

SCHOOL OF ELECTRONICS ENGINEERING

M. Tech Internet of Things & Sensor Systems

(M.Tech MTS)

Curriculum (2024-25 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international, industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

To be a leader by imparting in-depth knowledge in Electronics Engineering, nurturing engineers, technologists and researchers of highest competence, who would engage in sustainable development to cater the global needs of industry and society.

MISSION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

- Create and maintain an environment to excel in teaching, learning and applied research in the fields of electronics, communication engineering and allied disciplines which pioneer for sustainable growth.
- Equip our students with necessary knowledge and skills which enable them to be lifelong learners to solve practical problems and to improve the quality of human life.

M. Tech Internet of Things & Sensor Systems

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems
- Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry
- 3. Graduates will function in their profession with social awareness and responsibility
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country
- 5. Graduates will be successful in pursuing higher studies in engineering or management
- 6. Graduates will pursue career paths in teaching or research

M. Tech Internet of Things & Sensor Systems

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment

PO_03: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information

PO_04: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice

PO_05: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems

PO_06: Having adaptive thinking and adaptability in relation to environmental context and sustainable development

PO_07: Having a clear understanding of professional and ethical responsibility

PO_08: Having a good cognitive load management skills related to project management and finance

M. Tech Internet of Things & Sensor Systems

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (Internet of Things & Sensor Systems) programme, graduates will be able to

- PSO1: Competent, and innovative with a strong cognizance in the area of sensors, IoT, data science, controllers and signal processing through the application of acquired knowledge and skills
- PSO2: Apply advanced techniques and tools of sensing and computation to solve multi-disciplinary challenges in industry and society.
- PSO3: To exhibit independent and collaborative research with strategic planning, while demonstrating the professional and ethical responsibilities of the engineering profession.

	Category Cred	t Detail	
SI.No.	Description	Credits	Maximum Credit
1	DC - Discipline Core	24	24
2	DE - Discipline Elective	12	12
3	PI - Projects and Internship	26	26
4	OE - Open Elective	3	3
5	SE - Skill Enhancement	5	5
	Total Credits	70	

		Discipline Core				_	_		
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	т	Ρ	J	Credits
1	MITS507L	Signal Processing and Data Analytics	Theory Only	1.0	3	0	0	0	3.0
2	MITS509L	Sensor Technology and Data Acquisition	Theory Only	1.0	3	0	0	0	3.0
3	MITS509P	Sensor Technology and Data Acquisition Lab	Lab Only	1.0	0	0	2	0	1.0
4	MITS510L	IoT Architecture	Theory Only	1.0	3	0	0	0	3.0
5	MITS510P	IoT Architecture Lab	Lab Only	1.0	0	0	2	0	1.0
6	MITS511L	Microsystems Fabrication Technology	Theory Only	1.0	3	0	0	0	3.0
7	MITS512L	Microcontrollers and Interfacing	Theory Only	1.0	3	0	0	0	3.0
8	MITS512P	Microcontrollers and Interfacing Lab	Lab Only	1.0	0	0	2	0	1.0
9	MITS513L	Wireless Sensor Networks and Data Communication	Theory Only	1.0	3	0	0	0	3.0
10	MITS514L	Robotics and Control Systems	Theory Only	1.0	2	0	0	0	2.0
11	MITS514P	Robotics and Control Systems Lab	Lab Only	1.0	0	0	2	0	1.0

		Discipline Electiv	ve						
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	т	Р	J	Credits
1	MEDS501L	Embedded System Design	Theory Only	1.0	3	0	0	0	3.0
2	MEDS601L	Electromagnetic Interference and Compatibility	Theory Only	2.0	3	0	0	0	3.0
3	MEIC506L	Wireless Communications	Theory Only	1.0	3	0	0	0	3.0
4	MITS601L	Flexible and Wearable Sensors	Theory Only	1.0	3	0	0	0	3.0
5	MITS603L	Chemical and Environmental Sensor	Theory Only	1.0	3	0	0	0	3.0
6	MITS604L	Cloud and Fog Computing	Theory Only	1.0	3	0	0	0	3.0
7	MITS605L	IoT Security and Trust	Theory Only	1.0	3	0	0	0	3.0
8	MITS608L	RF and Microwave Sensors	Theory Only	1.0	3	0	0	0	3.0
9	MITS611L	Automotive Sensors and In-Vehicle Networking	Theory Only	1.0	3	0	0	0	3.0
10	MITS612L	Fibre Optic Sensors and Photonics	Theory Only	1.0	3	0	0	0	3.0
11	MITS613L	System-on-chip	Theory Only	1.0	3	0	0	0	3.0
12	MITS614L	Deep Learning	Theory Only	1.0	3	0	0	0	3.0
13	MITS615L	Web Design and Development	Theory Only	1.0	3	0	0	0	3.0
14	MITS616L	Edge and Distributive Computing	Theory Only	1.0	3	0	0	0	3.0

	Projects and Internship										
sl.no	Course Code	Course Title	Course Type	Ver sio	L	т	Ρ	J	Credits		
				n							
1	MITS698J	Internship I/ Dissertation I	Project	1.0	0	0	0	0	10.0		
2	MITS699J	Internship II / Dissertation II	Project	1.0	0	0	0	0	12.0		
3	MSET695J	Project Work	Project	1.0	0	0	0	0	4.0		

	Open Elective										
sl.no	Course Code	Course Title	Course Type	Ver	L	т	Ρ	J	Credits		
				sio n							
1	MFRE501L	Francais Fonctionnel	Theory Only	1.0	3	0	0	0	3.0		
2	MGER501L	Deutsch fuer Anfaenger	Theory Only	1.0	3	0	0	0	3.0		
3	MSTS601L	Advanced Competitive Coding	Soft Skill	1.0	3	0	0	0	3.0		

	Skill Enhancement										
sl.no	Course Code	Course Title	Course Type	Ver sio	L	т	Ρ	J	Credits		
				n							
1	MENG501P	Technical Report Writing	Lab Only	1.0	0	0	4	0	2.0		
2	MSTS501P	Qualitative Skills Practice	Soft Skill	1.0	0	0	3	0	1.5		
3	MSTS502P	Quantitative Skills Practice	Soft Skill	1.0	0	0	3	0	1.5		

Course Code	Course Title	L	Т	Ρ	С
MITS507L	Signal Processing and Data Analytics	3	0	0	3
Pre-requisite		-	abus	ver	sion
		- j	1.		
Course Obje	ctives:			•	
1. To in	troduce the concepts of discrete time signal proce	essing	an	d th	ie
2. To pr	resent the basic theory of modeling the signals and ating theunknowns using prediction filters	the	metl	hods	of
3. To pro	ovide a comprehensive understanding on applying FFT, D ettechniques for extracting the signal features.	OCT, a	and		
	bvide an overview of analysing big data using intelligent to	echnia	nues	and	an
in-dep	th introduction to two main areas of Machine Learning ervised.				
Course Outco					
1. Apply	FFT, DCT wavelet techniques for extracting the features fro	om the	e big	data	ı]
	op algorithms that can be used to analyse the real-wor ariatetime series data.	'ld un	ivaria	ate a	and
3. Design proces	n an approach to leverage data using the steps in the	e mac	hine	lear	rning
4. Under	stand and apply both supervised and unsupervised classi	ficatio	on m	etho	ds
	ectand characterize patterns in real-world data.				
	ate the signal parameters and identify the model using s andprediction filters.	g ari	VIA		
	stand the methods of visualization and analysis of big data.				
Module:1 D	iscrete Random Signal Processing			7 h	ours
	cesses, Ensemble Average, Gaussian Process, Multi	varia	te G	auss	ssian
	tionary process, Autocorrelation, Auto Covariance, Ergoo um,Filtering of Random Process	dicity,	Whi	ite n	oise,
	ignal Modeling			6 h	ours
ARMA, AR, M	IA Models. Wiener filter, Linear prediction, Kalman Filter.				
Module:3 F	eature extraction			6 h	ours
FFT, Power s	pectrum, DCT, filter banks, Wavelet, Wavelet Packets, Cep	ostrum	l		
Module:4 T	ime series analysis			6 h	ours
•	is, Univariate time series analysis, Multivariate time se	eries	analy	ysis,	non
stationary tim	e series.				
Module:5 R	eduction of dimensionality			6 h	ours
Bayesian dec	ision, Linear discrimination, Principal Component analysis,	SVD	, Ind	epen	Ident
Component A	· · · ·				
Module:6 N	lachine learning			6 h	ours
	arning, generative algorithms, Support Vector machines, U	nsupe	ervise		
learning, K m	eans clustering, Neural network (SOM, ART), Expectation	naxin	nizati	on.	

Module:7	Big Data Analytics				6 hours
	n Big data analytics, visualiza			basic and inf	termediate
	near and logistic regression,	decision tree	9.		
Module:8	Contemporary Issues				2 hours
			Tota	al Lecture:	45 hours
Text Book	(s)				
	G. Proakis, DG. Manolał				
prin	ciples, algorithms and applica	ations", 2012	l, 4 th ed., Pers	on education,	, USA.
2. Sop	hocles J. Orfanidis, "Inrodu	iction to sigr	nal Processing	g"2010, 2 nd	ed., Prentice
Hal	, NewDelhi India.				
Reference	Books				
	penhiem V. A.V and Schaffe		crete- time sig	nal Processir	ng", 2014, 3 ^{ra}
	Prentice Hall,. New Delhi, Ir				
	mas A. Runkler, "Data Ana			ithms for Int	elligent Data
	llysis", 2016, 2 nd ed., Springe				0040 4 st
	in P. Murphy, "Machine Lo	earning: A H	Probabilistic F	erspective"	2012, 1
,	MITPress, USA				
	aluation: CAT / Assignment /				
	,	28-07-2022			
Approved by	Academic Council	No. 67	Date	08-08-2022	

Course Code	Course Title	L	Т	P	С		
MITS509L	Sensor Technology and Data	3 0 0 3					
	Acquisition						
Pre-requisite	NIL	Syl	labus	vers	sion		
•				0			
Course Objec	tives						
	vide in depth knowledge in physical principles	applie	ed in	sens	ing,		
	rement and a comprehensive understanding on						
system	s are designed, calibrated, characterized, and a	nalyz	ed.				
	oduce the students to sources and detectors of						
	g mechanismsand provide in-depth understandir						
	surement, and theory of instruments and sense	ors fo	r mea	asurir	ıg		
	and acceleration						
	e a fundamental knowledge on the basic laws a		nenor	nena	on		
	operation of sensor transformation of energy is ba						
	art a reasonable level of competence in the desi						
	ecution of mechanical measurements strain, fo	orce,	torqu	e an	a		
pressure							
 To explore the fundamentals of data acquisition using sensors, NI data acquisition hardware, and LabVIEW. 							
Course Outco							
	procepts in common methods for converting a p	hysid	al na	aramo	ator		
	electrical quantity	JIIJJI	u pu	inanno			
	e an appropriate sensor comparing differer	nt st	andar	ds a	and		
	nes to make sensitive measurements of physic						
	re, flow, acceleration, etc.	I					
3. Design	and develop sensors using optical methods with	ı desi	red p	roper	ties		
4. Evalua	te performance characteristics of different types	of sei	nsors	-			
	different types of sensors used in real life appl	icatio	ns ar	nd			
	rase theirimportance						
	analytical design and development solutions for						
	velop PC-based data acquisition and signal cond				<i>c</i>		
	te in the design, construction, and execution				for		
	ring physical quantities and develop virtual exper	Imen	t moc				
	nsor fundamentals, characteristics and data quisition			0 110	ours		
	fication, Performance and Types, Error Analy	vsis	hara	L Cteris	stics		
	data acquisition, Virtual instrumentation, Princip	,					
	ifferential and instrumentation amplifiers, I to V a						
	omparators, DACs, ADCs, Sample and hold.						
	tical Sources and Detectors			4 ho	ours		
Electronic an	d Optical properties of semiconductor as	sen	sors,	LE	ED,		
Semiconductor	lasers, Fiber optic sensors, Thermal detectors,	Phot	o mu	Itiplie	rs,		
	e detectors, Photodiodes, Avalanche photodiode		CDs.				
	tensity Polarization and Interferometric Sens				ours		
	sor, Microbending concept, Interferometers,						
	ory Perot and Sagnac, Phase sensor: Phase determined and Sagnac, Phase determined and Sagnac, Phase determined and Sagnac dete	ectior	ı, Pol	arizat	tion		
maintaining fib							
Module:4 Str	ain, Force, Torque and Pressure sensors and	data	3	8 ho	ours		

	tion techniques.								
	gage beam force sensor, piezoelectric force sensor, l								
	co-resistive and capacitive pressure sensor, optoe								
pressure sensors,	vacuum sensors. Design of signal conditioning cire	cuits for							
	zo, capacitance and optoelectronics sensors, Des								
development of da	ta acquisition systems for strain, force, pressure ar	nd piezo							
sensors.									
Module:5 Positio	n, Direction, Displacement and Level Sensors	8 hours							
	ta acquisition techniques.								
Potentiometric and	capacitive sensors, Inductive and magnetic sensor	or, LVDT,							
RVDT, eddy curi	rent, transverse inductive, Hall effect, magneto	resistive,							
	ensors. Fiber optic liquid level sensing, Fabry Perc								
ultrasonic sensor, capacitive liquid level sensor. Signalcondition circuits for reactive									
and self generating sensors. Design and development of data acquisition systems									
for position, direction, displacement and level sensors.									
	ty and Acceleration sensors	4 hours							
Electromagnetic v	elocity sensor, Doppler with sound, light, Acce								
	acitive, piezo-resistive, piezoelectric accelerometer								
accelerometer, rotor, monolithicand optical gyroscopes.									
Module:7 Flow	Temperature and Acoustic sensors and data	7 hours							
	sition techniques	7 11001 3							
	essure gradient technique, thermal transport, u	ultrasonic							
	idLaser anemometer. microflow sensor, coriolis mass								
	r. Temperature sensors- thermoresistive, therm								
	optical. Piezoelectric temperature sensor. Acoustic								
	ve, capacitive, piezoelectric, fiber optic, solid state -								
	in and development of data acquisition system								
	oustic sensors. Development of sensor systems using								
case studies	ouslic sensors. Development of sensor systems using								
	ontemporary Issues	2 hours							
	Total Hours	45 hours							
Taxt Book(c)		45 HOUI 5							
Text Book(s)	a "lland Dook of Madarn Canaara, physica, Doo								
	n, "Hand Book of Modern Sensors: physics, Desi	ianc and							
	2015, 3 rd edition, Springer, New York.	igns and							
2. Jon. S. Wilson	a "Concor Technology Llond Deck" 2011 1st edition	•							
	n, "Sensor Technology Hand Book", 2011, 1 st edition	•							
Netherland.	n, "Sensor Technology Hand Book", 2011, 1 st edition	•							
Netherland. Reference Books		, Elsevier,							
Netherland.Reference Books1.GerdKeiser,"Contemporation	Optical Fiber Communications", 2017, 5 th edition, Mo	, Elsevier,							
Netherland. Reference Books 1. GerdKeiser,"C Science, Delh	Optical Fiber Communications", 2017, 5 th edition, Mo	, Elsevier, cGraw-Hill							
Netherland.Reference Books1.GerdKeiser, "CScience, Delh2.John G Webs	Optical Fiber Communications", 2017, 5 th edition, Mo i. ster, "Measurement, Instrumentation and sensor Ha	, Elsevier,							
Netherland.Reference Books1.GerdKeiser,"CScience, Delh2.John G Webs2017, 2 nd edit	Dptical Fiber Communications", 2017, 5 th edition, Mo i. ster, "Measurement, Instrumentation and sensor Ha i.ion,CRC Press, Florida.	, Elsevier, cGraw-Hill andbook",							
Netherland.Reference Books1.GerdKeiser, "CScience, Delh2.John G Web2017, 2 nd edit3.Eric Udd and	Dptical Fiber Communications", 2017, 5 th edition, Mo i. ster, "Measurement, Instrumentation and sensor Ha ion,CRC Press, Florida. d W.B. Spillman, "Fiber optic sensors: An introdu	, Elsevier, cGraw-Hill andbook",							
Netherland.Reference Books1.GerdKeiser, "CScience, Delh2.John G Web2017, 2 nd edit3.Eric Udd and engineers and	Optical Fiber Communications", 2017, 5 th edition, Mo i. ster, "Measurement, Instrumentation and sensor Ha ion,CRC Press, Florida. d W.B. Spillman, "Fiber optic sensors: An introdu dscientists", 2013, 2 nd edition, Wiley, New Jersey.	, Elsevier, cGraw-Hill andbook", action for							
Netherland.Reference Books1.GerdKeiser, "CScience, Delh2.John G Web2017, 2 nd edit3.Eric Udd and engineers and	Dptical Fiber Communications", 2017, 5 th edition, Mo i. ster, "Measurement, Instrumentation and sensor Ha ion,CRC Press, Florida. d W.B. Spillman, "Fiber optic sensors: An introdu	, Elsevier, cGraw-Hill andbook", action for							
Netherland.Reference Books1.GerdKeiser, "CScience, Delh2.John G Webs2017, 2 nd edit3.Eric Udd and engineers and4.Bahaa E. A.	Dptical Fiber Communications", 2017, 5 th edition, Mo i. ster, "Measurement, Instrumentation and sensor Ha ion,CRC Press, Florida. d W.B. Spillman, "Fiber optic sensors: An introdu dscientists", 2013, 2 nd edition, Wiley, New Jersey. Saleh and Malvin Carl Teich, "Fundamentals of ph	, Elsevier, cGraw-Hill andbook", action for							
Netherland.Reference Books1.GerdKeiser, "CScience, Delh2.John G Webs2017, 2 nd edit3.Eric Udd and engineers and4.Bahaa E. A. 2012, 1 st edit	Dptical Fiber Communications", 2017, 5 th edition, Mo i. ster, "Measurement, Instrumentation and sensor Ha ion,CRC Press, Florida. d W.B. Spillman, "Fiber optic sensors: An introdu dscientists", 2013, 2 nd edition, Wiley, New Jersey. Saleh and Malvin Carl Teich, "Fundamentals of ph ion, John Wiley, New York.	, Elsevier, cGraw-Hill andbook", iction for notonics",							
Netherland.Reference Books1.GerdKeiser, "CScience, Delh2.John G Web2017, 2 nd edit3.Eric Udd and engineers and4.Bahaa E. A. 2012, 1 st editMode of Evaluation	Dptical Fiber Communications", 2017, 5 th edition, Mo i. ster, "Measurement, Instrumentation and sensor Ha ion,CRC Press, Florida. d W.B. Spillman, "Fiber optic sensors: An introdu dscientists", 2013, 2 nd edition, Wiley, New Jersey. Saleh and Malvin Carl Teich, "Fundamentals of ph ion, John Wiley, New York. : CAT, Digital Assignments, Quiz, Online course, Pap	, Elsevier, cGraw-Hill andbook", iction for notonics",							
Netherland.Reference Books1.GerdKeiser, "CScience, Delh2.John G Webs2017, 2 nd edit3.Eric Udd and engineers and4.Bahaa E. A. 2012, 1 st editMode of Evaluation publication, Projects	Dptical Fiber Communications", 2017, 5 th edition, Mo i. ster, "Measurement, Instrumentation and sensor Ha ion,CRC Press, Florida. d W.B. Spillman, "Fiber optic sensors: An introdu dscientists", 2013, 2 nd edition, Wiley, New Jersey. Saleh and Malvin Carl Teich, "Fundamentals of ph ion,John Wiley, New York. : CAT, Digital Assignments, Quiz, Online course, Pap s,Hackathon/Makeathon and FAT.	, Elsevier, cGraw-Hill andbook", iction for notonics",							
Netherland.Reference Books1.GerdKeiser, "CScience, Delh2.John G Web2017, 2 nd edit3.Eric Udd andengineers and4.Bahaa E. A.2012, 1 st editMode of Evaluation	Optical Fiber Communications", 2017, 5th edition, Main ister, "Measurement, Instrumentation and sensor Hation, CRC Press, Florida. d W.B. Spillman, "Fiber optic sensors: An introduction decientists", 2013, 2nd edition, Wiley, New Jersey. Saleh and Malvin Carl Teich, "Fundamentals of phion, John Wiley, New York. : CAT, Digital Assignments, Quiz, Online course, Paps, Hackathon/Makeathon and FAT. Board of Studies 07-06-2023	, Elsevier, cGraw-Hill andbook", iction for notonics",							

Course Code	Course Title	L	Т	Ρ	С			
MITS509P	Sensor Technology and Data Acquisition	0	0	2	1			
	Lab							
Pre-requisite	NIL	Svl	labus	vers	ion			
			1		-			
Course Object	Ves			-				
	de in depth knowledge in physical principles	applie	ed in	sensi	na.			
measure	ment and a comprehensive understanding on	how	meas	urem	ent			
	are designed, calibrated, characterized, and an							
2. To introduce the students to sources and detectors of various Optical								
	nechanismsand provide in-depth understandin							
	ment, and theory of instruments and sensors for							
and acce				•	5			
3. To give a	a fundamental knowledge on the basic laws a	and p	henor	nena	on			
which op	eration of sensor transformation of energy is ba	sed.						
4. To impar	t a reasonable level of competence in the desig	n, cor	istruc	tion, a	and			
execution	n of mechanical measurements strain, force, to	rque a	and pi	ressu	е			
Course Outcor	nes							
1. Choose a	an appropriate sensor comparing different stand	ards a	and gi	uidelir	nes			
to make s	sensitive measurements of physical parameters	like p	pressi	ure, flo	OW,			
accelerat	ion, etc.							
2. Design a	nd develop sensors using optical methods with	desir	ed pro	operti	es			
	performance characteristics of different types of							
	different types of sensors used in real life	e app	olicatio	ons a	and			
	se their importance							
	different types of data acquisition and identify th							
	surements. Develop integrated, high-performation	nce da	ata ac	quisit	ion			
	that produce accurate measurements							
	lata from sensors, such as thermocouples and				ing			
	nardware and analyze the results in LabVIEW a							
	lvanced understanding of LabVIEW and the	NI-D	AQm	(API	to			
create ap	plications							
Indicative Expe								
	signal conditioning circuits for strain gauges- S	Strain	Forc	æ,				
	nd torque measurement							
	in measurement with Bridge Circuit							
	m force sensor using Strain Gauge Bridge							
	m deflection sensing with Strain Gauge Bridge							
	ohragm pressure sensor using Strain Gauge Br		0					
V. She	ar strain and angle of shift measurement of hol	IOW SI	nart					
					•			
	bleting the 1 st set of characteristics. Design a	•	•					
•	nge of 0-5 Kg with a sensitivity of 5 mg. What							
	ochange the upper range to 100 Kg with a sen							
2. Develop a	displacement measurement system with the fol	lowin	g sen	sors:				
	i. Inductive transducer (LVDT)							
	ii. Hall effect sensor							

3.	After studying the characteristics a temperature measurement sy							
	suitablesensor.		inticular app	lication using the				
		ple principles						
		and linearization	on of NTC TI	nermistor				
	lii. Resistance	Temperature	Detector					
	iv. Semicondu	ctor Temperati	ure sensor C	DA79				
	v. Current ou	utput absolute	temperature	sensor				
4.	Develop a sensor system for force		<u>v</u> i					
5.	Measurement of shear strain and							
	for many applications. Based							
	suggest a non-contact method a							
6.	LabVIEW Graphical Programmir							
_	read data into MATLABand Simu		data into DA	Q device				
7.	Acquire and generate analog sign							
	Acquire and generate non-clocked digital data. Measure frequency, pulse width and count pulses using NI devices							
			es using NI	devices				
	Generate Pulse Width Modulated		atomullours	20 hours				
Toy	t Book(s)	Total Labor	atory nours					
1	Jacob Fraden, "Hand Book of	Modern Ser	sors nhysi	cs Designs and				
	Applications", 2015, 3 rd edition, S	nringer New Y	ork	cs, Designs and				
2.	Jon. S. Wilson, "Sensor Technol	logy Hand Bog	ork. ok". 2011. 1	st edition. Elsevier.				
	Netherland.		,, .					
Ref	erence Books							
1.	GerdKeiser,"Optical Fiber Comn	nunications", 2	2017, 5 th ec	lition, McGraw-Hill				
	Science, Delhi.							
2.	John G Webster, "Measuremen		ation and se	ensor Handbook",				
	2017, 2 nd edition, CRC Press, Flo							
3.	Eric Udd and W.B. Spillman,							
<u> </u>	engineers andscientists", 2013, 2	edition, Wile	ey, New Jers	sey.				
4.	Bahaa E. A. Saleh and Malvin	Carl Teich, "	Fundamenta	als of photonics",				
1	2012, 1 st edition, John Wiley, Nev							
N 4				the estimate second second second				
	de of assessment: Continuous asso		/ Oral exam	ination and others				
Rec	de of assessment: Continuous asso	essment / FAT 07-06-2023 No. 70	/ Oral exam	ination and others 24-06-2023				

Course Code	Course Title	L	Т	Ρ	С			
MITS510L	IoT Architecture	3	0	0	3			
Pre-requisite	NIL	Svlla	bus v	ersi	on			
		Jyna	<u>1.0</u>	CISI				
Course Objecti	ves		1.0					
	evolution of internet technology and need for lo	ьТ.						
2. Discuss o	on IoT reference layer and various protocols and	d softw	are.					
	e students to build IoT systems using sens			boa	rd			
	s and open sourceIoT platforms.		Ũ					
4. Make the	students to apply IoT data for business solution	n in var	ious c	loma	in			
	d manner.							
Course Outcon								
1. Identify t	he IoT networking components with respect to	OSI la	yer.					
	nematic for IoT solutions.							
	and develop IoT based sensor systems.							
	T protocols and software.							
	e the wireless technologies for IoT.							
	ate the need for IoT Trust and variants of IoT.		7	hou	rc			
	puter communication concepts (OSI layers, c	omnor	-					
	Networks, TCP-IP, subnetting, IPV4 addressi							
	J. IoT architecturereference layer.	ig und	chun	cinge	,3).			
	roduction to loT components		6	hou	rs			
Characteristics	IoT sensor nodes, Edge computer, cloud an	d peri						
single boardcom	puters, open source hardwares, Examples of lo	oT 'infra	astruc	ture	•			
Module:3 Io	F protocols and softwares			hou				
MQTT, UDP, MO	OTT brokers, publish subscribe modes, HTTP, (COAP,	XMPF	o and	1			
gateway protoco	חס, F point to point communication technologi	06	6	hou	rc			
	tion Pattern, IoT protocol Architecture, Selection	of		reles				
technologies (6	LoWPAN, Zigbee, WIFI, BT, BLE, SIG, NFC, LOI	∖ UI RA Lif			5			
Module:5 Intro	oduction to Cloud computation and Bigdata	С, сп	<u>, vvia</u> 6	hou	rs			
	lytics		-					
Evolution of Cl	oud Computation, Commercial clouds and the							
	orms, cloud dashboards, Introduction to big	data a	analyti	ics a	ind			
Hadoop.	security		6	hou	rc			
	ption, standard encryption protocol, light we	iaht c						
	stModel for IoT-A – Threat Analysis and mode							
security			017,	0100	10			
	F application and its Variants.		6	hou	rs			
	IoT for smart cities, health care, agriculture,	smart	meter	s.M2	ŻΜ,			
Web of things, Cellular IoT, Industrial IoT, Industry 4.0, IoT standards.								
Module:8 Co	ntemporary Issues		2	hou <u>מו</u>	Jrs			
	Total H	lours	45	5 hou	ırs			
Text Book(s)								
	o Bassi, Martin Bauer, Martin Fiedler, Thorste							
Kranenburg, Sebastian Lange, Stefan Meissner, "Enabling things to talk -								
Designing	IoT solutions with the IoT Architecture Referen	ce Mo	del", S	pring	ger			

	Open, 2016					
2.		herine Mulligan, Stamatis Karnouskos,				
		rom Machine to Machine to Internet of				
	Things", Elsevier Publications, 201	4.				
Refe	rence Books					
1.		Yang, Huansheng Ning, The Internet of				
	Things: From RFID to the Next-C	Generation Pervasive Network, Aurbach				
	publications, March,2008.					
2.	Vijay Madisetti , Arshdeep Bał	nga, Adrian McEwen (Author), Hakim				
	Cassimally "Internet of Things A	Hands-on-Approach" Arshdeep Bahga &				
	Vijay Madisetti, 2014.					
3.	Asoke K Talukder and Roopa R Ya	vagal, "Mobile Computing," Tata McGraw				
	Hill, 2010.					
4	Barrie Sosinsky, "Cloud Computing	Bible", Wiley-India, 2010				
5	RonaldL. Krutz, Russell Dean Vines	s,Cloud Security: A Comprehensive Guide				
	to SecureCloud Computing,Wiley-I	ndia, 2010				
Mod	e of Evaluation: CAT, Digital As	signments, Quiz, Online course, Paper				
	cation, Projects, Hackathon/Makeath	e				
Pash						
Reco	ommended by Board of Studies	07-06-2023				
	oved by Academic Council	No. 70 Date 24-06-2023				

Course Code	Course Title	L	Т	Ρ	С			
MITS510P IoT Architecture Lab		0	0	2	1			
Pre-requisite	NIL	Syllabus version						
			1.0)				
Course Object								
1. Introduce evolution of internet technology and need for IoT.								
	on IoT reference layer and various protocols ar							
	e students to build IoT systems using sen	sors, s	single	e boa	ard			
	rs and open source							
4. IoT platfo								
	students to apply IoT data for business solutio	n in vai	rious	dom	ain			
	d manner.							
Course Outcor								
	ne IoT networking components with respect to	OSI lay	er.					
	ematic for IoT solutions							
	nd develop IoT based sensor systems.							
	T protocols and software.							
	the wireless technologies for IoT.							
	te the need for IoT Trust and variants of IoT.							
Indicative Expension1.C programmer								
	programming							
3. Python prog								
	/thingsboard cloud platforms							
5. Nodered								
6. IoT usecase	20							
0, 101 030003	Total Laboratory Hou	rs 30	hou	rs				
Text Book(s)			nou					
	Bassi, Martin Bauer, Martin Fiedler, Thorsto	en Krai	np.	Rob	van			
	, Sebastian Lange, Stefan Meissner, "Enabl	ina thir	nas t	tal	k –			
	oT solutions with the IoT Architecture Referen							
Open, 2016				•	0			
2. Jan Holler,	Vlasios Tsiatsis, Catherine Mulligan, Stamatis	Karnou	skos	, Stef	an			
	avid Boyle, "From Machine to Machine to I	nternet	of	Thing	s",			
	blications, 2014.							
Reference Boo			<u> </u>		6			
	n Zhang, Laurence T. Yang, Huansheng Nir							
U	m RFID to the Next-Generation Pervasive	Netwo	rк, <i>н</i>	Aurba	icn			
	s, March,2008. etti , Arshdeep Bahga, Adrian McEwen (Autho	r) Uaki	mC	nccim	ally			
	Things A Hands-on-Approach" Arshdeep Bah							
2014.	Things A flands-on-Approach Arshdeep Dan	ya a vi	ŋαy n	nauis	em,			
	llukder and Roopa R Yavagal, "Mobile Compu	tina " T	ata M	//cGr	aw			
Hill, 2010.	iunder and Noopa N Tavagai, Mobile Compa	ung, i	utu i	ne on				
	nsky, "Cloud Computing Bible", Wiley-India, 20	10						
	rutz, Russell Dean Vines, Cloud Security: A Co		ensiv	e Gui	de			
	loud Computing, Wiley-India, 2010	•						
	ment: Continuous assessment / FAT / Oral exa	minatio	on ar	id oth	lers			
	by Board of Studies 07-06-2023							
		4-06-20	023					

Course Code	Course Title	L	Т	Ρ	С			
MITS511L	Microsystems Fabrication Technology	3	0	0	3			
Prerequisite	NIL	Sylla	abus v	versio	n			
			1.0					
Course Object								
	oduce the fundamental concepts of MEMS	based	sens	ors a	nd			
actuator								
•	2. To acquaint the students with various materials and material properties for							
	stem designing.							
	vide comprehensive understanding of vari							
	ues and expose the students to design, sim	ulation	and	analys	SIS			
software								
	ing the basics of thick film and hybrid tech	nologie	es tor	senso	or			
develop								
Course Outcor				1				
	and understand the fundamental concepts a	and ba	аскдго	una c	J			
	nd Microsystems							
	with the basics of various sensors and actuato		N.4:					
	lents were acquainted with various materia	IS IOF	wicro	syster	'n			
designing		منام ما ما						
	e and compare the scaling effects in miniaturiz			-l :	_			
	e and interpret various micromachining tech							
	and applications of various MEMS devices m	licroma	cninin	ig tool	IS			
and tech			امدمام					
	ed with thick film and hybrid technologies for so							
	ate simulation and micro-fabrication knowled	uge to	r dev	elopin	g			
Module:1	•		7	/ hour				
	icrosystems, Miniaturization, Benefits of Mi	Crosus						
	osystems products, Evolution of Micro fabricat							
Module:2	Introduction to Sensors and Actuators			6 hour				
	ns and classification of transducers: electro	static						
	ng principles: electrostatic, resistive, chemica							
	s, Design of Micro accelerometers, Engir							
	sign and fabrication.		00.0					
Module:3	Materials for Microsystems		6	6 hour	ſS			
	compounds, Silicon Piezo resistors, Galliur	n Arse						
	aterials, Polymers, Shape Memory Alloys				nd			
rheological mate								
Module:4	Scaling Effects in Microsystems			i hour				
Introduction to	Scaling, Scaling laws, Scaling in Geometry	y, Sca	ling ir	ו Rigi	id			
	s, Scaling in Electromagnetic, Electrostatic, ma	agnetic	;, optio	cal an	ıd			
	ns. Scaling in Fluid mechanics.							
Module:5	Micromachining Technologies			6 hour				
	licon processes techniques, Photolithograph							
	ical Vapor Deposition, Physical vapor Depositi				۱g,			
	nining, Surface Micromachining, LIGA and othe	r techn						
Module:6	MEMS and micro systems applications			<u>hour</u>				
	ication in actual systems, introduction to RF							
	t structures and MEMS leading to NEMS. F	аскаді	ing, te	est an	IC			
calibration of M								

		Hybrid Techn				6 hours	
Thick-	-film and	hybrid techno	logy i	n sensor	production.	Basic materials,	
						nting, Parameters,	
Comp	Comparison: thick- vs. thin-film technology Structure dimensions, Assembly and						
packa	ging Surf	ace mount techn	ology	(SMT)Acti	ve and passi [,]	ve devices (SMD),	
Conne	ection tech	nologies, Packaç	ging.				
Modu	le:8	Contemporary	/ Issue	S		2 hours	
Total	Hours					45 hours	
Text E	Book(s)						
						Bhatt, V K Aatre,"	
		smartsystems", 2					
				stem, Des	ign and Manı	ufacture", 2017, 1 st	
		aw HillIndia, New	[,] Delhi.				
	ence Boo						
		NP, "MEMS", 201					
			hr, Oli	ver Paul, "	Microsystem ⁻	Fechnology", 2011,	
		iley, New York.					
3 E	Banks H.1	. Smith R.C. and	Wang	Y.Smart,	'Material Stru	ctures – Modeling,	
		andControl', 201					
						lagnetic Thermal,	
				d Smart s	tructures', 20	14, 1 st ed., Kluwer	
		publishers, New					
						line course, Paper	
publica	publication, Projects, Hackathon/Makeathon and FAT.						
Recon	nmended	by Board of Stud	ies	07-06-20)23		
Appro	ved by Ac	ademic Council		No. 70	Date 24-06	5-2023	

Course Code	Course Title	L T P C
MITS512L	Microcontrollers and Interfacing	3 0 0 3
Prerequisite	NIL	Syllabus Version
•		1.0
Course Objecti	ves	1
	e low power microcontrollers and to de	velop the skill set of
program	ming low power sensing applications.	
	the knowledge of various peripheral rel	ated to sensing and
	nication using wired or wireless means.	
	e the students by introducing them Ad	lvanced ARM Cortex
microco		
	the skill set of students to build IoT systems a	and sensor interfacing.
Course Outcon		
	nd develop embedded programs for low pow	er microcontrollers for
	oplications.	
	ARM basic and advanced programs.	
	and deploy analog and digital sensors	
	communication system with sensor units	
	evelop IoT systems using Wi-Fi CC3200.	a data and meating in
	the single board computers to read senso	r data and posting in
cloud. Module:1 N	ISP430 microcontrollers	7 hours
		7 hours
	he MSP430, Memory, Addressing modes, R	
	Clock system, Exceptions: Interrupts and r xing C and assembly language, Interru	
	associated with interrupts, Low-power mod	
	RM Cortex MX microcontroller	6 hours
	Assembly language basics, Thumb-2 Techr	
	architecture, advantages, peripherals, instru	
	ancedCortex MX Microcontroller, core, archi	
Module:3 C	Display and Communication	6 hours
n	nodules	
	olay, graphical display, relays, Peripheral p	ogramming SPI, I2C,
UART, Zigbeeco		
	ensors interfacing	6 hours
	cing techniques- Port Programming, ADC,	
	VM generation and demodulation, DTH11, si	ngië wire thermometer,
Frequency coun	Aicrocontrollers for IoT	6 hours
	MCU, TI-CC3200, Access point and station	
	sion and receiving, Intel-Gallileo boards.	r point mode, mirr,
	single board computers	6 hours
	poard, porting Raspbian, sensor interfac	
	r cloudaccess, sensor systems using Arduin	
	Cloud interfacing	6 hours
Interfacing and o	data logging with cloud: Thing speak, Things	
Module:8 C	Contemporary Issues	2 hours
i		
Total Hours		45 hours
Text Book(s)	· · ·	
	avies, "MSP430 Microcontroller Basics", 20	11, 2 nd ed., Newnes

cob Fradon "Hand Book of							
Jacob Fraden, "Hand Book of Modern Sensors: physics, Designs and							
Applications", 2014, 4 th ed., Springer, New York.							
nce Books							
		nsor S	ystems: Practical Design",				
11, 1 st ed., IFSApublishing, Ne	w York.		-				
12, 5 th ed., Create Space public	shing, Ne	w York					
uhammad Ali Mazidi, Shujen C	hen, Sarr	nadNai	mi, SepehrNaimi, "TI ARM				
eripheralsProgramming and In	terfacing:	Using	C Language", 2015, 2 nd				
., Mazidi and Naimi publishing	, New Yo	rk.					
of Evaluation: CAT, Digital A	Assignme	nts, Q	uiz, Online course, Paper				
•	•						
·····, · · · · · · · · · · · · · · · ·							
mended by Board of Studies	07-06-20)23					
ed by Academic Council	No. 70	Date	24-06-2023				
	plications", 2014, 4 th ed., Spring ice Books rgey Y. Yurish,"Digital Sensor 11, 1 st ed., IFSApublishing, Ne nathan W Valvano, "Introduct 12, 5 th ed.,Create Space publi ihammad Ali Mazidi, Shujen C ripheralsProgramming and In ., Mazidi and Naimi publishing of Evaluation: CAT, Digital A ion, Projects,Hackathon/Makea mended by Board of Studies	plications", 2014, 4 th ed., Springer, New Trice Books rgey Y. Yurish,"Digital Sensors and Se 11, 1 st ed., IFSApublishing, New York. nathan W Valvano, "Introduction to Al 12, 5 th ed., Create Space publishing, Neu Ihammad Ali Mazidi, Shujen Chen, Sarr ripheralsProgramming and Interfacing: ., Mazidi and Naimi publishing, New You of Evaluation: CAT, Digital Assignme ion, Projects, Hackathon/Makeathon and nended by Board of Studies 07-06-20	plications", 2014, 4 th ed., Springer, New York. Ince Books rgey Y. Yurish,"Digital Sensors and Sensor S 11, 1 st ed., IFSApublishing, New York. nathan W Valvano, "Introduction to ARM Co 12, 5 th ed.,Create Space publishing, New York inhammad Ali Mazidi, Shujen Chen, SarmadNai iripheralsProgramming and Interfacing: Using ., Mazidi and Naimi publishing, New York. of Evaluation: CAT, Digital Assignments, Q ion, Projects,Hackathon/Makeathon and FAT. nended by Board of Studies 07-06-2023				

Со	urse Code	Course Title	L	T	Р	С			
	ГS512Р	Microcontrollers and Interfacing Lab	0	0	2	1			
Pre	erequisite:	NIL	Sy	labu	s Ver	sion			
					.0				
Со	urse Object	ives							
		e low power microcontrollers and to devel	op th	e sk	ill se	t of			
	programming lowpower sensing applications.								
	2. İmpart t	he knowledge of various peripheral relate	ed to	sen	sing	and			
		ication usingwired or wireless means.			Ŭ				
		the students by introducing them Adva	nced	ARN	/ Co	ortex			
	microcor	trollers							
	4. Develop	the skill set of students to build IoT systems an	d sen	sor in	terfac	cing.			
	-	-							
Со	urse Outcor	nes							
	1. Design a	nd develop embedded programs for low powe	r micr	ocont	roller	s for			
	sensor a	pplications.							
		ARM basic and advanced programs.							
		and deploy analog and digital sensors							
		communication system with sensor units							
		evelop IoT systems using Wi-Fi CC3200.							
	6. Program	the single board computers to read sensor data	a and p	oostin	ig in c	loud.			
	licative Exp	eriments							
1.		h MSP430 (CCStudio)							
		ub Task 1: Port programming of MSP430 micr							
		ub Task 2: Analog to Digital Convers	ion l	ising	MS	P430			
		nicrocontroller							
		ub Task 3: LCD display of characters and num	iders.						
	5	ub Task 4: Timer							
2.	Morking wit	h ARM (Keil and energia)							
<u> </u>		ub Task 1: Peripheral programming of ARM7 t	hand						
		ub Task 2: PWM generation	Joard						
		ub Task 3:Configuring CC3200, wifi configura	tion F	нттр	and				
		IQTTProtocol	,1		unu				
	ĨV								
3.	Low power	wireless transmission using Zigbee							
.		ub Task 1: Interfacing Zigbee controller	with	MSP	430				
		nicrocontrollerusing SPI/UART.				-			
		ub Task 2: Programming sleep and wake up n	node d	of MS	P 430	э. I			
	_	5 5 1 1 1 1 1		-					
4.	IoT systems	6							
		/orking with Raspberry pi using Python.							
		rduino platform							
	V	/orking with open source clouds							
		_							
		Total Laboratory He	ours	30 h	ours				
1									

Te	Text Book(s)						
1.	John H. Davies, "MSP430 Microcontroller Basics", 2011, 2 nd ed., Newnes						
	publishing, NewYork.						
Re	ference Books						
1.	Sergey Y. Yurish,"Digital Sensors and Sensor Systems: Practical Design",						
	2011, 1 st ed., IFSApublishing, New York.						
Мо	Mode of assessment: Continuous assessment / FAT / Oral examination and others						
Re	Recommended by Board of Studies 07-06-2023						

Recommended by Board of Studies			
Approved by Academic Council	No. 70	Date	24-06-2023

Course Code	Course Title	L	Т	Ρ	C				
MITS513L	Wireless Sensor Networks and Data	3	0	0	3				
	Communication								
Pre-requisite	NIL	Syllabus Version							
			1.0						
Course Objecti	ves								
1. To identify and expose the students to the central elements in the design									
of con	nmunication protocols for the WSNs.				-				
2. To disseminate the design knowledge in analyzing the specific									
	ements for applications in WSNs regard	ing en	ergy	supp	oly,				
	ory, processing, and transmission capacity								
	t the perception of mobile ad hoc networks, de								
	s, and solutions based on different algorithm			cols	for				
	management, sensor data routing and query								
	sociate, hardware platforms and software f	ramew	orks	used	to				
	e dynamic Wireless sensor network								
Course Outcon									
	ss the applicability and limitations of commun	lication	proto	ocols	for				
	I time WSNapplication.			T .)					
	irms the behavior of mobile ad hoc netwo	orks (IV	ANE	is) a	ind				
	lates the infrastructure-based networks.	function		الحام صا	م ا م				
	ctive in understating the routing protocols		on a	na ti	neir				
	cations on datatransmission delay and bandw		o of h	rood	ooct				
	to establish networks with an attempt to redu- looding techniques.	LE 1550		nuau	Lasi				
	ribute appropriate algorithms to improve existi	ina or ta	n dev	olon i	now				
	ess sensornetwork applications.		Jucv						
	liarize the protocol, design requirements, suit	able alc	orith	ms a	nd				
	tate-of-the-art cloudplatform to meet the indus								
	profound level to implement hardware & s								
	or networks in day today life								
	letwork for embedded systems			6 ho	ours				
	SPI, I2C, CAN, LIN, FLEXRAY.		1						
Module:2 E	mbedded wireless communication and			6 ho	ours				
	Protocols								
Bluetooth, Zigbe	e, Wifi, MiWi, Nrf24, Wireless LAN &PAN, UW	/B							
Module:3 V	Vireless sensor network (WSN)			6 ho	ours				
Characteristic	and challenges, WSN vs Adhoc Netwo	orks, S	Sense	or n	ode				
architecture, Phy	ysical layer and transceiver design considerati	ons in V	VSNs	s, Ene	ergy				
usage profile, C	hoice of modulation scheme, Dynamic modula	ition sca	aling,	Ante	nna				
considerations.			-						
	VSN (Medium access control)			6 ho					
	f MAC protocols - Low duty cycle protocols ar								
	edprotocols, Schedule-based protocols - SM/								
adaptive medium access protocol (TRAMA), The IEEE 802.15.4 MAC protocol.									
Module:5 Sensor Network Architecture 7 hours									
Module:5 S									
Module:5SDataDissemination	ation, Flooding and Gossiping-Data gather			Netv	vork				
Module:5SData DisseminaScenarios, Opti		Principl	es fo	Netw r WS	vork SNs-				

Tun	Tunneling							
	dule:6	IP based WSN				6 hours		
Circ	uit switchi	ing, packet switching, c	oncept of	IPV4, I	IPV6, 6LOWPAN	and IP, IP		
base	based WSN,6LOWPAN based WSN.							
		Tiny OS				6 hours		
Tiny	OS for W	SN and IoT, M2M comm	nunication,	Alljoyi	n network			
Mod	dule:8	Contemporary Issue	S			2 hours		
	al Hours					45 hours		
-	t Book(s)							
1.		Karl, Andreas Willig, '						
		Networks"2011, 1st ed.,						
2		eng, Abbas Jamalipour,				Networking		
		ctive",2014, 1 st ed., Wiley	y-IEEE Pr∈	ess, US	SA.			
	erence Bo							
1.		egus W. Dargie, Christia						
		Networks: Theory and F	Practice", 2	2014, 1	st ed., John Wil	ey & Sons,		
	New Je	5						
2		Akyildiz, Mehmet Can '		ireless	Sensor Netwo	rks", 2011,		
		JohnWiley & Sons, Nev						
3		Shelby, Carsten Bormai				Embedded		
		.", 2009, 1 st ed., John Wil						
	Mode of Evaluation: CAT, Digital Assignments, Quiz, Online course, Paper							
	publication, Projects, Hackathon/Makeathon and FAT.							
	Recommended by Board of Studies 07-06-2023							
Арр	roved by A	Academic Council	No. 70	Date	24-06-2023			

Course Code	Course Title	L	T	Ρ	C
MITS514L	Robotics and Control Systems	2	0	0	2
Pre-requisite	NIL	Syll	abus	vers	ion
			1.		
Course Object	ives				
1. To	impart knowledge on performance specificati	on, li	mitati	ions	and
	cture of controllers				
2. To	impart knowledge on design of controllers us	sing r	oot-lo	ocus	and
	uency domain techniques				-
	get an exposure on Robotic control systems an	d ope	n sou	irce s	soft
ware	-				
Course Outco					
	e to model the system and simulate the model.		-I		
	orm system analysis in time domain and frequ				- i
	lyze the system stability based on time domain,	irequ	ency	doma	ain
	root locus techniques.	unde	arctor	ndina	of
	elop digital control algorithms. Have a basic otics.	unue	:15lai	luing	01
	e an understanding of the basic building blocks	of roh	ntic s	vston	nc
	erstand Dynamics of Robot control and path pla			ysten	13
	erstand robot simulation and programming using				
	ne Domain Analysis and Design	1		3 ho	ours
	cond order control system response for step,	ram	and	imp	ulse
	eristic equation -Poles and Zeroes concept-				
criterion			- j		
	oot Locus Techniques			3 ho	
Review of root I	ocus construction – Lead/ Lag compensator des	ign us	sing ro	oot loo	cus.
Module:3 Fr	equency Response Techniques			3 ho	ours
Bode plots and	stability- gain and phase margins- Lead/ Lag	compe	ensato		
using Bode plot					0
	alog and Digital Controllers	<u> </u>		<u>5 ho</u>	
	Controller- Basic control action - Effects of Deriva				
	of P, PI, PID controllers – Tunable PID Controller	·s – Zi	egler	-Nicl	nols
Methods for Co	ntroller Tuning, Fuzzy logic controllers.				
Module:5 Ro	botics-Sensors and Actuators for Robotics			6 ho	ours
	obots-Robot components, classifications, a	-ind	speci	ificatio	
	Modeling of Robots, Robots as Mechanical				
	angements, Robotic actuators: Electric-DC,				
	pneumatic actuators, Drives for motors. Sens				
	stacle avoidance and path planning in know				
-	Tactile sensors, Proximity and range sensors				
		, ACU	usuc	36113	015,
Vision sensor s	ysiems				
Module:6 Ki	nematics, Dynamics and Path Planning			4 ho	ours
	manipulators: Representing Positions, Repre	esenti	ng F	Rotatio	ons,
	nsformations, Composition of Rotations, Pa				
	d Motions, Homogeneous transformations, De				
;					

.

٦

_

representation, Inverse kinematics. The Configuration Space	e, Path Planning,
Trajectory planning, SLAM	
Module:7 Robot Operating System	4 hours
Introduction to ROS and Gazebo, setting up workspaces, laund	hing basic robotic
simulations – SLAM using turtlebots	5
Module:8 Contemporary Issues	2 hours
Total Hours	30 hours
Text Book(s)	
1 Katsuhiko Ogata, "Modern Control Engineering", 2015, 5 th	ed., Prentice Hall,
New JerseyUSA.	
2 Mark W. Spong, Seth Hutchinson, M. Vidyasagar, "Rol	oot Modeling and
Control", 2nd Edition, Wiley Publisher, 2020.	
Reference Books	
1. I. J. Nagrath and M. Gopal, "Control Systems Engineering", 2	2017, 6th Ed., New
Age International (p) Limited. New Delhi, India.	
2 Norman S Nise, "'Control systems engineering",2018, W	iley India edition,
Wiley	
3 Richard Dorf, Robert Bishop,"Modern Control Systems", 2	$016, 13^{\text{m}}$ Edition,
Pearson, India.	
4 R K Mittal. I.J.Nagrath, 'Robotics and control",2017,Mcgraw	
Mode of Evaluation: CAT, Digital Assignments, Quiz, Onlin	ie course, Paper
publication, Projects, Hackathon/Makeathon and FAT.	
Recommended by Board of Studies 07-06-2023	
Approved by Academic Council No. 70 Date 24-06-20	23

.

. .

- -

Cou	rse Code	Course Title	LTPC
	S514P	Robotics and Control Systems Lab	0 0 2 1
Prer	requisite:	NIL	Syllabus version
			1.0
	rse Objectiv		
-		knowledge on performance specification, limit	tations and structure
	of control		ng root loove and
4		t knowledge on design of controllers usi domain techniques	ng root-locus and
	nequency	domaintechniques	
Cou	rse Outcom	es	
	. Realize th	he need of control system and its recent dever system and simulate the model.	elopments. Able to
2	2. Analyze tł	ne behavior of the first and second order syste ency domain.	ms in time domain
3		ne system stability based on time domain, freq techniques.	uency domain and
4	 Identify th customize 	e need for incorporating the three term control d requirement of the control action	oller based on the
5	5. Analyze tł	ne systems behavior in digital domain and dev for the corrective action.	elop digital control
6		nd development of Bot control and mapping	algorithms using
	cative Expe	riments	
1.	Speed mea system	asurement and regulation of DC motor usir	ng armature control
2.		ulation and torque measurement of AC Sementric Sementer of AC Sementer (1997)	rvomotor using
3.	Modeling a system	nd performance analysis of stepper motor p	osition control
4.	Performance estimation	e analysis of BLDC motor control system an	d its parameter
5.		nse analysis of second order system using Ma	tlab
6.		OS (Robotics operating system) and initializing	
7.		environment in Gazebo	
8.		Turtlebots and manual mapping in Gazebo	
9.		s Navigation of Turtlebots in Gazebo	
10.	Implementi	ng SLAM in custom environments	
L		Total Laboratory Ho	urs 30 hours
	t Book(s)		
1.	Internationa	Modern Control System Theory", 2014, 2 nd e al, NewDelhi, India.	,
		oong, Seth Hutchinson, M. Vidyasagar, "Robot Id Edition, Wiley Publisher, 2020.	Modeling and

Refe	erence Books			
1.	M. Gopal,"Digital control and sta	te variable m	ethods", 20	12, 4 th ed.,
	Tata McGraw Hill, USA.			
2.	Webb & Reis, "Programmable Lo	ogic Controlle	er - Principle	es and
	Applications", 2012, 5 th ed., PHI, I	New Delhi, Ind	dia.	
3.	I. J. Nagrath and M. Gopal, "Cor			g", 2017, 6 th
	Ed., New AgeInternational (p) Li	mited. New D	elhi, India.	
Mod	le of assessment: Continuous asse	ssment / FAT	⁻ / Oral exam	nination and others
Rec	ommended by Board of Studies	07-06-2023		
Арр	roved by Academic Council	No. 70	Date	24-06-2023

Pre-requisite NIL Syllabus ver Course Objectives 1.0 The course aimed at 1.0 Ability to understand comprehensively the technologies and techniques underlyi building an embedded solution to a wearable, mobile and portable system. 2. Analyze UML diagrams and advanced Modelling schemes for different use cases 3. Understand the building process of embedded systems 6. Course Outcome The students will be able to 1. Define an embedded system and compare with general purpose system. 2. Appreciate the methods adapted for the development of a typical embedded system 6. Classify types of processors and memory architecture 5. Differentiate the features of components and networks in embedded systems 6. Develop real-time working prototypes of different small-scale and medium-sembedded Systems. 7. Apprehend the various concepts in Multi-Tasking 5 h Module:1 Introduction to Embedded System 5 h Embedded system Embedded Design life cycle, Layers of Embedded Systems. 5 h Module:2 Embedded System, SML, MARTEJ, UML as Design tool, UML not a Requirement Analysis and Use case Modelling, Locating, Compiler Driver, Linker Files, Linker Scripts and Scatter loading, Lo	Course Code	Course Title		L	Τ	Ρ	С
1.0 Course Objectives The course aimed at 1. Ability to understand comprehensively the technologies and techniques underlyi building an embedded solution to a wearable, mobile and portable system. 2. Analyze UML diagrams and advanced Modelling schemes for different use cases 3. Understand the building process of embedded systems Course Outcome The students will be able to 1. Define an embedded system and compare with general purpose system. 2. Appreciate the methods adapted for the development of a typical embedded syst 3. Get introduced to RTOS and related mechanisms. 4. Classify types of processors and memory architecture 5. Differentiate the features of components and networks in embedded systems 6. Develop real-time working prototypes of different small-scale and medium-sembedded system. 7. Apprehend the various concepts in Multi-Tasking Module:1 Introduction to Embedded System 5 h Embedded System Design Methodologies 5 mbedded System modelling [FSM, SysML, MARTE], UML as Design tool, UML nota Requirement Analysis and Use case Modelling, Design Examples Module:3 Suliding Process For Embedded Systems Module:3 System design using general purpose 7 h Procecostrol <	MEDS501L	Embedded System Design		3	0	0	3
Course Objectives The course aimed at 1. Ability to understand comprehensively the technologies and techniques underlyi building an embedded solution to a wearable, mobile and portable system. 2. Analyze UML diagrams and advanced Modelling schemes for different use cases 3. Understand the building process of embedded systems Course Outcome The students will be able to 1. Define an embedded system and compare with general purpose system. 2. Appreciate the methods adapted for the development of a typical embedded syst 3. Get introduced to RTOS and related mechanisms. 4. Classify types of processors and memory architecture 5. Differentiate the features of components and networks in embedded systems 6. Develop real-time working prototypes of different small-scale and mediumembedded Systems. 7. Apprehend the various concepts in Multi-Tasking Module:1 Introduction to Embedded System 5 h Embedded System Design Methodologies 5 h Preprocessor, Embedded Systems 5 h Module:2 Embedded System Design Methodologies 5 h Preprocessor 5 h Module:3 Building Process For Embedded Systems 4 h Preprocessor 7 h module:3 Embedded System modeling (FSM, SysML, MaRTE). UML as Design tool, UML note	Pre-requisite	NIL	Syl	labı	is v	ersi	on
The course aimed at 1. Ability to understand comprehensively the technologies and techniques underlyi building an embedded solution to a wearable, mobile and portable system. 2. Analyze UML diagrams and advanced Modelling schemes for different use cases 3. Understand the building process of embedded systems Course Outcome The students will be able to 1. Define an embedded system and compare with general purpose system. 2. Appreciate the methods adapted for the development of a typical embedded syste 3. Get introduced to RTOS and related mechanisms. 4. Classify types of processors and memory architecture 5. Differentiate the features of components and networks in embedded systems 6. Develop real-time working prototypes of different small-scale and medium embedded Systems. 7. Apprehend the various concepts in Multi-Tasking Module:1 Introduction to Embedded System					1.0		
1. Ability to understand comprehensively the technologies and techniques underlyi building an embedded solution to a wearable, mobile and portable system. 2. Analyze UML diagrams and advanced Modelling schemes for different use cases 3. Understand the building process of embedded systems Course Outcome The students will be able to 1. Define an embedded system and compare with general purpose system. 2. Appreciate the methods adapted for the development of a typical embedded syst 3. Get introduced to RTOS and related mechanisms. 4. Classify types of processors and memory architecture 5. Differentiate the features of components and networks in embedded systems 6. Develop real-time working prototypes of different small-scale and medium-rembedded Systems. 7. Apprehend the various concepts in Multi-Tasking Module:1 Introduction to Embedded System 9 mebedded system processor, hardware unit, software embedded into a system, Example an embedded system, Embedded Design life cycle, Layers of Embedded Systems. Module:2 Embedded System Design Methodologies 5 h Embedded System modelling [FSM, SysML, MARTE], UML as Design tool, UML not Requirement Analysis and Use case Modelling, Design Examples 6 h Module:3 Building Process For Embedded Systems 7 h Module:4 System design using general purpose processor and memor	Course Object	ves					
building an embedded solution to a wearable, mobile and portable system. 2. Analyze UML diagrams and advanced Modelling schemes for different use cases 3. Understand the building process of embedded systems Course Outcome The students will be able to 1. Define an embedded system and compare with general purpose system. 2. Appreciate the methods adapted for the development of a typical embedded syst 3. Get introduced to RTOS and related mechanisms. 4. Classify types of processors and memory architecture 5. Differentiate the features of components and networks in embedded systems 6. Develop real-time working prototypes of different small-scale and medium-sembedded Systems. 7. Apprehend the various concepts in Multi-Tasking Module:1 Introduction to Embedded System [scale] 5 h Embedded system, Embedded Design life cycle, Layers of Embedded Systems. Module:2 Embedded System Design Methodologies 5 h Embedded System modelling [FSM, SysML, MARTE], UML as Design tool, UML note Requirement Analysis and Use case Modelling, Design Examples Module:3 Building Process For Embedded Systems 7 h Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker Files, Linker Scripts and scatter loading, Loading on the target, Embedded File System, Module:5 Component Interfacing & Networks for Embedded Systems-USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluet Zigbee,Wi-Fi, 6LOWPAN, Evolution of Internet of things (IoT). Module:7 Multi Tasking 7 h Introduction to Operating Systems, Basic Features & Functions of an Operating System Systems-USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluet Zigbee,Wi-Fi, 6LOWPAN, Evolution of Internet of things (IoT). Module:7 Multi Tasking 7 h Introduction to Operating Systems, Basic Features & Functions of an Operating System Communication (Shared Memory, Memory Menory Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Inheritance Protocol Mod	The course aim	ed at					
2. Analyze UML diagrams and advanced Modelling schemes for different use cases 3. Understand the building process of embedded systems Course Outcome The students will be able to 1. Define an embedded system and compare with general purpose system. 2. Appreciate the methods adapted for the development of a typical embedded system 3. Get introduced to RTOS and related mechanisms. 4. Classify types of processors and memory architecture 5. Differentiate the features of components and networks in embedded systems 6. Develop real-time working prototypes of different small-scale and medium-sembedded Systems. 7. Apprehend the various concepts in Multi-Tasking Module:1 Introduction to Embedded System S h Embedded System processor, hardware unit, software embedded into a system, Examp an embedded system, Embedded Design life cycle, Layers of Embedded Systems. Module:2 Embedded System Design Methodologies S h Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker Module:3 Building Process For Embedded Systems Module:4 System design using general purpose rocessor Module:5 Component Interfacing, Networks 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embe systems- USB, PCI, PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluet Zigbee,Wi-Fi, 6LoWPAN, Evolution of Interrator of things (loT). Module:5 Comparing Systems, Basic Features & Functions of an Operating Systemrole loop system, interrupt driven system, multi rate sys Kernel & its Features [polled loop system, interrupt driven system, multi rate sys Kernel & its Features (Process/Task Control Block, Threads, Scheduler, Dispat Module:7 Multi Tasking fo.	 Ability to 	understand comprehensively the technologies and tech	nnique	s ur	Ider	lying	g in
3. Understand the building process of embedded systems Course Outcome The students will be able to 1. 1. Define an embedded system and compare with general purpose system. 2. Appreciate the methods adapted for the development of a typical embedded syst 3. Get introduced to RTOS and related mechanisms. 4. Classify types of processors and memory architecture 5. Differentiate the features of components and networks in embedded systems 6. Develop real-time working prototypes of different small-scale and medium-sembedded Systems. 7. Apprehend the various concepts in Multi-Tasking Module:1 Introduction to Embedded System 5 h Embedded system processor, hardware unit, software embedded into a system. Examp an embedded System Design Methodologies 5 h Embedded System modelling [FSM, SysML, MARTE], UML as Design tool, UML nota Requirement Analysis and Use case Modelling, Design Examples 4 h Preprocessor 4 h Preprocessor and memory Memory Devices and their Characteristics, Cache Memory Various mapping techniques, DMA. 9 h Module:3 System design Using & Networks 9 h Module:5 Component Interfacing & Networks 9 h Module:6							
Course Outcome The students will be able to 1. Define an embedded system and compare with general purpose system. 2. Appreciate the methods adapted for the development of a typical embedded syst 3. Get introduced to RTOS and related mechanisms. 4. Classify types of processors and memory architecture 5. Differentiate the features of components and networks in embedded systems 6. Develop real-time working prototypes of different small-scale and medium-sembedded systems. 7. Apprehend the various concepts in Multi-Tasking Module:1 Introduction to Embedded System 5 h Embedded system processor, hardware unit, software embedded into a system, Examples Module:2 Embedded Design life cycle, Layers of Embedded Systems. Module:3 Building Process For Embedded Systems 5 h Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker 5 h Files, Linker Scripts and scatter loading, Loading on the target, Embedded File System. 7 h Module:3 Building Process For Embedded Systems 7 h Module:4 System design using general purpose 7 h Module:5 Component Interfacing & Networks 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embe systems			ferent	use	cas	ses.	
The students will be able to 1. Define an embedded system and compare with general purpose system. 2. Appreciate the methods adapted for the development of a typical embedded syst 3. Get introduced to RTOS and related mechanisms. 4. Classify types of processors and memory architecture 5. Differentiate the features of components and networks in embedded systems 6. Develop real-time working prototypes of different small-scale and medium-sembedded Systems. 7. Apprehend the various concepts in Multi-Tasking Module:1 Introduction to Embedded System 6. Develop real-time working prototypes of Embedded into a system, Examp a embedded system processor, hardware unit, software embedded into a system, Examp an embedded System Design Methodologies 5 h Embedded System modelling [FSM, SysML, MARTE], UML as Design tool, UML note Requirement Analysis and Use case Modelling, Design Examples 6 h Module:3 Building Process For Embedded Systems 4 h Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker Scripts and scatter loading, Loading on the target, Embedded File System. 7 h Module:4 System design using general purpose 7 h Processor 7 h Module:5 Component Interfacing & Networks 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embe system	3. Underst	nd the building process of embedded systems					
The students will be able to 1. Define an embedded system and compare with general purpose system. 2. Appreciate the methods adapted for the development of a typical embedded syst 3. Get introduced to RTOS and related mechanisms. 4. Classify types of processors and memory architecture 5. Differentiate the features of components and networks in embedded systems 6. Develop real-time working prototypes of different small-scale and medium-sembedded Systems. 7. Apprehend the various concepts in Multi-Tasking Module:1 Introduction to Embedded System 6. Develop real-time working prototypes of Embedded into a system, Examp a embedded system processor, hardware unit, software embedded into a system, Examp an embedded System modelling [FSM, SysML, MARTE], UML as Design tool, UML note Requirement Analysis and Use case Modelling, Design Examples Module:3 Building Process For Embedded Systems 4 h Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker Scripts and scatter loading, Loading on the target, Embedded File System. 7 h Module:4 System design using general purpose processor and memory, Memory Devices and their Characteristics, Cache Memory Various mapping techniques, DMA. 9 h Module:5 Component Interfacing & Networks 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embe systems 1 h Module:							
1. Define an embedded system and compare with general purpose system. 2. Appreciate the methods adapted for the development of a typical embedded syst 3. Get introduced to RTOS and related mechanisms. 4. Classify types of processors and memory architecture 5. Differentiate the features of components and networks in embedded systems 6. Develop real-time working prototypes of different small-scale and medium-sembedded Systems. 7. Apprehend the various concepts in Multi-Tasking Module:1 Introduction to Embedded System 5 h Embedded system, Embedded Design life cycle, Layers of Embedded Systems. Module:2 Embedded System Design Methodologies 5 h Embedded System modelling [FSM, SysML, MARTE], UML as Design tool, UML nota Requirement Analysis and Use case Modelling, Design Examples Module:3 Building Process For Embedded Systems 4 h Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker Files, Linker Scripts and scatter loading, Loading on the target, Embedded File System. Module:4 System design using general purpose processor 7 h Module:5 Component Interfacing & Networks 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for E							
 Appreciate the methods adapted for the development of a typical embedded syst Get introduced to RTOS and related mechanisms. Classify types of processors and memory architecture Differentiate the features of components and networks in embedded systems Develop real-time working prototypes of different small-scale and medium-sembedded Systems. Apprehend the various concepts in Multi-Tasking Module:1 Introduction to Embedded System 5 h Embedded system processor, hardware unit, software embedded into a system, Examp an embedded system Design Methodologies 5 h Embedded system modelling [FSM, SysML, MARTE], UML as Design tool, UML nota Requirement Analysis and Use case Modelling, Design Examples Module:3 Building Process For Embedded Systems 4 h Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker Files, Linker Scripts and scatter loading, Loading on the target, Embedded File System. Module:4 System design using general purpose 7 h Module:5 Component Interfacing & Networks 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embeds systems- USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluet Zigbee, Wi-Fi, 6LoWPAN, Evolution of Internet of things (IoT). Module:6 Operating Systems, Basic Features & Functions of an Operating System Size process/Task Control Block, Threads, Scheduler, Dispating Views, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Insersion (bounded and unbounded), Pr Ceiling Protocol & Priority Insersion (bounded and unbounded), Pr Ceiling Protocol & Priority Insersion (bounded and unbounded), Pr Ceiling Protocol & Priority Insersion (bounded and unbounded), Pr Ceiling Protocol & Priority Insersion (bounded and unbounded),							
 3. Get introduced to RTOS and related mechanisms. 4. Classify types of processors and memory architecture 5. Differentiate the features of components and networks in embedded systems 6. Develop real-time working prototypes of different small-scale and medium-sembedded Systems. 7. Apprehend the various concepts in Multi-Tasking 8. Embedded System processor of the methodologies 8. Embedded System modelling [FSM, SysML, MARTE], UML as Design tool, UML note Requirement Analysis and Use case Modelling, Design Examples Module:3 Building Process For Embedded Systems 4 h Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker Files, Linker Scripts and scatter loading, Loading on the target, Embedded File System. Module:4 System design using general purpose 7 h processor and memory, Memory Devices and their Characteristics, Cache Memory Various mapping techniques, DMA. Module:5 Component Interfacing & Networks 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embe systems- US						4 .	
 Classify types of processors and memory architecture Differentiate the features of components and networks in embedded systems. Develop real-time working prototypes of different small-scale and medium-sembedded Systems. Apprehend the various concepts in Multi-Tasking Module:1 Introduction to Embedded System Sh Embedded system processor, hardware unit, software embedded into a system, Examp an embedded system processor, hardware unit, software embedded systems. Module:2 Embedded System Design Methodologies Sh Embedded System modelling [FSM, SysML, MARTE], UML as Design tool, UML note Requirement Analysis and Use case Modelling, Design Examples Module:3 Building Process For Embedded Systems Module:4 System design using general purpose Thereprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker Files, Linker Scripts and scatter loading, Loading on the target, Embedded File System. Module:5 Omponent Interfacing & Networks Module:5 Component Interfacing, Nemory Devices and their Characteristics, Cache Memory Various mapping techniques, DMA. Module:6 Operating Systems Module:7 Component Interfacing, Interrupt Controllers, Networks for Embedse systems- USB, PCI.PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluet Zigbee,Wi-Fi, 6LoWPAN, Evolution of Internet of things (IoT). Module:6 Operating Systems, Basic Features & Functions of an Operating System Serves/Task control Systems, Interrupt driven system, multi rate system context Switching , Scheduling and various Scheduling algorithms, Inter-proCommunication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Inheritance Protocol Module:8 Contemporary Issues 			embe	edde	dsy	/ste	m.
 5. Differentiate the features of components and networks in embedded systems 6. Develop real-time working prototypes of different small-scale and medium-sembedded Systems. 7. Apprehend the various concepts in Multi-Tasking Module:1 Introduction to Embedded System 5 h Embedded system processor, hardware unit, software embedded into a system, Examp an embedded system modelling life cycle, Layers of Embedded Systems. Module:2 Embedded System Design Methodologies 5 h Embedded System modelling [FSM, SysML, MARTE], UML as Design tool, UML nota Requirement Analysis and Use case Modelling, Design Examples Module:3 Building Process For Embedded Systems 4 h Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker Scripts and scatter loading, Loading on the target, Embedded Files, Linker Scripts and scatter loading, Loading on the target, Embedded Files, Unker Scripts and scatter loading, Loading on the target, Embedded Files, Stem. Module:4 System design using general purpose processor 7 h processor 7 h Module:5 Component Interfacing & Networks 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embe systems- USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluet Igibee,Wi-Fi, 6LoWPAN, Evolution of Internet of things (IoT). Module:6 Operating Systems, Basic Features & Functions of an Operating System Processes/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispat Module:7 Multi Tasking		-					
 6. Develop real-time working prototypes of different small-scale and medium-sembedded Systems. 7. Apprehend the various concepts in Multi-Tasking Module:1 Introduction to Embedded System 5 h Embedded system processor, hardware unit, software embedded into a system, Examp an embedded system, Embedded Design life cycle, Layers of Embedded Systems. Module:2 Embedded System Design Methodologies 5 h Embedded System modelling [FSM, SysML, MARTE], UML as Design tool, UML note Requirement Analysis and Use case Modelling, Design Examples Module:3 Building Process For Embedded Systems 4 h Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker Processor Module:4 System design using general purpose 7 h processor Microcontroller architectures (RISC, CISC), Embedded Memory, Strategic selectic processor and memory, Memory Devices and their Characteristics, Cache Memory Various mapping techniques, DMA. Module:5 Component Interfacing & Networks 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embe systems- USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluet Zigbee,Wi-Fi.,6LoWPAN, Evolution of Internet of things (IoT). Module:6 Operating Systems, Basic Features & Functions of an Operating Systems Processes/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispat Module:7 Multi Tasking 6 h Context Switching , Scheduling and various Scheduling algorithms, Inter-pro Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Inheritance Protocol Module:8 Contemporary Issues 2 A 			dod ov	otor	~ ~		
embedded Systems. 7. Apprehend the various concepts in Multi-Tasking Module:1 Introduction to Embedded System 5 h Embedded system processor, hardware unit, software embedded into a system, Examp an embedded system, Embedded Design life cycle, Layers of Embedded Systems. 5 h Module:2 Embedded System Design Methodologies 5 h Embedded System modelling [FSM, SysML, MARTE], UML as Design tool, UML not Requirement Analysis and Use case Modelling, Design Examples 4 h Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker Files, Linker Scripts and scatter loading, Loading on the target, Embedded File System. 7 h Module:3 System design using general purpose processor 7 h Microcontroller architectures (RISC, CISC), Embedded Memory, Strategic selectic processor and memory, Memory Devices and their Characteristics, Cache Memory Various mapping techniques, DMA. 9 h Module:5 Component Interfacing & Networks 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embe systems- USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluet Zigbee,Wi-Fi.,6LOWPAN , Evolution of Internet of things (IoT). Module:6 Operating Systems, Basic Features & Functions of an Operating Sys Kernel & its Features [polled loop system, interrupt driven system, multi rate sys Processes/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispat Module:7 Mult Task						n	
7. Apprehend the various concepts in Multi-Tasking Module:1 Introduction to Embedded System 5 h Embedded system processor, hardware unit, software embedded into a system, Example an embedded system, Embedded Design Ife cycle, Layers of Embedded Systems. 5 h Module:2 Embedded System Design Methodologies 5 h Embedded System modelling [FSM, SysML, MARTE], UML as Design tool, UML nota Requirement Analysis and Use case Modelling, Design Examples 4 h Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker Files, Linker Scripts and scatter loading, Loading on the target, Embedded File System. 7 h Module:3 System design using general purpose processor 7 h Microcontroller architectures (RISC, CISC), Embedded Memory, Strategic selectic processor and memory, Memory Devices and their Characteristics, Cache Memory Various mapping techniques, DMA. 9 h Module:5 Component Interfacing & Networks 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embe systems- USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluet Zigbee,Wi-Fi, 6LoWPAN , Evolution of Internet of things (IoT). 7 h Module:6 Operating Systems, Basic Features & Functions of an Operating Systems Processes/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispati Module:7 Multi Tasking 6 h Context Switching , Scheduling and various Sche	•		; anu	me	uiui	11-50	ale
Module:1 Introduction to Embedded System 5 h Embedded system processor, hardware unit, software embedded into a system, Examp an embedded system Design life cycle, Layers of Embedded Systems. 5 h Module:2 Embedded System Design Methodologies 5 h Embedded System modelling [FSM, SysML, MARTE], UML as Design tool, UML note Requirement Analysis and Use case Modelling, Design Examples 6 h Module:3 Building Process For Embedded Systems 4 h Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker Files, Linker Scripts and scatter loading, Loading on the target, Embedded File System. 7 h Module:4 System design using general purpose processor 7 h Microcontroller architectures (RISC, CISC), Embedded Memory, Strategic selectic processor and memory, Memory Devices and their Characteristics, Cache Memory Various mapping techniques, DMA. 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embe systems- USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluet Zigbee,Wi-Fi.,6LoWPAN, Evolution of Internet of things (loT). 7 h Introduction to Operating Systems, Basic Features & Functions of an Operating Sys Kernel & its Features [polled loop system, interrupt driven system, multi rate system Processes/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispati Module:7 6 h Context Switching , Scheduling and various Scheduling algorithms, Inter-proc Communication (Sh		•					
Embedded system processor, hardware unit, software embedded into a system, Example an embedded system, Embedded Design life cycle, Layers of Embedded Systems. Module:2 Embedded System Design Methodologies 5 h Module:2 Embedded System Design Methodologies 5 h Embedded System modelling [FSM, SysML, MARTE], UML as Design tool, UML nota Requirement Analysis and Use case Modelling, Design Examples Module:3 Building Process For Embedded Systems 4 h Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker Files, Linker Scripts and scatter loading, Loading on the target, Embedded File System. Module:4 System design using general purpose processor 7 h Microcontroller architectures (RISC, CISC), Embedded Memory, Strategic selectic processor and memory, Memory Devices and their Characteristics, Cache Memory Various mapping techniques, DMA. 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embe systems- USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluet Zigbee,Wi-Fi.,6LoWPAN, Evolution of Internet of things (IoT). 7 h Module:6 Operating Systems, Basic Features & Functions of an Operating System Forcesse/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispate Module:7 6 h Context Switching , Scheduling and various Scheduling algorithms, Inter-proc Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock							
Embedded system processor, hardware unit, software embedded into a system, Example an embedded system, Embedded Design life cycle, Layers of Embedded Systems. Module:2 Embedded System Design Methodologies 5 h Module:2 Embedded System Design Methodologies 5 h Embedded System modelling [FSM, SysML, MARTE], UML as Design tool, UML nota Requirement Analysis and Use case Modelling, Design Examples Module:3 Building Process For Embedded Systems 4 h Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker Files, Linker Scripts and scatter loading, Loading on the target, Embedded File System. Module:4 System design using general purpose processor 7 h Microcontroller architectures (RISC, CISC), Embedded Memory, Strategic selectic processor and memory, Memory Devices and their Characteristics, Cache Memory Various mapping techniques, DMA. 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embe systems- USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluet Zigbee,Wi-Fi.,6LoWPAN, Evolution of Internet of things (IoT). 7 h Module:6 Operating Systems, Basic Features & Functions of an Operating System Forcesses/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispate Module:7 6 h Context Switching , Scheduling and various Scheduling algorithms, Inter-proc Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Loc	Module:1 Inti	oduction to Embedded System			5	ho	urs
an embedded system, Embedded Design life cycle, Layers of Embedded Systems. Module:2 Embedded System Design Methodologies 5 h Embedded System modelling [FSM, SysML, MARTE], UML as Design tool, UML nota Requirement Analysis and Use case Modelling, Design Examples Module:3 Building Process For Embedded Systems 4 h Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker files, Linker Scripts and scatter loading, Loading on the target, Embedded File System. Module:4 System design using general purpose processor 7 h Microcontroller architectures (RISC, CISC), Embedded Memory, Strategic selectic processor and memory, Memory Devices and their Characteristics, Cache Memory Various mapping techniques, DMA. 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embedseystems- USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluet Zigbee,Wi-Fi.,6LoWPAN, Evolution of Internet of things (IoT). 7 h Module:6 Operating Systems, Basic Features & Functions of an Operating Systems Processes/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispatt 6 h Context Switching , Scheduling and various Scheduling algorithms, Inter-proc 6 h Context Switching , Scheduling and various Scheduling algorithms, Inter-proc 6 h Context Switching , Scheduling and various Scheduling algorithms, Inter-proc 6 h Context Switching , Scheduli			a syste	em, E			
Module:2 Embedded System Design Methodologies 5 h Embedded System modelling [FSM, SysML, MARTE], UML as Design tool, UML nota Requirement Analysis and Use case Modelling, Design Examples Module:3 Building Process For Embedded Systems 4 h Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker 4 h Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker 7 h Module:4 System design using general purpose 7 h processor 7 h Microcontroller architectures (RISC, CISC), Embedded Memory, Strategic selectic processor Processor 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embe 9 h Module:6 Operating Systems, Basic Features & Functions of an Operating Systems 7 h Introduction to Operating Systems, Basic Features & Functions of an Operating Systems' Processes/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispat 6 h Context Switching , Scheduling and various Scheduling algorithms, Interrupt Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz 6 h Context Switching , Dead Lock, Priority Inversion (bounded and unbounded), Pr 6 h Contemporary Issues 2 h						•	
Embedded System modelling [FSM, SysML, MARTE], UML as Design tool, UML nota Requirement Analysis and Use case Modelling, Design Examples Module:3 Building Process For Embedded Systems 4 h Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker Files, Linker Scripts and scatter loading, Loading on the target, Embedded File System. Module:4 System design using general purpose processor 7 h Microcontroller architectures (RISC, CISC), Embedded Memory, Strategic selectic processor and memory, Memory Devices and their Characteristics, Cache Memory Various mapping techniques, DMA. 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embe systems- USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluetz Zigbee,Wi-Fi.6LoWPAN, Evolution of Internet of things (loT). 7 h Module:6 Operating Systems, Basic Features & Functions of an Operating Systems Processe/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispate Module:7 Multi Tasking 6 h Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Inheritance Protocol 2 h			i			ho	urs
Module:3Building Process For Embedded Systems4 hPreprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, LinkerFiles, Linker Scripts and scatter loading, Loading on the target, Embedded File System.Module:4System design using general purpose processorMicrocontroller architectures (RISC, CISC), Embedded Memory, Strategic selectic processor and memory, Memory Devices and their Characteristics, Cache Memory Various mapping techniques, DMA.Module:5Component Interfacing & NetworksMemory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embe systems- USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluet Zigbee,Wi-Fi.,6LoWPAN, Evolution of Internet of things (IoT).Module:6Operating Systems, Basic Features & Functions of an Operating System Kernel & its Features [polled loop system, interrupt driven system, multi rate syst Processes/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispat Module:7Module:7Multi TaskingContext Switching , Scheduling and various Scheduling algorithms, Inter-pro Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Inheritance ProtocolModule:8Contemporary Issues22			n tool,	UM	L no	otati	on
Preprocessing, Compiling, Cross Compiling, Linking, Locating, Compiler Driver, Linker Files, Linker Scripts and scatter loading, Loading on the target, Embedded File System. Module:4 System design using general purpose processor 7 h Microcontroller architectures (RISC, CISC), Embedded Memory, Strategic selectic processor and memory, Memory Devices and their Characteristics, Cache Memory Various mapping techniques, DMA. 9 h Module:5 Component Interfacing & Networks 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embe systems- USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluetz Zigbee,Wi-Fi.,6LoWPAN , Evolution of Internet of things (IoT). Module:6 Operating Systems 7 h Introduction to Operating Systems, Basic Features & Functions of an Operating Systems/ Task and its states, Process/Task Control Block, Threads, Scheduler, Dispate Module:7 Multi Tasking Module:7 Multi Tasking 6 h Context Switching , Scheduling and various Scheduling algorithms, Inter-proc Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Inheritance Protocol Module:8 Contemporary Issues 2 h							
Files, Linker Scripts and scatter loading, Loading on the target, Embedded File System. Module:4 System design using general purpose processor 7 h Microcontroller architectures (RISC, CISC), Embedded Memory, Strategic selectic processor and memory, Memory Devices and their Characteristics, Cache Memory Various mapping techniques, DMA. 9 h Module:5 Component Interfacing & Networks 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embes systems- USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluetz Zigbee,Wi-Fi.,6LoWPAN, Evolution of Internet of things (IoT). Module:6 Operating Systems 7 h Introduction to Operating Systems, Basic Features & Functions of an Operating Systems/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispate Module:7 Multi Tasking 6 h Context Switching , Scheduling and various Scheduling algorithms, Inter-proc Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Inheritance Protocol 2 h	Module:3 Bui	ding Process For Embedded Systems			4	ho	urs
Module:4 System design using general purpose processor 7 h Microcontroller architectures (RISC, CISC), Embedded Memory, Strategic selectic processor and memory, Memory Devices and their Characteristics, Cache Memory Various mapping techniques, DMA. 9 h Module:5 Component Interfacing & Networks 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embe- systems- USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluet Zigbee,Wi-Fi.,6LoWPAN , Evolution of Internet of things (IoT). 7 h Module:6 Operating Systems 7 h Introduction to Operating Systems, Basic Features & Functions of an Operating Sys Kernel & its Features [polled loop system, interrupt driven system, multi rate sys Processes/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispate Module:7 6 h Context Switching , Scheduling and various Scheduling algorithms, Inter-pro Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Inheritance Protocol 2 h	Preprocessing,	Compiling, Cross Compiling, Linking, Locating, Compile	er Driv	er, l	_ink	er N	/lap
processorMicrocontroller architectures (RISC, CISC), Embedded Memory, Strategic selectic processor and memory, Memory Devices and their Characteristics, Cache Memory Various mapping techniques, DMA.Module:5Component Interfacing & Networks9 hMemory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embe systems- USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluetz Zigbee,Wi-Fi.,6LoWPAN , Evolution of Internet of things (IoT).7 hModule:6Operating Systems7 hIntroduction to Operating Systems, Basic Features & Functions of an Operating System Kernel & its Features [polled loop system, interrupt driven system, multi rate syst Processes/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispate Module:76 hContext Switching , Scheduling and various Scheduling algorithms, Inter-pro Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Inheritance Protocol2 h	Files, Linker Sc	pts and scatter loading, Loading on the target, Embedd	ed File	e Sy	ster	n.	
Microcontroller architectures (RISC, CISC), Embedded Memory, Strategic selectic processor and memory, Memory Devices and their Characteristics, Cache Memory Various mapping techniques, DMA. Module:5 Component Interfacing & Networks 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embessystems- USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluetz Zigbee,Wi-Fi.,6LoWPAN, Evolution of Internet of things (IoT). 9 h Module:6 Operating Systems 7 h Introduction to Operating Systems, Basic Features & Functions of an Operating Systems Processes/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispate Module:7 Multi Tasking Module:7 Multi Tasking 6 h Context Switching , Scheduling and various Scheduling algorithms, Inter-proc Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Inheritance Protocol 2 h	Module:4 Sys	tem design using general purpose			7	ho	urs
processor and memory, Memory Devices and their Characteristics, Cache Memory Various mapping techniques, DMA. Module:5 Component Interfacing & Networks 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embersystems- USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluetz Zigbee,Wi-Fi.,6LoWPAN, Evolution of Internet of things (IoT). Module:6 Operating Systems Introduction to Operating Systems, Basic Features & Functions of an Operating Systems Frocesses/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispate Module:7 Multi Tasking Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Inheritance Protocol Module:8 Contemporary Issues							
Various mapping techniques, DMA. Module:5 Component Interfacing & Networks 9 h Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embe systems- USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluetz Zigbee,Wi-Fi.,6LoWPAN, Evolution of Internet of things (IoT). Module:6 Operating Systems 7 h Introduction to Operating Systems, Basic Features & Functions of an Operating Systems 7 h Introduction to Operating Systems, Basic Features & Functions of an Operating Systems 6 h Context Switching , Scheduling and various Scheduling algorithms, Inter-procommunication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Inheritance Protocol 2 h							
Module:5Component Interfacing & Networks9 hMemory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embersystems- USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - BluetzZigbee,Wi-Fi.,6LoWPAN, Evolution of Internet of things (IoT).Module:6Operating SystemsThIntroduction to Operating Systems, Basic Features & Functions of an Operating SystemsProcesses/Task and its states, Process/Task Control Block, Threads, Scheduler, DispateModule:7Multi TaskingContext Switching , Scheduling and various Scheduling algorithms, Inter-procCommunication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz(Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), PrCeiling Protocol & Priority Inheritance ProtocolModule:8Contemporary Issues2 h			Cache	e Me	emo	ry a	and
Memory Interfacing, I/O Device Interfacing, Interrupt Controllers, Networks for Embersystems- USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluetz Zigbee,Wi-Fi.,6LoWPAN , Evolution of Internet of things (IoT). Module:6 Operating Systems 7 h Introduction to Operating Systems, Basic Features & Functions of an Operating Systems (Processes/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispate Module:7 Multi Tasking 6 h Context Switching , Scheduling and various Scheduling algorithms, Inter-procemunication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Inheritance Protocol 2 h							
systems- USB, PCI,PCI Express, UART, SPI, I2C, CAN, Wireless Applications - Bluetz Zigbee,Wi-Fi.,6LoWPAN , Evolution of Internet of things (IoT). Module:6 Operating Systems Introduction to Operating Systems, Basic Features & Functions of an Operating Systems Kernel & its Features [polled loop system, interrupt driven system, multi rate system Processes/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispate Module:7 Multi Tasking 6 h Context Switching , Scheduling and various Scheduling algorithms, Inter-proce Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Inheritance Protocol Module:8 Contemporary Issues 2 h							
Zigbee,Wi-Fi.,6LoWPAN , Evolution of Internet of things (IoT). Module:6 Operating Systems 7 h Introduction to Operating Systems, Basic Features & Functions of an Operating Systems (and its states, Process/Task Control Block, Threads, Scheduler, Dispate Module:7 Multi Tasking 6 h Context Switching , Scheduling and various Scheduling algorithms, Inter-pro Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Inheritance Protocol 2 h							
Module:6Operating Systems7 hIntroduction to Operating Systems, Basic Features & Functions of an Operating Systems, Basic Features & Functions of an Operating Systement7 hKernel & its Features [polled loop system, interrupt driven system, multi rate systems]7 hProcesses/Task and its states, Process/Task Control Block, Threads, Scheduler, DispateModule:7Multi TaskingContext Switching , Scheduling and various Scheduling algorithms, Inter-pro Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Inheritance ProtocolModule:8Contemporary Issues2 h			licatio	ns -	Blu	eto	oth,
Introduction to Operating Systems, Basic Features & Functions of an Operating SystemKernel & its Features [polled loop system, interrupt driven system, multi rate systemProcesses/Task and its states, Process/Task Control Block, Threads, Scheduler, DispateModule:7Multi TaskingContext Switching , Scheduling and various Scheduling algorithms, Inter-proCommunication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz(Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), PrCeiling Protocol & Priority Inheritance ProtocolModule:8Contemporary Issues2 h							
Kernel & its Features [polled loop system, interrupt driven system, multi rate systemProcesses/Task and its states, Process/Task Control Block, Threads, Scheduler, DispateModule:7Multi TaskingContextSwitchingSwitchingScheduling and variousCommunication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz(Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), PrCeiling Protocol & Priority Inheritance ProtocolModule:8Contemporary Issues2 h			0				
Module:7 Multi Tasking 6 h Context Switching Scheduling and various Scheduling algorithms, Inter-pro Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Inheritance Protocol 2 h							
Module:7Multi Tasking6 hContext Switching , Scheduling and various Scheduling algorithms, Inter-pro Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Inheritance Protocol6 hModule:8Contemporary Issues2 h							
Context Switching , Scheduling and various Scheduling algorithms, Inter-pro Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Inheritance Protocol Module:8 Contemporary Issues 2 h			chequ	ier, L			
Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchroniz (Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Inheritance Protocol Module:8 Contemporary Issues 2 h			thma	4 صا			
(Semaphore, Mutex), Dead Lock, Priority Inversion (bounded and unbounded), Pr Ceiling Protocol & Priority Inheritance Protocol Module:8 Contemporary Issues 2 h							
Ceiling Protocol & Priority Inheritance Protocol Module:8 Contemporary Issues 2 h							
Module:8 Contemporary Issues 2 h			unnon	nue	u),		nity
					2	ho	urc
Total Lecture hours: 45 h						110	uið
		Total Lecture hours:			45	ho	urs
					-0		u 3

Tex	t Book(s)
1.	Raj Kamal, "Embedded systems Architecture, Programming and Design", Tata
	McGraw- Hill, 2016.
2.	Wayne Wolf "Computers as components: Principles of Embedded Computing System
	Design", The Morgan Kaufmann Series in Computer Architecture and Design, 2013.
Ret	erence Books
1.	Lyla B. Das," Embedded Systems an Integrated Approach", Pearson Education, 2013.
2.	Shibu K V," Introduction to Embedded Systems", McGraw Hill Education(India) Private
	Limited, 2014
3.	Sriram V Iyer, Pankaj Gupta " Embedded Real Time Systems Programming",
	Tata McGraw- Hill, 2012
4.	Steve Heath, "Embedded Systems Design", EDN Series, 2013.
Мо	de of Evaluation: Continuous Assessment, Digital Assignment, Quiz and Final
Ass	sessment Test
Re	commended by Board of Studies 28-07-2022
Ap	proved by Academic Council No. 67 Date 08-08-2022
<u> </u>	

Course Code	Course Title	L	Т	Р	С
MEDS601L	Electromagnetic Interference and	3	0	0	3
	Čompatibility				
Pre-requisite	NIL	Syl	labus	vers	ion
•				.0	
Course Objecti	ves				
The course is ai	med at:				
1. Imparting	knowledge about EMI environment				
	EMI coupling principles, EMI control technique	es and	l desi	gn of	
PCBs for					
3. Giving ex	posure to EMI Standards, Regulations and Me	easure	ment	S	
Course Outcon					
	e course, the student will be able to				
1. Understa	nd terminologies of EMI and EMC				
	and understand various EMI coupling mechanis	sms			
	us EMI Test and Measurement methods				
	various techniques needed to suppress EMI different EMC regulations followed worldwide				
	design an Electromagnetic Compatible system	c			
	and comprehend different techniques neede		Siana	l Intoc	iritv
	y to understand various models for EMI/EMC		Jigita	i integ	jiity
Module:1 EM	I Environment		4 h	ours	
EMI-EMC Defir	nitions and units of Parameters, Sources of I	EMI, c	ondu	cted a	and
radiated EMI, T					
Module:2 EM	I Coupling Mechanisms		6 ho	ours	
	diated and Transient Coupling, Common				
	ated Common Mode and Ground Loop				
	e Coupling, Near Field Cable to Cable Couplir	ıg, Po	wer N	lains a	and
Power Supply C					
	I Test and Measurements			ours	
	on / Standards / Limits: Units of specification				
-	ds. EMI Test Instruments / Systems, EMI				
Chamber, Op					
	rs/Couplers. EMI Measurement Methods: Milita	ary le	st ivie	ethod a	and
	libration Procedures, Modeling interferences		7 6		
	I Control Techniques	form		ours Franci	ont
	ering, Grounding, Bonding, Isolation Trar Cable Routing, Signal Control, Compon				
	trostatic discharge protection schemes		Delec	.1011 6	anu
	MC Standards and Regulations		5 ha	ours	
	tentional standardizing organizations- FCC, (DD.
	FCC CE and RE standards, CISPR, CE and RE				
	SAE Automotive EMC standard, Frequency as				
conversation.		J		•	
Module:6 Sys	stem Design for EMC		<u>8</u> ha	ours	
	ross Talk, Impedance Control, Power Distr				
	rboard Designs and Propagation Delay Pe		0000	Mad	ala

System Enclosures, Power line fill Printed Circuit Boards, PCB and s				ion and Number of
Module:7 Signal Integrity and E			<u> </u>	5 hours
Effect of terminations on line wave				for Signal Integrity,
Effects of line discontinuities, Statis	tical EMI/EM	C model	ls.	
Module:8 Contemporary Issues	6			2 hours
Guest Lectures from Industry and, I	Research and	d Develo	pment	Organizations
	Total Lo	ecture ł	nours:	30 hours
Text Book(s)				
1. Clayton R. Paul, Introducti edition., Wiley & Sons, New J		nagnetic	ccompa	tibility,2010, 2
Reference Books				
1. HenryW.ott, Electromagnetic	Compatibility	Engine	ering,	2011, 1sted. John
Wiley and Sons, NewJersey.				
2. Patrick G. André and Kenne				
Product Designers 2014, 1st ec	I., SciTech Pu	ublishing	g, New .	Jersey
Mode of Evaluation: Continuous As	sessment, Di	gital Ass	signmer	nt, Quiz and Final
Assessment Test				
Recommended by Board of Studies	6 07-06-202	23		
Approved by Academic Council	No. 70	Date	24-06-	2023

Course Code	Course Title	L	T	Ρ	С
MEIC506L	Wireless Communications	3	0	0	3
Pre-requisite	NIL	Sylla	bus v	versi	ion
			1.0)	
Course Object	ives				
1. To under	stand the different technologies in wireless comn	nunicat	ion s	ystei	ns.
2. To analy	ze the concepts of physical layer transmission te	echniqu	ies.		
3. To Desig	n and infer on next-generation wireless commur	nication	ı syst	ems	
			-		
Course Outcor	mac				
Students will be					
	the evolution of different wireless communic	ation	eveto	ms :	and
standard			syste	111.5 0	ina
	the mobile radio propagation, fading, and the ch	annol r	nodo	lina	
3. Interpret				wirel	220
commun	· · ·	C2 10		MICI	533
		OTES			
	e power and rate control methods in OFDM and				
	the modern multi-antenna communication system				
6. Explaint	he future wireless communications technologies	•			
Module:1 Ev	volution of Wireless Communications		4	4 ho	urs
Introduction to	o wireless communications, Evolution of	mode	rn ۱	wirel	ess
	systems- 2G/3G/4G/5G, Types of services, R				
	rum limitations, Noise and interference limited	l syste	ms,	Multi	ple
access scheme					
	ireless Propagation Channels			6 ho	
	pagation-Propagation effects, Reflection, Diffrac				
	pagation model, Two-ray ground reflection model				
	-normal shadowing, Outdoor propagation model				
	OST-231, Link power budget analysis, Small S				
	nobile multipath channels, Types of small scale fa	ading, i	Rayle	eign a	and
	ons, Jakes Doppler spectrum.			2 ho	
	ode-Division Multiple Access	N/1.11+i		6 ho	
	 CDMA, Mechanism, Spreading codes, CDMA, CDMA forward and reverse channels, S 				
U	control, Performance analysis of CDMA system		iuon,		IVIA
	FDM and OTFS			B ho	Ire
	ogonal frequency division multiplexing (OFDM)	- Imple			
	yclic prefix, Peak-to-Average Power Ratio (P.				
	R analysis of OFDM, Orthogonal time frequency				
	tation, Implementation as overlay, Diversity and		0		0,7
	lassive MIMO			3 ho	urs
	nodel, MIMO Configurations - SISO, SIMO, MIS	O, MIN			
	niques, Selection combining (SC), Maximal Ratio				
	I-Stay Combining (SSC), Diversity gain, MIMO				
	inimum Mean Square Error (MMSE), Coding teo				
¥ ```					

STBC, Beamforming techniques, Sp			
and challenges, receivers, Massiv		nel model, Cha	nnel hardening,
Matched filter receiver, Pilot contam			
Module:6 Key Wireless Com			6 hours
Cooperative communications-Funda			
Parallel Relays, Applications. De			
Interference Processing, Non-ortho			
Code domain, Interference alignment			
Large-scale and Small-scale propag	gation channel e	effects, Application	ons of mmWave
Communications.			
Module:7 5G and B5G –New	Radio		5 hours
5G System Overview - Physical I	_ayer, Logical	channels, Proce	dures - Carrier
Aggregation and License-Assisted			
Connectivity, and HetNet Suppor			
Spectrum Usage, Physical and MA			
Transceiver Design.	5 1		0
Module:8 Contemporary Issue	S		2 hours
Guest Lecture from Industries and I	R & D Organiza	ions	
	Total	Lecture hours:	45 hours
Text Book(s)			
1. Andreas F. Molisch, Wireless	Communicatio	ns [,] From Fun	lamontals to
Beyond 5G, 2022, 3 rd Edition,			
11720-9.	vviicy-ieee ii	C33. OSA ISDI	1. 570-1-115-
2. Feng Ouyang, Digital Commu	nication for Pra	octicina Enginee	ors 2019 1 st
Edition, Wiley-IEEE Press, USA			13, 2010. 1
Reference Books		10 11000 0.	
1. Suvra Sekhar Das, Ramjee Pr	asad OTES o	thogonal time f	
modulation a waveform for 6G,			
8770226561.			
2. Emil Björnson, Jakob Hoydis a	nd Luca Sandu	notti Massivo N	MMO Notworks
Spectral, Energy, and Hardward			
Signal Processing, Now publish	ers Netherland	s ISBN: 978-1-6	38083-985-2
3. Theodore S. Rappaport, Rob	ort W Heath	<u>Bobert C Dan</u>	iels James N
Murdock, Millimeter Wave W			
Pearson, UK, ISBN-13: 978013			
4. John W. Leis, Communication S		s Llsing MATLA	B 2018 1 st Ed
Wiley-IEEE Press, USA, ISBN:			D, 2010, 1 LU.,
Mode of Evaluation: Continuous As			ont Ouiz Final
Assessment Test			ioni, Quiz, Filidi
	07-06-202	2	
Recommended by Board of Studies			16 2022
Approved by Academic Council	No. 70	Date 24-0	06-2023

Course Code	Course Title	L	Т	Ρ	С
MITS601L	Flexible and Wearable Sensors	3	0	0	3
Prerequisite:	NIL	Sylla	abus	versi	on
			1.	.0	
Course Object	ives:				
	vide the overview of flexible electronics technology a	and th	ne is	sues	with
	s processing for thin film electronics.				
	ose the students for the materials selection and pattern	ning m	etho	ds for	thin
	tronics development.		,	c	
	ribe the process involved in transferring the flexible ele-				
	and also the challenges, opportunities and the future of				
	ose the students to the design, challenges of wearable sing the physical and biological parameters and the pro-			-	•
	ion of conducting and semiconducting fibers to smart te			veu ii	i uie
convers		xuies	•		
Course Outco	me:				
	the technology developments in the flexible electronics				
	identify the suitable materials and its processing for th	ie dev	elopi	ment o	of
	electronics				
	design the pattern and develop with suitable patternin				
	the process involved in the transformation of electronic				
	the design knowledge for developing wearable sensor alparameters	's tor	pnys	ical ar	na
	e competency in transferring the conducting and sem	inend			
			uctin	a tiha	rc
		licona	uctin	g fibe	rs
to smar	ttextiles		uctin	g fibe	rs
to smar Module:1 Ove	ttextiles rview of flexible electronics technology				
to smar Module:1 Ove History of fle	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electr	onics	: de	5 ho	ours of
to smar Module:1 Ove History of flexiblility, subs	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electronics trates, backplane electronics, front plane technologi	onics: ies, e	: de ncap	5 h œ egrees	ours of on -
to smar Module:1 Ove History of fle flexiblility, subs Fabrication tec	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electr trates, backplane electronics, front plane technologi hnology for flexible electronics - Fabrication on sheets	onics: ies, e	: de ncap	5 h œ egrees	ours of on -
to smar Module:1 Ove History of fle flexiblility, subs Fabrication tech fabrication on v	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electronics trates, backplane electronics, front plane technologi	onics: ies, e	: de ncap	5 ho egrees osulatio rocess	ours of on - sing,
to smar Module:1 Ove History of fle flexiblility, subs Fabrication tech fabrication on v Module:2 Ame	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electronics, backplane electronics, front plane technologi nnology for flexible electronics - Fabrication on sheets web by Roll-to-Roll processing - Additive printing. orphous and nano-crystalline silicon	onics: ies, e	: de ncap	5 ho egrees osulatio rocess	ours of on -
to smar Module:1 Ove History of fle flexiblility, subs Fabrication tech fabrication on v Module:2 Ame mat	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electronics trates, backplane electronics, front plane technologic hnology for flexible electronics - Fabrication on sheets web by Roll-to-Roll processing - Additive printing. brphous and nano-crystalline silicon erials and Thin film transistors	onics: ies, e by bat	: de ncap tch p	5 ho egrees osulatio rocess 7 ho	ours of on - sing, ours
to smar Module:1 Ove History of fle flexiblility, subs Fabrication tech fabrication on v Module:2 Ame mat Fundamental is	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electro- trates, backplane electronics, front plane technologi hnology for flexible electronics - Fabrication on sheets web by Roll-to-Roll processing - Additive printing. orphous and nano-crystalline silicon erials and Thin film transistors ssues for low temperature processing - low temperat	onics: ies, e by bat	: de ncap tch p morp	5 ho egrees osulatio rocess 7 ho ohous	ours of on - sing, ours and
to smar Module:1 Ove History of fle flexiblility, subs Fabrication tech fabrication on v Module:2 Ame mat Fundamental is nano- crystallin	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electronics trates, backplane electronics, front plane technologi nnology for flexible electronics - Fabrication on sheets web by Roll-to-Roll processing - Additive printing. orphous and nano-crystalline silicon erials and Thin film transistors asues for low temperature processing - low temperature e silicon - characteristics of low temperature dielectric	onics: ies, e by bat ture a thin fil	: de ncap tch p morp morp	5 ho egrees osulation rocess 7 ho ohous eposition	ours on - sing, ours and on –
to smar Module:1 Ove History of fle flexiblility, subs Fabrication tech fabrication on v Module:2 Ame mat Fundamental is nano- crystallin low temperatur	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electronics trates, backplane electronics, front plane technologic nology for flexible electronics - Fabrication on sheets web by Roll-to-Roll processing - Additive printing. orphous and nano-crystalline silicon erials and Thin film transistors sues for low temperature processing - low temperature e silicon - characteristics of low temperature dielectric e silicon nitride and silicon oxide characteristics - De	onics: ies, e by bat ture a thin fil evice	: de ncap tch p morp m de struc	5 ho egrees osulatio rocess 7 ho obhous epositio	ours on - sing, ours and on –
to smar Module:1 Ove History of fle flexiblility, subs Fabrication tech fabrication on v Module:2 Ame materials proce	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electronics trates, backplane electronics, front plane technologic nology for flexible electronics - Fabrication on sheets web by Roll-to-Roll processing - Additive printing. orphous and nano-crystalline silicon erials and Thin film transistors sues for low temperature processing - low temperature e silicon - characteristics of low temperature dielectric e silicon nitride and silicon oxide characteristics - De essing - Device performance - Contacts for the device -	onics: ies, e by bat ture a thin fil evice	: de ncap tch p morp m de struc	5 ho egrees osulation rocess 7 ho obhous eposition ctures ibility.	ours of on - sing, ours and on – and
to smar Module:1 Ove History of fle flexiblility, subs Fabrication tech fabrication on v Module:2 Ame mat Fundamental is nano- crystallin low temperatur materials proce Module:3 Mat	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electronics trates, backplane electronics, front plane technologi nology for flexible electronics - Fabrication on sheets web by Roll-to-Roll processing - Additive printing. orphous and nano-crystalline silicon erials and Thin film transistors sues for low temperature processing - low temperatu e silicon - characteristics of low temperature dielectric e silicon nitride and silicon oxide characteristics - De sing - Device performance - Contacts for the device - erials and Novel patterning methods for flexible	onics: ies, e by bat ture a thin fil evice	: de ncap tch p morp m de struc	5 ho egrees osulation rocess 7 ho obhous eposition ctures ibility.	ours on - sing, ours and on –
to smar Module:1 Ove History of fle flexiblility, subs Fabrication tech fabrication on v Module:2 Ame materials nano- crystallin low temperatur materials proce Module:3 Mat elec	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electro trates, backplane electronics, front plane technologi nnology for flexible electronics - Fabrication on sheets web by Roll-to-Roll processing - Additive printing. orphous and nano-crystalline silicon erials and Thin film transistors sues for low temperature processing - low temperat e silicon - characteristics of low temperature dielectric e silicon nitride and silicon oxide characteristics - De sising - Device performance - Contacts for the device - erials and Novel patterning methods for flexible eteronics	onics: ies, e by bat ture a thin fil evice Devic	morp morp m de struc e sta	5 ho egrees osulation rocess 7 ho ohous eposition ctures ibility. 7 ho	ours of on - sing, ours and on - and ours
to smar Module:1 Ove History of fle flexibility, subs Fabrication tech fabrication on v Module:2 Ame mat Fundamental is nano- crystallin low temperatur materials proce Module:3 Mat elec Materials consi	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electronic trates, backplane electronics, front plane technologi hnology for flexible electronics - Fabrication on sheets web by Roll-to-Roll processing - Additive printing. orphous and nano-crystalline silicon erials and Thin film transistors sues for low temperature processing - low temperature e silicon - characteristics of low temperature dielectric e silicon nitride and silicon oxide characteristics - De sissing - Device performance - Contacts for the device - erials and Novel patterning methods for flexible etronics derations for flexible electronics: Overview, Inorganics	onics ies, e by bat ture a thin fil evice Devic semic	: de ncap tch p morp m de struc e sta	5 ho egrees osulation rocess 7 ho obhous eposition ctures ibility. 7 ho uctors	ours on - sing, ours and on - and ours and
to smar Module:1 Ove History of fle flexibility, subs Fabrication tech fabrication on v Module:2 Ame materials nano- crystallin low temperatur materials proce Module:3 Materials consi dielectrics, organism	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electronics trates, backplane electronics, front plane technologi hnology for flexible electronics - Fabrication on sheets web by Roll-to-Roll processing - Additive printing. orphous and nano-crystalline silicon erials and Thin film transistors esues for low temperature processing - low temperat e silicon - characteristics of low temperature dielectric e silicon nitride and silicon oxide characteristics - De essing - Device performance - Contacts for the device - erials and Novel patterning methods for flexible etronics derations for flexible electronics: Overview, Inorganics anic semiconductors and dielectrics, conductors - Prin	onics ies, e by bat thin fil evice Devic Semic t proc	morp morp morp m de struc e sta	5 ho egrees osulation rocess 7 ho obhous eposition ctures ability. 7 ho uctors ng opt	ours on - sing, ours and on - and ours and
to smar Module:1 Ove History of fle flexiblility, subs Fabrication tech fabrication on v Module:2 Ame materials proce Module:3 Materials consi dielectrics, orga for device fabric	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electro trates, backplane electronics, front plane technologi hnology for flexible electronics - Fabrication on sheets web by Roll-to-Roll processing - Additive printing. orphous and nano-crystalline silicon erials and Thin film transistors sues for low temperature processing - low temperat e silicon - characteristics of low temperature dielectric e silicon nitride and silicon oxide characteristics - De ssing - Device performance - Contacts for the device - erials and Novel patterning methods for flexible etronics derations for flexible electronics: Overview, Inorganics anic semiconductors and dielectrics, conductors - Prin cation: Overview, control of feature sizes of jet printed li	onics: ies, e by bat this fil evice Devic Devic semic t proc iquids	morp morp m de struc e sta	5 ho egrees osulation rocess 7 ho obhous eposition ctures ibility. 7 ho option option option option	ours on - sing, ours and on - and ours and
to smar Module:1 Ove History of fle flexiblility, subs Fabrication tech fabrication on v Module:2 Ame materials nano- crystallin low temperatur materials proce Module:3 Materials considelectrics, orga for device fabric etch mask patter	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electron trates, backplane electronics, front plane technologi hnology for flexible electronics - Fabrication on sheets web by Roll-to-Roll processing - Additive printing. orphous and nano-crystalline silicon erials and Thin film transistors ssues for low temperature processing - low temperature e silicon - characteristics of low temperature dielectric e silicon nitride and silicon oxide characteristics - De ssing - Device performance - Contacts for the device - erials and Novel patterning methods for flexible etronics derations for flexible electronics: Overview, Inorganics anic semiconductors and dielectrics, conductors - Prin cation: Overview, control of feature sizes of jet printed li erning, methods for minimizing feature size, printing act	onics: ies, e by bat this fil evice Devic Devic semic t proc iquids	morp morp m de struc e sta	5 ho egrees osulation rocess 7 ho obhous eposition tures ability. 7 ho uctors ng opt printing als.	ours on - sing, ours and on - and ours and tions g for
to smar Module:1 Ove History of fle flexiblility, subs Fabrication tech fabrication on v Module:2 Ame materials roce Module:3 Materials considielectrics, orgate for device fabrice etch mask patter	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electro trates, backplane electronics, front plane technologi hnology for flexible electronics - Fabrication on sheets web by Roll-to-Roll processing - Additive printing. orphous and nano-crystalline silicon erials and Thin film transistors sues for low temperature processing - low temperat e silicon - characteristics of low temperature dielectric e silicon nitride and silicon oxide characteristics - De ssing - Device performance - Contacts for the device - erials and Novel patterning methods for flexible etronics derations for flexible electronics: Overview, Inorganics anic semiconductors and dielectrics, conductors - Prin cation: Overview, control of feature sizes of jet printed li erning, methods for minimizing feature size, printing act sible electronics from foils to textiles	onics: ies, e by bat ture a thin fil evice Devic Devic semic t proc iquids ive ma	morp morp morp m de struc e sta	5 ho egrees osulation rocess 7 ho obhous eposition tures ibility. 7 ho uctors ng opt printing als. 6 ho	ours on - sing, ours and on - and tions g for
to smar Module:1 Ove History of fle flexibility, subs Fabrication tech fabrication on v Module:2 Ame materials on v Module:3 Materials consist dielectrics, orgatorial for device fabrication for device fabrication for device fabrication Module:4 Flex Introduction -Th	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electro trates, backplane electronics, front plane technologi nology for flexible electronics - Fabrication on sheets web by Roll-to-Roll processing - Additive printing. orphous and nano-crystalline silicon erials and Thin film transistors sues for low temperature processing - low temperat e silicon - characteristics of low temperature dielectric e silicon nitride and silicon oxide characteristics - De erials and Novel patterning methods for flexible etronics derations for flexible electronics: Overview, Inorganics anic semiconductors and dielectrics, conductors - Prin cation: Overview, control of feature sizes of jet printed lie erning, methods for minimizing feature size, printing act tible electronics from foils to textiles nin film transistors: Materials and Technologies - Revie	onics: ies, e by bat ture a thin fil evice Device Semic t proc iquids ive ma w of s	morp morp morp m de struc e sta	5 ho egrees osulation rocess 7 ho obhous eposition tures ibility. 7 ho uctors ng opt printing als. 6 ho conduc	ours on - sing, ours and on - and ours and tions g for ours ctors
to smar Module:1 Ove History of fle flexibility, subs Fabrication tech fabrication on v Module:2 Ame materials Fundamental is nano- crystallin low temperatur materials proce Module:3 Materials for device fabric etch mask patter Module:4 Flex Introduction -The employed in fle	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electro trates, backplane electronics, front plane technologi nology for flexible electronics - Fabrication on sheets veb by Roll-to-Roll processing - Additive printing. orphous and nano-crystalline silicon erials and Thin film transistors sues for low temperature processing - low temperat e silicon - characteristics of low temperature dielectric e silicon nitride and silicon oxide characteristics - De ssing - Device performance - Contacts for the device - erials and Novel patterning methods for flexible etronics derations for flexible electronics: Overview, Inorganics anic semiconductors and dielectrics, conductors - Prin cation: Overview, control of feature sizes of jet printed li erning, methods for minimizing feature size, printing act sible electronics : Materials and Technologies - Revie exible electronics - Thin film transistors based on IGZO	onics: ies, e by bat ture a thin fil evice Device Semic t proc iquids ive ma w of s	morp morp morp m de struc e sta	5 ho egrees osulation rocess 7 ho obhous eposition tures ibility. 7 ho uctors ng opt printing als. 6 ho conduc	ours on - sing, ours and on - and ours and tions g for ours ctors
to smar Module:1 Ove History of fle flexibility, subs Fabrication tech fabrication on v Module:2 Ame materials nano- crystallin low temperatur materials proce Module:3 Materials for device fabric etch mask patter Module:4 Flex Introduction -The employed in fle for smart textile	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electro trates, backplane electronics, front plane technologi nnology for flexible electronics - Fabrication on sheets web by Roll-to-Roll processing - Additive printing. orphous and nano-crystalline silicon erials and Thin film transistors sues for low temperature processing - low temperat e silicon - characteristics of low temperature dielectric e silicon nitride and silicon oxide characteristics - De ssing - Device performance - Contacts for the device - erials and Novel patterning methods for flexible etronics derations for flexible electronics: Overview, Inorganics anic semiconductors and dielectrics, conductors - Prin cation: Overview, control of feature sizes of jet printed li erning, methods for minimizing feature size, printing act tible electronics - Thin film transistors based on IGZO s - Improvements and limitations.	onics: ies, e by bat ture a thin fil evice Device Semic t proc iquids ive ma w of s	morp morp morp m de struc e sta	5 ho egrees osulation rocess 7 ho obhous eposition tures ability. 7 ho orinting als. 6 ho conduce electro	ours on - sing, ours and on - and ours and tions g for ours ctors
to smar Module:1 Ove History of fle flexibility, subs Fabrication tech fabrication on v Module:2 Ame materials roce Module:3 Materials considie dielectrics, orgate for device fabrice etch mask patter Module:4 Flex Introduction -The employed in fle for smart textile Module:5 Weatter	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electro trates, backplane electronics, front plane technologi nnology for flexible electronics - Fabrication on sheets web by Roll-to-Roll processing - Additive printing. orphous and nano-crystalline silicon erials and Thin film transistors sues for low temperature processing - low temperat e silicon - characteristics of low temperature dielectric e silicon nitride and silicon oxide characteristics - De ssing - Device performance - Contacts for the device - erials and Novel patterning methods for flexible etronics derations for flexible electronics: Overview, Inorganics anic semiconductors and dielectrics, conductors - Prin cation: Overview, control of feature sizes of jet printed li erning, methods for minimizing feature size, printing act tible electronics - Thin film transistors based on IGZO s - Improvements and limitations. rable haptics	onics: ies, e by bat ture a thin fil evice Device Device semic t proc iquids ive ma ive ma o - Pla	morp morp morp m de struc e sta	5 ho egrees osulation rocess 7 ho obhous eposition tures ibility. 7 ho uctors ng opt printing als. 6 ho conduce electro 6 ho	ours on - sing, ours and on - and ours and tions g for ours ctors onics
to smar Module:1 Ove History of fle flexibility, subs Fabrication tech fabrication on v Module:2 Ame materials Fundamental is nano- crystallin low temperatur materials proce Module:3 Materials for device fabric dielectrics, orga for device fabric etch mask patter Module:4 Flex Introduction -The employed in fle for smart textile Module:5 Wea World of weara	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electro trates, backplane electronics, front plane technologi nology for flexible electronics - Fabrication on sheets web by Roll-to-Roll processing - Additive printing. orphous and nano-crystalline silicon erials and Thin film transistors sues for low temperature processing - low temperat e silicon - characteristics of low temperature dielectric e silicon nitride and silicon oxide characteristics - De ssing - Device performance - Contacts for the device - erials and Novel patterning methods for flexible etronics derations for flexible electronics: Overview, Inorganics anic semiconductors and dielectrics, conductors - Prin cation: Overview, control of feature sizes of jet printed li erning, methods for minimizing feature size, printing act tible electronics - Thin film transistors based on IGZO s - Improvements and limitations. rable haptics bles - Attributes of wearables - Textiles and clothing:	onics: ies, e by bat ture a thin fil evice Device Semic t proc iquids ive ma v of s - Pla	morp morp morp morp struc e sta condu e sta condu e sta struc e sta	5 ho egrees osulation rocess 7 ho obhous eposition tures ibility. 7 ho uctors ng opt porinting als. 6 ho conduce electro 6 ho weara	ours on - sing, ours and on - and ours and tions g for ours ours ours ble -
to smar Module:1 Ove History of fle flexibility, subs Fabrication tech fabrication on v Module:2 Ame materials Fundamental is nano- crystallin low temperatur materials proce Module:3 Materials for device fabric etch mask patter Module:4 Flex Introduction -The employed in fle for smart textile Module:5 Wea World of weara Challenges and	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electro trates, backplane electronics, front plane technologi innology for flexible electronics - Fabrication on sheets web by Roll-to-Roll processing - Additive printing. orphous and nano-crystalline silicon erials and Thin film transistors sues for low temperature processing - low temperat e silicon - characteristics of low temperature dielectric e silicon nitride and silicon oxide characteristics - De essing - Device performance - Contacts for the device - erials and Novel patterning methods for flexible etronics derations for flexible electronics: Overview, Inorganics anic semiconductors and dielectrics, conductors - Prin cation: Overview, control of feature sizes of jet printed li erning, methods for minimizing feature size, printing act tible electronics - Thin film transistors based on IGZO is - Improvements and limitations. rable haptics bles - Attributes of wearables - Textiles and clothing:	onics: ies, e by bat ture a thin fil evice Device Semic t proc iquids ive ma v of s - Pla	morp morp morp morp struc e sta condu e sta condu e sta struc e sta	5 ho egrees osulation rocess 7 ho obhous eposition tures ibility. 7 ho uctors ng opt porinting als. 6 ho conduce electro 6 ho weara	ours on - sing, ours and on - and ours and tions g for ours ours ours ble -
to smar Module:1 Ove History of fle flexibility, subs Fabrication tech fabrication on v Module:2 Ame materials nano- crystallin low temperatur materials proce Module:3 Materials for device fabric etch mask patter Module:4 Flex Introduction -The employed in fle for smart textile Module:5 Wea World of weara Challenges and Categories of w	ttextiles rview of flexible electronics technology exible electronics - Materials for flexible electro trates, backplane electronics, front plane technologi nology for flexible electronics - Fabrication on sheets web by Roll-to-Roll processing - Additive printing. orphous and nano-crystalline silicon erials and Thin film transistors sues for low temperature processing - low temperat e silicon - characteristics of low temperature dielectric e silicon nitride and silicon oxide characteristics - De ssing - Device performance - Contacts for the device - erials and Novel patterning methods for flexible etronics derations for flexible electronics: Overview, Inorganics anic semiconductors and dielectrics, conductors - Prin cation: Overview, control of feature sizes of jet printed li erning, methods for minimizing feature size, printing act tible electronics - Thin film transistors based on IGZO s - Improvements and limitations. rable haptics bles - Attributes of wearables - Textiles and clothing:	onics: ies, e by bat ture a thin fil evice Device Semic t proc iquids ive ma v of s - Pla	morp morp morp morp struc e sta condu e sta condu e sta struc e sta	5 ho egrees osulation rocess 7 ho obhous eposition tures ability. 7 ho ouctors ng opt printing als. 6 ho conduce electro 6 ho weara a device	ours on - sing, ours and on - and ours and tions g for ours ours ours ble -

sensor - A	is for wearable motion sensors - Practical considerations f pplication in clinical practice and future scope	or wearable inertial
Module:7	Knitted electronic textiles	6 hours
From fiber	s to textile sensors - Interlaced network -Textile sensors for p	hysiological state
	- Biomechanical sensing - Noninvasive sweat monitoring by	
	cations. FBG sensor in Intelligent Clothing and Biomechanic	
Module:8	Contemporary Issues	2 hours
	Total Lecture hours:	45 hours
Text Book(-)	
He Me 2. Wil	chael J. McGrath, Cliodhna Ni Scanaill, Dawn Nafus, "Se althcare, Wellness and Environmental Applications", 201, dia LLC, New York. liam S. Wong, Alberto Salleo, Flexible Electronics: Material	1 st Edition,Apress
Reference	11, 1 st Edition, Springer, New York.	
1. Ed	ward Sazonov, Michael R. Newman, "Wearable Senso	ors: Fundamentals.
	plementationand Applications", 2014, 1 st Edition, Academic P	
2. Ka	blementationand Applications", 2014, 1⁵ Edition, Academic P te Hartman, "Make: Wearable Electronics: Design, prototy ninteractive garments", 2014, 1 st Edition, Marker Media, Neth	ress, Cambridge. pe, and wear your
2. Ka ow 3. Gu	e Hartman, "Make: Wearable Electronics: Design, prototy	ress, Cambridge. pe, and wear your erlands.
2. Ka ow 3. Gu 20 ⁻ 4. Yu Te	te Hartman, "Make: Wearable Electronics: Design, prototy ninteractive garments", 2014, 1 st Edition, Marker Media, Neth ozhen Shen, Zhiyong Fan, "Flexible Electronics: From Ma 15, 1 st Edition, World Scientific Publishing Co, Singapore. gang Sun, John A. Rogers, "Semiconductor Nanomat chnologies: From Photovoltaics and Electronics to Ser orage (Micro and Nano Technologies)', 2011, 1 st Edition, W	ress, Cambridge. pe, and wear your erlands. terials to Devices", erials for Flexible nsors and Energy
2. Ka ow 3. Gu 20 ⁷ 4. Yu Teo Sto Yo	te Hartman, "Make: Wearable Electronics: Design, prototy ninteractive garments", 2014, 1 st Edition, Marker Media, Neth ozhen Shen, Zhiyong Fan, "Flexible Electronics: From Ma 15, 1 st Edition, World Scientific Publishing Co, Singapore. gang Sun, John A. Rogers, "Semiconductor Nanomat chnologies: From Photovoltaics and Electronics to Ser orage (Micro and Nano Technologies)', 2011, 1 st Edition, W rk.	ress, Cambridge. pe, and wear your erlands. iterials to Devices", erials for Flexible nsors and Energy
2. Ka ow 3. Gu 20 ⁻ 4. Yu Teo Sto Yo	te Hartman, "Make: Wearable Electronics: Design, prototy ninteractive garments", 2014, 1 st Edition, Marker Media, Neth ozhen Shen, Zhiyong Fan, "Flexible Electronics: From Ma 15, 1 st Edition, World Scientific Publishing Co, Singapore. gang Sun, John A. Rogers, "Semiconductor Nanomat chnologies: From Photovoltaics and Electronics to Ser orage (Micro and Nano Technologies)', 2011, 1 st Edition, W	ress, Cambridge. pe, and wear your erlands. iterials to Devices", erials for Flexible nsors and Energy

Course Code	Course Title	L	Т	Р	С
MITS603L	Chemical and Environmental Sensor	3	0	0	3
Pre-requisite:	NIL	Syl	labu	s Ver	sion
		_	1	.0	
Course Objectiv	/05		- 1	.0	
-	d engineering principles to electrochemical sensor	deve	lonn	ent	
	arunderstating of oxidation and reduction of an electro			ione	
	und the conception of ion selective and enzyme stal			ctrode	s
	ection of chemical and biomolecules.				
	pedient in applying specific interaction methods in th	ne rec	ogni	tion o	f ion
	gases using metal oxide based sensors.				
-	analyze the modes of vibration and develop the nalsensitive sensors.	suitat	ble n	nass	
Course Outcom					
	the need for half-cell and to analyze potential		lope	d in	any
	emical cell.Apply the same for ion selective measurem				
	iar with a wide range of chemical sensing met istics tobe applied in biosensors.	nods	and	mat	eriai
	design gas sensors for commercial and industrial appl	icatior	ne		
	wledge of nanomaterials for biological and medical ap				
	iscuss, develop and apply site specific antigen-antib			ors de	sign
	ommon diseases like metabolic disorders	•			C
Evaluate	process design criteria for gas treatment and air quali	ty ana	lysis		
Module:1 E	lectrochemistry			7 h	ours
	s, , Enthalpy, Entropy, Gibbs free Energy, Law of	Mass	Acti		
-	Electrode – Electrolyte Interface, Fluid Electrolytes,				-
	ct, Ion Product, pH Value, Ionic Conductivity, Io				
Diagrams.					
	ransduction Principles				ours
	ments- Electrochemical Transducers-Introduction Pot				
	odes: The Nernst Equation Voltametry and amper				-
	ectrodes, Thin-Film Electrodes and Screen-Printed e	lectro	des,	photo	ometri
sensors					
Module:3 C	homical Sancing Flomonts			6 h	ours
	hemical Sensing Elements n, molecular recognition-chemical recognition ag	ront	sno	ctroso	
	ogical recognition agents. Immobilization of biol				
	stors of Urea Biosensors, Amino Acid Biosensors,				
-	ctors affecting theperformance of sensors.				
Module:4 P	otentiometric and Amperometric Sensors			6 h	ours
	lon selective electrodes- pH linked, Ammonia linked	. CO2	2 link		
sulfide linked, loo	dine selective, amperometric -bio sensors and gas ser	nsors,	Amp	perom	etric
•	les: substrate and enzyme activity, Detection mod				
	d and modified electrodes, pH glass and ion select	ive el	ectro	des,	solid
state and redox e	electrodes,				
Module:5 C	ptical Biosensor and Immunosensors Biosensor			6 b/	ours
	•				
Fiber optic I	piosensor, Fluorophore and chromophore	base	d	hiner	ensor,
Bioluminescence					abled

immune sensors, Microbial Biosensors: electrochemical, photomicrobial, Microbial thermistor. Application of microbial biosensors in glucose, ammonia, acetic acid, alcohol, BOD, methane sensing

		eatment			6 hours
	stion process, Catalytic exh				
	•			•	, 0
	-		ors: Hydro	-Carbon S	ensors, NOx-
s, Temp	erature Sensors, Oxygen Se	nsors.			
		.			
			-		6 hours
				•	
		•	ohur, oxic	les of nitr	ogen unburnt
arbons,	carbon-monoxide, dust mist	and fog.			
9:8	Contemporary Issues				2 hours
			Tota	Lecture:	45 hours
ook(s)					
. ,	liri "Principles of Chemical s	ensors" 2014	4 2 nd editi	on Springe	er New York
		0110010,201	1, 2 0010	on, opinig	
	()	rs and Bios	ensors".	(Part of A	nTS Series).
				(*	
			n for Scie	entists and	I Engineers",
		d Sensing",	2012, 1	st edition,	Philadelphia
					ew Jersey.
M. Ca Two:Er	ampbell, "Sensor Systems wironmental Monitoring", 201	for Enviro 1, 1 st Edition,	onmental Springer,	Monitorin New York.	g: Volume
of Evalu	ation: CAT / Assignment / Qu	iz / FAT			
mendeo	by Board of Studies	28-07-2022			
	•	No. 67	Date	08-08-202	2
	ies, Ex s, Temp e:7 rement s and c arbons, e:8 ook(s) Janata, nce Boo Brian F 2010, 7 Peter (2011, 1 R.G.Jac Institute Florinel Fundan M. Ca Two:En of Evalu	ies, Exhaust sensors for OBD, C s, Temperature Sensors, Oxygen Se 2:7 Measurement techniques rement techniques for particulate s and control- Measurement of ox arbons, carbon-monoxide, dust mist 2:8 Contemporary Issues 3:8 Contemporary Issues 3:9 Contemporary Issues 3:9 Distanta, Jiri, "Principles of Chemical sensor 3:9 Distanta, Jiri, "Distanta, "Sensor Systems 3:9 Two:Environmental Monitoring", 201	ies, Exhaust sensors for OBD, Control Sensors, Temperature Sensors, Oxygen Sensors.	ies, Exhaust sensors for OBD, Control Sensors: Hydros, Temperature Sensors, Oxygen Sensors.	Provide State Measurement techniques for air quality rement techniques for particulate matter in air. Specific gased s and control- Measurement of oxides of sulphur, oxides of nitr arbons, carbon-monoxide, dust mist and fog. e:8 Contemporary Issues Total Lecture: ook(s) Janata, Jiri,"Principles of Chemical sensors", 2014, 2 nd edition, Springence Book(s) Brian R Eggins, "Chemical Sensors and Biosensors", (Part of A 2010, 1 st edition, John Wiley Sons Ltd, New York. Peter Grundler, "Chemical Sensors: Introduction for Scientists and 2011, 1 st edition, Springer, New York. R.G.Jackson, "Novel Sensors and Sensing", 2012, 1 st edition, Institute ofPhysics. Florinel-Gabriel Banica "Chemical Sensors and Biosensors: Fundamentals and Applications" 2012, 1 st edition, Wiley-Blackwell, Network. M. Campbell, "Sensor Systems for Environmental Monitoring", 2011, 1 st Edition, Springer, New York. M. Campbell, "Sensor Systems for Environmental Monitoring", 2011, 1 st Edition, Springer, New York. M. Campbell, "Sensor Systems for Environmental Monitoring", 2011, 1 st Edition, Springer, New York. Measuremental Monitoring", 2011, 1 st Edition, Springer, New York. Measuremental Monitoring", 2011, 1 st Edition, Springer, New York. Measuremental Monitoring", 2011, 1 st Edition, Springer, New York. Measuremental Monitoring", 2011,

Course Code	Course Title	L	Т	Ρ	С
MITS604L	Cloud and Fog Computing	3	0	0	3
Prerequisite	NIL	Sylla	bus	Ver	sion
		1	.0		
Course Object	tives:				
The course is					
	oud computing and enabling technologies				
	need for fog and edge computation				
3. Impart the k	nowledge to log the sensor data and to perform further data	a ana	ytics	5	
Course Outco	ome:				
At the end of t	he course student will be able to				
1. Deploy their	data in the cloud for simple applications				
2. Apply the ar	nalytics in cloud to extract information				
3. Appreciate	and deploy fog data processing layers				
	nsor data to cloud through fog computation layers				
	and implement edge computation				
	ge analytics using python and tensor flow				
 Perform da 	ta pushing and processing in commercial clouds.				
Module 1 Cl	oud Computing basics and enablingtechnologie	s		7 hc	ours
Basics of clou	d computing-Need for clouds- concepts and models: Roles	and b	oun	dari	es –
	eristics – Čloud delivery models – Cloud deployment mo				
	Internet Architecture – Data Center Technology – Virtualiza				
Module 2 Cl	oud Virtualisation			6 hc	ours
	d – Virtual Machines (IaaS), Modern Serverless Configurat	ions-			
	a functions – App, Biz function, logics, data ingestion (elas				
	DB services, Analytics services (SaaS).				,
,	· · · · · · · · · · · · · · · · · · ·				
Module 3 Cl	oud Application Development in Python			6 hc	ours
	oud: Amazon Web Services – Google Cloud – Window	ws A	zure		
Python forMap	Reduce.				
	derated Cloud Service Management andIoT			6 ha	
					ours
Cloud Servi	ce management (federated) –Cloud Life Cycle-s Cloudarchitectures -Self organizing cloud architectures	ervice	; č	and	
management-					
				<u> </u>	
Module 5 Fo					ours
	g computation, Fog data processing layers – Secu				
	 Business process integration – Big data interfaces – Wire in 5G, Architecture Harmonization Between Cloud Radio 				
	orks, Fog applications.	ALLE	55 IN	elw	UIKS
and tog Netw	orks, i og applications.				
	og and edge computing			6 hc	ours
	e computation-Edge computing architectures, Device reg	istrati			
	V update, Geo distributed computing-concept of cloud or				
	v bandwidth networks/ Security/ protools),WAN vs Low band				
```	• • /				
	verview of Edge Data Analytics tools			6 hc	ours
Python advan	ce libraries(Pandas, Scikit Learn), Tensor flow and Yolo				
				-	
Module 8 Co	ontemporary Issues			2 hc	ours

				Tota	al Lecture:	45 hours
Text	Books	:				
1.		as Erl, Zaigham Mahmoo epts,Technology & Architect				outing:
2.		leep Bahga, Vijay Madisetti,	-	-		h". 2013.
3.	Ovidi	Vermesan, Peter Friess, ation toMarket Deployment",	"Internet c	f Things – F		
4.		ael Missbach, Thorsten S rt Madl,Mark Tempes, Georg			,	
5		Mutumba Bilay , Peter Gutso rm Integration: The Compre				
Refe	erence	Books:				
1.		o Zhou, "The Internet of Th 5, 2012.	ings in the	Cloud: A Midd	leware Perspe	ective", CRC
2.	Netwo	Hung et al.: Architecture orks, IEEE Access: The Jo – 3034, 2015.				
Mod	le of Ev	/aluation: CAT / Assignment	/ Quiz / FAT	T		
Rec	ommer	nded by Board of Studies	28-07-202	2		
Арр	roved b	by Academic Council	No. 67	Date	08-08-2022	

Course Code	Course Title	L	Т	Ρ	С
MITS605L	IoT Security and Trust	3	0	0	3
Pre-Requisite:	NIL	Sylla	bus	Vers	ion
			1.0		
Objectives:					
•	knowledge and technical skills in designing secured	d and	trust	able	loT
systems.					
Outcome:					
	course students will be able to				
-	plement cryptography algorithms using C programs				
	security problems in various networks				
•	systems using elementary blocks				
	e cloud based IoT systems urity problems using light weight cryptography				
	e need for cyber security laws and methods.				
Mashala 4 Euro	damentals of encryption for cybersecurity.			7 1	
				7 ho	
	Need and the Mathematical basics- History of crypto				
•	ciphers, DES – AES. Public-key cryptography: R				
	c Curve Cryptosystems, Algebraic structure, Triple	e Dala	a En	CIVD	
Algorithm (TDEA	N Blocksinher			71	liui
Algorithm (TDEA	A) Blockcipher,			71	
Module 2 IoT s	security framework			6 ho	urs
Module 2 IoT s IIOT security fra	security framework me work, Security in hardware,Bootprocess, OS & Ke	ernel, a	applic	6 ho ation	<b>urs</b> ı,ru
Module 2 IoT s IIOT security fra time environmer	security framework me work, Security in hardware,Bootprocess, OS & Ke nt and containers. Need and methods of Edge Securit	ernel, a	applic work	6 ho ation Secu	<b>urs</b> ı,ru
Module 2 IoT s IIOT security fra time environmer Internet, Intranet	security framework me work, Security in hardware,Bootprocess, OS & Ke	ernel, a	applic work	6 ho ation Secu	<b>urs</b> ı,ruı urity
Module 2 IoT s IIOT security fra time environmer	security framework me work, Security in hardware,Bootprocess, OS & Ke nt and containers. Need and methods of Edge Securit	ernel, a	applic work	6 ho ation Secu	<b>urs</b> ı,ruı urity
Module 2 IoT s IIOT security fra time environmer Internet, Intranet and VOIP.	security framework me work, Security in hardware,Bootprocess, OS & Ke at and containers. Need and methods of Edge Security , LAN, Wireless Networks, Wireless cellular networks	ernel, a y, Netv s, Celli	applic work ular 1	6 ho atior Secu Netw	urs i,rui urity ork
Module 2IoT sIIOT security fra time environmer Internet, Intranet and VOIP.Module 3Elem	security framework me work, Security in hardware,Bootprocess, OS & Ke nt and containers. Need and methods of Edge Security , LAN, Wireless Networks, Wireless cellular networks	ernel, a y, Netv s, Celli	applic work ular 1	6 ho ation Secu	urs ı,ruı urity orks
Module 2IoT sIIOT security fra time environmerInternet, Intranet and VOIP.Module 3Elen Man	security framework me work, Security in hardware,Bootprocess, OS & Ke and containers. Need and methods of Edge Security , LAN, Wireless Networks, Wireless cellular networks nentary blocks of IoT Security & Modelsfor Identity agement	ernel, a y, Netv s, Cellu	applic work ular N	6 ho atior Secu Netw 6 Ho	urs i,rui urity orks urs
Module 2IoT sIIOT security fra time environmerInternet, Intranet and VOIP.Module 3Elen ManVulnerability of	security framework me work, Security in hardware,Bootprocess, OS & Ke at and containers. Need and methods of Edge Security , LAN, Wireless Networks, Wireless cellular networks nentary blocks of IoT Security & Modelsfor Identity agement IoT and elementary blocks of IoT Security, Three	ernel, a y, Netv s, Cellu /	applic work ular 1 deling	6 ho ation Secu Netw 6 Ho	urs a, rui urity ork urs Ke
Module 2IoT sIIOT security fra time environmerInternet, Intranet and VOIP.Module 3Elen ManVulnerability of elements. Identiti	security framework me work, Security in hardware,Bootprocess, OS & Ke and containers. Need and methods of Edge Security , LAN, Wireless Networks, Wireless cellular networks nentary blocks of IoT Security & Modelsfor Identity agement IoT and elementary blocks of IoT Security, Threaty management Models and Identity management in IoT	ernel, a y, Netv s, Cellu /	applic work ular 1 deling	6 ho ation Secu Netw 6 Ho	urs a, rui urity ork urs Ke
Module 2IoT sIIOT security fra time environmerInternet, Intranet and VOIP.Module 3Elen ManVulnerability of elements. Identiti	security framework me work, Security in hardware,Bootprocess, OS & Ke at and containers. Need and methods of Edge Security , LAN, Wireless Networks, Wireless cellular networks nentary blocks of IoT Security & Modelsfor Identity agement IoT and elementary blocks of IoT Security, Three	ernel, a y, Netv s, Cellu /	applic work ular 1 deling	6 ho ation Secu Netw 6 Ho	urs a, rui urity orks urs Ke
Module 2IoT sIIOT security fra time environmerInternet, Intranet and VOIP.Module 3Elen ManVulnerability of elements. Identit User-centric, Devi	security framework me work, Security in hardware,Bootprocess, OS & Ke at and containers. Need and methods of Edge Security , LAN, Wireless Networks, Wireless cellular networks nentary blocks of IoT Security & Modelsfor Identity agement IoT and elementary blocks of IoT Security, Threat ty management Models and Identity management in IoT vice-centric and Hybrid.	ernel, a y, Netv s, Cellu /	applic work ular N ( deling roach	6 ho ation Secu Netw 6 Ho	urs a,rui urity ork urs Ke
Module 2IoT sIIOT security fra time environmerInternet, Intranet and VOIP.Module 3Elen ManVulnerability of elements. Identit User-centric, DevModule 4Iden	security framework me work, Security in hardware,Bootprocess, OS & Kent and containers. Need and methods of Edge Security , LAN, Wireless Networks, Wireless cellular networks mentary blocks of IoT Security & Modelsfor Identity agement IoT and elementary blocks of IoT Security, Threat by management Models and Identity management in IoT vice-centric and Hybrid.	ernel, a y, Netv s, Cellu / at mod T, App	applic work ular N deling roach	6 ho atior Secu Netw 6 Ho es u	urs a,rui urity ork urs Ke
Module 2IoT sIIOT security fra time environmerInternet, Intranet and VOIP.Module 3Elen ManVulnerability of elements. Identit User-centric, DevModule 4Iden IdenTrust management	security framework me work, Security in hardware,Bootprocess, OS & Ke at and containers. Need and methods of Edge Security , LAN, Wireless Networks, Wireless cellular networks nentary blocks of IoT Security & Modelsfor Identity agement IoT and elementary blocks of IoT Security, Threat by management Models and Identity management in IoT vice-centric and Hybrid.	ernel, a y, Netv s, Cellu n at moo T, App	applic work ular 1 deling roach	6 ho ation Secu Netw 6 Ho lies u 6 Ho nt:	urs a,ru urity ork urs Ke
Module 2IoT sIIOT security fra time environmerInternet, Intranet and VOIP.Module 3Elen ManVulnerability of elements. Identit User-centric, DevModule 4Iden Iden Trust manageme Cryptosystems -	security framework me work, Security in hardware,Bootprocess, OS & Ke at and containers. Need and methods of Edge Security , LAN, Wireless Networks, Wireless cellular networks nentary blocks of IoT Security & Modelsfor Identity agement IoT and elementary blocks of IoT Security, Threat ty management Models and Identity management in IoT vice-centric and Hybrid. tity Management and Trust Establishment ent lifecycle, Identity and Trust, Web of trust models. E - Mutual establishment phases – Comparison on secu	ernel, a y, Netv s, Cellu n at moo T, App	applic work ular 1 deling roach	6 ho ation Secu Netw 6 Ho lies u 6 Ho nt:	urs a,rui urity ork urs Ke
Module 2IoT sIIOT security fra time environmerInternet, Intranet and VOIP.Module 3Elen ManVulnerability of elements. Identit User-centric, DeviModule 4Iden Trust management	security framework me work, Security in hardware,Bootprocess, OS & Ke at and containers. Need and methods of Edge Security , LAN, Wireless Networks, Wireless cellular networks nentary blocks of IoT Security & Modelsfor Identity agement IoT and elementary blocks of IoT Security, Threat ty management Models and Identity management in IoT vice-centric and Hybrid. tity Management and Trust Establishment ent lifecycle, Identity and Trust, Web of trust models. E - Mutual establishment phases – Comparison on secu	ernel, a y, Netv s, Cellu n at moo T, App	applic work ular 1 deling roach	6 ho ation Secu Netw 6 Ho lies u 6 Ho nt:	urs a,rui urity ork: urs Ke sin
Module 2IoT sIIOT security fra time environmerInternet, Intranet and VOIP.Module 3Elen ManVulnerability of elements. Identit User-centric, DevModule 4Iden Identity managementTrust management Cryptosystems - Identitymanagement	security framework me work, Security in hardware,Bootprocess, OS & Kent and containers. Need and methods of Edge Security , LAN, Wireless Networks, Wireless cellular networks mentary blocks of IoT Security & Modelsfor Identity agement IoT and elementary blocks of IoT Security, Threat by management Models and Identity management in IoT vice-centric and Hybrid. tity Management and Trust Establishment ent lifecycle, Identity and Trust, Web of trust models. E - Mutual establishment phases – Comparison on secu- nent framework.	ernel, a y, Netv s, Cellu n at moo T, App	applic work ular N deling roach	6 ho ation Secu Netw 6 Ho ies u 6 Ho nt: s.	urs a,rui urity ork: urs Ke sin urs
Module 2IoT sIIOT security fra time environmerInternet, Intranet and VOIP.Module 3Elen ManVulnerability of elements. Identit User-centric, DevModule 4Iden Identity manageme Cryptosystems - IdentitymanagemeModule 5Access	security framework me work, Security in hardware,Bootprocess, OS & Kent and containers. Need and methods of Edge Security , LAN, Wireless Networks, Wireless cellular networks mentary blocks of IoT Security & Modelsfor Identity agement IoT and elementary blocks of IoT Security, Threat ty management Models and Identity management in IoT vice-centric and Hybrid. tity Management and Trust Establishment ent lifecycle, Identity and Trust, Web of trust models. E - Mutual establishment phases – Comparison on secu- nent framework.	ernel, a y, Netv s, Cellu / at mod T, Appl Establis urity ar	applic work ular N deling roach shme nalysi	6 ho ation Secu Netw 6 Ho es u 6 Ho nt: s.	urs a,rui urity ork: urs Ke sin urs
Module 2IoT sIIOT security fra time environmer Internet, Intranet and VOIP.IoT sModule 3Elen ManVulnerability of elements. Identit User-centric, DevIden Trust manageme Cryptosystems - IdentitymanagemeModule 5Acce Capability-based	security framework me work, Security in hardware,Bootprocess, OS & Kent and containers. Need and methods of Edge Security , LAN, Wireless Networks, Wireless cellular networks mentary blocks of IoT Security & Modelsfor Identity agement IoT and elementary blocks of IoT Security, Threat by management Models and Identity management in IoT vice-centric and Hybrid. tity Management and Trust Establishment ent lifecycle, Identity and Trust, Web of trust models. E - Mutual establishment phases – Comparison on secu- nent framework.	ernel, a y, Netv s, Cellu / at mod T, Appl Establis urity ar	applic work ular N deling roach shme nalysi	6 ho ation Secu Netw 6 Ho es u 6 Ho nt: s.	urs a,rui urity ork urs Ke sing urs
Module 2       IoT s         IIOT security fra         time environmer         Internet, Intranet         and VOIP.         Module 3       Elen         Module 3       Elen         Man         Vulnerability of         elements. Identit         User-centric, Dev         Module 4       Iden         Trust manageme         Cryptosystems -         Identitymanagem         Capability-based         Lightweight crypto	security framework me work, Security in hardware,Bootprocess, OS & Kent and containers. Need and methods of Edge Security , LAN, Wireless Networks, Wireless cellular networks mentary blocks of IoT Security & Modelsfor Identity agement IoT and elementary blocks of IoT Security, Threat ty management Models and Identity management in IoT vice-centric and Hybrid. tity Management and Trust Establishment ent lifecycle, Identity and Trust, Web of trust models. E - Mutual establishment phases – Comparison on secu- nent framework. ess Control in IoT and light weightcryptography access control schemes,Concepts, identity-based a	ernel, a y, Netv s, Cellu at mod T, Appl Establis urity ar	applic work ular N deling roach shme nalysi	6 ho ation Secu Netw 6 Ho es u 6 Ho nt: s.	urs a,rui urity ork: urs Key sing urs ven,
Module 2       IoT s         IIOT security fra         time environmer         Internet, Intranet         and VOIP.         Module 3       Elen         Module 3       Elen         Man         Vulnerability of         elements. Identiti         User-centric, Dev         Module 4       Iden         Trust manageme         Cryptosystems -         Identitymanagem         Capability-based         Lightweight cryp         Module 6       Sec	Security framework me work, Security in hardware,Bootprocess, OS & Kent and containers. Need and methods of Edge Security , LAN, Wireless Networks, Wireless cellular networks mentary blocks of IoT Security & Modelsfor Identity agement IoT and elementary blocks of IoT Security, Threat ty management Models and Identity management in IoT vice-centric and Hybrid. tity Management and Trust Establishment ent lifecycle, Identity and Trust, Web of trust models. E – Mutual establishment phases – Comparison on secunent framework. ess Control in IoT and light weightcryptography d access control schemes,Concepts, identity-based a tography, need and methods , IoT use cases	ernel, a y, Netv s, Cellu / at mod T, App Establis urity ar and id	applic work ular 1 deling roach nalysi lentity	6 ho ation Secu Netw 6 Ho es u 6 Ho nt: s. 6 Ho (-driv 6 Ho	urs a,rui urity ork: urs Key sin( urs ven, ven, urs
Module 2IoT sIIOT security fra time environmer Internet, Intranet and VOIP.Internet manModule 3Elen ManVulnerability of elements. Identiti User-centric, DevIden manModule 4Iden Identitymanagen Cryptosystems - IdentitymanagenModule 5Accor Capability-based Lightweight crypModule 6SecCloud security	security framework me work, Security in hardware,Bootprocess, OS & Kent and containers. Need and methods of Edge Security , LAN, Wireless Networks, Wireless cellular networks mentary blocks of IoT Security & Modelsfor Identity agement IoT and elementary blocks of IoT Security, Threat ty management Models and Identity management in IoT vice-centric and Hybrid. tity Management and Trust Establishment ent lifecycle, Identity and Trust, Web of trust models. E - Mutual establishment phases – Comparison on secu- nent framework. ess Control in IoT and light weightcryptography d access control schemes,Concepts, identity-based a tography, need and methods , IoT use cases urity and Digital Identity in CloudComputing	ernel, a y, Netv s, Cellu / at mod T, App Establis urity ar and id	applic work ular 1 deling roach nalysi lentity	6 ho ation Secu Netw 6 Ho es u 6 Ho nt: s. 6 Ho (-driv 6 Ho	urs a,rui urity ork: urs Key sin( urs ven, ven, urs

Мо	dule 7	Cyber Crimes, Hackers and Forens	sics		6 Hours
		nes and Laws – Hackers – Dealing wi		se tide of	Cyber Crimes – Cyber
For	ensicsa	<u>nd incident Response – Network Forer</u>	nsics.		
Ma	du la 10	Contonnonomi lacura			0 110.000
IVIO	dule:8	Contemporary Issues			2 Hours
		Total L	ecture:		45 Hours
Tex	kt Book	s:			
1.	John F	. Vacca, "Computer and Information S	ecurity I	-landbook"	, Elsevier, 2013.
		nit Narendra Mahalle , Poonam N. F	Railkar,	"Identity I	Management for
	Interne	t of Things", River Publishers, 2015.			
2.		Stallings, "Cryptography and Netwo	rk secu	rity: Princi	ples and Practice", 5th
		, 2014, Pearson Education, India.			
3.		e Laurent, Samia Bouzefrane, "Digital		•	
4.	-	n Migga Kizza, "Computer Network Sec	urity", S	pringer, 20	005.
		Books:			
1.		of Paar and Jan Pelzl, "Understan Its andPractitioners", Springer, 2014.	ding Cr	ryptograph	y – A Textbook for
2.		iz A.Forouzan : Cryptography & N any,2007.	Network	Security	– The McGraw Hill
3.		e Kaufman, Radia Perlman, Mik	ke Spe	eciner, N	etwork Security:
	"Privat	eCommunication in a public World", PT	R Prent	ice Hall, S	econd Edition, 2002.
4.	Alasda	ir Gilchrist, "IoT security Issues", Oreilly	y publica	ations, 201	7.
Мо	de of Ev	aluation: CAT / Assignment / Quiz / FA	λΤ		
Re	commer	nded by Board of Studies 28-0	7-2022		
Ар	proved b	by Academic Council No.	67	Date	08-08-2022

Course Code	Course Title	L	Т	Ρ	С
MITS608L	RF and Microwave Sensors	3	0	0	3
Prerequisite:	NIL	Syll	abus	vers	ion
			1.0		
Course Objectiv					
<ol> <li>To famili parameter</li> <li>To introdu</li> </ol>	ice the students with different RF and Microwave sensor arize antenna design with a good understanding rs andapplications. Ice comprehensive knowledge of wearable antenna. e and understand basics of RFID technology.		the	ir	
Course Outcome	9:				
<ol> <li>Model spectrum</li> <li>Correlate application</li> <li>Apply the</li> </ol>	roper antenna design to be used in the RF spectral regi ecific radiation pattern and evaluate them in different dor the principle behind different radar systems and o nsbased on the radar systems. basic knowledge in the measurement of RF radiation. vledge about the RFID technology.	main		vario	ous
	ensors			6 hoi	
radiation mechan	na-Introduction, types of Antenna, fundamental parame nism, Fresnel and Fraunhofer regions. Antenna for co ing, radiometer and radar				
Module:2 Anter	nna for personal area communication.			6 hoi	Jrs
Wearable Device Antennas, WBAN	nted Antennas, Broadband Microstrip Patch Antenn es, Design Requirements, Modeling and Characteriza N Radio Channel Characterization and Effect of We ration, Sources on the Human Body, Compact Wear ons.	ation earab	of W le Ar	'eara	ble as,
Module:3 Rada	r			5 hou	Jrs
Introduction to RA	ADAR, RADAR range equation, MTI and pulse Doppler se RADAR, CW RADAR	RAD			
Module:4 Appli	cations of Radar			6 hoi	urs
Automotive, rem	ote sensing, agriculture, medicine, detection of buri- ffecting the performance of RADAR, RADAR transmitte				)Т,
Module:5 Radio	ometers			6 hou	urs
	r theory, SMMR, Types of radiometers - and Bolomete ulture, medicine, weather forecasting	rs, A	pplica	ations	; in
Module:6 Micro	owave power Sensors			6 hou	Jrs
Diode Sensors: Diode Sensors: Di waveform effects	Diode detector principles, dynamic range average pow s on the measurement uncertainty of diode sensor es of Thermocouple sensor, power meters for thermoco	rs. T	herm	ocou	

Мо	dule:7	RFID Sensors			8 hours
		n, Components of RFID RFID applications.	) systems, hard	ware and	d software components, RFID
Мо	dule:8	Contemporary Issue	S		2 hours
		Total Le	cture hours:		45 hours
Tex	xt Book				
1.		zeuer Klaus, "RFID Ha	ndbook", 2011,	3 rd editio	on, John Wiley and Sons, New
2.		antine A. Balanis, "Ante /iley and Sons, New Jers		alysis ar	nd Design", 2016, 4 th edition,
Re	ference	Books			
1.	B. Ho Practio	ffman - Wellenhof, H.I æ ", 5 th edition, Springer,	Lichtenegger ar New York, 2012	id J.Coll	lins, "GPS: Theory and
2		nd & Kiefer, "Remote st /iley and Sons, New Jers		age Inte	rpretation", 2011, 6 th edition,
Мо	de of E	valuation: CAT / Assignm	nent / Quiz / FAT		
Re	comme	nded by Board of Studies	28-07-2022		
Ap	proved l	by Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title	L	T	P	<u>C</u>
MITS611L	Automotive Sensors and In-Vehicle Networking	3	0 Nobu	0	3
Prerequisite	NIL	Зу	llabus	<u>s ver</u> .0	SIO
Course Obje				.0	
	int with the basic automotive parts and the need for se	<b>n</b> 00	r intor	arotic	n in
differe	ntautomotive systems		-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	s the basics of various Power train sensors and associa	ted	syste	ems	
	pervehicle dynamics and stability in Automotive systems.				
	rehend various sensors for vehicle body managem				
	s sensors and technologies for passenger convenience, s	ate	ty and	sec	urity
syster					
	int various communication standards and protocols fo	llow	/ed w	rithin	the
	otivesystems.				
Course Outc			<u> </u>		
	y and understand the basic automotive parts and th	e r	equire	emen	nt of
	s andtheir integration in different automotive systems.				
	and identify the basics of various Power train sensors.				
	ehend and analyse various systems like ABS, ES	Ρ,	TCS,	etc	fo
	standingvehicle dynamics and stability.			_	-
	rehend the various sensors for vehicle body manageme	nt, o	conve	nieno	ce 8
	ysystems.				_
	y various technologies developed for passenger conv		ence,	Air	Bag
	mentand Seat Belt Tensioner System, etc with the student				
	nize various communication standards and protocols for	ollov	ved w	/ithin	the
	otivesystems.				
	op and create analytical designing of novel prototype n	node	els fo	r var	rious
autom	otiveelectronic systems.				
Module:1 Ir	troduction to Automotive Engineering, Automotive			7 h	ours
	anagement systems				
Power-train.	Combustion Engines, Transmission, Differential Gear,	Bra	kina	Svste	ems
Introduction t	o Modern Automotive Systems and need for electronic	s in	Auto	mob	iles.
	reas of electronics in the automobiles, Possibilities and				
	lustry, Enabling technologies and Industry trends.			,	
	,				
Module:2 P	ower train Sensors			6 h	ours
λ sensors, e	xhaust temperature sensor, NOx sensor, PM sensor, fu	lel	quality	/ ser	nsor
level sensor,t	orque sensor, speed sensor, mass flow sensor, manifold p	ress	sure s	enso	r.
	ana ana fan Obaasia manananant			6 h	ours
Module:3 S	ensors for Chassis management			• • • •	
	ensors for Chassis management d sensors/direction sensors, steering position sen	sor	(mu		urn).
Wheel spee	d sensors/direction sensors, steering position sen		•	lti t	
Wheel spee	d sensors/direction sensors, steering position sen sensor(inertia measurement), brake pneumatic pressure se		•	lti t	urn), nsor,
Wheel spee acceleration	d sensors/direction sensors, steering position sen sensor(inertia measurement), brake pneumatic pressure se		•	lti t	
Wheel     spee       acceleration     s       electronic     sta       Module:4     S	d sensors/direction sensors, steering position sen sensor(inertia measurement), brake pneumatic pressure se bility sensor. ensors for vehicle body management, Sensors f	ensc	•	lti t S ser	
Wheel spee acceleration s electronic sta Module:4 S a	d sensors/direction sensors, steering position sen sensor(inertia measurement), brake pneumatic pressure se bility sensor. ensors for vehicle body management, Sensors f utomotive vehicle convenienceand security systems	or	or, AB	lti t S ser <b>6 h</b> e	ours
Wheel spee acceleration s electronic sta Module:4 S a Gas sensors (0	d sensors/direction sensors, steering position sen sensor(inertia measurement), brake pneumatic pressure se pility sensor. ensors for vehicle body management, Sensors f utomotive vehicle convenienceand security systems CO ₂ ), Temperature/humidity sensor, air bag sensor, key les	or or	nterin	lti t S ser <b>6 h</b> e g ser	ours
Wheel spee acceleration s electronic sta Module:4 S a Gas sensors ( adar sensors.	d sensors/direction sensors, steering position sen sensor(inertia measurement), brake pneumatic pressure se bility sensor. ensors for vehicle body management, Sensors f utomotive vehicle convenienceand security systems CO ₂ ), Temperature/humidity sensor, air bag sensor, key les Tire pressure monitoring systems, Two wheeler and Fou	or ss e	nterin	lti t S ser <b>6 h</b> g ser r sec	ours
Wheel spee acceleration s electronic sta Module:4 S a Gas sensors ( adar sensors. systems, park	d sensors/direction sensors, steering position sen sensor(inertia measurement), brake pneumatic pressure se pility sensor. ensors for vehicle body management, Sensors f utomotive vehicle convenienceand security systems CO ₂ ), Temperature/humidity sensor, air bag sensor, key les	insc ior ss e ir w	nterin heele	Iti t S ser 6 ho g ser r sec nolog	nsor ours

dynamics co	ontrol, Accelerators and tilt sensors for sensing skidding and an	ti-collision, Anti-
	nniques using ultrasonic Doppler sensors.	
Module:5	Air Bag and Seat Belt Pre tensioner Systems	6 hours
	ensor Functions, Distributed Front Air Bag sensing systems,	0
Sensingsyst	ems, Side-Impact Sensing, and Future Occupant Protection sys	stems.
Module:6	Passenger Convenience Systems	6 hours
	nanical Seat, Seat Belt Height, Steering Wheel, and Mirr	
	king Systems, Tire Pressure Control Systems, Electromech	nanical Window
Drives, etc.		
Module:7	Modern Trends and Technical Solutions	6 hours
	onnectivity by Networking:-In vehicle communication standard	
	olutions, Portable or embedded connectivity- Endorsing Depen	
	tems:- Terminology and concepts , Why by-wire, FLEXRAY, F	
	ependability, Drive-by-wire case studies- prototype developm	ent-future of In
vehicle com		1
Module:8	Contemporary Issues	2 hours
	Total	45 hours
Text Book(	5)	
1.	Automotive Electrics, Automotive Electronics: Systems & Com 2014, 5 th Edition,BOSCH.	ponents,
2.	John Turner, Automotive Sensors, 2010, 1 st Edition, Momentul York.	m Press, New
Reference	Books	
1	Automotive Sensors Handbook, 8 th Edition, 2011, BOSCH.	
2.	Jiri Marek, Hans-Peter Trah, Yasutoshi Suzuki, IwaoYokom	ori. Sensors
<u> </u>	for AutomotiveTechnology, 2010, 4 th Edition, Wiley, New York	,
3.	Ernest O. Doebelin, "Measurement Systems – Application a 2017, 6 th Edition,McGraw-Hill, New Delhi.	nd Design",
Mode of Eva	aluation: CAT / Assignment / Quiz / FAT	
	nded by Board of Studies 28-07-2022	
		20
Annroved b	by Academic Council No. 67 Date 08-08-202	//

Course Code	Course Title	L	Т	Ρ	С
MITS612L	Fiber Optic Sensors and Photonics	3	0	0	3
Prerequisite	NIL	Syll	abus	Versi	on
		_	1.0		
Course Objectives					
1. To introduce	e the theory and technology of fiber optics sensing to	o imp	rove t	heir	
understandi	ng inrapidly growing field.				
	he optical parameters in optical devices to understar	nd the	phen	omen	а
	e tointensity based effects.				
	e the phase, charge distribution due to polarization	on eff	ects a	and its	S
	inoptical sensing.				
	s and decide the process flow conditions and step				
	lymerswith appropriate optical characteristic for poly	mer v	aveg	uides	
based sens Course Outcomes	•				
	of basic knowledge of optical waveguides and opti		vicoo		
	o optical sensors.		evices		
	versance in optical parameters involved in active and	Inass	ive		
components	• •	i pusc	1100		
•	characteristics of a suitable optical materials for	the	sensii	าต	
	givenapplication.			0	
	apply the knowledge in designing interferometric de	evices	whic	n is	
	ivelyused in sensing.				
	are of different polymers and their chemical, optic	cal ch	aracte	eristic	s
to formulate	eminiaturized optical devices.				
	Theory of Optical Waveguides			7 hou	
Wave theory of Rectangular waves Marcatili's method	optical waveguides, formation of guided modes guide, Radiation fields from waveguide, Effect , Beam propagation method. Basic characterist ptance angle, Numericalaperture, skewrays- Electr	tive ic of	ndex Opti	avegu meth cal F	ide 10d ibe
Wave theory of Rectangular waves Marcatili's method Waveguides, Acce Cylindrical Wavegu	optical waveguides, formation of guided modes guide, Radiation fields from waveguide, Effect , Beam propagation method. Basic characterist ptance angle, Numericalaperture, skewrays- Electr ides.	tive ic of	ndex Opti	avegu meth cal F Mode	ide iod ibe s ir
Wave theory of Rectangular waves Marcatili's method Waveguides, Acce Cylindrical Wavegu	optical waveguides, formation of guided modes guide, Radiation fields from waveguide, Effect , Beam propagation method. Basic characterist ptance angle, Numericalaperture, skewrays- Elect ides. Active and Passive Optical Components	tive ic of romag	ndex Opti jnetic	avegu meth cal F Mode <b>7 hou</b>	ide iod ibe s ir
Wave theory of Rectangular waves Marcatili's method Waveguides, Acce Cylindrical Wavegu <b>Module:2</b> Electro-optic and a phase and amplitud	optical waveguides, formation of guided modes guide, Radiation fields from waveguide, Effect , Beam propagation method. Basic characterist ptance angle, Numericalaperture, skewrays- Electr ides.	tive ic of romag plers, array	optic optic	avegu meth cal F Mode <b>7 hou</b> al swi ave gu	ide ibe ibe s ir <b>urs</b> tch
Wave theory of Rectangular waves Marcatili's method Waveguides, Acce Cylindrical Wavegu Module:2 Electro-optic and a phase and amplitud devices, fiber pigta couplers.	optical waveguides, formation of guided modes guide, Radiation fields from waveguide, Effect , Beam propagation method. Basic characterist ptance angle, Numericalaperture, skewrays- Electr ides. Active and Passive Optical Components acousto optic wave guide devices, directional coup de modulators, filters etc. Yjunction, powersplitters,	tive ic of romag plers, array	optic optic	avegu meth cal F Mode <b>7 hou</b> al swi ave gu	ide ibe s in urs tch uide
Wave theory of Rectangular waves Marcatili's method Waveguides, Acce Cylindrical Wavegu Module:2 Electro-optic and a phase and amplitud devices, fiber pigta couplers.	optical waveguides, formation of guided modes guide, Radiation fields from waveguide, Effect , Beam propagation method. Basic characterist ptance angle, Numericalaperture, skewrays- Electr ides. Active and Passive Optical Components acousto optic wave guide devices, directional coup de modulators, filters etc. Yjunction, powersplitters, aling, end-fiber prism coupling, FBG and fabrication ntensity and Polarization Sensors Transmissive concept –Reflective concept-Micro	tive ic of romagon of plers, arrayon of bence be	optic optic optic /ed wa FBG,	avegu meth cal F Mode 7 hou al swi ave gu Tape 7 hou conce	ide ibe ibe s ir urs tch uide erec urs
Wave theory of Rectangular waves Marcatili's method Waveguides, Acce Cylindrical Wavegu Module:2 Electro-optic and a phase and amplitud devices, fiber pigta couplers. Module:3	optical waveguides, formation of guided modes guide, Radiation fields from waveguide, Effect , Beam propagation method. Basic characterist ptance angle, Numericalaperture, skewrays- Electr ides. Active and Passive Optical Components acousto optic wave guide devices, directional coup de modulators, filters etc. Yjunction, powersplitters, aling, end-fiber prism coupling, FBG and fabrication ntensity and Polarization Sensors Transmissive concept –Reflective concept-Micro Reflection with other optic effect-Interferometers	tive fromage plers, array on of bence s –M	optic optic optic ved wa FBG,	avegu meth cal F Mode 7 hou al swi ave gu Tape 7 hou conce	ide ibe ibe s ii urs tch uide erec urs pt- er-
Wave theory of Rectangular waves Marcatili's method Waveguides, Acce Cylindrical Wavegu Module:2 Electro-optic and a phase and amplitud devices, fiber pigta couplers. Module:3	optical waveguides, formation of guided modes guide, Radiation fields from waveguide, Effect , Beam propagation method. Basic characterist ptance angle, Numericalaperture, skewrays- Electr ides. Active and Passive Optical Components acousto optic wave guide devices, directional coup de modulators, filters etc. Yjunction, powersplitters, aling, end-fiber prism coupling, FBG and fabrication ntensity and Polarization Sensors Transmissive concept –Reflective concept-Micro	tive fromage plers, array on of bence s –M	optic optic optic ved wa FBG,	avegu meth cal F Mode 7 hou al swi ave gu Tape 7 hou conce	ide ibe ibe s ir urs tch uide erec urs pt- er-
Wave theory of Rectangular waves Marcatili's method Waveguides, Acce Cylindrical Waveguides Cylindrical Waveguides Module:2Module:2AElectro-optic and a phase and amplitud devices, fiber pigta couplers.AModule:3IIntensity sensor: Transmission and Michelson-Fabry-P maintaining fibers.I	optical waveguides, formation of guided modes guide, Radiation fields from waveguide, Effect , Beam propagation method. Basic characterist eptance angle, Numericalaperture, skewrays- Electri ides. Active and Passive Optical Components acousto optic wave guide devices, directional coup de modulators, filters etc. Yjunction, powersplitters, aling, end-fiber prism coupling, FBG and fabrication Intensity and Polarization Sensors Transmissive concept –Reflective concept-Micro Reflection with other optic effect-Interferometers erot and Sagnac– Phase sensor: Phase de Displacement and temperature sensors: reflective	tive fromage plers, array on of beno s –M etectio	optic optic optic ved wa FBG, ding o ach 2 on-Pol	avegu meth cal F Mode 7 hou al swi ave gu Tape 7 hou Zehnd arizati	ide ibe s ii urs tch uide erec urs pt- er- ion
Wave theory of Rectangular waves Marcatili's method Waveguides, Acce Cylindrical Waveguides Cylindrical Waveguides Module:2Module:2AElectro-optic and a phase and amplitud devices, fiber pigta couplers.AModule:3IIntensity sensor: Transmission and Michelson-Fabry-P maintaining fibers.I	optical waveguides, formation of guided modes guide, Radiation fields from waveguide, Effect , Beam propagation method. Basic characterist eptance angle, Numericalaperture, skewrays- Electri ides. Active and Passive Optical Components acousto optic wave guide devices, directional coup de modulators, filters etc. Yjunction, powersplitters, aling, end-fiber prism coupling, FBG and fabrication Intensity and Polarization Sensors Transmissive concept –Reflective concept-Micro Reflection with other optic effect-Interferometers erot and Sagnac– Phase sensor: Phase de	tive fromage plers, array on of beno s –M etectio	optic optic optic ved wa FBG, ding o ach 2 on-Pol	avegu meth cal F Mode 7 hou al swi ave gu Tape 7 hou Zehnd arizati	ide ibe s ii urs tch uide erec urs pt- er- ion
Wave theory of Rectangular waves         Marcatili's method         Waveguides, Acce         Cylindrical Waveguides, Acce         Module:2       A         Electro-optic and a         phase and amplitude         devices, fiber pigta         couplers.         Module:3         Intensity sensor:         Transmission and         Michelson-Fabry-P         maintaining fibers.         Technology- Applic	optical waveguides, formation of guided modes guide, Radiation fields from waveguide, Effect , Beam propagation method. Basic characterist eptance angle, Numericalaperture, skewrays- Electri ides. Active and Passive Optical Components acousto optic wave guide devices, directional coup de modulators, filters etc. Yjunction, powersplitters, aling, end-fiber prism coupling, FBG and fabrication Intensity and Polarization Sensors Transmissive concept –Reflective concept-Micro Reflection with other optic effect-Interferometers erot and Sagnac– Phase sensor: Phase de Displacement and temperature sensors: reflective ations of displacement and temperature sensors.	tive fromage plers, array on of beno s –M etectio	optic optic optic ved wa FBG, ding o ach 2 on-Pol	avegu meth cal F Mode 7 hou al swi ave gu Tape 7 hou Conce Zehnd arizati bend	ide ibe s ii urs tch uide ere er- ion
Wave theory of Rectangular waves         Marcatili's method         Marcatili's method         Waveguides, Acces         Cylindrical Waveguides, Acces         Cylindrical Waveguides, Acces         Module:2         Module:3         Intensity sensor:         Transmission and         Michelson-Fabry-P         maintaining fibers.         Technology- Applic	optical waveguides, formation of guided modes guide, Radiation fields from waveguide, Effect , Beam propagation method. Basic characterist eptance angle, Numericalaperture, skewrays- Electri ides. Active and Passive Optical Components acousto optic wave guide devices, directional coup de modulators, filters etc. Yjunction, powersplitters, aling, end-fiber prism coupling, FBG and fabrication ntensity and Polarization Sensors Transmissive concept –Reflective concept-Micro Reflection with other optic effect-Interferometers erot and Sagnac– Phase sensor: Phase de Displacement and temperature sensors: reflective rations of displacement and temperature sensors.	tive ic of romag plers, array on of beno s –M etectio	optic optic optic ved wa FBG, ding o ach 2 on-Pol Micro	avegu meth cal F Mode 7 hou al swir ave gu Tape 7 hou Zehnd arizati bend 7 hou	ide ide ibe s if uide tch uide rec urs ot- er- ion ing
Wave theory of Rectangular waves         Marcatili's method         Marcatili's method         Waveguides, Acce         Cylindrical Waveguides, Acce         Cylindrical Waveguides, Acce         Module:2         Module:3         Intensity sensor:         Transmission and         Michelson-Fabry-P         maintaining fibers.         Technology- Applic	optical waveguides, formation of guided modes guide, Radiation fields from waveguide, Effect , Beam propagation method. Basic characterist optance angle, Numericalaperture, skewrays- Electri ides. Active and Passive Optical Components acousto optic wave guide devices, directional coup de modulators, filters etc. Yjunction, powersplitters, aling, end-fiber prism coupling, FBG and fabrication ntensity and Polarization Sensors Transmissive concept –Reflective concept-Micro Reflection with other optic effect-Interferometers erot and Sagnac– Phase sensor: Phase de Displacement and temperature sensors: reflective ations of displacement and temperature sensors.	tive ic of romage romage plers, array on of bences –M etections and https://www.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/array.com/ar	optic optic optic ved wa FBG, ding o ach 2 on-Pol Micro	avegu meth cal F Mode 7 hou al swir ave gu Tape 7 hou zehnd arizati bend 7 hou oncept	ide ide ibe is if <b>urs</b> itch uide erec <b>urs</b> ing <b>urs</b> is-
Wave theory of Rectangular waves         Marcatili's method         Waveguides, Acce         Cylindrical Waveguides, Acce         Cylindrical Waveguides, Acce         Cylindrical Waveguides, Acce         Module:2         Module:2         Intensity sensor:         Transmission and         Michelson-Fabry-P         maintaining fibers.         Technology- Applic         Module:4         Interferometric cor	optical waveguides, formation of guided modes guide, Radiation fields from waveguide, Effect , Beam propagation method. Basic characterist potance angle, Numericalaperture, skewrays- Electri ides. Active and Passive Optical Components acousto optic wave guide devices, directional coup de modulators, filters etc. Yjunction, powersplitters, aling, end-fiber prism coupling, FBG and fabrication ntensity and Polarization Sensors Transmissive concept –Reflective concept-Micro Reflection with other optic effect-Interferometers erot and Sagnac– Phase sensor: Phase de Displacement and temperature sensors: reflective ations of displacement and temperature sensors. mterferometric Sensors s: Transmissive concepts, Microbending –In ncepts, Applications. Flow sensors: Turbine flown	tive ic of romagon of other stranges on of bences on of the stranges of the st	optic optic ved wa FBG, ding o ach 2 on-Pol Micro	avegu meth cal F Mode 7 hou al swi ave gu Tape 7 hou 2ehnd arizati bend 7 hou 7 hou	ide ide ibe s ir urs tch ide rec urs ot- ion ing urs is-
Wave theory of Rectangular waves         Marcatili's method         Waveguides, Acce         Cylindrical Waveguides, Acce         Cylindrical Waveguides, Acce         Cylindrical Waveguides, Acce         Module:2         Module:2         Intensity sensor:         Transmission and         Michelson-Fabry-P         maintaining fibers.         Technology- Applic         Module:4         Interferometric cor         pressure sensors         Interferometric cor         pressure flowser	optical waveguides, formation of guided modes guide, Radiation fields from waveguide, Effect , Beam propagation method. Basic characterist optance angle, Numericalaperture, skewrays- Electri ides. Active and Passive Optical Components acousto optic wave guide devices, directional coup de modulators, filters etc. Yjunction, powersplitters, aling, end-fiber prism coupling, FBG and fabrication Intensity and Polarization Sensors Transmissive concept –Reflective concept-Micro Reflection with other optic effect-Interferometers erot and Sagnac– Phase sensor: Phase de Displacement and temperature sensors: reflective sations of displacement and temperature sensors. Interferometric Sensors s: Transmissive concepts, Microbending –In ncepts, Applications. Flow sensors: Turbine flown	tive ic of romag plers, array on of bend s –M etectio e and ntrinsi neters plicatio	optic optic optic ved wa FBG, ding o ach 2 on-Pol Micro	avegu meth cal F Mode 7 hou al swi ave gu Tape 7 hou Zehnd arizati bend 7 hou oncept fferent Sagn	ide ide ibe is in <b>urs</b> itch ide rec <b>urs</b> ot- er- ion ing <b>urs</b>

Mod	ule:5	Polymer based waveguide in sensing	7 hours
Polyr	ner based	waveguide, materials, properties, fabrication process of	polymer based
	•	mer based optical components - Passive, Active polyme	
Reso	onator, struct	ure, theory,Filter using Ring Resonator-application in sensi	ing
Mod	ule:6	Fiber based Chemical Senors	5 hours
	based Che		i-luminescence.
		roscopic, SPR.	
Mod	ule:7	Fiber based Bio-Senors	3 hours
Fiber	based Bio-i	molecules sensing: High Index, SPR, Hollow core fiber pro	bes, Label Free
bio- r	nolecules.		
Mod	ule:8	Contemporary Issues	2 hours
		Total Lecture hours:	45 hours
Toxt	Book(s):		40 110013
1.	• •	Krohn, Trevor W. MacDougall, Alexis Mendez, "Fiber O	ptic Sensors:
		tals and Applications" SPIE Press, 4th ed. 2015. ISBN: 162	28411805
	Fundamen	a a a a a a a b a a a a a a a a a a a a	-0111000
2.	Eric Udd,	William B. Spillman Jr., "Fiber Optic Sensors: An Introdu	
	Eric Udd , Engineers	William B. Spillman Jr., "Fiber Optic Sensors: An Introdu and Scientists", Wiley, 2nd Ed., 2011. ISBN: 0470126841	
Refe	Eric Udd, Engineersa rence Book	William B. Spillman Jr., "Fiber Optic Sensors: An Introdu and Scientists", Wiley, 2nd Ed., 2011. ISBN: 0470126841	iction for
	Eric Udd , Engineersa <b>rence Book</b> Zujie Fang 2012.ISBN	William B. Spillman Jr., "Fiber Optic Sensors: An Introdu and Scientists", Wiley, 2nd Ed., 2011. ISBN: 0470126841 (s) & et. al., "Fundamentals of Optical Fiber Sensors" Wiley, 1:0470575409	nction for , 1 st Ed.,
Refe	Eric Udd , Engineersa <b>rence Book</b> Zujie Fang 2012.ISBN Shizhuo Yi	William B. Spillman Jr., "Fiber Optic Sensors: An Introdu and Scientists", Wiley, 2nd Ed., 2011. ISBN: 0470126841 (s) & et. al., "Fundamentals of Optical Fiber Sensors" Wiley,	nction for , 1 st Ed.,
Refe	Eric Udd , Engineersa <b>rence Book</b> Zujie Fang 2012.ISBN Shizhuo Yi Press, 2 E F.Baldini&	William B. Spillman Jr., "Fiber Optic Sensors: An Introdu and Scientists", Wiley, 2nd Ed., 2011. ISBN: 0470126841 (s) & et. al., "Fundamentals of Optical Fiber Sensors" Wiley, 1:0470575409 in, Paul B. Ruffin, and Francis T.S. Yu, "Fiber Optic Senso	rs",CRC
Refe           1.           2           3	Eric Udd , Engineersa <b>rence Book</b> Zujie Fang 2012.ISBN Shizhuo Yi Press, 2 E F.Baldini&d Mathemati	William B. Spillman Jr., "Fiber Optic Sensors: An Introdu and Scientists", Wiley, 2nd Ed., 2011. ISBN: 0470126841 (s) & et. al., "Fundamentals of Optical Fiber Sensors" Wiley, 1:0470575409 in, Paul B. Ruffin, and Francis T.S. Yu, "Fiber Optic Sensor d,2017. ASIN: B078JN75QW et.al., "Optical Chemical Sensors", NATO Science Series I	rs",CRC
Refe 1. 2 3 Mode	Eric Udd , Engineersa <b>rence Book</b> Zujie Fang 2012.ISBN Shizhuo Yi Press, 2 E F.Baldini& Mathemati e of Evaluati	William B. Spillman Jr., "Fiber Optic Sensors: An Introdu and Scientists", Wiley, 2nd Ed., 2011. ISBN: 0470126841 (s) & et. al., "Fundamentals of Optical Fiber Sensors" Wiley, I:0470575409 in, Paul B. Ruffin, and Francis T.S. Yu, "Fiber Optic Senso d,2017. ASIN: B078JN75QW et.al., "Optical Chemical Sensors", NATO Science Series I cs,Physics and Chemistry, Springer, 2008. ISBN: 1402046	rs",CRC

Course Code	Course Title	L	Т	Ρ	С		
MITS614L	Deep Learning	3	0	0	3		
Prerequisite:	NIL	Sv	labus	Vers	sion		
			1.0				
Course Objectiv	/es						
	1. To introduce the fundamental theory and concepts of machine learning						
	rtificial intelligence				3		
	ovide a comprehensive foundation to artific	cial n	eural	netwo	orks,		
neuro	-modeling, and their applications to pattern r	ecogr	nition.				
	3. To explore the learning paradigms of supervised and unsupervised						
shallow/deep neural networks.							
	4. To provide exposure to the recent advances in the field of and facilitate						
in depth discussionson chosen topic							
5. To im	5. To impart adequate knowledge on deep learning frameworks and their						
applic	ations to solvingengineering problems						
Course Outcom	es						
	nowledge about basic concepts of machine						
	entify machinelearning techniques suitable fo						
	stand the differences between shallow ne				and		
	neural networks forsupervised and unsupervi						
	p and train neural networks for classifica	tion,	regres	ssion	and		
cluster							
4. Understand the foundations of neural networks, how to build neural							
	ks and learn how to leadsuccessful machine						
	the deep feed forward, convolution ar						
	ks which are moreappropriate for various ty	pes of	learn	ing ta	SKS		
	ous domains	م اما س	ممامامه				
6. Implen	nent deep learning algorithm and solve real w	<u>onu p</u>	ropier	<u>5 ho</u>			
	oundations of Machine Learning-I unsupervised learning, parametric vs nor		motrie				
	els for classification and regression- Linear						
	ve Bayes classifier, simple non-parametric						
	ort vector machines.		511101-	11-11-0	11051		
Module:2 F	oundations of Machine Learning-II			5 hr	ours		
			n rul				
Clustering- distance based- K-means, density based, association rule mining, validation techniques- cross validations, feature selection and dimensionality							
reduction, principal component analysis-Eigenvalues, Eigen vectors, Orthogonality-					<b>J</b>		
	ating deep learning	001010	, oran	ogoni	ling		
	eural Networks for Classification and			6 ho	urs		
	egression			••			
ANN as a technique for regression and classification, structure of an artificial					cial		
neuron, activation functions- linear activation, sigmoid and softmax. Feedforward							
neural networks- shallow model-single layer perceptron, multi-layer perceptron as							
complex decision classifier- learning XOR-Gradient based learning,							
Backpropagation algorithm, risk minimization, loss function, regularization,					ion,		
	er training and avoiding local minima.						
	eep Feed Forward Neural Networks			6 ho			
Feed forward neural networks- deep model- output units and hidden units, training							
	deep models- hyper parameters and validation sets-cross validation, capacity,						
overfitting and ur	nder fitting, bias vs variance trade off, cross v	<u>alida</u> t	ion - \	<u>anish</u>	iing		

gradient problem, new optimization methods (adagrad, adadeita, misprop, adam),				
gradient problem, new optimization methods (adagrad, adadelta, rmsprop, adam), regularization methods (dropout, batch normalization, dataset augmentation), early				
stopping.				
Module:5 Convolutional Neural Networks 7 hours				
Convolution operation- kernel and feature map, sparse connectivity, equivariance				
through parameter sharing, pooling function for invariant representation,				
convolution and pooling as strong prior, convolution with stride, effect of zero				
padding, single-channel and multi-channel data types used in ConvNet, variants				
of basic convolution- locally connected, tiled ConvNet- spatial separable and				
depthwise separable convolutions, fully connected layers, ConvNet architecture-				
layer patterns, layer sizing parameters, case studies LeNet, AlexNet				
Module:6         Recurrent Neural Networks         6 hours				
Sequence learning with neural nets, unrolling the recurrence, training RNN-Back				
projection through time (BPTT), vanishing gradient problem, Gated recurrent unit				
(GRU), Long short term memory (LSTM), Bidirectional LSTMs, bidirectional RNNs				
Module:7Deep Learning Tools and Applications8 hours				
Tools:TensorFlow, Keras, PyTorch, Caffe, Theano, MXNet. Applications: Object				
detection with RCNN - YOLO, SSD. Speech recognition with RNN.				
Module:8Contemporary Issues2 hours				
Total Hours 45 hours				
Text Book(s)				
Text Book(s)         1       Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning" 2015, MITPress				
Text Book(s)         1       Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning" 2015, MITPress         2       Josh Patterson and Adam Gibson, "Deep Learning- A Practitioner's				
Text Book(s)         1       Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning" 2015, MITPress         2       Josh Patterson and Adam Gibson, "Deep Learning- A Practitioner's Approach"O'Reilly Media Inc., 2017, USA.				
Text Book(s)         1       Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning" 2015, MITPress         2       Josh Patterson and Adam Gibson, "Deep Learning- A Practitioner's Approach"O'Reilly Media Inc., 2017, USA.         Reference Books				
Text Book(s)         1       Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning" 2015, MITPress         2       Josh Patterson and Adam Gibson, "Deep Learning- A Practitioner's Approach"O'Reilly Media Inc., 2017, USA.         Reference Books         1.       Bishop, C. ,M., Pattern Recognition and Machine Learning, Springer, 2011				
Text Book(s)         1       Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning" 2015, MITPress         2       Josh Patterson and Adam Gibson, "Deep Learning- A Practitioner's Approach"O'Reilly Media Inc., 2017, USA.         Reference Books         1.       Bishop, C. ,M., Pattern Recognition and Machine Learning, Springer, 2011         2       Rich E and Knight K, "Artificial Intelligence", 2011, 2 nd ed., TMH, New Delhi,				
Text Book(s)         1       Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning" 2015, MITPress         2       Josh Patterson and Adam Gibson, "Deep Learning- A Practitioner's Approach"O'Reilly Media Inc., 2017, USA.         Reference Books         1.       Bishop, C. ,M., Pattern Recognition and Machine Learning, Springer, 2011         2       Rich E and Knight K, "Artificial Intelligence", 2011, 2 nd ed., TMH, New Delhi,         3       Bengio, Yoshua. "Learning deep architectures for AI- Foundations and				
<ul> <li>Text Book(s)</li> <li>Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning" 2015, MITPress</li> <li>Josh Patterson and Adam Gibson, "Deep Learning- A Practitioner's Approach"O'Reilly Media Inc., 2017, USA.</li> <li>Reference Books</li> <li>Bishop, C. ,M., Pattern Recognition and Machine Learning, Springer, 2011</li> <li>Rich E and Knight K, "Artificial Intelligence", 2011, 2nd ed., TMH, New Delhi,</li> <li>Bengio, Yoshua. "Learning deep architectures for AI- Foundations and trends inMachine Learning, 2(1)- 2009</li> <li>Tom M. Mitchell, "Machine Learning", McGraw-Hill Education (India) Pvt Ltd,</li> </ul>				
<ul> <li>Text Book(s)</li> <li>Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning" 2015, MITPress</li> <li>Josh Patterson and Adam Gibson, "Deep Learning- A Practitioner's Approach"O'Reilly Media Inc., 2017, USA.</li> <li>Reference Books</li> <li>Bishop, C. ,M., Pattern Recognition and Machine Learning, Springer, 2011</li> <li>Rich E and Knight K, "Artificial Intelligence", 2011, 2nd ed., TMH, New Delhi,</li> <li>Bengio, Yoshua. "Learning deep architectures for AI- Foundations and trends inMachine Learning, 2(1)- 2009</li> <li>Tom M. Mitchell, "Machine Learning", McGraw-Hill Education (India) Pvt Ltd, 2013.</li> </ul>				
<ul> <li>Text Book(s)</li> <li>Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning" 2015, MITPress</li> <li>Josh Patterson and Adam Gibson, "Deep Learning- A Practitioner's Approach"O'Reilly Media Inc., 2017, USA.</li> <li>Reference Books</li> <li>Bishop, C. ,M., Pattern Recognition and Machine Learning, Springer, 2011</li> <li>Rich E and Knight K, "Artificial Intelligence", 2011, 2nd ed., TMH, New Delhi,</li> <li>Bengio, Yoshua. "Learning deep architectures for AI- Foundations and trends inMachine Learning, 2(1)- 2009</li> <li>Tom M. Mitchell, "Machine Learning", McGraw-Hill Education (India) Pvt Ltd,</li> </ul>				
<ul> <li>Text Book(s)</li> <li>Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning" 2015, MITPress</li> <li>Josh Patterson and Adam Gibson, "Deep Learning- A Practitioner's Approach"O'Reilly Media Inc., 2017, USA.</li> <li>Reference Books</li> <li>Bishop, C. ,M., Pattern Recognition and Machine Learning, Springer, 2011</li> <li>Rich E and Knight K, "Artificial Intelligence", 2011, 2nd ed., TMH, New Delhi,</li> <li>Bengio, Yoshua. "Learning deep architectures for AI- Foundations and trends inMachine Learning, 2(1)- 2009</li> <li>Tom M. Mitchell, "Machine Learning", McGraw-Hill Education (India) Pvt Ltd, 2013.</li> <li>Mode of Evaluation: CAT, Digital Assignments, Quiz, Online course, Paper publication, Projects, Hackathon/Makeathon and FAT.</li> </ul>				
Text Book(s)         1       Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning" 2015, MITPress         2       Josh Patterson and Adam Gibson, "Deep Learning- A Practitioner's Approach"O'Reilly Media Inc., 2017, USA.         Reference Books       1.         1.       Bishop, C. ,M., Pattern Recognition and Machine Learning, Springer, 2011         2       Rich E and Knight K, "Artificial Intelligence", 2011, 2 nd ed., TMH, New Delhi,         3       Bengio, Yoshua. "Learning deep architectures for AI- Foundations and trends inMachine Learning, 2(1)- 2009         4       Tom M. Mitchell, "Machine Learning", McGraw-Hill Education (India) Pvt Ltd, 2013.         Mode of Evaluation: CAT, Digital Assignments, Quiz, Online course, Paper				

Course Code	Course Title	L	T	Ρ	С
MITS615L	Web Design and Development	3	0	0	3
Pre-requisite	NIL	Sylla	abus	vers	ion
			1.	0	
Course Objectiv	es:				
	specific scripting knowledge to develop interactive	ve app	olicati	ons.	
2. To underst	and the basics of android application developme	nt.			
3. To apply t	he programming skills in developing applicatior	n pert	ainin	g to	
Industrial,	medical, agricultural, etc.				
Course Outcom	es:				
	namic web forms to acquire and process user & s	ensor	data	1	
2. Interactive	forms using Java Script with a focus on internet	of thir	igs		
3. Implement mobile application using android SDK					
4. Solve the need for smart systems in a distributed environment					
5. Understand the IoT architecture and building blocks for various domains					
6. Devise mu	ultidisciplinary case to case modelling and exe	cute v	vide	rang	е
of applicat	ion				
			1		
Module:1 Marki		<u>,</u>		<u>7 ho</u>	
Multiple CSS styl	rkup language, HTML document structure, HTML esheets, DHTML, Tools for image creation and	torms manip	, Styl pulati	e (CS on, l	55), Jser
	n, IoT development using charts		1	<u></u>	
Module:2 Scrip				<u>6 ho</u>	
Handlers, Input v	avaScript, Functions, DOM, Forms, and Even alidation, J2ME, application design using J2ME, Iles, platforms, alerts				
	oid Programing Framework			6 ho	urs
Mobile app deve	elopment: Android Development environment, S rties, GUI objects, Event Driven Programming, o	Simple	e UI g and	Lay	outs
Module:4 Indus	trial Internet Application			6 ho	urs
IIoT Fundamenta	Is and Components, Industrial Manufacturing, N			Con	trol,
•	Autonomy, Introduction to Hadoop and big data a	analyt	ics		
Module:5 Appli Smart Farming: Drones for pestic	<b>cations in agriculture</b> Weather monitoring, Precision farming, Si ides.	nart	Gree	6 ho enhoi	
	ications in IoT enabled Smart Cities			6 ho	urs
Energy Consum SmartGrid and S	ption Monitoring, Smart Energy Meters, Hom olar Energy Harvesting, Intelligent Parking, Dat			ation,	
scenarios.	hears applications			6 6 6	
	hcare applications T for Healthcare, Multiple views coalescence, SB			6 ho	
	tecture. Use Cases: Wearable devices for Rer				
and system atom		note	moni	Unit	1 01

Physiologicalparameter, ECG, EEG, Diabetes and Blood Pressure.				
Module:8	Contemporary Issues	2 hours		
	Total Lecture hours:	45 hours		
Text Book(s)				
	John Dean, Web Programming with HTML5, CSS and JavaScript, 2018, Jonesand Bartlett Publishers Inc., ISBN-10: 9781284091793			
	DiMarzio J. F., Beginning Android Programming with Android Studio, 2016, 4 th ed.,Wiley, ISBN-10: 9788126565580			
Reference Books				
1.	Fadi Al-Turjman, Intelligence in IoT- enabled Smart Cities, 2019, 1 st edition, CRCPress,ISBN-10: 1138316849			
	Giacomo Veneri, and Antonio Capasso, Hands-on Industrial Internet of Things: Create a powerful industrial IoT infrastructure using Industry 4.0, 2018, Packt Publishing.			
3.	Subhas Chandra Mukhopadhyay, Smart Sensing Technology for Agriculture andEnvironmental Monitoring, 2012, Springer, ISBN-10: 3642276377			
Mode of Evaluation: CAT / Assignment / Quiz / FAT				
Recommended by Board of Studies 07-06-2023				
Approved by Academic Council No. 70 Date 24-06-2023				