# M.Tech – Embedded Systems

Curriculum and Syllabus

# 2020-21

#### VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

## MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

**World class Education**: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

**Cutting edge Research**: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

**Rewarding Co-creations**: Active collaboration with national & internationalindustries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

## VISION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

To be a leader by imparting in-depth knowledge in Electronics Engineering, nurturing engineers, technologists and researchers of highest competence, who would engage in sustainable development to cater the global needs of industry and society.

## MISSION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

- Create and maintain an environment to excel in teaching, learning and applied research in the fields of electronics, communication engineering and allied disciplines which pioneer for sustainable growth.
- Equip our students with necessary knowledge and skills which enable them to be lifelong learners to solve practical problems and to improve the quality of human life.

## **PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)**

#### The graduates of the programme will be able to

**PEO 1** Excel in professional career and/or higher education by acquiring solid foundation in science, mathematics and advanced communication engineering and technologies.

**PEO 2** Develop and apply engineering solutions for solving contemporary, social and human issues with realistic constraints suitable for the present need through the use of modern tools.

**PEO 3** Exhibit professional and ethical standards, effective communication skills, teamwork spirit, multidisciplinary and transdisciplinary approach for successful careers and to be able to compete globally, function as leaders, as entrepreneurs, and manage information efficiently and to engage in lifelong learning.

## **PROGRAMME OUTCOMES (POs)**

#### On completion of the Programme the students will have the

PO\_01: Having an ability to apply mathematics and science in engineering applications.

PO\_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment

PO\_03: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information

PO\_04: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice

PO\_05: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems

PO\_06: Having adaptive thinking and adaptability in relation to environmental context and sustainable development

PO\_07: Having a clear understanding of professional and ethical responsibility

PO\_08: Having a good cognitive load management skills related to project management and finance

### **Programme Specific Outcomes**

#### On completion of M.Tech. Embedded Systems, graduates will be able to

**PSO1.** Apply the advanced concepts of Embedded System Design with real-time constraints using advanced Microcontrollers and FPGA based systems.

**PSO2.** Use the cutting-edge technologies in both hardware and software, to solve real-world multidisciplinary problems and arrive at a viable solution.

**PSO3.** Independently carry out research on diverse Embedded System strategies to address practical problems and present a substantial technical report.

## **School of Electronics Engineering (SENSE)**

## **M.Tech - Embedded Systems**

## CURRICULUM

## [Curriculum for Applied Learning (CAL)]

| S. No. | Category                 | Total number of credits |
|--------|--------------------------|-------------------------|
| 1      | University Core (UC)     | 27                      |
| 2      | University Elective (UE) | 06                      |
| 3      | Programme Core (PC)      | 19                      |
| 4      | Programme Elective (PE)  | 18                      |
|        | Total Credits            | 70                      |

## **DETAILED CURRICULUM**

## **University Core**

| S. No. | Course<br>Code          | Course Title                                                                      | L | Т | Р | J  | С  |
|--------|-------------------------|-----------------------------------------------------------------------------------|---|---|---|----|----|
| 1.     | MAT6001                 | Advanced statistical methods 2                                                    |   | 0 | 2 | 0  | 3  |
|        | ENG5001<br>and          | Fundamentals of communication Skills and<br>Professional and communication Skills |   | 0 | 2 | 0  |    |
| 2.     | ENG5002<br>or           |                                                                                   |   | 0 | 2 | 0} | 2  |
|        | FRE5001/<br>GER5001     | (or) Foreign Languages                                                            | 2 | 0 | 0 | 0  |    |
| 3.     | STS5001<br>&<br>STS5002 | Soft Skills                                                                       | 0 | 0 | 0 | 0  | 2  |
| 4.     | SET 5001                | SET Project – I                                                                   | 0 | 0 | 0 | 0  | 2  |
| 5.     | SET 5002                | SET Project – II                                                                  | 0 | 0 | 0 | 0  | 2  |
| 6.     | ECE6099                 | Master's Thesis                                                                   | 0 | 0 | 0 | 0  | 16 |

## **University Elective**

| S. No. | Course<br>Code | Course Title        | L | Т | Р | J | С |
|--------|----------------|---------------------|---|---|---|---|---|
| 1.     |                | University Elective | 0 | 0 | 0 | 0 | 6 |

## **Programme Core**

| S.No. | Course Code | Course Title                      | L | Т | P | J | С |
|-------|-------------|-----------------------------------|---|---|---|---|---|
| 1.    | ECE5041     | Embedded System Design            | 3 | 0 | 0 | 0 | 3 |
| 2.    | ECE5042     | Microcontroller Architecture and  | 2 | 0 | 2 | 4 | 4 |
|       |             | Organization                      |   |   |   |   |   |
| 3.    | ECE5053     | Electronic Hardware System Design | 2 | 0 | 2 | 4 | 4 |
| 4.    | ECE5043     | Embedded Programming              | 3 | 0 | 2 | 0 | 4 |
| 5.    | ECE5054     | Real Time Operating System        | 3 | 0 | 2 | 0 | 4 |

**Programme Elective** 

| S.No. | Course Code | Course Code Course Title                                 |   | Т | Р | J | С |
|-------|-------------|----------------------------------------------------------|---|---|---|---|---|
| 1     | ECE6036     | In Vehicle Networking                                    | 3 | 0 | 0 | 0 | 3 |
| 2     | ECE6042     | Wireless and Mobile Communication                        | 3 | 0 | 0 | 0 | 3 |
| 3     | ECE6043     | Advanced Processors and its applications                 | 2 | 0 | 0 | 4 | 3 |
| 4     | ECE6044     | lectromagnetic Interference and Compatibility in SD 3    |   |   | 0 | 0 | 3 |
| 5     | ECE5045     | Advanced Digital Image Processing                        | 3 | 0 | 0 | 0 | 3 |
| 6     | ECE6037     | Fault Tolerance and Dependable Systems                   | 3 | 0 | 0 | 0 | 3 |
| 7     | ECE6046     | Advanced Embedded Programming                            |   | 0 | 0 | 0 | 3 |
| 8     | ECE6047     | Design and Analysis of Algorithms                        | 3 | 0 | 0 | 4 | 4 |
| 9     | ECE6038     | 'irtual Instrumentation Systems                          |   | 0 | 4 | 4 | 3 |
| 10    | ECE6048     | Embedded System design using FPGA                        | 2 | 0 | 0 | 4 | 3 |
| 11    | ECE5044     | Hardware Software Co-design                              | 3 | 0 | 0 | 0 | 3 |
| 12    | ECE6049     | Modern automotive electronics systems                    | 2 | 0 | 0 | 4 | 3 |
| 13    | ECE6073     | 6073 AUTOSAR and ISO Standards for Automotive<br>Systems |   | 0 | 0 | 0 | 2 |
| 14    | ECE6092     | Intelligent IoT System Design and Architecture           |   | 0 | 0 | 4 | 3 |
| 15    | ECE6093     | Advanced Machine Learning and Deep Learning              | 3 | 0 | 0 | 0 | 3 |
| 16    | ECE6094     | Scripting Languages for Design Automation                | 2 | 0 | 2 | 0 | 3 |
| 17    | CSE6052     | arallel Processing and Computing                         |   | 0 | 0 | 0 | 3 |

# University Core

|                                                                                           | ADVANCED STATISTICAL N                                     | <b>AETHODS</b>             | L             | Τ                | P                         | J      | С     |  |  |  |  |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------|---------------|------------------|---------------------------|--------|-------|--|--|--|--|
| MAT6001                                                                                   |                                                            |                            |               |                  |                           |        |       |  |  |  |  |
| Dave and and a to the                                                                     | Nora                                                       |                            | 2             | 0                | 2                         | 0      | 3     |  |  |  |  |
| Pre-requisite                                                                             | None                                                       |                            | 2             | syna             | $\frac{\mathbf{ous}}{20}$ | vers   | sion  |  |  |  |  |
| Course Objective                                                                          | s                                                          |                            |               |                  | 2.0                       |        |       |  |  |  |  |
| 1. To provide                                                                             | e students with a framework that wi                        | ll help them               | choose        | the              | app                       | ropr   | iate  |  |  |  |  |
| descriptive                                                                               | descriptive statistics in various data analysis situations |                            |               |                  |                           |        |       |  |  |  |  |
| 2. To analyse distributions and relationships of real-time data.                          |                                                            |                            |               |                  |                           |        |       |  |  |  |  |
| 3. To apply estimation and testing methods to make inference and modelling techniques for |                                                            |                            |               |                  |                           |        |       |  |  |  |  |
| decision making using various techniques including multivariate analysis.                 |                                                            |                            |               |                  |                           |        |       |  |  |  |  |
|                                                                                           |                                                            |                            |               |                  |                           |        |       |  |  |  |  |
| At the end of the e                                                                       | ourse the students, are expected to                        |                            |               |                  |                           |        |       |  |  |  |  |
| [1] understand                                                                            | the concept of correlation and regre                       | ssion model a              | nd ahle       | e to i           | nter                      | nret   | the   |  |  |  |  |
| effect of variat                                                                          | bles, regression coefficients, coefficient                 | of determination           | na uono<br>m. |                  | mor                       | prot   | the   |  |  |  |  |
| [2] make app                                                                              | propriate decisions using inferential                      | statistical too            | ls that       | are              | cer                       | ntral  | to    |  |  |  |  |
| experimental r                                                                            | esearch.                                                   |                            |               |                  |                           |        |       |  |  |  |  |
| [3] understan                                                                             | d the statistical forecasting method                       | ls and model               | fittin        | g b              | y gi                      | raph   | ical  |  |  |  |  |
| interpretation of                                                                         | of time series data.                                       |                            |               | 1                |                           |        |       |  |  |  |  |
| [4] construct                                                                             | standard experimental designs and de                       | scribe what sta            | atistica      | l mo             | dels                      | can    | be    |  |  |  |  |
| [5] demonstrat                                                                            | g the data.                                                |                            |               |                  |                           |        |       |  |  |  |  |
|                                                                                           | e K programming for statistical data                       |                            |               |                  |                           |        |       |  |  |  |  |
| Module:1 Bas                                                                              | sic Statistical Tools for Analysis:                        |                            |               |                  | 4                         | 4 ho   | ours  |  |  |  |  |
| Summary Statistic                                                                         | s, Correlation and Regression, Concept                     | of R <sup>2</sup> and Adju | sted R        | <sup>2</sup> and | Part                      | tial a | and   |  |  |  |  |
| Multiple Correlation                                                                      | on, Fitting of simple and Multiple Linea                   | ır regression, E           | xplana        | tion a           | ind                       |        |       |  |  |  |  |
| Assumptions of Re                                                                         | egression Diagnostics                                      |                            |               |                  |                           |        |       |  |  |  |  |
| Modulov2 Sta                                                                              | tistical information .                                     |                            |               |                  |                           | 0 ho   |       |  |  |  |  |
| Basic Concepts                                                                            | Normal distribution Area properties                        | Steps in tests             | of sig        | mific            | ance                      |        |       |  |  |  |  |
| sample tests-Z test                                                                       | ts for Means and Proportions Small sa                      | mple tests –t-te           | est for       | Mear             | ance<br>is. F             | test   | for   |  |  |  |  |
| Equality of Varian                                                                        | ces, Chi-square test for independence o                    | f Attributes.              | 50 101        | liicui           | 10, 1                     | test   | 101   |  |  |  |  |
|                                                                                           |                                                            |                            |               |                  |                           |        |       |  |  |  |  |
| Module:3 Mo                                                                               | delling and Forecasting Methods:                           |                            |               |                  | (                         | 9 ho   | urs   |  |  |  |  |
| Introduction: Con                                                                         | cept of Linear and Non Liner For                           | ecasting mode              | l ,Con        | cepts            | s of                      | Tre    | end,  |  |  |  |  |
| Exponential Smoo                                                                          | othing, Linear and Compound Growth                         | model, Fitting             | g of Lo       | ogisti           | c cu                      | rve    | and   |  |  |  |  |
| their Applications,                                                                       | Moving Averages, Forecasting accurate                      | y tests.                   | [A maa        | dala             |                           |        |       |  |  |  |  |
| Probability mode                                                                          | is for time series: Concepts of AR, AR                     |                            | IA IIIO       | uers.            |                           |        |       |  |  |  |  |
| Module:4 Des                                                                              | sign of Experiments:                                       |                            |               |                  | (                         | 6 ho   | ours  |  |  |  |  |
| Analysis of variar                                                                        | nce – one and two way classifications                      | - Principle of             | design        | ofe              | expei                     | rime   | ents, |  |  |  |  |
| CRD – RBD – LS                                                                            | D, Concepts of $2^2$ and $2^3$ factorial exp               | eriments.                  | -             |                  | -                         |        |       |  |  |  |  |
|                                                                                           |                                                            |                            |               |                  |                           |        |       |  |  |  |  |
| Module:5 Con                                                                              | ntemporary Issues:                                         |                            |               |                  | ,                         | 2 ho   | ours  |  |  |  |  |
| Industry Expert Le                                                                        | ecture                                                     | L                          |               |                  |                           |        |       |  |  |  |  |
|                                                                                           |                                                            |                            |               |                  |                           |        |       |  |  |  |  |

|          |                                                                                                                                                 | Total Lecture hours:                                                                                                                      | 30 hours                  |  |  |  |  |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|--|--|
| Tevt     | Book(s)                                                                                                                                         |                                                                                                                                           |                           |  |  |  |  |  |  |
| 1.<br>1. | 1. Applied Statistics and Probability for Engineers, Douglas C. Montgomery George C. Runger, 6 <sup>th</sup> edition, John Wiley & Sons (2016), |                                                                                                                                           |                           |  |  |  |  |  |  |
| 2        | Time S                                                                                                                                          | eries Analysis and Its Applications With R Examples, Shum                                                                                 | way, Robert H.,           |  |  |  |  |  |  |
|          | Stoffer,                                                                                                                                        | David S., 4 <sup>th</sup> edition, Springer publications (2017)                                                                           |                           |  |  |  |  |  |  |
| Refe     | rence Bo                                                                                                                                        | ooks                                                                                                                                      |                           |  |  |  |  |  |  |
| 1.       | The Ele<br>Hastie a                                                                                                                             | ements of Statistical Learning: Data Mining, Inference, and Pr<br>and Robert Tibshirani, 2 <sup>nd</sup> Edition, Springer Series, (2017) | rediction, Trevor         |  |  |  |  |  |  |
| 2        | Introduce<br>the Con<br>(2017)                                                                                                                  | ction to Probability and Statistics: Principles and Applications for I<br>nputing Sciences, J. Susan Milton and Jesse Arnold, McGraw Hill | Engineering and education |  |  |  |  |  |  |
| Mod      | e of Eva                                                                                                                                        | luation                                                                                                                                   |                           |  |  |  |  |  |  |
| 1.100    | Dig                                                                                                                                             | ital Assignments, Quiz, Continuous Assessments, Final Assessme                                                                            | ent Test                  |  |  |  |  |  |  |
| List     | of Chall                                                                                                                                        | enging Experiments (Indicative)                                                                                                           |                           |  |  |  |  |  |  |
| 1.       | Comput                                                                                                                                          | ting Summary Statistics using real time data                                                                                              | 3 hours                   |  |  |  |  |  |  |
| 2        | Plotting<br>Represe                                                                                                                             | g and visualizing data using Tabulation and Graphical<br>entations.                                                                       | 3 hours                   |  |  |  |  |  |  |
| 3        | Applyin<br>dataset;<br>scale da                                                                                                                 | ng simple linear and multiple linear regression models to real<br>computing and interpreting the coefficient of determination for<br>ta.  | 3 hours                   |  |  |  |  |  |  |
| 4.       | Testing                                                                                                                                         | of hypothesis for Large sample tests for real-time problems.                                                                              | 2 hours                   |  |  |  |  |  |  |
| 5.       | Testing<br>mean ar                                                                                                                              | of hypothesis for Small sample tests for One and Two Sample<br>and paired comparison (Pre-test and Post-test)                             | 2 hours                   |  |  |  |  |  |  |
| 6.       | Testing                                                                                                                                         | of hypothesis for Small Sample tests for F-test                                                                                           | 2 hours                   |  |  |  |  |  |  |
| 7        | Testing                                                                                                                                         | of hypothesis for Small Sample tests for Chi-square test                                                                                  | 2 hours                   |  |  |  |  |  |  |
| 8        | Applyin<br>models                                                                                                                               | ng Time series analysis-Trends. Growth ,Logistic, Exponential                                                                             | 2 hours                   |  |  |  |  |  |  |
| 9        | Applyir<br>Forecas                                                                                                                              | ng Time series model AR, ARMA and ARIMA and testing ting accuracy tests.                                                                  | 3 hours                   |  |  |  |  |  |  |
| 10       | Perform<br>real data                                                                                                                            | ing ANOVA (one-way and two-way), CRD, RBD and LSD for aset.                                                                               | 3 hours                   |  |  |  |  |  |  |
| 11       | Perform                                                                                                                                         | $\frac{1}{2^2}$ factorial experiments with real time Applications                                                                         | 2 hours                   |  |  |  |  |  |  |
| 12       | Perform                                                                                                                                         | $\frac{2^3}{1}$ factorial experiments with real time Applications                                                                         | 3 hours                   |  |  |  |  |  |  |
|          | 1                                                                                                                                               | Total Laboratory Hours                                                                                                                    | 30 hours                  |  |  |  |  |  |  |

| Mode of Evaluation                        |                 |      |            |  |  |  |  |  |  |
|-------------------------------------------|-----------------|------|------------|--|--|--|--|--|--|
| Weekly Assessments, Final Assessment Test |                 |      |            |  |  |  |  |  |  |
| Recommended by Board of Studies           | dies 25-02-2017 |      |            |  |  |  |  |  |  |
| Approved by Academic Council              | No. 46          | Date | 24-08-2017 |  |  |  |  |  |  |

| ENG5001                 | Fundamentals of Communicat                                                                       | ion Skills        | L T P J C        |  |  |  |  |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------|-------------------|------------------|--|--|--|--|--|--|
|                         |                                                                                                  |                   | 0 0 2 0 1        |  |  |  |  |  |  |
| Pre-requisite           | Not cleared EPT (English Proficiency Test                                                        | )                 | Syllabus version |  |  |  |  |  |  |
|                         |                                                                                                  |                   | 1.0              |  |  |  |  |  |  |
| <b>Course Objective</b> | Course Objectives:                                                                               |                   |                  |  |  |  |  |  |  |
| 1. To enable learne     | . To enable learners learn basic communication skills - Listening, Speaking, Reading and Writing |                   |                  |  |  |  |  |  |  |
| 2. To help learners     | . To help learners apply effective communication in social and academic context                  |                   |                  |  |  |  |  |  |  |
| 3. To make studen       | ts comprehend complex English language the                                                       | rough listening a | nd reading       |  |  |  |  |  |  |
| Expected Course         | Expected Course Outcome:                                                                         |                   |                  |  |  |  |  |  |  |
| 1. Enhance the list     | ening and comprehension skills of the learne                                                     | rs                |                  |  |  |  |  |  |  |
| 2.Acquire speaking      | g skills to express their thoughts freely and fl                                                 | uently            |                  |  |  |  |  |  |  |
| 3.Learn strategies      | for effective reading                                                                            |                   |                  |  |  |  |  |  |  |
| 4.Write grammatic       | ally correct sentences in general and academ                                                     | ic writing        |                  |  |  |  |  |  |  |
| 5. Develop technic      | al writing skills like writing instructions, tra                                                 | nscoding etc.,    |                  |  |  |  |  |  |  |
| Module:1 Lister         | ning                                                                                             |                   | 8 hours          |  |  |  |  |  |  |
| Understanding Con       | nversation                                                                                       |                   |                  |  |  |  |  |  |  |
| Listening to Speec      | hes                                                                                              |                   |                  |  |  |  |  |  |  |
| Listening for Spec      | fic Information                                                                                  | •                 |                  |  |  |  |  |  |  |
| Module:2 Speak          | ing                                                                                              |                   | 4 hours          |  |  |  |  |  |  |
| Exchanging Inform       | nation                                                                                           |                   |                  |  |  |  |  |  |  |
| Describing Activit      | ies, Events and Quantity                                                                         | •                 |                  |  |  |  |  |  |  |
| Module:3 Read           | ing                                                                                              |                   | 6 hours          |  |  |  |  |  |  |
| Identifying Inform      | ation                                                                                            |                   |                  |  |  |  |  |  |  |
| Inferring Meaning       |                                                                                                  |                   |                  |  |  |  |  |  |  |
| Interpreting text       |                                                                                                  |                   |                  |  |  |  |  |  |  |
| Module:4 Writin         | ng: Sentence                                                                                     |                   | 8hours           |  |  |  |  |  |  |
| Basic Sentence Str      | ucture                                                                                           |                   |                  |  |  |  |  |  |  |
| Connectives             |                                                                                                  |                   |                  |  |  |  |  |  |  |
| Transformation of       | Sentences                                                                                        |                   |                  |  |  |  |  |  |  |
| Synthesis of Sente      | nces                                                                                             |                   |                  |  |  |  |  |  |  |
| Module:5 Writin         | ng: Discourse                                                                                    |                   | 4hours           |  |  |  |  |  |  |
| Instructions            |                                                                                                  |                   |                  |  |  |  |  |  |  |
| Paragraph               |                                                                                                  |                   |                  |  |  |  |  |  |  |
| Transcoding             |                                                                                                  |                   |                  |  |  |  |  |  |  |
|                         |                                                                                                  |                   |                  |  |  |  |  |  |  |
|                         | Тс                                                                                               | otal Lecture hou  | irs: 30 hours    |  |  |  |  |  |  |
|                         |                                                                                                  |                   |                  |  |  |  |  |  |  |
| 1 ext Book(s)           |                                                                                                  |                   |                  |  |  |  |  |  |  |
| 1. Reaston, Chi         | ris, incresa Clementson, and Gillie C                                                            | unningnam. Fa     | ce2face Upper    |  |  |  |  |  |  |
| Intermediate S          | Sudem's BOOK. 2015, Cambridge University                                                         | F1888.            |                  |  |  |  |  |  |  |
| <b>Kelerence Books</b>  | Reference Books                                                                                  |                   |                  |  |  |  |  |  |  |

| 1     | 1 Chris Juzwiak .Stepping Stones: A guided approach to writing sentences and Paragraphs |                      |                      |                                   |             |  |  |  |
|-------|-----------------------------------------------------------------------------------------|----------------------|----------------------|-----------------------------------|-------------|--|--|--|
|       | (Second Edition), 2012, Library of Congress.                                            |                      |                      |                                   |             |  |  |  |
| 2.    | . Clifford A Whitcomb & Leslie E Whitcomb, Effective Interpersonal and Team             |                      |                      |                                   |             |  |  |  |
|       | Communication Skills for Engineer                                                       | rs, 2013, John Wi    | ley & Sons           | , Inc., Hoboken: Ne               | ew Jersey.  |  |  |  |
| 3.    | ArunPatil, Henk Eijkman &Ena                                                            | Bhattacharya,        | New Med              | ia Communication                  | skills for  |  |  |  |
|       | Engineers and IT Professionals,20                                                       | 12, IGI Global, H    | ershey PA.           |                                   |             |  |  |  |
| 4.    | Judi Brownell, Listening: Attitudes                                                     | , Principles and S   | <i>Skills</i> , 2016 | , 5 <sup>th</sup> Edition, Routle | edge:USA    |  |  |  |
| 5.    | John Langan, Ten Steps to Impro-                                                        | ving College Rea     | ding Skills          | s, 2014, 6 <sup>th</sup> Edition  | , Townsend  |  |  |  |
|       | Press:USA                                                                               |                      |                      |                                   |             |  |  |  |
| 6.    | Redston, Chris, Theresa Clementso                                                       | on, and Gillie Cu    | nningham.            | Face2face Upper I                 | ntermediate |  |  |  |
|       | Teacher's Book. 2013, Cambridge                                                         | University Press.    |                      |                                   |             |  |  |  |
|       |                                                                                         |                      |                      |                                   |             |  |  |  |
|       | Authors, book title, year of publication                                                | tion, edition num    | ber, press,          | place                             |             |  |  |  |
| Mo    | de of Evaluation: CAT / Assignmen                                                       | t / Quiz / FAT / P   | roject / Ser         | ninar                             |             |  |  |  |
|       | List of Challe                                                                          | enging Experime      | ents (Indica         | ative)                            |             |  |  |  |
| 1.    | Familiarizing students to adjective                                                     | es through brainst   | orming adj           | ectives with all                  | 2 hours     |  |  |  |
|       | letters of the English alphabet and                                                     | asking them to a     | dd an adjec          | tive that starts                  |             |  |  |  |
|       | with the first letter of their name a                                                   | is a prefix.         |                      |                                   |             |  |  |  |
| 2.    | 2. Making students identify their peer who lack Pace, Clarity and Volume during         |                      |                      |                                   |             |  |  |  |
|       | presentation and respond using Symbols.                                                 |                      |                      |                                   |             |  |  |  |
| 3.    | Using Picture as a tool to enhance                                                      | learners speaking    | g and writin         | ng skills                         | 2 hours     |  |  |  |
| 4.    | Using Music and Songs as tools t                                                        | o enhance pronun     | ciation in t         | he target                         | 2 hours     |  |  |  |
|       | language / Activities through VIT                                                       | Community Rad        | io                   |                                   |             |  |  |  |
| 5.    | Making students upload their Self                                                       | - introduction vid   | eos in Vim           | eo.com                            | 4 hours     |  |  |  |
| 6.    | Brainstorming idiomatic expression                                                      | ons and making th    | em use the           | se in to their                    | 4 hours     |  |  |  |
|       | writings and day to day conversat                                                       | ion                  |                      |                                   |             |  |  |  |
| 7.    | Making students Narrate events by                                                       | y adding more dea    | scriptive ad         | ljectives and add                 | 4 hours     |  |  |  |
|       | flavor to their language / Activitie                                                    | es through VIT Co    | ommunity H           | Radio                             |             |  |  |  |
| 8     | Identifying the root cause of stage                                                     | e fear in learners a | nd providii          | ng remedies to                    | 4 hours     |  |  |  |
|       | make their presentation better                                                          |                      |                      |                                   |             |  |  |  |
| 9     | Identifying common Spelling & S                                                         | entence errors in    | Letter Writ          | ing and other day                 | 2 hours     |  |  |  |
|       | to day conversations                                                                    |                      |                      |                                   |             |  |  |  |
| 10.   | Discussing FAQ's in interviews w                                                        | vith answers so the  | at the learn         | er gets a better                  | 2 hours     |  |  |  |
|       | insight in to interviews / Activitie                                                    | s through VIT Co     | mmunity R            | ladio                             |             |  |  |  |
|       |                                                                                         |                      | Total L              | aboratory Hours                   | 30 hours    |  |  |  |
| Mo    | de of evaluation: Online Ouizzog De                                                     | recentation Dolo     | nlav Grou            | Discussions Assi                  | anmente     |  |  |  |
| Mir   | ni Project                                                                              |                      | piay, Olouj          | DISCUSSIONS, ASSI                 | giinents,   |  |  |  |
| Rec   | Recommended by Board of Studies 22.07.2017                                              |                      |                      |                                   |             |  |  |  |
| Apr   | proved by Academic Council                                                              | No 46                | Date                 | 24-8-2017                         |             |  |  |  |
| - API | noved by meadenine counten                                                              | 110. TO              | Date                 | 27-0-2017                         |             |  |  |  |

| ENG5002          |                                                                | Professional and Communicatio                      | n Skills         | L T P J C        |  |  |
|------------------|----------------------------------------------------------------|----------------------------------------------------|------------------|------------------|--|--|
|                  |                                                                |                                                    |                  | 0 0 2 0 1        |  |  |
| Pre-requisite    |                                                                | ENG5001                                            |                  | Syllabus version |  |  |
|                  |                                                                |                                                    |                  | 1.1              |  |  |
| Course Obje      | ctives                                                         | 3.                                                 |                  |                  |  |  |
| 1. To enable s   | studer                                                         | nts to develop effective Language and Comm         | unication Skills |                  |  |  |
| 2. To enhance    | e stud                                                         | lents' Personal and Professional skills            |                  |                  |  |  |
| 3. To equip the  | 3. To equip the students to create an active digital footprint |                                                    |                  |                  |  |  |
| Expected Co      | urse                                                           | Outcome:                                           |                  |                  |  |  |
| 1. Improv        | ve inte                                                        | r-personal communication skills                    |                  |                  |  |  |
| 2. Develo        | op pro                                                         | blem solving and negotiation skills                |                  |                  |  |  |
| 3. Learn         | the sty                                                        | les and mechanics of writing research reports      |                  |                  |  |  |
| 4. Cultiva       | ate bet                                                        | ter public speaking and presentation skills        |                  |                  |  |  |
| 5. Apply         | the ac                                                         | quired skills and excel in a professional environr | nent             |                  |  |  |
| Module:1         | Pers                                                           | onal Interaction                                   |                  | 2hours           |  |  |
| Introducing Or   | neself-                                                        | one's career goals                                 |                  |                  |  |  |
| Activity: SWC    | OT An                                                          | alysis                                             |                  |                  |  |  |
| Module:2         | Inter                                                          | rpersonal Interaction                              |                  | 2 hours          |  |  |
| Interpersonal C  | Comm                                                           | unication with the team leader and colleagues at   | the workplace    |                  |  |  |
| Activity: Role   | Plays/                                                         | Mime/Skit                                          | _                |                  |  |  |
| Module:3         | Socia                                                          | al Interaction                                     |                  | 2 hours          |  |  |
| Use of Social I  | Media,                                                         | , Social Networking, gender challenges             |                  |                  |  |  |
| Activity: Creat  | ting Li                                                        | nkedIn profile, blogs                              |                  |                  |  |  |
| Module:4         | Résu                                                           | ımé Writing                                        |                  | 4 hours          |  |  |
| Identifying job  | requi                                                          | rement and key skills                              |                  |                  |  |  |
| Activity: Prepa  | are an                                                         | Electronic Résumé                                  |                  |                  |  |  |
| Module:5         | Inter                                                          | rview Skills                                       |                  | 4 hours          |  |  |
| Placement/Job    | Interv                                                         | view, Group Discussions                            |                  |                  |  |  |
| Activity: Mocl   | c Inter                                                        | view and mock group discussion                     |                  |                  |  |  |
| Module:6         | Repo                                                           | ort Writing                                        |                  | 4 hours          |  |  |
| Language and     | Mecha                                                          | anics of Writing                                   |                  |                  |  |  |
| Activity: Writi  | ng a R                                                         | Report                                             |                  |                  |  |  |
| Module:7         | Stud                                                           | y Skills: Note making                              |                  | 2hours           |  |  |
| Summarizing t    | he rep                                                         | ort                                                |                  |                  |  |  |
| Activity: Abstr  | ract, E                                                        | xecutive Summary, Synopsis                         |                  |                  |  |  |
| Module:8         | Inter                                                          | rpreting skills                                    |                  | 2 hours          |  |  |
| Interpret data i | n table                                                        | es and graphs                                      |                  |                  |  |  |
| Activity: Trans  | scodin                                                         | g                                                  |                  |                  |  |  |
| Module:9         | Pres                                                           | entation Skills                                    |                  | 4 hours          |  |  |
| Oral Presentati  | ion usi                                                        | ng Digital Tools                                   |                  |                  |  |  |
| Activity: Oral   | presen                                                         | tation on the given topic using appropriate non-v  | erbal cues       |                  |  |  |
| Module:10        | Prot                                                           | olem Solving Skills                                |                  | 4 hours          |  |  |
| Problem Solvin   | ng & (                                                         | Conflict Resolution                                |                  |                  |  |  |
| Activity: Case   | Analy                                                          | sis of a Challenging Scenario                      |                  |                  |  |  |
|                  |                                                                | <b>Total Lecture hours:</b>                        |                  | 30hours          |  |  |
|                  |                                                                |                                                    |                  |                  |  |  |
| Text Book(s)     |                                                                |                                                    |                  |                  |  |  |
| 1 Bhatnag        | gar Ni                                                         | tin and Mamta Bhatnagar, Communicative E           | nglish For       |                  |  |  |
| Enginee          | ers An                                                         | d Professionals, 2010, Dorling Kindersley (I       | ndia) Pvt. Ltd.  |                  |  |  |

| Reference Books |                                                                                          |                      |                   |                  |                  |  |  |  |
|-----------------|------------------------------------------------------------------------------------------|----------------------|-------------------|------------------|------------------|--|--|--|
| 1               | Jon Kirkman and Christopher Turk, Effective Writing: Improving Scientific, Technical and |                      |                   |                  |                  |  |  |  |
|                 | Business Communication, 2015, Routledge                                                  |                      |                   |                  |                  |  |  |  |
| 2               | Diana Bairaktarova and Michele                                                           | Eodice, Creative     | Ways of H         | Knowing in Eng   | gineering, 2017, |  |  |  |
|                 | Springer International Publishing                                                        |                      |                   |                  |                  |  |  |  |
| 3               | Clifford A Whitcomb & Les                                                                | slie E Whitcom       | b, <i>Effecti</i> | ve Interperson   | nal and Team     |  |  |  |
|                 | Communication Skills for Engine                                                          | ers, 2013, John W    | iley & Sor        | ns, Inc., Hoboke | en: New Jersey.  |  |  |  |
| 4               | ArunPatil, Henk Eijkman &En                                                              | a Bhattacharya,      | New Mea           | lia Communice    | ation Skills for |  |  |  |
|                 | Engineers and IT Professionals,2                                                         | 012, IGI Global, H   | Hershey PA        | Α.               |                  |  |  |  |
| Mod             | e of Evaluation: CAT / Assignmen                                                         | t / Quiz / FAT / P   | roject / Sei      | ninar            |                  |  |  |  |
| List            | of Challenging Experiments (Inc                                                          | licative)            |                   |                  |                  |  |  |  |
| 1.              | SWOT Analysis – Focus specially of                                                       | on describing two st | rengths and       | two              | 2 hours          |  |  |  |
|                 | weaknesses                                                                               |                      |                   |                  |                  |  |  |  |
| 2.              | . Role Plays/Mime/Skit Workplace Situations                                              |                      |                   |                  |                  |  |  |  |
| 3.              | 3. Use of Social Media – Create a LinkedIn Profile and also write a page or two on       |                      |                   |                  |                  |  |  |  |
|                 | areas of interest                                                                        |                      |                   |                  |                  |  |  |  |
| 4.              | Prepare an Electronic Résumé and u                                                       | pload the same in vi | meo               |                  | 2 hours          |  |  |  |
| 5.              | Group discussion on latest topics                                                        |                      |                   |                  | 4 hours          |  |  |  |
| 6               | Report Writing – Real-time repor                                                         | ts                   |                   |                  | 2 hours          |  |  |  |
| 7               | Writing an Abstract, Executive S                                                         | ummary on short s    | cientific o       | r research       | 4 hours          |  |  |  |
|                 | articles                                                                                 |                      |                   |                  |                  |  |  |  |
| 8               | Transcoding – Interpret the given                                                        | graph, chart or di   | agram             |                  | 2 hours          |  |  |  |
| 9               | Oral presentation on the given top                                                       | oic using appropria  | ate non-ve        | rbal cues        | 4 hours          |  |  |  |
| 10              | Problem Solving Case Analysis of                                                         | a Challenging Scer   | nario             |                  | 4 hours          |  |  |  |
|                 |                                                                                          | Т                    | otal Labo         | ratory Hours     | 30 hours         |  |  |  |
| Mod             | e of evaluation: : Online Quizzes, I                                                     | Presentation, Role   | play, Grou        | up Discussions   | , Assignments,   |  |  |  |
| Mini Project    |                                                                                          |                      |                   |                  |                  |  |  |  |
| Reco            | Recommended by Board of Studies 22-07-2017                                               |                      |                   |                  |                  |  |  |  |
| App             | roved by Academic Council                                                                | No. 47               | Date              | 05-10-2017       |                  |  |  |  |

| FRE5001       |                                                                                     | FRANCAIS FONCTION                             | NEL L T P J C     |                       |  |  |  |  |
|---------------|-------------------------------------------------------------------------------------|-----------------------------------------------|-------------------|-----------------------|--|--|--|--|
|               |                                                                                     |                                               |                   |                       |  |  |  |  |
| Pre-requisi   | te                                                                                  |                                               |                   | Syllabus version      |  |  |  |  |
| Nil           | • .•                                                                                |                                               |                   | 1.0                   |  |  |  |  |
| Course Ob     | jectives                                                                            |                                               |                   |                       |  |  |  |  |
| The course    | gives st                                                                            | udents the necessary background to:           |                   |                       |  |  |  |  |
| I. Den        | 1. Demonstrate competence in reading, writing, and speaking basic French, including |                                               |                   |                       |  |  |  |  |
| Knov          | knowledge of vocabulary (related to profession, emotions, rood, workplace,          |                                               |                   |                       |  |  |  |  |
| spor          | iovo pr                                                                             | ies, classiform and family).                  | nt                |                       |  |  |  |  |
| 2. Atl        | 2. Achieve pronciency in French culture offended view point.                        |                                               |                   |                       |  |  |  |  |
| Expected (    | OURSO                                                                               | Autcome:                                      |                   |                       |  |  |  |  |
| The student   | s will b                                                                            | e able to                                     |                   |                       |  |  |  |  |
| 1 Rem         | ember                                                                               | the daily life communicative situations via n | ersonal pronour   | s emphatic            |  |  |  |  |
| pron          | ouns, s                                                                             | alutations, negations, interrogations etc.    | ersonar pronoar   | is, emphane           |  |  |  |  |
| 2. Crea       | ite com                                                                             | municative skill effectively in French langua | ge via regular /  | irregular verbs.      |  |  |  |  |
| 3. Den        | onstrat                                                                             | e comprehension of the spoken / written lang  | guage in translat | ting simple           |  |  |  |  |
| sente         | ences.                                                                              | · · · · · · · · · · · · · · · · · · ·         | 58                | 8 <u>F</u>            |  |  |  |  |
| 4. Und        | erstand                                                                             | and demonstrate the comprehension of some     | e particular new  | range of unseen       |  |  |  |  |
| writ          | ten mat                                                                             | erials.                                       | •                 | C                     |  |  |  |  |
| 5. Dem        | nonstrat                                                                            | e a clear understanding of the French culture | through the lar   | guage studied.        |  |  |  |  |
|               |                                                                                     |                                               |                   |                       |  |  |  |  |
| Module:1      | Saluer                                                                              | r, Se présenter, Etablir des contacts         |                   | 3 hours               |  |  |  |  |
| Les Salutati  | ons, Le                                                                             | s nombres (1-100), Les jours de la semaine,   | Les mois de l'a   | année, Les Pronoms    |  |  |  |  |
| Sujets, Les   | Pronor                                                                              | ns Toniques, La conjugaison des verbes rég    | guliers, La conj  | ugaison des verbes    |  |  |  |  |
| irréguliers-  | avoir /                                                                             | être / aller / venir / faire etc.             |                   |                       |  |  |  |  |
|               |                                                                                     |                                               |                   |                       |  |  |  |  |
| Module:2      | Prése                                                                               | nter quelqu'un, Chercher un(e)                |                   | 3 hours               |  |  |  |  |
|               | corre                                                                               | spondant(e), Demander des nouvelles           |                   |                       |  |  |  |  |
|               | a une                                                                               | personne.                                     |                   |                       |  |  |  |  |
| La c          | oniugai                                                                             | son des verbes Pronon                         | ninaux I          | a Négation            |  |  |  |  |
| L'interrogat  | ion ave                                                                             | c 'Est-ce are ou sans Est-ce are'             | innaux, i         | La Regation,          |  |  |  |  |
| Lintenogu     | .1011 4 V C                                                                         | S Est ce que ou suns Est ce que .             |                   |                       |  |  |  |  |
| Module:3      | Situe                                                                               | un obiet ou un lieu. Poser des questions      |                   | 4 hours               |  |  |  |  |
| L'article (d  | éfini/ i                                                                            | ndéfini). Les prépositions (à/en/au/aux/sur/c | lans/avec etc.).  | L'article contracté.  |  |  |  |  |
| Les heures    | en fra                                                                              | nçais, La Nationalité du Pays, L'adjectif     | (La Couleur,      | l'adjectif possessif, |  |  |  |  |
| l'adjectif de | émonst                                                                              | ratif/ l'adjectif interrogatif (quel/qu       | elles/quelle/que  | lles), L'accord des   |  |  |  |  |
| adjectifs ave | ec le no                                                                            | m, L'interrogation avec Comment/ Combier      | / Où etc.,        |                       |  |  |  |  |
|               |                                                                                     |                                               |                   |                       |  |  |  |  |
| Module:4      | Faire                                                                               | des achats, Comprendre un texte court,        |                   | 6 hours               |  |  |  |  |
|               | Demander et indiquer le chemin.                                                     |                                               |                   |                       |  |  |  |  |
| La traductio  | on simp                                                                             | le :(français-anglais / anglais –français)    |                   |                       |  |  |  |  |
|               | -                                                                                   |                                               |                   |                       |  |  |  |  |
| Module:5      | Trouv                                                                               | ver les questions, Répondre aux               |                   | 5 hours               |  |  |  |  |
|               | quest                                                                               | ions générales en français.                   |                   |                       |  |  |  |  |

L'article Partitif, Mettez les phrases aux pluriels, Faites une phrase avec les mots donnés, Exprimez les phrases données au Masculin ou Féminin, Associez les phrases.

### Module:6 Comment ecrire un passage

#### 3 hours

4 hours

Décrivez :

La Famille /La Maison, /L'université /Les Loisirs/ La Vie quotidienne etc.

## Module:7 Comment ecrire un dialogue

## **Dialogue:**

- a) Réserver un billet de train
- b) Entre deux amis qui se rencontrent au café
- c) Parmi les membres de la famille
- d) Entre le client et le médecin

| Module:8 | Invited Talk: Native speakers | 2 hours |
|----------|-------------------------------|---------|
|          |                               |         |

|                                                    |                                                   |                               | Total Lecture ho    | ours: 3    | 0 hours       |                       |  |
|----------------------------------------------------|---------------------------------------------------|-------------------------------|---------------------|------------|---------------|-----------------------|--|
|                                                    |                                                   |                               |                     |            |               |                       |  |
| Tex                                                | kt Book(                                          | s)                            |                     |            |               |                       |  |
| 1.                                                 | Echo-1                                            | , Méthode de français, J. Gi  | rardet, J. Pécheur, | Publishe   | r CLE Inter   | mational, Paris 2010. |  |
| 2                                                  | Echo-1                                            | , Cahier d'exercices, J. Gira | rdet, J. Pécheur, P | ublisher   | CLE Intern    | ational, Paris 2010.  |  |
| Ref                                                | erence l                                          | Books                         |                     |            |               |                       |  |
| 1.                                                 | CONN                                              | EXIONS 1, Méthode de fra      | nçais, Régine Mér   | ieux, Yve  | es Loiseau,l  | Les Éditions Didier,  |  |
|                                                    | 2004.                                             |                               |                     |            |               |                       |  |
|                                                    |                                                   |                               |                     |            |               |                       |  |
| 2                                                  | CONN                                              | EXIONS 1, Le cahier d'ex      | ercices, Régine M   | érieux, Y  | ves Loiseau   | ı, Les Éditions       |  |
|                                                    | Didier,                                           | 2004.                         |                     |            |               |                       |  |
|                                                    |                                                   |                               |                     |            |               |                       |  |
| 3                                                  | ALTE                                              | R EGO 1, Méthode de franc     | ais, Annie Berthe   | t, Catheri | ne Hugo, V    | éronique M.           |  |
|                                                    | Kiziria                                           | n, Béatrix Sampsonis, Mon     | que Waendendrie     | s, Hacher  | tte livre 200 | )6.                   |  |
|                                                    |                                                   | -                             | -                   |            |               |                       |  |
| Mo                                                 | Mode of Evaluation: CAT / Assignment / Quiz / FAT |                               |                     |            |               |                       |  |
| Rec                                                | Recommended by Board of Studies                   |                               |                     |            |               |                       |  |
| Approved by Academic Council No 41 Date 17-06-2016 |                                                   |                               |                     |            |               | 16                    |  |

| GER5001 Deutsch für Anfänger I |                                                              |                        |  |  |  |  |  |
|--------------------------------|--------------------------------------------------------------|------------------------|--|--|--|--|--|
|                                |                                                              |                        |  |  |  |  |  |
| Pre-requisite                  | NIL                                                          | Syllabus version       |  |  |  |  |  |
|                                |                                                              | 1.0                    |  |  |  |  |  |
| <b>Course Objectives</b>       | s:                                                           |                        |  |  |  |  |  |
| The course gives st            | tudents the necessary background to:                         |                        |  |  |  |  |  |
| 1. Enable stuc                 | lents to read and communicate in German in their day to da   | ay life                |  |  |  |  |  |
| 2. Become ind                  | ustry-ready                                                  |                        |  |  |  |  |  |
| 3. Make them                   | understand the usage of grammar in the German Language.      |                        |  |  |  |  |  |
| Expected Course                | Outcome:                                                     |                        |  |  |  |  |  |
| The students will be           | able to                                                      |                        |  |  |  |  |  |
| 1. Create the b                | asics of German language in their day to day life.           |                        |  |  |  |  |  |
| 2. Understand                  | the conjugation of different forms of regular/irregular ver  | bs.                    |  |  |  |  |  |
| 3. Understand                  | the rule to identify the gender of the Nouns and apply arti  | cles appropriately.    |  |  |  |  |  |
| 4. Apply the C                 | German language skill in writing corresponding letters, E-M  | Mails etc.             |  |  |  |  |  |
| 5. Create the t                | alent of translating passages from English-German and vio    | e versa and To frame   |  |  |  |  |  |
| simple dial                    | ogues based on given situations.                             |                        |  |  |  |  |  |
| Module:1                       |                                                              | 3 hours                |  |  |  |  |  |
| Einleitung, Begrüs             | ssungsformen, Landeskunde, Alphabet, Personalpronome         | n, Verb Konjugation,   |  |  |  |  |  |
| Zahlen (1-100), W              | -tragen, Aussagesätze, Nomen – Singular und Plural           |                        |  |  |  |  |  |
| Lernziel:                      | adnie von Dautsch, Conus, Artikolwörter                      |                        |  |  |  |  |  |
|                                | idnis von Deutsch, Genus- Artikerworter                      |                        |  |  |  |  |  |
| Module:2                       |                                                              | 3 hours                |  |  |  |  |  |
| Konjugation der V              | erben (regelmässig /unregelmässig) die Monate, die Woch      | entage, Hobbys,        |  |  |  |  |  |
| Berufe, Jahreszeite            | n, Artikel, Zahlen (Hundert bis eine Million), Ja-/Nein-Fr   | age, Imperativ mit     |  |  |  |  |  |
| Sie                            |                                                              |                        |  |  |  |  |  |
| Lernziel :                     |                                                              |                        |  |  |  |  |  |
| Sätze schreiben, übe           | r Hobbys erzählen, über Berufe sprechen usw.                 |                        |  |  |  |  |  |
|                                |                                                              |                        |  |  |  |  |  |
| Module:3                       |                                                              | 4 hours                |  |  |  |  |  |
| Possessivpronome               | n, Negation, Kasus- AkkusatitvundDativ (bestimmter, )        | IndestimmterArtikel),  |  |  |  |  |  |
| Gotrönko                       | , Modalverben, Adjektive, Unrzeit, Prapositionen, Man        | izeiten, Lebensmittei, |  |  |  |  |  |
|                                |                                                              |                        |  |  |  |  |  |
| Sätze mit Modalverh            | ben. Verwendung von Artikel, über Länder und Sprachen sprech | ien, über eine Wohnung |  |  |  |  |  |
| beschreiben.                   | beschreiben.                                                 |                        |  |  |  |  |  |
|                                |                                                              |                        |  |  |  |  |  |
| Module:4                       |                                                              | 6 hours                |  |  |  |  |  |
| Übersetzungen : (I             | Deutsch – Englisch / Englisch – Deutsch)                     |                        |  |  |  |  |  |
| Lernziel :                     |                                                              |                        |  |  |  |  |  |
| Grammatik – Wortschatz – Übung |                                                              |                        |  |  |  |  |  |
|                                | I                                                            |                        |  |  |  |  |  |
| Nodule:5                       |                                                              | 5 hours                |  |  |  |  |  |
| Leseverständnis,M              | inamap machen,Korrespondenz- Briefe, Postkarten, E-Ma        | .11                    |  |  |  |  |  |
| Lernziei :                     |                                                              |                        |  |  |  |  |  |

| Wo  | ortschatz  | bildung und aktiver Sprach     | gebrauch            |           |           |         |               |            |      |
|-----|------------|--------------------------------|---------------------|-----------|-----------|---------|---------------|------------|------|
|     |            |                                |                     |           |           |         |               |            |      |
| Mo  | odule:6    |                                |                     |           |           |         |               | <b>3 h</b> | ours |
| Au  | Aufsätze : |                                |                     |           |           |         |               |            |      |
| Me  | ine Univ   | versität, Das Essen, mein Fro  | eund oder meine     | Freund    | in, meine | e Fami  | ilie, ein Fes | t in       |      |
| Der | utschland  | d usw                          |                     |           |           |         |               |            |      |
|     |            |                                |                     |           |           |         |               |            |      |
| Mo  | odule:7    |                                |                     |           |           |         |               | 4 ho       | ours |
| Dia | aloge:     |                                |                     |           |           |         |               |            |      |
|     | e) Gesp    | präche mit Familienmitglieder  | n, Am Bahnhof,      |           |           |         |               |            |      |
|     | f) Gesp    | präche beim Einkaufen ; in ein | em Supermarkt ; ir  | n einer l | Buchhanc  | llung ; |               |            |      |
|     | g) in ei   | nem Hotel - an der Rezeption   | ;ein Termin beim /  | Arzt.     |           |         |               |            |      |
| Tre | effen im   | Cafe                           |                     |           |           |         |               |            |      |
|     |            |                                |                     |           |           |         |               |            |      |
| Mo  | odule:8    |                                |                     |           |           |         |               | 2 ho       | ours |
| Gue | est Lectu  | ares/Native Speakers / Fein    | nheiten der deuts   | schen     | Sprache,  | Basis   | information   | über       | die  |
| deu | tschsprac  | higen Länder                   |                     |           | T         |         |               |            |      |
|     |            |                                | Total Lecture h     | ours:     | 30 hou    | irs     |               |            |      |
|     |            |                                |                     |           |           |         |               |            |      |
| Te  | xt Book(   | s)                             |                     |           |           |         |               |            |      |
| 1.  | Studio     | d A1 Deutsch als Fremdsp       | orache, Hermann     | Funk,     | Christin  | a Kuł   | ın, Silke Do  | emme       | :    |
|     | 2012       |                                |                     |           |           |         |               |            |      |
| Re  | ference ]  | Books                          |                     |           |           |         |               |            |      |
| 1   | Netzwe     | rk Deutsch als Fremdsprache    | A1, Stefanie Dengl  | er, Paul  | Rusch, H  | elen So | chmtiz, Tanja | a Siebe    | er,  |
|     | 2013       |                                |                     |           |           |         |               |            |      |
| 2   | Lagune     | e,Hartmut Aufderstrasse, J     | utta Müller, Thon   | nas Sto   | orz, 2012 | •       |               |            |      |
| 3   | Deutsch    | ne SprachlehrefürAUsländer, H  | leinz Griesbach, Do | ora Sch   | ulz, 2011 |         |               |            |      |
| 4   | Themer     | nAktuell 1, HartmurtAufderstr  | asse, Heiko Bock, N | Mechthi   | ildGerdes | , Jutta | Müller und I  | Helmu      | t    |
|     | Müller,    | 2010                           |                     |           |           |         |               |            |      |
|     | www.g      | <u>pethe.de</u>                |                     |           |           |         |               |            |      |
|     | wirtsch    | aftsdeutsch.de                 |                     |           |           |         |               |            |      |
|     | hueber     | .de, klett-sprachen.de         |                     |           |           |         |               |            |      |
|     | www.d      | eutschtraning.org              |                     |           |           |         |               |            |      |
| Mo  | de of Ev   | aluation: CAT / Assignmen      | t / Quiz / FAT      |           |           |         |               |            |      |
| Red | commen     | ded by Board of Studies        |                     |           |           |         |               |            |      |
| Ap  | proved b   | y Academic Council             | No. 41              | Date      | 17-       | -06-20  | 16            |            |      |

| STS500         | 01                                                                                                   | Essentials of Business Etiqu                        | iettes              | L T P J C             |  |  |
|----------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------|-----------------------|--|--|
|                |                                                                                                      |                                                     |                     | 3 0 0 0 1             |  |  |
| Pre-requ       | isite                                                                                                |                                                     |                     | Syllabus version      |  |  |
|                |                                                                                                      |                                                     |                     |                       |  |  |
| Course Ob      | jectives                                                                                             | •                                                   |                     |                       |  |  |
| 1. To d        | levelop                                                                                              | the students' logical thinking skills               |                     |                       |  |  |
| 2. To le       | earn the                                                                                             | e strategies of solving quantitative ability pro    | blems               |                       |  |  |
| 3. To e        | enrich th                                                                                            | ne verbal ability of the students                   |                     |                       |  |  |
| 4. To e        | enhance                                                                                              | critical thinking and innovative skills             |                     |                       |  |  |
|                |                                                                                                      |                                                     |                     |                       |  |  |
| Expected C     | Course                                                                                               | Outcome:                                            |                     |                       |  |  |
| • Enal         | bling st                                                                                             | udents to use relevant aptitude and appropria       | te language to e    | xpress themselves     |  |  |
| • To c         | ommuni                                                                                               | cate the message to the target audience clearly     |                     |                       |  |  |
|                |                                                                                                      |                                                     |                     |                       |  |  |
| Module:1       | Busin                                                                                                | ess Etiquette: Social and Cultural                  |                     | 9 hours               |  |  |
|                | Etiqu                                                                                                | ette and Writing Company Blogs and                  |                     |                       |  |  |
|                | Interi                                                                                               | al Communications and Planning and                  |                     |                       |  |  |
|                | writi                                                                                                | ng press release and meeting notes                  |                     |                       |  |  |
| Volue Monn     | Cura                                                                                                 | toma Language Tradition Duilding a blog Day         | valoning brand m    |                       |  |  |
| Assessing Co   | ompetiti                                                                                             | on Open and objective Communication. Two ways       | v dialogue Unde     | essage, FAQS,         |  |  |
| audience Ide   | entifving                                                                                            | Gathering Information Analysis Determining          | Selecting plan      | Progress check        |  |  |
| Types of plan  | nning. V                                                                                             | Vrite a short, catchy headline. Get to the Point –s | ummarize vour su    | biect in the first    |  |  |
| paragraph., E  | Body - N                                                                                             | Aake it relevant to your audience,                  | j                   |                       |  |  |
|                | 2                                                                                                    | •                                                   |                     |                       |  |  |
| Module:2       | Study                                                                                                | skills – Time management skills                     |                     | 3 hours               |  |  |
|                |                                                                                                      |                                                     |                     |                       |  |  |
| Prioritization | , Procra                                                                                             | stination, Scheduling, Multitasking, Monitoring,    | Working under p     | pressure and adhering |  |  |
| to deadlines   |                                                                                                      |                                                     |                     |                       |  |  |
| Madular2       | Duego                                                                                                | tation skills . Drongwing progentation              |                     | 7 h auna              |  |  |
| Module:5       | Prese                                                                                                | ntation skills – Preparing presentation             | 7 not               |                       |  |  |
|                | and C                                                                                                | reparing materials and Maintaining                  |                     |                       |  |  |
|                | and p                                                                                                | reparing visual alus and Deaning with               |                     |                       |  |  |
|                | quest                                                                                                | lons                                                |                     |                       |  |  |
| 10 Tips to r   | renare                                                                                               | PowerPoint presentation Outlining the content       | Passing the Fle     | vator Test Blue sky   |  |  |
| thinking. Intr | roductio                                                                                             | n body and conclusion. Use of Font, Use of Co       | lor. Strategic pres | sentation. Importance |  |  |
| and types of   | visual a                                                                                             | aids, Animation to captivate your audience, Des     | sign of posters, S  | etting out the ground |  |  |
| rules, Dealin  | rules, Dealing with interruptions, Staying in control of the questions, Handling difficult questions |                                                     |                     |                       |  |  |
|                |                                                                                                      |                                                     |                     | P                     |  |  |
| Module:4       | Quan                                                                                                 | titative Ability -L1 – Number properties            |                     | 11 hours              |  |  |
|                | and A                                                                                                | verages and Progressions and                        |                     |                       |  |  |
| Perc           |                                                                                                      | ntages and Ratios                                   |                     |                       |  |  |
|                |                                                                                                      |                                                     |                     |                       |  |  |
| Number of f    | factors,                                                                                             | Factorials, Remainder Theorem, Unit digit po        | sition, Tens digit  | t position, Averages, |  |  |
| Weighted A     | verage,                                                                                              | Arithmetic Progression, Geometric Progression       | n, Harmonic Pro     | gression, Increase &  |  |  |
| Decrease or s  | Decrease or successive increase, Types of ratios and proportions                                     |                                                     |                     |                       |  |  |

| Mo  | dule:5                                                                                | <b>Reasoning Ability-L1</b> – A | Analytical Reason    | ing         | 8 hours                     |  |  |  |  |
|-----|---------------------------------------------------------------------------------------|---------------------------------|----------------------|-------------|-----------------------------|--|--|--|--|
| Dat | Data Arrangement(Linear and circular & Cross Variable Relationship), Blood Relations, |                                 |                      |             |                             |  |  |  |  |
| Ord | Ordering/ranking/grouping, Puzzle test, Selection Decision table                      |                                 |                      |             |                             |  |  |  |  |
|     |                                                                                       |                                 |                      |             |                             |  |  |  |  |
| Mo  | dule:6                                                                                | Verbal Ability-L1 – Voca        | abulary Building     |             | 7 hours                     |  |  |  |  |
| ~   |                                                                                       |                                 |                      |             |                             |  |  |  |  |
| Sy  | nonyms a                                                                              | & Antonyms, One word substi     | tutes, Word Pairs, S | pellings, I | lioms, Sentence completion, |  |  |  |  |
| Ar  | lalogies                                                                              |                                 | Total Lastrum h      |             | 45 h a                      |  |  |  |  |
|     |                                                                                       |                                 | Total Lecture no     | ours:       | 45 hours                    |  |  |  |  |
|     |                                                                                       |                                 |                      |             |                             |  |  |  |  |
| Ref | ference                                                                               | Books                           |                      | ~ • • • •   |                             |  |  |  |  |
| 1.  | Kerry I                                                                               | Patterson, Joseph Grenny, R     | on McMillan, Al      | Switzler(2  | 001) Crucial Conversations: |  |  |  |  |
|     | Tools f                                                                               | or Talking When Stakes are      | e High. Bangalore.   | McGraw      | -Hill Contemporary          |  |  |  |  |
| 2.  | Dale Ca                                                                               | rnegie,(1936) How to Win Fr     | iends and Influence  | People. Ne  | ew York. Gallery Books      |  |  |  |  |
| 3.  | Scott Pe                                                                              | eck. M(1978) Road Less Trave    | elled. New York Cit  | y. M. Scot  | Peck.                       |  |  |  |  |
| 4.  | FACE(2                                                                                | 2016) Aptipedia Aptitude Enc    | yclopedia. Delhi. W  | iley public | ations                      |  |  |  |  |
| 5.  | ETHNU                                                                                 | JS(2013) Aptimithra. Bangalo    | re. McGraw-Hill Ec   | lucation Pv | rt. Ltd.                    |  |  |  |  |
| We  | bsites:                                                                               |                                 |                      |             |                             |  |  |  |  |
| 1.  | www.cl                                                                                | nalkstreet.com                  |                      |             |                             |  |  |  |  |
| 2.  | www.sk                                                                                | <u> cillsyouneed.com</u>        |                      |             |                             |  |  |  |  |
| 3.  | www.m                                                                                 | indtools.com                    |                      |             |                             |  |  |  |  |
| 4.  | www.th                                                                                | ebalance.com                    |                      |             |                             |  |  |  |  |
| 5.  | 5. www.eguru.ooo                                                                      |                                 |                      |             |                             |  |  |  |  |
| Mo  | de of Ev                                                                              | valuation: FAT, Assignmen       | ts, Projects, Case   | studies, R  | ole plays,                  |  |  |  |  |
| 3 A | 3 Assessments with Term End FAT (Computer Based Test)                                 |                                 |                      |             |                             |  |  |  |  |
| Rec | Recommended by Board of Studies 09/06/2017                                            |                                 |                      |             |                             |  |  |  |  |
| Ap  | Approved by Academic Council No. 45 <sup>th</sup> AC Date 15/06/2017                  |                                 |                      |             |                             |  |  |  |  |

| STS50                                                                                   | 02           | Preparing for Industry                           | 7                | L T P J C          |  |
|-----------------------------------------------------------------------------------------|--------------|--------------------------------------------------|------------------|--------------------|--|
|                                                                                         |              |                                                  |                  | 3 0 0 0 1          |  |
| Pre-requ                                                                                | isite        |                                                  |                  | Syllabus version   |  |
| ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                 |              |                                                  |                  | 2.0                |  |
| Course Ob                                                                               | jectives     |                                                  |                  |                    |  |
| 5. To c                                                                                 | levelop      | the students' logical thinking skills            | 1.1              |                    |  |
| $\begin{array}{c} 6.  101 \\ 7  T \end{array}$                                          | earn the     | e strategies of solving quantitative ability pro | blems            |                    |  |
| /. loe                                                                                  | enrich tr    | le verbal ability of the students                |                  |                    |  |
| <u>ð. 10 e</u>                                                                          | ennance      | crucal uninking and innovative skins             |                  |                    |  |
| Expected (                                                                              | Course       | Outcome:                                         |                  |                    |  |
| • Enal                                                                                  | bling st     | udents to simplify, evaluate, analyze and use    | functions and e  | xpressions to      |  |
| simu                                                                                    | ulate rea    | I situations to be industry ready.               |                  |                    |  |
|                                                                                         |              |                                                  |                  |                    |  |
| Module:1                                                                                | Interv       | view skills – Types of interview and             |                  | 3 hours            |  |
|                                                                                         | Techr        | iques to face remote interviews and              |                  |                    |  |
|                                                                                         | Mock         | Interview                                        |                  |                    |  |
|                                                                                         |              |                                                  |                  |                    |  |
| Structured a                                                                            | and unst     | ructured interview orientation, Closed quest     | ions and hypoth  | etical questions,  |  |
| Interviewer                                                                             | s' persp     | ective, Questions to ask/not ask during an in    | terview, Video i | interview          |  |
| Recorded fe                                                                             | edback       | , Phone interview preparation, Tips to custor    | nize preparation | for personal       |  |
| interview, P                                                                            | ractice      | rounds                                           |                  |                    |  |
| Modulo.2                                                                                | Dogur        | no skills – Dosumo Tomplato and Uso of           |                  | 2 hours            |  |
| Wibuule.2                                                                               | ncsui        | r verbs and Types of resume and                  |                  | 2 11001 5          |  |
|                                                                                         | Custo        | mizing resume                                    |                  |                    |  |
| Structure of                                                                            | f a stan     | dard resume. Content. color. font. Introduc      | tion to Power v  | erbs and Write up. |  |
| Quiz on ty                                                                              | pes of       | resume, Frequent mistakes in customizing         | resume, Layou    | ut - Understanding |  |
| different co                                                                            | n<br>mpany': | s requirement, Digitizing career portfolio       |                  | U                  |  |
|                                                                                         |              |                                                  |                  |                    |  |
| Module:3                                                                                | Emot         | ional Intelligence - L1 – Transactional          |                  | 12 hours           |  |
|                                                                                         | Analy        | sis and Brain storming and                       |                  |                    |  |
|                                                                                         | Psych        | ometric Analysis and Rebus                       |                  |                    |  |
|                                                                                         | Puzzl        | es/Problem Solving                               |                  |                    |  |
| Introduction                                                                            | n, Con       | tracting, ego states, Life positions, I          | ndividual Brai   | nstorming, Group   |  |
| Brainstormi                                                                             | ing, Ste     | pladder Technique, Brain writing, Crawfor        | d's Slip writing | approach, Reverse  |  |
| brainstorming, Star bursting, Charlette procedure, Round robin brainstorming, Skill Tes |              |                                                  |                  |                    |  |
| Personality Test, More than one answer, Unique ways                                     |              |                                                  |                  |                    |  |
| Modulo:4                                                                                | Quan         | titative Ability I 3 Permutation                 |                  | 1/ hours           |  |
| Com                                                                                     |              | inations and Probability and Geometry            |                  | 14 110015          |  |
|                                                                                         | and m        | nensuration and Trigonometry and                 |                  |                    |  |
|                                                                                         | Logar        | ithms and Functions and Ouadratic                |                  |                    |  |
|                                                                                         | Equat        | tions and Set Theory                             |                  |                    |  |
| L                                                                                       |              |                                                  |                  |                    |  |

Counting, Grouping, Linear Arrangement, Circular Arrangements, Conditional Probability, Independent and Dependent Events, Properties of Polygon, 2D & 3D Figures, Area & Volumes, Heights and distances, Simple trigonometric functions, Introduction to logarithms, Basic rules of logarithms, Introduction to functions, Basic rules of functions, Understanding Quadratic Equations, Rules & probabilities of Quadratic Equations, Basic concepts of Venn Diagram

| Module:5 Reasoning ability-L3 – Logical reasoning and |                                                                      |                              |                       |           |                                   |  |  |
|-------------------------------------------------------|----------------------------------------------------------------------|------------------------------|-----------------------|-----------|-----------------------------------|--|--|
| Data Analysis and Interpretation                      |                                                                      |                              |                       |           |                                   |  |  |
| Syl                                                   | logisms,                                                             | Binary logic, Sequential or  | tput tracing, Crypt   | o arithr  | netic, Data Sufficiency, Data     |  |  |
| inte                                                  | erpretatio                                                           | on-Advanced, Interpretation  | tables, pie charts &  | & bar cł  | nats                              |  |  |
|                                                       |                                                                      |                              |                       |           |                                   |  |  |
| Mo                                                    | dule:6                                                               | Verbal Ability-L3 – Com      | prehension and        |           | 7 hours                           |  |  |
|                                                       |                                                                      | Logic                        |                       |           |                                   |  |  |
| Rea                                                   | ading con                                                            | nprehension, Para Jumbles,   | Critical Reasoning    | g (a) Pre | emise and Conclusion, (b)         |  |  |
| Ass                                                   | sumption                                                             | & Inference, (c) Strengther  | ning & Weakening      | an Arg    | ument                             |  |  |
|                                                       |                                                                      |                              |                       |           |                                   |  |  |
|                                                       |                                                                      |                              |                       |           |                                   |  |  |
|                                                       |                                                                      |                              | Total Lecture ho      | urs:      | 45 hours                          |  |  |
|                                                       |                                                                      |                              |                       |           |                                   |  |  |
| Ref                                                   | ference 1                                                            | Books                        |                       |           |                                   |  |  |
| 1.                                                    | Michae                                                               | el Farra and JIST Editors(20 | 11) Quick Resume      | e & Cov   | ver Letter Book: Write and Use an |  |  |
|                                                       | Effecti                                                              | ve Resume in Just One Day    | . Saint Paul, Minne   | esota. Ji | st Works                          |  |  |
| 2.                                                    | Daniel                                                               | Flage Ph.D(2003) The Art     | of Questioning: An    | Introdu   | uction to Critical Thinking.      |  |  |
|                                                       | Londor                                                               | n. Pearson                   |                       |           |                                   |  |  |
| 3.                                                    | David                                                                | Allen( 2002) Getting Thing   | s done : The Art of   | f Stress  | -Free productivity. New York      |  |  |
|                                                       | City. P                                                              | enguin Books.                |                       |           |                                   |  |  |
| 4.                                                    | FACE(                                                                | 2016) Aptipedia Aptitude E   | Encyclopedia.Delhi    | . Wiley   | publications                      |  |  |
| 5.                                                    | ETHN                                                                 | US(2013) Aptimithra. Bang    | alore. McGraw-Hi      | ll Educa  | ation Pvt. Ltd.                   |  |  |
| We                                                    | ebsites:                                                             |                              |                       |           |                                   |  |  |
| 1.                                                    | www.cl                                                               | nalkstreet.com               |                       |           |                                   |  |  |
| 2.                                                    | www.sł                                                               | <u>tillsyouneed.com</u>      |                       |           |                                   |  |  |
| 3.                                                    | www.m                                                                | indtools.com                 |                       |           |                                   |  |  |
| 4.                                                    | www.th                                                               | ebalance.com                 |                       |           |                                   |  |  |
| 5.                                                    | www.eg                                                               | <u>guru.000</u>              |                       |           |                                   |  |  |
| Mo                                                    | de of Ev                                                             | valuation: FAT, Assignmen    | nts, Projects, Case s | studies,  | Role plays,                       |  |  |
| 3 A                                                   | ssessme                                                              | nts with Term End FAT (Co    | omputer Based Tes     | st)       |                                   |  |  |
| Rec                                                   | commen                                                               | ded by Board of Studies      | 09/06/2017            |           |                                   |  |  |
| Ap                                                    | Approved by Academic Council No. 45 <sup>th</sup> AC Date 15/06/2017 |                              |                       |           |                                   |  |  |

# Programme Core

| Course C                                                                              | ode                  | Course Title                                                   | L                          | ΤP     | J              | С      |  |
|---------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------|----------------------------|--------|----------------|--------|--|
| ECE504                                                                                | 41                   | EMBEDDED SYSTEM DESIGN                                         | EMBEDDED SYSTEM DESIGN3000 |        |                |        |  |
|                                                                                       |                      |                                                                |                            |        |                |        |  |
| Pre-requi                                                                             | isite                | Nil                                                            | Sy                         | llabu  | IS             |        |  |
|                                                                                       |                      |                                                                | Vei                        | sion   | <del>1.1</del> |        |  |
| Course Ob                                                                             | inativa              |                                                                |                            |        |                |        |  |
| The course of                                                                         | aimed a              | •<br>f                                                         |                            |        |                |        |  |
| 1 Abil                                                                                | itv to               | understand comprehensively the technologies and techniqu       | ies                        | unde   | lvir           | no in  |  |
| build                                                                                 | ling an              | embedded solution to a wearable, mobile and portable system.   | 105                        | unue   | 1 y 11         | 15 111 |  |
| 2. Anal                                                                               | lyze UN              | AL diagrams and advanced Modelling schemes for different use   | cas                        | es.    |                |        |  |
| 3. Und                                                                                | erstand              | the building process of embedded systems                       |                            |        |                |        |  |
| Expected C                                                                            | Course               | Outcome:                                                       |                            |        |                |        |  |
| The students                                                                          | s will b             | e able to                                                      |                            |        |                |        |  |
| 1. Defi                                                                               | ne an e              | mbedded system and compare with general purpose system.        |                            |        |                |        |  |
| 2. App                                                                                | reciate              | the methods adapted for the development of a typical embedded  | l sys                      | tem.   |                |        |  |
| 3.  Get  1                                                                            | introdu              | ced to RIOS and related mechanisms.                            |                            |        |                |        |  |
| 4. Clas<br>5 Diff                                                                     | siry typ<br>erentiat | e the features of components and networks in embedded system   | 1 C                        |        |                |        |  |
| 6. Deve                                                                               | elon rea             | l-time working prototypes of different small-scale and medium  | -sca                       | le em  | bed            | ded    |  |
| Syste                                                                                 | ems.                 |                                                                |                            |        |                |        |  |
| 7. App                                                                                | rehend               | the various concepts in Multi Tasking                          |                            |        |                |        |  |
|                                                                                       |                      | <b>`</b> `                                                     |                            |        |                |        |  |
| Module:1                                                                              | Intro                | luction to Embedded System                                     |                            |        | 5 ł            | iours  |  |
| Embedded                                                                              | system               | processor, hardware unit, software embedded into a system      | n, E                       | xamp   | ole (          | of an  |  |
| embedded s                                                                            | ystem,               | Embedded Design life cycle, Layers of Embedded Systems.        |                            |        |                |        |  |
| Malaz                                                                                 | T.I.                 |                                                                |                            |        | <u> </u>       |        |  |
| Module:2                                                                              | Emp                  | added System Design Methodologies                              | 1 T                        | МЛ     | <u>5 r</u>     | 10urs  |  |
| Requiremen                                                                            | System<br>t Analy    | i modenning [FSM, SysML, MARTE], UML as Design too             | I, U                       | NIL    | nota           | ation, |  |
| Requirement                                                                           | n Anary              | sis and Use case Wodening, Design Examples                     |                            |        |                |        |  |
| Module:3                                                                              | Build                | ing Process For Embedded Systems                               |                            |        | 4 ł            | iours  |  |
| Preprocessin                                                                          | ng, Cor              | npiling, Cross Compiling, Linking, Locating, Compiler Driver,  | Lin                        | ker M  | lap            | Files, |  |
| Linker Scrip                                                                          | ots and              | scatter loading, Loading on the target, Embedded File System.  |                            |        |                | ·      |  |
|                                                                                       |                      |                                                                |                            |        |                |        |  |
| Module:4                                                                              | Syste                | m design using general purpose                                 |                            |        | 7 ł            | iours  |  |
|                                                                                       | proce                | ssor                                                           |                            |        |                |        |  |
| Microcontro                                                                           | oller ar             | chitectures (RISC, CISC), Embedded Memory, Strategic selection |                            | i of j | roc            | essor  |  |
| and memor                                                                             | y, Mer               | hory Devices and their Characteristics, Cache Memory and       | var                        | ious   | maj            | pping  |  |
| techniques,                                                                           | DMA.                 |                                                                |                            |        |                |        |  |
| Module:5                                                                              | Comr                 | oonent Interfacing & Networks                                  |                            |        | 9 ł            | ours   |  |
| Memory Interfacing I/O Device Interfacing Interrupt Controllers Networks for Embedded |                      |                                                                |                            |        |                | edded  |  |
| systems- U                                                                            | SB, PC               | CI,PCI Express, UART, SPI, I2C, CAN, Wireless Applicat         | ions                       | - B    | lue            | tooth, |  |
| Zigbee,Wi-I                                                                           | Fi.,6Lo              | WPAN, Evolution of Internet of things (IoT).                   |                            |        |                |        |  |
|                                                                                       |                      |                                                                |                            |        |                | ]      |  |
| Module:6                                                                              | Opera                | ating Systems                                                  |                            |        | 7 ł            | iours  |  |

Introduction to Operating Systems, Basic Features & Functions of an Operating System, Kernel & its Features [polled loop system, interrupt driven system, multi rate system], Processes/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispatcher.

| Mo                                                                                       | dule:7                                                                                       | Multi Tasking            |                  |               |                     | 6 hours                |  |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------|------------------|---------------|---------------------|------------------------|--|
| Cor                                                                                      | Context Switching, Scheduling and various Scheduling algorithms, Inter-process Communication |                          |                  |               |                     |                        |  |
| (Shared Memory, Mail Box, Message Queue), Inter Task Synchronization (Semaphore, Mutex), |                                                                                              |                          |                  |               | (Semaphore, Mutex), |                        |  |
| Dea                                                                                      | ud Lock,                                                                                     | Priority Inversion (bo   | unded and un     | bounded), I   | Priority Ceilin     | g Protocol & Priority  |  |
| Inh                                                                                      | eritance                                                                                     | Protocol                 |                  |               |                     |                        |  |
|                                                                                          |                                                                                              |                          |                  |               |                     |                        |  |
| Mo                                                                                       | dule:8                                                                                       | Contemporary issues      | •                |               | 2 hours             |                        |  |
|                                                                                          |                                                                                              |                          |                  |               |                     | 1                      |  |
|                                                                                          |                                                                                              |                          | Total Lectu      | are hours:    | 45 hours            |                        |  |
|                                                                                          |                                                                                              |                          |                  |               |                     |                        |  |
| Tex                                                                                      | t Book(                                                                                      | s)                       |                  |               | ·                   |                        |  |
| 1.                                                                                       | Raj Ka                                                                                       | mal, "Embedded systems   | s Architecture,  | Programmi     | ing and Design      | n", Tata McGraw- Hill, |  |
|                                                                                          | 2016.                                                                                        |                          |                  |               |                     |                        |  |
| 2.                                                                                       | Wayne                                                                                        | Wolf "Computers as con   | nponents: Princ  | ciples of Em  | nbedded Comp        | uting System Design",  |  |
|                                                                                          | The Mo                                                                                       | organ Kaufmann Series in | n Computer Are   | chitecture an | nd Design, 201      | 3.                     |  |
| Ref                                                                                      | erence I                                                                                     | Books                    |                  |               |                     |                        |  |
| 1.                                                                                       | Lyla B.                                                                                      | Das," Embedded System    | ns an Integrated | l Approach'   | ", Pearson Edu      | cation, 2013.          |  |
| 2.                                                                                       | Shibu F                                                                                      | K V," Introduction to Em | bedded System    | s", McGraw    | v Hill Educatio     | n(India) Private       |  |
|                                                                                          | Limited                                                                                      | l, 2014                  |                  |               |                     |                        |  |
| 3.                                                                                       | Sriram                                                                                       | V Iyer, Pankaj Gupta     | " Embedded 1     | Real Time     | Systems Prog        | ramming", Tata         |  |
|                                                                                          | McGrav                                                                                       | w-Hill, 2012             |                  |               |                     |                        |  |
| 4.                                                                                       | Steve H                                                                                      | leath, "Embedded Systen  | ns Design", ED   | N Series, 2   | 013.                |                        |  |
| Mo                                                                                       | de of E                                                                                      | valuation: Continuous A  | ssessment Tes    | st, Quiz, Di  | igital Assignm      | ent, Final Assessment  |  |
| Tes                                                                                      | t.                                                                                           |                          |                  |               |                     |                        |  |
|                                                                                          |                                                                                              |                          |                  |               |                     |                        |  |
| Recommended by Board of Studies 12/09/2020                                               |                                                                                              |                          |                  |               |                     |                        |  |
| App                                                                                      | proved b                                                                                     | y Academic Council       | No. 59           | Date          | ,                   | 24/09/2020             |  |
|                                                                                          |                                                                                              |                          |                  |               |                     |                        |  |

| Course cod    | e                                                         | Course Title                                                      |                       | L T P J C             |  |  |
|---------------|-----------------------------------------------------------|-------------------------------------------------------------------|-----------------------|-----------------------|--|--|
| ECE5042       | 2 Microcontroller Architecture and Organization 2 0 2 4 4 |                                                                   |                       |                       |  |  |
| Pre-requisi   | Pre-requisite Nil Syllabus version:                       |                                                                   |                       |                       |  |  |
| Course Obj    | jectives                                                  | :                                                                 |                       |                       |  |  |
| The course i  | is aimed                                                  | l at                                                              |                       |                       |  |  |
| [1] Describi  | ng the a                                                  | architecture of 8051 microcontroller and AR                       | M processor           |                       |  |  |
| [2] Teaching  | g the in                                                  | struction set of 8051 and ARM microcontrol                        | ler to efficien       | t programs            |  |  |
| [3] Designir  | ng syste                                                  | m in block level using microcontroller, mem                       | ory devices, l        | ouses and other       |  |  |
| peripheral d  | evices                                                    |                                                                   |                       |                       |  |  |
| [4] Solving   | real life                                                 | problem using microcontroller-based system                        | ns                    |                       |  |  |
| Expected C    | ourse                                                     | Jutcome:                                                          |                       |                       |  |  |
| At the end of | of the co                                                 | burse, the students will be able to                               |                       |                       |  |  |
| [1] Describe  | the arc                                                   | chitectures of processors                                         |                       |                       |  |  |
| [2] Develop   | Assem                                                     | bly program applying Digital logic and math                       | nematics using        | g 8051                |  |  |
| [3] Develop   | Assem                                                     | bly Language Program ALP for ARM and A                            | RM peripher           | als                   |  |  |
| [4] Develop   | ALP w                                                     | ith minimum instructions and memory.                              |                       |                       |  |  |
| [5] Analyze   | and eva                                                   | aluate the given program in terms of code siz                     | ze and comput         | tational time         |  |  |
| [6] Design N  | Microco                                                   | ntroller based system within realistic constra                    | aint like user s      | specification,        |  |  |
| availability  | of com                                                    | ponents etc                                                       |                       |                       |  |  |
| [7] Solve rea | al life p                                                 | roblem and construct a complete system as a                       | i solution            |                       |  |  |
| [8] Integrate |                                                           | and a working model using the laboratory co                       | mponents and          | IDE tools.            |  |  |
| Module:1      | Intro                                                     | duction to Microcontrollers                                       | 2 nours               |                       |  |  |
| Endion Va     | essors<br>Dia En                                          | vs Microcontrollers; Classification – bits, 1                     | memory archi          | itecture, ISA; Little |  |  |
| Modulo:2      |                                                           | ulall.<br>Microcontrollor                                         | 2 hours               |                       |  |  |
| Architectu    | <u> </u>                                                  | imers Interrupts Register Architecture (                          | 2 nours<br>banks) PSW | register Memory       |  |  |
| architectur   | e: Instr                                                  | uction set                                                        |                       | register, wremory     |  |  |
| Module:3      | <u>8051</u>                                               | Programming and Interfaces                                        | 5 hours               |                       |  |  |
| Programm      | ing in C                                                  | C & Assembly for – Interrupts, Timers and I                       | Interfaces – P        | ORTS, LED, ADC,       |  |  |
| SENSORS       | , ĽCD,                                                    | DAC, Serial Communication.                                        |                       |                       |  |  |
| Module:4      | ARM                                                       | Architecture                                                      | 3 hours               |                       |  |  |
| ARM Des       | ign Ph                                                    | losophy; Overview of ARM architecture;                            | States [ARM           | I, Thumb, Jazelle];   |  |  |
| Registers,    | Modes;                                                    | Conditional Execution; Pipelining; Vector                         | Fables; Excep         | tion handling.        |  |  |
| Module:5      | ARM                                                       | Instruction Set                                                   | 6 hours               |                       |  |  |
| ARM Instru    | iction-                                                   | data processing instructions, branch instruc                      | tions, load st        | ore instructions, SWI |  |  |
| instruction,  | Loadin                                                    | g instructions, conditional Execution, Assem                      | bly Programn          | ning.                 |  |  |
| Module:6      | Thur                                                      | nb Instruction Set                                                | 4 hours               |                       |  |  |
| Thumb Ir      | istructio                                                 | on-Thumb Registers, ARM Thumb interwor                            | rking, branch         | instruction, data     |  |  |
| processin     | g instr                                                   | uction, single/multiple load store instruct                       | tion, Stack 1         | nstruction, SWI       |  |  |
| Instruction   | n, Asse                                                   | moly Programming.                                                 | ( hours               |                       |  |  |
| Architectur   | re of I I                                                 | COLE DASCU MICLOCONTONEL<br>PC214X Memory Addressing IO ports Tim | o nours               | Vatch Dog Timer       |  |  |
| PWM AD        | C/DAC                                                     | L UART. Interrupts. Displays C programmi                          | ng.                   |                       |  |  |
| Module:8      | Conte                                                     | mporary Issues                                                    | 2 hours               |                       |  |  |
|               |                                                           | Total Lecture Hours:                                              | 30 hours              |                       |  |  |
|               |                                                           |                                                                   |                       |                       |  |  |

| Text                                                                                      | Book(s)                                                                               |                             |  |  |  |  |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|
| 1. Ar                                                                                     | ndrew N.Sloss, Dominic Symes, Chris Wright, ARM Developer's Guide, 201                | 0, 1 <sup>st</sup> Edition, |  |  |  |  |
| Elsevier, United States                                                                   |                                                                                       |                             |  |  |  |  |
| 2. Kenneth Ayala, The 8051 Microcontroller & Embedded Systems Using Assembly and C, 2010, |                                                                                       |                             |  |  |  |  |
| 1st edition, Cengage Learning, United States                                              |                                                                                       |                             |  |  |  |  |
| Refe                                                                                      | rence Books                                                                           |                             |  |  |  |  |
| 1.Ste                                                                                     | ve Furber ARM System on Chip Architecture, 2010, 2 <sup>nd</sup> Edition, Addison Wes | sley,                       |  |  |  |  |
| Unite                                                                                     | d States                                                                              |                             |  |  |  |  |
| 2. Te                                                                                     | chnical Reference Manual CORTEX M-3, ARM, 2010, United States                         |                             |  |  |  |  |
| Mode                                                                                      | e of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar                    |                             |  |  |  |  |
| List                                                                                      | t of Challenging Experiments (Indicative)                                             |                             |  |  |  |  |
| 1.                                                                                        | Task-1: Calculator Application                                                        | 7 hours                     |  |  |  |  |
|                                                                                           | Sub task 1: Make the LCD interfaced to 8051                                           |                             |  |  |  |  |
| 1                                                                                         | Sub task 2: Get input from switch which is interfaced to 8051 and                     |                             |  |  |  |  |
|                                                                                           | display it on LCD                                                                     |                             |  |  |  |  |
|                                                                                           | Sub task 3: Based on switch input, perform basic operation of a                       |                             |  |  |  |  |
|                                                                                           | Calculator                                                                            |                             |  |  |  |  |
| 2.                                                                                        | Task-2: Speed control of motor                                                        | 7 hours                     |  |  |  |  |
|                                                                                           | Sub task-1: Use timer and generate an exact time delay for Ton and                    |                             |  |  |  |  |
| 1                                                                                         |                                                                                       |                             |  |  |  |  |
|                                                                                           | Sub task-2: Use timer interrupt in generating the waveform                            |                             |  |  |  |  |
|                                                                                           | Sub tast-2: Controlling speed of a DC motor using Timer                               |                             |  |  |  |  |
| 3                                                                                         | Task-3: Microcontroller based application                                             | 8 hours                     |  |  |  |  |
| 5.                                                                                        | Sub task-1: Interface Zighee with 8051                                                | 0 110013                    |  |  |  |  |
|                                                                                           | Sub Task-1: Interface Ligbee with 8051                                                |                             |  |  |  |  |
|                                                                                           | Sub Task 2: Interface GSM with 8051                                                   |                             |  |  |  |  |
|                                                                                           | Sub task-4: Based on KEY pressed in keypad transmit the key info                      |                             |  |  |  |  |
|                                                                                           | via Zigbee and make a motor to rotate, which is interfaced with 8051                  |                             |  |  |  |  |
|                                                                                           | Using GSM module send the status of motor[run/stop] to the user                       |                             |  |  |  |  |
|                                                                                           | Test 4. Sensor interfacing with ADM I DC2149                                          | 9 hours                     |  |  |  |  |
| 4.                                                                                        | Sub Took 1: Interfacing Will ARVI LPC2148                                             | 8 nours                     |  |  |  |  |
|                                                                                           | Sub Task-1: Interface IR with LPC2148                                                 |                             |  |  |  |  |
|                                                                                           | Sub Task-2: Interface temperature sensor with LPC2148                                 |                             |  |  |  |  |
|                                                                                           | Sub Task-3: Interface Bluetooth with LPC2148                                          |                             |  |  |  |  |
|                                                                                           | L PC2148 via Bluetooth                                                                |                             |  |  |  |  |
|                                                                                           | Total Laboratory Hours                                                                | 30 hours                    |  |  |  |  |
| Tvn                                                                                       | ical Projects                                                                         | 20 110415                   |  |  |  |  |
| <u>- JP</u>                                                                               | 1. Develop an ARM based waste management system. In this, the sensors                 |                             |  |  |  |  |
|                                                                                           | are placed in the common garbage bins placed at the public places.                    |                             |  |  |  |  |
|                                                                                           | When the garbage reaches the level of the sensor, then that indication                |                             |  |  |  |  |
|                                                                                           | will be given to ARM Micro controller. The controller will give                       |                             |  |  |  |  |
|                                                                                           | indication to the driver of garbage collection truck as to which garbage              |                             |  |  |  |  |
|                                                                                           | bin is completely filled and needs urgent attention. ARM 7 will give                  |                             |  |  |  |  |
|                                                                                           | indication by sending SMS using GSM technology.                                       |                             |  |  |  |  |

- 2. Design an ARM based automated patient monitoring system which continuously measures the patient parameters such as heart rate and rhythm, respiratory rate, blood pressure and many other parameters has become a common feature of the care of critically ill patients. When accurate and immediate decision-making is crucial for effective patient care, electronic monitors frequently are used to collect and display physiological data.
- 3. Implement a Digital Clock and Alarm using ARM microcontroller that needs a keypad to be interfaced with the following requirement. Key 1 to turn on alarm, Key 2 to enable alarm settings, Key 3 to enable time settings, Key 4 to change hour's settings, Key 5 to change minute settings, Key 6 to increment the time, Key 7 to decrement the time. The normal time and alarm time should be displayed using 2 X 16 LCD and a buzzer should be triggered once the normal time equal to alarm time.
- 4. Develop an ARM Micro controller-based precision agriculture which includes accessing real-time data about the conditions of the crops, soil and ambient air. Sensors in fields measure the moisture content and temperature of the soil and surrounding air.

| Recommended by Board of Studies | 27/02/2016           |      |            |
|---------------------------------|----------------------|------|------------|
| Approved by Academic Council    | No. $40^{\text{th}}$ | Date | 18-03-2016 |

| Course Cod                                                                                       | L                                                                                          | Т                                  | P        | J      | С     |       |    |  |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------|----------|--------|-------|-------|----|--|
| ECE5053                                                                                          | ELECTRONICS HARDWARE SYSTEM                                                                | ELECTRONICS HARDWARE SYSTEM DESIGN |          |        |       |       | 4  |  |
| Pre-requisit                                                                                     |                                                                                            |                                    |          |        |       |       |    |  |
| Course Objectives:                                                                               |                                                                                            |                                    |          |        |       |       |    |  |
| The course is aimed at                                                                           |                                                                                            |                                    |          |        |       |       |    |  |
| [1] Emphasir                                                                                     | g students the significant role of FPGA in System                                          | design and d                       | levelop  | men    | t.    |       |    |  |
| [2] Teaching                                                                                     | [2] Teaching the students to develop program using Hardware Descriptive Language and model |                                    |          |        |       |       |    |  |
| digital logic combinational and sequential circuits.                                             |                                                                                            |                                    |          |        |       |       |    |  |
| [3] Enabling the students acquire knowledge in Interfacing peripherals, Board Design, Packaging, |                                                                                            |                                    |          |        |       |       |    |  |
| PCB Design                                                                                       | PCB Design and Analysis                                                                    |                                    |          |        |       |       |    |  |
| [4] Motivating students to solve real life problem using FPGA based systems.                     |                                                                                            |                                    |          |        |       |       |    |  |
| Course Outo                                                                                      | comes (CO):                                                                                |                                    |          |        |       |       |    |  |
| At the end of                                                                                    | the course the student will be able to                                                     |                                    |          |        |       |       |    |  |
| [1] Compreh                                                                                      | end the architecture of FPGA and design flow                                               |                                    |          |        |       |       |    |  |
| [2] Understan                                                                                    | nd Hardware Description Language                                                           |                                    |          |        |       |       |    |  |
| [3] Design ar                                                                                    | nd develop combinational logic circuits using Veril                                        | og and VHD                         | L prog   | ram.   |       |       |    |  |
| [4] Design ar                                                                                    | nd develop sequential logic circuits using Verilog a                                       | nd VHDL pr                         | ogram.   |        |       |       |    |  |
| [5] Interface                                                                                    | peripherals with FPGA.                                                                     |                                    |          |        |       |       |    |  |
| [6] Design th                                                                                    | e PCB                                                                                      |                                    |          |        |       |       |    |  |
| [7] Design F                                                                                     | PGA based system                                                                           |                                    |          |        |       |       |    |  |
| [8] Compreh                                                                                      | end upcoming trends in FPGA.                                                               |                                    |          |        |       |       |    |  |
| Module:1         Programmable Logic Devices & FPGAs         3 hours                              |                                                                                            |                                    |          |        |       |       |    |  |
| Introduction                                                                                     | n to FPGAs, FPGA technologies, FPGA Archite                                                | ctures [Xilin                      | ix, Alte | era, 1 | ACT   | EL,   |    |  |
| LATTICE], FPGA Design Flow Prototyping with Xilinx FPGAs, FPGA based Testing.                    |                                                                                            |                                    |          |        |       |       |    |  |
| Module:2                                                                                         | Hardware Descriptive Language                                                              |                                    |          |        |       |       |    |  |
|                                                                                                  | (Verilog/VHDL)                                                                             | 3 hours                            |          |        |       |       |    |  |
| Introduction, HDL Design flow, Language constructs -operators –Data types, Different             |                                                                                            |                                    |          |        |       |       |    |  |
| architectures                                                                                    | (Structural, Behavioural, Dataflow)-Design examp                                           | oles                               |          |        |       |       |    |  |
| Module:3                                                                                         | Modeling of Combinational logic circuits                                                   | 4 hours                            |          |        |       |       |    |  |
| Half adder,                                                                                      | Full adder, 4-bit/8-bit binary adder, ALU design                                           | , Multiplexe                       | r and I  | De-m   | ultip | lexe  | r, |  |
| Encoder, De                                                                                      | ecoder, Comparator, Ripple Carry Adder, Carry Lo                                           | ok ahead ado                       | der.     |        |       |       |    |  |
| Module:4                                                                                         | Modeling of Sequential logic circuits                                                      | 4 hours                            |          |        |       |       |    |  |
| Flip Flops                                                                                       | -Realization of Shift Register -Realization of                                             | of a Count                         | ter-Syn  | chro   | nous  | ar    | ıd |  |
| Asynchrono                                                                                       | ous - BCD counter, Mealy and Moore State Ma                                                | chines, Sequ                       | ience d  | letec  | tor,  | FIFO  | ), |  |
| Memory De                                                                                        | sign, Serial Data Receiver, Serial to parallel data c                                      | onverter.                          |          |        |       |       |    |  |
| Module:5                                                                                         | Interfacing peripherals and Board Design                                                   | 5 hours                            |          |        |       |       |    |  |
| Interfacing                                                                                      | to 7 segment display, Stepper Motor, ADC and Se                                            | ensors, FPGA                       | A System | m      |       |       |    |  |
| Architecture, Constraints – Logical – Electrical - Physical, Power distribution for FPGAs,       |                                                                                            |                                    |          |        |       |       |    |  |
| Clock design, I/O buses.                                                                         |                                                                                            |                                    |          |        |       |       |    |  |
| Module:6Introduction to Packaging &PCB Design4 hours                                             |                                                                                            |                                    |          |        |       |       |    |  |
| Physical int                                                                                     | egration of circuits, packages, boards and full elect                                      | ronic system                       | is - Pac | kage   |       |       |    |  |
| classificatio                                                                                    | ns (Through hole and SMDs) and packaging trends                                            | s, Hierarchy                       | of Inter | con    | necti | on    |    |  |
| Levels -Sig                                                                                      | nal integrity - The PCB Design Process - Defining                                          | the Layout C                       | Cross Se | ectio  | n - D | )esig | 'n |  |
| Rules Checking - Working with Properties & Constraints- PCB Electrical Design Consideration -    |                                                                                            |                                    |          |        |       |       |    |  |
| Design tips                                                                                      | for Placement / Fan-out and Wiring - Multi - Laye                                          | r Design Issu                      | ies.     |        |       |       |    |  |
| Module:7                                                                                         | High Speed PCB design and Analysis                                                         | 5 hours                            |          |        |       |       |    |  |

| systems -Thermal interface material, Cooling mechanisms-System level design of electronic<br>hardware for automotive applications -System level testing and validation of automotive<br>electronics systems for reliability. Layout constraints for FPGAs, FPGA-based PCB schematics.<br>Module:8 Contemporary issues: 2 hours<br>Total Lecture hours: 30 hrs<br>Text Book(s)<br>1. Simon Monk, Make Your Own PCBs with EAGLE: From Schematic Designs to Finished<br>Boards, 2014, First Edition, McGraw Hill Education, India.<br>2. Wayne Wolf, FPGA-based System Design, 2011, Re-Print, Prentice Hall, India<br>Reference Books<br>1. Clyde Coombs, Printed Circuits Handbook, 2011, Sixth Edition, McGraw Hill Professional,<br>USA<br>2. Ian Grout, Digital Systems, Design with FPGAs and CPLDs, 2012, Re-Print, Newness, UK.<br>3. Ronald R. Sass and Andrew Schmidt, Embedded Systems Design with Platform<br>FPGAs: Principles and Practices, 2010, First Edition, Morgan Kaufman<br>Publishers, USA.<br>Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final<br>Assessment Test.<br>List of Challenging Experiments (Indicative)                   |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| hardware for automotive applications -System level testing and validation of automotive<br>electronics systems for reliability. Layout constraints for FPGAs, FPGA-based PCB schematics.<br>Module:8 Contemporary issues: 2 hours<br>Total Lecture hours: 30 hrs<br>Text Book(s)<br>1. Simon Monk, Make Your Own PCBs with EAGLE: From Schematic Designs to Finished<br>Boards, 2014, First Edition, McGraw Hill Education, India.<br>2. Wayne Wolf, FPGA-based System Design, 2011, Re-Print, Prentice Hall, India<br>Reference Books<br>1. Clyde Coombs, Printed Circuits Handbook, 2011, Sixth Edition, McGraw Hill Professional,<br>USA<br>2. Ian Grout, Digital Systems, Design with FPGAs and CPLDs, 2012, Re-Print, Newness, UK.<br>3. Ronald R. Sass and Andrew Schmidt, Embedded Systems Design with Platform<br>FPGAs: Principles and Practices, 2010, First Edition, Morgan Kaufman<br>Publishers, USA.<br>Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final<br>Assessment Test.<br>List of Challenging Experiments (Indicative)                                                                                                                |  |  |  |  |  |
| electronics systems for reliability. Layout constraints for FPGAs, FPGA-based PCB schematics.         Module:8       Contemporary issues:       2 hours         Total Lecture hours: 30 hrs         Text Book(s)       Total Lecture hours: 30 hrs         I. Simon Monk, Make Your Own PCBs with EAGLE: From Schematic Designs to Finished Boards, 2014, First Edition, McGraw Hill Education, India.       Design with EAGLE: From Schematic Designs to Finished Boards, 2014, First Edition, McGraw Hill Education, India.         2. Wayne Wolf, FPGA-based System Design, 2011, Re-Print, Prentice Hall, India       Reference Books         1. Clyde Coombs, Printed Circuits Handbook, 2011, Sixth Edition, McGraw Hill Professional, USA       2. Ian Grout, Digital Systems, Design with FPGAs and CPLDs, 2012, Re-Print, Newness, UK.         3. Ronald R. Sass and Andrew Schmidt, Embedded Systems Design with Platform FPGAs: Principles and Practices, 2010, First Edition, Morgan Kaufman Publishers, USA.         Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.         I ist of Challenging Experiments (Indicative) |  |  |  |  |  |
| Module:8       Contemporary issues:       2 hours         Total Lecture hours: 30 hrs         Total Lecture hours: 40 hrs         Book(s)         1. Clyde Coombs, Prist Edition, McGraw Hill Education, India.         1. Clyde Coombs, Printed Circuits Handbook, 2011, Sixth Edition, McGraw Hill Professional, USA         2. Ian Grout, Digital Systems, Design with FPGAs and CPLDs, 2012, Re-Print, Newness, UK.         3. Ronald R. Sass and Andrew Schmidt, Embedded Systems Design with Platform FPGAs: Principles and Practices, 2010, First Edition, M                      |  |  |  |  |  |
| Total Lecture hours: 30 hrs         Text Book(s)         1. Simon Monk, Make Your Own PCBs with EAGLE: From Schematic Designs to Finished<br>Boards, 2014, First Edition, McGraw Hill Education, India.         2. Wayne Wolf, FPGA-based System Design, 2011, Re-Print, Prentice Hall, India         Reference Books         1. Clyde Coombs, Printed Circuits Handbook, 2011, Sixth Edition, McGraw Hill Professional,<br>USA         2. Ian Grout, Digital Systems, Design with FPGAs and CPLDs, 2012, Re-Print, Newness, UK.         3. Ronald R. Sass and Andrew Schmidt, Embedded Systems Design with Platform<br>FPGAs: Principles and Practices, 2010, First Edition, Morgan Kaufman<br>Publishers, USA.         Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final<br>Assessment Test.         List of Challenging Experiments (Indicative)                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| <ul> <li>Text Book(s) <ol> <li>Simon Monk, Make Your Own PCBs with EAGLE: From Schematic Designs to Finished Boards, 2014, First Edition, McGraw Hill Education, India.</li> <li>Wayne Wolf, FPGA-based System Design, 2011, Re-Print, Prentice Hall, India</li> </ol> </li> <li>Reference Books <ol> <li>Clyde Coombs, Printed Circuits Handbook, 2011, Sixth Edition, McGraw Hill Professional, USA</li> <li>Ian Grout, Digital Systems, Design with FPGAs and CPLDs, 2012, Re-Print, Newness, UK.</li> <li>Ronald R. Sass and Andrew Schmidt, Embedded Systems Design with Platform FPGAs: Principles and Practices, 2010, First Edition, Morgan Kaufman Publishers, USA.</li> </ol> </li> <li>Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| <ol> <li>Simon Monk, Make Your Own PCBs with EAGLE: From Schematic Designs to Finished<br/>Boards, 2014, First Edition, McGraw Hill Education, India.</li> <li>Wayne Wolf, FPGA-based System Design, 2011, Re-Print, Prentice Hall, India</li> <li>Reference Books         <ol> <li>Clyde Coombs, Printed Circuits Handbook, 2011, Sixth Edition, McGraw Hill Professional, USA</li> <li>Ian Grout, Digital Systems, Design with FPGAs and CPLDs, 2012, Re-Print, Newness, UK.</li> <li>Ronald R. Sass and Andrew Schmidt, Embedded Systems Design with Platform<br/>FPGAs: Principles and Practices, 2010, First Edition, Morgan Kaufman<br/>Publishers, USA.</li> </ol> </li> <li>Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final<br/>Assessment Test.</li> <li>List of Challenging Experiments (Indicative)</li> </ol>                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| <ul> <li>Boards, 2014, First Edition, McGraw Hill Education, India.</li> <li>2. Wayne Wolf, FPGA-based System Design, 2011, Re-Print, Prentice Hall, India</li> <li><b>Reference Books</b> <ol> <li>Clyde Coombs, Printed Circuits Handbook, 2011, Sixth Edition, McGraw Hill Professional, USA</li> <li>Ian Grout, Digital Systems, Design with FPGAs and CPLDs, 2012, Re-Print, Newness, UK.</li> <li>Ronald R. Sass and Andrew Schmidt, Embedded Systems Design with Platform FPGAs: Principles and Practices, 2010, First Edition, Morgan Kaufman Publishers, USA.</li> </ol> </li> <li>Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| <ol> <li>Wayne Wolf, FPGA-based System Design, 2011, Re-Print, Prentice Hall, India</li> <li>Reference Books         <ol> <li>Clyde Coombs, Printed Circuits Handbook, 2011, Sixth Edition, McGraw Hill Professional, USA</li> <li>Ian Grout, Digital Systems, Design with FPGAs and CPLDs, 2012, Re-Print, Newness, UK.</li> <li>Ronald R. Sass and Andrew Schmidt, Embedded Systems Design with Platform FPGAs: Principles and Practices, 2010, First Edition, Morgan Kaufman Publishers, USA.</li> </ol> </li> <li>Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| <ul> <li>Reference Books <ol> <li>Clyde Coombs, Printed Circuits Handbook, 2011, Sixth Edition, McGraw Hill Professional, USA</li> <li>Ian Grout, Digital Systems, Design with FPGAs and CPLDs, 2012, Re-Print, Newness, UK.</li> <li>Ronald R. Sass and Andrew Schmidt, Embedded Systems Design with Platform FPGAs: Principles and Practices, 2010, First Edition, Morgan Kaufman Publishers, USA.</li> </ol> </li> <li>Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.</li> <li>List of Challenging Experiments (Indicative)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| <ol> <li>Clyde Coombs, Printed Circuits Handbook, 2011, Sixth Edition, McGraw Hill Professional,<br/>USA</li> <li>Ian Grout, Digital Systems, Design with FPGAs and CPLDs, 2012, Re-Print, Newness, UK.</li> <li>Ronald R. Sass and Andrew Schmidt, Embedded Systems Design with Platform<br/>FPGAs: Principles and Practices, 2010, First Edition, Morgan Kaufman<br/>Publishers, USA.</li> <li>Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final<br/>Assessment Test.</li> <li>List of Challenging Experiments (Indicative)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| USA<br>2. Ian Grout, Digital Systems, Design with FPGAs and CPLDs, 2012, Re-Print, Newness, UK.<br>3. Ronald R. Sass and Andrew Schmidt, Embedded Systems Design with Platform<br>FPGAs: Principles and Practices, 2010, First Edition, Morgan Kaufman<br>Publishers, USA.<br>Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final<br>Assessment Test.<br>List of Challenging Experiments (Indicative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| <ul> <li>2. Ian Grout, Digital Systems, Design with FPGAs and CPLDs, 2012, Re-Print, Newness, UK.</li> <li>3. Ronald R. Sass and Andrew Schmidt, Embedded Systems Design with Platform<br/>FPGAs: Principles and Practices, 2010, First Edition, Morgan Kaufman<br/>Publishers, USA.</li> <li>Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final<br/>Assessment Test.</li> <li>List of Challenging Experiments (Indicative)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| <ul> <li>3. Ronald R. Sass and Andrew Schmidt, Embedded Systems Design with Platform<br/>FPGAs: Principles and Practices, 2010, First Edition, Morgan Kaufman<br/>Publishers, USA.</li> <li>Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final<br/>Assessment Test.</li> <li>List of Challenging Experiments (Indicative)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| FPGAs: Principles and Practices, 2010, First Edition, Morgan Kaufman         Publishers, USA.         Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final         Assessment Test.         List of Challenging Experiments (Indicative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Publishers, USA.<br>Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final<br>Assessment Test.<br>List of Challenging Experiments (Indicative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final<br>Assessment Test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Assessment Test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| List of Challenging Experiments (Indicative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| List of Chanenging Experiments (indicative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| 1.Task 1: Combination Logic:-8 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Design a 16-bit microprocessor that is capable of performing both logical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| and arithmetic operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 2.Task 2: Sequential Logic:-8 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Design a controller for vending machine which sells candy bars for Rs 5, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| and 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 3.Task 3: Peripheral Interfacing:-8 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Design a car speed monitor using the following components (a) 7 segment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| display (b) LEDs (c) Switches for speed selection and (d) Buzzer. The cars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| electronic speedometer provides a clock signal whose frequency is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| proportional to the speed. To check the functioning of the design use function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| generator to provide the speedometer clock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| 4. Task 4:PCB Design:- 6 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Design a PCB for a circuit with a mixture of analog and digital parts, multiple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| power planes, and a single Ground plane split into analog and digital sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| that have a common reference point using open source tool.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Total Laboratory Hours : 30 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Mode of Evaluation: Continuous Assessment Test, Final Assessment Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Typical Projects:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |

- 1. Design face recognition based Authenticated Door Opening System using FPGA. Database consisting of authorised persons faces should be created and the same should be compared with the real time camera input faces such that, if face matching happens then the door actuator needs to be triggered to open the door.
- 2. FPGA Implementation of Digital Clock and Alarm needs a keypad to be interfaced with the following requirement. Key 1 to turn on alarm, Key 2 to enable alarm settings, Key 3 to enable time settings, Key 4 to change hour's settings, Key 5 to change minute settings, Key 6 to increment the time and Key 7 to decrement the time. The normal time and alarm time should be displayed using 2 X 16 LCD and a buzzer should be triggered once the normal time equal to alarm time.
- 3. Design a GCD (Greatest Common divider) processor in FPGA. Use finite state machine approach of modelling the processor and generate the structure of Controller and Data path. The input should be given through the keypad which is to be interfaced with FPGA and the results should be serially transmitted to the Personal Computer through UART (Universal Asynchronous Receiver Transmitter) communication protocol.
- 4. Design a PCB of 3.3V/5V Power Supply and GSM Module. Individual switches need to be included to ON/OFF the individual Power Supply. The power supply and GSM schematic, top layer, bottom layer, top silk, top mask, top preview, bottom preview, bottom mask, drill file should be generated and captured during the design phase.

Mode of Evaluation: Project Reviews I, II, III

Approved by Academic Council : No. 40

| Course code   | Course Title         |        | L        | T  | P    | J  | С |
|---------------|----------------------|--------|----------|----|------|----|---|
| ECE5043       | EMBEDDED PROGRAMMING | r<br>J | 3        | 0  | 2    | 0  | 4 |
| Pre-requisite | None                 |        | Syllabus | ve | ersi | on |   |
|               |                      |        |          |    |      |    |   |

#### **Course Objectives :**

The course is aimed

- 1. To acquaint students with fundamentals of C
- 2. To familiarize the students with data structures
- 3. To introduce the students with SHELL programming and Linux
- 4. To Implement the Device drivers in LINUX environment

#### **Expected Course Outcome :**

At the end of the course the students will be able to

- 1. Comprehend the fundamentals of C
- 2. Comprehend the Data structures
- 3. Comprehend the basics of Linux
- 4. Showcase the skill, knowledge and ability of SHELL programming.
- 5. Exhibit the working knowledge of basic Embedded Linux
- 6. Comprehend the concepts of Kernel module Programming
- 7. Write Device driver programs
- 8. Have hands on experience in using state-of- art hardware and software tools

#### Module:1 C Language

Basic concepts of C, Embedded C Vs C, Embedded programming aspects with respect to firmware and OS Functions, Arrays, pointers, structures and Inputs/Outputs.

7 hours

6 hours

6 hours

7 hours

6 hours

## Module:2 Data structures of kernel programming

Linked list, Single linked list, Double linked list and Queues.

| Module:3 | Linux |  |
|----------|-------|--|

Command prompt, X windows basics, Navigating file system, finding files, working with folders, reading files text editing in Linux, Compression and archiving tools, Basic shell commands, File Management, I/O Handling, File Locking.

#### Module:4 Shell Programming

Processes, giving more than one command at a time, prioritizing and killing processes, Scheduling Commands, pipes and redirection, regular expression, pattern matching, Scripting using for while, if and other commands.

| Module:5   | Embedded Li    | nux          |        |       |       |         |           |          | 6 hours    |
|------------|----------------|--------------|--------|-------|-------|---------|-----------|----------|------------|
| Linux Basi | cs, Booting pi | rocess, make | files, | using | SD ca | ard and | reader to | transfer | programs,  |
| T 4 1 4    |                | 4 11         | A DI 1 | 1 '   | 1 '   |         | .1. 1     | • 4 11•  | - <u>1</u> |

Introduction to LINUX system calls, API's, device drivers, compiling and installing a device driver.

#### Module:6 Kernel Module Programming

Compiling kernel, Configuring Kernel and compilation, Kernel code, browsers.-Static linking, dynamic linking of modules, User space, kernel space concepts, Writing simple modules – Writing, Make-files for modules.

| Мо      | dule:7          | Device Driver concepts                                                                                                 |         | 5 hours           |
|---------|-----------------|------------------------------------------------------------------------------------------------------------------------|---------|-------------------|
| Dr      | iver cor        | ncepts, Block & character driver distinction, Low level drivers, OS                                                    | 5 drive | ers etc, Writing  |
| ch      | aracter o       | drivers, Device major, minor number.                                                                                   |         |                   |
|         |                 |                                                                                                                        |         |                   |
| Mo      | dule:8          | Contemporary issues:                                                                                                   |         | 2 hours           |
|         |                 | · · · · · · · · · · · · · · · · · · ·                                                                                  |         |                   |
|         |                 |                                                                                                                        |         |                   |
|         |                 | Total Lecture hours: 45 hours                                                                                          |         |                   |
|         |                 |                                                                                                                        |         |                   |
| Tex     | t Books         | S                                                                                                                      |         |                   |
| 1.      | Neil M          | lathew, Richard stones, Beginning Linux Programming, 2012 reprin                                                       | nt, Wr  | OX —              |
|         | Wiley           | Publishing, USA.                                                                                                       |         |                   |
| 2.      | Eric F          | oster Johnson, John C. Welch, Micah Anderson, Beginning she                                                            | ell sci | ripting, 2012,    |
|         | reprint         | , Wrox – Wiley Publishing, USA                                                                                         |         |                   |
| Ref     | erence          | Books                                                                                                                  |         | <b>T</b> 1 11 1   |
| 3.      | Derek<br>Linux, | Molloy, Exploring Beagle Bone: Tools and Techniques for Buildin 2015, 1 <sup>st</sup> Edition, Wiley Publications, USA | g with  | h Embedded        |
| Мо      | de of E         | valuation: CAT / Assignment / Quiz / FAT / Project / Seminar                                                           |         |                   |
|         |                 | List of Challenging Exp                                                                                                | erime   | ents (Indicative) |
| 1.      | Task1:          | C programming                                                                                                          |         | 6 hours           |
|         | •               | Implement a binary tree sorting                                                                                        |         |                   |
|         | •               | Implement a dice throw game                                                                                            |         |                   |
|         | •               | Implement a command line argument based application of automa                                                          | tion    |                   |
| 2.      | Task2:          | Implementation of data structure for an application                                                                    |         | 6 hours           |
|         |                 | Write a SortedMerge() function that takes two lists, each of white                                                     | ich is  |                   |
|         |                 | sorted in increasing order, and merges the two together into on                                                        | e list  |                   |
|         |                 | which is in increasing order. SortedMerge() should return the new                                                      | v list. |                   |
|         |                 | The new list should be made by splicing together the nodes of the                                                      | e first |                   |
|         |                 | two lists.                                                                                                             |         |                   |
| 3.      | Task3:          | Shell Programming                                                                                                      |         | 6 hours           |
|         | Develo          | opment of inventory management system using Shell scripting wit                                                        | h the   |                   |
|         | follow          | ing features                                                                                                           |         |                   |
|         | •               | User may add/update/delete inventory.                                                                                  |         |                   |
|         | •               | User may add/update inventory details.                                                                                 |         |                   |
|         | •               | Details include cost, quantity and description.                                                                        |         |                   |
|         | •               | Includes forms for inventory inwards and outwards.                                                                     |         |                   |
|         | •               | User may create sub-inventories.                                                                                       |         |                   |
|         | •               | An interactive user interface.                                                                                         |         |                   |
|         | •               | A flexible inventory management system.                                                                                |         |                   |
| 4       | Task4:          | Build process for an embedded board                                                                                    |         | 6 hours           |
|         |                 | Build a kernel for a Beagle Bone Black (BBB) board and board                                                           | bring   |                   |
| _       |                 | up, kernel module program on an embedded board                                                                         |         |                   |
| 5.<br>T | Task5:          | Device driver programming –Implementation of Device Driver                                                             |         | 6 hours           |
| Γot     | al Laboi        | ratory Hours                                                                                                           |         | 30 hours          |

| Mode of evaluation: Continuous Lab Assessment |                      |      |            |  |  |  |
|-----------------------------------------------|----------------------|------|------------|--|--|--|
| Recommended by Board of Studies               | 12/09/2020           |      |            |  |  |  |
| Approved by Academic Council                  | No. 59 <sup>th</sup> | Date | 24/09/2020 |  |  |  |
| Course Code            | e Course Title                                      |                | L             | Т      | Р     | J        | С   |  |
|------------------------|-----------------------------------------------------|----------------|---------------|--------|-------|----------|-----|--|
| ECE5054                | REAL TIME OPERATING SYST                            | EMS            | 3             | 0      | 2     | 0        | 4   |  |
| Pre-requisite          | e Nil Sy                                            | llabus Version | 1 <b>:1.1</b> |        |       |          |     |  |
| Course Object          | Course Objectives:                                  |                |               |        |       |          |     |  |
| The course is aimed at |                                                     |                |               |        |       |          |     |  |
| [1]Introducing         | g the students about Operating Systems and a        | equainting stu | ident         | s to   | Rea   | ıl Ti    | me  |  |
| Operating S            | Systems                                             |                |               |        |       |          |     |  |
| [2]Teaching t          | he students about Task Management and Enab          | oling students | to u          | nders  | stand | RT       | OS  |  |
| Scheduling             |                                                     |                |               |        |       |          |     |  |
| [3]Introducing         | g the students about interprocess communication a   | and Memory M   | anag          | eme    | nt    |          |     |  |
| Course Outco           | omes (CO):                                          |                |               |        |       |          |     |  |
| At the end of          | the course the will should be able to               |                |               |        |       |          |     |  |
| [1]Compreher           | nd the basic components of an operating system      |                |               |        |       |          |     |  |
| [2] Learn abou         | it the basics of real-time concepts                 |                |               |        |       |          |     |  |
| [3]Acquire kn          | owledge about task management                       |                |               |        |       |          |     |  |
| [4]Acquaint w          | vith RTOS scheduling                                |                |               |        |       |          |     |  |
| [5]Learn abou          | t IPC synchronization                               |                |               |        |       |          |     |  |
| [6]Learn abou          | t IPC data exchange                                 |                |               |        |       |          |     |  |
| [7]Perform me          | emory management in RTOS                            |                |               |        |       |          |     |  |
| [8]Apply the l         | knowledge for developing practical applications o   | f modern real- | time          | syste  | ems.  |          |     |  |
| Module:1               | Introduction to Operating Systems                   | 6 hours        |               |        |       |          |     |  |
| Layers of O            | perating Systems, Operating systems functions, S    | System Boot u  | p - E         | BIOS   | & I   | Boot     |     |  |
| Process, Ker           | nel – Monolithic and Microkernel                    | -              | _             |        |       |          |     |  |
| Module:2               | Real Time Operating Systems                         | 7 hours        |               |        |       |          |     |  |
| Tradeoffs for          | RTOS, POSIX                                         |                |               |        |       |          |     |  |
| Module:3               | Task Management                                     | 7 hours        |               |        |       |          |     |  |
| Process and T          | hreads, Process Control Block, Process Attributes   | , POSIX Threa  | ıds.          |        |       |          |     |  |
| Module:4               | RTOS Scheduling                                     | 7 hours        |               |        |       |          |     |  |
| Priority based         | scheduling, Rate-Monotonic scheduling, Earliest     | Deadline first | sche          | dulir  | ıg,   |          |     |  |
| Linux RT sch           | eduler.                                             |                |               |        | -     |          |     |  |
| Module:5               | IPC - Synchronization                               | 7 hours        |               |        |       |          |     |  |
| IPC, Race con          | ditions and critical sections, Signals, Atomic oper | rations, Semap | hore,         | Mu     | tex,  |          |     |  |
| Spinlock, Pric         | rity Inversion and Priority ceiling.                | 1              |               |        | ,     |          |     |  |
| Module:6               | IPC – Data Exchange                                 | 7 hours        |               |        |       |          |     |  |
| Shared memor           | ry, FIFO, Messages and Mailbox, Circular and sw     | inging buffers | , RPO         | 2      |       |          |     |  |
| Module:7               | Memory Management                                   | 2 hours        | <u>.</u>      |        |       |          |     |  |
| Memory Ma              | nagement, shared memory                             |                |               |        |       |          |     |  |
| Module:8               | Contemporary issues:                                | 2 hours        |               |        |       |          |     |  |
|                        |                                                     | Total L        | ectu          | re h   | ours  | : 45     | hrs |  |
| Text Book(s            |                                                     |                |               |        |       |          |     |  |
| 1. Herma               | K., Real Time Systems, Design for distributed En    | nbedded Applic | catio         | ns, 20 | 011,  | $2^{nd}$ |     |  |
| edition                | , Springer, USA.                                    |                |               |        |       |          |     |  |
| 2 Tananh               | Andrew Madam Onerstine Systems 2015                 | Ath ad Dearse  | D             |        |       |          |     |  |

2. Tanenbaum, Andrew, Modern Operating Systems, 2015, 4<sup>th</sup> ed.,, Pearson Prentice Hall, USA

| Refe | Reference Books                                                                          |            |  |  |  |  |  |  |
|------|------------------------------------------------------------------------------------------|------------|--|--|--|--|--|--|
| 1.   | 1. Ivan CibrarioBertolotti, Politecnico di Torino and Gabriele Manduchi, Real-Time       |            |  |  |  |  |  |  |
|      | Embedded Systems: Open-Source Operating Systems Perspective, 2012, 1 <sup>st</sup> ed.,  |            |  |  |  |  |  |  |
|      | CRC Press, USA.                                                                          |            |  |  |  |  |  |  |
| 2.   | Lyla B. Das, Embedded Systems an Integrated Approach, 2012, 1 <sup>st</sup> ed., Pearson | Education, |  |  |  |  |  |  |
|      | India.                                                                                   |            |  |  |  |  |  |  |
| Mod  | e of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment,                   |            |  |  |  |  |  |  |
| Chal | lenging Experiments, Final Assessment Test.                                              |            |  |  |  |  |  |  |
| List | of Challenging Experiments (Indicative)                                                  | I          |  |  |  |  |  |  |
| 1.   | Write a C code for a simple calculator $(+, -, *, /)$ using functional pointer as        | 6 hours    |  |  |  |  |  |  |
|      | argument in a function                                                                   |            |  |  |  |  |  |  |
|      | int add (int x, int y)                                                                   |            |  |  |  |  |  |  |
|      | int sub (int x, int y)                                                                   |            |  |  |  |  |  |  |
|      | int mul (int x, int y)                                                                   |            |  |  |  |  |  |  |
|      | int div (int x, int y)                                                                   |            |  |  |  |  |  |  |
|      | int (*mathop)(int, int)                                                                  |            |  |  |  |  |  |  |
|      | int domath(int (*mathop)(int , int), int x, int y)                                       |            |  |  |  |  |  |  |
| 2.   | Write a program to create multiple threads carrying out different functions.             | 6 hours    |  |  |  |  |  |  |
|      | Thread 1: Accepting a string from the user.                                              |            |  |  |  |  |  |  |
|      | Thread 2: Display the string in upper case.                                              |            |  |  |  |  |  |  |
|      | Thread 3: Count the number of vowels in the string                                       |            |  |  |  |  |  |  |
|      | Thread 4: Count the number of special characters in the string.                          |            |  |  |  |  |  |  |
| 3.   | Write a program to create three threads, which are implemented using                     | 6 hours    |  |  |  |  |  |  |
|      | function pointers. First thread is for getting a list of numbers from the                |            |  |  |  |  |  |  |
|      | keyboard, second thread is helpful to extract the ODD and EVEN list from                 |            |  |  |  |  |  |  |
|      | the given list, and the third one is used to arrange the ODD and EVEN list of            |            |  |  |  |  |  |  |
|      | numbers in an order. Use Mutex semaphore.                                                |            |  |  |  |  |  |  |
|      | Note:                                                                                    |            |  |  |  |  |  |  |
|      | First Thread for getting input data from keyboard.                                       |            |  |  |  |  |  |  |
|      | Second Thread to identify the ODD and EVEN list                                          |            |  |  |  |  |  |  |
|      | Third Thread to get descending ordered ODD list                                          |            |  |  |  |  |  |  |
|      | Fourth Thread to get ascending ordered EVEN list                                         |            |  |  |  |  |  |  |
|      | Input data: 56, 23, 12, 64, 87, 02, 45, 88, 35, 67                                       |            |  |  |  |  |  |  |
| 4.   | Write a Vx Works code for the given scenario. Also identify the proper                   | 6 hours    |  |  |  |  |  |  |
|      | mechanism to avoid this problem.                                                         |            |  |  |  |  |  |  |



# Programme Elective

| Course Code     Course Title     L     T     P     J     C |          |                                                   |                         |                      |  |  |  |
|------------------------------------------------------------|----------|---------------------------------------------------|-------------------------|----------------------|--|--|--|
| ECE603                                                     | 36       | IN-VEHICLE NETWORK                                | ING                     | 3 0 0 0 3            |  |  |  |
|                                                            |          |                                                   |                         |                      |  |  |  |
| Pre-requi                                                  | isite    | Nil                                               |                         | Syllabus Version 1.2 |  |  |  |
|                                                            |          |                                                   |                         |                      |  |  |  |
| Course Obj                                                 |          | S:                                                |                         |                      |  |  |  |
| I ne course a                                              | imed al  | l<br>udants a working knowledge of in vehicle net | vork systems            |                      |  |  |  |
| 2  Givin                                                   | no an e  | xposure to aspects of design development apr      | lication and perform    | ance issues          |  |  |  |
|                                                            | ciated v | with in vehicle networking systems.               | meanon and perform      | lance issues         |  |  |  |
| 3. Illust                                                  | trating  | concepts of sensor data capture, storage and ex   | change of data to acc   | cess remote          |  |  |  |
| servi                                                      | ces      |                                                   | C                       |                      |  |  |  |
| Expected C                                                 | ourse    | Outcome:                                          |                         |                      |  |  |  |
| The students                                               | s will b | e able to                                         |                         |                      |  |  |  |
| 1. Knov                                                    | w the ne | eed for In Vehicle Networking and the basics of   | of data communication   | on and               |  |  |  |
| netw                                                       | orking   | concepts.                                         |                         |                      |  |  |  |
| 2. Com                                                     | prehen   | d protocols like CAN used in automotive appli     | cations.                |                      |  |  |  |
| 3. Have                                                    |          | aza                                               | AN open, Device N       | iei, ITCAN           |  |  |  |
| 4 Unde                                                     | erstand  | the working mechanism of LIN protocol             |                         |                      |  |  |  |
| 5. Get a                                                   | in over  | view of MOST protocol used in automotive for      | r multimedia applica    | tions.               |  |  |  |
| 6. Com                                                     | prehen   | d protocols like FlexRay used in automotive fo    | r fault tolerant applie | cations.             |  |  |  |
| 7. Com                                                     | prehen   | d the general protocols and their usage in autor  | notive sector           |                      |  |  |  |
|                                                            |          |                                                   |                         |                      |  |  |  |
| Module:1                                                   | Conce    | epts of In-vehicle networking                     | 6 hours                 |                      |  |  |  |
| Overview of                                                | Data c   | ommunication and networking-need for In-Ve        | hicle networking-lay    | yers of OSI          |  |  |  |
| reference mo                                               | odel-mi  | altiplexing and de-multiplexing concepts-vehic    | cle buses.              |                      |  |  |  |
|                                                            |          |                                                   | 0.1                     | 1                    |  |  |  |
| Module:2                                                   | Netw     | orks and protocols                                | 8 hours                 | fammata 1::4         |  |  |  |
| CAN protoco                                                | ol: prin | ciples of data exchange-real time data transmis   | ssion-message frame     | bus access           |  |  |  |
| physical lave                                              | r stand  | and synchronization-data rate and bus length      | -network topology-      | bus access—          |  |  |  |
| physical laye                                              |          |                                                   |                         |                      |  |  |  |
| Module:3                                                   | CAN      | higher laver protocol                             | 6 hours                 |                      |  |  |  |
| Introduction                                               | to CAN   | N open – Device net–TTCAN–SAEJ1939–over           | view of CAN open a      | nd applications in   |  |  |  |
| transportatio                                              | n electr | onics–CAN open standards).                        | in or or or open a      |                      |  |  |  |
| 1                                                          |          | 1                                                 |                         |                      |  |  |  |
| Module:4                                                   | LIN      | protocol                                          | 5 hours                 |                      |  |  |  |
| LIN standard                                               | l overv  | iew – applications – LIN communication conc       | ept message frame-d     | levelopment flow.    |  |  |  |
|                                                            |          |                                                   |                         |                      |  |  |  |
| Module:5                                                   | MOS      | Γ                                                 | 5 hours                 |                      |  |  |  |
| MOST overv                                                 | view-da  | ata rates-data types-topology -application area   | as.                     |                      |  |  |  |
|                                                            |          |                                                   |                         |                      |  |  |  |
| Module:6                                                   | FlexR    | lay                                               | 6 hours                 |                      |  |  |  |
| Flex Ray int                                               | roductio | on-network topology-ECU sand bus interfaces       | s-controller host inte  | rtace and protocol   |  |  |  |
| Pay schodul                                                | ing me   | searce processing, welcoup/startup, application   | bcessing-coding/dec     | ouing unit-Flex      |  |  |  |
| Ray scheuuli                                               | ing-me   | ssage processing— wakeup/startup-application      |                         |                      |  |  |  |
|                                                            |          |                                                   |                         |                      |  |  |  |

| Mo  | dule:7                 | General purpose prot                      | tocols               |              | 7 hours                     |                                       |  |  |
|-----|------------------------|-------------------------------------------|----------------------|--------------|-----------------------------|---------------------------------------|--|--|
| GS  | M- WiFi                | <ul> <li>Bluetooth and NFC Imp</li> </ul> | lementation –E       | thernet, TCI | P, UDP, IP.                 |                                       |  |  |
|     |                        |                                           |                      |              |                             |                                       |  |  |
| Mo  | dule:8                 | Contemporary issues                       | :                    |              | 2 hours                     |                                       |  |  |
|     |                        |                                           |                      |              | ſ                           |                                       |  |  |
|     |                        |                                           | Total Lectu          | ire hours:   | 45 hours                    |                                       |  |  |
|     |                        |                                           |                      |              |                             |                                       |  |  |
| Tex | <mark>xt Book</mark> ( | s)                                        |                      |              |                             |                                       |  |  |
| 1.  | Domini                 | que Paret, Multiplexed Ne                 | etworks for Emb      | bedded Syste | ems CAN, LIN                | , FlexRay, Safe by-                   |  |  |
|     | Wire, 2                | 014, 1 <sup>st</sup> edition, Wiley, Ur   | ited States.         |              |                             |                                       |  |  |
| Ref | ference I              | Books                                     |                      |              |                             |                                       |  |  |
| 1.  | Chung                  | Ming Huang, YuhShyan C                    | Chen, Telematic      | s Communic   | cation Technol              | ogies and                             |  |  |
|     | Vehicu                 | lar Networks: Wireless Ar                 | chitectures and      | Application  | , 2010, $1^{st}$ edit       | ion,                                  |  |  |
|     | Informa                | tion Science Reference, U                 | Inited States.       |              | th                          |                                       |  |  |
| 2.  | Ronald                 | K Jurgen, Distributed Aut                 | comotive Embed       | lded System  | s, 2010, 4 <sup>th</sup> Ec | lition, SAE International,            |  |  |
|     | United                 | States.                                   |                      |              |                             | nd                                    |  |  |
| 3.  | Richard                | l Zurawski, Industrial Con                | nmunication Te       | chnology Ha  | andbook, 2015               | , 2 <sup>nd</sup> Edition, CRC press, |  |  |
|     | United                 | States.                                   |                      |              |                             |                                       |  |  |
| 4.  | Konrad                 | Reif, Automotive Mechat                   | ronics: Automo       | tive Networ  | king, Driving               | Stability Systems                     |  |  |
|     | Electron               | nics, 2015, 2 <sup>nd</sup> Edition, Sp   | ringer, United S     | States.      |                             |                                       |  |  |
| Mo  | de of E                | valuation: Continuous A                   | ssessment Tes        | st, Quiz, Di | igital Assignn              | nent, Final Assessment                |  |  |
| Tes | st.                    |                                           |                      |              |                             |                                       |  |  |
|     |                        |                                           |                      |              |                             |                                       |  |  |
| Rec | commend                | led by Board of Studies                   |                      | 12/09/202    | 0                           |                                       |  |  |
| Ap  | proved b               | y Academic Council                        | No. 59 <sup>th</sup> | Date         |                             | 24-09-2020                            |  |  |
|     |                        |                                           |                      |              |                             |                                       |  |  |

| Course Code Course Title L T P J               |                                                |                                          |             |         |           |        |  |
|------------------------------------------------|------------------------------------------------|------------------------------------------|-------------|---------|-----------|--------|--|
| ECE6042 WIRELESS AND MOBILE COMMUNICATIONS 3 0 |                                                |                                          |             |         |           | 3      |  |
|                                                |                                                |                                          |             |         |           |        |  |
| Pre-requisite                                  | Nil                                            |                                          | Sy          | llabu   | IS<br>1 1 |        |  |
|                                                |                                                |                                          | ve          | rsion   | 1.1       |        |  |
| Course Obiecti                                 | ves:                                           |                                          |             |         |           |        |  |
| The course aime                                | d at                                           |                                          |             |         |           |        |  |
| 1. To know                                     | about wireless mobile communication system     | n & related issues, an                   | nd          |         |           |        |  |
| 2. To keep                                     | abreast of the future of mobile communication  | 1                                        |             |         |           |        |  |
| Expected Cours                                 | se Outcome:                                    |                                          |             |         |           |        |  |
| The students will                              | l be able to                                   |                                          |             |         |           |        |  |
| 1. Get intro                                   | duced Cellular Mobile Communication system     | ms                                       |             |         |           |        |  |
| 2. Understa                                    | nd and solve telecommunication design issues   | s using cellular and t                   | runk        | ting th | 1001      | ſy.    |  |
| 3. Analyze                                     | the effect of multipath channels and suggest a | suitable model for i                     | ndo         | or or o | outo      | loor   |  |
| applicati                                      | ons.                                           | in mahila aammunia                       | otio        |         |           |        |  |
| 4. Demonst                                     | the Channel coding for Mobile Padio            | in mobile communic                       | allo        | n.      |           |        |  |
| 6 Interpret                                    | the Modulation techniques for Mobile Radio     |                                          |             |         |           |        |  |
| 7. Get intro                                   | duced to Advanced Communication Systems        | and Wireless Standa                      | rds         |         |           |        |  |
|                                                |                                                |                                          |             |         |           |        |  |
| Module:1 Ce                                    | lular Mobile Systems                           | 4 hours                                  |             |         |           |        |  |
| Cellular Mobile                                | Communication Evolution - Types of mobile      | wireless services/sy                     | /ster       | ns –    | lG        | & 2G   |  |
| Mobile Commu                                   | nication Technology                            |                                          |             |         |           |        |  |
|                                                |                                                |                                          |             |         |           |        |  |
| Module:2 Ce                                    | llular Concept                                 | 7 hours                                  |             |         |           |        |  |
| Cellular concep                                | t – Frequency reuse – Channel assignm          | ent strategies – Ha                      | ndo         | ff stra | ateg      | ;ies – |  |
| Interference & s                               | ystem capacity – Trunking & Grade of servi     | ce – Improving cove                      | erag        | e and   | caj       | pacity |  |
| in cellular system                             | n.                                             |                                          |             |         |           |        |  |
| Madada 2 Ma                                    |                                                | 0.1                                      |             |         |           |        |  |
| Erros Spaces Drom                              | Dile Radio Propagation                         | 9 nours                                  | 4 D         | aflaat  | ion       | (Two   |  |
| Pree Space Prop                                | agation Model – Basic Propagation mechanis     | n – I wo Kay Groun<br>al Hata Model – Ji | u K<br>ndov | or Dro  | ion       | (1wo   |  |
| Model: Attenuat                                | ion Factor Model                               | = $=$ $=$ $=$ $=$ $=$ $=$                | nuo         | ЛГЦ     | pag       | zation |  |
| Widden Attendat                                |                                                |                                          |             |         |           |        |  |
| Module:4 Sn                                    | all Scale Propagation models                   | 4 hours                                  |             |         |           |        |  |
| Parameters of r                                | nobile multipath channels – Types of small     | scale fading – Fad                       | ing         | effec   | ts d      | ue to  |  |
| Multipath time of                              | elay spread and Doppler spread                 |                                          | 8           | •       |           |        |  |
| 1                                              |                                                |                                          |             |         |           |        |  |
| Module:5 Inf                                   | ormation Theory and Coding                     | 6 hours                                  |             |         |           |        |  |
| Information and                                | entropy - Coding of memoryless sources         | : Shannon-Fano / H                       | Huff        | man     | cod       | ling - |  |
| Sources with n                                 | nemory: Markov model - Source Coding:          | Linear and non-li                        | near        | qua     | ntis      | ation, |  |
| companding -                                   | Channel Coding: Convolutional coding, Viter    | oi decoding, LBC, Tu                     | ırbo        | Code    | es.       |        |  |
|                                                |                                                |                                          |             |         |           |        |  |
| Module:6 Mu                                    | Itiplexing & Modulation Schemes                | 6 hours                                  |             |         | <u></u>   |        |  |
| FDMA, TDMA,                                    | CDMA, QPSK, WCDMA, OFDM/OFDMA                  | , MC CDMA and SC                         | C FE        | РМА,    | CP        | -      |  |
| OFDM and DFI                                   | -S-UFD (16QAM, 64QAM, 256QAM)                  |                                          |             |         |           |        |  |
|                                                |                                                |                                          |             |         |           |        |  |

| Mod  | dule:7   | Advanced Communic<br>Wireless Standards | ation Systems        | and          | 7 hours          |                       |  |  |
|------|----------|-----------------------------------------|----------------------|--------------|------------------|-----------------------|--|--|
| 3G,  | 4G and   | d 5G and beyond wirel                   | ess standards        | - WLAN       | Architecture de  | esign and WIMAX –     |  |  |
| VAN  | NETS     |                                         |                      |              |                  | -                     |  |  |
|      |          |                                         |                      |              |                  |                       |  |  |
| Mod  | dule:8   | Contemporary issues                     | :                    |              | 2 hours          |                       |  |  |
|      |          |                                         |                      |              |                  |                       |  |  |
|      |          |                                         | Total Lectu          | ire hours:   | 45 hours         |                       |  |  |
|      |          |                                         |                      |              |                  |                       |  |  |
| Tex  | t Book(  | s)                                      |                      |              |                  |                       |  |  |
| 1.   | Randy    | L. Haupt, Wireless Comr                 | nunications Sy       | stems: An I  | ntroduction, Wi  | iley-IEEE Press,      |  |  |
|      | January  | 2020.                                   | 2                    |              |                  | •                     |  |  |
| 2.   | T.S.Ra   | opaport, Wireless Comm                  | unication -Prin      | ciple and Pi | actice, Prentice | Hall, 2010.           |  |  |
| Refe | erence l | Books                                   |                      | •            |                  |                       |  |  |
| 1.   | W.C.Y    | Lee, Wireless and Cellul                | ar Communica         | tion, McGr   | aw Hill, 2006    |                       |  |  |
| 2.   | Schiller | , Mobile Communication                  | ns; Pearson Edu      | acation Asia | a Ltd., 2008     |                       |  |  |
| Mod  | le of E  | valuation: Continuous A                 | ssessment Tes        | t, Quiz, D   | igital Assignme  | ent, Final Assessment |  |  |
| Test |          |                                         |                      |              | 0 0              |                       |  |  |
|      |          |                                         |                      |              |                  |                       |  |  |
| Reco | ommend   | led by Board of Studies                 |                      | 12/09/202    | 0                |                       |  |  |
| App  | roved b  | y Academic Council                      | No. 59 <sup>th</sup> | Date         | 24/09/2020       |                       |  |  |
|      |          |                                         |                      |              |                  |                       |  |  |

| Course Code Course Title L T P J C      |                        |                                                                                  |                                  |                                       |  |  |  |  |  |
|-----------------------------------------|------------------------|----------------------------------------------------------------------------------|----------------------------------|---------------------------------------|--|--|--|--|--|
| ECE604                                  | 43                     | ADVANCED PROCESSORS AND ITS AP                                                   | PLICATIONS                       | 2 0 0 4 3                             |  |  |  |  |  |
|                                         |                        |                                                                                  |                                  |                                       |  |  |  |  |  |
| Pre-requi                               | isite                  | Nil                                                                              | Syl                              | labus Version 1.1                     |  |  |  |  |  |
| ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                        |                                                                                  |                                  |                                       |  |  |  |  |  |
| Course Obj                              | jective                | 5:                                                                               |                                  |                                       |  |  |  |  |  |
| The course i                            | The course is aimed at |                                                                                  |                                  |                                       |  |  |  |  |  |
| I. Prov                                 | 'iding a               | complete understanding of the ARM Cortex arc                                     | chitecture.                      |                                       |  |  |  |  |  |
| 2. Impa                                 | arting ti              | he knowledge of programming ARM Cortex arcl                                      | hitecture.                       | anala and                             |  |  |  |  |  |
| 3. Prov                                 | laing K                | nowledge on programmable DSPs Architecture,                                      | , On-chip Peripi                 | herals and                            |  |  |  |  |  |
| Eveneeted C                             | lourgo                 | Set.                                                                             |                                  |                                       |  |  |  |  |  |
| Expected C                              | ourse                  | outcome:                                                                         |                                  |                                       |  |  |  |  |  |
| 1 I L cor                               | s WIII D               | e able lo                                                                        | ЛЛ                               |                                       |  |  |  |  |  |
| 1. Leal                                 | II life a              | Diffecture and instruction set of ARM Cortex M                                   | 14.                              |                                       |  |  |  |  |  |
| 2. Flog                                 | alon an                | plications based on Timers, DWM and ADC with                                     | h ADM cortax                     | N T A                                 |  |  |  |  |  |
| J. Deve                                 | orstand                | and program the various communication modul                                      | $\lim_{N \to \infty} ARM Contex$ | 1 $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ |  |  |  |  |  |
| 4. Ond                                  | uire kn                | and program the various communication modul                                      | les of ARM Col                   | ICA 1914.                             |  |  |  |  |  |
| 6 Com                                   | nrehen                 | ad programming of ARM 64 bit architecture                                        |                                  |                                       |  |  |  |  |  |
| 0. Com<br>7 Dem                         | onstrat                | te their ability to program the DSP processor for                                | signal processi                  | ng applications                       |  |  |  |  |  |
| 8 Desi                                  | on ann                 | lication for various social relevant and real time                               | issues                           | ng apprications.                      |  |  |  |  |  |
| 0. Desi                                 | <u>Sn upp</u>          | neuton for various social felevant and fear time.                                | 155405.                          |                                       |  |  |  |  |  |
| Module:1                                | ARM                    | architecture and Cortex – M series 4 h                                           | hours                            |                                       |  |  |  |  |  |
| Introduction                            | to the                 | ARM Cortex M4 and its targeted application                                       | ns ARM Corte                     | x M4 architecture                     |  |  |  |  |  |
| address spa                             | ice. on                | - chip peripherals (analog and digital) Regis                                    | ster sets, addre                 | essing modes and                      |  |  |  |  |  |
| instruction s                           | set basi               | cs.                                                                              |                                  |                                       |  |  |  |  |  |
|                                         |                        |                                                                                  |                                  |                                       |  |  |  |  |  |
| Module:2                                | Micr                   | ocontroller Programming 6 h                                                      | hours                            |                                       |  |  |  |  |  |
| ARM Corte                               | ex M4:                 | : I/O pin multiplexing, pull up/down registers,                                  | GPIO control,                    | Memory Mapped                         |  |  |  |  |  |
| Peripherals,                            | progr                  | amming System registers. Introduction to In                                      | nterrupts, Inter                 | rupt vector table,                    |  |  |  |  |  |
| interrupt pro                           | ogramn                 | ning.                                                                            |                                  |                                       |  |  |  |  |  |
|                                         |                        |                                                                                  |                                  |                                       |  |  |  |  |  |
| Module:3                                | Time                   | rs, PWM and Mixed Signals Processing 4 h                                         | nours                            |                                       |  |  |  |  |  |
| Timer, Basi                             | c Time                 | er, Real Time Clock (RTC), Timing generation                                     | and measurem                     | ents, ADC. PWM                        |  |  |  |  |  |
| Module & C                              | Quadrat                | ure Encoder Interface (QEI).                                                     |                                  |                                       |  |  |  |  |  |
|                                         |                        |                                                                                  |                                  |                                       |  |  |  |  |  |
| Module:4                                | Com                    | munication protocols and Interfacing 4 h                                         | nours                            |                                       |  |  |  |  |  |
|                                         | with e                 | external devices                                                                 |                                  |                                       |  |  |  |  |  |
| 12C protoco                             | I, SPI p               | protocol, USB & UART protocol. Implementing                                      | ; and programm                   | ing I2C, SPI, USB                     |  |  |  |  |  |
| & UART in                               | terface                |                                                                                  |                                  |                                       |  |  |  |  |  |
|                                         | 4 70 7 7               |                                                                                  |                                  |                                       |  |  |  |  |  |
| Module:5                                | AKM                    | Cortex A Architecture     4 h       DM://2 A ADM://2 A Manuar M     4 h          | 10Urs                            | Madal C 1                             |  |  |  |  |  |
| and Branch                              | n to A                 | KIVIVO-A, AKIVIVO-A Memory Management, Alton Synchronization and Cache coherency | KIVIV8-A Memo                    | bry Model, Caches                     |  |  |  |  |  |
|                                         |                        | and Cache concretely.                                                            |                                  |                                       |  |  |  |  |  |
| Module 6                                | Softw                  | are Engineers guide to ARM Cortex 64 2 h                                         | ours                             |                                       |  |  |  |  |  |
| mouule.0                                | hit ar                 | chitecture                                                                       | IVII D                           |                                       |  |  |  |  |  |
| Booting P                               | Power N                | Management, Virtualization, Security Debugging                                   | <br>σ.                           |                                       |  |  |  |  |  |

| Mo                                                                                               | dule:7                                                                                    | DSP Processors                                                 | 4 hours         |                          |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------|--------------------------|--|--|--|--|--|--|
| Arc                                                                                              | Architecture of TMS320CXX Processor – Addressing modes – Assembly language Instructions – |                                                                |                 |                          |  |  |  |  |  |  |
| Assembler directives, Pipeline structure, On-chip Peripherals – Block Diagram of DSP starter kit |                                                                                           |                                                                |                 |                          |  |  |  |  |  |  |
| (DS                                                                                              | 5K) – So                                                                                  | ftware Tools, DSK on-board peripherals, - Code Co              | omposer Studio  | o – Support Files -      |  |  |  |  |  |  |
| App                                                                                              | plication                                                                                 | Programs for processing real time signals.                     |                 |                          |  |  |  |  |  |  |
|                                                                                                  |                                                                                           |                                                                |                 |                          |  |  |  |  |  |  |
| Mo                                                                                               | dule:8                                                                                    | Contemporary issues:                                           | 2 hours         |                          |  |  |  |  |  |  |
|                                                                                                  |                                                                                           |                                                                |                 |                          |  |  |  |  |  |  |
|                                                                                                  |                                                                                           | Total Lecture hours:                                           | 30 hours        |                          |  |  |  |  |  |  |
|                                                                                                  |                                                                                           |                                                                |                 |                          |  |  |  |  |  |  |
| Tex                                                                                              | kt Book(                                                                                  | s)                                                             |                 |                          |  |  |  |  |  |  |
| 1.                                                                                               | Joseph                                                                                    | Yiu, "The Definitive Guide to ARM Cortex-M3 and                | d Cortex-M4 P   | Processors",             |  |  |  |  |  |  |
|                                                                                                  | 2013, 3                                                                                   | rd Edition, Newnes ,UK.                                        |                 |                          |  |  |  |  |  |  |
| 2.                                                                                               | ARM C                                                                                     | Cortex-A Series Programmer's Guide for ARMv8-A                 | Version: 1.0,   | 2015,                    |  |  |  |  |  |  |
|                                                                                                  | ARM,                                                                                      | United States.                                                 |                 |                          |  |  |  |  |  |  |
| 3.                                                                                               | James A                                                                                   | A Langbridge, "Professional Embedded ARM Deve                  | lopment", 201   | 4,1st                    |  |  |  |  |  |  |
|                                                                                                  | Edition                                                                                   | , John Wiley Sons & Inc., United States.                       |                 |                          |  |  |  |  |  |  |
| 4.                                                                                               | Jonatha                                                                                   | in W. Valvono "Introduction to ARM Cortex-M Mi                 | crocontrollers" | ', 2014, 5th             |  |  |  |  |  |  |
|                                                                                                  | Edition                                                                                   | , Create Space Independent Publishing Platform, Un             | nited States.   |                          |  |  |  |  |  |  |
| 5                                                                                                | Rulph (                                                                                   | Chassaing and Donald Reay, Digital Signal Processi             | ing and Applic  | ations with the C6713    |  |  |  |  |  |  |
|                                                                                                  | and C6                                                                                    | 416 DSK, John Wiley and Sons, Inc., Publication, 2             | 2012 (Reprint). |                          |  |  |  |  |  |  |
| Ref                                                                                              | erence I                                                                                  | Books                                                          |                 |                          |  |  |  |  |  |  |
| 1.                                                                                               | Harris                                                                                    | and Harris, Digital Design and Computer Archite                | ecture: ARM I   | Edition, 2015, Morgan    |  |  |  |  |  |  |
|                                                                                                  | Kaufma                                                                                    | ann, , United States.                                          |                 |                          |  |  |  |  |  |  |
| 2.                                                                                               | Yifeng                                                                                    | Zhu, Embedded Systems with ARM Cortex-M Mi                     | crocontrollers  | in Assembly Language     |  |  |  |  |  |  |
|                                                                                                  | and C,                                                                                    | 2015, 2 <sup>nd</sup> Edition, E-Man Press LLC, United States. | ,<br>, , , , ,  |                          |  |  |  |  |  |  |
| 3.                                                                                               | Avtar                                                                                     | Singh and S. Srinivasan, Digital Signal Process                | sing – Impler   | nentations using DSP     |  |  |  |  |  |  |
|                                                                                                  | Microp                                                                                    | rocessors with Examples from TMS320C54xx, Cer                  | igage Learning  | g India Private Limited, |  |  |  |  |  |  |
|                                                                                                  | Delhi 2                                                                                   |                                                                |                 |                          |  |  |  |  |  |  |
| 4.                                                                                               | B. Ven                                                                                    | kataramani and M. Bhaskar, Digital Signal Process              | ors – Architect | ture, Programming and    |  |  |  |  |  |  |
|                                                                                                  | Applica                                                                                   | ations – Tata McGraw – Hill Publishing Company I               | Limited. New L  | Delhi, 2003.             |  |  |  |  |  |  |
|                                                                                                  | ae of E                                                                                   | valuation: Continuous Assessment Test, Quiz, Dr                | gital Assignm   | ent, Final Assessment    |  |  |  |  |  |  |
| Tes                                                                                              | t.                                                                                        |                                                                |                 |                          |  |  |  |  |  |  |
| T                                                                                                | • 10                                                                                      | • .                                                            |                 |                          |  |  |  |  |  |  |
| Ty                                                                                               | pical Pro                                                                                 | )jects:                                                        |                 |                          |  |  |  |  |  |  |

- 1. Adaptive Temporal Attenuator using C5x/C6x.
- 2. Filter Design and Implementation using a Modified Prony's Method.
- 3. Voice Detection and Reverse Playback using C5x/C6x.
- 4. Acoustic Direction Tracker using C5x/C6x.
- 5. Multirate Filter using C5x/C6x.
- 6. Four-Channel Multiplexer for Fast Data Acquisition using C5x/C6x.
- 7. Video Line Rate Analysis using C5x/C6x.
- 8. Implementation of FIR High Pass Filter using ARM Cortex-M4 microcontroller.
- 9. Parametric Equalizer using STM32 microcontroller.
- 10. Noise Reduction using Moving Sum Filtering using STM32F407 Cortex M4 microcontroller.
- 11. Implementation of Audio CODEC on STM32F4 microcontroller.

| 12. Motor Control using PID-Controller on STM32F407 microcontroller. |                      |            |            |  |  |  |  |  |  |
|----------------------------------------------------------------------|----------------------|------------|------------|--|--|--|--|--|--|
| Mode of Evaluation: Project Reviews I,II,III                         |                      |            |            |  |  |  |  |  |  |
| Recommended by Board of Studies                                      |                      | 12/09/2020 |            |  |  |  |  |  |  |
| Approved by Academic Council                                         | No. 59 <sup>th</sup> | Date:      | 24/09/2020 |  |  |  |  |  |  |
|                                                                      |                      |            |            |  |  |  |  |  |  |

|                                    | ELECTROMAGNETIC INTERFER                                                               | ENCE                   |                   |            |                  |                    |            |
|------------------------------------|----------------------------------------------------------------------------------------|------------------------|-------------------|------------|------------------|--------------------|------------|
| ECE6044                            | AND COMPATIBILITY                                                                      |                        | L                 | Т          | P                | J                  | С          |
|                                    |                                                                                        |                        | 3                 | 0          | 0                | 0                  | 3          |
| Pre-requisite                      |                                                                                        | Sylla                  | abus V            | ersi       | on :             |                    |            |
| Course Object                      | lives:                                                                                 |                        |                   |            |                  |                    |            |
| [1] Importing k                    | nneu al<br>nowledge about EMI environment                                              |                        |                   |            |                  |                    |            |
| [1] Imparting K<br>[2] Teaching Fl | MI coupling principles FMI control technique                                           | es and desig           | m of P            | CBs        | for I            | FMC                | •          |
| [2] Feacing E                      | osure to EMI Standards, Regulations and Meas                                           | surements              | 511 01 1          | CD3        | 101 1            |                    |            |
| [0] or ang only                    |                                                                                        |                        |                   |            |                  |                    |            |
| Expected Co                        | urse Outcome:                                                                          |                        |                   |            |                  |                    |            |
| At the end of                      | the course, the students will be able to                                               |                        |                   |            |                  |                    |            |
| [1]Understand t                    | erminologies of EMI and EMC                                                            |                        |                   |            |                  |                    |            |
| [2]Analyze and                     | understand various EMI coupling mechanisms                                             |                        |                   |            |                  |                    |            |
| [3]List various ]                  | EMI Test and Measurement methods                                                       |                        |                   |            |                  |                    |            |
| [4] Analyze var                    | ious techniques needed to suppress EMI                                                 |                        |                   |            |                  |                    |            |
| [5]Perceive diff                   | erent EMC regulations followed worldwide                                               |                        |                   |            |                  |                    |            |
| [0]ADIIIty to de                   | comprehend different techniques needed for Sid                                         | anal Integri           | ty and            |            |                  |                    |            |
| ability to unders                  | tand various models for FMI/FMC                                                        | gilai integri          | ty and            |            |                  |                    |            |
| Module:1                           | EMI Environment                                                                        | 4 hours                |                   |            |                  |                    |            |
| EMI-EMC Def                        | initions and units of Parameters. Sources of E                                         | MI. conduc             | cted an           | d rac      | liate            | d EN               | ΛI.        |
| Transient EMI                      | ,,,                                                                                    |                        |                   |            |                  |                    | ,          |
| Module:2                           | EMI Coupling Mechanisms                                                                | 6 hours                |                   |            |                  |                    |            |
| Conducted, F                       | adiated and Transient Coupling, Common                                                 | Impedance              | e Grou            | nd (       | Coup             | ling               | ,          |
| Radiated Con                       | mmon Mode and Ground Loop Coupling,                                                    | , Radiated             | Diffe             | renti      | al N             | Aode               | )          |
| Coupling,                          |                                                                                        | <b>a</b> 1             | a 1.              |            |                  |                    |            |
| Near Field Ca                      | ble to Cable Coupling, Power Mains and Pow                                             | er Supply              | Coupli            | ng.        |                  |                    |            |
| Module:3                           | ENIT Lest and Measurements                                                             | 8 hours                | <u>C::1:</u>      |            | 40.00            | anda               |            |
| ENII Specific<br>Military stand    | and FMI Test Instruments/Systems FMI                                                   | Test EMI               | Civili            | an s       | hon <sup>3</sup> | arus               |            |
| Open Area To                       | est Site TEM Cell Antennas Conductors Se                                               | nsors/Iniec            | sinclu            | ounl       | ers              | EMI                |            |
| Measurement                        |                                                                                        | insons, mjec           |                   | oupr       | <b>C</b> 15.     |                    |            |
| Methods: M                         | ilitary Test Method and Procedures, Ca                                                 | alibration             | Proce             | dure       | s, N             | Лоde               | eling      |
| interferences.                     | •                                                                                      |                        |                   |            |                  |                    | U          |
| Module:4                           | EMI Control Techniques                                                                 | 7 hours                |                   |            |                  |                    |            |
| Shielding, Filte                   | ring, Grounding, Bonding, Isolation Transform                                          | mer, Transi            | ient Su           | ppre       | ssor             | s, Ca              | ble        |
| Routing, Sign                      | al Control, Component Selection and M                                                  | ounting, I             | Electro           | statio     | e di             | scha               | rge        |
| protection sche                    | mes                                                                                    | -                      |                   |            |                  |                    |            |
| Module:5                           | EMC Standards and Regulations                                                          | 5 hours                |                   | OT         |                  | <u> </u>           |            |
| CENEEC EC                          | Intentional standardizing organizations- FO<br>C CE and PE standards CISPR CE and PE S | CC, CISPI<br>Standards | K, AN<br>IEC/EI   | 51,<br>N C | DUI<br>S etc     | $\mathcal{I}, \Pi$ | EC,<br>rde |
| SAF Automot                        | ive FMC standard Frequency assignment - sn                                             | Stanuarus,             | iLC/Li<br>iversat | ion        | 5 512            | inua               | us,        |
| Module:6                           | System Design for EMC                                                                  | 8 hours                |                   |            |                  |                    |            |
| PCB Traces C                       | Cross Talk, Impedance Control, Power I                                                 | Distribution           | Dec               | oupli      | ng.              | Zor                | ning.      |
| Motherboard De                     | esigns and Propagation Delay Performance N                                             | Models. Sv             | stem E            | Inclo      | sure             | s, Po              | ower       |
| line filter placen                 | nent, Interconnection and Number of Printed C                                          | Circuit Boa            | rds, PC           | CB a       | nd su            | ibsys              | stem       |

| decoupling                                                                                                                                                                                                                                                                                             |                                                     |              |                |                                   |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------|----------------|-----------------------------------|--|--|--|
| Module:7                                                                                                                                                                                                                                                                                               | Signal Integrity and EMI/EM                         | AC Models    | 5 hours        |                                   |  |  |  |
| Effect of term                                                                                                                                                                                                                                                                                         | inations on line wave forms, Mat                    | ching scheme | es for Signal  | Integrity, Effects of line        |  |  |  |
| discontinuities,                                                                                                                                                                                                                                                                                       | Statistical EMI/EMC models.                         |              |                |                                   |  |  |  |
| Module:8                                                                                                                                                                                                                                                                                               | <b>Contemporary issues:</b>                         |              | 2 hours        |                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                        | <b>Total Lecture</b>                                |              |                |                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                        | hours:                                              | 45 hou       | rs             |                                   |  |  |  |
| <b>Text Book(s</b><br>1. Clayton<br>Sons, No                                                                                                                                                                                                                                                           | )<br>R. Paul, Introduction to Electrom<br>ew Jersey | agnetic com  | patibility, 20 | 010, 2 <sup>nd</sup> ed., Wiley & |  |  |  |
| Reference B                                                                                                                                                                                                                                                                                            | ooks                                                |              |                |                                   |  |  |  |
| <ol> <li>Henry W.ott, Electromagnetic Compatibility Engineering, 2011, 1<sup>st</sup>ed., John Wiley<br/>and Sons, New Jersey.</li> <li>Patrick G. André and Kenneth Wyatt, EMI Troubleshooting Cookbook for Product<br/>Designers 2014, 1<sup>st</sup> ed., SciTech Publishing, New Jersey</li> </ol> |                                                     |              |                |                                   |  |  |  |
| Recommended by Board of Studies : 12/09/2020                                                                                                                                                                                                                                                           |                                                     |              |                |                                   |  |  |  |
| Approved by A                                                                                                                                                                                                                                                                                          | Academic Council : No: 59 <sup>th</sup>             | Date :       | 24-09-2020     |                                   |  |  |  |

| Course Code                                                                                                                                                                               | e Course Title                                                                                                                                                                                           |                      | L                                | Т                     | Р                       | J                     | С            |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------|-----------------------|-------------------------|-----------------------|--------------|--|--|--|--|
| ECE5045                                                                                                                                                                                   | ADVANCED DIGITAL IMAGE PROCESSI                                                                                                                                                                          | CESSING 3 0 0        |                                  |                       |                         |                       | 3            |  |  |  |  |
| Pre-requisite                                                                                                                                                                             | Nil                                                                                                                                                                                                      | S                    | Syllabus                         | s Ver                 | sion                    | : <del>1.</del>       | 2            |  |  |  |  |
| Course Objectives:                                                                                                                                                                        |                                                                                                                                                                                                          |                      |                                  |                       |                         |                       |              |  |  |  |  |
| The course is aimed at                                                                                                                                                                    |                                                                                                                                                                                                          |                      |                                  |                       |                         |                       |              |  |  |  |  |
| [1] Revising the basics of digital image processing namely; image acquisition, digitizing, enhancing images in spatial domain, image transforms and enhancing images in frequency domain. |                                                                                                                                                                                                          |                      |                                  |                       |                         |                       |              |  |  |  |  |
| [2] Enabling the students to acquire knowledge in image restoration, image compression, image segmentation and object recognition.                                                        |                                                                                                                                                                                                          |                      |                                  |                       |                         |                       |              |  |  |  |  |
| [3] Motivating the students to apply image processing and classification algorithms for solving real life problems and introducing students to upcoming trends in Computer Vision.        |                                                                                                                                                                                                          |                      |                                  |                       |                         |                       |              |  |  |  |  |
| Course Outc                                                                                                                                                                               | omes (CO):                                                                                                                                                                                               |                      |                                  |                       |                         |                       |              |  |  |  |  |
| At the end of                                                                                                                                                                             | the course the student will be able to                                                                                                                                                                   |                      |                                  |                       |                         |                       |              |  |  |  |  |
| [1] Comprehe                                                                                                                                                                              | nd the image acquisition, digitization, and processing ir                                                                                                                                                | spati                | al doma                          | in.                   |                         |                       |              |  |  |  |  |
| [2] Understan                                                                                                                                                                             | d algorithms and programs for processing an image in t                                                                                                                                                   | ransfo               | orm dom                          | ain                   |                         |                       |              |  |  |  |  |
| [3] Acquaint                                                                                                                                                                              | with the image enhancement and restoration techniques                                                                                                                                                    |                      |                                  |                       |                         |                       |              |  |  |  |  |
| [4] Implemen                                                                                                                                                                              | different compression techniques to compress an imag                                                                                                                                                     | e                    |                                  |                       |                         |                       |              |  |  |  |  |
| [5] Adopt diff                                                                                                                                                                            | erent segmentation and image representation technique                                                                                                                                                    | s for i              | mage pr                          | oces                  | sing.                   |                       |              |  |  |  |  |
| [6] Understan                                                                                                                                                                             | d the pattern recognition approaches for implementing t                                                                                                                                                  | he vis               | sual syst                        | em.                   |                         |                       |              |  |  |  |  |
| [7] Identify co                                                                                                                                                                           | mputer vision techniques in various real-time application                                                                                                                                                | ons.                 |                                  |                       |                         |                       |              |  |  |  |  |
| Module:1                                                                                                                                                                                  | Image Processing in Spatial Domain7 ho                                                                                                                                                                   | urs                  |                                  |                       |                         |                       |              |  |  |  |  |
| Fundamental<br>Basic relation<br>Transformatic<br>Colour image                                                                                                                            | steps in DIP – Elements of visual perception - Image<br>aship between pixels. Image enhancement - Spatia<br>ns – Histogram Processing – Smoothing spatial filters-<br>Processing: Models, Transformation | Samj<br>Dor<br>Sharp | pling an<br>nain: B<br>pening sj | d Qu<br>asic<br>patia | ianti<br>Gre<br>l filte | zatic<br>y le<br>ers. | on -<br>evel |  |  |  |  |
| Module:2                                                                                                                                                                                  | Image Transforms6 ho                                                                                                                                                                                     | urs                  |                                  |                       |                         |                       |              |  |  |  |  |
| <i>Image Transf</i><br>resolution ana<br>and SVD                                                                                                                                          | <i>forms:</i> Two dimensional Fourier Transform- Discrete<br>lysis – Haar Transform- Discrete Wavelet Transform.                                                                                         | cosir<br>Karhu       | ne trans<br>inen-Lo              | form<br>eve t         | - N<br>ranst            | Iulti<br>form         | -            |  |  |  |  |

| Module:3                                                                                                                                                                                                                                                                                     | Frequency domain filtering and Image Restoration                                                                                                    | 6 hours                                   |                                                                     |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------|--|--|--|--|--|--|
| Smoothing frequency domain filters- sharpening frequency domain filters- Homomorphic filtering.                                                                                                                                                                                              |                                                                                                                                                     |                                           |                                                                     |  |  |  |  |  |  |
| Image Restor                                                                                                                                                                                                                                                                                 | ation: Image deformation and geometric transform                                                                                                    | nations, Res                              | storation techniques,                                               |  |  |  |  |  |  |
| Noise characterization, Linear, Position invariant degradations, Adaptive filters.                                                                                                                                                                                                           |                                                                                                                                                     |                                           |                                                                     |  |  |  |  |  |  |
| Module:4                                                                                                                                                                                                                                                                                     | Image Compression                                                                                                                                   | 6 hours                                   |                                                                     |  |  |  |  |  |  |
| Image Com<br>and MPEG                                                                                                                                                                                                                                                                        | pression Techniques- Lossy and Lossless compastandards                                                                                              | ression- En                               | tropy Encoding-JPEG                                                 |  |  |  |  |  |  |
| Module:5                                                                                                                                                                                                                                                                                     | Image Segmentation                                                                                                                                  | 7 hours                                   |                                                                     |  |  |  |  |  |  |
| Detection of segmentation                                                                                                                                                                                                                                                                    | f discontinuities – point, corner, edge detection- th<br>n-region based segmentation- morphological segn                                            | resholding<br>nentation - v               | -edge based<br>watershed algorithm                                  |  |  |  |  |  |  |
| Descriptors                                                                                                                                                                                                                                                                                  | Boundary descriptors-Region descriptors- Textur                                                                                                     | re descriptor                             | rs, RANSAC.                                                         |  |  |  |  |  |  |
| Module:6                                                                                                                                                                                                                                                                                     | <b>RECOGNITION and CLASSIFICATION</b>                                                                                                               | 7 hours                                   |                                                                     |  |  |  |  |  |  |
| structural and<br>methods – K<br>Region-based<br>methods.                                                                                                                                                                                                                                    | syntactic classifiers – Clustering techniques – sir<br>-Means algorithm – Cluster evaluation methods.<br>CNN, fully convolution networks, Multi-mod | nilarity mea<br>Convolutio<br>dal network | asures – hierarchical<br>on neural networks,<br>cs, Hybrid learning |  |  |  |  |  |  |
| Module:7                                                                                                                                                                                                                                                                                     | COMPUTER VISION APPLICATIONS                                                                                                                        | 4 hours                                   |                                                                     |  |  |  |  |  |  |
| Face recognit                                                                                                                                                                                                                                                                                | ion application: personal photo collections – Insta                                                                                                 | ince recogni                              | tion application :                                                  |  |  |  |  |  |  |
| Location recordered regression for                                                                                                                                                                                                                                                           | ognition – Machine learning applications: Deep vo<br>r image analysis and categorization.                                                           | ting, transfe                             | er learning and structured                                          |  |  |  |  |  |  |
| Module:8                                                                                                                                                                                                                                                                                     | Contemporary issues:                                                                                                                                | 2 hours                                   |                                                                     |  |  |  |  |  |  |
| Total Lecture hours: 45 hrs                                                                                                                                                                                                                                                                  |                                                                                                                                                     |                                           |                                                                     |  |  |  |  |  |  |
| Text Book(s)                                                                                                                                                                                                                                                                                 |                                                                                                                                                     |                                           |                                                                     |  |  |  |  |  |  |
| <ol> <li>Rafael C. Gonzalez &amp; Richard E. Woods, "Digital Image Processing", 4<sup>th</sup> Edition,<br/>2018, Pearson, USA</li> <li>David A. Forsyth and Jean Ponce, "Computer Vision: A Modern Approach", 2<sup>nd</sup> Edition,<br/>2012, Prentice Hall, Pearson Education</li> </ol> |                                                                                                                                                     |                                           |                                                                     |  |  |  |  |  |  |

- 1. Richard Szeliski, "Computer vision: Algorithm and Applications", Springer- Verlag, London, 2010.
- Anil K. Jain, Fundamentals of Digital Image Processing, 2015, 3<sup>rd</sup> Edition, Pearson Education, USA.
- K.P.Soman, K.I. Ramchandran, N.G.Resmi, Insights into Wavelets, From Theory to Practice, 2013, 3<sup>rd</sup> Edition, PHI Learning Private Limited, New Delhi, India.
- 4. Mark Nixon & Alberto Aguado, Feature Extraction, and Image Processing, 2013, 3<sup>rd</sup> Edition, Elsevier's Science& Technology Publications, USA

5. William K. Pratt, Digital Image Processing, 2013, John Wiley & Sons, USA.

Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.

Recommended by Board of Studies : 12/09/2020

Approved by Academic Council : 59<sup>th</sup>

Date : 24/09/2020

| Course Code Course Title                                                               |                                                       |              |           |        | P     | J          | С |  |
|----------------------------------------------------------------------------------------|-------------------------------------------------------|--------------|-----------|--------|-------|------------|---|--|
|                                                                                        | FAULT TOLERANT AND DEPENDABLE                         |              |           |        |       |            |   |  |
| ECE6037                                                                                | CE6037 SYSTEMS                                        |              |           |        |       | 0          | 3 |  |
| Pre-requisite                                                                          | e Nil                                                 |              | Syllabu   | ıs Ve  | rsior | 1 <b>:</b> |   |  |
| <b>Course Object</b>                                                                   | ives:                                                 |              |           |        |       |            |   |  |
| The course is a                                                                        | med at                                                |              |           |        |       |            |   |  |
| [1] Providing                                                                          | students with a working knowledge of the potenti      | al faults a  | nd errors | occu   | rring |            |   |  |
| in an embedde                                                                          | d system.                                             |              |           |        |       |            |   |  |
| [2] Providing                                                                          | knowledge in concepts of fault detection and fault    | t tolerance  | •         |        |       |            |   |  |
| [3] Teaching s                                                                         | tudents dependability concepts                        |              |           |        |       |            |   |  |
| [4] Exposing t                                                                         | he fault tolerance strategies and design technique    | s.           |           |        |       |            |   |  |
| Course Outers                                                                          |                                                       |              |           |        |       |            |   |  |
| At the end of th                                                                       | nes (CO):                                             |              |           |        |       |            |   |  |
| [1] Gain know                                                                          | ledge in concepts involving fault detection           |              |           |        |       |            |   |  |
| [1] Comprehe                                                                           | nd dependability concepts                             |              |           |        |       |            |   |  |
| [2] Comprene                                                                           | tolerance and correction mechanisms in real wo        | rld scenari  | 05        |        |       |            |   |  |
| [4] Design and                                                                         | develop dependable systems for mission critical       | applicatio   | ns        |        |       |            |   |  |
| [5] Understand                                                                         | Fault tolerance in interconnected systems             | upplicatio   |           |        |       |            |   |  |
| [6] Understand                                                                         | Fault tolerance in distributed systems.               |              |           |        |       |            |   |  |
| [7] Apply Der                                                                          | endability evaluation techniques and tools            |              |           |        |       |            |   |  |
| Module:1                                                                               | Faults and Failures                                   | 4 hours      |           |        |       |            |   |  |
| Fault - error,                                                                         | failure - faults and their manifestation - classifica | ation of fai | ilts and  | failur | es    |            |   |  |
| Module:2                                                                               | Dependability Concepts                                | 5 hours      |           |        |       |            |   |  |
| Dependable sys                                                                         | tem - techniques for achieving dependability - de     | pendabilit   | y measu   | res    |       |            |   |  |
| Module:3                                                                               | Fault Tolerance Strategies                            | 6 hours      | -         |        |       |            |   |  |
| Fault detection                                                                        | - masking - containment - location - reconfigura      | ation - reco | overy.    |        |       |            |   |  |
| Module:4                                                                               | Fault tolerant design techniques                      | 8 hours      |           |        |       |            |   |  |
| Hardware redu                                                                          | ndancy - software redundancy - time redundancy -      | - informat   | ion redu  | ndano  | cy    |            |   |  |
| Module:5                                                                               | Fault tolerance in Interconnects                      | 6 hours      |           |        |       |            |   |  |
| Hypercube - sta                                                                        | r graphs - fault tolerant ATM switches                |              | -         |        |       |            |   |  |
| Module:6                                                                               | Fault Tolerance in Distributed Systems                | 8 hours      |           |        |       |            |   |  |
| Byzantine General problem - consensus protocols - check pointing and recovery - stable |                                                       |              |           |        |       |            |   |  |
| storage and RAID architectures - data replication and resiliency                       |                                                       |              |           |        |       |            |   |  |
| Module:7 Dependability evaluation techniques and                                       |                                                       |              |           |        |       |            |   |  |
|                                                                                        | tools 6 hours                                         |              |           |        |       |            |   |  |
| Fault trees -                                                                          | Markov chains - HIMAP tool                            |              |           |        |       |            |   |  |
| Module:8                                                                               | Contemporary issues:                                  | 2 hours      |           |        |       |            | 1 |  |
|                                                                                        |                                                       | Total Lec    | ture ho   | urs: 4 | 15 ha | ours       | 4 |  |
| Text Book(s)                                                                           |                                                       |              |           |        |       |            |   |  |
| 1. Israel Koren, C. Mani Krishna, Fault-Tolerant Systems, 2011,                        |                                                       |              |           |        |       |            |   |  |

- Braci Rolen, C. Main Krisina, Fault-Tolerant Systems, 2011, Morgan Kaufmann, San Francisco.
   Elena Dubrova, Fault-Tolerant Design, 2013, Springer, Sweden.

- 1. D. P. Siewiorek and R. S. Swarz, Reliable Computer Systems: Design and Evaluation, 2014, 3<sup>rd</sup>ed., Digital Press, Pennsylvania.
- 2. Alessandro Birolini, Reliability Engineering: Theory and Practice, 2017, 8<sup>th</sup> ed., Springer-Verlag Berlin Heidelberg, Spain.

Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.

Recommended by Board of Studies : 12/09/2020 Approved by Academic Council : No. 59<sup>th</sup>

Date : 24/09/2020

| Course Code Course Title                   |                                                                                                          |                                              |                      |  |  |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------|--|--|
| ECE60                                      | ECE6046 ADVANCED EMBEDDED PROGRAMMING                                                                    |                                              |                      |  |  |
| Pre-requisite Nil                          |                                                                                                          |                                              |                      |  |  |
| Course Objectives:                         |                                                                                                          |                                              |                      |  |  |
| The course is aimed at making the students |                                                                                                          |                                              |                      |  |  |
| [1] To lear                                | n advanced programming skills of the Embedd                                                              | led C and Linu                               | ix and the           |  |  |
| embedded a                                 | pplications.                                                                                             | ioo duimona                                  |                      |  |  |
| [2] To deve                                | lop skills and understand the embedded Linux dev                                                         | ice drivers.                                 |                      |  |  |
| <u>Expected</u> C                          | f the course, the student will be able to                                                                |                                              |                      |  |  |
| At the end (                               | character driver                                                                                         |                                              |                      |  |  |
| [1] Develop<br>[2] Gain kn                 | wiedge about advanced device driver functions                                                            |                                              |                      |  |  |
| [2] Compre                                 | bend Linux device model                                                                                  |                                              |                      |  |  |
| [4] Compre                                 | hend interrupt handlers in device drivers                                                                |                                              |                      |  |  |
| [5] Debug a                                | device driver code                                                                                       |                                              |                      |  |  |
| [6] Develor                                | I/O management                                                                                           |                                              |                      |  |  |
| [7] Develop                                | USB in device driver                                                                                     |                                              |                      |  |  |
| <u>.</u> , .,                              |                                                                                                          |                                              |                      |  |  |
| Module:1                                   | Basic Device driver review                                                                               | 6 hours                                      |                      |  |  |
| Boot loader                                | , Driver concepts -Block & character driver distin                                                       | ction -Low leve                              | drivers,             |  |  |
| etc -Writing                               | character drivers - Device major, minor number.                                                          |                                              | ,                    |  |  |
| Module:2                                   | Advanced Device driver characteristics                                                                   | 6 hours                                      |                      |  |  |
| Interfaces t                               | o driver read, write, ioctl etc-Blocking and no                                                          | n-blocking calls                             | s, Synchr            |  |  |
| Semaphores                                 | , mutexes ,spinlocks –Proc & Sysfs interfaces                                                            | -                                            | -                    |  |  |
| Module:3                                   | The Linux Device Model                                                                                   | 6 hours                                      |                      |  |  |
| K objects,                                 | K sets, and Subsystems ,Low-Level Sysfs Oper                                                             | ations, Hot plug                             | g Event C            |  |  |
| Buses, Devi                                | ces, and Drivers, Classes, Putting It All Together,                                                      | Hot plug, Deali                              | ng with Fi           |  |  |
| Module:4                                   | Interrupt Handling                                                                                       | 6 hours                                      |                      |  |  |
| Interrupts a                               | nd bottom halves -Writing interrupt driven dri                                                           | vers, Implemen                               | ting botto           |  |  |
| Kernel Thre                                | ads & Work Queues                                                                                        |                                              | [                    |  |  |
| Module:5                                   | Time Delays and Debugging Techniques                                                                     | 6 hours                                      | <u> </u>             |  |  |
| Timers, Ke                                 | nel timers, Jiffies, Timer interrupts- Debugging                                                         | g using printing,                            | , querying           |  |  |
| and system                                 | defaults-Debugging tools                                                                                 |                                              | 1                    |  |  |
| Module:6                                   | Communicating with Hardware                                                                              | 6 hours                                      |                      |  |  |
| I/O Mapped                                 | I I/O, Memory mapped I/O, Understanding DMA                                                              | operations.                                  |                      |  |  |
| Module:7                                   | USB Driver Model                                                                                         | 7 hours                                      |                      |  |  |
| USB Devic<br>Urbs.                         | e Basics, USB and Systs, USB Urbs, Writing a                                                             | USB Driver, US                               | B Transfe            |  |  |
| Iodule:8                                   | Contemporary issues:                                                                                     | 2 hours                                      |                      |  |  |
|                                            | Total Lecture hours:                                                                                     | 45 hours                                     |                      |  |  |
|                                            |                                                                                                          |                                              |                      |  |  |
|                                            |                                                                                                          |                                              |                      |  |  |
| <b>Cext Book(s</b>                         |                                                                                                          |                                              |                      |  |  |
| <b>Cext Book</b> (s<br>. 1. Job            | )<br>n Madieu, Linux Device Drivers Development,, 2                                                      | 017, www.pack                                | t.com.               |  |  |
| Text Book(s<br>1. Joh<br>Mohan La          | )<br>in Madieu, Linux Device Drivers Development,, 2<br>I Jangir, Linux Kernel and Device Driver Program | 017, www.pack<br>ming, 2014, 1 <sup>st</sup> | t.com.<br>Edition, U |  |  |

 Mastering Embedded Linux Programming, 2017, 2<sup>nd</sup> Edition, Packt Publishing, UK.
 Derek Molloy, Exploring Beagle Bone: Tools and Techniques for Building with Embedded Linux, 2015, 1<sup>st</sup> Edition, Wiley Publications, USA.

Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.

| Recommended by Board of Studies |        | 27/02/2016 |            |
|---------------------------------|--------|------------|------------|
| Approved by Academic Council    | No. 40 | Date       | 18/03/2016 |

| Course code          | Course title                                                                                     |                   | L T P J C             |  |  |  |  |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------|-------------------|-----------------------|--|--|--|--|--|--|--|
| ECE 6047             | DESIGN AND ANALYSIS OF AI                                                                        | GORITHM           | 3 0 0 4 4             |  |  |  |  |  |  |  |
| Pre-requisite        |                                                                                                  | S                 | Syllabus version :1   |  |  |  |  |  |  |  |
| Course Objectives:   |                                                                                                  |                   |                       |  |  |  |  |  |  |  |
| This course is aim   | ed at                                                                                            |                   |                       |  |  |  |  |  |  |  |
| [1] Enabling the s   | tudents to carry out analysis of various alg                                                     | orithms for ma    | inly time and space   |  |  |  |  |  |  |  |
| complexity.          |                                                                                                  |                   | <b>v</b> 1            |  |  |  |  |  |  |  |
| [2] Teaching the     | [2] Teaching the students how to decide the appropriate data type and data structure for a given |                   |                       |  |  |  |  |  |  |  |
| problem.             |                                                                                                  | V 1               | C                     |  |  |  |  |  |  |  |
| [3] Teaching the     | students how to select the best algorithm t                                                      | to solve a prob   | olem by considering   |  |  |  |  |  |  |  |
| various problem c    | haracteristics, such as the data size, the type of                                               | of operations, e  | tc.                   |  |  |  |  |  |  |  |
| Expected Course      | Outcome:                                                                                         | 1                 |                       |  |  |  |  |  |  |  |
| At the end if this c | ourse, the student will be able to                                                               |                   |                       |  |  |  |  |  |  |  |
| [1] Develop profic   | iency in problem solving and programming.                                                        |                   |                       |  |  |  |  |  |  |  |
| [2] Comprehend C     | Combinatorial Optimization                                                                       |                   |                       |  |  |  |  |  |  |  |
| [3] Analyse variou   | s algorithms for mainly time and space comp                                                      | olexity.          |                       |  |  |  |  |  |  |  |
| [4] Comprehend C     | ryptographic Algorithms                                                                          | 2                 |                       |  |  |  |  |  |  |  |
| [5] Learn Geomet     | ric Algorithms                                                                                   |                   |                       |  |  |  |  |  |  |  |
| [6] Analyse Parall   | el Algorithms                                                                                    |                   |                       |  |  |  |  |  |  |  |
| [7] Analyse and ev   | valuate the given program in terms of code size                                                  | ze and computa    | tional time.          |  |  |  |  |  |  |  |
| [8] Select the bes   | t algorithm to solve a problem by consideri                                                      | ng various pro    | blem characteristics, |  |  |  |  |  |  |  |
| such as the data si  | ze, the type of operations, etc.                                                                 | 0 1               | ,<br>,                |  |  |  |  |  |  |  |
| Module:1 Intro       | duction:                                                                                         | 7 hours           |                       |  |  |  |  |  |  |  |
| Role of Algorith     | ms in computing, Analysis of Algorithm                                                           | s, Asymptotic     | notation, Euclid's    |  |  |  |  |  |  |  |
| algorithm, Proble    | m, Instance, RAM model, Principles of Algo                                                       | orithm Design,    | Sorting Algorithm -   |  |  |  |  |  |  |  |
| Insertion Sort &     | Complexity Analysis, Divide and Conquer                                                          | Technique, So     | olving recurrences -  |  |  |  |  |  |  |  |
| substitution, Iterat | ion, Recursion tree, Changing variable and M                                                     | laster's Method   |                       |  |  |  |  |  |  |  |
| Module:2 Com         | binatorial Optimization:                                                                         | 5 hours           |                       |  |  |  |  |  |  |  |
| Backtracking: Dvi    | namic programming: Greedy Technique : Bra                                                        | anch & Bound      |                       |  |  |  |  |  |  |  |
| Module:3 Adva        | inced Algorithmic Analysis:                                                                      | 5 hours           |                       |  |  |  |  |  |  |  |
| Amortized ana        | vsis: Online and offline algorith                                                                | ms: Randor        | nized algorithms.     |  |  |  |  |  |  |  |
| NP Completeness      |                                                                                                  |                   |                       |  |  |  |  |  |  |  |
| Module:4 Crvn        | tographic Algorithms:                                                                            | 9 hours           |                       |  |  |  |  |  |  |  |
| Historical overvi    | ew of cryptography: Private-key crypt                                                            | ography and       | the key-exchange      |  |  |  |  |  |  |  |
| problem: Public-     | key cryptography: Digital signatures: Secu                                                       | rity protocols:   | Applications (zero-   |  |  |  |  |  |  |  |
| knowledge proofs     | authentication etc.                                                                              | ing protocols,    | rippileations (2010   |  |  |  |  |  |  |  |
| Module:5 Geor        | netric Algorithms:                                                                               | 7 hours           |                       |  |  |  |  |  |  |  |
| Line segments r      | properties intersections: convex hull findi                                                      | ng algorithms     | Voronoi Diagram       |  |  |  |  |  |  |  |
| Delaunay Triangu     | lation                                                                                           | ing ungoritanins, | voronor Drugrunn,     |  |  |  |  |  |  |  |
| Module:6 Para        | llel Algorithms:                                                                                 | 5 hours           |                       |  |  |  |  |  |  |  |
| PRAM model· F        | xclusive versus concurrent reads and y                                                           | vrites: Pointer   | · jumping· Brent's    |  |  |  |  |  |  |  |
| theorem and work     | efficiency                                                                                       |                   | Jumping, Diene s      |  |  |  |  |  |  |  |
| Module:7 Distr       | ibuted Algorithms:                                                                               | 5 hours           |                       |  |  |  |  |  |  |  |
| Consensus and ele    | ction: Termination detection: Fault tolerance                                                    | · Stabilization   |                       |  |  |  |  |  |  |  |
| Module 8 Con         | temporary issues.                                                                                | 2 hours           |                       |  |  |  |  |  |  |  |
| Total Lacture has    | 176.                                                                                             |                   | 15 hours              |  |  |  |  |  |  |  |
|                      |                                                                                                  |                   | 45 HUUIS              |  |  |  |  |  |  |  |

# Text Book(s)

1.Anany Levitin, "Introduction to the Design and Analysis of Algorithms". 3rd edition.,2011, Addison Wesley, 2011

2. Cormen, Leiserson, Rivest and Stein, "Introduction to Algorithms", 3rd edition, McGraw-Hill, 2009

# **Reference Books**

1. Ellis Horowitz, "Fundamentals of Computer Algorithms", 2nd Edition, Universities Press, 2008

2. M. J. Quinn, Parallel computing – theory and practice, McGraw Hill, 2002

3. Sukumar Ghosh, "Distributed Systems: An Algorithmic Approach", 1st edition, Chapman & Hall/CRC Computer & Information Science Series, 2006

4. William Stallings, "Cryptography & Network Security", 4th Edition, Prentice Hall, 2005

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

# List of Projects (Indicative)

- I. Robot Motion Planning Based Projects to apply Computational Geometric Algorithm Principles
- II. Explore Searching Algorithms : Get into the interiors of indexing, page ranking search algorithms
- III. Design, analyze, implement and experiment new algorithms and software for solving optimization problems arising in the area of Robotics, Gaming, Telecommunication, Automotive, Genetics, Medical Applications etc.
- IV. Implement the Algorithm to cater a requirement in Military Application. The chiefcommander encrypts the command and communicates to soldiers by using DES. His command contains the data in encrypted form. Also decipher this encrypted command at the receiver.
- V. Implement the RSA Based Digital Signature scheme
- VI. Implement & Build Distributed Web Service Access (Ex : Currency Convertor)
- VII. Implement the algorithm for scheduling independent parallel tasks.
- VIII. Implement & Solve the following Algorithmic Puzzles using any Programming language
  - 1. Place N chess queens on an N×N chessboard so that no two queens attack each other using BackTracking Approach
  - 2. Implement an efficient Sudoku Solution : Given a partially filled 9×9 2D array 'grid[9][9]', the goal is to assign digits (from 1 to 9) to the empty cells so that every row, column, and subgrid of size 3×3 contains exactly one instance of the digits from 1 to 9.
  - 3. Apply Recursive principles and implement Tower of Hanoi Puzzle.

Tower of Hanoi is a mathematical puzzle where we have three rods and n disks. The objective of the puzzle is to move the entire stack to another rod, obeying the following simple rules:

1) Only one disk can be moved at a time.

2) Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack i.e. a disk can only be moved if it is the uppermost disk on a stack.

3) No disk may be placed on top of a smaller disk

4. Implement an efficient program to solve the Egg Drop Puzzle involving n=2 eggs and a building with k=36 floors.

Suppose that we wish to know which stories in a 36-story building are safe to drop eggs from, and which will cause the eggs to break on landing. We make a few assumptions:

- An egg that survives a fall can be used again.
- A broken egg must be discarded.
- The effect of a fall is the same for all eggs.
- If an egg breaks when dropped, then it would break if dropped from a higher floor.
- If an egg survives a fall then it would survive a shorter fall.
- It is not ruled out that the first-floor windows break eggs, nor is it ruled out that the 36th-floor do not cause an egg to break.

If only one egg is available and we wish to be sure of obtaining the right result, the experiment can be carried out in only one way. Drop the egg from the first-floor window; if it survives, drop it from the second floor window. Continue upward until it breaks. In the worst case, this method may require 36 droppings. Suppose 2 eggs are available. What is the least number of egg-droppings that is guaranteed to work in all cases?

Implement an efficient algorithm to solve the puzzle : A man finds himself on a riverbank with a wolf, a goat, and a head of cabbage. He needs to transport all three to the other side of the river in his boat. However, the boat has room for only the man himself and one other item (either the wolf, the goat, or the cabbage). In his absence, the wolf would eat the goat, and the goat would eat the cabbage. Show how the man can get all these "passengers" to the other side

Mode of evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test, Project Reviews I, II, III

| Recommended by Board of Studies | 27/02/2016 |      |            |
|---------------------------------|------------|------|------------|
| Approved by Academic Council    | No. 40     | Date | 18/03/2016 |

| <b>Course Code</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Course Title                                                                                                                                                               | L     | Т     | Р    | J     | С   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------|-------|-----|--|
| ECE6038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 VIRTUAL INSTRUMENTATION SYSTEMS 0                                                                                                                                        |       |       |      |       |     |  |
| Pre-requisite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                            |       |       |      |       |     |  |
| <b>Course Object</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ves:                                                                                                                                                                       |       |       |      |       |     |  |
| The course is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | med at                                                                                                                                                                     |       |       |      |       |     |  |
| [1] Introducing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | students on Graphical programming concepts                                                                                                                                 |       |       |      |       |     |  |
| [2]Exposing stu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dents to system design using block level approach                                                                                                                          |       |       |      |       |     |  |
| [3]Providing ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sic knowledge about Data Acquisition                                                                                                                                       |       |       |      |       |     |  |
| [4]Developing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd solve real life problem using lab view NI based systems                                                                                                                 |       |       |      |       |     |  |
| Course Outcon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nes (CO):                                                                                                                                                                  |       |       |      |       |     |  |
| At the end of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e course the student should be able to                                                                                                                                     |       |       |      |       |     |  |
| [1] Acquire kn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | wledge about Graphical Programming and able to differentia                                                                                                                 | te fr | om c  | conv | entio | nal |  |
| programmi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g                                                                                                                                                                          |       |       |      |       |     |  |
| [2]Learn about                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | basics of Graphical Programming and its structure                                                                                                                          |       |       |      |       |     |  |
| [3]Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | process of data acquisition using hardware                                                                                                                                 |       |       |      |       |     |  |
| [4]Provide a so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ution to engineering problem using virtual instrumentation sys                                                                                                             | tem   |       |      |       |     |  |
| 1 Lovitha Jerom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OKS<br>e Virtual Instrumentation Using LabVIEW 2010 1st ed PHI                                                                                                             | Lear  | nina  | Ind  | ia    |     |  |
| Text Book(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e vintual instrumentation Using Lab view, 2010, 1st ed., 1111                                                                                                              | Leai  | ming  | , mu | 1a.   |     |  |
| 1.Ian Fairw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eather, Anne Brumfield, LabVIEW: A Developer's Guide to Re                                                                                                                 | al W  | /orld |      |       |     |  |
| Integration,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2011, 1st ed., CRC Press, USA.                                                                                                                                             |       |       |      |       |     |  |
| List of Challe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nging Experiments (Indicative)                                                                                                                                             |       |       |      |       |     |  |
| 1. Introduct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ion: Generalfunctionaldescription ofadigitalinstrum                                                                                                                        | ent-  |       | 8 h  | ours  |     |  |
| Blockdiag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ramofaVirtual Instrument, AdvantagesofVirtualinstrum                                                                                                                       | ents  |       |      |       |     |  |
| overconve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ntionalinstruments-Architecture ofaVirtualinstrum                                                                                                                          | nent  |       |      |       |     |  |
| anditsrelat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | iontotheoperatingsystem, LabVIEW – Graphicaluserinterfa                                                                                                                    | ces-  |       |      |       |     |  |
| Controlsa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dIndicators, 'G'programming – LabelsandText-Sh                                                                                                                             | ape.  |       |      |       |     |  |
| SizeandCo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lor – Ownedandfreelabels                                                                                                                                                   | 1 /   |       |      |       |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                            |       |       |      |       |     |  |
| Lab Evor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                            |       |       |      |       |     |  |
| Examine th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e following image and develop a VI for the same                                                                                                                            |       |       |      |       |     |  |
| Examine ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e following image and develop a vi for the same                                                                                                                            |       |       |      |       |     |  |
| Inp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | it Array Output Array                                                                                                                                                      |       |       |      |       |     |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>3</sup> 0 3                                                                                                                                                           |       |       |      |       |     |  |
| Ž.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                          |       |       |      |       |     |  |
| ů.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                          |       |       |      |       |     |  |
| Ş.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                          |       |       |      |       |     |  |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                            |       |       |      |       |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                            |       |       |      |       |     |  |
| 5 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                            |       |       |      |       |     |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                            |       |       |      |       |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                            |       |       |      |       |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                            |       |       |      |       |     |  |
| 2. Graphica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Language: Datatype, Format, Precisionand representation                                                                                                                    | on-   |       | 8 h  | ours  |     |  |
| Datatypes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -Dataflowprogramming, Graphical programming palettes a                                                                                                                     | nd    |       |      |       |     |  |
| tools - Fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt panel objects - Functions and Libraries                                                                                                                                 |       |       |      |       |     |  |
| anditsrelation         Controlsation         SizeandCo         Lab Exer         Examine the         Image: Control state         Image: Control state | Labview – Graphicaluserinteria<br>adIndicators, 'G'programming – LabelsandText-Sha<br>lor – Ownedandfreelabels<br>cise:<br>e following image and develop a VI for the same | on-   |       | 8 hc | ours  |     |  |

|    | Lab Exercises:                                                                         |            |
|----|----------------------------------------------------------------------------------------|------------|
|    | 1) Use a while loop and a waveform chart to build a VI that                            |            |
|    | demonstrates software timing                                                           |            |
|    | 2) Develop a VI to generate a RAMP signal as shown below                               |            |
|    | Input to the VI are Min, Max, Time span[ initial value as 0 and end value              |            |
|    | only need to give] and the last input is the number of data points. VI takes           |            |
|    | the difference between Max and Min and divides that interval by the number             |            |
|    | of data points (# Points) that the user requires. For example this would mean          |            |
|    | that the user requires 5000 points to span the difference between 0 and                |            |
|    | 10[time span]. In other words, the value of the ramp function at the <i>i</i> th point |            |
|    | is $((10-0)/5000)$ * <i>i</i> . The For Loop allows traversing through the values of i |            |
|    | from 0 to 5000.                                                                        |            |
| 3. | <b>Programming Structure:</b> FORloops, WHILEloops, CASEstructure.                     | 16 hours   |
| 5. | formulanodes Sequence structures-ArraysandClusters-Array operations-                   | 10 110 415 |
|    | Bundle-Bundle/Unbundlebyname graphsand charts                                          |            |
|    | Lab Exercises:                                                                         |            |
|    | 1) Using Error Clusters & Handling to find square root                                 |            |
|    | 2) To design an interface to measure temperature and check its range                   |            |
|    | between                                                                                |            |
|    | • 0 to 30                                                                              |            |
|    | • 30 to 60                                                                             |            |
|    | • more than 60                                                                         |            |
|    | Record the highest and lowest temperature. Have a switch to record the                 |            |
|    | selected temperature ranges.                                                           |            |
| 4. | Handling Strings: StringandfileI/O-HighlevelandLowlevelfileI/O's-                      | 12 hours   |
|    | AttributemodesLocalandGlobal variables                                                 |            |
|    | Lab Exercises:                                                                         |            |
|    | 1) Design a case structured calculator using string as input cases.                    |            |
|    | 2) Build a VI that creates an array of random numbers, scales the                      |            |
|    | resulting array, and takes a subset of that final array. You create a                  |            |
|    | For Loop that runs for 10 iterations. Eachiteration generates a                        |            |
|    | random number and stores it at the output tunnel. Random Array                         |            |
|    | displays an array of 10 random numbers. The VI multiplies each                         |            |
|    | value in Random Array by a Scaling Factor to create another array                      |            |
|    | called Final Array. The VI then takes a subset of the Final Array                      |            |
|    | starting at Start Subset for # of Elements and displays the subset in                  |            |
|    | Subset Array                                                                           |            |
| 5. | Hardware Aspects: Addressingthe hardwarein LabVIEW-                                    | 8 hours    |
|    | DigitalandAnalog I/Ofunction- DataAcquisition-BufferedI/O-RealtimeData                 |            |
|    | Acquisition                                                                            |            |
|    | Lab Exercises:                                                                         |            |
|    | Build a Temperature Monitoring VI that continuously measures the                       |            |
|    | temperature once per time unit [variable] and displays the temperature. If the         |            |
|    | temperature goes above or below the preset limits, the VI turns on a front             |            |

|     | panel LED. You should be able to set the limit from the front panel. Also                               |                     |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------|---------------------|--|--|--|--|--|--|
|     | modify the temperature monitoring VI so that it records both the highest and                            |                     |  |  |  |  |  |  |
|     | lowest recorded temperatures, and also displays the time elapsed (in                                    |                     |  |  |  |  |  |  |
|     | seconds) since recording began. Add a save option to your temperature-                                  |                     |  |  |  |  |  |  |
|     | monitoring VI as explained above. The user will have the option to save the                             |                     |  |  |  |  |  |  |
|     | acquired data into a spreadsheet file that will also include additional                                 |                     |  |  |  |  |  |  |
|     | information like the user name. Below shown is the Front panel for your                                 |                     |  |  |  |  |  |  |
|     | reference                                                                                               |                     |  |  |  |  |  |  |
| 6.  | Case Studies:                                                                                           | 8 hours             |  |  |  |  |  |  |
|     | Lab Exercises:                                                                                          |                     |  |  |  |  |  |  |
|     | 1) Interface a temperature sensor to microcontroller, acquire the sensor data and display it in labview |                     |  |  |  |  |  |  |
|     | 2) Interface a motor to microcontroller and control the speed of it                                     |                     |  |  |  |  |  |  |
|     | through labview.                                                                                        |                     |  |  |  |  |  |  |
|     | Total Laboratory Hours                                                                                  | 64 hours            |  |  |  |  |  |  |
| Mo  | de of Evaluation:Continuous Assessment Test and Final Assessment Test                                   |                     |  |  |  |  |  |  |
| Ty  | pical Projects:                                                                                         |                     |  |  |  |  |  |  |
|     | 1. Develop a labview based system that controls the speed of a Motor. The n                             | notor is interfaced |  |  |  |  |  |  |
|     | to any Microcontroller which supports the USB communication. In Labview                                 | w create a UI with  |  |  |  |  |  |  |
|     | slider. The slider in the UI must be used for controlling the speed of motor.                           |                     |  |  |  |  |  |  |
|     | 2. Develop an UI in labylew that will generate a different pattern based on th                          | e random number     |  |  |  |  |  |  |
|     | generated by a random function in labylew. The generated pattern must be                                | send out via USB    |  |  |  |  |  |  |
|     | 3 Develop on UL in Labyiew which depicts the signal generator                                           | functionality A     |  |  |  |  |  |  |
|     | microcontroller is interfaced with labyiew and an oscilloscope must be int                              | erfaced to capture  |  |  |  |  |  |  |
|     | the signals which are given as an input in UI developed in Labyiew                                      | enaced to cupture   |  |  |  |  |  |  |
|     | 4. Develop an UI in labyiew which acquire the sensor data and store it in an l                          | Excel sheet of PC.  |  |  |  |  |  |  |
|     | The sensors are interfaced to microcontroller and the microcontroller                                   | is interfaced to    |  |  |  |  |  |  |
|     | labview system via USB                                                                                  |                     |  |  |  |  |  |  |
|     |                                                                                                         |                     |  |  |  |  |  |  |
| Mod | de of Evaluation: Continuous Assessment Test, Final Assessment Test                                     |                     |  |  |  |  |  |  |
| Rec | ommended by Board of Studies : 27/02/2016                                                               |                     |  |  |  |  |  |  |

| Approved by Academic Council : No:40 | 18/03/2016 |
|--------------------------------------|------------|

| Course cod                                                                                                                                                          | e              | Course title                                  | L T P J C         |                    |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------|-------------------|--------------------|--|--|
| ECE604                                                                                                                                                              | 48             | EMBEDDED SYSTEM DESIGN U                      | 2 0 0 4 3         |                    |  |  |
| Pre-requisi                                                                                                                                                         | te             | Nil                                           | yllabus version:1 |                    |  |  |
| Course Ob                                                                                                                                                           | jectives       | •                                             |                   |                    |  |  |
| The course i                                                                                                                                                        | is aime        | d at                                          |                   |                    |  |  |
| [1] Provide                                                                                                                                                         | in dept        | h understanding of logic and system design.   |                   |                    |  |  |
| [2] Enabling                                                                                                                                                        | g the stu      | idents to apply their knowledge for the desig | n of advanced     | digital            |  |  |
| hardware sy                                                                                                                                                         | stems v        | with help of FPGA tools                       |                   |                    |  |  |
| [3] Teaching                                                                                                                                                        | g the st       | udents scheduling and communication with r    | respect to FPG.   | A                  |  |  |
| Expected C                                                                                                                                                          | Course         | Outcome:                                      |                   |                    |  |  |
| At the end of                                                                                                                                                       | of the co      | ourse, the Students will be able to           |                   |                    |  |  |
| [1] Comprel                                                                                                                                                         | hend ov        | verview of Embedded System                    |                   |                    |  |  |
| [2] Learn H                                                                                                                                                         | ardware        | e Description Languages                       |                   |                    |  |  |
| [3] Acquire                                                                                                                                                         | abilitie       | s to Design an embedded system using FPG.     | A                 |                    |  |  |
| [4] Use Xili                                                                                                                                                        | nx IP C        | Cores                                         |                   |                    |  |  |
| [5] Comprel                                                                                                                                                         | hend Pa        | artitioning concepts                          |                   |                    |  |  |
| [6] Comprel                                                                                                                                                         | hend So        | cheduling & Communication                     |                   |                    |  |  |
| [7] Identify                                                                                                                                                        | and exp        | ploitation of Parallelism concepts            |                   |                    |  |  |
| [8] Use state                                                                                                                                                       | e-of-art       | hardware and software to solve real life pro  | blems             | 1                  |  |  |
| Module:1                                                                                                                                                            | Emb            | edded System Overview                         | 4 hours           |                    |  |  |
| H/W-FPG.                                                                                                                                                            | A-Emb          | edded SoC and use of VLSI circuit technolog   | gy-platform FF    | 'GA's-Altera       |  |  |
| Cyclone                                                                                                                                                             |                |                                               | [                 | 1                  |  |  |
| Module:2                                                                                                                                                            | Hard           | ware Description Languages                    | 4 hours           |                    |  |  |
| Hardware                                                                                                                                                            | Descrip        | otion Languages - VHDL, Verilog, Other H      | High-Level HD     | Ls, From HDL to    |  |  |
| Configurat                                                                                                                                                          | tion Bit       | -stream                                       | r                 |                    |  |  |
| Module:3                                                                                                                                                            | Syste          | em Design using FPGA                          | 4 hours           |                    |  |  |
| Principles                                                                                                                                                          | of syste       | em design-Design quality, Modules and inter   | rfaces, Abstract  | tion and state,    |  |  |
| Cohesion a                                                                                                                                                          | and cou        | pling, Designing and Reuse, Control flow gi   | raph, Design-O    | rigins of platform |  |  |
| FPGA des                                                                                                                                                            |                |                                               |                   |                    |  |  |
| Module:4                                                                                                                                                            | $\mathbf{FPG}$ | A Platform                                    | 4 hours           |                    |  |  |
| Componer<br>Design Su                                                                                                                                               | its, Add       | ing to platform FPGA systems, assembling      | custom compu      | te cores. Software |  |  |
| Design-Sy<br>Root load                                                                                                                                              | stem 5         | onware Options, Root File system, Cross-D     | evelopment 10     | ois, monitors and  |  |  |
| Modulo:5                                                                                                                                                            |                |                                               | 41                |                    |  |  |
| Quartieu                                                                                                                                                            | Parti          | titioning Problem Analytical Solution to Day  | 4 nours           | definitions        |  |  |
| Overview of Partitioning Problem, Analytical Solution to Partitioning-Basic definitions,<br>Expected performance gain, Pescurge considerations, Analytical Approach |                |                                               |                   |                    |  |  |
| Module:6                                                                                                                                                            | Sche           | duling & Communication                        | A hours           |                    |  |  |
| Communic                                                                                                                                                            | ation-I        | nyocation/Coordination Transfer of State P    | ractical Issues-  | Profiling Issues   |  |  |
| Data Struct                                                                                                                                                         | tures M        | anipulate Feature Size.                       | 100000100000      | 1 10111115 105000, |  |  |
| Module:7                                                                                                                                                            | Spati          | al Design                                     | 4 hours           |                    |  |  |
| Principles of                                                                                                                                                       | of Para        | llelism-Identifying Parallelism - Spatial P   | arallelism wit    | h Platform FPGAs-  |  |  |
| Parallelism                                                                                                                                                         | within         | FPGA Hardware Cores. Parallelism within F     | PGA Designs       |                    |  |  |
| Module:8                                                                                                                                                            | Cont           | emporary issues:                              | 2hours            |                    |  |  |
|                                                                                                                                                                     |                | Total Lacture hours                           | 30 hours          |                    |  |  |
|                                                                                                                                                                     |                | i viai Leciule nouls.                         | 50 110015         |                    |  |  |

| Text Book(s)                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                          |                      |                 |                                          |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------|----------------------|-----------------|------------------------------------------|--|--|--|
| 1. Ron Sass, A                                                                                                                                                                                                                                                                                                                                                                                               | Andrew G Schmidt En                                                                          | nbedded Systems I                        | Design               | with Platform   | n FPGAs                                  |  |  |  |
| Principles a                                                                                                                                                                                                                                                                                                                                                                                                 | and Practices, 2011, Fi                                                                      | rst Edition, Tata N                      | /lcGraw              | / Hill, India.  |                                          |  |  |  |
| Reference Books                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                            |                                          |                      |                 |                                          |  |  |  |
| 1. Charles H I                                                                                                                                                                                                                                                                                                                                                                                               | Roth. Jr Digital System                                                                      | ns design using VI                       | HDL, 2               | 012, Re-Print   | , PWS                                    |  |  |  |
| publishing                                                                                                                                                                                                                                                                                                                                                                                                   | company (Thomson B                                                                           | Books), USA.                             |                      |                 |                                          |  |  |  |
| 2. V A. Padro                                                                                                                                                                                                                                                                                                                                                                                                | ni Circuit Design with                                                                       | n VHDL 2011, Firs                        | st Editio            | on, MIT Press   | 5                                        |  |  |  |
| Cambridge                                                                                                                                                                                                                                                                                                                                                                                                    | , England.                                                                                   | m Dagian 2011 F                          | lingt Edi            | ition Drantia   | a Hall Madam                             |  |  |  |
| <b>5.</b> wayne wo                                                                                                                                                                                                                                                                                                                                                                                           | II, FPGA Based Syste                                                                         | m Design, 2011, F                        | irst Ed              | ition, Prentice | es Hall Modern                           |  |  |  |
| Mode of Evalue                                                                                                                                                                                                                                                                                                                                                                                               | tion: Continuous Asso                                                                        | account Test Ouiz                        | Digita               | Assignmon       | t Final Assassment                       |  |  |  |
| Test                                                                                                                                                                                                                                                                                                                                                                                                         | uon. Continuous Asse                                                                         | essinent Test, Quiz                      | , Digite             | u Assignmen     | i, Filiai Assessillelli                  |  |  |  |
| Typical Project                                                                                                                                                                                                                                                                                                                                                                                              | S                                                                                            |                                          |                      |                 |                                          |  |  |  |
| 1.Bluetooth based home automation using FPGA.A Bluetooth mobile app need to be developed to transfer control information to the Bluetooth receiver which is to be interfaced with the FPGA board. Based upon the received data, the household devices like lamp, fan etc. should be turned ON/OFF.                                                                                                           |                                                                                              |                                          |                      |                 |                                          |  |  |  |
| sub divided into v<br>register module at                                                                                                                                                                                                                                                                                                                                                                     | various modules like v<br>nd finally it need to be                                           | ector address mod<br>e integrated into a | ule, con<br>single u | nmand regist    | er module, mask<br>plish specified tasks |  |  |  |
| <b>3.</b> Implement a general purpose processor on FPGA. The purpose of the design is to build an FPGA with the following features: a CPU similar to the Atmel ATmega8, a serial port with a fixed baud rate, and an output for a single digit 7-segment display.                                                                                                                                            |                                                                                              |                                          |                      |                 |                                          |  |  |  |
| 4. Real-time hardware implementation of a motion detection algorithm for vision based automated surveillance systems. The working prototype of a complete standalone automated video surveillance system, including input camera interface, designed motion detection VLSI architecture, and output display interface, with real-time relevant motion detection capabilities, need to be implemented on FPGA |                                                                                              |                                          |                      |                 |                                          |  |  |  |
| Recommended by                                                                                                                                                                                                                                                                                                                                                                                               | Mode of Evaluation: Project Reviews I, II, III<br>Recommended by Reard of Studies 27/02/2016 |                                          |                      |                 |                                          |  |  |  |
| Approved by Aca                                                                                                                                                                                                                                                                                                                                                                                              | demic Council                                                                                | No. 40                                   | Date                 | 18/03/20        | 16                                       |  |  |  |
| Approved by Academic Council 100.40 Date 10/05/2010                                                                                                                                                                                                                                                                                                                                                          |                                                                                              |                                          |                      |                 |                                          |  |  |  |

| Course Code                                                                   | Course Title                                               |             |              | L       | Т     | Р      | J   | C        |
|-------------------------------------------------------------------------------|------------------------------------------------------------|-------------|--------------|---------|-------|--------|-----|----------|
| ECE5044                                                                       | HARDWARE SOFTWARE CODE                                     | 3           | 0            | 0       | 0     | 3      |     |          |
| Pre-requisite Nil Syllabus Version: <u>1.1</u>                                |                                                            |             |              |         |       |        |     |          |
| Course Objective:                                                             |                                                            |             |              |         |       |        |     |          |
| The course is                                                                 | aimed at                                                   |             | 1            | 1       |       | 1      | 1   |          |
| [1] Providing                                                                 | adequate knowledge in the modeling of heteroge             | neous       | sembedde     | a syst  | ems   | bas    | ea  | on       |
| [2] Introducir                                                                | $\sigma$ the importance of estimating the cost analysis in | term        | s of hardw   | vare ar | nd so | oftw   | are | <b>_</b> |
| parameters.                                                                   | g the importance of estimating the cost unarysis in        |             |              | ure ur  | 10 5  | 510.00 | urv | 5        |
| [3] Introducir                                                                | g various co-synthesis and co-simulation tools for         | the e       | effective de | esign o | of er | nbe    | dde | ed       |
| systems with                                                                  | better communication between different modules.            |             |              |         |       |        |     |          |
| Expected Co                                                                   | urse Outcome:                                              |             |              |         |       |        |     |          |
| At the end of                                                                 | the course, the Students will be able to                   |             |              |         |       |        |     |          |
| [1] Apply dif                                                                 | erent MOCs based on system design specification            | 1           |              |         |       |        |     |          |
| [2] Flopose a                                                                 | e partitioning solution based on the algorithms            | 19818.      |              |         |       |        |     |          |
| [4] Understar                                                                 | d various co-synthesis approaches.                         |             |              |         |       |        |     |          |
| [5] Ability to                                                                | pre-estimate and estimate the performance metric           | es for      | hardware     | and so  | oftw  | are    | ba  | sed      |
| on cost analy                                                                 | is.                                                        |             |              |         |       |        |     |          |
| [6] Approxin                                                                  | ate the pre-estimate and estimate the performance          | ce me       | etrics for s | oftwa   | re t  | ase    | d c | ost      |
| analysis.                                                                     |                                                            |             | - 4          |         |       |        |     |          |
| [/] Decide or                                                                 | proper co-simulation method based on system spe            | 20111C      | ation.       |         |       |        |     |          |
| Introduction                                                                  | to Co-design - Comparison of co-design approache           | /<br>-s _ I | Inified ren  | resen   | tati  | on-I   | Mo  | del      |
| – MoCs: Sta                                                                   | te oriented Activity oriented Structure oriented           | Data        | oriented ar  | nd Hei  | tero  | gene   | 201 |          |
| Software CF                                                                   | SMs - Processor Characterization.                          | Duiu        |              | 14 110  |       | 5011   |     | .0       |
|                                                                               |                                                            |             |              |         |       |        |     |          |
| Module:2                                                                      | HW/SW partitioning Constraints & tradeoffs                 | 7           | hours        |         |       |        |     |          |
| Cost modelin                                                                  | g, Principle of hardware/software mapping -                | Rea         | l time sc    | hedul   | ing   | - (    | les | ign      |
| specification                                                                 | & constraints on Embedded systems - Tradeoffs              |             |              |         |       |        |     |          |
|                                                                               |                                                            | -           | <b>.</b> .   |         |       |        |     |          |
| Module:3                                                                      | HW/SW partitioning methodologies                           | 7           | hours        | T :     | 41-   |        | 1   |          |
| Extended Par                                                                  | <b>Types of partitioning</b> -Partitioning granularity     | y -         | Kernigan     | -Lin    | Alg   | orit   | nm  | i -      |
| Extended I di                                                                 | Huoning - Dinary Farthoning, Gell Algorithm                |             |              |         |       |        |     |          |
| Module:4                                                                      | Co-synthesis                                               | 7           | hours        |         |       |        |     |          |
| Software sy                                                                   | nthesis – Hardware Synthesis - Interface Synthesi          | hesis       | – Co-syn     | thesis  | Ap    | pro    | acł | nes:     |
| Vulcan, Cosyma, Cosmos, Polis and COOL.                                       |                                                            |             |              |         |       |        |     |          |
|                                                                               |                                                            |             |              |         |       |        |     |          |
| Module:5                                                                      | Estimation: Hardware                                       | 4           | hours        |         |       |        |     |          |
| Hardware ar                                                                   | ea, execution timing and power, Case studies               |             | L            |         |       |        |     |          |
|                                                                               |                                                            |             | · · ·        |         |       |        |     |          |
| Module:6                                                                      | Estimation: Software                                       | 4           | hours        |         |       |        |     |          |
| Software memory and execution timing, Worst Case Execution Time, Case studies |                                                            |             |              |         |       |        |     |          |
| Module.7                                                                      | Co-simulation & Co-verification                            | 7           | hours        |         |       |        |     |          |
| mouule./                                                                      |                                                            | 1           | nouis        |         |       |        |     |          |

| Principles of Co-simulation – Abstract Level; Detailed Level – Co-simulation as Partitioning     |  |
|--------------------------------------------------------------------------------------------------|--|
| support – Co- simulation using Ptolemy approach, Virtual Prototyping, <b>Rapid Prototyping</b> . |  |

| Module:8 | Contemporary issues | 2  | hours |  |
|----------|---------------------|----|-------|--|
|          | Total Lecture:      | 45 | hours |  |

#### **Text Books:**

1. Soonhoi Ha, Jürgen Teich, "Handbook of Hardware/Software Codesign", Springer , 2017.

#### **References:**

- 1. Schaumont, Patrick, A," A Practical Introduction to Hardware/Software Codesign", 2013, reprint, Springer, India.
- 2. Felice Balarin, Massimiliano Chiodo, Paolo Giusto, Harry Hsieh, Attila Jurecska, Luciano Lavagno, Claudio Passerone, Alberto Sangiovanni-Vincentelli, Ellen Sentovich, Kei Suzuki, Bassam Tabbara, "Hardware-Software Co-Design of Embedded Systems: The POLIS Approach", Springer, 2012.
- 3. http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII10.0/ptII10.0.1\_20141217/ptolemy/dom ains/continuous/doc/index.htm

| Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar |                      |      |            |  |  |  |  |  |
|-----------------------------------------------------------------------|----------------------|------|------------|--|--|--|--|--|
| Recommended by Board of Studies                                       | 12/09/2020           |      |            |  |  |  |  |  |
| Approved by Academic Council                                          | No. 59 <sup>th</sup> | Date | 24/09/2020 |  |  |  |  |  |

| Course Code     L     T     P     J          |                                                                                                    |                |            |        | С      |       |     |  |  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------|----------------|------------|--------|--------|-------|-----|--|--|
| ECE6049MODERN AUTOMOTIVE ELECTRONICS SYSTEMS |                                                                                                    |                |            |        | 0      | 4     | 3   |  |  |
| Pre-requisite Nil Syllabus Version : 1       |                                                                                                    |                |            |        |        |       |     |  |  |
| Course Objectives:                           |                                                                                                    |                |            |        |        |       |     |  |  |
| The course is                                | The course is aimed at                                                                             |                |            |        |        |       |     |  |  |
| [1] Instilling                               | fundamental understanding of various automa                                                        | tic control s  | ystems a   | and b  | pasic  |       |     |  |  |
| instrumentati                                | on involved in automobiles.                                                                        |                |            |        |        |       |     |  |  |
| [2] Learning                                 | various automobile condition measurement and me                                                    | onitoring me   | echanisr   | ns.    |        |       |     |  |  |
| [3] Acqutry v                                | vith advanced electronic elements and their function                                               | onal aspects   | in autor   | nobi   | les    |       |     |  |  |
| Course Outc                                  | omes (CO):                                                                                         |                |            |        |        |       |     |  |  |
| At the end of                                | the course the student will be able to                                                             |                |            |        |        |       |     |  |  |
| [1] Comprehe                                 | end engine management system.                                                                      |                |            |        |        |       |     |  |  |
| [2] Understar                                | d the various Ignition and Injection systems                                                       |                |            |        |        |       |     |  |  |
| [3] Explain th                               | e automotive control mechanisms.                                                                   |                |            |        |        |       |     |  |  |
| [4] Learn the                                | different monitoring systems for automobiles                                                       |                |            |        |        |       |     |  |  |
| [5] Understar                                | d the typical sensors for transportation.                                                          | •              |            |        |        |       |     |  |  |
| [6] Acquire k                                | nowledge about upcoming trends in automotive el                                                    | ectronics sy   | stems      |        |        |       |     |  |  |
| [7] Use the ki                               | nowledge attained and develop appropriate system                                                   | s for societa  | al issues  |        |        |       |     |  |  |
| Module:1                                     | Engine management systems                                                                          | 5 hours        |            |        |        | 1     |     |  |  |
| Introduction                                 | - components for engine management system                                                          | - Open lo      | op and     | clos   | sed 1  | loop  |     |  |  |
| control syst                                 | em – Engine cranking and warm up control –Ac                                                       | celeration, o  | decelera   | tion   | and    | 1dle  |     |  |  |
| speed contro                                 | )].                                                                                                |                |            |        |        |       |     |  |  |
| Module:2                                     | Injection and ignition systems                                                                     | 5 hours        |            |        |        |       |     |  |  |
| Feedback car                                 | buretor system–Throttle body injection and multi                                                   | point fuel in  | jection s  | syste  | m–     |       |     |  |  |
| Injection syst                               | em controls – Advantage of electronic ignition syst                                                | tems-Types     | of solic   | l stat | e igr  | ntior | 1   |  |  |
| systems and t                                | heir principles of operation –Electronic spark timi                                                | ng control, l  | Exhaust    | emi    | ssion  | 1     |     |  |  |
| control engin                                | eering                                                                                             | 4.1            |            |        |        |       |     |  |  |
| Module:3                                     | Automotive control mechanism                                                                       | 4 hours        | 1 1 1      | •      |        |       |     |  |  |
| Electronic ma                                | inagement of chassis systems, Vehicle motion con                                                   | trol, anti – l | ock bral   | sing   | syste  | em,   |     |  |  |
| Tyre pressure                                | monitoring system, Collision avoidance system,                                                     | Traction con   | itrol syst | tem.   |        |       |     |  |  |
| Module:4                                     | Automotive Electronics systems                                                                     | 4 hours        | •          |        |        |       |     |  |  |
| Active susper                                | ision system Keyless entry system and Electronic                                                   | power steer    | ing syste  | em,    |        |       |     |  |  |
| Electronic co                                | ntrols - lighting design - Horn – Warning systems                                                  | s – Brake ac   | tuation v  | varn   | ing    |       |     |  |  |
| systems, Info                                | tainment                                                                                           | 4.1            |            |        |        |       |     |  |  |
| Module:5                                     | Monitoring of Automotive systems                                                                   | 4 hours        | •          |        | •      |       |     |  |  |
| Speed warnin                                 | g systems, oil pressure warning system, engine ov                                                  | er heat wari   | ning sys   | tem,   | aır p  | oress | ure |  |  |
| warning syste                                | em, safety devices-Wind shield wiper and washer,                                                   | VANET          |            |        |        |       |     |  |  |
| Module:6                                     | Sensors for transportation - 1                                                                     | 3 hours        | 0          |        |        | ,     |     |  |  |
| Basic sensor                                 | arrangement-Types of sensors, Oxygen Sensor                                                        | r – Cranking   | g Senso    | r –    | 'OSITI | lon   |     |  |  |
| Sensors                                      |                                                                                                    |                |            |        |        |       |     |  |  |
| Module:7                                     | Sensors for transportation - II                                                                    | 3 hours        | 1 .        | •      | τ7     | 1 • • |     |  |  |
| Engine cool                                  | ing water temperature Sensor–Engine oil pressure                                                   | e Sensor–Ft    | iel mete   | ring   | -Ve    | hicle | 5   |  |  |
| speed senso                                  | r and detonation sensor.                                                                           |                |            |        |        |       |     |  |  |
| Module:8                                     | Contemporary issues:                                                                               | 2 hours        |            |        |        |       |     |  |  |
| Total Lecture hours: 30 hrs                  |                                                                                                    |                |            |        |        |       |     |  |  |
| Text Book(                                   |                                                                                                    |                |            |        |        |       |     |  |  |
| I. Tom D                                     | 1. Tom Denton, Automobile Electrical and Electronic Systems, 2012, 4 <sup>th</sup> Edition, Butter |                |            |        |        |       |     |  |  |
| Worth                                        | Worth Heinemann, United States                                                                     |                |            |        |        |       |     |  |  |

- 2. Bosch Automotive Electrics and Automotive Electronics, 2014, 5<sup>th</sup> Edition, Springer Vieweg, United States
- Beckwith, T.G, Roy D.Marangoni, John H.Lienhard, Mechanical Measurements, 2011, 6<sup>th</sup> Edition, Addison Wesley, United States

- 1. Ernest O Doeblin, Measurement Systems, Application and design, 2013, 5<sup>th</sup> Edition McGraw Hill Book Co., United States
- 2. Holman, J.P, Experimental methods for Engineers, McGraw Hill Book Co., 2011, 8<sup>th</sup> Edition, United States
- 3. Robert Bosch Gmph, Automotive Hand Book, 2014, 9th Edition, Wiley, United States
- 4. William, B. Ribbens, Understanding Automotive Electronics, 2014, 8<sup>th</sup> Edition Butter Worth Heinemann, United States

Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.

## **Typical Projects**

- 1. Design of Real Time Ignition Control System. Implement an automotive throttle control system using fuzzy logic approach and perform the controller synthesis in real time environment.
- 2. Develop a sliding mode controller to generate appropriate torque for the driving motor of electric vehicles that ensures optimality of the slip ratio for efficient vehicle brake.
- 3. Design a variable structure controller to deal with the strong nonlinearity of wheel slip in the design of ABS controller. Consider the several situations such as braking in dry road, wet road and snow road.
- 4. Develop a safety feature in cars to avoid colliding with a vehicle or an obstacle in the way. The main objective of the system is to help driver to prevent car collisions due to blind spots and their carelessness while driving.
- 5. Design a speed warning system (in-vehicle subsystem) that will monitor the vehicle speed and activate an auditory warning as well as record the violation when the pre-set speed limit is exceeded.

| Recommended by Board of Studies : 27/02/2016 |                   |  |
|----------------------------------------------|-------------------|--|
| Approved by Academic Council : No: 40        | Date : 18/03/2016 |  |

| Course code     Course Title     L     T     P     J     C                                   |                                                                                       |                                                      |                   |                         |  |  |  |  |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------|-------------------|-------------------------|--|--|--|--|
| ECE6073                                                                                      |                                                                                       | AUTOSAR AND ISO STANDARDS FOR AUTOMOTIVE SYSTEMS2002 |                   |                         |  |  |  |  |
| Pre-requisi                                                                                  | equisite Nil Syllabus version : 1                                                     |                                                      |                   |                         |  |  |  |  |
| Course Objectives: The course is aimed at:                                                   |                                                                                       |                                                      |                   |                         |  |  |  |  |
| 1. Enabling                                                                                  | the s                                                                                 | tudents to understand Autosar standards              |                   |                         |  |  |  |  |
| 2. Introduci                                                                                 | ng to                                                                                 | the students the basic knowledge of Commu            | inication Stack   | t in Autosar            |  |  |  |  |
| 3. Preparing                                                                                 | g the                                                                                 | students to understand the implementation an         | nd integration    | in Autosar              |  |  |  |  |
| Expected C                                                                                   | Cours                                                                                 | e Outcome:                                           |                   |                         |  |  |  |  |
| At the end of                                                                                | of the                                                                                | course, the student will be able to                  |                   |                         |  |  |  |  |
| 1.Apply the                                                                                  | knov                                                                                  | wledge of various autosar standards                  |                   |                         |  |  |  |  |
| 2.Analyze a                                                                                  | utosa                                                                                 | ar codes                                             |                   |                         |  |  |  |  |
| 3.Apply the                                                                                  | Auto                                                                                  | SAR – Implementation Integration                     |                   |                         |  |  |  |  |
| 4.Analyze tl                                                                                 | he Au                                                                                 | utoSAR – System Services                             |                   |                         |  |  |  |  |
| 5. Implement                                                                                 | nt CA                                                                                 | N programming concepts through Autosar               |                   |                         |  |  |  |  |
| 6. Analyze t                                                                                 | the IS                                                                                | SO/TS 16949 standards                                |                   |                         |  |  |  |  |
| 7. Know the                                                                                  | e imp                                                                                 | lementation aspects of ISO/TS 16949 standa           | irds              |                         |  |  |  |  |
| Module:1                                                                                     | Aut                                                                                   | toSAR Standards                                      | 3 hours           |                         |  |  |  |  |
| General req                                                                                  | uiren                                                                                 | nent on basic software modules - Functional          | , Fault operation | on and error detection. |  |  |  |  |
| Module:2                                                                                     | Aut                                                                                   | toSAR Standards – Communication                      | 5 hours           |                         |  |  |  |  |
|                                                                                              | Sta                                                                                   | ck                                                   |                   |                         |  |  |  |  |
| Network Ma                                                                                   | anage                                                                                 | ement, TTCAN Interface standards, TTCAN              | Drivers           |                         |  |  |  |  |
| Module:3                                                                                     | Aut                                                                                   | toSAR – Implementation Integration                   | 3 hours           |                         |  |  |  |  |
| Platform Ty                                                                                  | /pes,                                                                                 | Memory Mapping                                       |                   |                         |  |  |  |  |
| Module:4                                                                                     | Aut                                                                                   | toSAR – System Services                              | 3 hours           |                         |  |  |  |  |
| Watchdog I                                                                                   | Mana                                                                                  | ger, Synchronized Time Base Manager                  | L                 |                         |  |  |  |  |
| Module:5                                                                                     | ISO                                                                                   | 0/TS 16949                                           | 5 hours           |                         |  |  |  |  |
| ISO/TS 169                                                                                   | 949 -                                                                                 | ISO/TS 16949:2009 specifies the quality sys          | stem requirem     | ents for the design and |  |  |  |  |
| developmen                                                                                   | nt, pro                                                                               | oduction, installation and servicing of autom        | otive related p   | roducts.                |  |  |  |  |
| Module:6                                                                                     | Inti                                                                                  | roduction to ISO26262 Standard: Basic                | 3 hours           |                         |  |  |  |  |
|                                                                                              | Cor                                                                                   | ncepts                                               |                   |                         |  |  |  |  |
| Structure of                                                                                 | f ISC                                                                                 | D26262 standard and its parts-Vocabulary             | -Management       | of functional Safety-   |  |  |  |  |
| Concept Pha                                                                                  | ase                                                                                   | 1 5                                                  | U                 | ,                       |  |  |  |  |
| Module:7                                                                                     | Inti                                                                                  | roduction to ISO26262 Standard:                      | 6 hours           |                         |  |  |  |  |
|                                                                                              | Imp                                                                                   | plementation Aspects                                 |                   |                         |  |  |  |  |
| Product Dev                                                                                  | velop                                                                                 | ment System level-Product Development Ha             | ardware level-I   | Product Development     |  |  |  |  |
| Software lev                                                                                 | Software level-Production and Operation-Supporting Processes-ASIL Oriented and Safety |                                                      |                   |                         |  |  |  |  |
| Oriented Analysis-Guidelines on ISO26262 (Informative)-Case Studies to illustrate concepts.  |                                                                                       |                                                      |                   |                         |  |  |  |  |
| Hazard analysis and Risk assessment-Safety Goals, Preliminary Architecture-Functional Safety |                                                                                       |                                                      |                   |                         |  |  |  |  |
| Concept                                                                                      |                                                                                       |                                                      |                   |                         |  |  |  |  |
| Module:8                                                                                     | Cor                                                                                   | ntemporary Topics                                    | 2 hours           |                         |  |  |  |  |
|                                                                                              |                                                                                       | Total Lecture Hours:                                 | 30 hours          |                         |  |  |  |  |
| Reference 1                                                                                  | Book                                                                                  | S                                                    |                   | 1                       |  |  |  |  |
| 1. Automotive Quality systems – David Hoyle, Butterworth Heinemann limited, 2000             |                                                                                       |                                                      |                   |                         |  |  |  |  |
| 2. www.autosar.org                                                                           |                                                                                       |                                                      |                   |                         |  |  |  |  |
| Mode of Ev                                                                                   | aluat                                                                                 | ion: CAT / Assignment / Quiz / FAT / Project         | ct / Seminar      |                         |  |  |  |  |

| Mode of evaluation:             |            |      |            |  |  |  |  |
|---------------------------------|------------|------|------------|--|--|--|--|
| Recommended by Board of Studies | 12/09/2020 |      |            |  |  |  |  |
| Approved by Academic Council    | No. 59     | Date | 24/09/2020 |  |  |  |  |

| ECE6092                                                                                             | Intelligent IoT System Design                   | and A            | rchitect   | ure             | L T P J C       |  |  |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------|------------|-----------------|-----------------|--|--|
|                                                                                                     |                                                 |                  |            |                 |                 |  |  |
| Pre-                                                                                                | Nil                                             |                  |            |                 | Syllabus        |  |  |
| requisite                                                                                           |                                                 |                  | Version    |                 |                 |  |  |
|                                                                                                     | -                                               |                  |            |                 |                 |  |  |
| Course Objec                                                                                        | tives:                                          |                  |            |                 |                 |  |  |
| 1. To exp                                                                                           | lore the characteristics of the Internet of the | ngs ai           | nd its des | ign.            |                 |  |  |
| 2. To ena                                                                                           | ble the students to get familiar with lo1 arc   | hitect           | ure mode   | IS.             |                 |  |  |
| 3. To acq                                                                                           | uaint the students with various security con    | cepts            | and data   | analytics in tr | ie 101          |  |  |
| 4 To day                                                                                            | alan and danlay an IaT anahlad prototynas       | forro            | al lifa na |                 |                 |  |  |
| 4. 10 dev                                                                                           | elop and deploy an lor enabled prototypes       | 101 10           | ai-me us   | e cases.        |                 |  |  |
| Lipon complet                                                                                       | ion of this course, the student will be able t  | 0                |            |                 |                 |  |  |
| 1 Assimi                                                                                            | late the technologies that enable IoT and to    | inter            | pret the d | ifferent comp   | onents in IoT   |  |  |
| archite                                                                                             | cture.                                          | men              | prot the d |                 |                 |  |  |
| 2. Compr                                                                                            | ehend the concepts of edge computing a          | nd ed            | lge enabl  | ed solutions    | for real-time   |  |  |
| industr                                                                                             | ial applications.                               |                  | C          |                 |                 |  |  |
| 3. Envisio                                                                                          | on the IoT communication architecture mo        | dels a           | and the p  | rotocol stack   | for the cost-   |  |  |
| effectiv                                                                                            | e design of IoT applications on different place | latforr          | ns.        |                 |                 |  |  |
| 4. Interpr                                                                                          | et the security threats and to design a resilie | ent Io           | Γ Archite  | cture.          |                 |  |  |
| 5. Perceiv                                                                                          | e the data analytics tools and gain knowled     | lge to           | devise ar  | intelligent Io  | oT system.      |  |  |
| 6. Analyz                                                                                           | e cloud platform services to perform IoT d      | ata an           | alytics an | d               |                 |  |  |
| make t                                                                                              | he system intelligent.                          |                  |            |                 |                 |  |  |
| 7. Design                                                                                           | and develop smart lo1 prototypes for use of     | cases 1          | under dis  | cussion.        |                 |  |  |
| Module:1                                                                                            | 101 Essentials                                  | <b>4</b>         | nours      | La for on IoT   | a lution InT    |  |  |
|                                                                                                     | onment Need and goals IoT Architectu            | ro rof           | s, Planni  | adel Eurotio    | solution, lo I  |  |  |
| IoT- Commun                                                                                         | ication and security Model Service oriente      | ed arel          | hitecture  | Event-driven    | architecture    |  |  |
| Applications a                                                                                      | nd standards.                                   |                  | intecture, |                 | urenneeture,    |  |  |
|                                                                                                     |                                                 |                  |            |                 |                 |  |  |
| Module:2                                                                                            | Edge Computing                                  | 5                | hours      |                 |                 |  |  |
| Introduction to                                                                                     | Edge/Fog computing, Edge nodes and ga           | ateway           | y, Node t  | o edge interfa  | ces, Protocol   |  |  |
| and standards                                                                                       | for edge devices, IoT edge architecture,        | IoT              | supported  | l hardware- I   | Raspberry pi,   |  |  |
| ARM Cortex                                                                                          | Processors, Software Platforms for IoT          | Edge             | - Raspbi   | an Pi OS, R     | IOT, Python     |  |  |
| packages for e                                                                                      | dge computing, Edge security, Real time ap      | oplicat          | tions of e | dge computin    | g.              |  |  |
|                                                                                                     |                                                 | 1                | 1          | 1               | ſ               |  |  |
| Module:3                                                                                            | IoT Communication Architecture and              | 5                | hours      |                 |                 |  |  |
|                                                                                                     | Protocols                                       |                  | <u> </u>   |                 | 1 1 1 1 1 1 1 1 |  |  |
| Communication models for IoT, 6LoWPAN, IPv4/IPv6, IoT communication protocols - MQTT,               |                                                 |                  |            |                 |                 |  |  |
| COAP, LOKAWAN, KILS, KPL, Communication API's.                                                      |                                                 |                  |            |                 |                 |  |  |
| Madular                                                                                             | InT Committy and Driveou                        | 4                | hours      |                 |                 |  |  |
| INTOULIE:4                                                                                          | security challenges. IoT security prohitest     | <b>4</b><br>11re | A truet r  | nodel Rostria   | ting network    |  |  |
| access through security groups. Specific user access control. Data confidentiality and availability |                                                 |                  |            |                 |                 |  |  |
| User Authentication/Authorization methods. Block chain for IoT security and privacy                 |                                                 |                  |            |                 |                 |  |  |
|                                                                                                     | success radionization methods, block cham       | 101 10           | i securit  |                 | •               |  |  |
|                                                                                                     |                                                 |                  |            |                 |                 |  |  |

| Need for dat            | a analytics, Data generation, Data pre-prod     | cessin      | g, Handl   | ing imbalanced data sets,  |  |  |
|-------------------------|-------------------------------------------------|-------------|------------|----------------------------|--|--|
| Missing valu            | es, Outliers, Intelligent IoT systems –Superv   | ised a      | and Unsu   | pervised machine learning  |  |  |
| algorithms, I           | Deep learning for IoI- Predictive analytics,    | Pythe       | on functi  | ons and modules for data   |  |  |
| analytics, Big          | g Data analytics and frameworks.                |             |            |                            |  |  |
| Madada                  | Dete Angleting in Cloud                         | 4           | 1          |                            |  |  |
| Module:6                | Data Analytics in Cloud                         | 4           | nours      | 1-4                        |  |  |
| Layered cio             | for Data conter outomation Deal time alou       | y in ci     | loud for C | ata ala Al Samiana Data    |  |  |
| v intualization         | no Cloud data laka Exploratory data analysi     |             |            | s louis, AI Services-Data  |  |  |
|                         | ins, Cloud data lake, Exploratory data analysi  | s, Op       | en source  | e cloud platforms and      |  |  |
| services.               |                                                 |             |            |                            |  |  |
| Modulo, 7               | InT Anabitantura for apacific use apace         | 2           | hours      |                            |  |  |
| Roadman for             | applete loT solution Open source loT            | ⊿<br>plotfc |            | Colution to Health care    |  |  |
| A set a set i set i set | complete for solution, Open source for          |             | ornis, 101 | d Equation to Health care, |  |  |
| Automotive a            | applications, Smart 101 architecture for Retain | I, LOg      | gistics an | d Farming, Intelligent 101 |  |  |
| architecture            | for Home automation, Industry applications      | s, Sn       | nart city  | and other applications to  |  |  |
| cater the soci          | etal requirements.                              |             |            |                            |  |  |
|                         |                                                 | -           | -          | 1                          |  |  |
| Module:8                | Contemporary Issues                             | 2           | hours      |                            |  |  |
|                         | 1                                               |             | 1          |                            |  |  |
|                         | Total Lecture:                                  | 30          | hours      |                            |  |  |
| <b>Text Books:</b>      |                                                 |             |            |                            |  |  |
| 1. Arsho                | leep Bahga, Vijay Madisetti, "Internet of Thi   | ngs –       | A hands-   | -on approach",             |  |  |
| Unive                   | ersities Press, 2015.                           | -           |            |                            |  |  |
| 2. John                 | R. Vacca, "Cloud Computing Security: Found      | dation      | is and Ch  | allenges", CRC Press,      |  |  |
| 2016.                   |                                                 |             |            | -                          |  |  |
| 3. Dey, 1               | Hassanien, Bhatt, Ashour and Satapathy "Inte    | ernet       | of Things  | s and Big Data Analytics   |  |  |
| towar                   | ds Next-Generation Intelligence", Springer, 2   | 2018.       | -          |                            |  |  |
| <b>Reference B</b>      | ooks:                                           |             |            |                            |  |  |
| 1. Adria                | n McEwen & Hakim Cassimally, "Designing         | the I       | nternet of | f Things", Wiley, 2013.    |  |  |
| 2. Ovidi                | u Vermesan, Peter Friess, "Internet of Things   | s: Cor      | verging '  | Technologies for Smart     |  |  |
| Envir                   | onments and Integrated Ecosystems", River I     | Publis      | hers, 201  | 3.                         |  |  |
| 3. Olivie               | er Hersent, David Boswarthick, Omar Elloum      | ni, "Tł     | ne Interne | et of Things – Key         |  |  |
| applic                  | ations and Protocols", Wiley Publication, 20    | 12.         |            |                            |  |  |
| 4. Nick                 | Antonopoulos, Lee Gillam, "Cloud Computin       | ng: Pr      | inciples,  | Systems and                |  |  |
| Appli                   | cations", Springer, 2010.                       | U           | •          |                            |  |  |
| 5. Hwai                 | yu Geng, "Internet of Things and Data Analy     | tics H      | Iandbook   | ", Wiley Publishers, 2017. |  |  |
| 6. Rajku                | mar Buyya and Satish Narayana Srirama, "F       | og an       | d Edge C   | omputing: Principles and   |  |  |
| Parad                   | igms", Wiley series, 2019.                      | ·           | C          |                            |  |  |
| Mode of Eva             | luation: Continuous Assessment Test, Quiz,      | Digit       | tal Assign | nment and Final            |  |  |
|                         | Assessment Test.                                | C           | U          |                            |  |  |
| Typical Projects:       |                                                 |             |            |                            |  |  |
|                         |                                                 |             |            |                            |  |  |

4

hours

Smart Data Analytics

Module:5
- 1. Voice controlled home automation and security.
- 2. Vehicle tracking system.
- 3. Social network data analytics.
- 4. Secured edge computing with any major cloud platform.
- 5. Remote monitoring and sensing in agriculture.
- 6. Automatic parking system.
- 7. Smart retail management.
- 8. Predictive analytics in health care.
- 9. Warehousing and logistics system.
- 10. Water flow monitoring and management.

| Mode of Evaluation: Project Reviews I,II and III |                      |            |            |  |  |  |  |
|--------------------------------------------------|----------------------|------------|------------|--|--|--|--|
| Recommended by Board of Studies                  |                      | 12/09/2020 |            |  |  |  |  |
| Approved by Academic Council                     | No. 59 <sup>th</sup> | Date       | 24/09/2020 |  |  |  |  |

| Course Cod                                                                                                                                                                                                                         | e Course Title                                                    |               | L         | Т     | Р    | J    | С |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------|-----------|-------|------|------|---|--|--|
| ECE 6093                                                                                                                                                                                                                           | Advanced Machine Leaning and Deep I                               | Learning      | 3         | 0     | 0    | 0    | 3 |  |  |
| Pre-requisit                                                                                                                                                                                                                       | e Nil                                                             | S             | yllabus   | Ver   | sion | : 1. | 0 |  |  |
| Course Objectives:                                                                                                                                                                                                                 |                                                                   |               |           |       |      |      |   |  |  |
| The course is aimed at                                                                                                                                                                                                             |                                                                   |               |           |       |      |      |   |  |  |
| [1] Understanding about the fundamentals of machine learning and neural networks                                                                                                                                                   |                                                                   |               |           |       |      |      |   |  |  |
| [2] Enabling                                                                                                                                                                                                                       | he students to acquire knowledge about pattern re                 | cognition.    |           |       |      |      |   |  |  |
| [3] Motivatin                                                                                                                                                                                                                      | g the students to apply deep learning algorithms for              | or solving re | al life p | roble | ems. |      |   |  |  |
| Course Outc                                                                                                                                                                                                                        | omes (CO):                                                        |               |           |       |      |      |   |  |  |
| At the end of                                                                                                                                                                                                                      | the course the student will be able to                            |               |           |       |      |      |   |  |  |
| [1] Comprehe                                                                                                                                                                                                                       | [1] Comprehend the categorization of machine learning algorithms. |               |           |       |      |      |   |  |  |
| [2] Understan                                                                                                                                                                                                                      | d the types of neural network architectures, activa               | tion functio  | ns        |       |      |      |   |  |  |
| [3] Acquaint                                                                                                                                                                                                                       | with the pattern association using neural networks                |               |           |       |      |      |   |  |  |
| [4] Explore v                                                                                                                                                                                                                      | arious terminologies related with pattern recognition             | on            |           |       |      |      |   |  |  |
| [5] Adopt different feature selection and classification techniques                                                                                                                                                                |                                                                   |               |           |       |      |      |   |  |  |
| [6] Understand the architectures of convolutional neural networks                                                                                                                                                                  |                                                                   |               |           |       |      |      |   |  |  |
| [7] Comprehend advanced neural network architectures such as RNN, Autoencoders, and GANs.                                                                                                                                          |                                                                   |               |           |       |      |      |   |  |  |
| Module:1                                                                                                                                                                                                                           | Learning Problems and Algorithms                                  | 4 hours       |           |       |      |      |   |  |  |
| Various paradigms of learning problems, Supervised, Semi-supervised and Unsupervised algorithms                                                                                                                                    |                                                                   |               |           |       |      |      |   |  |  |
| Module:2                                                                                                                                                                                                                           | Neural Network – I                                                | 6 hours       |           |       |      |      |   |  |  |
| Differences between Biological and Artificial Neural Networks - Typical Architecture, Common<br>Activation Functions, Multi-layer neural network, Linear Separability, Hebb Net, Perceptron,<br>Adaline, Standard Back propagation |                                                                   |               |           |       |      |      |   |  |  |
| Module:3                                                                                                                                                                                                                           | Neural Network – II                                               | 6 hours       |           |       |      |      |   |  |  |
| Training Algo                                                                                                                                                                                                                      | prithms for Pattern Association - Hebb rule and De                | elta rule, He | tero asso | ociat | ive, | Auto | ) |  |  |
| associative, Kohonen Self Organising Maps, Examples of Feature Maps, Learning Vector                                                                                                                                               |                                                                   |               |           |       |      |      |   |  |  |
| Quantization,                                                                                                                                                                                                                      | Gradient descent, Boltzmann Machine Learning                      |               |           |       |      |      |   |  |  |

| Module:4                                                                                                                                              | Μ              | achine Learning: Terminologies                                                                           | 7 hours                         |                             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|--|
| Classifying                                                                                                                                           | San            | pples: The confusion matrix, Accuracy, Precis                                                            | sion, Recall                    | , F1- Score, the curse      |  |
| of dimensionality, training, testing, validation, cross validation, overfitting, under-fitting the                                                    |                |                                                                                                          |                                 |                             |  |
| data, early s                                                                                                                                         | stopp          | bing, regularization, bias and variance                                                                  |                                 |                             |  |
| Module:5                                                                                                                                              | M              | achine Learning: Feature Selection and                                                                   |                                 |                             |  |
|                                                                                                                                                       | C              | assification                                                                                             | 6 hours                         |                             |  |
| Feature Sele<br>trees, Naïve                                                                                                                          | ectic<br>e Bay | on, normalization, dimensionality reduction, C<br>yes, Binary classification, multi class classification | Classifiers: 1<br>ation, cluste | KNN, SVM, Decision<br>ring. |  |
| Module:6                                                                                                                                              | C              | onvolutional Neural Networks                                                                             | 7 hours                         |                             |  |
| Feed forward                                                                                                                                          | d ne           | tworks, Activation functions, backpropagation                                                            | on in CNN                       | , optimizers, batch         |  |
| normalization<br>of CNNs.                                                                                                                             | n, co          | nvolution layers, pooling layers, fully connection                                                       | cted layers,                    | dropout, Examples           |  |
| Module:7                                                                                                                                              | R              | NNs, Autoencoders and GANs                                                                               | 7 hours                         |                             |  |
| State, Structu                                                                                                                                        | ire o          | f RNN Cell, LSTM and GRU, Time distribute                                                                | d layers, Ge                    | enerating Text,             |  |
| Autoencoders                                                                                                                                          | s: Co          | onvolutional Autoencoders, Denoising autoenco                                                            | coders, Vari                    | ational autoencoders,       |  |
| GANs: The d                                                                                                                                           | liscri         | minator, generator, DCGANs                                                                               |                                 |                             |  |
| Module:8                                                                                                                                              | 0              | Contemporary issues:                                                                                     | 2 hours                         |                             |  |
|                                                                                                                                                       |                |                                                                                                          | Tota                            | ll Lecture hours: 45 hrs    |  |
| Text Book(                                                                                                                                            | (s)            |                                                                                                          |                                 |                             |  |
| 2 1 5 0                                                                                                                                               | Ion            | C T Sun E Migutoni Nouro Euggu and                                                                       | l Soft Com                      | auting A                    |  |
| 5. J. S. K. Jang, C. I. Sun, E. Mizutani, Neuro Fuzzy and Soft Computing - A<br>Computational Approach to Learning and Machine Intelligence 2012, PHI |                |                                                                                                          |                                 |                             |  |
| learning                                                                                                                                              |                |                                                                                                          |                                 |                             |  |
| 4. Deep Learning, Ian Good fellow, Yoshua Bengio and Aaron Courville, MIT Press, ISBN:                                                                |                |                                                                                                          |                                 |                             |  |
| 9780262035613, 2016.                                                                                                                                  |                |                                                                                                          |                                 |                             |  |
| Reference l                                                                                                                                           | Bool           | ΣS                                                                                                       |                                 |                             |  |
| 6. The E                                                                                                                                              | leme           | ents of Statistical Learning. Trevor Hastie, Rol                                                         | bert Tibshir                    | ani and Jerome              |  |
| Friedi<br>7 Patter                                                                                                                                    | man.<br>n Re   | Second Edition. 2009.                                                                                    | Bishon Sn                       | ringer 2006                 |  |
| 8. Understanding Machine Learning. Shai Shalev-Shwartz and Shai Ben-David. Cambridge                                                                  |                |                                                                                                          |                                 |                             |  |
| Unive                                                                                                                                                 | ersity         | Press. 2017.                                                                                             |                                 |                             |  |
| Assessment                                                                                                                                            | t Tes          | ation: Continuous Assessment Test, Quiz, Dig<br>t.                                                       | gital Assign                    | ment, Final                 |  |
| Recommend                                                                                                                                             | ded l          | by Board of Studies : 12/09/2020                                                                         |                                 |                             |  |
| Approved by                                                                                                                                           | Aca            | idemic Council : 59 <sup>th</sup>                                                                        | Dat                             | e : 24/09/2020              |  |
| Course code                                                                                                                                           | ;              | Scripting Languages For Design                                                                           | Automatio                       | n LTPJC                     |  |

| ECE 6094             |                                                            |                  | 2 0 2 0 3              |
|----------------------|------------------------------------------------------------|------------------|------------------------|
| Pre-requisite        | ECE5043 Embedded Programming                               |                  | Syllabus version       |
|                      |                                                            |                  | v. 1.0                 |
| Course Obje          | ctives :                                                   |                  |                        |
| The course is        | aimed to motivate the students to                          |                  |                        |
| 1. Work              | in LINUX environment.                                      |                  |                        |
| 2. Devel             | op the PERL scripts                                        |                  |                        |
| 3. Devel             | op the TCL & TK scripts for automation                     |                  |                        |
| 4. Devel             | op the python scripts for automation                       |                  |                        |
| Expected Co          | una Outcomo e                                              |                  |                        |
| Expected CO          | the course the students will be able to                    |                  |                        |
| At the end of $1$    | rehand <b>PEPI</b> . Concerns and its range of application | a to which the   | y or a guitad          |
| 1. Comp              | on skills and understanding DERI                           | is to which the  | y are surred           |
| 2. Devel<br>3. Under | estanding the basics of TCL scripts                        |                  |                        |
| 4 Comr               | rehend the concept of Tk                                   |                  |                        |
| 5 Get ir             | troduced to Python Programming                             |                  |                        |
| 6 Devel              | on programming skills on python functions                  |                  |                        |
| 7. Under             | standing the OOP and exception Handling using p            | vthon            |                        |
| 8. Exper             | tise in Scripting language                                 | ,                |                        |
| Module:1             | PERL                                                       | 4 hours          |                        |
| History and (        | Concepts of PERL - Scalar Data - Arrays and List           | Data - Control   | structures – Hashes -  |
| Basics I/O - I       | Regular Expressions – Functions - Miscellaneous co         | ontrol structure | s - Formats.           |
|                      |                                                            |                  |                        |
| Module:2             | Advanced Topics in PERL                                    | 4 hours          |                        |
| Directory acc        | ess - File and Directory manipulation - Process Ma         | nagement - Pac   | ckages and Modules.    |
|                      |                                                            | 1                |                        |
| Module:3             | <u>rcl</u>                                                 | 4 hours          |                        |
| An Overview          | of TCL and TK -TCL Language syntax - Varial                | bles – Expressi  | ions – Lists - Control |
| flow – procee        | ures - Errors and exceptions - String manipulations        | 8.               |                        |
|                      |                                                            |                  | 1                      |
| Module:4             | Advanced Topics in TCL                                     | 4 hours          |                        |
| Accessing fil        | es- Processes. Applications - Controlling Tools - Ba       | asics of TK.     |                        |
|                      |                                                            |                  |                        |
| Module:5             | Python                                                     | 4 hours          |                        |
| Introduction         | to Python, Objects: strings, lists, dictionary, tuple,     | files, Looping   | constructs             |
| Madulad              | Dethans Frenchions and Madulas                             | 1 h anna         |                        |
| Eurotional h         | rython: Functions and Modules nockages (interm             | + nours          | decomptons             |
| Functions: C         | asies, scope, arguments, Modules: packages (mem            | and external     | ), decorators          |
| Modulo.7             | Duthan, OOD and Examplian Uandling                         | 1 hours          |                        |
| OOP: class           | y operator overloading designing with classe               | + nours          | avantion objects       |
| designing w          | th exceptions. Meta classes                                | s, Exceptions.   | exception objects,     |
|                      | ווו כתכברווסווס, ויוכומ-כומסספס                            |                  |                        |
| Module 8             | Contemporary issues:                                       | 2 hours          |                        |
| 1000010.0            | Company address                                            |                  |                        |
|                      | Fotal Lecture hours:                                       | 30 hours         |                        |
|                      | - viui 2/viui v 11vul 9i                                   |                  |                        |

| Ref  | erence Books                                                                                                                              |          |  |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|--|
| 1.   | Guido van Rossum Fred L. Drake, Jr., editor, "Python Tutorial Release 3.2.3", 2012                                                        | 2.       |  |  |  |  |  |
| 2.   | Larry Wall, Tom Christiansen, John Orwant, "Programming PERL", Oreilly Publications,<br>Fourth Edition, 2012.                             |          |  |  |  |  |  |
| 3.   | John K. Ousterhout, Ken Jones, "TCL and the TK Toolkit", Pearson Education, Second Edition, 2010.                                         |          |  |  |  |  |  |
| 4.   | Eric Matthes, "Python Crash Course: A Hands-on, Project-based Introduction to Programming",                                               |          |  |  |  |  |  |
|      | Second Edition, No starch press, 2019                                                                                                     |          |  |  |  |  |  |
| Мо   | de of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar                                                                       |          |  |  |  |  |  |
| List | t of Challenging Experiments (Indicative)                                                                                                 |          |  |  |  |  |  |
| 1.   | PERL:                                                                                                                                     | 8 hours  |  |  |  |  |  |
|      | • Write a script that computes the average of each column in a table of data                                                              |          |  |  |  |  |  |
|      | • Write a script extracts a subset of docs from a database                                                                                |          |  |  |  |  |  |
|      | • Write a script does "string replacement" on the standard input                                                                          |          |  |  |  |  |  |
| 2.   | TCL/TK:                                                                                                                                   | 8 hours  |  |  |  |  |  |
|      | • Develop a clock that shows time either analog or digital                                                                                |          |  |  |  |  |  |
|      | • Develop a small calculator in Tcl/Tk. In addition to the buttons on screen, use any of expr's other functionalities via keyboard input. |          |  |  |  |  |  |
|      | • Write a script that allows doodling (drawing with the mouse)                                                                            |          |  |  |  |  |  |
| 3.   | Python:                                                                                                                                   | 8 hours  |  |  |  |  |  |
|      | • Python Implementation of Mutual-Exclusion (MUTEX algorithm) for                                                                         |          |  |  |  |  |  |
|      | Embedded operating systems                                                                                                                |          |  |  |  |  |  |
|      | Python Implementation of Round Robin Scheduling for Embedded OS                                                                           |          |  |  |  |  |  |
| 4.   | Verification automation tool development using Perl/Python scripts                                                                        | 6 hours  |  |  |  |  |  |
| Tot  | al Laboratory Hours                                                                                                                       | 30 hours |  |  |  |  |  |
| Mo   | de of evaluation: Continuous Lab Assessment                                                                                               |          |  |  |  |  |  |
| Rec  | commended by Board of Studies 12/09/2020                                                                                                  |          |  |  |  |  |  |
| App  | proved by Academic Council No. 59 <sup>th</sup> Date 24/09/2020                                                                           |          |  |  |  |  |  |

| <b>Course Code</b> | Course Title                      |                      |  | Т | Р | J | С |
|--------------------|-----------------------------------|----------------------|--|---|---|---|---|
| CSE6052            | PARALLEL PROCESSING AND COMPUTING |                      |  | 0 | 0 | 0 | 3 |
| Pre-requisite      | Nil                               | Syllabus Version : 1 |  |   |   |   |   |
| Course Objectives: |                                   |                      |  |   |   |   |   |

The course is aimed at [1] Teaching the students to understand the scope, design and model of parallelism and to know the parallel computing architecture [2]Teaching students to do analytical modelling and performance of parallel programs [3]Teaching students to solve a complex problem with message passing model [4] Programming with CUDA and analyse complex problems with shared memory programming **Course Outcomes (CO):** At the end of the course the student will be able to [1] Understand the fundamentals of parallel processing [2] Illustrate the scheduling loops and process execution [3] Realize the parallel system architecture with CUDA [4] Comprehend the kernel based parallel programming concepts [5] Apply the performance consideration for parallel processing [6] Analyse various parallel computation patterns [7] Perform spare matrix vector multiplications **Introduction to Parallel Processing** Module:1 5 hours Parallel processing - Concepts and Terminology- Parallel Computer Memory Architectures -Parallel Programming Models - Designing Parallel Programs- Performance Analysis Module:2 **Shared Memory Programming** 6 hours Processes and Threads - Scope of Variables - Reduction Clause - Directives - Scheduling Loops -Caches, Cache coherence and False Sharing - Thread Safety - Examples: Bubble-sort, Odd- even transposition sort Module:3 **Parallel Computing** 6 hours Portability and Scalability- Introduction to CUDA, Data Parallelism and Threads-Memory Allocation and Data Movement API- Kernel-Based SPMD Parallel Programming-Kernel based Parallel Programming, Multidimensional Kernel Configuration- Basic Matrix-Matrix Multiplication **Kernel-Based Parallel Programming** Module:4 6 hours Thread Scheduling-Control Divergence- Memory Model and Locality - CUDA Memories-Tiled Parallel Algorithms- Tiled Matrix Multiplication- Tiled Matrix Multiplication Kernel-Handling Boundary Conditions in Tiling-- A Tiled Kernel for Arbitrary Matrix Dimensions **Performance Considerations** Module:5 6 hours Warps and Thread execution - Global Memory Bandwidth - DRAM Bandwidth -Memory Coalescing -Dynamic partition of execution resources **Parallel Computation Patterns** Module:6 8 hours Convolution- Tiled Convolution- 2D Tiled Convolution Kernel- Data Reuse in Tiled Convolution-Reduction- A Basic Reduction Kernel- Scan (Prefix Sum) - A Work-Inefficient Scan Kernel- A Work-Efficient Parallel Scan Kernel Sparse Matrix Vector Multiplication Module:7 6 hours Parallel SpMV Using CSR-Padding and Transposition-Using Hybrid to Control Padding-Sorting and Partitioning for Regularization Module:8 **Contemporary issues:** 2 hours **Total Lecture hours: 45 hrs Text Book(s)** 1. Ananta Grama, Anshul Gupta, George Karypis, Vipin Kumar, Introduction to Parallel Computing, 2011, Second Edition, Addison Wesley Professional, UK. 2. David B. Kirk and Wen-mei W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach, 2016, Third Edition, Morgan Kaufmann Publishers, US.

## **Reference Books**

1. Pacheco, Peter. An Introduction to Parallel programming, 2011, First Edition, Morgan Kaufmann Publishers, USA

Mode of Evaluation: Continuous Assessment Test, Quiz, Digital Assignment, Final Assessment Test.

Recommended by Board of Studies : 27/02/2016

Approved by Academic Council : No. 40 Date : 18/03/2016