ce que ou sans Est-ce que'.	C A			
		A A				
Module:3 S	ituer	un objet ou un lieu, Poser des questions	4 hours			
L'article (défin	ni/ ir	défini), Les prépositions (à/en/au/aux/sur/dans/avec etc.), L'art	icle contracté,			
Les heures en	ı fra	nçais, La Nationalité du Pays, L'adjectif (La Couleur, l'adje	ctif possessif,			
l'adjectif dém	onsti	ratif/ l'adjectif interrogatif (quel/quelles/quelle/quelles),	L'accord des			
adjectifs avec	le no	m, L'interrogation avec Comment/ Combien / Où etc.,				
Module:4 F	aire	des achats, Comprendre un texte court, Demander et	t 6 hours			
in	ndiqu	ier le chemin.				
La traduction s	simp	e :(français-anglais / anglais –français)				
Module:5	rouv	er les questions, Répondre aux questions générales en	5 hours			
I conticle Dent:	rança	IIS. Mottag las phrasas our physicle. Esites une phrase such las	mote dorate			
E article Parti	ull, l	vienez les phrases aux plurieis, faites une phrase avec les	mots donnes,			
Exprimez les p	mras	es donnees au mascunn ou reminin, Associez les phrases.				

Mo	dule:6	Comment ecrire un pass	age			3 hours			
Déc	crivez :	-							
La	Famille /	La Maison, /L'université /I	Les Loisirs/ La Vie	e quotidien	ne etc.				
Mo	dule:7	Comment ecrire un dialo	ogue			4 hours			
Dia	logue:								
	d) Rése	erver un billet de train							
	e) Entr	e deux amis qui se rencontr	ent au café						
	f) Parn	ni les membres de la famille	2						
	g) Ent	re le client et le médecin							
N	1 1 0	T	1			21			
NIO	dule:8	Invited Talk: Native spe	eakers			2 hours			
				Tote	I Lactura hours.	30 hours			
				1010	ii Lecture nours.	50 110015			
Tor	t Rook	a)							
1	Echo-1	9) Méthode de français, I. Gi	rardet I Pécheur	Publisher	CLE International	Paris 2010			
2	Echo-1	Cahier d'exercices I Gira	rdet I Pécheur I	, i donsner Publisher (<u>LE International</u>	Paris 2010.			
- Ref	erence l	, earlier a exercices, s. one Books		uonisiiei e		uns 2010.			
1.	CONN	EXIONS 1, Méthode de fra	nçais, Régine Mé	rieux, Yve	s Loiseau,Les Éditi	ons Didier,			
	2004.		, C						
2	CONN	EXIONS 1, Le cahier d'exe	ercices, Régine M	érieux, Yv	es Loiseau, Les Éd	itions			
	Didier,	2004.							
3	ALTE	R EGO 1, Méthode de franç	cais, Annie Berthe	t, Catherin	e Hugo, Véronique	e M.			
	Kiziria	n, Béatrix Sampsonis, Moni	ique Waendendrie	s , Hachett	e livre 2006.				
Mo	de of \overline{Ev}	aluation: CAT / Assignmen	t / Quiz / Seminar	/ FAT					
Rec	ommend	led by Board of Studies	26.02.2016		Γ				
App	proved b	y Academic Council	No.41	Date	17-06-2016				
					1				

Course code	Course code Course Title		L	Т	Р	J	С			
SET 5001	SCIENCE ENGINEERING AND TECHNOLOGY		0	0	0	0	2			
511 5001	PROJECT_ I		U	v	v	v	-			
Dre requisite										
Anti requisite		Byl	lan	19	V CI	1	10			
							.10			
Course Objectives	•									
To provide of	opportunity to involve in research related to science / engineer	ring								
 To inculcate 	e research culture									
 To enhance 	the rational and innovative thinking capabilities									
Expected Course (Jutcomo									
On completion of th	nic course, the student should be able to:									
	lis course, the student should be able to.									
1. Identify pro	blems that have relevance to societal / industrial needs									
2. Exhibit inde	pendent thinking and analysis skills									
3. Demonstrate	e the application of relevant science / engineering principles									
Modalities / Requi	rements									
1. Individual o	r group projects can be taken up									
2. Involve in li	terature survey in the chosen field									
3. Use Science	/Engineering principles to solve identified issues									
4. Adopt relev	ant and well-defined / innovative methodologies to fulfill the	spec	ifie	d ol	bjec	tiv	/e			
5. Submission	of scientific report in a specified format (after plagiarism chee	ck)								
Student Assessmen	nt : Periodical reviews, oral/poster presentation									
Recommended by H	Recommended by Board of Studies 17-08-2017									

Recommended by Board of Studies	17-08-2017		
Approved by Academic Council	No. 47	Date	05-10-2017

Course code		Course Title				L	Т	Р	J	С
SET 5002	SCIENCE EN	CINEEDINC AN	п теси			0	Δ	0	0	2
SE1 5002	SCIENCE, EN	PROIFCT_I	Τ	NOLOGI		U	U	v	v	4
Pre-requisite		I KOJECI-I	.1		Svll	ahu	16 1	Ver	sin	n
Anti-requisite					byn	uvu	1.5	V CI	1	10
Course Objectives	•								-	
1 To provi	• ide opportunity to inv	olve in research re	elated to so	ience / engi	neeri	nσ				
2 To incul	cate research culture					115				
3 To enha	nce the rational and i	nnovative thinking	canabiliti	26						
5. 10 cilita	nee the rational and h		, cupuonni							
Expected Course (Dutcome:									
On completion of the	his course, the studen	t should be able to	•							
on completion of th	ns course, the studen		•							
1. Identify pro	oblems that have rele	vance to societal /	industrial	needs						
2. Exhibit ind	ependent thinking an	d analysis skills								
3. Demonstra	te the application of 1	elevant science / e	ngineering	principles						
Modalities / Requi	rements									
1. Individu	al or group projects c	an be taken up								
2. Involve	in literature survey in	the chosen field								
3. Use Scie	ence/Engineering prir	nciples to solve ide	ntified issu	ies						
4. Adopt r	elevant and well-de	efined / innovativ	e method	ologies to	fulfil	l tł	ne	spe	cif	fied
objective	e									
5. Submiss	ion of scientific repo	rt in a specified for	rmat (after	plagiarism	check	()				
Student Assessmer	nt : Periodical review	s, oral/poster pres	entation							
Recommended by H	Board of Studies	17-08-2017								
Approved by Acade	emic Council	No. 47	Date	05-10-201	17					

Course code Course Title L T P J							
STS 5001		Essentials of Business Etiquette and problem solving	3 0 0 0 1				
Pre-requisi	te	None	Syllabus version				
-							
Course Ob	jectives	:					
1. To d	levelop	the students' logical thinking skills					
2. To le	earn the	strategies of solving quantitative ability problems					
3. To e	nrich th	ne verbal ability of the students					
4. To e	nhance	critical thinking and innovative skills					
Expected C	<u>course</u>	Dutcome:	.1 1				
I. Enat	oling stu	idents to use relevant aptitude and appropriate language to ex	press themselves				
2. 10 c	ommun	incate the message to the target audience clearly	1 1 1 1 1 1 1 1				
3. The	student	s will be able to be proficient in solving quantitative aptitude	and verbal ability				
ques	tions of	various examinations enormessiy					
Module 1	Rusin	ess Etiquette: Social and Cultural Etiquette and Writing	9 hours				
mouule.1	Com	any Blogs and Internal Communications and Planning a	ad a local s				
	Witt	any blogs and internal communications and rianning a	iu .				
	VV FILL	ng press release and meeting notes					
Value, Man	ners, Ci	stoms, Language, Tradition, Building a blog, Developing bra	and message,				
FAQs', Asse	essing C	Competition, Open and objective Communication, Two way d	lialogue,				
Understandi	ing the	audience, Identifying, Gathering Information, Analysis, Deter	rmining, selecting				
plan, Progre	ess chec	k, Types of planning, Write a short, catchy headline, Get to t	he Point –				
summarize	your su	bject in the first paragraph., Body – Make it relevant to your	audience,				
Module:2	Study	skills – Time management skills	3 hours				
Prioritizatio	n, Proc	rastination, Scheduling, Multitasking, Monitoring, working u	under pressure and				
adhering to	deadlin	es					
	· _						
Module:3	Prese	ntation skills – Preparing presentation and Organizing	7 hours				
	mater	ials and Maintaining and preparing visual aids and Deali	ng				
	with o	luestions					
10 Time to		Descendent and states Oralizing the content Descine the I	Zlasseta w Trast. Dlass				
10 Tips to p	nepare	rowerpoint presentation, Outlining the content, Passing the re-	f Color Stratogia				
sky unikin	ig, iiii Imnoi	tance and types of visual aids. Animation to captivate your a	udiance Design of				
presentation	ting of	take and types of visual ands, Annuation to capity at your a	in control of the				
questions H	posicis, setting out the ground rules, Dealing with interruptions, Staying in control of the						
Module:4	Module:4 Ouantitative Ability -L1 – Number properties and Averages and 11 hou						
	Progr	essions and Percentages and Ratios					
	8	······································					
Number of	factors	s, Factorials, Remainder Theorem, Unit digit position, Te	ens digit position,				
Averages,	Averages, Weighted Average, Arithmetic Progression, Geometric Progression, Harmonic						
Progression	, Increa	se & Decrease or successive increase, Types of ratios and pro	oportions				

Mo	dule:5	Reasoning Ability-L1 – Analytical Reasoning	8 hours			
Dat Ord	Data Arrangement (Linear and circular & Cross Variable Relationship), Blood Relations, Ordering/ranking/grouping, Puzzle test, Selection Decision table					
Мо	dule:6	Verbal Ability-L1 – Vocabulary Building	7 hours			
Sy co	nonyms mpletion	& Antonyms, One-word substitutes, Word Pairs, Spellings, Idioms, Sent , Analogies	ence			
		Total Lecture hours:	45 hours			
Ref	erence l	Books				
1.	Kerry F Tools f	Patterson, Joseph Grenny, Ron McMillan, Al Switzler (2001) Crucial Cor for Talking When Stakes are High. Bangalore. McGraw-Hill Contempora	iversations: ry			
2.	Dale C Books	arnegie, (1936) How to Win Friends and Influence People. New Yo	rk. Gallery			
3.	Scott P	eck. M (1978) Road Less Travelled. New York City. M. Scott Peck.				
4.	FACE	(2016) Aptipedia Aptitude Encyclopedia. Delhi. Wiley publications				
5.	ETHN	US (2013) Aptimithra. Bangalore. McGraw-Hill Education Pvt. Ltd.				
We	bsites:					
1.	www.c	halkstreet.com				
2.	www.s	killsyouneed.com				
3.	www.n	nindtools.com				
4.	www.tl	<u>nebalance.com</u>				
5.	www.e	<u>guru.000</u>				
Mo 3 A	Mode of Evaluation: FAT, Assignments, Projects, Case studies, Role plays, 3 Assessments with Term End FAT (Computer Based Test)					

Course code	Course code Course Title L T P J				
STS 5002	Preparing for Industry	3 0 0 0 1			
Pre-requisite	None S	yllabus version			
		1			
Course	1. To challenge students to explore their problem-solving	SK1llS			
Objectives:	2. To develop essential skills to tackle advance quantitativ	ve and verbal			
	3 To have working knowledge of communicating in Eng	lish			
	5. To have working knowledge of communicating in Eng	11511			
Expected Course	1. Enabling students to simplify, evaluate, analyze and us	e functions and			
Outcome:	expressions to simulate real situations to be industry re	ady.			
	2. The students will be able to interact confidently and use decision making				
	models effectively				
	3. The students will be able to be proficient in solving qu	antitative			
	aptitude and verbal ability questions of various examin	ations			
	enortiessiy				
Module 1	Interview skills – Types of interview and Techniques to	3 hours			
Wibuuie.1	5 110015				
	face remote interviews and wlock interview				
Structured and unst	ructured interview orientation, Closed questions and hypothetic	al questions,			
Interviewers' persp	ective, Questions to ask/not ask during an interview, Video inte	rview			
Recorded feedback	, Phone interview preparation, Tips to customize preparation for	personal			
interview, Practice	rounds				
Madada 2		2 h			
Module:2	kesume skins – kesume remplate and Use of power	2 nours			
	verbs and Types of resume and Customizing resume				
Structure of a stand	dard resume, Content, color, font, Introduction to Power verba	s and Write up,			
Quiz on types of	resume, Frequent mistakes in customizing resume, Layout -	Understanding			
different company's	s requirement, Digitizing career portfolio				
Modulo-3	Emotional Intelligence - I.1 Transactional Analysis and	12 hours			
Wiouule.5	Proin storming and Baychometric Analysis and Dabus	12 110015			
	Duralog/Droblom Solving				
	r uzzles/r roblem Solving				
Introduction, Con	tracting, ego states, Life positions, Individual Brainsto	orming, Group			
Brainstorming, Ste	pladder Technique, Brain writing, Crawford's Slip writing app	proach, Reverse			
brainstorming, Sta	r bursting, Charlette procedure, Round robin brainstormin	ng, Skill Test,			
Personality Test, M	Personality Test, More than one answer, Unique ways				
Module:4	Quantitative Ability-L3 – Permutation-Combinations	14 hours			
	and Probability and Geometry and mensuration and				
	Trigonometry and Logarithms and Functions and				
	Quadratic Equations and Set Theory				
Counting Grouping	 ng Linear Arrangement Circular Arrangements Condition	 Drobability			
Independent and D	energent Events Properties of Polygon 2D & 3D Figures At	ea & Volumes			
Heights and distant	ces. Simple trigonometric functions. Introduction to logarithms	Basic rules of			

logarithms, Introduction to functions, Basic rules of functions, Understanding Quadratic					
Equations, Rules &	probabilities of Quadratic Equations, Basic concepts of Venn D	iagram			
Module:5	Reasoning ability $J_3 - J_0$ original reasoning and Data	7 hours			
Woulde	Analysis and Interpretation	/ Hours			
Syllogisms, Binary logic, Sequential output tracing, Crypto arithmetic, Data Sufficiency, Data interpretation-Advanced, Interpretation tables, pie charts & bar chats					
Module:6	Verbal Ability-L3 – Comprehension and Logic	7 hours			
Reading compreher Assumption & Infe	nsion, Para Jumbles, Critical Reasoning (a) Premise and Conclus rence, (c) Strengthening & Weakening an Argument	ion, (b)			
Total Lecture hour	rs:	45 hours			
References	 Michael Farra and JIST Editors(2011) Quick Resume & Book: Write and Use an Effective Resume in Just One Paul, Minnesota. Jist Works Daniel Flage Ph.D(2003) The Art of Questioning: An In Critical Thinking. London. Pearson FACE(2016) Aptipedia Aptitude Encyclopedia.Delhi. V publications 	& Cover Letter Day. Saint ntroduction to Wiley			
Mode of Evaluation : FAT, Assignments, Projects, Case studies, Role plays, 3 Assessments with Term End FAT (Computer Based Test)					

Course Title	Course Title			Т	Р	J	С
ECE6099	Masters Thesis	()	0	0	0	16
Pre-requisite	As per the academic regulations		S	yllal	bus	vers	sion
		1.0					

Course Objectives:

To provide sufficient hands-on learning experience related to the design, development and analysis of suitable product / process so as to enhance the technical skill sets in the chosen field.

Expected Course Outcome:

At the end of the course the student will be able to

- 1. Formulate specific problem statements for ill-defined real life problems with reasonable assumptions and constraints.
- 2. Perform literature search and / or patent search in the area of interest.
- 3. Conduct experiments / Design and Analysis / solution iterations and document the results.
- 4. Perform error analysis / benchmarking / costing
- 5. Synthesise the results and arrive at scientific conclusions / products / solution
- 6. Document the results in the form of technical report / presentation

Contents

Capstone Project may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities.

Project should be for two semesters based on the completion of required number of credits as per the academic regulations.

Should be individual project.

In case of group projects, the individual project report of each student should specify the individual's contribution to the group project.

Carried out inside or outside the university, in any relevant industry or research institution.

Publications in the peer reviewed journals / International Conferences will be an added advantage

Mode of Evaluation: Periodic reviews, Presentation, Final oral viva, Poster submission					
Recommended by Board of Studies 10-06-2015					
Approved by Academic Council	No. 37	Date	16-06-2015		

Course Co	de Course Title	L	Т	P	J	С
ECE5031	QUANTUM PHYSICS FOR NANOSTRUCTURES	2	0	0	0	2
Pre-requis	ite Nil					
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						
Course Obj	ective:					
The course 1	s aimed to					
1. Educ	ate various concepts of quantum theory and its importance.		of	tata		
2. Make	the them to apply quantum theory to design nanoscille devices	isity	01 8	state	:s.	
5. Enable them to apply quantum theory to design hanoscale devices.						
Students wil	l be able to:					
1 Gain	the advanced concepts of quantum theory					
2. Unde	erstand the importance of Schrodinger wave equation & its application	ons.				
3. Obta	in the knowledge on quantum confinement effects.					
4. Gain	the knowledge in dispersion relation of electron in solids.					
5. Unde	erstand the quantum nanostructures, such as quantum dots, nanow	ires	and	qu	ant	um
wells	and their density of states.					
6. Unde	erstand the time-dependent perturbation and its applications.					
Module :1	Module :1Introduction4 hours					
Importance	of Quantum theory, Wave-particles duality, de-Broglie and Fermi W	ave	leng	ths,	W	ave
function, D	ynamical operators, Uncertainty principle, Quantum numbers and	I H	ydro	gen	at	om
problem, Pa	ıli exclusion principle.					
		<u> </u>				
Module:2	Schrodinger equations and their formulation		3	ho	urs	\$
Schrodinger	time dependent and time independent wave equations - analytical so	lutio	ons.			
M. 1 1. 2			4	. 1		
Module:3	Fotential well, Potential Barrier and Tunnelling		4	100		; t of
Tunneling	Reflectance, transmittance and tunnelling probability. Scanning tunne	allin	σmi		ep	ne
Tunnening, T	cencetance, transmittance and tunnening probability, seaming tunne	/11112	g nn		500	pe
Module:4	Theory of conduction in solids		4	ho	ur	\$
Description	of the theory of Conduction in Solids -Drude model, Nearly free	e el	ectro	on r	no	del,
Dispersion r	elation for electron.					ŕ
Module:5	Electronic Band Structure		5	ho	urs	3
Periodic latt	ice, Brillouine zones, Periodic potential, Bloch Theorem, Kronig-Pe	enny	Pot	enti	al	and
Electronic en	nergy bands, direct and indirect gap semiconductors.	•				
Module:6	Quantum Confinement and Density of States		4	ho	urs	3
Concept of	Quantum Confinement, Quantum Dots, Quantum Well and Quantur	n W	vires.	, D	ens	sity
of states in 3	D, 2D, 1D and 0D solid, carrier concentration.					
Module:7	Time-dependent perturbation and applications		4	<u>ho</u>	urs	5
Time-depen	dent change in potential, First-order time-dependent perturbation, Fe	rmi	s go		n r	ule,
Photon emi	ssion due to electronic transitions, Fermi's golden rule for s	timi	llate	ac	opti	cal
transitions, S	berniconductor laser.					
Module:8	Contemporary issues:		2	ho:	urs	\$

				Total Le	cture:	30 hours
Tey	xt Book(5)				
1	A. F. J	. Levi, Applied Quantur	n Mechanics, Secon	d edition, Cambri	dge Ur	niversity Press,
	2006.					
2	Richard	L. Liboff, Introductory	Quantum Mechanics	, Fourth edition, P	earson	Education Inc,
	India, 2	003.				
Ref	ference I	Books				
1	Robert	Eisberg and Robert Resr	ick, Quantum Physic	cs of Atoms, Mole	ecules,	Solids, Nuclei,
	and Par	ticles, second Edition, Jol	hn Wiley & Sons, Ca	nada, 1985.		
2	A. Ghat	ak and S. Lokanathan, Q	uantum Mechanics-7	Theory & Applicat	ions, M	Iacmillan India
	Limited	, New Delhi, 2002.				
3	A. Beis	er, Concepts of Modern F	Physics, Sixth edition	, TataMcGraw- Hi	ill Edition	on, New Delhi,
	2003.					
Mo	de of Eva	aluation: Continuous Ass	essment Test –I (CA	T-I), Continuous A	Assessn	nent Test –II
(CA	(CAT-II), Seminar / Challenging Assignments / Completion of MOOC / QUIZ, Final Assessment					
Tes	Test (FAT).					
Rec	commend	led by Board of Studies	13-12-2015			
Ap	proved by	y Academic Council	No. 40	Date	18-03-	-2016

Pre-requis	ite Nil	
Course Ob	jectives:	
The course	is aimed to:	
1. Pro	vide understanding of properties of materials from an atomistic view	w point, and to
clas	sify solids.	-
2. Out	line the properties and structure of crystalline materials, various mode	s of bonding in
soli	ds with appropriate examples.	C
3. Rer	der them about thermodynamics and statistical mechanics of solids.	
Expected (Course Outcomes:	
Students w	ill be able to:	
1. Gai	n knowledge on crystal structure	
2 Unc	lerstand various types of atomic bonding in solids	
2. Cla	solity the materials based on their properties	
J. Cla	stify different imperfections in solids	
4. Ide	large and sharmed supervises and alargentary statistical machanics	
5. One	let Magnetic Optical & Thermal angustical field from the statistical field for the statistical statist	1 f
6. App	by Magnetic, Optical & Thermal properties of different materia	i for potential
app	lications.	
Module 1	Structure of Matter	6 hours
Crystal sti	ucture & Bonding- Crystals, Polycrystals, Symmetry, Unit cells, I	Bravais lattices,
Crystallogr	aphic directions, Crystallographic planes, Miller indices, Bragg's law	y, Single crystal
and Powde	r X-ray diffraction.	
Module 2	Chemical Bonding	3 hours
Atomic Bo	nding in solids - Types of bond: Metallic, Ionic, Covalent and van d	ler Waals bond;
Hybridizati	on; H-bonding Molecular orbital theory for simple molecules su	ch as diatomic
molecule e	с.	
Module 3	Classification of Materials	2 hours
Different t	vpes of materials - Metals, Semiconductors, Composite materials, Ce	ramics. Allovs.
and Polyme	re	runnes, rino js,
und i orynn		
Modulo 4	Importantiana in calida	2 hours
Innorfactic	na of awatel structure noint defects. Croin houndaries nhase houndari	2 nours
	ins of crystal structure –point defects, Grain boundaries, phase boundari	es, Dislocations
Screw, Edg	e and Mixed Dislocations	
Module 5	Introduction to Thermodynamics and Elementary Statistical	6 hours
	Mechanics	
The first a	nd second laws of thermodynamics, Thermodynamic functions, enthal	py, entropy and
Microstates	, Introduction to Ionic Conductivity, Gibb's freeenergy, Gibb'sparad	dox, Liouville's
theorem, C	lassical Statistical systems, Boltzman statistics, quantum statistical s	systems, Fermi-
Diracand B	ose-Einstein Statistics and their applications.	, ,
Module 6	Phase Transformations	4 hours
Mechanism	s of phase transformation: homogeneous and beterogeneous nucle	ation: spinodal
vicenamon	b of phase transformation, nonlogeneous and neurogeneous nucle	anon, spinouai

Course Title PHYSICS AND CHEMISTRY OF SOLIDS

Course Code ECE5032

 L
 T
 P
 J
 C

 2
 0
 0
 0
 2

decomposi	tion; order-disorder transfo	ormations; Martensi	tic transformation		
Module 7	Magnetic, Optical & T	hermal properties	of solid	5 hours	
Magnetic	properties- Different kind	of magnetism in n	ature: Dia, Para, Fe	rro, Antiferro, Ferri,	
Superpara;	Optical Properties-	Photoconductivity,	Opticalabsorption	& transmission,	
Photoluminescence, Fluorescence, Phosphorescence, Electroluminescence; Thermal Properties-					
Concept of	phonon, Thermal conduct	ivity, Specific heat,	Exothermic & endot	hermic processes.	
	-				
Module 8	Contemporary issues:			2 hours	
			Total Lect	are: 30 hours	
Text Book	x (s)				
1 Charle	es Kittel, Introduction to So	olid State Physics, 2	012, eighth Edition, .	John Wiley & Sons	
2 H. I ba	ach and H. Löth, Solid-Stat	te Physics: An Intro	duction to Principles	of Material Science	
2009,	fourth edition, Springer				
Reference	Books				
1 A.J. I	Dekker, Macmillan, Solid S	State Physics, 1969			
2 L. H.	Van Vlack, Elements of ma	aterials science, Pea	rson Education, 2002		
3 Atkins	s Peter, Paula Julio, Physic	cal Chemistry, Oxfor	rd University Press, 2	2008	
4 K. Hu	ang, Chapman and Hall, In	troduction to Statist	ical Physics, CRC, 2	009	
5 Steph	en Elliott & S. R. Elliott,	The Physics and C	hemistry of Solids,	John Wiley & Sons,	
1998.	1998.				
Mode of Evaluation: Continuous Assessment Test –I (CAT-I), Continuous Assessment Test –II					
(CAT-II), Seminar / Challenging Assignments / Completion of MOOC / QUIZ, Final Assessment					
Test (FAT).	ſ			
Recommen	nded by Board of Studies	13-12-2015	1		
Approved	by Academic Council	No. 40	Date	18-03-2016	

Course Code	Course Title	L	Т	P	J	С		
ECE5033	SYNTHESIS OF NANOMATERIALS AND THIN FILM DEPOSITION	2	0	2	4	4		
Pre-requisite	Nil							
Course Obies	41.000							
The course is aimed to :								
1. Make them understand the fabrication of nanostructures for advanced devices.								
2. Provid	e and train the students about nanomaterial synthesis and thin fil	m d	epo	osit	ior	1		
technic	ues.							
Expected Cor	urse Autoomos:							
At the end of t	he course students will be able to							
1. Identif	y and understand various top-down and bottom-up approaches for na	non	nate	eria	1			
synthes	vis.							
2. Unders	tand and apply vacuum technology for nanomaterial synthesis.							
3. Know	various deposition techniques at the atomic and molecular level.							
4. Acquir	e knowledge about structure and properties of thin films.							
5. Learn f	he advanced concepts in various vapour deposition techniques.							
0. Synthe	sise and deposit nanomaterials by various methods.							
Module 1 N	anomaterial Synthesis - Top-Down Approach		41	10U	irs			
Physical method	ods- Inert gas condensation, aerosol method, Arc discharge, RF-plast	na, Ì	Pla	sm	a a	rc		
technique, lase	r ablation, Gas-phase synthesis, Spray Pyrolysis, Ball Milling, Coml	ousti	on					
Module 2 N	anomaterial Synthesis - Bottom-up approach		<u>1 0</u>	<u>10u</u>	Irs			
Nucleation the	ary Homogeneous and beterogeneous nucleation. Metal nanocrysta	nan le b	iosi v ri	.ruc edu	cti	es,		
Solvothermal/	Hydrothermal synthesis. Photochemical synthesis. Electrochem	nical	y IQ S	svnf	the	sis.		
Thermolysis	routes, Sonochemical routes, Hybrid methods, Sol- gel,	Mi	cel	les	;	and		
microemulsion	is, Bio-Synthesis.							
Module 3 V	acuum technology		3 ł	100	irs			
Concept of di	ferent vacuum pumps - rotary, diffusion, Turbo molecular pump, C	ryog	gen	ic-j	pur	np,		
Ti-sublimation	pump; Concept of different gauges - pirani, penning, Pressure contr	ol.						
			21					
Crystal Crow	th CZ Elect zone technique: Pasia Properties of different	aub	<u>3 I</u>	<u>10u</u>	irs			
semiconductor	alass). Wafer cutting: Sources and related effects of various contained	suus ning	stio	n	v) Wa	fer		
processing: En	itaxial growth- Growth kinetics of epitaxy, Doping, Growth modes.	11110		<i></i> ,	,, u	101		
,,								
Module 5 S	tructure and properties of thin films		4 ł	100	irs			
Definition of t	hin films- Environment (Gas phase and plasma) for thin film deposition	tion,	D	epc	osit	ion		
parameters an	parameters and their effects on film growth; Physical parameters for evaluation of thin films-							
Surface rough	ness; Density; Stress in thin films; Adhesion; Stoichiometry.							
Modulo 6 D	hysical vanor denosition (DVD) techniques		11	101	ire			
	$\mathbf{H}_{\mathbf{y}}$		- T I	100	1 3			

Evaporation- Thermal evaporation, resistance evaporation, Electron beam evaporation, Ion vapor evaporation and Cathodic arc deposition; Molecular Beam Epitaxy; Sputtering- Glow discharge sputtering, Magnetron sputtering, Ion beam sputtering; Atomic layer deposition (ALD)-Importance of ALD technique.

Module 7Chemical vapor deposition techniques

4 hours

Fundamentals, Advantages and limitations of Chemical vapor deposition (CVD) techniques; Different kinds of CVD techniques- Metallorganic (MO) CVD, Photoassisted CVD, Thermally activated CVD, Plasma enhanced (RF, μ -Wave) CVD, Low pressure (LP) CVD, Atmospheric pressure (AP) CVD etc,.

Module 8 Contemporary issues:

2 hours

Advanced Topics

Total Lecture: 30 h

30 hours

Tex	tt Book(s)	
1.	Guozhong Cao. Ed Nanostructures and Nanomaterials: Synthesis, P	roperties, and
	Applications, World Scientific Series in Nanoscience and Nanotechnology, 202	11.
2.	G.A. Ozin and A.C. Arsenault, Nanochemistry: A chemical approach to nanon	naterials, Royal
	Society of Chemistry, 2009.	
Ref	erence Books	
1.	Bharat Bhushan, Handbook of Nanotechnology, Springer, 2005	
2.	Hari Singh Nalwa, Handbook Of Nanostructured Biomaterials And Their A	Applications In
	Nanobiotechnology, Journal of Nanoscience and Nanotechnology, 2005.	
3.	D.M. Hata, Introduction to Vacuum Technology, Prentice Hall New Jersey, 20	07.
4.	K. Jousten, Handbook of Vacuum Technology, John Wiley and sons, Weinheim	n, 2008.
5.	S. Schmidt et.al., CFx thin films deposited by high power impulse magnet	ron sputtering:
	synthesis and characterization Surf.Coat.Technol. 2011, 206, pp. 646-653.	
6.	J. George, Preparation of Thin Films, Marcel Dekker, Inc., New York. 2005.	
Mo	ode of Evaluation: Continuous Assessment Test -I (CAT-I), Continuous Asses	ssment Test –II
(CA	AT-II), Seminar / Challenging Assignments / Completion of MOOC / QUIZ, Fi	nal Assessment
Tes	t (FAT).	
Тур	pical Projects	
	1. Green synthesis of nanoparticles and analysis using UV-Vis.	
	2. Kinetic analysis of growth of silver nanoparticles.	
	3. Demonstration of Electroless deposition process.	
	4. Growth of thin films by Electrodeposition technique.	
	5. Preparation and study of ferrofluids.	
	6. Hydrothermal synthesis of TiO2 nanoparticles and its optical study	
Mo	de of Evaluation: Review I, II and III	
Lis	t of Challenging Experiments (Indicative)	
1.	Wet Chemical synthesis of Silver Quantum Dots - Effect of viscosity on the	6 hours
	growth and its characterization by UV-Visible spectroscopy.	
2.	Synthesis of ZnO nanoparticles by wet chemical route and its optical band	6 hours
	gap calculation.	
3.	Mie formalism of Optical absorption of Ag and Au nanoparticles for size	4 hours
	estimation.	

4.	4. Calculation of d-spacing and crystallite size of Nanomaterials from X- ray				4 hours	
	diffraction data.					
5.	Thin film deposition using Electr	oplating technique a	and morphology		3 hours	
	characterization using Optical mi	croscope.				
6.	Fabrication of thin films using Sp	oin coating techniqu	e.		3 hours	
7. Fabrication of metal thin films on silicon/glass substrate using Metal					4 hours	
	evaporation Unit					
			Total Laboratory	Hours	30 hours	
Mo	de of Evaluation: Continuous asses	ssment of challengin	g experiments /Fin	nal Ass	essment Test	
(FA	(FAT).					
Rec	Recommended by Board of Studies 13-12-2015					
App	proved by Academic Council	No. 40	Date	18-03	-2016	

Course Code	Course Title	L T P J C						
ECE5034	NANOMATERIAL CHARACTERIZATION	3 0 2 0 4						
	TECHNIQUES							
Pre-requisite	Nil							
Course Object	ives:							
The course is ai	med to :							
1. Make th	em understand various Nanostructure characterization techniques.							
2. Train the	e students on state-of-the-art metrology tools such as Scanning Pro	be						
Microsc	opes and optical spectroscopes.	1 1 1						
3. Enable	them to study the material's structure and properties that a	re probed and						
Ineasure	measured.							
Expected Cour	se Outcomes:							
1 Be conv	areant with conventional aspects of matrological tools							
2 Be awar	e of various morphological techniques and selecting appropriate to	ols for their						
2. De awar future re	search	ois ior then						
3. Be fami	liar with various spectroscopic techniques							
4. Acquain	ted with the Scanning probe techniques for characterisation.							
5. Learn ad	lvanced optical and magnetic characterization techniques.							
6. Prepare,	characterise and analyse the samples with suitable techniques.							
Module 1	Introduction to Metrology	4 hours						
Concepts of Me	trology- Accuracy, precision and reliability; Types of Errors - Syst	ematic Errors						
and Random Er	rors, Statistical analysis of errors.							
Module 2	Microscopy Techniques	8 hours						
Optical micros	copy; Electron microscopy- Scanning Electron Microscopy,	EDX, WDX;						
Transmission E	lectron Microscopy; EELS; SPM.							
Module 3	Spectroscopy Techniques	9 hours						
UV-Vis Spect	roscopy; Ellipsometer; XPS; XAS; XRD; Raman Spectrosco	py - Surface-						
ennanced Rama	n Spectroscopy.	Q h anna						
Niodule 4	Scanning Tunneling Microscopy	8 nours						
operation Quar	tum Mechanical Tunneling phenomenon in STM. Different mode	s of operation:						
STS - Principles	s of operation applications	s of operation,						
Module 5	Atomic Force Microscony	7 hours						
Atomic Force	Microscope - Modes of operation of AFM. Advanced Modes of	F AFM - Force						
Modulation, Co	nductive AFM, EFM, MFM, SCM.							
Module 6	Near Field Scanning Optical Microscopy	5 hours						
Principles of operation, Different modes of operation, Spectroscopic Applications of NSOM.								
Module 7	Magnetic Characterization	2 hours						
Principles, Com	ponents of SQUID systems, Vibrating Sample Magnetometer (VS	M)						
Module 8	Contemporary issues:	2 hours						

Adva	nced Topics			
]	Fotal 45 Hours
Text	Book(s)			
1.	R.W. Cahn, E.M. Lifshitz, Concise E	ncyclopedia of	f Materials Charac	cterization: Advances
	in Materials Sciences and Engineering	g,Elsevier, 201	б.	
2.	Yang Leng, Materials Characterizati	ion: Introducti	on to Microscopi	c and Spectroscopic
	Methods, John Wiley & Sons, 2013.			
Refer	rence Books			
1	Richard Leach, Fundamental Principle	es of Engineeri	ng Nanometrology	y, Elsevier, 2014.
2	Mauro Sardela, Practical Materials Ch	naracterization,	Springer, 2014.	
3	Ewen Smith, Geoffrey Dent, Modern Wiley & Sons, 2013.	n Raman Spec	troscopy: A Pract	tical Approach, John
4	Nikodem Tomczak, Kuan Eng Jo	hnson Goh.	Scanning Probe	Microscopy, World
	Scientific, 2011.			interoscopy, world
5	Ernst Meyer, Hans J. Hug, Roland Be	ennewitz, Scan	ning Probe Micro	scopy: The Lab on a
	Tip,Springer Science & Business Med	lia, 2013.		
6	Vladimir V. Tsukruk, Srikanth Singa	maneni, Scann	ing Probe Micros	copy of Soft Matter:
	Fundamentals and Practices, John Wil	ley & Sons, 20	12.	
7	H. Weinstock, SQUID Sensors: Fu	ndamentals, Fa	abrication and Aj	pplications, Springer
	Science & Business Media, 2012.			
8	Sam Zhang, Lin Li, Ashok Kumar, M	aterials Charac	terization Techniq	ues, CRC Press,
	2008.			
Mode	e of Evaluation: Continuous Assessmen	nt Test –I (CA	Γ-I), Continuous A	Assessment Test –II
(CAT	C-II), Seminar / Challenging Assignme	nts / Completio	on of MOOC / QU	IZ, Final
Asses	ssment Test (FAT).		I	
List o	of challenging Experiments (Indicati	ve)		
1.	STS analysis of CNT.			4 hours
2.	Analysis of magnetic nanoparticle w	ith MFM		4 hours
3.	Application of Electrostatic Force M	licroscopy.		3 hours
4.	Characterization of Graphene with o	ptical microsco	ope.	4 hours
5.	Measure the blood glucose with elec	trochemical wo	orkstation	3 hours
6.	Study the band gap of semiconducto	r nanoparticle	using UV-Vis	3 hours
	spectroscopy			
7.	7.Measure the band gap and structure of crystal with XRD.			
8.	8. Elemental analysis using EDAX			3 hours
9. Study the property of graphene using Raman Spectroscopy.			3 hours	
	4	То	tal Laboratory Ho	urs 30 hours
Mode	e of Evaluation: Continuous assessmen	t of challengin	g experiments /Fir	al Assessment Test
(FAT	ʻ).	5		
Reco	mmended by Board of Studies	13-12-2015		
Appr	oved by Academic Council	No. 40	Date	18-03-2016

ECG032 NANOELECTRONICS 2 0 2 4 Pre-requisite ECE5031- Quantum Physics for Nanostructures Course Objectives:	Course Code	L	Т	P J	C				
Pre-requisite ECE5031- Quantum Physics for Nanostructures Course Objectives: The course is aimed to : 1. Make them understand various advanced concepts in nanoelectronics. 2. 2. Explore the fundamentals on QED, SED, Molecular electronics and spintronics. 3. 3. Train the students on state-of-the-art computational tools for modelling and simulation of nanoelectronics devices. Expected Course Outcomes: Student will be able to 1. Gain the concepts of nanoelectronics such as ballistic transport and quantum confinement. 2. 2. Learn the fundamentals of Molecular Electronics 4. 4. Obtain the knowledge of Single Electron Devices and carbon based nanoelectronic devices. 5. 5. Learn the fundamentals of Molecular Electronics 3 hours Limitations of the conventional MOSFETs at Nanoscales, MOSFET Scaling & implications, Introductory concepts of Ballistic transport and Quantum confinement, Differences in Few Electron Devices (as analog version) and Single Electron Devices (as digital version) of Nanoelectronic devices 4 hours Low-dimensional structures: Quantum Miers and Quantum dots; Density of states in low-dimensional structures; Quantum mells, Quantum wires and Quantum dots; Self-Assembling Circuits, Module 3 Molecular Electronics-based transistor devices; Conductivity of organic polymers; Polymer Electronics; Self-Assembling Circuits, Single Electron Devices, Self-Assembling Circuits, Single Transistor, Electron Quantum Dot system, Single-Electron	ECE6032	NANOELECTRONICS	2	0	2 4	4			
Course Objectives: The course is aimed to : 1. Make them understand various advanced concepts in nanoelectronics. 2. Explore the fundamentals on QED, SED, Molecular electronics and spintronics. 3. Train the students on state-of-the-art computational tools for modelling and simulation of nanoelectronics devices. Expected Course Outcomes: Student will be able to 1. Gain the concepts of nanoelectronics such as ballistic transport and quantum confinement. 2. Understand various nanostructures and its applications towards Quantum Electronic Devices. 3. Acquire the fundamentals of Molecular Electronics 4. Obtain the knowledge of Single Electron Devices and carbon based nanoelectronic devices. 5. Learn the fundamentals of Molecular Electronic devices. 6. Design and simulate various advanced nanoelectronic devices. 6. Design and simulate various advanced nanoelectronic devices. 1. Introduction to Nanoelectronics 3 hours Limitations of the conventional MOSFETs at Nanoscales, MOSFET Scaling & implications, Introductory concepts of Ballistic transport and Quantum confinement, Differences in Few Electron Devices (as analog version) and Single Electron Devices (as digital version) of Nanoelectronic devices Module 1 Nanostructures and Quantum Wires and Quantum dots; Density of states in low-dimensional structures; Quantum Interference Devices; Split –Gate Transistor; Electron – Wave Transistor; Resonant t	Pre-requisite	ECE5031- Quantum Physics for Nanostructures							
Course Objectives: The course is aimed to : 1. Make them understand various advanced concepts in nanoelectronics. 2. Explore the fundamentals on QED, SED, Molecular electronics and spintronics. 3. Train the students on state-of-the-art computational tools for modelling and simulation of nanoelectronics devices. Expected Course Outcomes: Student will be able to 1. Gain the concepts of nanoelectronics such as ballistic transport and quantum confinement. 2. Understand various nanostructures and its applications towards Quantum Electronic Devices. 3. Acquire the fundamentals of Spintronics. 6. Design and simulate various advanced nanoelectronic devices. 5. Learn the fundamentals of Spintronics. 6. Design and simulate various advanced nanoelectronic devices. Module 1 Introduction to Nanoelectronics 1. Introduction to Nanoelectronic and Quantum confinement, Differences in Few Electron Devices (as analog version) and Single Electron Devices (as digital version) of Nanoelectronic devices Module 2 Nanostructures and Quantum Electronic Devices 4 hours Low-dimensional structures: Quantum wells, Quantum wires and Quantum dots; Density of states in low-dimensional structures; Quantum Melference Devices; Split –Gate Transistor; Electron – Wave Transistor; Resonant tunneling phenomena and its applications in diodes and transistor conductivity of organic polymers; Polymer Electronics; Self	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-							
Ine course is amed to: Make them understand various advanced concepts in nanoelectronics. Explore the fundamentals on QED, SED, Molecular electronics and spintronics. Train the students on state-of-the-art computational tools for modelling and simulation of nanoelectronics devices. Expected Course Outcomes: Student will be able to Gain the concepts of nanoelectronics such as ballistic transport and quantum confinement. Understand various nanostructures and its applications towards Quantum Electronic Devices. Acquire the fundamentals of Molecular Electronics Obtain the knowledge of Single Electron Devices and carbon based nanoelectronic devices. Learn the fundamentals of Molecular Electronic devices. Design and simulate various advanced nanoelectronic devices. Design and simulate various advanced nanoelectronic devices. Module 1 Introduction to Nanoelectronics at Nanoscales, MOSFET Scaling & implications, Introductory concepts of Ballistic transport and Quantum confinement, Differences in Few Electron Devices (as analog version) and Single Electron Devices (as digital version) of Nanoelectronic devices Module 2 Nanostructures and Quantum Electronic Devices 4 hours Low-dimensional structures: Quantum Nells, Quantum wires and Quantum dots; Density of states in low-dimensional structures: Quantum Mells applications in diodes and transistor; Electron – Wave Transistor; Resonant tunneling phenomena and its applications in diodes and transistor; Self-Assembling Circuits. Module 4 Single Electron Devices 5 Shours Principle of operation - Single-Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot Transistor, Single-Electron Effect, ONIPMET, CNT-SET; and NanoWire FETs; Electronic structures of graphene; Graphene FETs, GRRFETs. Module 5 Carbon Nanoelectronics Covices. Module 5 Carbon	Course Object	tives:							
	The course is a	imed to :							
A prior the students on GLP, or Dept indicate Cectorines and spintometers Train the students on state-of-the-art computational tools for modelling and simulation of nanoelectronics devices. Student will be able to I. Gain the concepts of nanoelectronics such as ballistic transport and quantum confinement. Understand various nanostructures and its applications towards Quantum Electronic Devices. Acquire the fundamentals of Molecular Electronics A Obtain the knowledge of Single Electron Devices and carbon based nanoelectronic devices. Learn the fundamentals of Spintronics. Besign and simulate various advanced nanoelectronic devices. Learn the fundamentals of Spintronics Devices (as analog version) and Single Electron Devices (as digital version) of Nanoelectronic devices Module 1 Introduction to Nanoelectronics (as digital version) of Nanoelectronic devices Module 2 Nanostructures and Quantum Electronic Devices (as analog version) and Single Electron Devices (as digital version) of Nanoelectronic devices Module 2 Nanostructures and Quantum Electronic Devices Module 3 Molecular Electronics Module 3 Molecular Electronics Module 4 Single Electron Devices, Split –Gate Transistor; Electron – Wave Transistor; Resonant tunneling phenomena and its applications in diodes and transistors. Module 4 Single Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot Transistor - Energy of Quantum Dot system, Single-Electron Quantum-Dot Transistor, Single Transitor, Single Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot Transistor, Single Transitor, Single Terroris, Conductance Oscillation and Potential Fluctuation; Transport under Finite temperature and Finite Bias; Coulomb Blockade Devices. Module 5 Carbon Nanoelectronics A hours Conductance Oscillation and Potential Fluctuation; Transport under Finite temperature and Finite Bias; Coulomb Blockade Devices. Module 6 Spintronics – Device characteristics, CNT-TUB	2 Explore	the fundamentals on OED SED Molecular electronics and spintronics.							
nanoelectronics devices. Expected Course Outcomes: Student will be able to 1. Gain the concepts of nanoelectronics such as ballistic transport and quantum confinement. 2. Understand various nanostructures and its applications towards Quantum Electronic Devices. 3. Acquire the fundamentals of Molecular Electronics 4. Obtain the knowledge of Single Electron Devices and carbon based nanoelectronic devices. 5. Learn the fundamentals of Molecular Electronics 4. Obtain the knowledge of Single Electron Devices and carbon based nanoelectronic devices. 5. Learn the fundamentals of Molecular Electronics 3 hours Limitations of the conventional MOSFETs at Nanoscales, MOSFET Scaling & implications, Introductory concepts of Ballistic transport and Quantum confinement, Differences in Few Electron Devices (as analog version) and Single Electron Devices (as digital version) of Nanoelectronic devices Module 2 Nanostructures and Quantum Electronic Devices 4 hours Low-dimensional structures: Quantum wells, Quantum wires and Quantum dots; Density of states in low-dimensional structures; Quantum Mells, Quantum wires and Quantum dots; Density of organic polymers: Resonant tunneling phenomena and its applications in diodes and transistors. Module 3 Molecular Electronics 3 hours Overview & Basics; Fabrication of molecular electronics-based transistor devices; Conductivity of organic polymers: Conductin mechanism in organic polymers; Polymer Elect	3. Train th	the fundamentals of QLD, SLD, Morecular electronics and spinitonics.	ulatio	on of	f				
Expected Course Outcomes: Student will be able to 1. Gain the concepts of nanoelectronics such as ballistic transport and quantum confinement. 2. Understand various nanostructures and its applications towards Quantum Electronic Devices. 3. Acquire the fundamentals of Molecular Electronics 4. Obtain the knowledge of Single Electron Devices and carbon based nanoelectronic devices. 5. Learn the fundamentals of Spintronics. 6. Design and simulate various advanced nanoelectronic devices. Module 1 Introduction to Nanoelectronics J hourse Conventional MOSFETs at Nanoscales, MOSFET Scaling & implications, Introductory concepts of Ballistic transport and Quantum confinement, Differences in Few Electron Devices (as analog version) and Single Electron Devices (as digital version) of Nanoelectronic devices Module 2 Nanostructures and Quantum Electronic Devices 4 hours Low-dimensional structures; Quantum Interference Devices; Split –Gate Transistor; Electron – Wave Transistor; Resonant tunneling phenomena and its applications in diodes and transistors. Module 3 Module 4 Single Electron Devices 3 hours Overview & Basics; Fabrication of molecular electronics-based transistor devices; Conductivity of organic polymers- Conduction mechanism in organic polymers; Polymer Electronics; Self-Assembling Circuits. Module 4 Single Electron Effect, Coulomb Blocka	nanoele	ctronics devices.			-				
Expected Course Outcomes: Student will be able to 1. Gain the concepts of nanoelectronics such as ballistic transport and quantum confinement. 2. Understand various nanostructures and its applications towards Quantum Electronic Devices. 3. Acquire the fundamentals of Molecular Electronics 4. Obtain the knowledge of Single Electron Devices and carbon based nanoelectronic devices. 5. Learn the fundamentals of Spintronics. 6. Design and simulate various advanced nanoelectronic devices. Module 1 Introduction to Nanoelectronics 1. Initiations of the conventional MOSFETs at Nanoscales, MOSFET Scaling & implications, Introductory concepts of Ballistic transport and Quantum confinement, Differences in Few Electron Devices (as analog version) and Single Electron Devices (as digital version) of Nanoelectronic devices Module 2 Nanostructures and Quantum Electronic Devices 4 hours Low-dimensional structures- Quantum Mells, Quantum wires and Quantum dots; Density of states in low-dimensional structures; Quantum mells, Quantum wires and Quantum dots; Density of states in low-dimensional structures; Quantum leterference Devices; Split –Gate Transistor; Electron – Wave Transistor; Resonant tunneling phenomena and its applications in diodes and transistors. Module 3 Molecular Electronics 3 hours Overview & Basics; Fabrication of molecular electronics-based transistor devices; Conductivity of organic polymers- Conduction mechanism in organic polymers; Polymer Electron Quantum-Dot Transistor,									
Student will be able to 1. Gain the concepts of nanoelectronics such as ballistic transport and quantum confinement. 2. Understand various nanostructures and its applications towards Quantum Electronic Devices. 3. Acquire the fundamentals of Molecular Electronics 4. Obtain the knowledge of Single Electron Devices and carbon based nanoelectronic devices. 5. Learn the fundamentals of Spintronics. 6. Design and simulate various advanced nanoelectronic devices. Module 1 Introduction to Nanoelectronics 1. minitations of the conventional MOSFETs at Nanoscales, MOSFET Scaling & implications, Introductory concepts of Ballistic transport and Quantum confinement, Differences in Few Electron Devices (as analog version) and Single Electron Devices (as digital version) of Nanoelectronic devices Module 2 Nanostructures and Quantum Electronic Devices 4 hours Low-dimensional structures- Quantum wells, Quantum wires and Quantum dots; Density of states in low-dimensional structures; Quantum unterference Devices; Split –Gate Transistor; Electron – Wave Transistor; Resonant tunneling phenomena and its applications in diodes and transistors. Module 3 Molecular Electronics 3 hours Overview & Basics; Fabrication of molecular electronics-based transistor devices; Conductivity of organic polymers- Conduction mechanism in organic polymers; Polymer Electronic, Self-Assembling Circuits. Module 4 Single Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot Transistor - En	Expected Cou	rse Outcomes:							
1. Gain the concepts of nanoelectronics such as balinstic transport and quantum continement. 2. Understand various nanostructures and its applications towards Quantum Electronic Devices. 3. Acquire the fundamentals of Molecular Electronics 4. Obtain the knowledge of Single Electron Devices and carbon based nanoelectronic devices. 5. Learn the fundamentals of Spintronics. 6. Design and simulate various advanced nanoelectronic devices. 1. Introduction to Nanoelectronics 3. Mours Limitations of the conventional MOSFETs at Nanoscales, MOSFET Scaling & implications, Introductory concepts of Ballistic transport and Quantum confinement, Differences in Few Electron Devices (as analog version) and Single Electron Devices (as digital version) of Nanoelectronic devices Module 2 Nanostructures and Quantum Electronic Devices 4 hours Low-dimensional structures; Quantum wells, Quantum wires and Quantum dots; Density of states in low-dimensional structures; Quantum Interference Devices; Split –Gate Transistor; Electron – Wave Transistor; Resonant tunneling phenomena and its applications in diodes and transistors. Module 3 Molecular Electronics 3 hours Overview & Basics; Fabrication of molecular electronics-based transistor devices; Conductivity of organic polymers. Conduction mechanism in organic polymers; Polymer Electronics; Self-Assembling Circuits. Module 4 Single Electron Devices 5 hours Principle of operation- Single-Electron Effect, C	Student will be	able to	C'						
2. Concernational and structures and its applications towards Quantum Electronic Devices. 3. Acquire the fundamentals of Molecular Electronics 4. Obtain the knowledge of Single Electron Devices and carbon based nanoelectronic devices. 5. Learn the fundamentals of Spintronics. 3 hours 6. Design and simulate various advanced nanoelectronic devices. 3 hours Limitations of the conventional MOSPETs at Nanoscales, MOSFET Scaling & implications, Introductory concepts of Ballistic transport and Quantum confinement, Differences in Few Electron Devices (as analog version) and Single Electron Devices (as digital version) of Nanoelectronic devices Module 2 Nanostructures and Quantum Electronic Devices 4 hours Low-dimensional structures; Quantum Miels, Quantum wires and Quantum dots; Density of states in low-dimensional structures; Quantum Interference Devices; Split –Gate Transistor; Electron – Wave Transistor; Resonant tunneling phenomena and its applications in diodes and transistors. Module 3 Molecular Electronics 3 hours Overview & Basics; Fabrication of molecular electronics-based transistor devices; Conductivity of organic polymers- Conduction mechanism in organic polymers; Polymer Electronics; Self-Assembling Circuits. Module 4 Single Electron Devices 5 hours Principle of operation- Single-Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot Transistor - Energy of Quantum Dot system, Single-Electron	1. Gain the	concepts of nanoelectronics such as ballistic transport and quantum con	finei	nent					
 A. Optime transmission investiging Electron Devices and carbon based nanoelectronic devices. Learn the fundamentals of Spintronics. Design and simulate various advanced nanoelectronic devices. Module 1 Introduction to Nanoelectronics 3 hours Limitations of the conventional MOSFETs at Nanoscales, MOSFET Scaling & implications, Introductory concepts of Ballistic transport and Quantum confinement, Differences in Few Electron Devices (as analog version) and Single Electron Devices (as digital version) of Nanoelectronic devices Module 2 Nanostructures and Quantum Electronic Devices (as digital version) of Nanoelectronic devices Module 2 Nanostructures and Quantum Electronic Devices 4 hours Low-dimensional structures- Quantum wells, Quantum wires and Quantum dots; Density of states in low-dimensional structures; Quantum multify, Quantum wires and Quantum dots; Density of states in low-dimensional structures; Quantum Interference Devices; Split –Gate Transistor; Electron – Wave Transistor; Resonant tunneling phenomena and its applications in diodes and transistors. Module 3 Molecular Electronics 3 hours Overview & Basics; Fabrication of molecular electronics-based transistor devices; Conductivity of organic polymers- Conduction mechanism in organic polymers; Polymer Electronic, Self-Assembling Circuits. Module 4 Single Electron Devices 5 hours Principle of operation Single-Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot Transistor, Single-Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Bot system, Single-Electron Quantum-Dot Transistor, Single Transistor, Single Transistor, Single Transistor, Sungle Electron Reviews, Conductance Oscillation and Potential Fluctuation; Transport under Finite temperature and Finite Bias; Coulomb Blocka	2. Onders	the fundamentals of Molecular Electronics	JIIC	Dev	ices.				
5. Learn the fundamentals of Spintronics. 6. Design and simulate various advanced nanoelectronic devices. Module 1 Introduction to Nanoelectronics 3 hours Limitations of the conventional MOSFETs at Nanoscales, MOSFET Scaling & implications, Introductory concepts of Ballistic transport and Quantum confinement, Differences in Few Electron Devices (as analog version) and Single Electron Devices (as digital version) of Nanoelectronic devices Module 2 Nanostructures and Quantum Electronic Devices 4 hours Low-dimensional structures. Quantum wells, Quantum wires and Quantum dots; Density of states in low-dimensional structures; Quantum Interference Devices; Split –Gate Transistor; Electron – Wave Transistor; Resonant tunneling phenomena and its applications in diodes and transistors. Module 3 Molecular Electronics 3 hours Overview & Basics; Fabrication of molecular electronics-based transistor devices; Conductivity of organic polymers- Conduction mechanism in organic polymers; Polymer Electronics; Self-Assembling Circuits. Module 4 Single Electron Devices 5 hours Principle of operation- Single-Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot system, Single-Electron Quantum-Dot Transistor, Single transistor; Scoulomb Blockade Devices. Module 5 Carbon Nanoelectronics 4 hours Carbon nanotubes - SWCNTs and MWCNTs; 1D quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-TUBFET, CNT-SET; and NanoWire FETs; Electronic stru	4. Obtain	the knowledge of Single Electron Devices and carbon based nanoelectro	nic d	evic	es.				
6. Design and simulate various advanced nanoelectronic devices. Module 1 Introduction to Nanoelectronics 3 hours Limitations of the conventional MOSFETs at Nanoscales, MOSFET Scaling & implications, Introductory concepts of Ballistic transport and Quantum confinement, Differences in Few Electron Devices (as analog version) and Single Electron Devices (as digital version) of Nanoelectronic devices Module 2 Nanostructures and Quantum Electronic Devices 4 hours Low-dimensional structures, Quantum wells, Quantum wires and Quantum dots; Density of states in low- dimensional structures; Quantum Interference Devices; Split –Gate Transistor; Electron – Wave Transistor; Resonant tunneling phenomena and its applications in diodes and transistors. Module 3 Molecular Electronics 3 hours Overview & Basics; Fabrication of molecular electronics-based transistor devices; Conductivity of organic polymers- Conduction mechanism in organic polymers; Polymer Electron Quantum-Dot Transistor, Single Principle of operation - Single-Electron Devices 5 hours Principle of operation - Single-Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot Transistor - Energy of Quantum Dot system, Single-Electron Quantum-Dot Transistor, Single transistors; Conductance Oscillation and Potential Fluctuation; Transport under Finite temperature and Finite Bias; Coulomb Blockade Devices. Module 5 Carbon Nanoelectronics 4 hours Carbon nanotubes - SWCNTs and MWCNTs; 1D quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-	5. Learn t	he fundamentals of Spintronics.							
Module 1 Introduction to Nanoelectronics 3 hours Limitations of the conventional MOSFETs at Nanoscales, MOSFET Scaling & implications, Introductory concepts of Ballistic transport and Quantum confinement, Differences in Few Electron Devices (as analog version) and Single Electron Devices (as digital version) of Nanoelectronic devices Module 2 Nanostructures and Quantum Electronic Devices 4 hours Low-dimensional structures- Quantum wells, Quantum wires and Quantum dots; Density of states in low-dimensional structures; Quantum Interference Devices; Split –Gate Transistor; Electron – Wave Transistor; Resonant tunneling phenomena and its applications in diodes and transistors. Module 3 Molecular Electronics 3 hours Overview & Basics; Fabrication of molecular electronics-based transistor devices; Conductivity of organic polymers- Conduction mechanism in organic polymers; Polymer Electronics; Self-Assembling Circuits. Module 4 Single Electron Devices 5 hours Principle of operation- Single-Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot Transistor - Energy of Quantum Dot system, Single-Electron Quantum-Dot Transistor, Single transistors; Conductance Oscillation and Potential Fluctuation; Transport under Finite temperature and Finite Bias; Coulomb Blockade Devices. 4 hours Module 5 Carbon Nanoelectronics 4 hours Carbon nanotubes - SWCNTs and MWCNTs; 1D quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-TUBFET, CNT-SET; and NanoWire FETs; Electroni	6. Design	and simulate various advanced nanoelectronic devices.							
Module 1Introduction to Nanoelectronics3 hoursLimitations of the conventional MOSFETs at Nanoscales, MOSFET Scaling & implications, Introductory concepts of Ballistic transport and Quantum confinement, Differences in Few Electron Devices (as analog version) and Single Electron Devices (as digital version) of Nanoelectronic devicesModule 2Nanostructures and Quantum Electronic Devices4 hoursLow-dimensional structures. Quantum wells, Quantum wires and Quantum dots; Density of states in low- dimensional structures; Quantum Interference Devices; Split –Gate Transistor; Electron – Wave Transistor; Resonant tunneling phenomena and its applications in diodes and transistors.3 hoursModule 3Molecular Electronics3 hoursOverview & Basics; Fabrication of molecular electronics-based transistor devices; Conductivity of organic polymers- Conduction mechanism in organic polymers; Polymer Electronics; Self-Assembling Circuits.Module 4Single Electron Devices5 hoursPrinciple of operation - Single-Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot Transistor - Energy of Quantum Dot system, Single-Electron Quantum-Dot Transistor, Single transistor; Conductance Oscillation and Potential Fluctuation; Transport under Finite temperature and Finite Bias; Coulomb Blockade Devices.4 hoursModule 5Carbon Nanoelectronics4 hoursCarbon nanotubes - SWCNTs and MWCNTs; 1D quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-TUBFET, CNT-SET; and NanoWire FETs; Electronic structure of graphene; Graphene FETs- GNRFETs.2 hoursModule 6SpintronicsSpintronic devices- spin diodes and spin transistors2 hours<									
Limitations of the conventional MOSFETs at Nanoscales, MOSFET Scaling & implications, Introductory concepts of Ballistic transport and Quantum confinement, Differences in Few Electron Devices (as analog version) and Single Electron Devices (as digital version) of Nanoelectronic devices Module 2 Nanostructures and Quantum Electronic Devices 4 hours Low-dimensional structures. Quantum wells, Quantum wires and Quantum dots; Density of states in low-dimensional structures; Quantum Interference Devices; Split –Gate Transistor; Electron – Wave Transistor; Resonant tunneling phenomena and its applications in diodes and transistors. Module 3 Molecular Electronics 3 hours Overview & Basics; Fabrication of molecular electronics-based transistor devices; Conductivity of organic polymers- Conduction mechanism in organic polymers; Polymer Electronics; Self-Assembling Circuits. Module 4 Single Electron Devices 5 hours Principle of operation- Single-Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot Transistor - Energy of Quantum Dot system, Single-Electron Quantum-Dot Transistor, Single transistor; Sconductance Oscillation and Potential Fluctuation; Transport under Finite temperature and Finite Bias; Coulomb Blockade Devices. 4 hours Carbon nanotubes - SWCNTs and MWCNTs; 1D quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-TUBFET, CNT-SET; and NanoWire FETs; Electronic structure of graphene; Graphene FETs- GNRFETs. 2 hours Module 6 Spintronics 2 hours	Module 1	Introduction to Nanoelectronics			3 hour	S			
Introductory concepts of Ballistic transport and Quantum confinement, Differences in Few Electron Devices (as analog version) and Single Electron Devices (as digital version) of Nanoelectronic devices Module 2 Nanostructures and Quantum Electronic Devices 4 hours Low-dimensional structures. Quantum wells, Quantum wires and Quantum dots; Density of states in low-dimensional structures; Quantum Interference Devices; Split –Gate Transistor; Electron – Wave Transistor; Resonant tunneling phenomena and its applications in diodes and transistors. Module 3 Molecular Electronics 3 hours Overview & Basics; Fabrication of molecular electronics-based transistor devices; Conductivity of organic polymers- Conduction mechanism in organic polymers; Polymer Electronics; Self-Assembling Circuits. Module 4 Single Electron Devices 5 hours Principle of operation- Single-Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot Transistor; Sonductance Oscillation and Potential Fluctuation; Transport under Finite temperature and Finite Bias; Coulomb Blockade Devices. Module 5 Carbon Nanoelectronics 4 hours Carbon nanotubes - SWCNTs and MWCNTs; 1D quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-TUBFET, CNT-SET; and NanoWire FETs; Electronic structure of graphene; Graphene FETs-GNRFETs. Module 6 Spintronics 2 hours	Limitations of	of the conventional MOSFETs at Nanoscales, MOSFET Scalin	ng 8	z im	plicati	ons,			
Devices (as analog version) and Single Electron Devices (as digital version) of Nanoelectronic devices Module 2 Nanostructures and Quantum Electronic Devices 4 hours Low-dimensional structures: Quantum wells, Quantum wires and Quantum dots; Density of states in low- dimensional structures; Quantum Interference Devices; Split –Gate Transistor; Electron – Wave Transistor; Resonant tunneling phenomena and its applications in diodes and transistors. Module 3 Molecular Electronics 3 hours Overview & Basics; Fabrication of molecular electronics-based transistor devices; Conductivity of organic polymers- Conduction mechanism in organic polymers; Polymer Electronics; Self-Assembling Circuits. 3 hours Module 4 Single Electron Devices 5 hours Principle of operation- Single-Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot Transistor; Conductance Oscillation and Potential Fluctuation; Transport under Finite temperature and Finite Bias; Coulomb Blockade Devices. Module 5 Carbon Nanoelectronics 4 hours Carbon nanotubes - SWCNTs and MWCNTs; 1D quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-TUBFET, CNT-SET; and NanoWire FETs; Electronic structure of graphene; Graphene FETs- GNRFETs. Module 6 Spintronics 2 hours Fundamentals of spintronics; Spintronic devices- spin diodes and spin transistors 2 hours	Introductory	concepts of Ballistic transport and Quantum continement, Difference	es in	Fev	v Elect	ron			
Module 2 Nanostructures and Quantum Electronic Devices 4 hours Low-dimensional structures- Quantum wells, Quantum wires and Quantum dots; Density of states in low- dimensional structures; Quantum Interference Devices; Split –Gate Transistor; Electron – Wave Transistor; Resonant tunneling phenomena and its applications in diodes and transistors. Model 2 Move Wave Transistor; Resonant tunneling phenomena and its applications in diodes and transistors. Module 3 Molecular Electronics 3 hours Overview & Basics; Fabrication of molecular electronics-based transistor devices; Conductivity of organic polymers- Conduction mechanism in organic polymers; Polymer Electronics; Self-Assembling Circuits. Module 4 Single Electron Devices 5 hours Principle of operation- Single-Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot Transistor; Conductance Oscillation and Potential Fluctuation; Transport under Finite temperature and Finite Bias; Coulomb Blockade Devices. Module 5 Carbon Nanoelectronics 4 hours Carbon nanotubes - SWCNTs and MWCNTs; 1D quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-TUBFET, CNT-SET; and NanoWire FETs; Electronic structure of graphene; Graphene FETs- GNRFETs. Module 6 Spintronics 2 hours Fundamentals of spintronics; Spintronic devices- spin diodes and spin transistors 2 hours	Devices (as ana	alog version) and Single Electron Devices (as digital version) of Nanoele	ctro	nic a	evices				
Indition Decision of Control of Con	Module 2	Nanostructures and Quantum Electronic Devices			4 hour	s			
dimensional structures; Quantum Interference Devices; Split –Gate Transistor; Electron – Wave Transistor; Resonant tunneling phenomena and its applications in diodes and transistors. Module 3 Molecular Electronics 3 hours Overview & Basics; Fabrication of molecular electronics-based transistor devices; Conductivity of organic polymers- Conduction mechanism in organic polymers; Polymer Electronics; Self-Assembling Circuits. Module 4 Single Electron Devices 5 hours Principle of operation- Single-Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot Transistor - Energy of Quantum Dot system, Single-Electron Quantum-Dot Transistor, Single transistors; Conductance Oscillation and Potential Fluctuation; Transport under Finite temperature and Finite Bias; Coulomb Blockade Devices. Module 5 Carbon Nanoelectronics 4 hours Carbon nanotubes - SWCNTs and MWCNTs; 1D quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-TUBFET, CNT-SET; and NanoWire FETs; Electronic structure of graphene; Graphene FETs- GNRFETs. Module 6 Spintronics 2 hours Fundamentals of spintronics; Spintronic devices- spin diodes and spin transistors 2 hours	Low-dimension	nal structures- Quantum wells. Quantum wires and Quantum dots: Dens	itv o	f sta	tes in 1	ow-			
Module 3 Molecular Electronics 3 hours Overview & Basics; Fabrication of molecular electronics-based transistor devices; Conductivity of organic polymers- Conduction mechanism in organic polymers; Polymer Electronics; Self-Assembling Circuits. Module 4 Single Electron Devices 5 hours Module 4 Single Electron Devices 5 hours Principle of operation- Single-Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot Transistor - Energy of Quantum Dot system, Single-Electron Quantum-Dot Transistor, Single transistors; Conductance Oscillation and Potential Fluctuation; Transport under Finite temperature and Finite Bias; Coulomb Blockade Devices. Module 5 Carbon Nanoelectronics 4 hours Carbon nanotubes - SWCNTs and MWCNTs; 1D quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-TUBFET, CNT-SET; and NanoWire FETs; Electronic structure of graphene; Graphene FETs- GNRFETs. Module 6 Spintronics; Spintronic devices- spin diodes and spin transistors	dimensional s	tructures; Quantum Interference Devices; Split –Gate Transistor;	Ele	ctror	n – W	ave			
Module 3 Molecular Electronics 3 hours Overview & Basics; Fabrication of molecular electronics-based transistor devices; Conductivity of organic polymers- Conduction mechanism in organic polymers; Polymer Electronics; Self-Assembling Circuits. Module 4 Single Electron Devices 5 hours Module 4 Single Electron Devices 5 hours Principle of operation- Single-Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot Transistor - Energy of Quantum Dot system, Single-Electron Quantum-Dot Transistor, Single transistors; Conductance Oscillation and Potential Fluctuation; Transport under Finite temperature and Finite Bias; Coulomb Blockade Devices. Module 5 Carbon Nanoelectronics 4 hours Carbon nanotubes - SWCNTs and MWCNTs; 1D quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-TUBFET, CNT-SET; and NanoWire FETs; Electronic structure of graphene; Graphene FETs- GNRFETs. Module 6 Spintronics 2 hours Fundamentals of spintronics; Spintronic devices- spin diodes and spin transistors 2 hours	Transistor; Res	onant tunneling phenomena and its applications in diodes and transistors							
Module 3 Molecular Electronics 3 hours Overview & Basics; Fabrication of molecular electronics-based transistor devices; Conductivity of organic polymers- Conduction mechanism in organic polymers; Polymer Electronics; Self-Assembling Circuits. Module 4 Single Electron Devices 5 hours Module 4 Single Electron Devices 5 hours Principle of operation- Single-Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot Transistor - Energy of Quantum Dot system, Single-Electron Quantum-Dot Transistor, Single transistors; Conductance Oscillation and Potential Fluctuation; Transport under Finite temperature and Finite Bias; Coulomb Blockade Devices. Module 5 Carbon Nanoelectronics 4 hours Carbon nanotubes - SWCNTs and MWCNTs; 1D quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-TUBFET, CNT-SET; and NanoWire FETs; Electronic structure of graphene; Graphene FETs- GNRFETs. Module 6 Spintronics 2 hours Fundamentals of spintronics; Spintronic devices- spin diodes and spin transistors 2 hours									
Overview & Basics; Fabrication of molecular electronics-based transistor devices; Conductivity of organic polymers- Conduction mechanism in organic polymers; Polymer Electronics; Self-Assembling Circuits. Module 4 Single Electron Devices 5 hours Principle of operation- Single-Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot Transistor - Energy of Quantum Dot system, Single-Electron Quantum-Dot Transistor, Single transistors; Conductance Oscillation and Potential Fluctuation; Transport under Finite temperature and Finite Bias; Coulomb Blockade Devices. Module 5 Carbon Nanoelectronics 4 hours Carbon nanotubes - SWCNTs and MWCNTs; 1D quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-TUBFET, CNT-SET; and NanoWire FETs; Electronic structure of graphene; Graphene FETs- GNRFETs. Module 6 Spintronics 2 hours Fundamentals of spintronics; Spintronic devices- spin diodes and spin transistors —	Module 3	Molecular Electronics		<u> </u>	<u>3 hour</u>	S .			
Module 4 Single Electron Devices 5 hours Principle of operation- Single-Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot Transistor - Energy of Quantum Dot system, Single-Electron Quantum-Dot Transistor, Single transistors; Conductance Oscillation and Potential Fluctuation; Transport under Finite temperature and Finite Bias; Coulomb Blockade Devices. Module 5 Carbon Nanoelectronics 4 hours Carbon nanotubes - SWCNTs and MWCNTs; 1D quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-TUBFET, CNT-SET; and NanoWire FETs; Electronic structure of graphene; Graphene FETs- GNRFETs. Module 6 Spintronics 2 hours Fundamentals of spintronics; Spintronic devices- spin diodes and spin transistors 2 hours	Overview & B	asics; Fabrication of molecular electronics-based transistor devices; Cond	ducti	vity	of orga	inic			
Module 4Single Electron Devices5 hoursPrinciple of operation- Single-Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot Transistor - Energy of Quantum Dot system, Single-Electron Quantum-Dot Transistor, Single transistors; Conductance Oscillation and Potential Fluctuation; Transport under Finite temperature and Finite Bias; Coulomb Blockade Devices.4 hoursModule 5Carbon Nanoelectronics4 hoursCarbon nanotubes - SWCNTs and MWCNTs; 1D quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-TUBFET, CNT-SET; and NanoWire FETs; Electronic structure of graphene; Graphene FETs- GNRFETs.2 hoursModule 6Spintronics2 hours	polymers- Con	duction mechanism in organic polymers; Polymer Electronics; Self-Asse	mon	ing C	Ircuits	•			
Principle of operation- Single-Electron Effect, Coulomb Blockade Phenomenon; Theoretical Quantum Dot Transistor - Energy of Quantum Dot system, Single-Electron Quantum-Dot Transistor, Single transistors; Conductance Oscillation and Potential Fluctuation; Transport under Finite temperature and Finite Bias; Coulomb Blockade Devices. Module 5 Carbon Nanoelectronics 4 hours Carbon nanotubes - SWCNTs and MWCNTs; 1D quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-TUBFET, CNT-SET; and NanoWire FETs; Electronic structure of graphene; Graphene FETs- GNRFETs. Module 6 Spintronics 2 hours Fundamentals of spintronics; Spintronic devices- spin diodes and spin transistors 2 hours	Module 4	Single Electron Devices			5 hour	s			
Dot Transistor - Energy of Quantum Dot system, Single-Electron Quantum-Dot Transistor, Single transistors; Conductance Oscillation and Potential Fluctuation; Transport under Finite temperature and Finite Bias; Coulomb Blockade Devices. Module 5 Carbon Nanoelectronics 4 hours Carbon nanotubes - SWCNTs and MWCNTs; 1D quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-TUBFET, CNT-SET; and NanoWire FETs; Electronic structure of graphene; Graphene FETs- GNRFETs. Module 6 Spintronics 2 hours Fundamentals of spintronics; Spintronic devices- spin diodes and spin transistors 2 hours	Principle of op	eration- Single-Electron Effect, Coulomb Blockade Phenomenon; T	heore	etica	l Ouan	tum			
transistors; Conductance Oscillation and Potential Fluctuation; Transport under Finite temperature and Finite Bias; Coulomb Blockade Devices. Module 5 Carbon Nanoelectronics 4 hours Carbon nanotubes - SWCNTs and MWCNTs; 1D quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-TUBFET, CNT-SET; and NanoWire FETs; Electronic structure of graphene; Graphene FETs- GNRFETs. Module 6 Spintronics 2 hours Fundamentals of spintronics; Spintronic devices- spin diodes and spin transistors 2 hours	Dot Transistor	- Energy of Quantum Dot system, Single-Electron Quantum-Dot	Tra	nsist	or, Si	ngle			
Module 5 Carbon Nanoelectronics 4 hours Carbon nanotubes - SWCNTs and MWCNTs; 1D quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-TUBFET, CNT-SET; and NanoWire FETs; Electronic structure of graphene; Graphene FETs- GNRFETs. 2 hours Module 6 Spintronics 2 hours Fundamentals of spintronics; Spintronic devices- spin diodes and spin transistors	transistors; Co	nductance Oscillation and Potential Fluctuation; Transport under Fini	te te	mpe	rature	and			
Module 5 Carbon Nanoelectronics 4 hours Carbon nanotubes - SWCNTs and MWCNTs; 1D quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-TUBFET, CNT-SET; and NanoWire FETs; Electronic structure of graphene; Graphene FETs- GNRFETs. 4 hours Module 6 Spintronics 2 hours Fundamentals of spintronics; Spintronic devices- spin diodes and spin transistors 2 hours	Finite Bias; Co	ulomb Blockade Devices.							
Module 5 Carbon Nanoelectronics 4 hours Carbon nanotubes - SWCNTs and MWCNTs; 1D quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-TUBFET, CNT-SET; and NanoWire FETs; Electronic structure of graphene; Graphene FETs- GNRFETs. 2 hours Module 6 Spintronics 2 hours Fundamentals of spintronics; Spintronic devices- spin diodes and spin transistors 2 hours				1					
Carbon nanotubes - SWCNTs and MWCNTs; ID quantization in nanotubes- van Hove singularities; Fabrication of CNTs; CNT FETs- Device characteristics, CNT-TUBFET, CNT-SET; and NanoWire FETs; Electronic structure of graphene; Graphene FETs- GNRFETs. Module 6 Spintronics Fundamentals of spintronics; Spintronic devices- spin diodes and spin transistors	Module 5	Carbon Nanoelectronics		<u> </u>	4 hour	S ·			
FeTs; Electronic structure of graphene; Graphene FETs- GNRFETs. Module 6 Spintronics Fundamentals of spintronics; Spintronic devices- spin diodes and spin transistors	Eabrication of	Des - SWUNIS and MWUNIS; ID quantization in nanotubes- van	HOV FT·	e sii and	igularii NanoV	les;			
Module 6 Spintronics 2 hours Fundamentals of spintronics; Spintronic devices- spin diodes and spin transistors 2	FETs: Electronic structure of graphene: Graphene FETs- GNRFETs								
Module 6 Spintronics 2 hours Fundamentals of spintronics; Spintronic devices- spin diodes and spin transistors 2 hours	,,								
Fundamentals of spintronics; Spintronic devices- spin diodes and spin transistors	Module 6	Spintronics			2 hour	S			
	Fundamentals	of spintronics; Spintronic devices- spin diodes and spin transistors							

Mo	dule 7	Current Nanoelectronic	Devices		7 hours	
Qua	ntum Effec	ts in MOSFETs, Strained	Silicon, Fully Deplete	ed SOI-MOSFET, Do	uble-Gate MOSFET,	
Mult	ti-gate MC	SFETs, FIN-FET, Electric	cally Induced Junctio	ns for EJ-MOSFETs,	, Ballistic Transport,	
Con	ductance Q	uantization, Quantum Poin	t Contact Devices.			
Mod	lule 8	Contemporary issues:			2 hours	
				Total Lecture H	Hours 30 hours	
Text	t Book(s)					
1.	Shunri O	da, David Ferry, Nanaoscal	le Silicon Devices, CR	C Press, Taylor & Fra	ancis Group, 2015.	
2.	K. Goser	. P. Glosekotter, Nanoelect	ronics and Nanosyster	ns. Springer, 2005.	I /	
Refe	erence Boo) oks				
1.	Suprio D	atta. Lessons from nanoele	ctronics. World Scient	ific publisher, 2015.		
2.	Karl Gos	er. Peter Glosekotter. Jan E	Dienstuhl . Nanoelectro	onics and Nanosystem	s- From Transistors	
	to Molec	ular and Ouantum Devices.	Springer-Verlag 2004	1.		
3.	C.N.R. R	ao and A. Govindarai, Nan	otubes and nanowires.	RSC Publishing, 200)5.	
4.	Konstant	in K. Likharev, Single Elec	tron Devices and their	Applications, IEEE r	proceedings, vol. 87.	
	no. 4. Ap	ril 1999.p 606- 632.		rr r	8.,,	
5.	Ziese and	M. J. Thornton Spin Elect	ronics. Springer-Verla	ng. 2001.		
6.	Suprivo I	Datta. Quantum Transport-	From Atom to Transist	tor. Cambridge Univer	rsity press, 2005.	
Mod	le of Evalu	ation: Continuous Assessm	ent Test –I (CAT-I).	Continuous Assessme	nt Test –II (CAT-II).	
Sem	inar / Chal	lenging Assignments / Con	npletion of MOOC / O	UIZ, Final Assessmen	nt Test (FAT).	
Tvp	ical Proie	<u></u> cts	1			
	l. Design	a Double gate MOSFET w	vith 10nm-16nm chann	nel dimensions by refe	erring a latest journal	
	paper a	nd analyze its performance	through band diagram	n and electrical charac	teristics by make use	
	of proce	ess and device simulators.	6 6		,	
2	2. Design	a 2D SOI-MOSFET with	16nm technology no	de by referring a late	est journal paper and	
	analyze	its performance through ba	and diagram and electi	rical characteristics by	make use of process	
	and dev	ice simulators.	-		-	
3	B. Design	a gate around FINFET v	with 5nm fin length a	and 16nm channel le	ength dimensions by	
	referrin	g a latest journal paper an	d analyze its perform	ance through band di	iagram and electrical	
	characte	eristics by make use of proc	cess and device simula	tors.		
2	4. Solve re	elevant mathematical equat	ions and plot band stru	acture and DOS of var	ious types of CNTs.	
4	5. Solve r	elevant mathematical equ	ations and plot band	structure and DOS	of various types of	
	grapher	e nano ribbons(GNRs).				
6	6. Solve NEGF equation for quantum transport of a 2D graphne FET and analyze its electrical					
	characte	eristics.				
Mod	le of Evalu	ation: Review I. II and III				
Reco	ommended	by Board of Studies	13-12-2015			
App	roved by A	cademic Council	No. 40	Date	18-03-2016	

Course Code	Course Title	L T P J C				
ECE6033	NANOPHOTONICS	30003				
Pre-requisite	ECE5031 - Quantum Physics for nanostructures					
-	· · · · · · · · · · · · · · · · · · ·					
Course Objecti	ves:					
The course is air	ned to:					
1. Expose	them to the emerging area of nanophotonics and the phenomena inv	olved in such				
devices.						
2. Provide	deep understandings of light – matter interaction at nanoscale.					
3. Study di	ifferent types of nanophotonic crystal based devices and systems.					
Expected Cours	se Outcomes:					
At the end of co	urse student will be able to					
1. Gain the	foundations of nanophotonics.					
2. Understa	nd the mathematical synthesis of Maxwell equations for Photonic sy	stems.				
3. Acquire	the understanding and importance of confinement and propagation.					
4. Obtain th	he knowledge of 1-D, 2-D and 3-D Photonic Crystals.					
5. Gain the	design and scope of nano-photonics applications.					
6. Learn the	e foundation of plasmonics.					
Module 1 For	Indations of Photonics	4 hours				
Photons and El	ectrons - Similarities and differences, Light Interaction with Ma	tter, Complex				
Modulo 2 Mo	and delectric constant, Dispersion in Materials.	6 hours				
Nouule 2 Ma	xwell equations for Photomic systems	o nours				
its analytical sol	equations and their interpretations, Master's Equation for dielectric	medium and				
	ution.					
Module 3 Co	nfinement and Propagation	6 hours				
Confinement of	F Photons and Electrons Co-operative effects for Photons and	d Electrons				
Propagation thro	hugh Classically Forbidden Zone- Tunneling Concept of Near-Field	d phenomena				
in Photonic Crys	stals and Evanescent wave	a phenomena				
Module 4 Ph	otonic Crystals	8 hours				
1-D. 2-D and 3-	D Photonic crystal. Theoretical and mathematical description of P	hotonic band				
gap, Features an	d fabrication of Photonic crystals.					
Module 5 Ap	plications of Photonics	6 hours				
TE/TM Mode, C	Dptical fiber, filters, switching devices, Kerr effect devices; Super Le	enses – Micro				
and Nano Lense	s, Prisms and Meta-materials, Graphene photonics.					
Module 6 Pho	osphor materials in Photonics	7 hours				
Flourescence, P	hosphorescence, rare earth doped nanostructures, activator and sense	sitizer, energy				
transfer process, life time, down and up conversation, FRET.						
Module 7 Pla	smonics	6 hours				
Fundamentals, wave equations, surface plasmon-polaritons, Plasmonics in gold and silver						
nanomaterials						
Module 8 Con	ntemporary issues:	2 hours				

				Total Lecture	: 45 hours	
Tex	kt Book(s)				
1.	Paras P	rasad, Nanophotonics, Wiley-In	nterscience, 2004.			
2.	John D	. Joannopoulos, Steven G. Jo	hnson, Joshua N.	Winn, Robert D. M	leade, Photonic	
	Crystal	s: Molding the Flow of Light, se	econd Edition, Prir	nceton University Pre	ss, 2008	
Ref	ference l	Books				
1.	Motoic	hi Ohtsu, Kiyoshi Kobayashi,	Tadashi Kawazo	e, Takashi Yatsui, N	Aakoto Naruse,	
	Princip	les of Nanophotonics, CRC Pre	ss, Taylor & Franc	is Group, 2008.		
2.	Stefan .	A. Maier, Plasmonics: Fundame	entals and Applicat	ions, Springer Science	e, 2007.	
3.	J. R. L	akowicz, Principle of Fluores	cence Spectroscop	y, third Edition, Kl	wer Academic	
	Publish	er, Newyork, 2007				
Mo	de of Ev	aluation: Continuous Assessme	nt Test –I (CAT-I)	, Continuous Assess	ment Test –II	
(CA	(CAT-II), Seminar / Challenging Assignments / Completion of MOOC / QUIZ, Final Assessment					
Tes	Test (FAT).					
Rec	Recommended by Board of Studies 13-12-2015					
App	proved b	y Academic Council	No. 40	Date	8-03-2016	

Programme Electives

Course Code	Course Title	T 7	r t) I	6			
ECE5035	SEMICONDUCTOR DEVICE PHYSICS AND	2 (4	3			
Lelouse	TECHNOLOGY							
Pre-requisite	Nil							
Course Object	ives:							
The course is ai	med to:							
1. Make th	em understand the physics of semiconductor materials and devices.							
2. Educate	the working mechanism and design of optoelectronic devices.							
3. Train the	em to solve bandgap models and design different semiconductor device	es.						
Expected Cou	rse Outcomes:							
Students will be	e able to							
1. Gain in-	depth knowledge in semiconductor physics							
2. Acquire	knowledge of mathematical model of various device fabrication proc	esse	s					
3. Gain in-	depth knowledge of formation and properties of PN junctions							
4. Obtain t	he fundamentals of metal-semiconductor junctions							
5. Gain the	physics of optoelectronic devices							
6. Understa	and the fabrication and characteristics of nanoscale MOSFETs							
/. Apply th	the concepts and techniques to solve bandgap model equations and c	esig	şn v	varı	ou			
semicon	auctor devices.							
Module 1 Se	miconductor Physics	1	6 h	0111	'S			
Energy Bands a	and Carrier Concentration in thermal Equilibrium: Semiconductor Ma	ateri	als	, Ba	asio			
Crystal Structu	re, Basic Crystal Growth Technique, Valence Bands, Energy Ba	nds,	Ir	ntrii	nsia			
Carrier Concent	tration, Donors and Acceptors. Carrier Transport Phenomena: Carrier	Dri	ft, ^j	Car	rie			
Diffusion, Gene	eration and Recombination Processes, Continuity Equation, Thermic	nic	Er	niss	ior			
Process, Tunnel	ling Process, High-Field Effects.							
		<u> </u>						
Module 2 De	evice Process stages I		<u>3 h</u>	our	<u>'S</u>			
Device Process	Pattern transfer: Ontical lithography Photoresists Alignment	. IIII nd	pia ovi	nta	.101			
Ftching	. Fattern transfer, Optical inflography, Fliotoresists, Alignment a	nu	СЛ	508	116			
Litening.								
Module 3 De	evice Process stages II		3 h	oui	.s			
Mathematical models relevant to Deposition; Physical and chemical vapor deposition, Epitaxy.								
Process Integrat	tion: Device isolation, contacts metallization.							
Module 4 P-	N Junction		5 h	oui	s			
Diode fabricat	Diode fabrication, Device physics: Thermal equilibrium, Internal electro-static fields and							
potentials, Pois	potentials, Poisson's equation, continuity equations, drift-diffusion equations. I-V Characteristics:							
Forward bias, r	everse bias, Diode equation. Capacitive effect: Junction and diffusion	ı ca	pac	itar	ice			
DC, AC and tra	nsient analysis of Diodes.							

Module 5	Metal-Semiconductor Contacts and Schottky Diodes	4 hours

Metal-Semiconductor Junction diode Fabrication, Device Physics: Ideal MS contacts, Schottky diode-Electrostatics, I-V characteristics, DC, AC and transient analysis. Metal-Semiconductor contacts: Ohmic contacts, Schottky contacts, Tunnel contacts and Annealed and alloyed contacts.

Optoelectronic Diodes Module 6

3 hours Photodiode Fabrication, device Physics of pn Junction Photodiodes, p-i-n Photo diodes. Principle of operation and fabrication technologies of Solar cell, LED and LASER diodes.

Module 7 MOSFET

MOS capacitor, MOSFET device fabrication, MOSFET Physics: I-V characteristics, Subthreshold region, Body effect, Capacitive effect, small and large signal model. MOSFET Short Channel effects: Punch through, DIBL, Hot electron effect, Velocity Saturation, Leakage current. **MESFETs** and **MODFET** analysis.

Module 8	Contemporary issues:	2 hours
Advanced T	opics	
	Total Lecture	30 Hours

Text Books(s)

- S. M. Sze and Ming-Kwei Lee, Semiconductor Devices Physics and technology, John Wiley 1. & Sons, 2013.
- 2. Grundmann and Marius, Physics of Semiconductors, Springer, 2010

Reference Books

- Ben G. Streetman and Sanjay Banerjee, Solid State Electronic Devices, Pearson Ed, 2014. 1.
- M. S. Tyagi, Introduction to semiconductor materials and devices, John Wiley & Sons, 2008. 2.
- Campbell, Stephan, Fabrication Engineering at the Micro and Nanoscale, Oxford University 3. Press, 2008.
- Robert F. Pierret, Semiconductor Device Fundamentals, Pearson Education, 2006. 4.
- Richard C. Jaeger, Introduction to Microelectronic Fabrication, Prentice Hall, 2001. 5.

Mode of Evaluation: Flipped Class Room, [Lecture to be videotaped], Use of physical and computer models to lecture, Visit to Industry, Min of 2 lectures by industry experts **Typical Projects**

- 1. Solve relevant mathematical equations and plot band structure then extract effective mass of direct and indirect bandgap semiconductors.
- 2. Solve drift-diffusion equation for transport parameters (Drift velocity, mobility and conductivity) of direct and indirect band gap materials.
- 3. Design a P-N junction diode with smallest dimensions by referring a latest journal paper and analyze its performance through band diagram and electrical characteristics.
- 4. Design a MOSFET with smallest dimensions by referring a latest journal paper and analyze its performance through band diagram and electrical characteristics by make use of process and device simulators.
- 5. Design a MOSFET with smallest dimensions by referring a latest journal paper and analyze its performance through band diagram and electrical characteristics by make use of process and device simulators.
- 6. Design a LASER diode with smallest dimensions by referring a latest journal paper and analyze its performance through band diagram and electrical characteristics by make use of process and device simulators.

Mode of Evaluation: Review I, II and III

4 hours

Course Code	Course Title	L T P J C			
ECE5036	MEMS To NEMS	2 0 0 4 3			
Pre-requisite	None				
Course Object	ives:				
The course is a	med to:				
1. Make th	em to understand the technology of MEMS and NEMS.				
2. Expose	them about fabrication processes for development of MEMS/NEI	MS devices and			
systems					
3. Educate	about the potential applications of NEMS.				
Expected Cou	rse Autcomes:				
At the end of c	se outcomes.				
1 Acquire	the knowledge of mechanisms in MESM/NEMS				
2 Underst	and various engineering mechanics of microsystems				
3. Gain th	e concept in finite element analysis of microsystems				
4. Obtain	he knowledge of MEMS fabrication				
5. Acquire	knowledge of quantum effects in MEMS/NEMS				
6. Apply t	he knowledge of system integration in MEMS/NEMS				
7. Design	and simulate micro/nano sensors and actuators.				
Module 1 In	troduction	2 hours			
Overview of	MEMS / NEMS and various devices, Scaling geometry, Rigid E	Body Dynamics,			
Forces, Electro	n transfer, Fluid mechanics and Heat transfer.				
Madula 2 E	zin ooring moch oning for Microgratomy design	4 h anns			
Statia Dandin	igneering mechanics for Microsystems design	4 nours			
Accelerometer	and Thermal analysis. Thermal effects on Mechanical strength of 1	Materials Creen			
formation	, and Therman analysis, Therman effects on Weenamean strength of I	Materials, Creep			
101111111111					
Module 3 Fi	nite Element Analysis	5 hours			
Concept of FI	A, Comparison with other methods, Formulation from the govern	ing Differential			
equations, For	nulation based on stationary total potential, 1-D and 2-D Finite El	ement Analysis,			
Examples.					
Module 4 O	verview of Micro - Scale fabrication	2 hours			
Microsystem	abrication process-Lithography, Dry and wet etching, Thin f	ilm deposition-			
PVD,CVD,LIC	A, Micromolding, Electro-deposition				
Module 5 Q	and its influence in MEMS and NEMS control of cosimin forces	<u>o nours</u>			
casilini Force	and its influence in MEMS and NEMS, control of casimir force,	national static			
Experimental techniques for studying anothology, phonic inclion, electronic inclion, static inclion,					
	hopy, suck-sup dynamics				
Module 6 N	EMS	7 hours			
Introduction to	Introduction to panoscale engineering theory and characteristics of NEMS. Design and simulation				
techniques of N	EMS – molecular dynamics, Potential energy models, Integration alg	gorithms			
*					
		44			

Molecular a	nd Nanostructure Dynamics, M	olecular Wires	and Molecular C	Circuits	
Module 7	System Integration				2 hours
System Inte	gration and reliability				
Module 8	Contemporary issues:				2 hours
Advanced T	Somics				
The valleeu I					
			Total	Lecture:	30 hours
Text Books	s(s)				
1. Tai-ran	Hsu, MEMS and microsyste	ems design ar	nd manufacture,	Nanoscale	e Engineering,
TMGH	, 2008				
2. Sergey	Edward Lyshevski, MEMS and	I NEMS: Syste	ms, Devices, and	Structures.	, CRC, 2002
Reference	Books				
1. P.Seshu	a, Text Book of Finite Element	Analysis, PHI,	2006		
2. Sergey	Edward Lyshevski, Nano- and	Micro-electron	nechanical System	ns, CRC, P	Press, 2000
3. Bharath	n Bhushan, Handbook of Micro	Nanotribology	, CRC Press, 199	<u>99.</u>	
4. Corneli	us T. Leondes, MEMS/NEMS	Handbook, Tec	hniques and app	lication, Sp	ringer, 2005.
Mode of Ev	aluation: Continuous Assessme	nt Test –I (CA	I'-I), Continuous	S Assessmen	nt Test –II
(CAT-II), S	eminar / Challenging Assignme	ents / Completio	on of MOOC / Q	UIZ, Final	Assessment
Test (FAT).	insta				
Typical Pro					
I. Dest	ign of capacitance based actuato	ors.			
2. Stud	ly of scaling effects in a magnet	1C systems			
$\begin{array}{c} 5. 51111 \\ 4 \mathbf{M}_{21} \end{array}$	ulation of period based cantilever	r beams			
4. Molecular dynamics simulation					
5. Acceleronneller design 6. Design of connectance based actuators					
0. Design of capacitatice based actuators.					
Mode of Evaluation: Review I, II and III					
Recommend	ded by Board of Studies	13-12-2015			
Approved b	y Academic Council	No. 40	Date	18-03-20	016

Course Code	Course Title	L T P J C
ECE5037	NANOSENSORS	3 0 0 0 3
Pre-requisite	Nil	· · · · · · · · ·
Course Objecti	ves:	
The course is air	ned to:	
1. Offer an	overview of basic nanosensor technology with examples drawn	from existing
products	and literatures.	-
2. Enable t	hem to identify suitable nanosensors and nanodevices for var	ious potential
applicati	ons.	_
3. Make the	em acquainted with various types of nanosensors and its potential ap	plications.
Expected Cours	se Outcomes:	
At the end of thi	s course students will be able to	
1. Identify	and understand various micro and nano-sensors and their working.	
2. Learn ma	aterial's properties used for the fabrication of nanosensors.	
3. Gain the	fundamentals of packaging and characterization of nanosensors.	
4. Aware of	f various types of mechanical, chemical and optical nano-sensing sy	stems.
5. Use nano	ostructured materials for developing nanobiosensors.	
Module 1 Mi	cro and nano-sensors	3 hours
Sensing principl	es, sensor types and classification – Mechanical, acoustic, magnetic	thermal,
chemical, radiat	ion; microsensors; sensors based on surface - acoustic wave devices	, biosensor,
microfluids		
Module 2 Ma	terials for Nanosensors	8 hours
Shape and size	Dependence of Properties at Nanoscale, Surface Energy of a Solid	l, Core/Shell-
Structured Nan	oparticles, Metallic Nanoparticles and Plasmons Optical Proper	ties of Bulk
Metals and Met	allic Nanoparticles, Quantum Dots, Carbon Nanotubes, Inorganic	c Nanowires,
Nanoporous Ma	terials.	
Module 3 Pac	ckaging and characterization of sensors	4 hours
Design, fabricat	ion and characterization, Method of packaging at dye level, zero lev	vel and first
level.		
Module 4 M	echanical Nanosensors	8 hours
Mass sensing-	Nanogram Mass Sensing by Quartz Crystal Microbalance,	MEMS/NEMS
Resonators; Di	splacement sensor- Electron Tunneling Displacement Nanoser	isor, Coulomb
Blockade Electr	ometer-Based Displacement Nanosensor, Nanometer-Scale Displac	ement Sensing
by Single-Elect	ron Transistor, Magnetomotive Displacement Nanosensor, Piez	voresistive and
Piezoelectric Di	splacement Nanosensors, Optical Displacement Nanosensor; Femt	onewton Force
Sensors- Doub	ly Clamped Suspended Carbon Nanotube Resonators, Su	spended CNT
Electromechanic	cal Sensors for Displacement and Force, Membrane	-Based CNT
Electromechanic	cal Pressure Sensor	
Module 5 Ch	emical Nanosensors	8 hours
Gas Sensors Ba	sed on Metallic Nanoparticles, Metal Oxides, Carbon Nanotube, I	Porous Silicon;
Thin Organic P	olymer Film–Based Gas Sensors; Electrospun Polymer Nanofiber	rs as Humidity
Sensors; Nanoel	ectronic Nose; CNT, Nanowire, and Nanobelt-Based Chemical Nan	osensors

Module	6 Optical Nanosensors				6 hours	
Noble-M	Noble-Metal Nanoparticles with LSPR and UV-Visible Spectroscopy, Nanosensors Based on					
Surface-	Enhanced Raman Scatteri	ng, Colloidal S	PR Colorimetric	Gold	Nanoparticle	
Spectrop	hotometric Sensor, Fiber-Op	otic Nanosensors, Na	nograting-Based C	Optical A	ccelerometer.	
				-		
Module	7 Nanobiosensors				6 hours	
Nanopar	ticle-Based Electrochemical	Biosensors, CN	T-Based Electro	chemica	l Biosensors,	
Function	alization of CNTs for Bios	sensor, Quantum I	Dot-Based Electro	ochemica	al Biosensors,	
Nanotub	e- and Nanowire-Based FET	Nanobiosensors, Ca	antilever-Based Na	anobiose	nsors, Optical	
Nanobio	sensors, Biochips					
Module	8 Contemporary issues:				2 hours	
Advance	d Topics					
				. I		
			Total Le	cture:	45 hours	
Text Bo	ok(s)					
1. Pete 2003	r Hauptmann and Tim Powna 3	all, Sensors: Principle	es and Application	ns, Prent	ice Hall,	
2. Vine	od Kumar Khanna, Nanosens	ors: Physical, Chemi	cal, and Biologica	l, CRC,	2012	
Referen	ce Books					
1. Kev	in C. Honeychurch, Nanosen	sors for Chemical an	d Biological Appl	ications:	Sensing with	
Nan	otubes, Nanowires and Nano	particles, woodhead	publishing, 2014		U	
2. Teik	-Cheng Lim, Nanosensors: T	Theory and Application	ons in Industry, He	ealthcare	and Defense,	
CRC	C, 2011	v 11	2 /			
Mode of	Evaluation: Continuous Asse	essment Test –I (CA	Γ-I), Continuous A	Assessme	ent Test –II	
(CAT-II)), Seminar / Challenging Assi	gnments / Completio	on of MOOC / QU	IZ, Final	l Assessment	
Test (FA	T).	-				
Recomm	ended by Board of Studies	13-12-2015				
Approve	d by Academic Council	No. 40	Date	18-03-2	2016	

Course Code	Course Title	LT	P	J	C
ECE5038	CARBON NANOMATERIALS	3 0	0	0	3
Pre-requisite	Nil				
Course Object	tives:				
The course is	aimed to:				
1. Make	the students understand the importance of carbon based nanostructure	d mate	eria	ıls.	
2. Study	various carbon allotropes, their types, structure, properties and application	utions.			
3. Emph	asize other carbon based nanostructured materials such as nanocones,	nanof	ibe	rs,	
nanoc	liscs and nanodiamonds.				
Expected Cou	irse Outcomes:				
At the end of o	course, students will be able to:				
1. Unde	rstand the importance of carbon based nanomaterials.				
2. Obtai	n the knowledge on synthesis, characterization and application of y	arious	s ca	arbo	on
based	nanomaterials such as fullerene, carbon nanotubes and graphene.				
3. Unde	rstand the functionalization and applications of CNT & Graphene.				
4. Gain	knowledge in other carbon based nanomaterials such as nanocone	s. nar	of	iber	rs.
nanoc	liscs and nanodiamonds.	,			,
Module 1 (Carbon Nanomaterials	2	hor	ars	
Introduction	to Carbon Nanomaterials, Carbon allotropes and their bonding be	tween	i ca	arbo	on
atoms.					
Module 2 F	'ullerene	6	hor	ars	
Structure. Sv	nthesis. Functionalization of fullerenes. Applications – Solar Cel	lls. H	vd	rog	en
storage. Bio-a	pplications.		. j	0	
Module 3 (Carbon nanotubes	8	hor	irs	
Types : Strue	cture: Properties- Electrical, Optical, Mechanical, Vibrational properti	es: N	Jan	otu	be
svnthesis - ca	urbon arc discharge, Laser ablation, Chemical Vapor Deposition, High	1-pres	sur	e C	CO
process. Purifi	cation techniques of carbon nanotube.	I			_
Module 4 F	unctionalization and Applications of CNTs	8	hor	ars	
Functionalizat	ion- Covalent, non-covalent, and biological: Applications - En	ergy	sto	rag	e:
Batteries, Fue	Cells: H ₂ , Li storage, supercapacitors; Molecular electronics–Field en	nitting	g de	vic	es
and Transistor	s. drug delivery. CNT based microscopy. Nanotube sensors.	C	,		
	-,				
Module 5 0	Graphene	7	hou	ırs	
Electronic bar	d structure, Properties of Graphene: chemical, mechanical, electronic	: and	the	rma	al.
Synthesis of C	Graphene – Exfoliation, Epitaxial, CVD, Hummer Method; Graphene	e Nan	oril	obo	n-
synthesis.					
		. 			
Module 6 F	unctionalization and Applications of Graphene	6	hou	urs	
		~			

Ex

- n
- s,

Mo

Mo

Mo

Mo

Mo

Mo Functionalization- Covalent, non-covalent Application of Graphene; Applications - Graphene MOSFET – Opening a Band gap, Spintronics, Solar cells, gas sensors, supercapacitors.

Mo	dule 7	Other Carbon based materia	ls			6 hours
Car	bon Nan	ocomposite, Nanocones, Nanof	ibers, Nanodiso	es and Nanodiamo	onds.	
Mo	dule 8	Contemporary issues:				2 hours
				Total L	ecture:	45 Hours
Tey	<mark>xt Book(</mark>	s)				
1.	Peter.	J.F Harris, Carbon Nanotube	e Science: Sy	nthesis, Properti	es and	Applications,
	Cambri	dge University Press, 2011				
2.	Jamie	H. Warner, Franziska Schaffe	el, Mark Rum	imeli, Alicja Bac	chmatiuk.	, Graphene:
	Fundan	nentals and Emergent Application	ons, Elseiver, 2	.013		
Ref	ference l	Books		· · · · · · · · · · · · · · · · · · ·		
1.	Zhong	Lin Wang, Nanowires and Na	nobelts- Mater	rials, Properties a	nd Devi	ces, Springer,
	2006			1	<u>a n</u>	1005
2.	Thomas	s Webbester, Carbon Nanotube	preparation ai	nd properties, CR	<u>C Press,</u>	1997
3.	R Saito	, G Dresselhaus, M S Dresselha	ius, Physical Pi	roperties of Carbo	n Nanoti	ubes, Imperial
4	college	press, 2004		CDC Dates 2014		
4.	Y Ury G	ogotsi, Volker Presser, Carbon	nanomaterials,	CRC Press, 2014	C Norr	
5.	UNK Nonoto	choology series 2011	anotubes and	Nanowires, RC	S Inano	oscience and
6	Michae	L O'Connell Carbon Nanotuk	es. Properties	and Applications	CRC Tay	vlor and
0.	Franci	group 2006	es. 1 topetties		CICC 1a	yior and
7	I fanci		• • • •	· 0 1 · 1	TT ·	<u>'</u>
7.	M1Kha1	I I. Katsnelson, Graphene: Carb	on in two dime	ensions, Cambridg	e Univer	sity Press,
0	Z01Z	de Longe Joon Energeis Nieren	conton Fullona	nage Dringinlag on	d Annling	tiona DCC
0.	Dublich	ing 2007	garten, runere	nes: Principles and	I Applica	ations, KSC
Mo	de of Ev	aluation: Continuous Assessmen	at Test I (CA	TI) Continuous	Assassme	ant Test II
(C)		eminar / Challenging Assignme	nts / Completic	1 - 1, Commutations 2	IZ Final	Assessment
Tes	t (FAT)				12, 1 mai	1 100000111011
Rec	comment	led by Board of Studies	13-12-2015			
Ap	proved b	v Academic Council	No. 40	Date	18-03-2	2016

Course Code		ITDIC
Course Code		
ECE5039	LITHOGRAPHIC TECHNIQUES FOR DEVICE	3 0 0 0 3
	FABRICATION	
Pre-requisite	Nil	
Course Object	ives:	
The course is a	med to:	
1. Make	conversant with conventional aspects of lithography, techniques rela	ated and their
resolut	ion aspects.	
2. Introdu	ice various existing Lithography techniques.	
3. Study	the principles, process steps and system components of the various	s lithographic
technic	lues.	8 1
Expected Cour	se Autcomes:	
At the end of co	se outcomes.	
At the end of co	the in depth knowledge in optical and electron beem lithegraphy tool	niques
	the in-depth knowledge in optical and electron beam https://www.	iniques.
2. Unders	tand the conventional aspects of lithography, techniques rela	ted and their
resolut	ion aspects of X-ray, Ion, SPM based and soft lithography.	
3. Learn a	and understand the importance of plasmonics in lithography	
Module 1 O	otical Lithography	9 hours
Process steps	involved in the optical lithography; Types - Contact, proximity	printing and
Projection Prin	ing; Resolution Enhancement techniques for projection systems; De	ep Ultraviolet
lithography; Ex	treme Ultraviolet lithography; Scanning Near Field Optical Lithograp	phy.
Module 2 El	ectron Beam Lithography	8 hours
Interaction of t	ne electrons with the substrate; Electron Lithography System compon	ents; Raster
scans and Vector	or scans; Electron resists and processing technique; Application of Ele	ectron Beam
Lithography.		
Module 3 X-	ray Lithography	4 hours
X-ray lithograp	hy system components, Resolution enhancement, X-ray mask const	ruction, X-ray
sources, x-ray r	esists.	
Module 4 10	n Lithography	3 hours
Module 4 10 Ion lithograph	n Lithography v system components: Focused Ion Beam Lithography: Maske	3 hours
Module 4 10 Ion lithograph	n Lithography y system components; Focused Ion Beam Lithography; Maske n Projection Lithography	3 hours ed Ion Beam
Module 4IoIonlithographLithography;Io	n Lithography y system components; Focused Ion Beam Lithography; Maske n Projection Lithography.	3 hours ed Ion Beam
Module 4 Io Ion lithograph Lithography; Ic	n Lithography y system components; Focused Ion Beam Lithography; Maske n Projection Lithography.	3 hours ed Ion Beam
Module 4IoIonlithography; IoLithography; IoModule 5SocSocratchingLithography; Io	n Lithography y system components; Focused Ion Beam Lithography; Maske n Projection Lithography. anning Probe Lithography the system Anadia Oridation Machanism of Nana avidation	3 hours ed Ion Beam 8 hours
Module 4IoIonlithographLithography;IoModule 5ScScratchingLithography;	n Lithography y system components; Focused Ion Beam Lithography; Maske n Projection Lithography. anning Probe Lithography thography; Anodic Oxidation- Mechanism of Nano-oxidation Mechanism DDN Terror Devilue DDN Between DDN Applie	3 hours ed Ion Beam 8 hours ion; Dip-Pen
Module 4IoIonlithography; IoLithography; IoModule 5ScScratchingLithographyNanolithography	n Lithography y system components; Focused Ion Beam Lithography; Maske n Projection Lithography. anning Probe Lithography thography; Anodic Oxidation- Mechanism of Nano-oxidati y - Mechanism, DPN Types: Parallel DPN, Polymer DPN, Applica	3 hours ed Ion Beam 8 hours ion; Dip-Pen ation of DPN;
Module 4IoIonlithographLithography;IoModule 5ScScratchingLithographNanolithographNano-shaving.	n Lithography y system components; Focused Ion Beam Lithography; Masked on Projection Lithography. anning Probe Lithography thography; Anodic Oxidation- Mechanism of Nano-oxidation y - Mechanism, DPN Types: Parallel DPN, Polymer DPN, Application	3 hours ed Ion Beam 8 hours ion; Dip-Pen ation of DPN;
Module 4 Io Ion lithograph Lithography; Io Module 5 Sc Scratching Li Nanolithograph Nano-shaving.	n Lithography y system components; Focused Ion Beam Lithography; Maske n Projection Lithography. anning Probe Lithography thography; Anodic Oxidation- Mechanism of Nano-oxidati y - Mechanism, DPN Types: Parallel DPN, Polymer DPN, Applica	3 hours ed Ion Beam 8 hours ion; Dip-Pen ation of DPN;
Module 4IoIonlithographyLithography;IoModule 5ScScratchingLithographyNanolithographyNano-shaving.Module 6So	n Lithography y system components; Focused Ion Beam Lithography; Maske on Projection Lithography. anning Probe Lithography thography; Anodic Oxidation- Mechanism of Nano-oxidati y - Mechanism, DPN Types: Parallel DPN, Polymer DPN, Applica ft Lithography	3 hours ed Ion Beam 8 hours ion; Dip-Pen ation of DPN; 5 hours
Module 4IoIonlithographyLithographyIoModule 5ScScratchingLithographyNanolithographyNano-shaving.Module 6SoMicro-contact	n Lithography y system components; Focused Ion Beam Lithography; Masked on Projection Lithography. anning Probe Lithography thography; Anodic Oxidation- Mechanism of Nano-oxidation y - Mechanism, DPN Types: Parallel DPN, Polymer DPN, Application ft Lithography printing, Solvent-Assisted Micromoulding, Micromoulding i	3 hours ed Ion Beam 8 hours ion; Dip-Pen ation of DPN; 5 hours n capillaries,
Module 4 Io Ion lithograph Lithography; Io Module 5 Sc Scratching Lithography Nanolithography Io Nano-shaving. Module 6 Micro-contact Patterning SAM	n Lithography y system components; Focused Ion Beam Lithography; Maske on Projection Lithography. anning Probe Lithography thography; Anodic Oxidation- Mechanism of Nano-oxidati y - Mechanism, DPN Types: Parallel DPN, Polymer DPN, Applica ft Lithography printing, Solvent-Assisted Micromoulding, Micromoulding in Is.	3 hours ed Ion Beam 8 hours ion; Dip-Pen ation of DPN; 5 hours n capillaries,

Module 7	Plasmonic Na	anolithography					6 hours
Principle	of Plasmonic	Lithography, F	lasmonic N	Aask,	Near-field	Plasmonic	Lithography,
Plasmoni	Plasmonic Contact Lithography, Plasmonic direct write lithography.						
Module 8	Contempora	ry issues:					2 hours
					Tota	l Lecture:	45 hours
	·						
Text Boo	k(s)						
1. M F	eldman, Nanolitl	hography: The	Art of Fab	ricatin	g Nanoelec	tronic and	Nanophotonic
Devi	ces and Systems,	Woodhead Pub	lishing, 2014	1.			
2. Stefa	no Cabrini, Satos	shi Kawata, Nan	ofabrication	Hand	book, CRC	Press, 2012.	
Referenc	e Books						
1. Bruc	e W. Smith, Ka	azuaki Suzuki,	Microlithog	graphy	: Science	and Techno	ology, Second
Editi	on, CRC Press, 2	007.					
2. D Bu	cknall, Nanolithe	ography and Pat	erning Tech	niques	s in Microel	ectronics, E	lsevier, 2005.
3. Marc	J. Madou, Man	ufacturing Tech	iniques for	Micro	fabrication	and Nanote	chnology, 3rd
Editi	on, Vol II, CRC I	Press, 2011.					
4. Mark	J. Jackson, Micr	o and Nanoman	ufacturing, S	Spring	er Science &	& Business I	Media, 2007.
5. Amp	ere A. Tseng, T	Tip-Based Nano	fabrication:	Funda	amentals ar	nd Applicat	ions, Springer
Scier	ice & Business M	Iedia, 2011.					
6. Hyor	igsok T. Soh, Ka	athryn Wilder C	Suarini, Calv	in F.	Quate, Sca	nning Probe	e Lithography,
Sprin	ger Science & B	usiness Media, 2	2013.				
Mode of	Evaluation: Cont	inuous Assessm	ent Test –I	(CAT	-I), Contin	uous Assess	sment Test –II
(CAT-II),	Seminar / Challe	enging Assignm	ents / Comp	letion	of MOOC	/ QUIZ, Fin	al Assessment
Test (FA)			1				
Recomme	ended by Board o	f Studies	13-12-201	5			
Approved	by Academic Co	ouncil	No. 40	D	ate	18-03-	2016

Course Objectives:		
The course is aimed to:		
1. Give a clear idea of changes in optica	l properties of nanostructures.	
2. Enable to understand the fundament	tals about surface plasmon polariton	and plasmonic
waveguides.		-
3. Make acquainted with various type	s of Spectroscopy and sensing techn	iques based on
plasmonics.		1
Expected Course Outcomes:		
At the end of course students will be able to:		
1 A cauire the knowledge on electron	magnetics of metallic nanonarticles	
2. Understand the fundamentals of a	surface plasmon polariton and LSPP	
2. Understand the avaitation dynami	ice at papescale	
4. Learn shout pape approximation dynami	its application in the field of opticalist	nomina
4. Learn about nanocomposites and	its application in the field of optoelect	romes.
5. Familiar with nanostructured mol	ecular architectures.	
6. Obtain the basics on Surface-Plas	smon-Polariton-Based Sensors.	
7. Apply surface plasmon polariton,	and LSPR concepts for designing nan	ophotonic
devices.		
		1
Module 1 Electromagnetics of Metallie	c Nano-particles	5 hours
Metallic Nano-particles, Maxwell equatio	n and Electromagnetic wave equatio	n, dispersion of
the free electron gas and volume plasmons, r	real metals and intraband transitions, l	Electromagentic
field in metals, Local Field Enhancement, St	ub-wavelength aperture plasmonics,	
Module 2 Plasmonic waveguides		4 hours
Module 2Plasmonic waveguidesElements for surface plasmon polariton	propagation, surface plasmon polar	4 hours
Module 2Plasmonic waveguidesElements for surface plasmon polaritonstructures, metal nanowires for high confine	propagation, surface plasmon polar ement guiding and focusing, localize	4 hours iton band gap d modes, metal
Module 2Plasmonic waveguidesElements for surface plasmon polaritonstructures, metal nanowires for high confin- nanoparticle waveguides	propagation, surface plasmon polar ement guiding and focusing, localize	4 hours iton band gap d modes, metal
Module 2Plasmonic waveguidesElements for surface plasmon polaritonstructures, metal nanowires for high confin- nanoparticle waveguides	propagation, surface plasmon polar ement guiding and focusing, localize	4 hours iton band gap d modes, metal
Module 2Plasmonic waveguidesElements for surface plasmon polaritonstructures, metal nanowires for high confin nanoparticle waveguidesModule 3Localized surface plasmons	propagation, surface plasmon polar ement guiding and focusing, localize	4 hours iton band gap d modes, metal 4 hours
Module 2Plasmonic waveguidesElements for surface plasmon polaritonstructures, metal nanowires for high confinnanoparticle waveguidesModule 3Localized surface plasmons– Normal modes of sub-wavelength metal	propagation, surface plasmon polar ement guiding and focusing, localize	4 hours iton band gap d modes, metal 4 hours
Module 2Plasmonic waveguidesElements for surface plasmon polariton structures, metal nanowires for high confin nanoparticle waveguidesModule 3Localized surface plasmons – Normal modes of sub-wavelength me plasmons, coupling between localized plasmon	propagation, surface plasmon polar ement guiding and focusing, localize etal particles, Mie theory, Observations, void plasmons and metallic nanos	4 hours iton band gap d modes, metal 4 hours tions of particle hells
Module 2 Plasmonic waveguides Elements for surface plasmon polariton structures, metal nanowires for high confin nanoparticle waveguides Module 3 Localized surface plasmons – Normal modes of sub-wavelength metal plasmons, coupling between localized plasmons	propagation, surface plasmon polar ement guiding and focusing, localize etal particles, Mie theory, Observar ons, void plasmons and metallic nanos	4 hours iton band gap d modes, metal 4 hours tions of particle hells
Module 2Plasmonic waveguidesElements for surface plasmon polariton structures, metal nanowires for high confin nanoparticle waveguidesModule 3Localized surface plasmons– Normal modes of sub-wavelength model plasmons, coupling between localized plasmonsModule 4Nanocontrol of Excitation	propagation, surface plasmon polar ement guiding and focusing, localize etal particles, Mie theory, Observa- ons, void plasmons and metallic nanos Dynamics	4 hours iton band gap d modes, metal 4 hours tions of particle hells 4 hours
Module 2 Plasmonic waveguides Elements for surface plasmon polariton structures, metal nanowires for high confin nanoparticle waveguides Module 3 Localized surface plasmons – Normal modes of sub-wavelength metal plasmons, coupling between localized plasmons Module 4 Nanocontrol of Excitation Nanostructure and excited states. R	propagation, surface plasmon polar ement guiding and focusing, localize etal particles, Mie theory, Observat ons, void plasmons and metallic nanos Dynamics Rare earth doped nanostructures	4 hours iton band gap d modes, metal 4 hours tions of particle hells 4 hours Up-converting
Module 2Plasmonic waveguidesElements for surface plasmon polariton structures, metal nanowires for high confin nanoparticle waveguidesModule 3Localized surface plasmons of sub-wavelength me plasmons, coupling between localized plasmon Module 4Module 4Nanocontrol of Excitation Nanostructure and excited states. R nanophores. Photon avalanche. Quantur	propagation, surface plasmon polar ement guiding and focusing, localize etal particles, Mie theory, Observa- ons, void plasmons and metallic nanos Dynamics Rare earth doped nanostructures m cutting. Site isolating nanopart	4 hours iton band gap d modes, metal 4 hours tions of particle hells 4 hours Up-converting icles, prism and
Module 2Plasmonic waveguidesElements for surface plasmon polariton structures, metal nanowires for high confin nanoparticle waveguidesModule 3Localized surface plasmons– Normal modes of sub-wavelength me plasmons, coupling between localized plasmonModule 4Nanocontrol of Excitation Nanostructure and excited states. R nanophores. Photon avalanche. Quantur grating coupling, near field excitation.	propagation, surface plasmon polar ement guiding and focusing, localize etal particles, Mie theory, Observat ons, void plasmons and metallic nanos Dynamics Rare earth doped nanostructures m cutting. Site isolating nanopart	4 hours iton band gap d modes, metal 4 hours tions of particle hells 4 hours Up-converting icles, prism and
Module 2 Plasmonic waveguides Elements for surface plasmon polariton structures, metal nanowires for high confin nanoparticle waveguides Module 3 Localized surface plasmons – Normal modes of sub-wavelength metal plasmons, coupling between localized plasmons Module 4 Nanocontrol of Excitation Nanostructure and excited states. R nanophores. Photon avalanche. Quantur grating coupling, near field excitation.	propagation, surface plasmon polar ement guiding and focusing, localize etal particles, Mie theory, Observa- ons, void plasmons and metallic nanos Dynamics Rare earth doped nanostructures m cutting. Site isolating nanopart	4 hours iton band gap d modes, metal 4 hours tions of particle hells 4 hours Up-converting icles, prism and
Module 2 Plasmonic waveguides Elements for surface plasmon polariton structures, metal nanowires for high confin nanoparticle waveguides Module 3 Localized surface plasmons – Normal modes of sub-wavelength metal plasmons, coupling between localized plasmon Module 4 Nanocontrol of Excitation Nanostructure and excited states. R nanophores. Photon avalanche. Quantur grating coupling, near field excitation.	propagation, surface plasmon polar ement guiding and focusing, localize etal particles, Mie theory, Observa- ons, void plasmons and metallic nanos Dynamics Rare earth doped nanostructures m cutting. Site isolating nanopart	4 hours iton band gap d modes, metal 4 hours tions of particle hells 4 hours Up-converting icles, prism and 4 hours
Module 2Plasmonic waveguidesElements for surface plasmon polariton structures, metal nanowires for high confin nanoparticle waveguidesModule 3Localized surface plasmons– Normal modes of sub-wavelength me plasmons, coupling between localized plasmon Nanostructure and excited states. R nanophores. Photon avalanche. Quantur grating coupling, near field excitation.Module 5Nanocomposites Nanocomposites as photonic media Nano	propagation, surface plasmon polar ement guiding and focusing, localize etal particles, Mie theory, Observar ons, void plasmons and metallic nanos Dynamics Rare earth doped nanostructures m cutting. Site isolating nanopart	4 hours iton band gap d modes, metal 4 hours tions of particle hells 4 hours Up-converting icles, prism and 4 hours Local field
Module 2Plasmonic waveguidesElements for surface plasmon polariton structures, metal nanowires for high confin nanoparticle waveguidesModule 3Localized surface plasmons– Normal modes of sub-wavelength me plasmons, coupling between localized plasmon Nanostructure and excited states. R nanophores. Photon avalanche. Quantur grating coupling, near field excitation.Module 5Nanocomposites Nanocomposites as photonic media. Nano- enhancement	propagation, surface plasmon polar ement guiding and focusing, localize etal particles, Mie theory, Observat ons, void plasmons and metallic nanos Dynamics Rare earth doped nanostructures m cutting. Site isolating nanopart composite waveguides. Random lase Nanocomposites for optoelectronic	4 hours iton band gap d modes, metal 4 hours tions of particle hells 4 hours Up-converting icles, prism and 4 hours crs. Local field cs Polymer
Module 2Plasmonic waveguidesElements for surface plasmon polariton structures, metal nanowires for high confin nanoparticle waveguidesModule 3Localized surface plasmons— Normal modes of sub-wavelength me plasmons, coupling between localized plasmoModule 4Nanocontrol of Excitation Nanostructure and excited states. R nanophores. Photon avalanche. Quantur grating coupling, near field excitation.Module 5Nanocomposites Nanocomposites as photonic media. Nano- enhancement. Multiphase nanocomposites.	propagation, surface plasmon polar ement guiding and focusing, localize etal particles, Mie theory, Observa- ons, void plasmons and metallic nanos Dynamics Rare earth doped nanostructures m cutting. Site isolating nanopart composite waveguides. Random lase . Nanocomposites for optoelectronic tamaterials	4 hours iton band gap d modes, metal 4 hours tions of particle hells 4 hours Up-converting icles, prism and 4 hours cs. Polymer
Module 2 Plasmonic waveguides Elements for surface plasmon polariton structures, metal nanowires for high confin nanoparticle waveguides Module 3 Localized surface plasmons – Normal modes of sub-wavelength me plasmons, coupling between localized plasmon Module 4 Nanocontrol of Excitation Nanostructure and excited states. R nanophores. Photon avalanche. Quantur grating coupling, near field excitation. Module 5 Nanocomposites Nanocomposites as photonic media. Nanoenhancement. Multiphase nanocomposite me	propagation, surface plasmon polar ement guiding and focusing, localize etal particles, Mie theory, Observar ons, void plasmons and metallic nanos Dynamics Rare earth doped nanostructures m cutting. Site isolating nanopart composite waveguides. Random lase . Nanocomposites for optoelectronis tamaterials.	4 hours iton band gap d modes, metal 4 hours tions of particle hells 4 hours Up-converting icles, prism and 4 hours cs. Polymer
Module 2 Plasmonic waveguides Elements for surface plasmon polariton structures, metal nanowires for high confin nanoparticle waveguides Module 3 Localized surface plasmons – Normal modes of sub-wavelength metal plasmons, coupling between localized plasmons Module 4 Nanocontrol of Excitation Nanostructure and excited states. R nanophores. Photon avalanche. Quantur grating coupling, near field excitation. Module 5 Nanocomposites Nanocomposites as photonic media. Nanoenhancement. Multiphase nanocomposites. dispersed liquid crystals. Nanocomposite metal	propagation, surface plasmon polar ement guiding and focusing, localize etal particles, Mie theory, Observat ons, void plasmons and metallic nanos Dynamics Rare earth doped nanostructures m cutting. Site isolating nanopart composite waveguides. Random lase . Nanocomposites for optoelectronic tamaterials.	4 hours iton band gap d modes, metal 4 hours tions of particle hells 4 hours Up-converting icles, prism and 4 hours cs. Polymer
Module 2 Plasmonic waveguides Elements for surface plasmon polariton structures, metal nanowires for high confin nanoparticle waveguides Module 3 Localized surface plasmons – Normal modes of sub-wavelength metal plasmons, coupling between localized plasmons Module 4 Nanocontrol of Excitation Nanostructure and excited states. R nanophores. Photon avalanche. Quantur grating coupling, near field excitation. Module 5 Nanocomposites Nanocomposites as photonic media. Nanoenhancement. Multiphase nanocomposites. dispersed liquid crystals. Nanocomposite metal	propagation, surface plasmon polar ement guiding and focusing, localize etal particles, Mie theory, Observat ons, void plasmons and metallic nanos Dynamics Rare earth doped nanostructures m cutting. Site isolating nanopart composite waveguides. Random lase . Nanocomposites for optoelectronic tamaterials.	4 hours iton band gap d modes, metal 4 hours tions of particle hells 4 hours Up-converting icles, prism and 4 hours ers. Local field cs. Polymer 4 hours
Module 2Plasmonic waveguidesElements for surface plasmon polariton structures, metal nanowires for high confin nanoparticle waveguidesModule 3Localized surface plasmons– Normal modes of sub-wavelength me plasmons, coupling between localized plasmonModule 4Nanocontrol of Excitation Nanostructure and excited states. R nanophores. Photon avalanche. Quantur grating coupling, near field excitation.Module 5Nanocomposites Nanocomposites as photonic media. Nano enhancement. Multiphase nanocomposite me	propagation, surface plasmon polar ement guiding and focusing, localize etal particles, Mie theory, Observat ons, void plasmons and metallic nanos Dynamics Rare earth doped nanostructures m cutting. Site isolating nanopart composite waveguides. Random lase . Nanocomposites for optoelectronic tamaterials.	4 hours iton band g d modes, met 4 hours tions of partic hells 4 hours Up-converti icles, prism and 4 hours crs. Local fie cs. Polym
Module 2Plasmonic waveguidesElements for surface plasmon polariton structures, metal nanowires for high confin nanoparticle waveguidesModule 3Localized surface plasmons– Normal modes of sub-wavelength me plasmons, coupling between localized plasmonModule 4Nanocontrol of Excitation Nanostructure and excited states. R nanophores. Photon avalanche. Quantur grating coupling, near field excitation.Module 5Nanocomposites Nanocomposites as photonic media. Nano enhancement. Multiphase nanocomposites. dispersed liquid crystals. Nanocomposite meModule 6Nanostructured Molecular Ar Noncovalent interactions. Nanostructured plasmon	propagation, surface plasmon polar ement guiding and focusing, localize etal particles, Mie theory, Observar ons, void plasmons and metallic nanos Dynamics Rare earth doped nanostructures m cutting. Site isolating nanopart composite waveguides. Random lase . Nanocomposites for optoelectronis tamaterials.	4 hours iton band gaj d modes, meta 4 hours tions of particle hells 4 hours Up-converting icles, prism and 4 hours ers. Local field cs. Polyme 4 hours s. Dendrimers
Module 2Plasmonic waveguidesElements for surface plasmon polariton structures, metal nanowires for high confin nanoparticle waveguidesModule 3Localized surface plasmons– Normal modes of sub-wavelength me plasmons, coupling between localized plasmonModule 4Nanocontrol of Excitation Nanostructure and excited states. R nanophores. Photon avalanche. Quantur grating coupling, near field excitation.Module 5Nanocomposites Nanocomposites as photonic media. Nano- enhancement. Multiphase nanocomposites. dispersed liquid crystals. Nanocomposite meModule 6Nanostructured Molecular Ar Noncovalent interactions. Nanostructured plasmon	propagation, surface plasmon polar ement guiding and focusing, localize etal particles, Mie theory, Observations, void plasmons and metallic nanos Dynamics Rare earth doped nanostructures m cutting. Site isolating nanopart composite waveguides. Random lase . Nanocomposites for optoelectronic tamaterials.	4 hours iton band gap d modes, meta 4 hours tions of particle hells 4 hours Up-converting icles, prism and 4 hours ers. Local field cs. Polymer 4 hours 5. Dendrimers.
Module 2 Plasmonic waveguides Elements for surface plasmon polariton structures, metal nanowires for high confin nanoparticle waveguides Module 3 Localized surface plasmons – Normal modes of sub-wavelength me plasmons, coupling between localized plasmons Module 4 Nanocontrol of Excitation Nanostructure and excited states. R nanophores. Photon avalanche. Quantur grating coupling, near field excitation. Module 5 Nanocomposites Nanocomposites as photonic media. Nano enhancement. Multiphase nanocomposites. dispersed liquid crystals. Nanostructured molecular Ar Noncovalent interactions. Nanostructured plasmo	propagation, surface plasmon polar ement guiding and focusing, localize etal particles, Mie theory, Observat ons, void plasmons and metallic nanos Dynamics Rare earth doped nanostructures m cutting. Site isolating nanopart composite waveguides. Random lase . Nanocomposites for optoelectronic tamaterials.	4 hours iton band gap d modes, metal 4 hours tions of particle hells 4 hours Up-converting icles, prism and 4 hours ers. Local field cs. Polymer 4 hours 5. Dendrimers.
Module 2Plasmonic waveguidesElements for surface plasmon polariton structures, metal nanowires for high confin nanoparticle waveguidesModule 3Localized surface plasmons – Normal modes of sub-wavelength me plasmons, coupling between localized plasmonModule 4Nanocontrol of Excitation Nanostructure and excited states. R nanophores. Photon avalanche. Quantur grating coupling, near field excitation.Module 5Nanocomposites Nanocomposites as photonic media. Nano enhancement. Multiphase nanocomposites. dispersed liquid crystals. Nanocomposite meModule 6Nanostructured Molecular Ar Noncovalent interactions. Nanostructured plasmon	propagation, surface plasmon polar ement guiding and focusing, localize etal particles, Mie theory, Observa- ons, void plasmons and metallic nanos Dynamics Rare earth doped nanostructures m cutting. Site isolating nanopart composite waveguides. Random lase . Nanocomposites for optoelectronic tamaterials.	4 hours iton band gap d modes, metal 4 hours tions of particle hells 4 hours Up-converting icles, prism and 4 hours ers. Local field cs. Polymer 4 hours 5. Dendrimers.

Course Title

PLASMONICS

L

ТРЈ

2004

С

3

Course Code

ECE5040

Pre-requisite

Nil

Supr	ramolec	ular structures. Monolayer a	and multil	ayer moled	cular assemblies.				
Mod	Module 7Spectroscopy and sensing3 hours								
Sing	le-Parti	cle Spectroscopy, Surface	-Plasmon	-Polariton	-Based Sensors, M	etamaterials and			
Nega	ative Ind	dex at Optical Frequencies, 7	The Perfe	ct Lens, In	naging and Lithograp	hy			
Mod	Module 8Contemporary issues:2 hours								
					Total Lecture	: 30 hours			
						·			
Text	t Book(s)							
1.	Stefan A	Alexender Maier, Plasmonic	s – Funda	mental and	d Applications, Sprin	ger, 2007.			
2.	Paras P	rasad, Nanophotonics, Wiley	y-Interscie	ence, 2004	•				
Refe	erence I	Books							
1.	Mark L	. Brongersma and Pieter G.	Kik, Surfa	ace Plasmo	on Nanophotonics, Sp	oringer, 2007.			
2.	Ralf B.	Wehrspohn, Heinz-Siegfrie	ed Kitzero	ow, and K	urt Busch, Nanoph	otonic Materials:			
	Photon	ic Crystals, Plasmonics, and	Metamate	erials, Wile	ey-VCH, 2008)				
3.	Matthey	w Pelton, Garnett W. Bry	ant, Intro	duction to	o Metal-Nanoparticl	e Plasmonics, A			
	Wiley-	Science Wise Co–Publicatio	on, 2013						
List	of Proj	ects (Indicative)							
1. E	Electrode	eposition of plasmonic nanor	materials						
2. E	Electrock	nemical investigation of hot	electron d	ynamics					
3. P	lasmoni	ic simulations with light bear	ms						
4. P	hotonic	spin Hall effect from single	nanostru	cture	_				
5. F	abricati	on and optical characterisation	on of met	allic nanoc	cubes				
6. Localized surface plasmon resonance (LSPR) of Nobel metal nanoparticles									
Mod	Mode of Evaluation: Review I, II and III								
Reco	ommend	led by Board of Studies	13-12-20	015					
App	roved by	y Academic Council	No. 40		Date	18-03-2016			

Course Code	Course Title	L	Τ	P	J	С
ECE6031	NANOMAGNETISM- FUNDAMENTALS AND	3	0	0	0	3
	APPLICATIONS					
Pre-requisite	ECE5031- Quantum Physics for Nanostructures					

Course Objectives:

The course is aimed to:

- 1. Make them understand the fundamentals of nanomagnetism and their applications.
- 2. Study the magnetism at macro- and nanoscale and their potential effects.
- 3. Enable students to apply the concepts of magnetic nanomaterials in the field of energy storage, biomedicine and environmental applications.

Expected Course Outcomes:

At the end of course students will be able to:

- 1. Gain in-depth knowledge about the concepts of magnetism at macro and nanoscale.
- 2. Obtain the knowledge about magnetism of localized electrons on the atom.
- 3. Gain the fundamentals about ferromagnetism, antiferromagnetism and other magnetic order.
- 4. Identify and understand the concepts of micro- and nanoscale magnetism
- 5. Apply the concepts to the application of magnetic nanomaterials in the field of magnetic recording, energy storage, biomedicine and environmental applications.

Module 1 | Magnetostatics

Introduction - History - Magnetism and hysteresis, Magnetic dipole moment, Magnetic fields, Maxwell's equations, Magnetostatic energy and forces.

Module 2 | Magnetism of electrons

Orbital and spin moments, Magnetic field effects – Zeeman effect, Theory of electronic magnetism, Magnetism of electrons in solids

Module 3 Magnetism of localized electrons on the atom

The hydrogenic atom and angular momentum, The many-electron atom, Paramagnetism, Ions in solids; crystal-field interactions.

Module 4 Ferromagnetism and Exchange

8 hours

3 hours

8 hours

8 hours

Mean field theory, Exchange interactions, Band magnetism, Collective excitations, Anisotropy, Ferromagnetic phenomena

Module 5Antiferromagnetism and other magnetic order4 hoursMolecular field theory of antiferromagnetism, Ferrimagnets, Frustration, Amorphous magnets,
Spin glasses, Magnetic models4 hours

Module 6Micromagnetism and Nanoscale magnetism7 hours

Micromagnetic energy, Domain theory, Reversal, Pinning and Nucleation, Characteristic length scales, Superparamagnetism, Thin films, Thin-film heterostructures, Wires and needles, Small particles, Bulk nanostructures, Novel methods for synthesis of magnetic nanoparticles, Magnetic interactions: a tool to modify the magnetic properties of materials based on nanoparticles.

Mo	dule 7	Applications of nanomagne	etism		5 hours
Ma	gnetic	storage and recording, Mag	gnetic resonance	Imaging, Hyperthe	ermia, Ferrofluid,
Bio	sensors	•	-		
Mo	dule 8	Contemporary issues			2 hours
				Total Lectur	re: 45 hours
		-			
Tey	kt Book	.(s)			
1.	J. M. 1	D. Coey, Magnetism and Magn	etic Materials, Pear	son Education, 201	0.
2.	B. D.	Cullity, C. D. Graham, Introd	luction to Magnetic	Materials, John W	Viley & Sons, Inc,
	2009.	-	-		-
Ref	ference	Books			
1.	R. C.	O'Handley, Modern Magnetic	Materials: Princip	les and Application	ns, John Wiley &
	Sons,	Inc, 2000.			
2.	C Bin	ns, Nanomagnetism: Fundamer	ntals and Applicatio	ns, Elsevier, 2014.	
3.	David	Jiles, Introduction to Magnetis	m and Magnetic M	aterials, Chapman a	nd Hall, 1991.
Mo	de of E	Evaluation: Continuous Assessi	ment Test –I (CAT	-I), Continuous As	ssessment Test –II
(CA	AT-II),	Seminar / Challenging Assignr	nents / Completion	of MOOC / QUIZ,	Final Assessment
Tes	t (FAT)).			
Rec	commer	nded by Board of Studies	13-12-2015		
Ap	proved	by Academic Council	No. 40	Date	18-03-2016

Г

Course Code	Course Title					C
ECE 6034	ENERGY TECHNOLOGIES	3	0	0	0	3
Pre-requisite	ECE6034 - Physics and chemistry of solids					
Course Object	ives:					
1. To expo	ose the students about various energy sources and the possibility	0	ì h	arve	est	ing
energy v	vith nanomaterials					
Expected Cour	se Outcomes:					
At the end of co	burse the students will be able to:					
1. Understa	and the various renewable energy sources.					
2. Acquire	the knowledge on different energy narvesting methods.		0			
5. Understa 4 Explain	and thermodynamics and kinetics of fuer cell process with hanomater and choose suitable papemeterials and papestructures for photovalta		5.			
4. Explain 5 Distingu	and choose suitable hanomaterials and hanostructures for photovolta	ics	•			
6 Acquire	the knowledge of electrochemical energy storage systems					
7. Understa	and the process and design issues in magnetic energy storage systems.	5.				
Module 1 R	enewable Energy Sources		2	<u>2 ho</u>	ur	S
Basics and Typ	es of Renewable energy sources.					
Modulo 2 Fr	oray Horyosting		-	7 ho		.
Sources Types	and machanism Solar Thermoelectric Diezoelectric: Electro	dur	<u> </u> 011		1 4	s and
Biological; Ener	rgy harvesting devices and applications. Nanomaterials for energy ha	rve	esti	ing.		
Module 3 En	ergy Conversion I		7	/ ho	ur	S
Energy convers	ion - Types and mechanism; Electrochemical energy conversion, the	erm	od	yna	m	ics;
Hydrogen Tech	nology; Fuel Cells - fundamentals, classifications, Operating princip	les	ar	nd d	es	ign
considerations, cell, Fuel cell ap	thermodynamics and kinetics of fuel cell process, performance eva oplications. Nanomaterials as electrode materials for fuel cells.	lua	tio	n o	ft	ue
Modulo 4 En	ower Conversion II		_	7 h a		
Niodule 4 En	Destavoltaia fundamentala Solar call technologica Turnes D			<u>no</u>		s ad
Quantum dot, C etc,. Performan photovoltaics.	Copper indium gallium selenide (CIGS), Hybrid, Organic and Plasmo ce and parameter analysis of solar cells. Nanomaterials and Nano	oni ost	c s ruc	olar clar	° C(ES	ells foi
Module 5 En	ergy Conversion III		7	7 ho	117	'n
Photothermal s	vstems: Types and performance of solar collectors - Flat Plate. Hot	Air	<u> </u>	lvac	UA	tec
Tube, Parabolic performance of	c, Compound Parabolic and Fresnel Solar Concentrators, Thermal Solar Collectors, Current and future scope of solar energy.	A	na	lysi	s a	and
Module 6 En	ergy storage I		7	/ ho	ur	S
Electrochemical supercapacitors Lithium, Solid- Sodium ion an batteries and ca	l energy storage systems: Supercapacitors - Differences betwe and batteries, classifications of supercapacitors. Batteries: Primar state and molten solvent batteries; Lead acid batteries; Nickel Cadm d Aluminum Batteries. Nanostructured and Hybrid materials as pacitors.	en ry, niu ele	ca Se m l ecti	apac scor Batt rode	cito nda er er	ors, ary, ies; for

Mo	dule 7	Energy storage II			6 hours			
Magnetic energy storage systems (SMES); Thermal energy storage systems - Thermal energy								
stoi	rage mat	erials - Types, thermo ph	ysical properties, Pl	hase change materia	ls for heating and			
c00	ling app	lications. Heat transfer fluid	ls – Properties and m	nechanism.				
Mo	dule 8	Contemporary issues:			2 hours			
Adv	vanced 7	Conice						
Au	vanceu i	opics						
				Total Lect	ture: 45 hours			
				1000112000				
Теу	xt Book(s)						
1	Chetan	Singh Solanki, Solar Photo	voltatics – Fundame	ntals. Technologies	and Applications.			
_	PHI Le	earning Private limited, 201	l		·····			
2	Ru-shi	liu, Leizhang, Xueliang sun,	Electrochemical tec	chnologies for energy	storage and			
	conver	sion, Wiley publications, 20	12	_				
Ref	ference 1	Books						
1.	Caye N	I. Drapcho, Nghiem Phu Nł	uan and Terry H. W	alker, Biofuels Engi	neering, McGraw-			
	Hill Co	ompanies, 2008						
2.	Viswar	hathan, B and M Aulice Scil	oioh, Fuel Cells – Pr	inciples and Applica	tions, Universities			
-	Press ,	2006						
3.	Schaef	ter, John, Real Goods Solar	Living Sourcebook:	The Complete Guid	e to Renewable			
4	Energy	Technologies and Sustaina	Uandhaalt of Ener	UU/	anovyahla Enoray			
4.	CRC P	ress 2007		gy Efficiency and Re	snewable Energy,			
5	Iohn T	widell and Tony Wair Dong	wable Energy Page	urces Taylor & Fron	cis LISA 2006			
<u>э</u> . Мо	de of Ev	valuation: Continuous Asses	sment Test I (CAT)	I) Continuous Asse	cis, USA, 2000			
(C^{μ})	T-II	eminar / Challenging Assig	$\frac{1}{1}$ nments / Completion	\sim of MOOC / OUIZ	Final Assessment			
Tes	t (FAT)	emmar / enumeriging rissig	innems / completion		i mai i issessment			
Rec	commen	ded by Board of Studies	13-12-2015					
Ap	proved b	y Academic Council	No. 40	Date	18-03-2016			

Course Code	Course Title	L T P J C	
ECE6035	SPINTRONICS	2 0 0 4 3	
Pre-requisite	ECE5031- Quantum Physics for Nanostructures		
Course Object	tives :		
The course ain	ned to:		
	the them understand the spin based electronics.		
2. Sti	ady the magnetic materials, Spintronic based devices and fabrication.		
Expected Co	ll he able to		
The student W_1	II de adle 10		
	uire the understanding and importance of Micromagnetics		
2. Act	tain the fundamental knowledge of Magnetic Materials		
4. Un	derstand the Electron Transport in Magnetic Systems		
5. Stu	dy properties of magnetic materials using advanced characterization to	ols and	
tec	iniques.		
6. Ob	tain the design and scope of Spintronic Device fabrication Techniques		
Module 1 P	aramagnetism & diamagnetism	2 hours	
Magnetically of	ordered state, Itinerant-electron magnetism, Localized Magnetic System	ns.	
Module 2 N	licromagnetics	3 hours	
Magnetism of	single domain systems, Domain Walls, Exchange Bias and Magnetic A	nisotropy.	
Module 3 N	Iagnetic Materials	3 hours	
High-density r	ecording materials, Soft Magnetic Materials (Ferrites), Magnetic Thin	Films, Dilute	
Magnetic sem	iconductors, Hemsler Alloys, SQUID Magnetometer, Highly Sp	oin Polarized	
Systems, Mole	cule-based magnets, Single-molecule magnets.		
Module 4 E	lectron Transport in Magnetic Systems	5 hours	
Degree of	Spin Polarization, Idea of Tunneling, Magnetoresistance,	Anisotropic	
Magnetoresist	ance (AMR), Hall Effect (Planar & Anomalous) and Spin Polarized stat	es.	
Module 5 C	haracterization of Magnetic Materials	6 hours	
Magnetometry	, SQUID, VSM, Torque, Faraday Balance, Kerr Effect, Mag	gnetic Force	
Microscopy, S	pin Polarized STM.		
Module 6 S	pintronic Devices	6 hours	
Spintronics- Origins of Spin, Spin Mechanics, Origins of Spintronics, Spin current and			
Magnetoresistance, Giant Magnetoresistance (GMR), Colossal Magnetoresistance, Ballistic Magnetoresistance, Tunneling Magnetoresistance, Two terminal devices Spin valves, Tunneling			
MR devices Magnetic Field sensors Read- Heads MRAMS Three-terminal Devices. Spin FET			
Spin SET, and Spin LED			
	opin DDD.		
Module 7 S	nintronic Device fabrication Techniques	3 hours	
Advanced dev	ice fabrication methods-Growth of multilaver Structures Lithograp	hy and Self-	
Assembly.	The manuager burdeness, Dunogrup	, und Son	
Module 8 C	ontemporary issues:	2 hours	

				Total Lectu	re 30 hours
Tey	xt Book(s)				
1	Hirota, Sakakima,	and Inomata, Giant Ma	agneto-Resistive D	Devices, Springer V	Verlag 2002.
2	D. Awschalom, D.	Loss, and N.Samarth,	Semiconductor Sp	pintronics and Qua	ntum
	Computation, Nan	o Science Technology	series, Springer, 2	002.	
Ref	ference Books				
1	1 Stefan Visnovsky, Optics in Magnetic Multi-layers and Nanostructures, CRC Publishers, 2006.				CRC Publishers,
2	D.L. Mills, J. A.C.	Brand Nanomagnetism	n, Elsevier Science	e and Technology,	2006.
3	3 M. Ziese, M. J. Thornton Spin Electronics, Lecture Notes in Physics, Springer, 2001.				r, 2001.
4	Gersten and Smith	, The Physics and Che	mistry of Materials	s, Wiley, 2001.	
5	Buschow and De I	Boer, Physics of Magne	etism and Magneti	c Materials, Spring	ger 2003.
6	R. L. Carlin, Magr	netochemistry, Springer	r-Verlag, Berlin, 1	986.	
7	U. N.Hartmann,	Magnetic Multi-layers	and Giant Mag	netoresistance: Fu	indamentals and
	Industrial Applications, Springer, 2000.				
8	M. Ziese, M. J. Th	ornton Spin Electronic	s, Lecture Notes in	n Physics, Springer	r, 2001.
Mo	de of Evaluation: C	ontinuous Assessment	Test –I (CAT-I),	Continuous Assess	sment Test –II
(CAT-II), Seminar / Challenging Assignments / Completion of MOOC / QUIZ, Final Assessment					
Tes	Test (FAT).				
Ty	Typical Projects				
1. Fabrication of magnetic tunnel junctions (MTJ) with MgO or AlO insulating barriers					
2. Spin pumping and high frequency spin dynamics in MTJs					
3. MTJ sensors for biological applications					
4. Theory of spin-polarized transport and pure spin currents					
5. Topological insulator-based spintronic devices.					
Mode of Evaluation: Review I, II and III					
Rec	Recommended by Board of Studies 13-12-2015				
App	Approved by Academic CouncilNo. 40Date18-03-2016				

Course Code	Course Title	L T P J C
ECE6039	NANOELECTRONIC CIRCUIT DESIGN	3 0 0 0 3
Pre-requisite	ECE6032 - Nanoelectronics	

Course Objectives:

- To introduce students to the emerging design paradigms in various new nanotechnologies, for device and circuits.
- To bridge the existing gap between nanoelectronic device research and nanosystems design.

Expected Course Outcomes:

The student will be able to

- 1. Obtain the knowledge on advanced Nanoscale devices
- 2. Understand the operation and design FinFET based circuits.
- 3. Design reliable circuits using nanowire arrays and CNT interconnects.
- 4. Design logic circuits using quantum cellular automata.
- 5. Understand the design aspects of application specific Nanoscale ICs.
- 6. Model the circuits of Fin-FETs, CNT-FETs, GNR-FETs, RTDs and quantum dot devices using various SPICE versions.

Module 1 Introduction to advanced nanoelectronic devices

New device structures for next generation nanotechnology - carbon nanotube field-effect transistors (CNFETs), FinFETs, nanowire FETs, III/V compound-based devices, graphene nanoribbon devices, resonant tunneling diodes and quantum dot devices.

Module 2 | FinFET circuit and SRAM design

8 hours Shorted-Gate and Independent-Gate FinFETs, Logic Design Using SG/IG-Mode FinFETs, Principle of TCMS, Logic Design Using TCMS, Latch Design Using SG/IG-Mode FinFETs, Precharge-Evaluate Logic Circuits, FinFET SRAM Design: Physics, Theory, and Modeling of FinFET Devices for SRAM Applications; Low-Power, High-Performance 90-nm DG-FinFET SRAM Design.

Module 3	Reliable Circuits Design with Nanowire Arrays and CNT		
	Interconnects		

Nanowire Fabrication Techniques, Crossbar Technologies, Architecture of Nanowire Crossbars, Decoder Logic Design. Emerging interconnect technologies: Study of Performances of Low-k Cu, CNTs, and Optical Interconnects; Local Interconnects: CNT Bundles Versus Cu and Global and Semi-global Interconnects.

Module 4 | Circuit Design with Quantum Cellular Automata

7 hours

2 hours

QCA Fundamentals, Basic Logic Gates and Interconnect, Logic Design with QCA and Fabrication Technology and Challenges.

Module 5	Nanoscale Application-Specific Integrated Circuits	6 hours	
NASIC Bui	lding Blocks: Nanowires and xnwFETs, NASIC Circuit Styles, NASIC	Logic Styles,	
NASIC Architectures and manufacturing methods.			

Module 6	Circuit Design with Carbon Nanotube FETs & Resonant	8 hours
	Tunneling Diodes	

Mis-Positioned and Immune CNT Logic Design, Metallic-CNT-Immune CNFET				
Circuits.Me	Circuits.Metallic-CNT-Immune CNFET Circuits. Bistable Logic Using RTDs, Noise Margins of			
RTD-HBT	Threshold Logic Gates, Mo	nostable-Bistable L	ogic Elements and	Circuit Examples
for RTD-Ba	used Devices.		-	-
Module 7	Circuit design with Graph	ene based Transist	ors	5 hours
Recent deve	elopments in Graphene Transi	istors, Analog Circu	its, Digital Circuits:	GNRFET Digital
Circuits, Ar	nbipolar Logic Circuits.			C
Module 8	Contemporary issues:			2 hours
Advanced 7	opics			
	•			
			Total Lectu	re: 45 hours
Text Book	s)			·
1. Niraj K	. Jha and Deming Chen, Nan	oelectronic Circuit I	Design, Springer pu	blications, 2011.
2. K. Gos	er, P. Glosekotter, Nanoelecti	ronics and Nanosyst	ems, Springer, 2015	5.
Reference	Books	· · · · ·		
1. Yuan Taur and TakNing, Fundamentals of Modern VLSI Devices, Cambridge University				
Press,	Newyark, 1998.			
3. Karl C	3. Karl Goser, Peter Glosekotter, Jan Dienstuhl, Nanoelectronics and Nanosystems- From			
Transistors to Molecular and Quantum Devices, Springer-Verlag, 2004.				
4. John P. Uyemura, Introduction to VLSI Circuits and Systems, John Wiley & Sons, Inc, 2002.				
Mode of Evaluation: Continuous Assessment Test -I (CAT-I), Continuous Assessment Test -II				
(CAT-II), Seminar / Challenging Assignments / Completion of MOOC / QUIZ, Final Assessment				
Test (FAT).				
Recommended by Board of Studies 13-12-2015				
Approved by Academic CouncilNo. 40Date18-03-2016				