

SCHOOL OF ELECTRONICS ENGINEERING

B. Tech Electronics and Communication Engineering

Curriculum (2022-23 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

To be a leader by imparting in-depth knowledge in Electronics Engineering, nurturing engineers, technologists and researchers of highest competence, who would engage in sustainable development to cater the global needs of industry and society.

MISSION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

- Create and maintain an environment to excel in teaching, learning and applied research in the fields of electronics, communication engineering and allied disciplines which pioneer for sustainable growth.
- Equip our students with necessary knowledge and skills which enable them to be lifelong learners to solve practical problems and to improve the quality of human life.

B. Tech Electronics and Communication Engineering

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems

2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry

3. Graduates will function in their profession with social awareness and responsibility

4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country

5. Graduates will be successful in pursuing higher studies in engineering or management

6. Graduates will pursue career paths in teaching or research

B. Tech Electronics and Communication Engineering

PROGRAMME OUTCOMES (POs)

PO_01. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO_02. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO_03. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO_04. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO_05. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO_06. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO_07. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO_08. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO_09. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO_10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as,

being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO_11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles, and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO_12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

B. Tech Electronics and Communication Engineering PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of B. Tech. (Electronics and Communication Engineering) Programme, graduates will be able to

PSO_01. Design and analyse the different electronic circuits and systems.

PSO_02. Design and develop the communication systems for various applications

PSO_03. Use modern tools and techniques to solve contemporary problems in the field of Electronics and Communication Engineering

	CREDIT INFO	
S.no	Catagory	Credit
1	Foundation Core	49
2	Discipline-linked Engineering Sciences	10
3	Discipline Core	53
4	Discipline Elective	15
5	Projects and Internship	9
6	Open Elective	15
7	Bridge Course	0
8	Non-graded Core Requirement	11
	Total Credits	162

Foundation Core											
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	т	Р	J	Credit		
1	BCHY101L	Engineering Chemistry	Theory Only	1.0	3	0	0	0	3.0		
2	BCHY101P	Engineering Chemistry Lab	Lab Only	1.0	0	0	2	0	1.0		
3	BCSE101E	Computer Programming: Python	Embedded Theory and Lab	1.0	1	0	4	0	3.0		
4	BCSE103E	Computer Programming: Java	Embedded Theory and Lab	1.0	1	0	4	0	3.0		
5	BEEE102L	Basic Electrical and Electronics Engineering	Theory Only	1.0	3	0	0	0	3.0		
6	BEEE102P	Basic Electrical and Electronics Engineering Lab	Lab Only	1.0	0	0	2	0	1.0		
7	BENG101L	Technical English Communication	Theory Only	1.0	2	0	0	0	2.0		
8	BENG101P	Technical English Communication Lab	Lab Only	1.0	0	0	2	0	1.0		
9	BENG102P	Technical Report Writing	Lab Only	1.0	0	0	2	0	1.0		
10	BFLE200L	B.Tech. Foreign Language - 2021	Basket	1.0	0	0	0	0	2.0		
11	BHSM200L	B.Tech. HSM Elective - 2021	Basket	1.0	0	0	0	0	3.0		
12	BMAT100N	Mathematics	Theory Only	1.0	3	1	0	0	4.0		
13	BMAT101L	Calculus	Theory Only	1.0	3	0	0	0	3.0		
14	BMAT101P	Calculus Lab	Lab Only	1.0	0	0	2	0	1.0		
15	BMAT102L	Differential Equations and Transforms	Theory Only	1.0	3	1	0	0	4.0		
16	BMAT201L	Complex Variables and Linear Algebra	Theory Only	1.0	3	1	0	0	4.0		
17	BMAT202L	Probability and Statistics	Theory Only	1.0	3	0	0	0	3.0		
18	BMAT202P	Probability and Statistics Lab	Lab Only	1.0	0	0	2	0	1.0		
19	BPHY101L	Engineering Physics	Theory Only	1.0	3	0	0	0	3.0		
20	BPHY101P	Engineering Physics Lab	Lab Only	1.0	0	0	2	0	1.0		
21	BSTS101P	Quantitative Skills Practice I	Soft Skill	1.0	0	0	3	0	1.5		
22	BSTS102P	Quantitative Skills Practice II	Soft Skill	1.0	0	0	3	0	1.5		
23	BSTS201P	Qualitative Skills Practice I	Soft Skill	1.0	0	0	3	0	1.5		
24	BSTS202P	Qualitative Skills Practice II	Soft Skill	1.0	0	0	3	0	1.5		

	Discipline-linked Engineering Sciences											
sl.no	Course Code	Course Title	Course Type	Ver sio	L	т	Ρ	J	Credit			
				n								
1	BECE201L	Electronic Materials and Devices	Theory Only	1.0	3	0	0	0	3.0			
2	BECE202L	Signals and Systems	Theory Only	1.0	2	1	0	0	3.0			
3	BECE203L	Circuit Theory	Theory Only	1.0	3	1	0	0	4.0			

Discipline Core											
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	т	Ρ	J	Credit		
1	BECE102L	Digital Systems Design	Theory Only	1.0	3	0	0	0	3.0		
2	BECE102P	Digital Systems Design Lab	Lab Only	1.0	0	0	2	0	1.0		
3	BECE204L	Microprocessors and Microcontrollers	Theory Only	1.0	3	0	0	0	3.0		
4	BECE204P	Microprocessors and Microcontrollers Lab	Lab Only	1.0	0	0	2	0	1.0		
5	BECE205L	Engineering Electromagnetics	Theory Only	1.0	3	0	0	0	3.0		
6	BECE206L	Analog Circuits	Theory Only	1.0	3	0	0	0	3.0		
7	BECE206P	Analog Circuits Lab	Lab Only	1.0	0	0	2	0	1.0		
8	BECE207L	Random Processes	Theory Only	1.0	2	1	0	0	3.0		
9	BECE301L	Digital Signal Processing	Theory Only	1.0	3	0	0	0	3.0		
10	BECE301P	Digital Signal Processing Lab	Lab Only	1.0	0	0	2	0	1.0		
11	BECE302L	Control Systems	Theory Only	1.0	2	1	0	0	3.0		
12	BECE303L	VLSI System Design	Theory Only	1.0	3	0	0	0	3.0		
13	BECE303P	VLSI System Design Lab	Lab Only	1.0	0	0	2	0	1.0		
14	BECE304L	Analog Communication Systems	Theory Only	1.0	3	0	0	0	3.0		
15	BECE304P	Analog Communication Systems Lab	Lab Only	1.0	0	0	2	0	1.0		
16	BECE305L	Antenna and Microwave Engineering	Theory Only	1.0	3	0	0	0	3.0		
17	BECE305P	Antenna and Microwave Engineering Lab	Lab Only	1.0	0	0	2	0	1.0		
18	BECE306L	Digital Communication Systems	Theory Only	1.0	3	0	0	0	3.0		
19	BECE306P	Digital Communication Systems Lab	Lab Only	1.0	0	0	2	0	1.0		
20	BECE317L	Wireless and Mobile Communications	Theory Only	1.0	3	0	0	0	3.0		
21	BECE317P	Wireless and Mobile Communications Lab	Lab Only	1.0	0	0	2	0	1.0		
22	BECE318L	Optical Fiber Communications	Theory Only	1.0	3	0	0	0	3.0		
23	BECE318P	Optical Fiber Communications Lab	Lab Only	1.0	0	0	2	0	1.0		
24	BECE401L	Computer Communications and Networks	Theory Only	1.0	3	0	0	0	3.0		
25	BECE401P	Computer Communications and Networks Lab	Lab Only	1.0	0	0	2	0	1.0		

	Discipline Elective											
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	т	Р	J	Credit			
1	BECE208E	Data Structures and Algorithms	Embedded Theory and Lab	1.0	2	0	2	0	3.0			

		Discipline Electi	ve						
2	BECE209E	Structured and Object Oriented Programming	Embedded Theory and Lab	1.0	2	0	4	0	4.0
3	BECE309L	Artificial Intelligence and Machine Learning	Theory Only	1.0	3	0	0	0	3.0
4	BECE310L	Satellite Communications	Theory Only	1.0	3	0	0	0	3.0
5	BECE311L	Radar Systems	Theory Only	1.0	3	0	0	0	3.0
6	BECE312L	Robotics and Automation	Theory Only	1.0	3	0	0	0	3.0
7	BECE313L	Information Theory and Coding	Theory Only	1.0	3	0	0	0	3.0
8	BECE314L	Electromagnetic Interference and Compatibility	Theory Only	1.0	2	1	0	0	3.0
9	BECE315L	Optical Networks	Theory Only	1.0	3	0	0	0	3.0
10	BECE316E	Digital Image Processing	Embedded Theory and Lab	1.0	3	0	2	0	4.0
11	BECE391J	Technical Answers to Real Problems Project	Project	1.0	0	0	0	0	3.0
12	BECE392J	Design Project	Project	1.0	0	0	0	0	3.0
13	BECE393J	Laboratory Project	Project	1.0	0	0	0	0	3.0
14	BECE394J	Product Development Project	Project	1.0	0	0	0	0	3.0
15	BECE396J	Reading Course	Project	1.0	0	0	0	0	3.0
16	BECE397J	Special Project	Project	1.0	0	0	0	0	3.0
17	BECE398J	Simulation Project	Project	1.0	0	0	0	0	3.0
18	BECE403E	Embedded Systems Design	Embedded Theory and Lab	1.0	3	0	2	0	4.0
19	BECE404L	Detection, Estimation and Modulation Theory	Theory Only	1.0	3	0	0	0	3.0
20	BECE405L	Cognitive Radio Networks	Theory Only	1.0	3	0	0	0	3.0
21	BECE406E	FPGA Based System Design	Embedded Theory and Lab	1.0	2	0	2	0	3.0
22	BECE407E	ASIC Design	Embedded Theory and Lab	1.0	2	0	2	0	3.0
23	BECE408L	Micorwave Integrated Circuits	Theory Only	1.0	3	0	0	0	3.0
24	BECE409E	Sensors Technology	Embedded Theory and Lab	1.0	2	0	2	0	3.0
25	BECE410L	Micro-Electromechanical Systems	Theory Only	1.0	3	0	0	0	3.0
26	BECE411L	Cryptography and Network Security	Theory Only	1.0	3	0	0	0	3.0

	Projects and Internship											
sl.no	Course Code	Course Title	Course Type	Ver sio	L	т	Ρ	J	Credit			
				n								
1	BECE399J	Summer Industrial Internship	Project	1.0	0	0	0	0	1.0			
2	BECE497J	Project - I	Project	1.0	0	0	0	0	3.0			
3	BECE498J	Project - II / Internship	Project	1.0	0	0	0	0	5.0			
4	BECE499J	One Semester Internship	Project	1.0	0	0	0	0	14.0			

Open Elective											
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	т	Ρ	J	Credit		
1	BHUM201L	Mass Communication	Theory Only	1.0	3	0	0	0	3.0		
2	BHUM202L	Rural Development	Theory Only	1.0	3	0	0	0	3.0		
3	BHUM203L	Introduction to Psychology	Theory Only	1.0	3	0	0	0	3.0		
4	BHUM204L	Industrial Psychology	Theory Only	1.0	3	0	0	0	3.0		
5	BHUM205L	Development Economics	Theory Only	1.0	3	0	0	0	3.0		
6	BHUM206L	International Economics	Theory Only	1.0	3	0	0	0	3.0		
7	BHUM207L	Engineering Economics	Theory Only	1.0	3	0	0	0	3.0		
3	BHUM208L	Economics of Strategy	Theory Only	1.0	3	0	0	0	3.0		
Э	BHUM209L	Game Theory	Theory Only	1.0	3	0	0	0	3.0		
10	BHUM210E	Econometrics	Embedded Theory and Lab	1.0	2	0	2	0	3.0		
11	BHUM211L	Behavioral Economics	Theory Only	1.0	3	0	0	0	3.0		
12	BHUM212L	Mathematics for Economic Analysis	Theory Only	1.0	3	0	0	0	3.0		
13	BHUM213L	Corporate Social Responsibility	Theory Only	1.0	3	0	0	0	3.0		
14	BHUM214L	Political Science	Theory Only	1.0	3	0	0	0	3.0		
15	BHUM215L	International Relations	Theory Only	1.0	3	0	0	0	3.0		
16	BHUM216L	Indian Culture and Heritage	Theory Only	1.0	3	0	0	0	3.0		
17	BHUM217L	Contemporary India	Theory Only	1.0	3	0	0	0	3.0		
18	BHUM218L	Financial Management	Theory Only	1.0	3	0	0	0	3.0		
19	BHUM219L	Principles of Accounting	Theory Only	1.0	3	0	0	0	3.0		
20	BHUM220L	Financial Markets and Institutions	Theory Only	1.0	3	0	0	0	3.0		
21	BHUM221L	Economics of Money, Banking and Financial Markets	Theory Only	1.0	3	0	0	0	3.0		
22	BHUM222L	Security Analysis and Portfolio Management	Theory Only	1.0	3	0	0	0	3.0		
23	BHUM223L	Options, Futures and other Derivatives	Theory Only	1.0	3	0	0	0	3.0		
24	BHUM224L	Fixed Income Securities	Theory Only	1.0	3	0	0	0	3.0		
25	BHUM225L	Personal Finance	Theory Only	1.0	3	0	0	0	3.0		
26	BHUM226L	Corporate Finance	Theory Only	1.0	3	0	0	0	3.0		
27	BHUM227L	Financial Statement Analysis	Theory Only	1.0	3	0	0	0	3.0		
28	BHUM228L	Cost and Management Accounting	Theory Only	1.0	3	0	0	0	3.0		
29	CFOC102M	Introduction to Cognitive Psychology	Online Course	1.0	0	0	0	0	3.0		
30	CFOC103M	Introduction to Political Theory	Online Course	1.0	0	0	0	0	3.0		
31	CFOC104M	Six Sigma	Online Course	1.0	0	0	0	0	3.0		
32	CFOC113M	Contemporary Themes in India's Economic Development and Economic Survey	Online Course	1.0	0	0	0	0	3.0		
33	CFOC115M	Design and Analysis of Algorithms	Online Course	1.0	0	0	0	0	2.0		
34	CFOC120M	Knowledge Management	Online Course	1.0	0	0	0	0	2.0		
35	CFOC122M	Educational Leadership	Online Course	1.0	0	0	0	0	2.0		
36	CFOC126M	Data Analysis and Decision Making - III	Online Course	1.0	0	0	0	0	3.0		
37	CFOC128M	Business Analytics and Text Mining Modeling Using Python	Online Course	1.0	0	0	0	0	2.0		
38	CFOC130M	Human Resource Development	Online Course	1.0	0	0	0	0	3.0		

		Open Elective							
39	CFOC133M	E-Business	Online Course	1.0	0	0	0	0	3.0
40	CFOC134M	Innovation, Business Models and Entrepreneurship	Online Course	1.0	0	0	0	0	2.0
41	CFOC136M	Toyota Production System	Online Course	1.0	0	0	0	0	2.0
42	CFOC158M	Reinforcement Learning	Online Course	1.0	0	0	0	0	3.0
43	CFOC159M	Applied Natural Language Processing	Online Course	1.0	0	0	0	0	3.0
44	CFOC160M	Python for Data Science	Online Course	1.0	0	0	0	0	1.0
45	CFOC161M	Data Science for Engineers	Online Course	1.0	0	0	0	0	2.0
46	CFOC165M	Software testing	Online Course	1.0	0	0	0	0	3.0
47	CFOC166M	Hardware Modeling using Verilog	Online Course	1.0	0	0	0	0	2.0
48	CFOC177M	Drug Delivery: Principles and Engineering	Online Course	1.0	0	0	0	0	3.0
49	CFOC178M	Functional Genomics	Online Course	1.0	0	0	0	0	1.0
50	CFOC181M	WildLife Conservation	Online Course	1.0	0	0	0	0	2.0
51	CFOC188M	Ethical Hacking	Online Course	1.0	0	0	0	0	3.0
52	CFOC189M	Organic Farming for Sustainable Agricultural Production	Online Course	1.0	0	0	0	0	2.0
53	CFOC191M	Forests and their Management	Online Course	1.0	0	0	0	0	3.0
54	CFOC203M	Natural Hazards	Online Course	1.0	0	0	0	0	2.0
55	CFOC221M	Cloud computing	Online Course	1.0	0	0	0	0	2.0
56	CFOC227M	GPU Architectures and Programming	Online Course	1.0	0	0	0	0	3.0
57	CFOC228M	Multi-Core Computer Architecture - Storage and Interconnects	Online Course	1.0	0	0	0	0	2.0
58	CFOC229M	Data Analytics with Python	Online Course	1.0	0	0	0	0	3.0
59	CFOC231M	Google Cloud Computing Foundation Course	Online Course	1.0	0	0	0	0	2.0
60	CFOC233M	Enhancing Soft Skills and Personality	Online Course	1.0	0	0	0	0	2.0
61	CFOC234M	Introduction to Airplane Performance	Online Course	1.0	0	0	0	0	2.0
62	CFOC235M	Rocket Propulsion	Online Course	1.0	0	0	0	0	3.0
63	CFOC237M	Sustainable Architecture	Online Course	1.0	0	0	0	0	3.0
64	CFOC265M	Geomorphology	Online Course	1.0	0	0	0	0	3.0
65	CFOC277M	Process Control - Design, Analysis and Assessment	Online Course	1.0	0	0	0	0	3.0
66	CFOC293M	Data Base Management System	Online Course	1.0	0	0	0	0	2.0
67	CFOC294M	Introduction to Algorithms and Analysis	Online Course	1.0	0	0	0	0	3.0
68	CFOC306M	Social Networks	Online Course	1.0	0	0	0	0	3.0
69	CFOC311M	User-centric Computing for Human-Computer Interaction	Online Course	1.0	0	0	0	0	3.0
70	CFOC312M	Cloud Computing and Distributed Systems	Online Course	1.0	0	0	0	0	2.0
71	CFOC329M	Design, Technology and Innovation	Online Course	1.0	0	0	0	0	2.0
72	CFOC334M	High Power Multilevel Converters-Analysis, Design and Operational Issues	Online Course	1.0	0	0	0	0	3.0
73	CFOC388M	Energy Resources, Economics and Environment	Online Course	1.0	0	0	0	0	3.0
74	CFOC393M	Introduction to Cultural Studies	Online Course	1.0	0	0	0	0	3.0
75	CFOC394M	Introduction to Basic Spoken Sanskrit	Online Course	1.0	0	0	0	0	1.0
76	CFOC395M	Speaking Effectively	Online Course	1.0	0	0	0	0	2.0
77	CFOC399M	English Literature for competitive Exams	Online Course	1.0	0	0	0	0	2.0
78	CFOC403M	Patent Drafting for Beginners	Online Course	1.0	0	0	0	0	1.0

	Open Elective											
79	CFOC404M	Patent Law for Engineers and Scientists	Online Course	1.0	0	0	0	0	3.0			
80	CFOC406M	Human Behaviour	Online Course	1.0	0	0	0	0	2.0			
81	CFOC407M	Introduction to Modern Indian Political Thought	Online Course	1.0	0	0	0	0	3.0			
82	CFOC409M	Literature, Culture and Media	Online Course	1.0	0	0	0	0	3.0			
83	CFOC410M	Introduction to Brain & Behaviour	Online Course	1.0	0	0	0	0	2.0			
84	CFOC449M	Product Design and Manufacturing	Online Course	1.0	0	0	0	0	3.0			
85	CFOC475M	IC Engines and Gas Turbines	Online Course	1.0	0	0	0	0	3.0			
86	CFOC484M	Production and Operation Management	Online Course	1.0	0	0	0	0	3.0			
87	CFOC485M	Services Marketing : Integrating People, Technology, Strategy	Online Course	1.0	0	0	0	0	2.0			
88	CFOC487M	Financial Institutions and Markets	Online Course	1.0	0	0	0	0	3.0			
89	CFOC488M	Business Analytics For Management Decision	Online Course	1.0	0	0	0	0	3.0			
90	CFOC498M	Business Statistics	Online Course	1.0	0	0	0	0	3.0			
91	CFOC503M	Marketing Analytics	Online Course	1.0	0	0	0	0	3.0			
92	CFOC508M	Entrepreneurship	Online Course	1.0	0	0	0	0	3.0			
93	CFOC526M	Quantum Mechanics I	Online Course	1.0	0	0	0	0	3.0			

Bridge Course											
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	т	Р	J	Credit		
1	BENG101N	Effective English Communication	Lab Only	1.0	0	0	4	0	2.0		

	Non-graded Core Requirement											
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	т	Ρ	J	Credit			
1	BCHY102N	Environmental Sciences	Online Course	1.0	0	0	0	0	2.0			
2	BECE101N	Introduction to Engineering	Project	1.0	0	0	0	0	1.0			
3	BEXC100N	Extracurricular Activities / Co-Curricular Activities - B.Tech. Programmes	Basket	1.0	0	0	0	0	2.0			
4	BHUM101N	Ethics and Values	Online Course	1.0	0	0	0	0	2.0			
5	BSSC101N	Essence of Traditional Knowledge	Online Course	1.0	0	0	0	0	2.0			
6	BSSC102N	Indian Constitution	Online Course	1.0	0	0	0	0	2.0			

BECE201L	Electronic Materials and Devices		L	Т	P	С
		3	0	0	3	
Pre-requisite	Nil	Syll			ersi	on
			1	.0		
Course Objective						
	ce the students with concepts of electronic materials an	d thei	r pro	per	ties	
	ify semiconductor device physics and electronics. he students with the tools for solving problems of sen	nioona	luoti	or d	ovia	~~
and circuits		nicond	iuci	JIU	evic	62
	Irize the students with various electronic devices	and	th	eir	circ	uit
application		, cirre		•	••	
Course Outcome						
Students will be al		4		1t		
	nd the basics of electronic materials, crystal struc nduction in solids.	ture,	elec	Trica	a a	na
	analyze the band diagrams of semiconductor devices.					
	d and model the carrier transport mechanisms in semic	onduc	tors			
	d model the PN- junctions for given specifications.	onduc		•		
	nall signal models for BJT and also design BJT amplifie	ers un	der	diffe	ren	
Configurat						
	S capacitors, MOSFETs; learn and mitigate the short cl	nanne	leff	ects	and	k
	ire technology nodes.					
	trical and Thermal conduction in Solids				<u>hοι</u>	
	 Crystalline defects – Single Cyrstal Growth -Cz conductor - Classical Theory: Drude Model – Tempera 					
	all Effect and Hall Devices – Thermal conduction – El					
	kin Effect – Thin metal films.	CUIC		Jilut		пу
	iconductor Fundamentals			7	hοι	Irs
Introduction to Se	olids, Crystals, and Electronic materials – Formation	of en	ergy	/ ba	inds	. —
	del – Effective mass - Direct and indirect bandga					
	onductors, Intrinsic and extrinsic semiconductors. The					
	Fermi level, Equilibrium carrier concentration, Qua	asi-eq	uilib	rium	ı, a	nd
Quasi-Fermi level.				<u> </u>	hai	
	ier Transport Mechanism semiconductors – Drift and Diffusion of carriers – Mo	shility	6		hou rotiv	
•	nd injection of carriers – Carrier transport equation					
lifetime.		5 6		00	oun	
	tion diodes			8	hοι	Irs
PN Junction - Ec	uilibrium and biased - Contact potential and space of	charge	e ph	eno	mer	na,
	relationship, Diode capacitances, One-sided PN junct					
	, Zener diode, small-signal model of PN junction. M					
	diode, current-voltage characteristics, Ohmic contac	cts. V	arac	tor	diod	le,
	to Diode, Solar Cells.					
	lar Junction Transistor		~		hou	
	and physical operation, Current – Voltage relationship onideal effects – Base width modulation – Ebers-Moll					
	ipacitances – Equivalent circuit model.	noue	. 01	nall	Jigi	a
models Device ca						irs
	d Effect Transistor			7	nor	
Module:6 Fiel	d Effect Transistor pacitors: Energy-band diagrams, flat-band, accun	nulatio	n.		hou letio	
Module:6FielJFET, MOSCa	<mark>d Effect Transistor</mark> pacitors: Energy-band diagrams, flat-band, accun old voltage, Capacitance-Voltage characteristics. M			dep	letio	on,
Module:6 Fiel JFET, MOS Ca inversion, thresho Voltage character	pacitors: Energy-band diagrams, flat-band, accun old voltage, Capacitance-Voltage characteristics. M istics, velocity saturation, leakage currents, short chan	1OSFE nel ef	ETs: fects	dep Ci S – Y	oletio urre √t ro	on, nt- oll-
Module:6 Fiel JFET, MOS Ca inversion, thresho Voltage character	pacitors: Energy-band diagrams, flat-band, accun bld voltage, Capacitance-Voltage characteristics. M	1OSFE nel ef	ETs: fects	dep Ci S – Y	oletio urre √t ro	on, nt- oll-

Mod	ule:7	Other Electronic Materials			4 hours
	ctrics,		rs, Grapł	nene,	Carbon
Nanc		Superconductors			
Mod	ule:8	Contemporary Topics			2 hours
Gues	st lectur	e from industry and R & D organizations			
		Total Lectur	e hours:	4	5 hours
Text	Book(s	5)			
1.		asap, Principles of Electronic Materials and Devices aw Hill Education.	s , 2018,	4 th Eo	dition,
Refe	rence B	Books			
1.		n Sze, Ming-Kwei Lee, Semiconductor Devices, Physic lition, Wiley International Student Version.	s and Teo	chnolog	gy,2012,
2.		G Streetman and Sanjay Kumar Banerjee, Solid State E lition, Pearson.	Electronic I	Device	s, 2015,
3.		S. Sedra, Kenneth C. Smith & Arun N. Chandorkar, its: Theory and Applications,2014, 7 th Edition, Oxford			
4.	Donal Hill.	ld A. Neamen, Semiconductor Physics and Devices, 207	17,4th Edit	ion, M	cGraw
discu	ission /	aluation: CAT / written assignment / Quiz / FAT / Project fieldwork (include only those that are relevant to the cou ons. Eg. CAT, Quiz and FAT.		-	
Reco	mmenc	ded by Board of Studies 09-11-2021			
		Academic Council No. 64 Date 16-12-2	2021		

BECE202L	Signals and Systems	LTPC									
	Signals and Systems										
Pre-requisite	BMAT102L	Syllabus version 1.0									
Course Objectiv	/es	1.0									
	stand the basic attributes of signals and systems.										
	e the signals and systems in time and transformed dom	nains such as									
Fourier, Laplace and Z- transform.											
3. To under	stand the concept of sampling process.										
Course Outcom	•										
Course Outcom	e course, students will be able to										
	ate between various types of signals and understand	d the implication of									
	s on signals.										
	nd the terms like causal, dynamic, linear, time invar	iant and stability of									
	Also, students will be able to compute impulse respons	e of both continuous									
	discrete time systems.										
	the transformation of CT and DT signals from time d										
frequency	and understand the concept of distribution of energ	by as a function of									
	the CT signals to DT signals and vice versa an	nd understand their									
conseque											
	g of bandpass signals through bandpass systems.										
	erential and difference equations, with initial conditions	s, using Laplace and									
Z transfor	ms respectively.	1									
	tinuous Time and Discrete Time signals	7 hours									
	tion – Types of signals: Unit impulse, unit step, ramp, s ions on signals – Analogy between vectors and signals										
	ndependent vectors, Orthogonality – Mean square err										
	eriodicity, Norms and moments of signals, – Distance m										
Module:2 Con	tinuous Time and Discrete Time systems	7 hours									
	systems - Linearity, time invariance, stability, Inverti										
	s. Interconnection of systems. Systems defined by diff										
	se and step response of the systems. Transmission of	f signals through LTI									
	lution and Correlation for CT and DT systems	5 hours									
Module:3 Fou	f LTI systems to complex exponentials, Fourier serie										
	Periodic Signals, Gibb's phenomena, Properties of C										
	f Discrete Time Periodic Signals, Properties of DT	-									
density.											
-	/										
	rier Transforms	6 hours									
	of aperiodic continuous signals: The Continuous Time										
	nsform for Periodic Signals, Properties of CTFT, System pefficient Differential Equations.	ms characterized by									
	oenioient Dinerentiai Equations.										
-	of aperiodic discrete signals: The Discrete Time Fou										
	n for Periodic Signals, Properties of DTFT, DTFT of sy										
by linear constar	t-coefficient Difference Equations. Energy spectral dens	sity.									
	ert Transform and processing of Band Pass	6 hours									
sign											
iviagnitude and j	phase response of the systems, Group delay, Represe	entation of bandpass									

	nals: In-phase and quadrature phase components, Hilbert transform	 Pre and complex
	velopes. Processing of bandpass signals through bandpass systems.	1
	dule:6 Sampling	4 hours
	pulse train sampling -Zero order hold, Nyquist criteria – Aliasing - Re	econstruction – Ideal
	ering	
	dule:7 Laplace and Z-Transform	8 hours
	place transform: Definition – ROC – Properties – S-plane causality	
	nsfer function – Unilateral Laplace transform: Solution of differential nditions.	equations with initial
	ransform: Definition - S-plane to Z-plane mapping - ROC – Prope	
	stem analysis – Transfer function - Causality- BIBO stability – Ur	nilateral Z-transform,
	ution of Difference equations with initial conditions.	
Мо	dule:8 Contemporary Issues	2 hours
		1
	Total Lecture hours:	45 hours
Tex	kt Book(s)	I
1.	Alan V.Oppenheim, Alan S.Willsky, with S.Hamid Nawab, "Signa Prentice-Hall of India.2 nd Edition,2016.	Is and Systems",
2.	M.J.Roberts, Govind Sharma, "Fundamentals of Signals and Syster Tata McGraw-Hill,2017.	ems", 2 nd Edition,
Re	ference Books	
1.	Simon Haykin, Barry Van Veen, "Signals and Systems", 2 nd edition 2021.	, Wiley Publications,
2.	P. Rama Krishna Rao and Shankar Prakriya, "Signals and Systen Mc-Graw Hill, 2017.	ns", second edition -
3	Simon Haykin, "Communication systems", 4 th edition, Wiley Publicat	
4	Lathi BP, "Signals, Systems and Communications", 2 nd Edition, BS F	Publications 2019.
	de of assessment: Continuous assessment / FAT / Assignments, Ora ers	I examination and
	commended by Board of Studies 09-11-2021	
	proved by Academic Council No. 64 Date 16-12-20	21

BECE203L	Circuit Theory	L T P C
Pre-requisite	BEEE101L, BEEE101P	3 1 0 4 Syllabus version
Fie-lequisite		1.0
Course Objectiv	es	
	e the students to analyse the given electrical network	using phasors and
graph the		
	uce the students with the basic knowledge of Laplace and Fourier series and to analyse the network using su	
	re the students to analyse the two-port networks,	
attenuator		
Course Outcom	a	
	ہ knowledge of various circuit analysis techniques such a	s mesh analysis
	lysis, and network theorems to investigate the given net	
	ne resonance and transient response of the first order, s	
	lve the networks using graphical approach.	
4 Design ar	d analyse two-port networks, passive filters and attenua	ators.
	alyse the given network by transforming from time doma ne given network using Fourier series and transforming t	
frequency		
nequency	domain.	
Module:1 Sinu	soidal Steady-State Analysis	10 hours
	v state sinusoidal analysis using phasors. Node voltage	
	cases. Network theorems: Superposition, Thevenin, No	orton and maximum
power transfer the		40 h a sum
	sient Response of first order, second order circuits Resonance	10 hours
	inductance (L) and capacitance (C), steady state resp	 onse of circuits with
-	s. Response (forced & natural) of first order circuits	
-	ree, complex circuits with more than one resistance,	
switches. Respo	nse of second order circuit (RLC): series, parallel an	id complex circuits.
Series and paralle	el resonance condition.	
Module:3 Netw	ork Graphs	6 hours
Definition of ter	ms. Matrices associated with graphs: incidence,	
	set and fundamental tie-set.	
	-Port Networks	8 hours
	applications of one port and two port networks. Two por (Y) parameters, Impedance (Z) parameters and Hybrid	
	f Two port networks	(II) parameters.
	rs, Attenuators and equalizers	8 hours
	ng. Filter types: Low-pass, High-pass, Band-pass and	
	esign of attenuators: Τ, π, Lattice and Bridged-T types,	
Module:6 Circ	uit Analysis in the S domain	⁹ houro
Introduction to L	aplace transform (LT), poles, zeros and transfer function	8 hours
	er circuits subjected to periodic and aperiodic excitat	-
transforms.		. .
	lication of Fourier series and Fourier sforms in Circuit Analysis	8 hours
	purier series, Symmetry conditions, Applications in circ	uit solving Fourier
	erties, Applications in circuit solving, Comparisons of F	
transforms.		,

Мо	dule:8	Contemporary Issues				2 hours
			Т	otal Lecti	ure hours:	60 hours
Тех	kt Book	(s)				
1.	Charle	s K. Alexander, Matthew N. O.	Sadiku, "F	undamen	tals of Elect	tric Circuits," 2020,
	Sevent	th Edition, McGraw Hill Higher E	Education.			
Ref	ference	Books				
1.	W.H.H	ayt, J.E.Kemmerly & S.M.Dur	^r bin, "Engi	ineering (Circuit Anal	ysis", 2019, Ninth
	Edition	, McGraw Hill Higher Education	٦.	-		
2.	Allan I	R. Hambley, "Electrical Engin	eering –	Principles	& applicat	ions", 2016, Sixth
	Edition	, Pearson Education, Noida, In	dia.			
		· · · · · ·				
Mo	de of E	Evaluation: Internal Assessme	ent (CAT,	Quizzes,	Digital Ass	ignments) & Final
Ass	sessmer	nt Test (FAT)				
			00.44.00	04		
		nded by Board of Studies	09-11-20	21	r	
Ар	proved b	y Academic Council	No. 64	Date	16-12-202	1

Course Code	Course Title	LTPC
BECE102L	Digital Systems Design	3 0 0 3
Pre-requisite	Nil	Syllabus version
•		1.0
Course Objectiv	/es	
1. Provide a	n understanding of Boolean algebra and logic functions.	
	he knowledge of combinational and sequential logic circ	
	nd model the data path circuits for digital systems.	0
	a strong understanding of programmable logic.	
5. Enable th	e student to design and model the logic circuits using Ve	erilog HDL.
Course Outcom		
At the end of the	course the student will be able to	
1. Optimize	the logic functions using and Boolean principles and K-n	nap.
2. Model the	e Combinational and Sequential logic circuits using Verilo	og HDL.
Design th	e various combinational logic circuits and data path circu	uits.
	and apply the design aspects of sequential logic circuits.	
	and apply the design aspects of Finite state machines.	
6. Examine	the basic architectures of programmable logic devices.	
	1	
	tal Logic	8 hours
	: Basic definitions, Axiomatic definition of Boolean Algeb	
	of Boolean Algebra, Boolean Functions, Canonical an	
	Boolean functions. Gate-Level Minimization: The Map N	
	duct of Sums and Sum of Products Simplification,	
Implementation.	Logic Families: Digital Logic Gates, TTL and CMOS logi	c families.
Module:2 Veri		5 hours
	ions, Ports and Modules, Operators, Dataflow Mod	delling, Gate Leve
Modelling, Behav	<i>r</i> ioural Modeling, Test Bench.	
Madula:2 Dec	an of Combinational Logic Circuite	0 h a una
	gn of Combinational Logic Circuits	8 hours
	re, Half Adder, Full Adder, Half Subtractor, Full Su	
,	olexers, De-multiplexers, Parity generator and check	· • • •
Verilog HDL.	exer and De-multiplexer. Modeling of Combinational	logic circuits using
Venilog TIDE.		
Module:4 Des	gn of data path circuits	6 hours
	der/Subtractor, Carry Look Ahead Adder, Unsigned Ar	
	lagnitude comparator. Modeling of data path circuits usi	
	agritude comparator. Modeling of data path circuits usi	ng veniog ribe.
Module:5 Des	gn of Sequential Logic Circuits	8 hours
	ps - SR, D, JK & T, Buffer Registers, Shift Registers -	
	synchronous sequential circuits: state table and state	
	lo-n, Johnson, Ring, Up/Down, Asynchronous cou	
	circuits using Verilog HDL.	intern modeling of
Sequennariorne		
	an of ESM	A hours
Module:6 Des		4 hours
Module:6 Des Finite state Mad	hine(FSM):Mealy FSM and Moore FSM , Design Ex	
Module:6 Des Finite state Mad		
Module:6 Des Finite state Mac detection, Model	hine(FSM):Mealy FSM and Moore FSM , Design Exing of FSM using Verilog HDL.	xample : Sequence
Module:6DesFinite state Maddetection, ModelModule:7Prog	hine(FSM):Mealy FSM and Moore FSM , Design Ex	xample : Sequence 4 hours

Мо	dule:8	Contemporary issues				2 hours				
			Total	Lecture	hours:	45 hours				
Tex	tbook(5)			I					
1.		orris Mano and Michael D. g HDL and System Verilog, 2								
Ref	erence	Books								
1.	· ·	Bo Lin, Digital Systems De 2nd Edition, Create Space I	•		•	•				
2.		Palnitkar, Verilog HDL: A n, Prentice Hall of India Pvt. I		jital Desi	gn and S	Synthesis, 2009, 2nd				
3.		en Brown and ZvonkoVrar n, 2013, 3rd Edition, McGrav				Logic with Verilog				
Мос		Evaluation: Continuous Asse				ent, Quiz and Final				
	essmer			5	5					
Rec	ommer	ided by Board of Studies	14-05-2022							
App	Approved by Academic Council No. 66 Date 16-06-2022									

Cou	rse Code		Course Tit	le			LT	Ρ	С
BEC	E102P	Digital	Systems De	esign La	b		0 0	2	1
Pre-	requisite	Nil	-			Sy	/Ilabus	vers	ion
							1.0		
Cou	rse Objectiv	e							
•		theoretical knowledg e of the topics.	e gained in	the the	ory course	e and	l get l	nands	s-on
Cou	rse Outcom								
At th	e end of the	course the student will	be able to						
2	sequentia 2. Design ar	mulate and synthesize I logic circuits using Ve Ind implement FSM on I Ind implement small dig	erilog HDL. FPGA.	U		a patl	h circui	ts an	d
Indic	cative Exper	iments							
1.	Characterist	tics of Digital ICs, Real	ization of Bo	olean ex	oressions		2	hou?	rs
2.	Design and	Verilog modeling of Co	ombinational	Logic cir	cuits		4	hou	rs
3.	Design and	Verilog modeling of va	rious data pa	ath eleme	ents - Adde	ers	2	! hou	rs
4.	Design and	Verilog modeling of va	rious data pa	ath eleme	ents - Multi	pliers	2	hou?	rs
5.	Implementa	tion of combinational c	ircuits – (FP	GA / Trai	ner Kit)		2	hou?	rs
6.	Implementa	tion of data path circui	t - (FPGA / T	rainer Kit	:)		2	hou?	rs
7.	Design and and Shift reg	Verilog modeling of sir gisters	mple sequen	tial circui	ts like Cou	nters	2	2 hou	rs
8.	Design and	Verilog modeling of co	mplex seque	ential circ	uits		2	hou?	rs
9.	Implementa	tion of Sequential circu	uits - (FPGA	/ Trainer	Kit)		2	hou?	rs
10.	Design and	Verilog modeling of FS	SM based de	sign – Se	erial Adder		2	hou?	rs
11.		Verilog modeling of FS Vending Machine	SM based de	sign – Tr	affic Light		4	hou	rs
12.	Design of A	LU					4	hou	rs
				Total	Laborator	y Hou	ırs 3	0 hoi	urs
Mode	e of Assessn	nent: Continuous Asse	ssment and						
		y Board of Studies	14-05-2022						
		demic Council	No. 66	Date	16-06-20)22			

Course Code	L	T	Ρ	С	
BECE204L	Microprocessors and Microcontrollers	3	0	0	3
Pre-requisite	BECE102L	Sylla	bus v	vers	ion
			1.0		
Course Objectiv					
	nt students with architectures of Intel microprocessors,	microc	ontro	ller	and
ARM proc					054
	arize the students with assembly language prog roller and ARM processor.	rammir	ig ir	8 ו	051
	ce peripherals and I/O devices with the 8051 microcontro	allor			
0. TO Internat					
Course Outcom	9:				
	course, the student should be able to				
1. Comprehe	end the various microprocessors including Intel Pentium		sors		
	rchitecture and Programming of Intel 8086 Microprocess				
	end the architectures and programming of 8051 microcor				
	e implementation of various peripherals such as gen				
	imers, serial communication, LCD, keypad and	ADC	with	8	051
microcont	rchitecture of ARM Processor				
••••••••	ne simple application using ARM processor.				
Module:1 Over	view of Microprocessors		:	3 ho	urs
	icroprocessors, 8-bit/16-bit Microprocessor, Overview of	Intel P			
i5, i7) Series Proc					()
	oprocessor Architecture and Interfacing: Intel x86			3 ho	
	essor: 8086 - Architecture and Addressing modes, Men				
	ssembly Language Processing, Programming with DOS				
	and maximum mode configuration, Programmable P nable Timer Controller (8254), Memory Interface to 8086		a ir	iteri	ace
(6255), FTOgramm	nable Timer Controller (62.34), Memory Interface to 6080				
Module:3 Micro	ocontroller Architecture: Intel 8051			7 ho	urs
	051 - Organization and Architecture, RAM-ROM Org	anizatio		/lach	
	n set: Addressing modes, Data Processing - Stack, A			Logi	cal;
Branching – Unco	onditional and Conditional, Assembly programming.			•	
I					
	ocontroller 8051 Peripherals		Į	5 ho	urs
I/O Ports, Timers	-Counters, Serial Communication and Interrupts.				
Madula: 5 1/0 to	to the sing with Missessentys Use 0054			7 k c	
	nterfacing with Microcontroller 8051	l		7 ho	
Signal Conditioni	ad, Analog-to-Digital Convertors, Digital-to-Analog Conv	enors,	Sen	501 \	withi
	ly interface.				
Module:6 ARM	Processor Architecture			5 ho	urs
	ilosophy; Overview of ARM architecture; States [ARM	1. Thur			
0	; Conditional Execution; Pipelining; Vector Tables; Exce		-],
J				0	
Module:7 ARM	Instruction Set			3 ho	urs
	data processing instructions, branch instructions, load st	tore ins	tructi	ons	,
SWI Instruction, L	oading instructions, conditional Execution, Assembly Pr	<u>ogra</u> mr	ning.		
	Loading instructions, conditional Execution, Assembly Printing instructions, conditional Execution, Assembly Printing issues	ogramr		2 ho	

			То	otal Lectu	ire hours:	45 hours					
Tex	Text Book(s)										
1.	A.K. F	ay, K.M. Bhurchandi, Advanc	ed Micropr	ocessor a	nd Periphe	erals, 2012, 2 nd					
	Edition	, Tata McGraw-Hill, India.									
2.		nmad Ali Mazidi, Janice (
	Microc	ontroller and Embedded Syster	ns, 2014, 2	nd Edition,	Pearson, Ir	ndia.					
Re	ference	Books									
1.	Muhan	nmad Ali Mazidi, ARM Assem	bly Langua	ge Progra	amming & .	Architecture: 1,					
	2016, 2	2nd Edition, Microdigitaled.com									
2.	A. Nag	oor Kani, 8086 Microprocessor	s and its Ap	oplications	, 2017, Sec	ond Edition, Tata					
	McGra	w-Hill Education Pvt. Ltd., New	Delhi, India	a.							
3.	Josepł	n Yiu, The Definitive Guide to A	RM® Corte	x®-M0 an	d Cortex-M	0+ Processors,					
	2015, 2	2 nd Edition, Elsevier Science & ⁻	Technology	, UK							
Мо	de of E	Evaluation: Continuous Assess	sment Test	, Digital	Assignmen	t, Quiz and Final					
As	sessmer	nt Test									
Re	commer	nded by Board of Studies	14-05-202	22							
Ap	proved b	y Academic Council	No. 66	Date	16-06-202	2					
<u> </u>											

Course Cod	e			Course	e Titl	е			L	Τ	Ρ	С
BECE204P		Micro	processo	ors and	Micr	ocontro	ollers Lal	C	0	0	2	1
Pre-requisit	e	BECE102L						Syl	lab	us version		ion
										1.0		
Course Obje												
			students		asser	nbly la	anguage	progra	amm	ning	us	sing
		ssor and mic					_					
		ize the stu	idents w	ith Em	bedd	ed C	language	progr	amr	ning	us	sing
	contro											
3. To inte	erface	peripherals	and I/O d	evices w	vith tr	ne micro	controlle	r and m	ICro	proc	ess	or.
0.0.1												
Course Out												
Student will b			o o u lo da o	and a	L.:	of mro				trall		ممط
		the skill, k			Dility	or pro	gramming	g micro	DCOL	itroii	er	and
		ssor using its /ith microcor			ooo i	noludina	n aonoral	nurnoo	a in	nut/	out	nut
		al communic					g general	purpos	em	pui/	out	pui,
	5, 3011			о, кеура	au an							
Indicative E	xperir	nents [Expe	riments	usina 80	086/8	051/AR	2M1					
		anguage prog						ns		6 ł	nour	ſS
		anguage prog									nour	
		language p						nmina	for			
		he periphera					P 3			10	hοι	ırs
	•	irpose inpu		timers	, se	rial con	nmunicati	ion, LC	D.			
		ADC.	. ,		-			*				
		nplementatio	on of perip	pheral in	terfa	cing:				10	hοι	urs
		pose input/				•	cation, LO	CD,				
keypa	<u>id an</u> d	ADC.	-									
						Total	Laborate	ory Hou	ırs	30	hοι	ırs
Mode of Ass	essme	ent: Continuc	us Asses	sment a	nd F	nal Ass	essment	Test				
Recommend				14-05-	2022							
Approved by	Acad	emic Counci		No. 66		Date	16-06-	2022				

BECE205L Engineering Electromagnetics 3 0 0 3 Pre-requisite BPHY101L, BPHY101P Syllabus version Course Objectives 1.0 Course Objectives 1.0 1. Introduce the basic concepts and properties of Electrostatics & Magnetostatics. 2. Study the propagation of EM wave through time varying Maxwell's equations and to analyze the EM Wave propagation in different conducting and dielectric media. 3. Familiarize the concept of transmission allees and notous transmission lines and to design different transmission lines and matching circuits using Smith chart. Course Outcome At the end of the course, the student will be able to 1. Evaluate and analyze Electric Fields & Electric Potential due to different Charge distributions. 2. Compute and analyze magnetic fields in different transmission lines at high frequencies using transmission line parameters. 3. Design Impedance matching circuits using Smith chart. Analyze the field components of different waveguides based on various modes of E and H field. Module:1 Vector Calculus 3 hours Cartesian, Cylindrical, and Spherical coordinate systems. Divergence, Gradient and Curl. Splate and anglese transmission and the gradient pagnetic Dipole, Polarization in Dielectrics, Boundary conditions, current density,	Course Code	Course Title	I	_ T	P	С
Pre-requisite BPHY101L, BPHY101P Syliabus version Course Objectives 1.0 Introduce the basic concepts and properties of Electrostatics & Magnetostatics. 2. Study the propagation of EM wave through time varying Maxwell's equations and to analyze the EM Wave propagation in different conducting and dielectric media. 3. Familiarize the concept of transmission lines and matching circuits using Smith chart. Course Outcome At the end of the course, the student will be able to 1. Evaluate and analyze the EM wave propagation in conducting as well as in dielectric materials through time varying Maxwell's equations. 2. Compute and analyze magnetic fields in different materials and media. 3. Analyze the EM wave propagation in conducting as well as in dielectric materials through time varying Maxwell's equations. 4. Illustrate the wave mechanism in different transmission lines at high frequencies using Irransmission line parameters. 5. Design Impedance matching circuits using Smith chart. 6. Analyze the field components of different waveguides based on various modes of E and H field. Module:1 Vector Calculus 3 hours Cartesian, Cylindrical, and Spherical coordinate systems. Divergence, Gradient and Curl. Applications, Electric Fields due to Different Charge Distributions, Gauss Law and Applications, Electric Fields due to Magnetic Flux Density, continuity equation.			3	3 0	-	
Course Objectives 1.0 Course Objectives 1.0 Course Objectives 1.0 Course Objectives 1.0 Study the propagation of EM wave through time varying Maxwell's equations and to analyze the EM Wave propagation in different conducting and dielectric media. 3. Familiarize the concept of transmission lines and matching circuits using Smith chart. Course Outcome At the end of the course, the student will be able to 1. Evaluate and analyze magnetic fields in different materials and media. 3. Analyze the EM wave propagation in conducting as well as in dielectric materials through time varying Maxwell's equations. 2. Compute and analyze magnetic fields in different transmission lines at high frequencies using transmission line parameters. 5. Design Impedance matching circuits using Smith chart. 6. Analyze the field components of different waveguides based on various modes of E and H field. Module:1 Vector Calculus 3 hours Cartesian, Cylindrical, and Spherical coordinate systems. Divergence, Gradient and Curl. Bhours Coulomb's Law, Electric Fields Gue to Different Charge Distributions, Gauss Law and Applications, Electrostatics 1 hours Biol-Savart's Law, Ampere's Circuit Law and Applications, Magnetic Flux Density, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fluxds, Magnetic Dipole, Magnetization in materials, Boundary condition			Sylla	abus v	/ersi	on
1. Introduce the basic concepts and properties of Electrostatics & Magnetostatics. 2. Study the propagation of EM wave through time varying Maxwell's equations and to analyze the EM Wave propagation in different conducting and dielectric media. 3. Familiarize the concept of transmission lines and matching circuits using Smith chart. Course Outcome At the end of the course, the student will be able to 1. Evaluate and analyze magnetic fields in different materials and media. 2. Compute and analyze magnetic fields in different materials and media. 3. Analyze the EM wave propagation in conducting as well as in dielectric materials through time varying Maxwell's equations. 4. Illustrate the wave mechanism in different transmission lines at high frequencies using transmission line parameters. 5. Design Impedance matching circuits using Smith chart. 6. Analyze the field components of different Charge Distributions, Gauss Law and Applications, Electrostatic Potential, Potential Gradient, Equipotential surfaces, Electric Dipole, Polarization in Dielectrics, Boundary conditions, current density, continuity equation. Laplace and Poisson's equation. Capacitance, Method of Images. Module:3 Magnetostatics 7 hours Biot-Savart's Law, Ampere's Circuit Law and Applications, Magnetic Dipole, Magnetic Dipole, Magnetic Dipole, Magnetic Dipole, Magnetic Coerdition, Coerdician, Power and Poyning Vector.	•					
2. Study the propagation of EM wave through time varying Maxwell's equations and to analyze the EM Wave propagation in different conducting and dielectric media. 3. Familiarize the concept of transmission lines and matching circuits using Smith chart. Course Outcome At the end of the course, the student will be able to 1. Evaluate and analyse Electric Fields & Electric Potential due to different Charge distributions. 2. Compute and analyze magnetic fields in different materials and media. 3. Analyze the EM wave propagation in conducting as well as in dielectric materials through time varying Maxwell's equations. 4. Illustrate the wave mechanism in different transmission lines at high frequencies using transmission line parameters. 5. Design Impedance matching circuits using Smith chart. 6. Analyze the field components of different waveguides based on various modes of E and H field. Module:1 Vector Calculus 3 hours Cartesian, Cylindrical, and Spherical coordinate systems. Divergence, Gradient and Curl. Module:2 Electrostatics 8 hours Coulomb's Law, Electric Fields due to Different Charge Distributions, Gauss Law and Applications, Electrostatic Potential, Potential Gradient, Equipotential surfaces, Electric Dipole, Polarization in Dielectrics, Boundary conditions, Magnetic Fields, Magnetic Elipole, Magnetic Fields, Magnetic Supple, Magnetiz Cipole, Magnetiz Supple, Potentials, Forces due to Magnetic Fields, Magnetic Elipole, Magnetiz Lipole, Potentials, Forces due to Magnetic Fields, Magnetic Lipole, Magnetiz Lipole, Potential, Forces due to Magnetic Fields, Magnetic Lipole, Magnetiz Lipole, Potentials, Forces on the to Magnetic Fields, Magnetic Lipole, Magnetiz Lipole, Magnetiz Lipole, Conductors and free space. Potarization, Power and Applications, Hauses Lew and Vector Potentials, Forces due to Magnetic Fields, Magnetic Lipole, Magnetiz Lipole, Magnetiz Lipole, Conductors and free space. Polarization, Power and Poyniting Vector. Module:3 Transmission	Course Objective	es				
At the end of the course, the student will be able to 1. Evaluate and analyse Electric Fields & Electric Potential due to different Charge distributions. 2. Compute and analyze magnetic fields in different materials and media. 3. Analyze the EM wave propagation in conducting as well as in dielectric materials through time varying Maxwell's equations. 4. Illustrate the wave mechanism in different transmission lines at high frequencies using transmission line parameters. 5. Design Impedance matching circuits using Smith chart. 6. Analyze the field components of different waveguides based on various modes of E and H field. Module:1 Vector Calculus 3 hours Carlesian, Cylindrical, and Spherical coordinate systems. Divergence, Gradient and Curl. Module:2 Module:2 Electrostatics 8 hours Coulomb's Law, Electric Fields due to Different Charge Distributions, Gauss Law and Applications, Electrostatic Potential, Potential Gradient, Equipotential surfaces, Electric Dipole, Polarization in Dielectrics, Boundary conditions, Current density, continuity equation. Laplace and Poisson's equation, Capacitance, Method of Images. Module:3 Magnetostatics 7 hours Biot-Savart's Law, Ampere's Circuit Law and Applications, Magnetic Fields, Magnetic Scalar and Vector Potentials, Boundary conditions, Inductances and Magnetic Energy. Module:4	 Study the analyze th Familiarize 	propagation of EM wave through time varying Maxwell's e EM Wave propagation in different conducting and diele the concept of transmission and reflection in various tra	equat ectric r ansmis	tions a media ssion l	and to ines	
At the end of the course, the student will be able to 1. Evaluate and analyse Electric Fields & Electric Potential due to different Charge distributions. 2. Compute and analyze magnetic fields in different materials and media. 3. Analyze the EM wave propagation in conducting as well as in dielectric materials through time varying Maxwell's equations. 4. Illustrate the wave mechanism in different transmission lines at high frequencies using transmission line parameters. 5. Design Impedance matching circuits using Smith chart. 6. Analyze the field components of different waveguides based on various modes of E and H field. Module:1 Vector Calculus 3 hours Carlesian, Cylindrical, and Spherical coordinate systems. Divergence, Gradient and Curl. Module:2 Module:2 Electrostatics 8 hours Coulomb's Law, Electric Fields due to Different Charge Distributions, Gauss Law and Applications, Electrostatic Potential, Potential Gradient, Equipotential surfaces, Electric Dipole, Polarization in Dielectrics, Boundary conditions, Current density, continuity equation. Laplace and Poisson's equation, Capacitance, Method of Images. Module:3 Magnetostatics 7 hours Biot-Savart's Law, Ampere's Circuit Law and Applications, Magnetic Fields, Magnetic Scalar and Vector Potentials, Boundary conditions, Inductances and Magnetic Energy. Module:4						
1. Evaluate and analyse Electric Fields & Electric Potential due to different Charge distributions. 2. Compute and analyze magnetic fields in different materials and media. 3. Analyze the EM wave propagation in conducting as well as in dielectric materials through time varying Maxwell's equations. 4. Illustrate the wave mechanism in different transmission lines at high frequencies using transmission line parameters. 5. Design Impedance matching circuits using Smith chart. 6. Analyze the field components of different waveguides based on various modes of E and H field. Module:1 Vector Calculus 3 hours Cartesian, Cylindrical, and Spherical coordinate systems. Divergence, Gradient and Curl. Module:2 Module:2 Electrostatics 8 hours Coulomb's Law, Electric Fields due to Different Charge Distributions, Gauss Law and Applications, Electric Fields due to Different Charge Distributions, Gauss Law and Applications, Electric Fields due to Magnetic Fields. 7 hours Biot-Savart's Law, Ampere's Circuit Law and Applications, Magnetic Fields, Magnetic Dipole, Magnetization in materials, Boundary conditions, Inductances and Magnetic Dipole, Magnetiz Jaw, Maxwell's Equations in Integral and differential form, Wave equation, Uniform plane wave propagation in lossy dielectrics, Lossless Dielectrics, Good Conductors and free space. Polarization, Power and Poynting Vector. S hours Fyreasons for Characteristic Impedance, Propagation Constant, Phase velocityinput impedance, Reflection Coefficient, VSWR. Characterization of lossless, l						
Cartesian, Cylindrical, and Spherical coordinate systems. Divergence, Gradient and Curl. Module:2 Electrostatics 8 hours Coulomb's Law, Electric Fields due to Different Charge Distributions, Gauss Law and Applications, Electrostatic Potential, Potential Gradient, Equipotential surfaces, Electric Dipole, Polarization in Dielectrics, Boundary conditions, current density, continuity equation. Laplace and Poisson's equation, Capacitance, Method of Images. Module:3 Magnetostatics 7 hours Biot-Savart's Law, Ampere's Circuit Law and Applications, Magnetic Flux Density, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Magnetic Dipole, Magnetization in materials, Boundary conditions, Inductances and Magnetic Energy. Module:4 Time Varying Fields 5 hours Faraday's Law and Lenz law, Maxwell's Equations in Integral and differential form, Wave equation, Uniform plane wave propagation in lossy dielectrics, Lossless Dielectrics, Good Conductors and free space. Polarization, Power and Poynting Vector. Module:5 Transmission Lines 8 hours Types, Parameters, Transmission Line Equations, Primary & Secondary Constants, Expressions for Characteristic Impedance, Propagation Constant, Phase velocity_input impedance, Reflection Coefficient, VSWR. Characterization of lossless, low loss and distortionless transmission lines. Significance of short circuit and open circuit lines of length N8, N4 and N2. Coaxial line, Planar transmission lines –Types, Microstrip Lines: field distribution, design equations, Q factor, losses in microstrip lines.	 Evaluate a distribution Compute a Analyze th through tin Illustrate t using trans Design Im Analyze th 	and analyse Electric Fields & Electric Potential due t ns. and analyze magnetic fields in different materials and me ne EM wave propagation in conducting as well as in ne varying Maxwell's equations. he wave mechanism in different transmission lines a smission line parameters. pedance matching circuits using Smith chart. he field components of different waveguides based on v	edia. dielec t high	tric m 1 frequ	ateri uenc	als
Cartesian, Cylindrical, and Spherical coordinate systems. Divergence, Gradient and Curl. Module:2 Electrostatics 8 hours Coulomb's Law, Electric Fields due to Different Charge Distributions, Gauss Law and Applications, Electrostatic Potential, Potential Gradient, Equipotential surfaces, Electric Dipole, Polarization in Dielectrics, Boundary conditions, current density, continuity equation. Laplace and Poisson's equation, Capacitance, Method of Images. Module:3 Magnetostatics 7 hours Biot-Savart's Law, Ampere's Circuit Law and Applications, Magnetic Flux Density, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Magnetic Dipole, Magnetization in materials, Boundary conditions, Inductances and Magnetic Energy. Module:4 Time Varying Fields 5 hours Faraday's Law and Lenz law, Maxwell's Equations in Integral and differential form, Wave equation, Uniform plane wave propagation in lossy dielectrics, Lossless Dielectrics, Good Conductors and free space. Polarization, Power and Poynting Vector. Module:5 Transmission Lines 8 hours Types, Parameters, Transmission Line Equations, Primary & Secondary Constants, Expressions for Characteristic Impedance, Propagation Constant, Phase velocity_input impedance, Reflection Coefficient, VSWR. Characterization of lossless, low loss and distortionless transmission lines. Significance of short circuit and open circuit lines of length N8, N4 and N2. Coaxial line, Planar transmission lines –Types, Microstrip Lines: field distribution, design equations, Q factor, losses in microstrip lines.						
Module:2 Electrostatics 8 hours Coulomb's Law, Electric Fields due to Different Charge Distributions, Gauss Law and Applications, Electrostatic Potential, Potential Gradient, Equipotential surfaces, Electric Dipole, Polarization in Dielectrics, Boundary conditions, current density, continuity equation. Laplace and Poisson's equation, Capacitance, Method of Images. Module:3 Magnetostatics 7 hours Biot-Savart's Law, Ampere's Circuit Law and Applications, Magnetic Flux Density, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Magnetic Dipole, Magnetization in materials, Boundary conditions, Inductances and Magnetic Energy. Module:4 Time Varying Fields 5 hours Faraday's Law and Lenz law, Maxwell's Equations in Integral and differential form, Wave equation, Uniform plane wave propagation in lossy dielectrics, Lossless Dielectrics, Good Conductors and free space. Polarization, Power and Poynting Vector. Module:5 Transmission Lines 8 hours Types, Parameters, Transmission Line Equations, Primary & Secondary Constants, Expressions for Characteristic Impedance, Propagation Constant, Phase velocity_input impedance, Reflection Coefficient, VSWR. Characterization of lossless, low loss and distortionless transmission lines. Significance of short circuit and open circuit lines of length <i>N</i> 8, <i>N</i> 4 and <i>N</i> 2. Coaxial line, Planar transmission lines –Types, Microstrip Lines: field distribution, design equations, Q factor, losses in microstrip lines. Module:6 Smith Chart & Matching Circuits 7 hours						Jrs
Coulomb's Law, Electric Fields due to Different Charge Distributions, Gauss Law and Applications, Electrostatic Potential, Potential Gradient, Equipotential surfaces, Electric Dipole, Polarization in Dielectrics, Boundary conditions, current density, continuity equation. Laplace and Poisson's equation, Capacitance, Method of Images. Module:3 Magnetostatics 7 hours Biot-Savart's Law, Ampere's Circuit Law and Applications, Magnetic Flux Density, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Magnetic Dipole, Magnetization in materials, Boundary conditions, Inductances and Magnetic Energy. Module:4 Time Varying Fields 5 hours Faraday's Law and Lenz law, Maxwell's Equations in Integral and differential form, Wave equation, Uniform plane wave propagation in lossy dielectrics, Lossless Dielectrics, Good Conductors and free space. Polarization, Power and Poynting Vector. 8 hours Module:5 Transmission Lines 8 hours Types, Parameters, Transmission Line Equations, Primary & Secondary Constants, Expressions for Characteristic Impedance, Propagation Constant, Phase velocity_input impedance, Reflection Coefficient, VSWR. Characterization of lossless, low loss and distortionless transmission lines. Significance of short circuit and open circuit lines of length λ 8, λ 4 and λ /2. Coaxial line, Planar transmission lines –Types, Microstrip Lines: field distribution, design equations, Q factor, losses in microstrip lines. Module:6 Smith Chart & Matching Circuits 7 hours	Cartesian, Cylindr	ical, and Spherical coordinate systems. Divergence, Gra	adient	and C	url.	
Coulomb's Law, Electric Fields due to Different Charge Distributions, Gauss Law and Applications, Electrostatic Potential, Potential Gradient, Equipotential surfaces, Electric Dipole, Polarization in Dielectrics, Boundary conditions, current density, continuity equation. Laplace and Poisson's equation, Capacitance, Method of Images. Module:3 Magnetostatics 7 hours Biot-Savart's Law, Ampere's Circuit Law and Applications, Magnetic Flux Density, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Magnetic Dipole, Magnetization in materials, Boundary conditions, Inductances and Magnetic Energy. Module:4 Time Varying Fields 5 hours Faraday's Law and Lenz law, Maxwell's Equations in Integral and differential form, Wave equation, Uniform plane wave propagation in lossy dielectrics, Lossless Dielectrics, Good Conductors and free space. Polarization, Power and Poynting Vector. 8 hours Module:5 Transmission Lines 8 hours Types, Parameters, Transmission Line Equations, Primary & Secondary Constants, Expressions for Characteristic Impedance, Propagation Constant, Phase velocity_input impedance, Reflection Coefficient, VSWR. Characterization of lossless, low loss and distortionless transmission lines. Significance of short circuit and open circuit lines of length λ 8, λ 4 and λ /2. Coaxial line, Planar transmission lines –Types, Microstrip Lines: field distribution, design equations, Q factor, losses in microstrip lines. Module:6 Smith Chart & Matching Circuits 7 hours						
Applications, Electrostatic Potential, Potential Gradient, Equipotential surfaces, Electric Dipole, Polarization in Dielectrics, Boundary conditions, current density, continuity equation. Laplace and Poisson's equation, Capacitance, Method of Images. Module:3 Magnetostatics 7 hours Biot-Savart's Law, Ampere's Circuit Law and Applications, Magnetic Flux Density, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Magnetic Dipole, Magnetization in materials, Boundary conditions, Inductances and Magnetic Energy. Module:4 Time Varying Fields 5 hours Faraday's Law and Lenz law, Maxwell's Equations in Integral and differential form, Wave equation, Uniform plane wave propagation in lossy dielectrics, Lossless Dielectrics, Good Conductors and free space. Polarization, Power and Poynting Vector. 8 hours Types, Parameters, Transmission Lines 8 hours Types, Reflection Coefficient, VSWR. Characterization of lossless, low loss and distortionless transmission lines. Significance of short circuit and open circuit lines of length N8, N4 and N2. Coaxial line, Planar transmission lines –Types, Microstrip Lines: field distribution, design equations, Q factor, losses in microstrip lines. Module:6 Smith Chart & Matching Circuits 7 hours			_			
Biot-Savart's Law, Ampere's Circuit Law and Applications, Magnetic Flux Density, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Magnetic Dipole, Magnetization in materials, Boundary conditions, Inductances and Magnetic Energy. Module:4 Time Varying Fields 5 hours Faraday's Law and Lenz law, Maxwell's Equations in Integral and differential form, Wave equation, Uniform plane wave propagation in lossy dielectrics, Lossless Dielectrics, Good Conductors and free space. Polarization, Power and Poynting Vector. Module:5 Transmission Lines 8 hours Types, Parameters, Transmission Line Equations, Primary & Secondary Constants, Expressions for Characteristic Impedance, Propagation Constant, Phase velocity_input impedance, Reflection Coefficient, VSWR. Characterization of lossless, low loss and distortionless transmission lines. Significance of short circuit and open circuit lines of length $\lambda/8, \lambda/4$ and $\lambda/2$. Coaxial line, Planar transmission lines –Types, Microstrip Lines: field distribution, design equations, Q factor, losses in microstrip lines. Module:6 Smith Chart & Matching Circuits 7 hours	Applications, Ele Dipole, Polarization	ctrostatic Potential, Potential Gradient, Equipotential on in Dielectrics, Boundary conditions, current density, c	surfa	ces,	Elec	tric
Biot-Savart's Law, Ampere's Circuit Law and Applications, Magnetic Flux Density, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Magnetic Dipole, Magnetization in materials, Boundary conditions, Inductances and Magnetic Energy. Module:4 Time Varying Fields 5 hours Faraday's Law and Lenz law, Maxwell's Equations in Integral and differential form, Wave equation, Uniform plane wave propagation in lossy dielectrics, Lossless Dielectrics, Good Conductors and free space. Polarization, Power and Poynting Vector. Module:5 Transmission Lines 8 hours Types, Parameters, Transmission Line Equations, Primary & Secondary Constants, Expressions for Characteristic Impedance, Propagation Constant, Phase velocity_input impedance, Reflection Coefficient, VSWR. Characterization of lossless, low loss and distortionless transmission lines. Significance of short circuit and open circuit lines of length $\lambda/8, \lambda/4$ and $\lambda/2$. Coaxial line, Planar transmission lines –Types, Microstrip Lines: field distribution, design equations, Q factor, losses in microstrip lines. Module:6 Smith Chart & Matching Circuits 7 hours	Madular2 Magr			7	/ hou	
Faraday's Law and Lenz law, Maxwell's Equations in Integral and differential form, Wave equation, Uniform plane wave propagation in lossy dielectrics, Lossless Dielectrics, Good Conductors and free space. Polarization, Power and Poynting Vector.Module:5Transmission Lines8 hoursTypes, Parameters, Transmission Line Equations, Primary & Secondary Constants, Expressions for Characteristic Impedance, Propagation Constant, Phase velocity,_input impedance, Reflection Coefficient, VSWR. Characterization of lossless, low loss and distortionless transmission lines. Significance of short circuit and open circuit lines of length λ/8, λ/4 and λ/2. Coaxial line, Planar transmission lines –Types, Microstrip Lines: field distribution, design equations, Q factor, losses in microstrip lines.7 hours	Biot-Savart's Law Scalar and Veo	, Ampere's Circuit Law and Applications, Magnetic Flux ctor Potentials, Forces due to Magnetic Fields,	Magr	sity, M netic	agne	etic
Faraday's Law and Lenz law, Maxwell's Equations in Integral and differential form, Wave equation, Uniform plane wave propagation in lossy dielectrics, Lossless Dielectrics, Good Conductors and free space. Polarization, Power and Poynting Vector.Module:5Transmission Lines8 hoursTypes, Parameters, Transmission Line Equations, Primary & Secondary Constants, Expressions for Characteristic Impedance, Propagation Constant, Phase velocity,_input impedance, Reflection Coefficient, VSWR. Characterization of lossless, low loss and distortionless transmission lines. Significance of short circuit and open circuit lines of length λ/8, λ/4 and λ/2. Coaxial line, Planar transmission lines –Types, Microstrip Lines: field distribution, design equations, Q factor, losses in microstrip lines.7 hours	Madula 4 Tima	Vanving Fields		E	ha	
Types, Parameters, Transmission Line Equations, Primary & Secondary Constants, Expressions for Characteristic Impedance, Propagation Constant, Phase velocity, input impedance, Reflection Coefficient, VSWR. Characterization of lossless, low loss and distortionless transmission lines. Significance of short circuit and open circuit lines of length $\lambda/8$, $\lambda/4$ and $\lambda/2$. Coaxial line, Planar transmission lines –Types, Microstrip Lines: field distribution, design equations, Q factor, losses in microstrip lines.Types, Microstrip Lines: field distribution, design 7 hours Module:6Smith Chart & Matching Circuits7 hours	Faraday's Law an equation, Uniform	nd Lenz law, Maxwell's Equations in Integral and diffe n plane wave propagation in lossy dielectrics, Lossless		l form	, Wa	ave
Types, Parameters, Transmission Line Equations, Primary & Secondary Constants, Expressions for Characteristic Impedance, Propagation Constant, Phase velocity, input impedance, Reflection Coefficient, VSWR. Characterization of lossless, low loss and distortionless transmission lines. Significance of short circuit and open circuit lines of length 	Module: 5 Trees	amingian Linga)	
Expressions for Characteristic Impedance, Propagation Constant, Phase velocity, input impedance, Reflection Coefficient, VSWR. Characterization of lossless, low loss and distortionless transmission lines. Significance of short circuit and open circuit lines of length $\lambda/8$, $\lambda/4$ and $\lambda/2$. Coaxial line, Planar transmission lines –Types, Microstrip Lines: field distribution, design equations, Q factor, losses in microstrip lines.Types, Microstrip Lines: field distribution, design 7 hoursModule:6Smith Chart & Matching Circuits7 hours			nder			
	Expressions for impedance, Refle distortionless tran $\lambda/8$, $\lambda/4$ and $\lambda/2$. Coaxial line, Plar	Characteristic Impedance, Propagation Constant, Pha ection Coefficient, VSWR. Characterization of lossle smission lines. Significance of short circuit and open ci nar transmission lines –Types, Microstrip Lines: field o	ase vo ess, lo rcuit li	elocity ow los nes of	/ <u>, in</u> ss a f len	put and gth
Smith Unart configuration and applications: Input impedance, admittance, VSWR, Reflection						
	Smith Chart confi	guration and applications: Input impedance, admittance,	vSW	R, Re	TIect	ION

	Coefficient, return loss, standing wave pattern. Matching Circuit Design- Quarter wave, Impedance Transformer, Single Stub, Double Stub and Lumped element matching.							
Мо	dule:7	Waveguides				5 hours		
TEM, TE and TM waves, Parallel plate waveguide, Rectangular waveguide, Characteristics								
	•	ide- guide wavelength, cu	•		•			
1 .		stant, phase velocity, grou	ip velocity. Cir	cular wav	eguide a	and Cavity resonator		
QL	ualitative	study)						
Mo	dular0	Contemporary issues				2 hours		
	dule:8	Contemporary issues				2 hours		
			Tota	Lecture	hours:	45 hours		
Te	kt Book	(s)	1010	Lecture	nours.	40 110013		
1.		Hayt and John Buck, E	naineerina Ele	ctromagne	etics. 20	17. 8 th Edition. Tata		
		w Hill, New Delhi, India.	5 5	5	, -	, - , ,		
Re	ference	Books						
1.	Mathe	w O Sadiku, Elements	s of Electrom	agnetics,	Oxford	d University press,		
		ork, USA.						
2.		ordan and K.G. Balmain, E	lectromagnetic \	Naves an	d Radiat	ing Systems, , PEI,		
	India		· · · · · · · · · · · · · · · · · · ·					
3.		Pozar, Microwave engineer						
	Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final							
-	Assessment Test							
		ided by Board of Studies	14-05-2022	Data	40.00.0	000		
Ар	proved b	y Academic Council	No. 66	Date	16-06-2	2022		

Course Code	Course Title		Τ	Ρ	С
BECE206L	Analog Circuits	3	0	0	3
Pre-requisite	BECE201L Syl	labus	ver	rsion	
		1	1.0		
Course Objectiv	/es				
1. To study	the basic principle of BJT and MOSFET amplifiers using su	itable	bias	sing	
	es and to perform ac analysis.			Ū	
	stand the operation and design of various classes of MOSF	et po	wer		
amplifier					
	uce MOSFET active biasing and design a MOSFET differen	tial ar	nplif	ier	
	d analyze its frequency response.		•		
	the characteristics of Operational Amplifier and its application	ons			
5. To acqua	int and demonstrate the concepts of waveform generators,	filter			
	tions, Timer, data converters, and Voltage regulators.				
U					
Course Outcom					
	course the student will be able to				
	e BJT and MOSFET amplifier circuits using suitable biasing	tech	niaı	les a	nc
	heir frequency response characteristics.	,			
-	sh among different classes of MOSFET power amplifiers a	nd er	nplc	w the	٩r
-	is applications.		iipic	y un	511
	the different active biasing techniques and MOSFET-b	hase	diff	oron	tia
	and their frequency response characteristics.	aseu	um	CICII	ua
	end the ideal characteristics of OP-AMPs and design	tho fi	Inde	mor	4 -
4. Compren	end the ideal characteristics of OF-AMES and design			11110	
airauita b			inuc		ita
	ased on OP-AMPs.				
5. Design	and analyze different waveform generator circuits us				
5. Design a amplifiers	and analyze different waveform generator circuits us s.	sing	оре	ratio	nal
5. Design amplifiers 6. Analyze t	and analyze different waveform generator circuits us s. the basic concept of filter circuits, multivibrators using 555	sing	оре	ratio	nal
5. Design a amplifiers	and analyze different waveform generator circuits us s. the basic concept of filter circuits, multivibrators using 555	sing	оре	ratio	nal
 Design a amplifiers Analyze t converter 	and analyze different waveform generator circuits us s. the basic concept of filter circuits, multivibrators using 555 circuits.	sing	ope r, ar	ration	nal ata
5. Design a amplifiers 6. Analyze t converter Module:1 DC a	and analyze different waveform generator circuits us s. the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers	sing time	ope r, ar 9 I	ration nd da	nal ata
 Design a amplifiers Analyze t converter Module:1 DC a BJT Circuits: DC 	and analyze different waveform generator circuits us s. the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers C biasing, AC coupling and small-signal analysis of ampli	time fiers,	ope r, ar <u>9</u> I Fre	ration nd da hour quer	nal ata <u>s</u>
5. Design a amplifiers 6. Analyze t converter Module:1 DC a BJT Circuits: DC response of a	and analyze different waveform generator circuits us s. the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers C biasing, AC coupling and small-signal analysis of ampli CE amplifier, the three frequency bands, Unity gain f	time fiers,	ope r, ar 9 I Fre	ration nd da hour quer , Mil	nal ata s ncy ler
 Design a amplifiers Analyze t converter Module:1 DC a BJT Circuits: DC response of a Capacitance, Mu 	and analyze different waveform generator circuits us the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers C biasing, AC coupling and small-signal analysis of ampli CE amplifier, the three frequency bands, Unity gain f ultistage amplifiers. MOSFET Circuits: DC biasing, AC cou	times fiers, reque	ope r, ar 9 Fre ncy and	nd da hour quer , Mil I sma	nal ata s ncy ler all-
 Design a amplifiers Analyze for converter Module:1 DC a BJT Circuits: DC response of a Capacitance, Musignal analysis converter 	and analyze different waveform generator circuits us the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers C biasing, AC coupling and small-signal analysis of ampli CE amplifier, the three frequency bands, Unity gain f ultistage amplifiers. MOSFET Circuits: DC biasing, AC cou of amplifiers, Frequency response of a CS amplifier, Unity	times fiers, reque	ope r, ar 9 Fre ncy and	nd da hour quer , Mil I sma	na ata <u>s</u> ler all-
 Design a amplifiers Analyze for converter Module:1 DC a BJT Circuits: DC response of a Capacitance, Musignal analysis converter 	and analyze different waveform generator circuits us the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers C biasing, AC coupling and small-signal analysis of ampli CE amplifier, the three frequency bands, Unity gain f ultistage amplifiers. MOSFET Circuits: DC biasing, AC cou	times fiers, reque	ope r, ar 9 Fre ncy and	nd da hour quer , Mil I sma	nal ata s ncy ler all-
 Design a amplifiers Analyze a converter Module:1 DC a BJT Circuits: DC response of a Capacitance, Mu signal analysis o Miller Capacitance 	and analyze different waveform generator circuits us the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers C biasing, AC coupling and small-signal analysis of ampli CE amplifier, the three frequency bands, Unity gain f ultistage amplifiers. MOSFET Circuits: DC biasing, AC cou of amplifiers, Frequency response of a CS amplifier, Unity ce, Multistage amplifiers.	times fiers, reque	ope r, ar 9 Fre ncy and fred	nd da hour quer , Mil l sma quen	nal ata s ncy ler all- cy,
 5. Design a amplifiers 6. Analyze a converter Module:1 DC a BJT Circuits: DC response of a Capacitance, Musignal analysis of Miller Capacitance Module:2 MOS 	and analyze different waveform generator circuits us the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers C biasing, AC coupling and small-signal analysis of ampli CE amplifier, the three frequency bands, Unity gain f ultistage amplifiers. MOSFET Circuits: DC biasing, AC cou of amplifiers, Frequency response of a CS amplifier, Unity ce, Multistage amplifiers. SFET Power Amplifiers	sing time fiers, reque pling gain	ope r, ar 9 Fre ncy anc frec	hour hour quer Mil sma quen t	na ata s ncy ler all- cy
 Design a amplifiers amplifiers Analyze a converter Module:1 DC a BJT Circuits: DC response of a Capacitance, Mu signal analysis o Miller Capacitance Module:2 MOS Power Amplifiers 	and analyze different waveform generator circuits us the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers C biasing, AC coupling and small-signal analysis of ampli CE amplifier, the three frequency bands, Unity gain f ultistage amplifiers. MOSFET Circuits: DC biasing, AC cou of amplifiers, Frequency response of a CS amplifier, Unity ce, Multistage amplifiers. SFET Power Amplifiers s, Power Transistors, Classes of Amplifiers, Class A Power	sing time fiers, reque pling gain	ope r, ar 9 Fre ncy anc frec	hour hour quer Mil sma quen	na ata s ncy ler all- cy
 Design a amplifiers amplifiers Analyze a converter Module:1 DC a BJT Circuits: DC response of a Capacitance, Mu signal analysis o Miller Capacitance Module:2 MOS Power Amplifiers 	and analyze different waveform generator circuits us the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers C biasing, AC coupling and small-signal analysis of ampli CE amplifier, the three frequency bands, Unity gain f ultistage amplifiers. MOSFET Circuits: DC biasing, AC cou of amplifiers, Frequency response of a CS amplifier, Unity ce, Multistage amplifiers. SFET Power Amplifiers	sing time fiers, reque pling gain	ope r, ar 9 Fre ncy anc frec	hour hour quer Mil sma quen	na ata s ncy ler all- cy
 5. Design a amplifiers 6. Analyze a converter Module:1 DC a BJT Circuits: DC a Capacitance, Musignal analysis of Miller Capacitance Miller Capacitance Module:2 MOS Power Amplifiers B, Class AB Pus 	and analyze different waveform generator circuits us the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers C biasing, AC coupling and small-signal analysis of amplifier C biasing, AC coupling and small-signal analysis of amplifier C biasing, AC coupling and small-signal analysis of amplifier CE amplifier, the three frequency bands, Unity gain f ultistage amplifiers. MOSFET Circuits: DC biasing, AC cou- of amplifiers, Frequency response of a CS amplifier, Unity ce, Multistage amplifiers. SFET Power Amplifiers s, Power Transistors, Classes of Amplifiers, Class A Power h-Pull Complementary Output Stages.	sing time fiers, reque pling gain	ope r, ar 9 Fre ncy anc frec	hour hour quer Mil sma quen	nal ata s ncy ler all- cy
 5. Design a amplifiers 6. Analyze a converter Module:1 DC a BJT Circuits: DC a Capacitance, Musignal analysis of Miller Capacitance Miller Capacitance Module:2 MOS Power Amplifiers B, Class AB Pus 	and analyze different waveform generator circuits us the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers C biasing, AC coupling and small-signal analysis of ampli CE amplifier, the three frequency bands, Unity gain f ultistage amplifiers. MOSFET Circuits: DC biasing, AC cou of amplifiers, Frequency response of a CS amplifier, Unity ce, Multistage amplifiers. SFET Power Amplifiers s, Power Transistors, Classes of Amplifiers, Class A Power	sing time fiers, reque pling gain	ope r, ar 9 Fre ncy and fred fiers	hour hour quer Mil sma quen	na ata s ncy ller all- cy
 Design a amplifiers amplifiers Analyze a converter Module:1 DC a BJT Circuits: DC response of a Capacitance, Mu signal analysis of Miller Capacitance Module:2 MOS Power Amplifiers B, Class AB Pus Module:3 MOS Introduction to C 	and analyze different waveform generator circuits us the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers C biasing, AC coupling and small-signal analysis of ampli CE amplifier, the three frequency bands, Unity gain f ultistage amplifiers. MOSFET Circuits: DC biasing, AC cou- of amplifiers, Frequency response of a CS amplifier, Unity ce, Multistage amplifiers. SFET Power Amplifiers s, Power Transistors, Classes of Amplifiers, Class A Power h-Pull Complementary Output Stages. SFET Active Biasing and Differential Amplifiers Current Mirror – Basic, Wilson and Cascode Current Mirror	sing time fiers, reque pling gain Ampli Ampli	ope r, ar 9 I Fre ncy anc frec fiers	nd da hour quer , Mil l sma quen s, Cla	na ata s ncy lei all- cy urs sic
 Design a amplifiers amplifiers Analyze a converter Module:1 DC a BJT Circuits: DC response of a Capacitance, Mu signal analysis of Miller Capacitance Module:2 MOS Power Amplifiers B, Class AB Pus Module:3 MOS Introduction to C 	and analyze different waveform generator circuits us the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers C biasing, AC coupling and small-signal analysis of ampli CE amplifier, the three frequency bands, Unity gain f ultistage amplifiers. MOSFET Circuits: DC biasing, AC cou of amplifiers, Frequency response of a CS amplifier, Unity ce, Multistage amplifiers. SFET Power Amplifiers a, Power Transistors, Classes of Amplifiers, Class A Power h-Pull Complementary Output Stages. SFET Active Biasing and Differential Amplifiers	sing time fiers, reque pling gain Ampli Ampli	ope r, ar 9 I Fre ncy anc frec fiers	nd da hour quer , Mil l sma quen s, Cla	na ata s ncy lei all- cy urs sic
 Design a amplifiers amplifiers Analyze a converter Module:1 DC a BJT Circuits: DC response of a Capacitance, Mu signal analysis of Miller Capacitance Module:2 MOS Power Amplifiers B, Class AB Pus Module:3 MOS Introduction to C 	and analyze different waveform generator circuits us the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers C biasing, AC coupling and small-signal analysis of ampli CE amplifier, the three frequency bands, Unity gain f ultistage amplifiers. MOSFET Circuits: DC biasing, AC cou- of amplifiers, Frequency response of a CS amplifier, Unity ce, Multistage amplifiers. SFET Power Amplifiers s, Power Transistors, Classes of Amplifiers, Class A Power h-Pull Complementary Output Stages. SFET Active Biasing and Differential Amplifiers current Mirror – Basic, Wilson and Cascode Current Mirror, Large Signal and Small Signal Analysis of Differential Ampli	sing time fiers, reque pling gain Ampli Ampli	ope r, ar 9 I Fre ncy anc frec fiers	nd da hour quer , Mil l sma quen s, Cla	na ata s ncy lei all- cy urs sic
 5. Design a amplifiers amplifiers 6. Analyze a converter Module:1 DC a BJT Circuits: DC response of a Capacitance, Musignal analysis of Miller Capacitance Module:2 MOS Power Amplifiers B, Class AB Pus Module:3 MOS Introduction to C Differential Pair, 	and analyze different waveform generator circuits us the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers C biasing, AC coupling and small-signal analysis of ampli CE amplifier, the three frequency bands, Unity gain f ultistage amplifiers. MOSFET Circuits: DC biasing, AC cou- of amplifiers, Frequency response of a CS amplifier, Unity ce, Multistage amplifiers. SFET Power Amplifiers s, Power Transistors, Classes of Amplifiers, Class A Power h-Pull Complementary Output Stages. SFET Active Biasing and Differential Amplifiers current Mirror – Basic, Wilson and Cascode Current Mirror, Large Signal and Small Signal Analysis of Differential Ampli	sing time fiers, reque pling gain Ampli Ampli	ope r, ar 9 I Fre ncy anc frec fiers	nd da hour quer , Mil l sma quen s, Cla	nal ata s icy ler all- cy irs ass irs
 Design a amplifiers amplifiers Analyze for converter Analyze for converter Module:1 DC a BJT Circuits: DC response of a Capacitance, Musignal analysis of Miller Capacitance Module:2 MOS Power Amplifiers B, Class AB Pus Module:3 MOS Introduction to C Differential Pair, Amplifier with action 	and analyze different waveform generator circuits us the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers C biasing, AC coupling and small-signal analysis of ampli CE amplifier, the three frequency bands, Unity gain f ultistage amplifiers. MOSFET Circuits: DC biasing, AC cou- of amplifiers, Frequency response of a CS amplifier, Unity ce, Multistage amplifiers. SFET Power Amplifiers s, Power Transistors, Classes of Amplifiers, Class A Power h-Pull Complementary Output Stages. SFET Active Biasing and Differential Amplifiers current Mirror – Basic, Wilson and Cascode Current Mirror, Large Signal and Small Signal Analysis of Differential Ampli	sing time fiers, reque pling gain Ampli Ampli	ope r, ar 9 Fre ncy anc frec fiers 6 Diff	nd da hour quer , Mil l sma quen s, Cla	na ata s lei alli cy urs ass sic
 Design a amplifiers Analyze for converter Analyze for converter Analyze for converter Module:1 DC a BJT Circuits: DC a BJT Circuits: DC aspacitance, Mu signal analysis of Miller Capacitance Module:2 MOS Power Amplifiers B, Class AB Pus Module:3 MOS Introduction to C Differential Pair, Amplifier with action Module:4 Ope 	and analyze different waveform generator circuits us the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers C biasing, AC coupling and small-signal analysis of amplifie C amplifier, the three frequency bands, Unity gain f ultistage amplifiers. MOSFET Circuits: DC biasing, AC cou- of amplifiers, Frequency response of a CS amplifier, Unity ce, Multistage amplifiers. SFET Power Amplifiers s, Power Transistors, Classes of Amplifiers, Class A Power h-Pull Complementary Output Stages. SFET Active Biasing and Differential Amplifiers Current Mirror – Basic, Wilson and Cascode Current Mirror, Large Signal and Small Signal Analysis of Differential Amplifiers five load. and Amplifier Characteristics and Applications	sing time fiers, reque pling gain Ampli Ampli	ope r, ar 9 Fre ncy anc frec fiers 6 E E Diff	ration nd da hour quer , Mil I sma quen i hou s, Cla i hou T Ba erent hou	na ata s icy ilei all- cy isio tia rs
 Design a amplifiers Analyze for converter Analyze for converter Analyze for converter Module:1 DC a BJT Circuits: DC a BJT Circuits: DC aspacitance, Mu signal analysis of Miller Capacitance Module:2 MOS Power Amplifiers B, Class AB Pus Module:3 MOS Introduction to C Differential Pair, Amplifier with action Module:4 Ope 	and analyze different waveform generator circuits us the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers C biasing, AC coupling and small-signal analysis of amplifier C biasing, AC coupling and small-signal analysis of amplifier, unity gain f and billistage amplifiers. MOSFET Circuits: DC biasing, AC coupling amplifiers, Frequency response of a CS amplifier, Unity ce, Multistage amplifiers. SFET Power Amplifiers a, Power Transistors, Classes of Amplifiers, Class A Power h-Pull Complementary Output Stages. SFET Active Biasing and Differential Amplifiers current Mirror – Basic, Wilson and Cascode Current Mirror, Large Signal and Small Signal Analysis of Differential Amplifiers plifier, Ideal and Nonideal characteristics of OP-AMF	sing time fiers, reque pling gain gain MOS olifier,	ope r, ar 9 I Fre ncy anc frec fiers 6 6 FE ⁻ Diff 7 2 a	hour quer quer J sma quen L hou S, Cla S hou T Ba erent hou nd /	na ata s icy lei sic tia rs
 5. Design a amplifiers amplifiers 6. Analyze a converter Module:1 DC a BJT Circuits: DC response of a Capacitance, Musignal analysis of Miller Capacitance Module:2 MOS Power Amplifiers B, Class AB Pus Module:3 MOS Introduction to C Differential Pair, Amplifier with action to C Differential Pair, Amplifier with actional am characteristics - 	and analyze different waveform generator circuits us the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers C biasing, AC coupling and small-signal analysis of ampli CE amplifier, the three frequency bands, Unity gain f ultistage amplifiers. MOSFET Circuits: DC biasing, AC cou- of amplifiers, Frequency response of a CS amplifier, Unity ce, Multistage amplifiers. SFET Power Amplifiers s, Power Transistors, Classes of Amplifiers, Class A Power h-Pull Complementary Output Stages. SFET Active Biasing and Differential Amplifiers current Mirror – Basic, Wilson and Cascode Current Mirror, Large Signal and Small Signal Analysis of Differential Amplifiers plifier, Ideal and Nonideal characteristics of OP-AMF Operational amplifier with negative feedback: Voltage	sing time fiers, reque pling gain Ampli MOS olifier, 7, DC Serie	ope r, ar 9 Fre ncy and fred fiers 6 6 SFE Diff 7 C a es, '	hour quer quer , Mil l sma quen d hou s, Cla b hou s, Cla b hou nd / Volta	na ata sicy lei all- cy urs sic tia rs
 Design a amplifiers Analyze for converter Analyze for converter Analyze for converter Module:1 DC a BJT Circuits: DC response of a Capacitance, Musignal analysis of Miller Capacitance Miller Capacitance Module:2 MOS Power Amplifiers B, Class AB Pus Module:3 MOS Introduction to C Differential Pair, Amplifier with action Module:4 Ope Operational am characteristics - Shunt feedback 	and analyze different waveform generator circuits us the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers C biasing, AC coupling and small-signal analysis of ampli CE amplifier, the three frequency bands, Unity gain f ultistage amplifiers. MOSFET Circuits: DC biasing, AC cou- of amplifiers, Frequency response of a CS amplifier, Unity ce, Multistage amplifiers. SFET Power Amplifiers s, Power Transistors, Classes of Amplifiers, Class A Power h-Pull Complementary Output Stages. SFET Active Biasing and Differential Amplifiers Current Mirror – Basic, Wilson and Cascode Current Mirror, Large Signal and Small Signal Analysis of Differential Amplifiers plifier, Ideal and Nonideal characteristics of OP-AMF Operational amplifier with negative feedback: Voltage amplifier - Applications of OP-AMP - summing, scaling	sing time fiers, reque pling gain Ampli Ampli MOS olifier, P, DC Serie , and	ope r, ar P Fre frec fiers Off Diff 7 C a es, ` av	nd da hour quer quer duen duen duen duen duen duen duen duen	na ata sicy lei all cy irs sic tia rs
 Design a amplifiers Analyze for converter Analyze for converter Analyze for converter Module:1 DC a BJT Circuits: DC response of a Capacitance, Musignal analysis of Miller Capacitance Miller Capacitance Module:2 MOS Power Amplifiers B, Class AB Pus Module:3 MOS Introduction to C Differential Pair, Amplifier with action Module:4 Ope Operational am characteristics - Shunt feedback 	and analyze different waveform generator circuits us the basic concept of filter circuits, multivibrators using 555 circuits. and AC analysis of amplifiers C biasing, AC coupling and small-signal analysis of ampli CE amplifier, the three frequency bands, Unity gain f ultistage amplifiers. MOSFET Circuits: DC biasing, AC cou- of amplifiers, Frequency response of a CS amplifier, Unity ce, Multistage amplifiers. SFET Power Amplifiers 5, Power Transistors, Classes of Amplifiers, Class A Power h-Pull Complementary Output Stages. SFET Active Biasing and Differential Amplifiers current Mirror – Basic, Wilson and Cascode Current Mirror, Large Signal and Small Signal Analysis of Differential Amplifiers plifier, Ideal and Nonideal characteristics of OP-AMF Operational amplifier with negative feedback: Voltage amplifier - Applications of OP-AMP - summing, scaling nd V/I converter, Integrator, Differentiator, Instrumentatio	sing time fiers, reque pling gain Ampli Ampli MOS olifier, P, DC Serie , and	ope r, ar P Fre frec fiers Off Diff 7 C a es, ` av	nd da hour quer quer duen duen duen duen duen duen duen duen	na ata s ic) lei all cy urs sic tia rs AC

	Comparators and Waveform Generators	6 hours
Barkhause	or and its applications - Schmitt trigger - Free-running, One-shot n Criterion - Sinewave generators - Phase-shift and Wein-brid iangular and Saw-tooth wave function generators.	
	Active filters and Data Converters	6 hours
pass filter	ifications: First and second order Low-pass and High pass filter Notch filter. Sample-and-hold circuits, DAC characteristics, I A/D characteristics, A/D conversion techniques.	
Module:7	Special Function ICs	5 hours
	er, Astable and Monostable operations, and applications. IC volt	
Module:8	Contemporary issues	2 hours
	Total Lecture	45 hours
		45 110015
Textbook(s)	
1. Adel	S. Sedra, Kenneth C. Smith and Arun N. Chandorkar, Microeler ry and Applications, 2014, 7 th Edition, Oxford University Press, New	ctronic Circuits:
	y and Applications, 2014, 7 Edition, Oxford University Fress, New	
Reference		
Reference		w York.
Reference1.J.J.Interr	Books . Roy Choudhury, Linear Integrated Circuits, 2018, 5 th Edinational Publishers, New Delhi. Id A Neamen, Microelectronics: Circuit Analysis and Design, 2010	w York. ition, New-Age
Reference1.J. DInterr2.DonaGraw	Books . Roy Choudhury, Linear Integrated Circuits, 2018, 5 th Edinational Publishers, New Delhi. Id A Neamen, Microelectronics: Circuit Analysis and Design, 2010 -Hill.	w York. ition, New-Age , 4 th Edition, Mc
Reference1.J. DInterr2.DonaGraw3.P. Ma4.R. L.	Books . Roy Choudhury, Linear Integrated Circuits, 2018, 5 th Edinational Publishers, New Delhi. Id A Neamen, Microelectronics: Circuit Analysis and Design, 2010	w York. ition, New-Age , 4 th Edition, Mc Graw-Hill.
Reference1.J. DInterr2.DonaGraw3.P. Ma4.R. L.Edition	Books Roy Choudhury, Linear Integrated Circuits, 2018, 5 th Edinational Publishers, New Delhi. Id A Neamen, Microelectronics: Circuit Analysis and Design, 2010 -Hill. alvino, D. J. Bates, Electronic Principles, 2017, 7 th Edition, Tata Mc Boylestad and L. Nashelsky, Electronic Devices and Circuit The on, Pearson Education. Evaluation: Continuous Assessment Test, Digital Assignment, 0	w York. ition, New-Age , 4 th Edition, Mc Graw-Hill. eory, 2015, 11 th
Reference1.J. DInterr2.DonaGraw3.P. Ma4.R. L.EditionMode of BAssessment	Books Roy Choudhury, Linear Integrated Circuits, 2018, 5 th Edinational Publishers, New Delhi. Id A Neamen, Microelectronics: Circuit Analysis and Design, 2010 -Hill. alvino, D. J. Bates, Electronic Principles, 2017, 7 th Edition, Tata Mc Boylestad and L. Nashelsky, Electronic Devices and Circuit The on, Pearson Education. Evaluation: Continuous Assessment Test, Digital Assignment, 0	w York. ition, New-Age , 4 th Edition, Mc Graw-Hill. eory, 2015, 11 th

Cou	Irse Code		Course 1	Title			L	Т	Ρ	С	
BEC	CE206P	A	nalog Circu	uits Lab			0	0	2	1	
Pre	-requisite	BECE201L				Sy	llab	us \	/ersi	on	
								1.0			
Cou	irse Objectiv	/e									
		knowledge gained in	the theory	course a	and get hands-	on e	хре	rieno	ce of	the	
	topics.										
0	0.4										
	Irse Outcom	ie course the student w	ill be able t								
		nd analyse the freque			polifiers and dif	foror	tial	omr	lifior	·c	
		e the efficiency of diff					illai	amp	лпе	э.	
		nd analyse the wavef									
	er Beergina		enn genera								
Indi	cative Expe	riments									
1.		ingle-stage and multi			ng BJT and to			4 hc	ours		
		frequency response of									
2.	Ų Ų	ingle-stage and multi	v .		Ŷ		4 hours				
		yse its frequency res									
3.	Ų Ų	Power Amplifier and	estimation	of its po	wer conversior	ו ו		2 hc	ours		
4	efficiency				- 4			4 1			
4.		lifferential amplifier us						4 nc	ours		
5.		also perform the free losed-loop amplifiers						2 h	ours		
5.		ation to determine vo		mp anu	penonn			2 110	Juis		
6.		ircuits using op-amp		e the DC	and AC			4 hc	ours		
0.	characterist	.							Juio		
7.	Design of Ir	f Instrumentation amplifier for the given specifications.						2 hc	ours		
8.		Comparator and Schmitt trigger circuits using Op-amp.						4 hc	ours		
9.		aveform generators and filters using op-amp					2 hc	ours			
10.	Design of c	ircuits using IC 555 ti	mer for diffe	erent app	olications.			2 hc	ours		
					aboratory Ho			30 h	nour	S	
Mod	le of Assessr	ment: Continuous Ass	sessment a	nd Final	Assessment T	est					
Rec	ommended b	by Board of Studies	14-05-202	22							
	pproved by Academic Council No. 66 Date 16-06-2022										

Course Code	Course Title		L	T	Ρ	С
BECE207L	Random Processes	0.4	2	1	0	3
Pre-requisite	BECE202L	Syi	labu	<u>is vo</u> .0	ers	on
Course Objectiv			1.	.0		
1. To familian 2. To enable 3. To make t	rize the students with two and multi-random variable the students process the random signals in time and the students understand the noise concepts and designe Signal to Noise Ratio (SNR).	frequer				
Course Outcome						
 Perform tr Interpret tl correlation 	he probability density functions for multiple random va ansformation on multiple random variables and compl ne random processes in terms of stationarity, statistica	ex rand	lom			
	ne effect of random signals on LTI systems output bot	h in the	time	e an	d	
	Optimum linear systems for extracting signals in the	presen	ce o	f no	ise.	
Module:1 Cont	nuous and Discrete Multiple Random Variables			9	hou	ILE
Distribution and I Random Variable Module:2 Oper Joint Moments for	Density and its Properties-Joint Probability Mass Fu Density-Statistical Independence –Distribution and D s – Central Limit Theorem. ations on Multiple Random Variables or continuous and discrete random variables – Join	ensity	of F	unc 7	tion hou ents	of I rs s –
	tics Function – Jointly Gaussian Random Variables Variables – Linear Transformation of Gaussian Variables.					
Module:3 Rand	om Processes – Temporal Characteristics			7	hοι	ire
Random Process Ergodic Random Functions, Cova	s: Classifications. Stationarity and Independence. process. Characterizing a Random Process: Th riance Functions, and their Properties-Different p - Poisson Random Process, Weiner Process, and	e Mea process	n, C ses:	age Corre Ga	es a elat uss	and ion ian
Module:4 Rand	om Processes – Spectral Characteristics			7	hοι	ırs
Power Density S between Correlat	pectrum and its Properties-Cross PSD and its pro on and Power Spectrum- Power Spectral density of s and Sequences. Power Spectrum of Complex Proce	a WSS		elati	ons	hip
Module:5 Linea	r Systems with Random Inputs			5	hοι	ırs
Linear system F random inputs. R Random Signal-S	Fundamentals-Linear systems with continuous-Time andom Signal Response of Linear Systems-Product Spectral Characteristic of System Response. Respor and sigmoid detectors to Gaussian signals.	Device	resp	oons	se te	οа
	e and Modelling of Noise Sources				hοι	
Noise Definitions-	White noise and colored noise. System Evaluation u	ising R	ando	n mc	nois	e -

Spectral Characteristic of System Response for Noise-Noise Bandwidth – Bandpass – Band limited - Narrow Band Processes.

Resistive Noise Sources - Arbitrary Noise Sources - Effective Noise Sources-Noise Temperature-Noise Figure-Incremental Modelling of Noisy Networks- Modelling of Practical Noisy Networks.

Module:7 Optimum Linear Systems 5 hours Signal to Noise Ratio – Mean Square Error- Optimization by Parameter Selection- Matched Filter for Colored Noise- Matched Filter for White Noise-Practical Applications.

Module:8 Contemporary Issues

Total Lecture hours:

45 hours

2 hours

Text Book(s)

P.Z. Peebles, Probability, Random Variables, and Random Signal Principles, 2017,	
4 th edition, McGraw Hill, New Delhi, India.	

Reference Books

- Papoulis and S.U. Pillai, Probability, Random variables and stochastic processes, 2017, 1. 4th edition, McGraw Hill, New Delhi, India.
- 2. Hwei Hsu, Probability, Random variables, Random Processes, 2017, Schaum's outline series, McGraw Hill, New Delhi, India. . . . N 4 1 0 1

Mode of Evaluation: Continuous As	ssessment lest, Digital Assignment, Quiz and Final
Assessment Test	
Recommended by Board of Studies	28-07-2022

Approved by Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title	
BECE301L	Digital Signal Processing	3 0 0 3
Pre-requisite		yllabus version
•		1.0
Course Objectiv	es	
1. To summa	arize and analyze the concepts of signals, systems in tin	ne and frequency
	th the corresponding transformations.	
	te the design concepts of analog, digital IIR, FIR filters.	
	iverse structures for realizing digital filters.	
4. To infuse	the novice concepts of Multirate digital signal processing.	
<u> </u>		
Course Outcome Students will be a		
	nd analyse Signals & Systems along with their time and f	roquonev domain
transforma		
	ourier transform computations using swift algorithms.	
	arious analog filter design techniques and their digitization	า.
	R and IIR digital filters.	
	gital filters using various system interconnections.	
6. Design an	d formulate Multirate systems.	
	rete Signals, Systems and frequency analysis	6 hours
	te-Time Signals & Systems and frequency analysis - Z	
	ity analysis, Frequency domain sampling - Sampling r	
Aperiodic correlat	tion estimation - Cepstrum processing - Band limited discre	ete time signais.
Module:2 Disc	rete Fourier Transform, Properties and its	6 hours
	ications	0 110013
Dri - Properties	- Linear filtering methods - Frequency analysis of signals	using DFT - FFT
	 Linear filtering methods - Frequency analysis of signals 2 FFT - Sparse FFT - Practical applications. 	using DFT - FFT
		using DFT - FFT
Algorithm - Radix Module:3 Desig	-2 FFT - Sparse FFT - Practical applications. gn of Analog Filters	6 hours
Algorithm - Radix Module:3 Design Design technique	-2 FFT - Sparse FFT - Practical applications. gn of Analog Filters s for analog filter - Butterworth and Chebyshev approxima	6 hours
Algorithm - Radix Module:3 Design Design technique	-2 FFT - Sparse FFT - Practical applications. gn of Analog Filters	6 hours
Algorithm - Radix Module:3 Design technique transformation, P	-2 FFT - Sparse FFT - Practical applications. gn of Analog Filters s for analog filter - Butterworth and Chebyshev approxima roperties - Constant group delay and zero phase filters.	6 hours tions - Frequency
Algorithm - Radix Module:3 Design Design technique transformation, P Module:4 Digit	-2 FFT - Sparse FFT - Practical applications. gn of Analog Filters s for analog filter - Butterworth and Chebyshev approxima roperties - Constant group delay and zero phase filters. al transformation of IIR filters	6 hours tions - Frequency 5 hours
Algorithm - Radix Module:3 Design technique transformation, P Module:4 Digit IIR filter design:	-2 FFT - Sparse FFT - Practical applications. gn of Analog Filters s for analog filter - Butterworth and Chebyshev approxima roperties - Constant group delay and zero phase filters.	6 hours tions - Frequency 5 hours
Algorithm - Radix Module:3 Design Design technique transformation, P Module:4 Digit	-2 FFT - Sparse FFT - Practical applications. gn of Analog Filters s for analog filter - Butterworth and Chebyshev approxima roperties - Constant group delay and zero phase filters. al transformation of IIR filters	6 hours tions - Frequency 5 hours
Algorithm - Radix Module:3 Design technique transformation, P Module:4 Digit IIR filter design: Digital filters	-2 FFT - Sparse FFT - Practical applications. gn of Analog Filters s for analog filter - Butterworth and Chebyshev approxima roperties - Constant group delay and zero phase filters. al transformation of IIR filters Bilinear transformation, Impulse Invariance - Spectral	6 hours tions - Frequency 5 hours transformation of
Algorithm - Radix Module:3 Design technique transformation, P Module:4 Digit IIR filter design: Digital filters Module:5 Design	-2 FFT - Sparse FFT - Practical applications. gn of Analog Filters s for analog filter - Butterworth and Chebyshev approxima roperties - Constant group delay and zero phase filters. al transformation of IIR filters Bilinear transformation, Impulse Invariance - Spectral gn of FIR filters	6 hours tions - Frequency 5 hours transformation of 5 hours
Algorithm - RadixModule:3DesignDesign technique transformation, PModule:4DigitIIR filter design: Digital filtersModule:5DesignFIR Filter Design	-2 FFT - Sparse FFT - Practical applications. gn of Analog Filters s for analog filter - Butterworth and Chebyshev approxima roperties - Constant group delay and zero phase filters. al transformation of IIR filters Bilinear transformation, Impulse Invariance - Spectral gn of FIR filters n: Design characteristics of FIR filters with linear-pha	6 hours tions - Frequency 5 hours transformation of 5 hours ase – Frequency
Algorithm - Radix Module:3 Design technique transformation, P Module:4 Digit IIR filter design: Digital filters Module:5 Desig FIR Filter Desig response of linea	-2 FFT - Sparse FFT - Practical applications. gn of Analog Filters s for analog filter - Butterworth and Chebyshev approxima roperties - Constant group delay and zero phase filters. al transformation of IIR filters Bilinear transformation, Impulse Invariance - Spectral gn of FIR filters	6 hours tions - Frequency 5 hours transformation of 5 hours ase – Frequency wing techniques:
Algorithm - Radix Module:3 Design Design technique transformation, P Module:4 Digit IIR filter design: Digital filters Module:5 Design FIR Filter Design response of linear Rectangular, Bart Digital	-2 FFT - Sparse FFT - Practical applications. gn of Analog Filters s for analog filter - Butterworth and Chebyshev approxima roperties - Constant group delay and zero phase filters. al transformation of IIR filters Bilinear transformation, Impulse Invariance - Spectral gn of FIR filters n: Design characteristics of FIR filters with linear-phase ar phase FIR filters – Design of FIR filters using windo at the there is a phase filters of the there is a phase phase filters of there is a phase filters of there is a phase fil	6 hours tions - Frequency 5 hours transformation of 5 hours ase – Frequency wing techniques: , Group delay
Algorithm - Radix Module:3 Design Design technique transformation, P Module:4 Digit IIR filter design: Digit Digital filters IIR Module:5 Design FIR Filter Design response of linear Rectangular, Bart Module:6 Module:6 Real	-2 FFT - Sparse FFT - Practical applications. gn of Analog Filters s for analog filter - Butterworth and Chebyshev approxima roperties - Constant group delay and zero phase filters. al transformation of IIR filters Bilinear transformation, Impulse Invariance - Spectral gn of FIR filters In: Design characteristics of FIR filters with linear-pha ar phase FIR filters – Design of FIR filters using windo dett Hamming, Hanning, Blackmann, Kaiser - Phase delay ization structures for Discrete-Time Systems	6 hours tions - Frequency 5 hours transformation of 5 hours ase – Frequency wing techniques: , Group delay 7 hours
Algorithm - Radix Module:3 Design Design technique transformation, P Module:4 Digit IIR filter design: Digital filters Module:5 Design FIR Filter Design response of linear Rectangular, Bart Module:6 Module:6 Real	-2 FFT - Sparse FFT - Practical applications. gn of Analog Filters s for analog filter - Butterworth and Chebyshev approxima roperties - Constant group delay and zero phase filters. al transformation of IIR filters Bilinear transformation, Impulse Invariance - Spectral gn of FIR filters in: Design characteristics of FIR filters with linear-phase ar phase FIR filters – Design of FIR filters using windo idett Hamming, Hanning, Blackmann, Kaiser - Phase delay ization structures for Discrete-Time Systems Parallel, Lattice and Lattice - Ladder Structures: All pass	6 hours tions - Frequency 5 hours transformation of 5 hours ase – Frequency wing techniques: , Group delay 7 hours
Algorithm - Radix Module:3 Design Design technique transformation, P Module:4 Digit IIR filter design: Digital filters Module:5 Design FIR Filter Design response of linear Rectangular, Bart Module:6 Module:6 Real	-2 FFT - Sparse FFT - Practical applications. gn of Analog Filters s for analog filter - Butterworth and Chebyshev approxima roperties - Constant group delay and zero phase filters. al transformation of IIR filters Bilinear transformation, Impulse Invariance - Spectral gn of FIR filters In: Design characteristics of FIR filters with linear-pha ar phase FIR filters – Design of FIR filters using windo tlett Hamming, Hanning, Blackmann, Kaiser - Phase delay ization structures for Discrete-Time Systems	6 hours tions - Frequency 5 hours transformation of 5 hours ase – Frequency wing techniques: , Group delay 7 hours
Algorithm - Radix Module:3 Design Design technique transformation, P Module:4 Digit IIR filter design: Digital filters Module:5 Design FIR Filter Design response of linear Rectangular, Bart Module:6 Real Direct, Cascade, cascaded structure	-2 FFT - Sparse FFT - Practical applications. gn of Analog Filters s for analog filter - Butterworth and Chebyshev approxima roperties - Constant group delay and zero phase filters. al transformation of IIR filters Bilinear transformation, Impulse Invariance - Spectral gn of FIR filters n: Design characteristics of FIR filters with linear-phase rephase FIR filters – Design of FIR filters using windo at the the the the the the the the the th	6 hours tions - Frequency 5 hours transformation of 5 hours ase – Frequency wing techniques: , Group delay 7 hours filter - IIR tapped-
Algorithm - Radix Module:3 Design Design technique transformation, P Module:4 Digit IIR filter design: Digit Digital filters Design Module:5 Design FIR Filter Design Design response of linear Rectangular, Bard Module:6 Real Direct, Cascade, cascaded structure Module:7	-2 FFT - Sparse FFT - Practical applications. gn of Analog Filters s for analog filter - Butterworth and Chebyshev approxima roperties - Constant group delay and zero phase filters. al transformation of IIR filters Bilinear transformation, Impulse Invariance - Spectral gn of FIR filters n: Design characteristics of FIR filters with linear-phase rephase FIR filters – Design of FIR filters using windo at the therming, Hanning, Blackmann, Kaiser - Phase delay ization structures for Discrete-Time Systems Parallel, Lattice and Lattice - Ladder Structures: All pass re. Parallel all pass realization of IIR systems. irate digital signal processing	6 hours tions - Frequency 5 hours transformation of 5 hours ase – Frequency wing techniques: , Group delay 7 hours filter - IIR tapped- 8 hours
Algorithm - Radix Module:3 Design Design technique transformation, P Module:4 Digit IIR filter design: Digital filters Module:5 Design FIR Filter Design response of linear Rectangular, Bart Module:6 Module:7 Multi Introduction-Impleted	-2 FFT - Sparse FFT - Practical applications. gn of Analog Filters s for analog filter - Butterworth and Chebyshev approxima roperties - Constant group delay and zero phase filters. al transformation of IIR filters Bilinear transformation, Impulse Invariance - Spectral gn of FIR filters in: Design characteristics of FIR filters with linear-pha ar phase FIR filters – Design of FIR filters using windo theta Hamming, Hanning, Blackmann, Kaiser - Phase delay ization structures for Discrete-Time Systems Parallel, Lattice and Lattice - Ladder Structures: All pass re. Parallel all pass realization of IIR systems. irate digital signal processing ementation of Sampling Rate Conversion: Polyphase F	6 hours tions - Frequency 5 hours transformation of 5 hours ase – Frequency wing techniques: , Group delay 7 hours filter - IIR tapped- 8 hours ilter Structures -
Algorithm - Radix Module:3 Design Design technique transformation, P Module:4 Digit IIR filter design: Digital filters Module:5 Design FIR Filter Design response of linear Rectangular, Bart Direct, Cascade, cascaded structure Module:7 Multi Introduction-Imple Interchange of	-2 FFT - Sparse FFT - Practical applications. gn of Analog Filters s for analog filter - Butterworth and Chebyshev approxima roperties - Constant group delay and zero phase filters. al transformation of IIR filters Bilinear transformation, Impulse Invariance - Spectral gn of FIR filters n: Design characteristics of FIR filters with linear-phase ar phase FIR filters – Design of FIR filters using windo tett Hamming, Hanning, Blackmann, Kaiser - Phase delay ization structures for Discrete-Time Systems Parallel, Lattice and Lattice - Ladder Structures: All pass re. Parallel all pass realization of IIR systems. irate digital signal processing ementation of Sampling Rate Conversion: Polyphase F Filters and Downsamplers / Upsamplers - Polyphase	6 hours tions - Frequency 5 hours transformation of 5 hours ase – Frequency wing techniques: , Group delay 7 hours filter - IIR tapped- 8 hours ilter Structures - e Structures for
Algorithm - Radix Module:3 Design Design technique transformation, P Module:4 Digit IIR filter design: Digital filters Module:5 Design FIR Filter Design response of linear Rectangular, Bart Module:6 Module:7 Multi Introduction-Imple Interchange of Decimation and Module:7	-2 FFT - Sparse FFT - Practical applications. gn of Analog Filters s for analog filter - Butterworth and Chebyshev approxima roperties - Constant group delay and zero phase filters. al transformation of IIR filters Bilinear transformation, Impulse Invariance - Spectral gn of FIR filters in: Design characteristics of FIR filters with linear-pha ar phase FIR filters – Design of FIR filters using windo theta Hamming, Hanning, Blackmann, Kaiser - Phase delay ization structures for Discrete-Time Systems Parallel, Lattice and Lattice - Ladder Structures: All pass re. Parallel all pass realization of IIR systems. irate digital signal processing ementation of Sampling Rate Conversion: Polyphase F	6 hours tions - Frequency 5 hours transformation of 5 hours ase – Frequency wing techniques: , Group delay 7 hours filter - IIR tapped- 8 hours ilter Structures - e Structures for

Mod	ule:8 Contemporary issues	2 hours
	Total Lecture hours:	45 hours
Tex	Book(s)	
1.	John G. Proakis, Dimitris G Manolakis, Digital Signal Processir	ig: Principles,
	Algorithms and Applications, 2022, 5 th Edition, Pearson, USA	•
Ref	erence Books	
1.	A textbook of Digital Signal Processing, R.S.Kaler, M.Kulkarni, U	mesh Gupta, 1 st
	edition, 2019, Dream tech Press, Wiley, India	
2.	James McClellan, Ronal Schaeffer, Mark Yoder, Digital Signal Proce	ssing first, 2016,
	2 nd edition, Pearson, USA	
3.	Lizhe Tan, Jean Jiang, Digital Signal Processing: Fundamentals and	applications, 3 rd
	edition, 2018, Academic Press, USA	
4.	S.K.Mitra, Digital Signal Processing, 2013, 4 th edition, TMH, New Delhi	, India
Mod	e of Evaluation: Continuous Assessment Test, Digital Assignment,	Quiz and Final
Ass	essment Test	
Rec	ommended by Board of Studies 14-05-2022	
Арр	roved by Academic Council No. 66 Date 16-06-2022	

_		-						
		Course Title			- '	-	P	С
		gnal Processing Lab) (0	2	1
Pre-requisite	BECE202L			Sylla	bus	s ve	rsi	on
					1.	0		
Course Objectiv	'es							
1. To learn t	he usage of appropriate	tools for realizin	g signal proces	sing mo	dul	es.		
Course Outcom	e							
Students will be	able to							
1. Generate	the various elementary s	signals using the	e DSP processo	r.				
	t the sampling and recor	• •	•					
	nd implement the vario			d siana	l pr	oce	ess	ina
concepts.	-							
Indicative Expe								
1. Introduction	to TMS320C6748 proce	ssor and code o	composer studio	IDE.	2	2 hc	bur	S
2. Generation	of elementary signals	and illustrati	on of simple	signal	6	6 hc	bur	s
processing	operations on TMS320C6	6748 processor	_	_				
3. Sampling a	nd Reconstruction of CT	signals, DTFT a	inalysis		6	i Ho	bur	S
4. Biomedical	[/] Speech / Audio Signal <i>A</i>	Analysis			6	6 Ho	our	S
5. Computatio	5. Computational analysis using FFT				3	B Ho	bur	S
6. Design of II	6. Design of IIR filter					6 Ho	bur	S
7. Design of F	R filter using windowing	techniques			4	Hc	bur	S
		То	tal Laboratory	Hours	3	0 H	ou	rs
Mode of Assessr	nent: Continuous Assess	ment and Final	Assessment Te	st				
Recommended b	y Board of Studies	14-05-2022						
	demic Council	No. 66 Dat	e 16-06-202					

BECE302L Control Systems 2 1 0 3 Pre-requisite NIL Syllabus version Course Objectives 1.0 1. To study the use of transfer function model for the analysis of physical systems and to introduce the components of control system. 1.0 2. To provide adequate knowledge in the time response of systems and steady state error analysis in frequency domain. 3. To introduce the design of controllers and compensators for the stability analysis. 4. To introduce state variable representation of physical systems and study the stability analysis in state space approach. Students will be able to 1. Differentiate between open-loop and closed-loop control systems and obtain the transfer function from the mathematical modeling of physical systems. Determine transient and steady state responses of the system with first and second order and also to analyze its error coefficients. 3. Characterize the system stability using R-H criteria and root locus techniques. A nalyze the frequency domain response of the control system. 5. Design the controllers and compensators to estimate the system stability. A nalyze the system in state space model through the concept of controllability and observability. Module:1 Control System, Examples of control systems. S hours Basic components of a control system, Applications, Open-loop control system and closed-loop control system, Examples of control systems. <th>Course Code</th> <th>Course Title</th> <th>L</th> <th>Т</th> <th>Р</th> <th>С</th>	Course Code	Course Title	L	Т	Р	С
Pre-requisite NIL Syllabus version Course Objectives 1.0 Course Objectives 1.0 1. To study the use of transfer function model for the analysis of physical systems and to introduce the components of control system. 2. 2. To provide adequate knowledge in the time response of systems and steady state error analysis along with the understanding of closed-loop and openloop system analysis in frequency domain. 3. 3. To introduce the design of controllers and compensators for the stability analysis. 4. To introduce state variable representation of physical systems and study the stability analysis in state space approach. Course Outcomes Students will be able to 1. 1. Differentiate between open-loop and closed-loop control systems and obtain the transfer function from the mathematical modeling of physical systems. 2. 2. Determine transient and steady state responses of the system with first and second order and also to analyze its error coefficients. 3. 3. Characterize the system stability using R-H criteria and root locus techniques. 4. Analyze the frequency domain response of the control systems. 5. Design the controllers and compensators to estimate the system stability. 6. Analyze the system in state space model through the concept of control ability and observability. Module:1 Control Systems. 3 hours <td< th=""><th></th><th></th><th>2</th><th>1</th><th></th><th></th></td<>			2	1		
1. To study the use of transfer function model for the analysis of physical systems and to introduce the components of control system. 2. To provide adequate knowledge in the time response of systems and steady state error analysis along with the understanding of closed-loop and openloop system analysis in frequency domain. 3. To introduce the design of controllers and compensators for the stability analysis. 4. To introduce state variable representation of physical systems and study the stability analysis in state space approach. Course Outcomes Students will be able to 1. Differentiate between open-loop and closed-loop control systems and obtain the transfer function from the mathematical modeling of physical systems. 2. Determine transient and steady state responses of the system with first and second order and also to analyze its error coefficients. 3. Characterize the system stability using R-H criteria and root locus techniques. 4. Analyze the frequency domain response of the control system stability. 6. Analyze the system in state space model through the concept of controllability and observability. Module:1 Control Systems 3 hours Basic components of a control system, Applications, Open-loop control system and closed-loop control system, intear and non-linear control systems. Module:2 Module:2 Mathematical Modeling of Physical Systems 8 hours Difference and differentital equations for LTI SISO and MIMO system	Pre-requisite					
1. To study the use of transfer function model for the analysis of physical systems and to introduce the components of control system. 2. To provide adequate knowledge in the time response of systems and steady state error analysis along with the understanding of closed-loop and openloop system analysis in frequency domain. 3. To introduce the design of controllers and compensators for the stability analysis. 4. To introduce state variable representation of physical systems and study the stability analysis in state space approach. Course Outcomes Students will be able to 1. Differentiate between open-loop and closed-loop control systems and obtain the transfer function from the mathematical modeling of physical systems. 2. Determine transient and steady state responses of the system with first and second order and also to analyze its error coefficients. 3. Characterize the system stability using R-H criteria and root locus techniques. 4. Analyze the frequency domain response of the control systems. 5. Design the control lers and compensators to estimate the system stability. 6. Analyze the system, in state space model through the concept of controllability and observability. Module:1 Control Systems 9 a hours Basic components of a control system, Applications, Open-loop control system and closed-loop control system, Linear and non-linear control systems. Difference and differential equations for LTI SISO and MIMO systems, Mathematical modelin						
 systems and to introduce the components of control system. 2. To provide adequate knowledge in the time response of systems and steady state error analysis along with the understanding of closed-loop and open-loop system analysis in frequency domain. 3. To introduce the design of controllers and compensators for the stability analysis. 4. To introduce state variable representation of physical systems and study the stability analysis in state space approach. Course Outcomes Students will be able to Differentiate between open-loop and closed-loop control systems and obtain the transfer function from the mathematical modeling of physical systems. Determine transient and steady state responses of the system with first and second order and also to analyze its error coefficients. Characterize the system stability using R-H criteria and root locus techniques. Analyze the frequency domain response of the control systems. Design the controllers and compensators to estimate the system stability. Analyze the system is state space model through the concept of controllability and observability. Module:1 Control Systems Shours Basic components of a control system, Applications, Open-loop control system and closed-loop control system, Linear and non-linear control systems. Module:2 Mathematical Modeling of Physical Systems A hours Difference and differential equations for LTI SISO and MIMO systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different systems, Transfer function of linear systems, Steady state error, State error coefficients, Generalized error coefficients. Module:3 Time Domain Response Chours Stability - concept and steady state responses, Time domain specifications, Types of test inputs, Response of frest order and second order systems.<td>Course Objectiv</td><th>es</th><td></td><td></td><th></th><td></td>	Course Objectiv	es				
 2. To provide adequate knowledge in the time response of systems and steady state error analysis along with the understanding of closed-loop and openloop system analysis in frequency domain. 3. To introduce the design of controllers and compensators for the stability analysis. 4. To introduce state variable representation of physical systems and study the stability analysis in state space approach. Course Outcomes Students will be able to Differentiate between open-loop and closed-loop control systems and obtain the transfer function from the mathematical modeling of physical systems. Determine transient and steady state responses of the system with first and second order and also to analyze its error coefficients. Characterize the system stability using R-H criteria and root locus techniques. Analyze the frequency domain response of the control systems. Design the controllers and compensators to estimate the system stability. Analyze the system in state space model through the concept of controllability and observability. Module:1 Control System, Examples of control systems. Module:2 Mathematical Modeling of Physical Systems. Module:3 To mechanical systems, Equivalence between the elements of different and closed-loop transfer function of linear systems, Open-loop transfer function and closed-loop transfer function of linear systems, Open-loop transfer function and closed-loop transfer function and closed-loop transfer function of physical systems. Module:1 Control System, Examples of control systems. Module:2 Mathematical Modeling of Physical Systems. Quenchanatical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function of linear				of	ohys	ical
state error analysis along with the understanding of closed-loop and open- loop system analysis in frequency domain. 3. To introduce the design of controllers and compensators for the stability analysis. 4. To introduce state variable representation of physical systems and study the stability analysis in state space approach. Course Outcomes Students will be able to 1. Differentiate between open-loop and closed-loop control systems and obtain the transfer function from the mathematical modeling of physical systems. 2. Determine transient and steady state responses of the system with first and second order and also to analyze its error coefficients. 3. Characterize the system stability using R-H criteria and root locus techniques. 4. Analyze the frequency domain response of the control systems. 5. Design the controllers and compensators to estimate the system stability. 6. Analyze the system in state space model through the concept of controllability and observability. Module:1 Control Systems State control system, Examples of control systems. Module:2 Mathematical Modeling of Physical Systems Module:3 Mathematical Modeling of Physical Systems. Module:3 Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function of binear systems. Module:3 Time Domain Response function, Block diagram representation, Block diagram reduction techniques, Signal flow graph using Mason's gain formula. Module:3 Time Domain Response Time domain specifications, Types of fest inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients. Module:4 Characterization of Systems Steady state error, Stability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis.	5					
loop system analysis in frequency domain. 3. To introduce the design of controllers and compensators for the stability analysis. 4. To introduce state variable representation of physical systems and study the stability analysis in state space approach. Course Outcomes Students will be able to 1. Differentiate between open-loop and closed-loop control systems and obtain the transfer function from the mathematical modeling of physical systems. 2. Determine transient and steady state responses of the system with first and second order and also to analyze its error coefficients. 3. Characterize the system stability using R-H criteria and root locus techniques. 4. Analyze the frequency domain response of the control systems. 5. Design the controllers and compensators to estimate the system stability. 6. Analyze the system in state space model through the concept of controllability and observability. Module:1 Control Systems. Module:2 Mathematical Modeling of Physical Systems 8 hours Bhours Differential equations for LTI SISO and MIMO systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function, Block diagram representation, Blo	•					
 3. To introduce the design of controllers and compensators for the stability analysis. 4. To introduce state variable representation of physical systems and study the stability analysis in state space approach. Course Outcomes Students will be able to Differentiate between open-loop and closed-loop control systems and obtain the transfer function from the mathematical modeling of physical systems. Determine transient and steady state responses of the system with first and second order and also to analyze its error coefficients. Characterize the system stability using R-H criteria and root locus techniques. Analyze the frequency domain response of the control systems. Design the controllers and compensators to estimate the system stability. Analyze the system in state space model through the concept of controllability and observability. Analyze the system, Examples of control system. Basic components of a control system, Applications, Open-loop control system and closed-loop control system, Linear and non-linear control systems. Module:1 Mathematical Modeling of Physical Systems Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function, Block diagram representation, Block diagram repre			osed-loo	p an	d op	en-
 analysis. 4. To introduce state variable representation of physical systems and study the stability analysis in state space approach. Course Outcomes Students will be able to Differentiate between open-loop and closed-loop control systems and obtain the transfer function from the mathematical modeling of physical systems. Determine transient and steady state responses of the system with first and second order and also to analyze its error coefficients. Characterize the system stability using R-H criteria and root locus techniques. Analyze the frequency domain response of the control systems. Design the controllers and compensators to estimate the system stability. Analyze the system in state space model through the concept of controllability and observability. Module:1 Control Systems Shours Module:2 Mathematical Modeling of Physical Systems. Module:3 Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function of linear systems, Open-loop transfer function and closed-loop transfer function. Block diagram representation, Bl			toro for	tha	atab	
 4. To introduce state variable representation of physical systems and study the stability analysis in state space approach. Course Outcomes Students will be able to Differentiate between open-loop and closed-loop control systems and obtain the transfer function from the mathematical modeling of physical systems. Determine transient and steady state responses of the system with first and second order and also to analyze its error coefficients. Characterize the system stability using R-H criteria and root locus techniques. Analyze the frequency domain response of the control systems. Design the controllers and compensators to estimate the system stability. Analyze the system in state space model through the concept of controllability and observability. Module:1 Control Systems 3 hours Basic components of a control system, Applications, Open-loop control system and closed-loop control system, Examples of control system (air conditioner, cruise control, phase-locked loop, etc.), Effects of feedback on overall gain, Types of feedback control system, Linear and non-linear control systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function, Block diagram representation, Stern Signal flow graph using Mason's gain formula. Module:3 Time Domain Response for coefficients. Module:3 Time Domain Responses, Time domain specifications, Types of test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized er		ce the design of controllers and compensa	alors for	tne	stap	mity
stability analysis in state space approach. Course Outcomes Students will be able to 1. Differentiate between open-loop and closed-loop control systems and obtain the transfer function from the mathematical modeling of physical systems. 2. Determine transient and steady state responses of the system with first and second order and also to analyze its error coefficients. 3. Characterize the system stability using R-H criteria and root locus techniques. 4. Analyze the frequency domain response of the control systems. 5. Design the controllers and compensators to estimate the system stability. 6. Analyze the system in state space model through the concept of controllability and observability. 6. Analyze the system, Examples of control system (air conditioner, cruise control, phase-locked loop, etc.), Effects of feedback on overall gain, Types of feedback control system, Linear and non-linear control systems. Module:2 Mathematical Modeling of Physical Systems 8 hours Difference and differential equations for LTI SISO and MIMO systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different sof system, Signal flow graph using Mason's gain formula. Module:3 Time Domain Response 6 hours Transient response and steady state responses, Time domain specifications, Types of state response and steady state responses, Time domain specifications, Types of state inputs, Response of first order and second order systems,	-	ce state variable representation of physical sy	/stems a	nd si	tudv	the
Course Outcomes Students will be able to 1. Differentiate between open-loop and closed-loop control systems and obtain the transfer function from the mathematical modeling of physical systems. 2. Determine transient and steady state responses of the system with first and second order and also to analyze its error coefficients. 3. Characterize the system stability using R-H criteria and root locus techniques. 4. Analyze the frequency domain response of the control systems. 5. Design the controllers and compensators to estimate the system stability. 6. Analyze the system in state space model through the concept of controllability and observability. Module:1 Control Systems 3 hours Basic components of a control system, Applications, Open-loop control system and closed-loop control system, Examples of control systems Module:2 Mathematical Modeling of Physical Systems 8 hours Difference and differential equations for LTI SISO and MIMO systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function, Block diagram representation, Block diagram reduction techniques, Signal flow graph using Mason's gain formula. Module:3 Time Domain Response 6 hours Transient response and steady state responses, Time domain specifications, Types of test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Gener				nu s	luuy	uic
Students will be able to 1. Differentiate between open-loop and closed-loop control systems and obtain the transfer function from the mathematical modeling of physical systems. 2. Determine transient and steady state responses of the system with first and second order and also to analyze its error coefficients. 3. Characterize the system stability using R-H criteria and root locus techniques. 4. Analyze the frequency domain response of the control systems. 5. Design the controllers and compensators to estimate the system stability. 6. Analyze the system in state space model through the concept of controllability and observability. Module:1 Control Systems Basic components of a control system, Applications, Open-loop control system and closed-loop control system, Examples of control systems. Module:2 Mathematical Modeling of Physical Systems Bifference and differential equations for LTI SISO and MIMO systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function of linear systems, Open-loop transfer function and closed-loop transfer function of linear systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function of linear systems, Steady state ereor, Static error coefficients. Module:3 Time Domain Response 6 hours						
 Differentiate between open-loop and closed-loop control systems and obtain the transfer function from the mathematical modeling of physical systems. Determine transient and steady state responses of the system with first and second order and also to analyze its error coefficients. Characterize the system stability using R-H criteria and root locus techniques. Analyze the frequency domain response of the control systems. Design the controllers and compensators to estimate the system stability. Analyze the system in state space model through the concept of controllability and observability. Module:1 Control Systems 3 hours Basic components of a control system, Applications, Open-loop control system and closed-loop control system, Examples of control system (air conditioner, cruise control, phase-locked loop, etc.), Effects of feedback on overall gain, Types of feedback control system, Linear and non-linear control systems. Module:2 Mathematical Modeling of Physical Systems 8 hours Difference and differential equations for LTI SISO and MIMO systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function, Block diagram representation, Block diagram reduction techniques, Signal flow graph using Mason's gain formula. Module:3 Time Domain Response 6 hours Transient response and steady state responses, Time domain specifications, Types of test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients. Module:4 Characterization of Systems 5 hours Stability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis.	Course Outcom	es				
 the transfer function from the mathematical modeling of physical systems. Determine transient and steady state responses of the system with first and second order and also to analyze its error coefficients. Characterize the system stability using R-H criteria and root locus techniques. Analyze the frequency domain response of the control systems. Design the controllers and compensators to estimate the system stability. Analyze the system in state space model through the concept of controllability and observability. Module:1 Control Systems 3 hours Basic components of a control system, Applications, Open-loop control system and closed-loop control system, Examples of control system (air conditioner, cruise control, phase-locked loop, etc.), Effects of feedback on overall gain, Types of feedback control system, Linear and non-linear control systems. Module:2 Mathematical Modeling of Physical Systems 8 hours Difference and differential equations for LTI SISO and MIMO systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function, Block diagram representation, State error, Static error coefficients. Module:4 Characterization of Systems 5 hours Static error coefficients, Generalized error coefficients. Module:4 Characterization of Systems (Steros, Order and Type of systems; R-H criteria, Root locus analysis. 						
 Determine transient and steady state responses of the system with first and second order and also to analyze its error coefficients. Characterize the system stability using R-H criteria and root locus techniques. Analyze the frequency domain response of the control systems. Design the controllers and compensators to estimate the system stability. Analyze the system in state space model through the concept of controllability and observability. Module:1 Control Systems 3 hours Basic components of a control system, Applications, Open-loop control system and closed-loop control system, Examples of control system (air conditioner, cruise control, phase-locked loop, etc.), Effects of feedback on overall gain, Types of feedback control system, Linear and non-linear control systems. Module:2 Mathematical Modeling of Physical Systems 8 hours Difference and differential equations for LTI SISO and MIMO systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function, Block diagram reduction techniques, Signal flow graph using Mason's gain formula. Module:3 Time Domain Response 6 hours Transient response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients. Module:4 Characterization of Systems Shours 	1. Differentia	te between open-loop and closed-loop contro	l system	s an	d ob	tain
second order and also to analyze its error coefficients. 3. Characterize the system stability using R-H criteria and root locus techniques. 4. Analyze the frequency domain response of the control systems. 5. Design the controllers and compensators to estimate the system stability. 6. Analyze the system in state space model through the concept of controllability and observability. Module:1 Control Systems 3 hours Basic components of a control system, Applications, Open-loop control system and closed-loop control system, Examples of control system (air conditioner, cruise control, phase-locked loop, etc.), Effects of feedback on overall gain, Types of feedback control system, Linear and non-linear control systems. Module:2 Mathematical Modeling of Physical Systems 8 hours Difference and differential equations for LTI SISO and MIMO systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function, Block diagram representation, Signal flow graph using Mason's gain formula. Module:3 Time Domain Response 6 hours Transient response and steady state responses, Time domain specifications, Types of test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients. 5 hour	the transfe	r function from the mathematical modeling of	physica	l syst	tems	S.
 Characterize the system stability using R-H criteria and root locus techniques. Analyze the frequency domain response of the control systems. Design the controllers and compensators to estimate the system stability. Analyze the system in state space model through the concept of controllability and observability. Module:1 Control Systems 3 hours Basic components of a control system, Applications, Open-loop control system and closed-loop control system, Examples of control system (air conditioner, cruise control, phase-locked loop, etc.), Effects of feedback on overall gain, Types of feedback control system, Linear and non-linear control systems. Module:2 Mathematical Modeling of Physical Systems 8 hours Difference and differential equations for LTI SISO and MIMO systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function, Block diagram representation, Block diagram rep			system v	with 1	first a	and
 Analyze the frequency domain response of the control systems. Design the controllers and compensators to estimate the system stability. Analyze the system in state space model through the concept of controllability and observability. Module:1 Control Systems 3 hours Basic components of a control system, Applications, Open-loop control system and closed-loop control system, Examples of control system (air conditioner, cruise control, phase-locked loop, etc.), Effects of feedback on overall gain, Types of feedback control system, Linear and non-linear control systems. Module:2 Mathematical Modeling of Physical Systems 8 hours Difference and differential equations for LTI SISO and MIMO systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function, Block diagram representation, Block diagram reduction techniques, Signal flow graph using Mason's gain formula. Module:3 Time Domain Response 6 hours Transient response and steady state responses, Time domain specifications, Types of test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients. Module:4 Characterization of Systems Stability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis.						
 5. Design the controllers and compensators to estimate the system stability. 6. Analyze the system in state space model through the concept of controllability and observability. Module:1 Control Systems 3 hours Basic components of a control system, Applications, Open-loop control system and closed-loop control system, Examples of control system (air conditioner, cruise control, phase-locked loop, etc.), Effects of feedback on overall gain, Types of feedback control system, Linear and non-linear control systems. Module:2 Mathematical Modeling of Physical Systems 8 hours Difference and differential equations for LTI SISO and MIMO systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function, Block diagram representation, Block diagram reduction techniques, Signal flow graph using Mason's gain formula. Module:3 Time Domain Response 6 hours Transient response and steady state responses, Time domain specifications, Types of test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients. Module:4 Characterization of Systems 2 hours Stability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis. 					niqu	les.
6. Analyze the system in state space model through the concept of controllability and observability. Module:1 Control Systems 3 hours Basic components of a control system, Applications, Open-loop control system and closed-loop control system, Examples of control system (air conditioner, cruise control, phase-locked loop, etc.), Effects of feedback on overall gain, Types of feedback control system, Linear and non-linear control systems. Module:2 Mathematical Modeling of Physical Systems 8 hours Difference and differential equations for LTI SISO and MIMO systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function, Block diagram representation, Block diagram reduction techniques, Signal flow graph using Mason's gain formula. Module:3 Time Domain Response 6 hours Transient response and steady state responses, Time domain specifications, Types of test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients. 5 hours Stability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis. 5 hours						
and observability. Module:1 Control Systems 3 hours Basic components of a control system, Applications, Open-loop control system and closed-loop control system, Examples of control system (air conditioner, cruise control, phase-locked loop, etc.), Effects of feedback on overall gain, Types of feedback control system, Linear and non-linear control systems. Module:2 Mathematical Modeling of Physical Systems 8 hours Difference and differential equations for LTI SISO and MIMO systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function, Block diagram representation, Block diagram reduction techniques, Signal flow graph using Mason's gain formula. Module:3 Time Domain Response 6 hours Transient response and steady state responses, Time domain specifications, Types of test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients. 5 hours Module:4 Characterization of Systems 5 hours Stability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis. 5 hours						
Module:1Control Systems3 hoursBasic components of a control system, Applications, Open-loop control system and closed-loop control system, Examples of control system (air conditioner, cruise control, phase-locked loop, etc.), Effects of feedback on overall gain, Types of feedback control system, Linear and non-linear control systems.Module:2Mathematical Modeling of Physical Systems8 hoursDifference and differential equations for LTI SISO and MIMO systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function, Block diagram representation, Block diagram reduction techniques, Signal flow graph using Mason's gain formula.Module:3Time Domain Response6 hoursTransient response and steady state responses, Time domain specifications, Types of test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients.5 hoursModule:4Characterization of Systems5 hoursStability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis.5			icept of d	contro	oliap	onity
Basic components of a control system, Applications, Open-loop control system and closed-loop control system, Examples of control system (air conditioner, cruise control, phase-locked loop, etc.), Effects of feedback on overall gain, Types of feedback control system, Linear and non-linear control systems.Module:2Mathematical Modeling of Physical Systems8 hoursDifference and differential equations for LTI SISO and MIMO systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function, Block diagram representation, Block diagram reduction techniques, Signal flow graph using Mason's gain formula.Module:3Time Domain Response6 hoursTransient response and steady state responses, Time domain specifications, Types of test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients.5 hoursModule:4Characterization of Systems5 hoursStability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis.		ability.				
Basic components of a control system, Applications, Open-loop control system and closed-loop control system, Examples of control system (air conditioner, cruise control, phase-locked loop, etc.), Effects of feedback on overall gain, Types of feedback control system, Linear and non-linear control systems.Module:2Mathematical Modeling of Physical Systems8 hoursDifference and differential equations for LTI SISO and MIMO systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function, Block diagram representation, Block diagram reduction techniques, Signal flow graph using Mason's gain formula.Module:3Time Domain Response6 hoursTransient response and steady state responses, Time domain specifications, Types of test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients.5 hoursModule:4Characterization of Systems5 hoursStability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis.	Module:1 Con	trol Systems			3 ho	urs
closed-loopcontrol system, Examples of control system (air conditioner, cruise control, phase-locked loop, etc.), Effects of feedback on overall gain, Types of feedback control system, Linear and non-linear control systems.Module:2Mathematical Modeling of Physical Systems8 hoursDifference and differential equations for LTI SISO and MIMO systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function, Block diagram representation, Block diagram reduction techniques, Signal flow graph using Mason's gain formula.Module:3Time Domain Response6 hoursTransient response and steady state responses, Time domain specifications, Types of test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients.5 hoursModule:4Characterization of Systems5 hoursStability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis.			p contro			
control, phase-locked loop, etc.), Effects of feedback on overall gain, Types ofModule:2Mathematical Modeling of Physical Systems8 hoursDifference and differential equations for LTI SISO and MIMO systems, Mathematicalmodeling of electrical and mechanical systems, Equivalence between the elementsof different types of systems, Transfer function of linear systems, Open-loop transferfunction and closed-loop transfer function, Block diagram representation, BlockModule:3Time Domain Response6 hoursTransient response and steady state responses, Time domain specifications, Typesof test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients.5 hoursModule:4Characterization of Systems5 hoursStability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis.5 hours						
feedback control system, Linear and non-linear control systems.Module:2Mathematical Modeling of Physical SystemsDifference and differential equations for LTI SISO and MIMO systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function, Block diagram representation, Block diagram reduction techniques, Signal flow graph using Mason's gain formula.Module:3Time Domain Response6 hoursTransient response and steady state responses, Time domain specifications, Types of test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients.5 hoursModule:4Characterization of Systems5 hoursStability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis.						
Difference and differential equations for LTI SISO and MIMO systems, Mathematical modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function, Block diagram representation, Block diagram reduction techniques, Signal flow graph using Mason's gain formula.Module:3Time Domain Response6 hoursTransient response and steady state responses, Time domain specifications, Types of test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients.5 hoursModule:4Characterization of Systems5 hoursStability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis.5						
modeling of electrical and mechanical systems, Equivalence between the elements of different types of systems, Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function, Block diagram representation, Block diagram reduction techniques, Signal flow graph using Mason's gain formula.Module:3Time Domain Response6 hoursTransient response and steady state responses, Time domain specifications, Types of test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients.5 hoursModule:4Characterization of Systems5 hoursStability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis.5						
of different types of systems, Transfer function of linear systems, Open-loop transfer function and closed-loop transfer function, Block diagram representation, Block diagram reduction techniques, Signal flow graph using Mason's gain formula. <u>Module:3 Time Domain Response 6 hours</u> Transient response and steady state responses, Time domain specifications, Types of test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients. <u>Module:4 Characterization of Systems 5 hours</u> Stability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis.						
function and closed-loop transfer function, Block diagram representation, Block diagram reduction techniques, Signal flow graph using Mason's gain formula.Module:3Time Domain Response6 hoursTransient response and steady state responses, Time domain specifications, Types of test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients.5 hoursModule:4Characterization of Systems5 hoursStability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis.6 hours						
diagram reduction techniques, Signal flow graph using Mason's gain formula.Module:3Time Domain Response6 hoursTransient response and steady state responses, Time domain specifications, Types of test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients.Module:4Characterization of Systems5 hoursStability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis.						
Module:3Time Domain Response6 hoursTransient response and steady state responses, Time domain specifications, Types of test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients.6 hoursModule:4Characterization of Systems5 hoursStability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis.6 hours						OCK
Transient response and steady state responses, Time domain specifications, Typesof test inputs, Response of first order and second order systems, Steady state error,Static error coefficients, Generalized error coefficients.Module:4Characterization of Systems5 hoursStability – concept and definition, Poles, Zeros, Order and Type of systems; R-Hcriteria, Root locus analysis.			s gain to			
of test inputs, Response of first order and second order systems, Steady state error, Static error coefficients, Generalized error coefficients. Module:4 Characterization of Systems 5 hours Stability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis.			cnocifica			
Static error coefficients, Generalized error coefficients.Module:4Characterization of Systems5 hoursStability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis.						
Module:4Characterization of Systems5 hoursStability – concept and definition, Poles, Zeros, Order and Type of systems; R-Hcriteria, Root locus analysis.	-	•	s, olcau	y Sla		IOI,
Stability – concept and definition, Poles, Zeros, Order and Type of systems; R-H criteria, Root locus analysis.					5 ho	urs
criteria, Root locus analysis.			vpe of s			
			763 01 0	,	, 1	
Module:5 Frequency Domain Response 7 hours		quency Domain Response		•	7 ho	urs
Frequency response – Performance specifications in the frequency domain, Phase			iency do			
margin and gain margin, Bode plot, Polar plot and Nyquist plot, Stability analysis in						
frequency domain.				y ~		

Modu	le:6	Controllers and Compe	nsators l	Design		7 hours			
Controllers – P, PI, PID, Realization of basic compensators, Cascade compensation									
in time domain and frequency domain, Feedback compensation, Design of lag, lead,									
lag-lead series compensators.									
Modu		State Space Analysis				7 hours			
		stem modeling in state spa							
		nical form, Solutions of sta	•						
		model to transfer function							
	•	s: Concept of eigenvalue		•					
		/-Hamilton theorem, Contr	ollability a	and obs	ervabili	•			
Modu	le:8	Contemporary Issues				2 hours			
			Total Le	ecture h	ours:	45 hours			
		_							
	Book(7				- 41			
1.		an S. Nise, Control Syste	•	neering	, 2019,	8 th Edition, John			
		& Sons, New Jersey, USA	4						
	ence I								
1.		Golnaraghi and Benjamir			atic Co	ntrol Systems, 2017,			
	10 th Edition, McGraw-Hill Education, India.								
2.		.J. Nagarth and M. Gopal, Control Systems Engineering, 2018, 6 th Edition,							
New Age International Pvt. Ltd., New Delhi, India.									
3.									
Dynamic Systems, 2019, 8 th Edition, Pearson Education, New Delhi, India.									
Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and									
Final Assessment Test									
Recommended by Board of Studies 28-02-2023						0000			
Approved by Academic Council No. 69 Date 16-03-2023									

BECE303L		
	VLSI System Design	3 0 0 3
Pre-requisite E	BECE102L, BECE102P	Syllabus version
		1.0
Course Objective	9S :	
	ce the basic concepts and techniques of modern integra	
	he fundamental principles underlying digital design using	g CMOS logic and
	e performance characteristics of these digital circuits.	
-	a design meets its functionality, timing constraints, both	n manually and
through the	e use of computer-aided design tools.	
<u> </u>		
Course Outcome		
Students will be al		
	e CMOS digital electronics circuits, including logic col	
	ct using mathematical methods and circuit analysis modules of moderately sized CMOS inverters with specifie	
propagatio	•	u noise margin anu
	OS technology-specific layout rules in the placeme	ent and routing of
	and interconnect.	and routing of
	he various logic families and efficient techniques	at circuit level for
5	power and speed of combinational and sequential logic.	
	the CMOS digital circuits with the specified timing cons	
	emories with efficient architectures to improve acc	
consumption		
•		
Module:1 VL	SI Design Overview and MOSFET Theory	8 hours
	v, Design Hierarchy, Concepts of Regularity, Modularity	
	esign Quality, MOSFET : Device Structure, Electrical k	
	sitance- Voltage Characteristics and Non-ideal Effects; E	Effects of scaling on
MOSFETs and Int	erconnects.	
		0 h e une
	MOS Logic Gates	8 hours
	DC Transfer Characteristics, Static and Dynamic Beha	
Gates, Compound	Gates, CMOS Sequential Logic Design – Latches and	Flip Flops
Module:3 CN	MOS Fabrication and Layout	5 hours
	Technology N-well, P-well Process, latch up in CMOS	
	an Functions using Euler Theorem, Layout Design Rule	0,7
Diagran I I Doole	an Functions using Euler mediem, Layout Design Rule	5
Module:4 CI	MOS Circuits Performance Analysis	5 hours
	, Logical Effort and Transistor Sizing, Performance E	
Dynamic Power D		
Bynamie i ower B		
Module:5 CN	MOS Logic Families	8 hours
	Logic, Transmission Gates based Logic Design, pseud	
	bgic Dynamic and domino logic, clocked CMOS (C^2M	
CMOS logic.		<i>c c)</i> .cg.c
Module:6 Tir	ming Analysis	4 hours
	atic timing analysis, Setup Time, Hold Time, calculat	
	old time violations.	P,
,		

Introduction, Types - Read-Only Memory (ROM) Circuits, Static Read-Write Memory (SRAM) and Dynamic Read-Write Memory (DRAM) Circuits.

Mod	lule:8	Contemporary issues				2 hours				
				Tota	I Lecture Hours:	45 hours				
Text	t Book(s)									
1.	1. Neil H.Weste, Harris, A. Banerjee, CMOS VLSI Design, A circuits and System									
	Perspect	tive, 2015, 4 th Edition, Pea	arson Edu	cation, Noida,	India.	-				
Refe	erence Bo	ook								
1.		Rabaey, Anantha Chadra				Circuits: A				
	Design F	Perspective Paperback, 20	016, 2 rd Ed	lition, Pearso	n Education, India.					
2.	Sung-Mo	o Kang, Yusuf Liblebici,	Chulwoo	Kim, CMO	S Digital Integrate	d Circuits:				
	Analysis	and Design, 2019, Revise	ed 4th Edi	tion, Tata Mc	Graw Hill, New Del	hi, India.				
Mod	le of Eva	luation: Continuous Ass	essment	Test, Digital	Assignment, Quiz	and Final				
Asse	essment T	est		C C	-					
Rec	ommende	d by Board of Studies	14-05-20	22						
Арр	roved by <i>I</i>	Academic Council	No. 66	Date	16-06-2022					

Course Code Course Title								Р	С
	CE303P	VLSI	System Des			0	0	2	1
	quisite	BECE102L, BECE		5		Syllal	ous		ion
	•	,				,	1.		
Course	e Objectives	3:							
•	The objectiv	ve of this laboratory	is to apply	the theore	tical know	ledge	and	l exp	olore
	various des	ign style of CMOS I	Integrated Ci	ircuits (IC)	design us	ing th	e la	test l	EDA
	tools		_						
	e Outcome :								
		nis lab course the stu					-		
1.	•	e performance of CN	IOS Inverter	circuits or	n the basis	of th	eir d	opera	ation
0	and working					4-1			4! .
2.		semiconductor mer		ompinationa	ai, sequen	tiai ar	מ מו	aritnn	ietic
2		CMOS design rules.		and basic l	logic gatos				
	tive Experim	yout of CMOS invert			ogic gales				
1		extraction for basic c	ell structure	(NMOS and			2 h	ours	
	devices).						- ''	5013	
	,	alvsis of MOS with wi	dth variation	body effec	t and				
	 Analysis of MOS with width variation, body effect and estimation of channel length modulation 								
2		Analysis of CMOS i			ng.		4 h	ours	•
		imation of Power, De			0				
		act of load on perfori	•	-					
3		CMOS inverter for g					2 h	ours	;
		act of sizing on Powe							
4		inverter chains using	g progressive	e sizing to ir	mprove		2 h	ours	•
-	delay perfo			11 01100			0.1-		
5	-	Analysis of Universa	-	atic CMOS	logic		2 n	ours	•
6		ect of input reordering Analysis of Boolean		(Simple Ari	ithmotio		2 h	ours	
0		tic CMOS logic.	I Expression		unneuc		2 11	ours)
7	/	Analysis of Pass tra	ansistor and T	Transmissio	on date		4 h	ours	
	based circu	•			Jin guio		711	5413	•
8		Analysis of CMOS s	sequential cir	cuits (Lato	hes and		4 h	ours	
-	Flip Flops)		-1	(
9		MOS Memory cell (S	SRAM, DRAN	A) and verif	y its		4 h	ours	;
	operation.	, (-	,	-				
10	Design Lay	out of CMOS inverte	er and perforr	n post-layo	ut		4 h	ours	;
		RC, Layout Vs. Sche	ematic, Monte	e Carlo ana	ilysis,				
	Corner ana	alysis and etc.			-				
				tal Labora			30 I	nour	S
		nt: Continuous Asses			sment Tes	t			
		Board of Studies	14-05-2022		40.00.00	00			
Approv	ed by Acade	emic Council	No. 66	Date	16-06-20	22			

Course Code	Course Title	L	Т	Ρ	С
BECE304L	Analog Communication Systems	3	0	0	3
Pre-requisite	BECE206L, BECE206P	Sylla			ion
			1.0		
Course Objective					
1. To explore systems.	e the architectural elements and models used in ana	alog co	mmu	nicat	tion
	se bandwidth, current, power and transmission ef	ficienc	v of	ana	loa
modulatio			,		
3. To unders	tand the functionalities of transmitters and receivers.				
4. To compre	ehend the effect of noise in analog communication syste	ms.			
Course Outcome	es:				
Students will be a					
	nalyse the key elements of analog communication syste	m.			
	e various Amplitude Modulation Schemes and evalu		term	s of	its
	ndwidth and transmission Efficiency.				
	he various angle modulation schemes.				
	vorking principle of radio transmitters and receivers.				
	e effect of noise on various analog modulations. arious pulse modulation and multiplexing techniques.				
0. Analyse va	anous puise modulation and multiplexing techniques.				
Module:1 Com	munication Systems			4 ho	urs
	ance of communication, Elements of communication	svsten			
	ystems, Electromagnetic spectrum used in commun				
	wer, Need for modulation.			•	
	itude Modulation (AM)			7 ho	
	ation – Single- tone and Multi-tone, Mathematical re				
	n, current, power and transmission efficiency of AM. aw modulator, Switching modulator. AM demodulation -				
and Square law d		- Ellve	iope i	Jeleo	JUI
Module:3 Band	width and Power Efficient AM Systems			7 ho	urs
	on - Balanced modulator and Ring modulator. DSB-				
	ection, Effect of phase drift. SSB-SC generation - Filt				
	SB-SC demodulation - Synchronous detection. VS				
demodulation. Po	wer, bandwidth and transmission efficiency of DSB-SC,	SSB-S	SC an	d VS	ίΒ.
Module:4 Angl	e Modulation		1	0 ho	lire
	uency Modulation (FM) and Phase Modulation (PM)	– Rela			
	quency deviation and bandwidth of FM, Narrow band a				
	and Carson's rule. FM generation and detection. Comp				
and angle modula	•			•	
	smitters and Receivers			i ho	
	- Classification of transmitters - Low level and High lev				
	Radio receiver - Receiver characteristics, Tuned Radi				
	eterodyne receiver (AM and FM), Choice of IF and os nment – AGC, AFC. Pre-emphasis and De-emphasis.	cillator	neq	reuc	les,
	nineni – AGO, AFO. FIE-emphasis and De-emphasis.				
Module:6 Noise	e in Communication Systems			6 ho	urs
	es- Noise voltage and power, Signal-to-Noise Ratio (SNR)			
	e. Figure of Merit in DSB-SC, SSB-SC, AM and FM rece	,			,
	· , · · , · · · · · · · · · · · · · · ·				

٦

Sampling theorem - Types of Sampling. Pulse modulation schemes – generation an detection PAM, PPM and PWM, Conversion of PWM to PPM. Multiplexing Techniques FDM and TDM. Module:8 Contemporary Issues 2 hour Module:8 Contemporary Issues 2 hour Text Books 45 hour I. George Kennedy, Bernard Davis, Electronic Communication Systems, 2017, 6 th Edition, Mc Graw Hill Education, New Delhi, India. Reference Books I. Simon Haykin, Communication Systems, 2019, 5 th Edition, Wiley, India. P. Ramakrishna Rao, Analog Communication, 2017, Tata McGraw Hill Education Putd., India. 3 Herbert Taub and Donald Schilling, Principles of Communication Systems, 2017, 4 Edition, Mc Graw Hill Education, India. Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Fina Assessment Test Recommended by Board of Studies 14-05-2022				
detection PAM, PPM and PWM, Conversion of PWM to PPM. Multiplexing Techniques FDM and TDM. Module:8 Contemporary Issues 2 hour Module:8 Contemporary Issues 2 hour Total lecture hours: 45 hour Text Books 45 hour I. George Kennedy, Bernard Davis, Electronic Communication Systems, 2017, 6 th Edition, Mc Graw Hill Education, New Delhi, India. Reference Books 1. Simon Haykin, Communication Systems, 2019, 5 th Edition, Wiley, India. 2 P. Ramakrishna Rao, Analog Communication, 2017, Tata McGraw Hill Education Product Ltd., India. 3 Herbert Taub and Donald Schilling, Principles of Communication Systems, 2017, 4 Edition, Mc Graw Hill Education, India. 4 HweiKsu and Debjani Mitra, Analog and Digital Communication, 2017, 3 rd Edition McGraw Hill Education, India. Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Fina Assessment Test Recommended by Board of Studies 14-05-2022				4 hours
FDM and TDM. Module:8 Contemporary Issues 2 hour Total lecture hours: 45 hour Text Books 1. George Kennedy, Bernard Davis, Electronic Communication Systems, 2017, 6 th Edition, Mc Graw Hill Education, New Delhi, India. Reference Books 1. Simon Haykin, Communication Systems, 2019, 5 th Edition, Wiley, India. 2 P. Ramakrishna Rao, Analog Communication, 2017, Tata McGraw Hill Education Product. 3 Herbert Taub and Donald Schilling, Principles of Communication Systems, 2017, 4 Edition, Mc Graw Hill Education, India. 4 HweiKsu and Debjani Mitra, Analog and Digital Communication, 2017, 3 rd Edition McGraw Hill Education, India. Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Fina Assessment Test Recommended by Board of Studies 14-05-2022				0
Module:8 Contemporary Issues 2 hour Total lecture hours: 45 hour Text Books 1. George Kennedy, Bernard Davis, Electronic Communication Systems, 2017, 6 th Edition, Mc Graw Hill Education, New Delhi, India. Reference Books 1. Simon Haykin, Communication Systems, 2019, 5 th Edition, Wiley, India. 2 P. Ramakrishna Rao, Analog Communication, 2017, Tata McGraw Hill Education Puttd., India. 3 Herbert Taub and Donald Schilling, Principles of Communication Systems, 2017, 4 Edition, Mc Graw Hill Education, India. 4 HweiKsu and Debjani Mitra, Analog and Digital Communication, 2017, 3 rd Edition McGraw Hill Education, India. 4 HweiKsu and Debjani Mitra, Analog and Digital Communication, 2017, 3 rd Edition McGraw Hill Education, India. Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Fina Assessment Test Recommended by Board of Studies 14-05-2022				lexing Techniques –
Total lecture hours: 45 hour Text Books 1. George Kennedy, Bernard Davis, Electronic Communication Systems, 2017, 6 th Edition, Mc Graw Hill Education, New Delhi, India. Reference Books 1. Simon Haykin, Communication Systems, 2019, 5 th Edition, Wiley, India. 2 P. Ramakrishna Rao, Analog Communication, 2017, Tata McGraw Hill Education Pultd., India. 3 Herbert Taub and Donald Schilling, Principles of Communication Systems, 2017, 4 Edition, Mc Graw Hill Education, India. 4 HweiKsu and Debjani Mitra, Analog and Digital Communication, 2017, 3 rd Edition McGraw Hill Education, India. Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Fina Assessment Test Recommended by Board of Studies 14-05-2022	FD	M and T	DM.	
Total lecture hours: 45 hour Text Books 1. George Kennedy, Bernard Davis, Electronic Communication Systems, 2017, 6 th Edition, Mc Graw Hill Education, New Delhi, India. Reference Books 1. Simon Haykin, Communication Systems, 2019, 5 th Edition, Wiley, India. 2 P. Ramakrishna Rao, Analog Communication, 2017, Tata McGraw Hill Education Pultd., India. 3 Herbert Taub and Donald Schilling, Principles of Communication Systems, 2017, 4 Edition, Mc Graw Hill Education, India. 4 HweiKsu and Debjani Mitra, Analog and Digital Communication, 2017, 3 rd Edition McGraw Hill Education, India. Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Fina Assessment Test Recommended by Board of Studies 14-05-2022				
 Text Books George Kennedy, Bernard Davis, Electronic Communication Systems, 2017, 6th Edition, Mc Graw Hill Education, New Delhi, India. Reference Books Simon Haykin, Communication Systems, 2019, 5th Edition, Wiley, India. P. Ramakrishna Rao, Analog Communication, 2017, Tata McGraw Hill Education Pollutid., India. Herbert Taub and Donald Schilling, Principles of Communication Systems, 2017, 4 Edition, Mc Graw Hill Education, India. HweiKsu and Debjani Mitra, Analog and Digital Communication, 2017, 3rd Edition McGraw Hill Education, India. Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Fina Assessment Test Recommended by Board of Studies 14-05-2022 	Мо	dule:8	Contemporary Issues	2 hours
 Text Books George Kennedy, Bernard Davis, Electronic Communication Systems, 2017, 6th Edition, Mc Graw Hill Education, New Delhi, India. Reference Books Simon Haykin, Communication Systems, 2019, 5th Edition, Wiley, India. P. Ramakrishna Rao, Analog Communication, 2017, Tata McGraw Hill Education Pollutid., India. Herbert Taub and Donald Schilling, Principles of Communication Systems, 2017, 4 Edition, Mc Graw Hill Education, India. HweiKsu and Debjani Mitra, Analog and Digital Communication, 2017, 3rd Edition McGraw Hill Education, India. Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Fina Assessment Test Recommended by Board of Studies 14-05-2022 				
 George Kennedy, Bernard Davis, Electronic Communication Systems, 2017, 6th Edition, Mc Graw Hill Education, New Delhi, India. Reference Books Simon Haykin, Communication Systems, 2019, 5th Edition, Wiley, India. P. Ramakrishna Rao, Analog Communication, 2017, Tata McGraw Hill Education Pu Ltd., India. Herbert Taub and Donald Schilling, Principles of Communication Systems, 2017, 4 Edition, Mc Graw Hill Education, India. HweiKsu and Debjani Mitra, Analog and Digital Communication, 2017, 3rd Edition McGraw Hill Education, India. Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Fina Assessment Test Recommended by Board of Studies 14-05-2022 				45 hours
 Edition, Mc Graw Hill Education, New Delhi, India. Reference Books Simon Haykin, Communication Systems, 2019, 5th Edition, Wiley, India. P. Ramakrishna Rao, Analog Communication, 2017, Tata McGraw Hill Education Politicular (Ltd., India.) Herbert Taub and Donald Schilling, Principles of Communication Systems, 2017, 4 Edition, Mc Graw Hill Education, India. HweiKsu and Debjani Mitra, Analog and Digital Communication, 2017, 3rd Edition McGraw Hill Education, India. Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test Recommended by Board of Studies 14-05-2022 	Tex			
Reference Books 1. Simon Haykin, Communication Systems, 2019, 5 th Edition, Wiley, India. 2 P. Ramakrishna Rao, Analog Communication, 2017, Tata McGraw Hill Education Pultd., India. 3 Herbert Taub and Donald Schilling, Principles of Communication Systems, 2017, 4 Edition, Mc Graw Hill Education, India. 4 HweiKsu and Debjani Mitra, Analog and Digital Communication, 2017, 3 rd Edition McGraw Hill Education, India. Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Fina Assessment Test Recommended by Board of Studies 14-05-2022	1.	George	e Kennedy, Bernard Davis, Electronic Communication Sy	stems, 2017, 6 th
 Simon Haykin, Communication Systems, 2019, 5th Edition, Wiley, India. P. Ramakrishna Rao, Analog Communication, 2017, Tata McGraw Hill Education Puttd., India. Herbert Taub and Donald Schilling, Principles of Communication Systems, 2017, 4 Edition, Mc Graw Hill Education, India. HweiKsu and Debjani Mitra, Analog and Digital Communication, 2017, 3rd Edition McGraw Hill Education, India. Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Fina Assessment Test Recommended by Board of Studies 14-05-2022 		Edition	, Mc Graw Hill Education, New Delhi, India.	
 P. Ramakrishna Rao, Analog Communication, 2017, Tata McGraw Hill Education Pulltd., India. Herbert Taub and Donald Schilling, Principles of Communication Systems, 2017, 4 Edition, Mc Graw Hill Education, India. HweiKsu and Debjani Mitra, Analog and Digital Communication, 2017, 3rd Edition McGraw Hill Education, India. Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Fina Assessment Test Recommended by Board of Studies 14-05-2022 	Ref			
Ltd., India. 3 Herbert Taub and Donald Schilling, Principles of Communication Systems, 2017, 4 Bedition, Mc Graw Hill Education, India. 4 HweiKsu and Debjani Mitra, Analog and Digital Communication, 2017, 3 rd Edition McGraw Hill Education, India. Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test Recommended by Board of Studies 14-05-2022	1.	Simon	Haykin, Communication Systems, 2019, 5 th Edition, Wiley, In	dia.
 Herbert Taub and Donald Schilling, Principles of Communication Systems, 2017, 4 Edition, Mc Graw Hill Education, India. HweiKsu and Debjani Mitra, Analog and Digital Communication, 2017, 3rd Edition McGraw Hill Education, India. Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Fina Assessment Test Recommended by Board of Studies 14-05-2022 	2	P. Ran	nakrishna Rao, Analog Communication, 2017, Tata McGraw	Hill Education Pvt
 Edition, Mc Graw Hill Education, India. HweiKsu and Debjani Mitra, Analog and Digital Communication, 2017, 3rd Edition McGraw Hill Education, India. Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Fina Assessment Test Recommended by Board of Studies 14-05-2022 		Ltd., In	dia.	
 HweiKsu and Debjani Mitra, Analog and Digital Communication, 2017, 3rd Edition McGraw Hill Education, India. Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Fina Assessment Test Recommended by Board of Studies 14-05-2022 	3	Herber	t Taub and Donald Schilling, Principles of Communication	Systems, 2017, 4 th
McGraw Hill Education, India.Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Fina Assessment TestRecommended by Board of Studies14-05-2022		Edition	, Mc Graw Hill Education, India.	-
Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Fina Assessment Test Recommended by Board of Studies 14-05-2022	4	HweiK	su and Debjani Mitra, Analog and Digital Communication	, 2017, 3 rd Edition,
Assessment Test Recommended by Board of Studies 14-05-2022		McGra	w Hill Education, India.	
Recommended by Board of Studies 14-05-2022	Mo	de of E	valuation: Continuous Assessment Test, Digital Assignme	ent, Quiz and Final
	Ass	sessmer	t Test	
Approved by Academic Council No. 66 Date 16-06-2022	Red	commer	ded by Board of Studies 14-05-2022	
	App	proved b	y Academic Council No. 66 Date 16-0	6-2022

T

	ourse Code		Course Title		L	Т	Ρ	С
1	BECE304P	Analog Comr	nunication Systen	ns Lab	0	0	2	1
Pre	-requisite	BECE206L, BECE2	206P		Sylla	abus	versi	on
						1.0)	
•								
	urse Objectiv							
•		ly troubleshoot, cons	truct and analyse	modulators ar	nd dei	modu	lators	s in
		munication systems.						
		e effect of modulation						S.
;	3. Inculcate h	ands-on experience, b	by integrating theory	/ into practical	exper	Iment	S.	
-	urse Outcome							
	dents will be a						-	
		insight into the fund	tionalities and val	date the perf	orman	ice o	ana	log
		and demodulators.						
		the noise measures for						
	3. Sample an	analog signal and imp	plement the multiple					
		analog olghar and imp		sing concepts	•			
امط	iaatiya Eynar			exing concepts				
	icative Exper	iments	·	x ,		0 1		
1.	Design of AM	iments I, DSB-SC, SSB-SC m	nodulators and dem	x ,		-	lours	
1. 2.	Design of AM Design of FM	iments I, DSB-SC, SSB-SC m I, PM modulators and	nodulators and dem demodulators	odulators		4 H	lours	5
1.	Design of AM Design of FM	iments I, DSB-SC, SSB-SC m	nodulators and dem demodulators	odulators		4 H		5
1. 2.	Design of AN Design of FN Design of Si emphasis	iments I, DSB-SC, SSB-SC m I, PM modulators and	nodulators and dem demodulators ver - Mixer, Pre-e	odulators mphasis and	De-	4 H 4 H	lours	5
1. 2. 3.	Design of AM Design of FM Design of Si emphasis Analyse the r	iments I, DSB-SC, SSB-SC m I, PM modulators and uperheterodyne recei	nodulators and dem demodulators ver - Mixer, Pre-e f analog communica	odulators mphasis and ation systems -	De-	4 H 4 H	lours	5
1. 2. 3.	Design of AM Design of FM Design of S emphasis Analyse the r SNR, Noise V	iments I, DSB-SC, SSB-SC m I, PM modulators and uperheterodyne receiv	nodulators and dem demodulators ver - Mixer, Pre-e f analog communica nd Noise temperatu	odulators mphasis and ation systems - ire	De-	4 H 4 H 4 H	lours	5 5
1. 2. 3. 4.	Design of AM Design of FM Design of Si emphasis Analyse the r SNR, Noise v Design of PA	iments I, DSB-SC, SSB-SC m I, PM modulators and uperheterodyne receiv noise characteristics or voltage, Noise figure a	nodulators and dem demodulators ver - Mixer, Pre-e f analog communica nd Noise temperatu	odulators mphasis and ation systems - ire	De-	4 H 4 H 4 H	lours lours lours	5 5 5
1. 2. 3. 4. 5.	Design of AM Design of FM Design of Si emphasis Analyse the r SNR, Noise v Design of PA	iments I, DSB-SC, SSB-SC m I, PM modulators and uperheterodyne receive noise characteristics of voltage, Noise figure a M,PPM,PWM modular	nodulators and dem demodulators ver - Mixer, Pre-e f analog communica nd Noise temperatu tors and demodulat	odulators mphasis and ation systems - ire	De-	4 H 4 H 4 H 6 H 4 H	lours lours lours lours	; ; ;
1. 2. 3. 4. 5. 6.	Design of AM Design of FM Design of SM emphasis Analyse the r SNR, Noise M Design of PA Implementati	iments I, DSB-SC, SSB-SC m I, PM modulators and uperheterodyne receive noise characteristics of voltage, Noise figure a M,PPM,PWM modular	nodulators and dem demodulators ver - Mixer, Pre-e f analog communica nd Noise temperatu tors and demodulat Total L	odulators mphasis and ation systems - ire ors .aboratory Ho	De-	4 H 4 H 4 H 6 H 4 H	lours lours lours lours lours	; ; ;
1. 2. 3. 4. 5. 6. Mo	Design of AM Design of FM Design of SM emphasis Analyse the r SNR, Noise v Design of PA Implementation de of Assessm	iments I, DSB-SC, SSB-SC m I, PM modulators and uperheterodyne recein noise characteristics of voltage, Noise figure a M,PPM,PWM modulation of TDM and FDM	nodulators and dem demodulators ver - Mixer, Pre-e f analog communica nd Noise temperatu tors and demodulat Total L	odulators mphasis and ation systems - ire ors .aboratory Ho	De-	4 H 4 H 4 H 6 H 4 H	lours lours lours lours lours	; ; ;

Course Code Course Title L T P									
BECE305L	Antenna and Microwave Engineering	3	0	0	3				
Pre-requisite	BECE205L	Syl	labus	s ver	sion				
•			1.0						
Course Objectiv	ves								
 To introduct fundament and arrays To design a To familia characteriz Course Outcom Students will be Examine th antenna pa Apply the c Comprehent Design and Infer the im 	ce and discuss the mechanism for antenna parameters al characteristics and design concepts of HF, UHF, and analyse various passive and active microwave circ rize the operational principles of microwave source are microwave networks. ne radiation mechanism of electromagnetic fields and arameters. design criteria to Linear, HF, UHF, microwave antenna a nd the performance of different microwave sources and d analyze the passive components at microwave freque d analyze the various passive circuits at microwave freque d analyze the various passive circuits at microwave freque	Microv uits. es an d ident and arr l ferrite ncies. juencie	d to ify the ays. devic	e var es. ers.	rious				
	M Radiation and Antenna Parameters anism - single wire, two wire and current distribution, H	La		-	ours				
radiation intens efficiency, anter equation, Radar	nna effective length and area, antenna temperatur range equation.	n, inpi	ut im	peda Ismis	ance, ssion				
	near and Planar Arrays				ours				
radiation pattern	ray, N-element linear array - broadside array, End f n, pattern multiplication. Non-uniform excitation - ys: Planar array, circular array, Phased Array antenna	Binomi	al, Cł	heby	shev				
Module:3 H	F, UHF and Microwave Antennas			7 h	ours				
Wire Antennas independent ant	 long wire, loop antenna - helical antenna. Yagi-Uda ennas - spiral and log periodic antenna - Aperture ante or antenna - Microstrip antenna. 			requ	ency				
Module:4 M	icrowave Sources			5 h	ours				
Microwave frequ Klystron & Mag	encies and applications, Microwave Tubes: TWT, Klys			er, R	eflex				
Module:5 M	icrowave Passive components			6 h	ours				
Microwave Netw	orks - ABCD, 'S' parameter and its properties. E-Plan Multi-hole directional coupler. Principle of Farad			ane	Tee,				
Module:6 M	icrowave Passive circuits			7	ours				
T junction and re unequal), Rat R	esistive power divider, Wilkinson power divider, branch ace Coupler, Filter design: Low pass filter (Butterwo rmation and stepped impedance methods.			(equ	ual &				

Modu	le:7	Microwave Active Circu	uits				4 hours	
Micro	wave f	ransistors, Microwave amp	olifiers: Two p	ort powe	er gains, :	stability of	the amplifier,	
Micro	wave o	scillators.						
Modu	le:8	Contemporary issues					2 hours	
			lotal	Lecture	hours:		45 hours	
Text I	Book(s	s)						
1.	C.A.	Balanis, Antenna Theory - /	Analysis and	Design,	2016, 4 ^{tr}	¹ Edition, V	Niley& Sons,	
	New	York, USA.	-	-			-	
2.	D. M.	Pozar, Microwave enginee	ering, 2013, 4	I th Editior	۱, Wiley &	& Sons, U	SA.	
Refer	ence E	Books						
1.	R Lu	dwig, Gene Bogdanov, RF	- Circuit des	ign: The	ory and	applicatio	ns, 2013, 2 nd	
	Editio	n, Pearson India.		-	-			
2.	John	D Krauss, Antennas for all	Applications	, 2008, 4	th Edition	, Tata Mc	Graw Hill,	
	India							
Mode	of Ev	aluation: Continuous Ass	essment Te	st, Digita	al Assigr	nment, Qu	uiz and Final	
Asses	sment	Test			U			
Recor	mmenc	ed by Board of Studies	14-05-2022					
		Academic Council	No. 66	Date	16-06-2	2022		

Cours	se Code		Course Tit	le		LTPC			
	E305P	Antenna and	d Microwave		ing Lab	0 0 2 1			
Pre-req	uisite	BECE205L			Ŭ	Syllabus version			
•						1.0			
Course	Objectives	6							
		eoretical knowledg	e and explore	the desig	ning princip	les of various			
		microwave devices							
2. To d	design the v	arious microwave/	antenna and o	devices u	sing a suital	ole design tools.			
Course	Outcome								
Students	s will be abl	e to							
1. Me	easure the	various paramete	ers and com	orehend	the radiatio	n pattern of wired			
	tennas.								
						st bench setup and			
		and analyze micro							
3. De	sign the mi	crowave circuits to	suit the need	s of indus	stry.				
	ve Experin								
	re Experin								
1.		ent of antenna inp				2 hours			
2.		ent of antenna rac				2 hours			
3.		ent of S-paramete	rs for E-plane	, H-plane	e and Magic	4 hours			
	Tee								
4.		ent of S-paramete				2 hours			
5.		ent of S-paramete			ilator	2 hours			
6.		ent of S-paramete		ces		4 hours			
		g Simulation tools							
7.	Design of	Wilkinson power d	vider			2 hours			
8.	Design of	branch line and Ra	t race coupler	01		2 hours			
9.		low pass filters:	≺ichards and	Stepped	Impedance	2 hours			
	method	and the last second	- :						
10.		matching circuits u	sing quarter w	ave & sir	igle stub.	4 hours			
11.		dipole antenna				2 hours			
12	Design of	Rectangular patch			4	2 hours			
Nada - f		nt. Continuous Ar			tory Hours				
		nt: Continuous Ass	1		essment le	St			
		Board of Studies	14-05-2022		16.00.000	<u>, </u>			
Approve	ed by Acade	emic Council	No. 66	Date	16-06-202	2			

Course Code	Course Title	L	T	Ρ	С
BECE306L	Digital Communication Systems	3	0	0	3
Pre-requisite	BECE206L, BECE206P	Syll	abus	vers	ion
•			1.0		
Course Objecti	ves:				
1. To unde	erstand the transmitter and receiver blocks of various	wav	/eforn	n coo	ding
techniqu	es.				-
	ze various line coding techniques in time and frequency d				
	tify the role of baseband, bandpass formats and info				
	transmission of signals, combat ISI and to increas	e the	e relia	ability	of v
transmis					
	rstand the principles and importance of spread spectrum a	and n	nultipl	e acc	ess
	ntext of communication.				
Course Outcon					
Students will be			امما	اممما	
	nend the sampling and quantization process to recover the			ignai	
	the performance of various waveform and Line coding tec he various baseband pulses for ISI free transmission ov			andw	idth
channels				anuw	uun
	the BER and bandwidth efficiency of the Bandpass modι	Ilatio	n tech	nique	20
	the digital communication system with spread spectrum n			inque	
	elements of information theory.	i e a an	ation		
Module:1 San			4 h	ours	
	f a digital communication system, bandwidth of signals.	Samp	ling t	heore	m -
	pling of bandpass signals, Reconstruction of a message				
Practical aspect	s of sampling and signal recovery.			•	
	veform Coding Techniques			ours	
Dulas Ossis Ma	dulation (DCM) Uniform quantization Quantization not			1 1	
	dulation (PCM) - Uniform quantization, Quantization noi				
Ratio, Robust o	uantization. Differential pulse code modulation (DPCM)				
Ratio, Robust o					
Ratio, Robust o (DM) - Quantiza	uantization. Differential pulse code modulation (DPCM) tion noise in DM, Adaptive Delta Modulation.		lta Mo	odula	
Ratio, Robust o (DM) - Quantiza Module:3 Line	uantization. Differential pulse code modulation (DPCM) tion noise in DM, Adaptive Delta Modulation. e Codes), Del	Ita Mo 6 ho	odula	tion
Ratio, Robust o (DM) - Quantiza Module:3 Line Representation	quantization. Differential pulse code modulation (DPCM) tion noise in DM, Adaptive Delta Modulation. e Codes of line codes – Unipolar, Polar, Bipolar using NRZ an	, Del d RZ	Ita Mo 6 ho	odula ours	tion ster,
Ratio, Robust of (DM) - Quantization Module:3 Line Representation Polar Quaternal	uantization. Differential pulse code modulation (DPCM) tion noise in DM, Adaptive Delta Modulation. e Codes of line codes – Unipolar, Polar, Bipolar using NRZ an ry codes, Differential encoding, Properties and application	, Del d RZ	Ita Mo 6 ho	odula ours	tion ster,
Ratio, Robust of (DM) - Quantization Module:3 Line Representation Polar Quaternal	quantization. Differential pulse code modulation (DPCM) tion noise in DM, Adaptive Delta Modulation. e Codes of line codes – Unipolar, Polar, Bipolar using NRZ an	, Del d RZ	Ita Mo 6 ho	odula ours	tion ster,
Ratio, Robust of (DM) - Quantization Module:3 Line Representation Polar Quaternal Power spectral of	uantization. Differential pulse code modulation (DPCM) tion noise in DM, Adaptive Delta Modulation. e Codes of line codes – Unipolar, Polar, Bipolar using NRZ an ry codes, Differential encoding, Properties and application density of line codes.	, Del d RZ	ita Mo 6 ho 1, Mar f line	odula ours nches code	tion ster,
Ratio, Robust of (DM) - QuantizationModule:3LineRepresentationPolar QuaternalPower spectral ofModule:4Base	uantization. Differential pulse code modulation (DPCM) tion noise in DM, Adaptive Delta Modulation. e Codes of line codes – Unipolar, Polar, Bipolar using NRZ an ry codes, Differential encoding, Properties and application density of line codes.	, Del d RZ	6 ho , Mar f line 5 ho	odula ours nches code	tion ster, es –
Module:3LineModule:3LineRepresentationPolar QuaternalPower spectralModule:4Basebanddata	auantization. Differential pulse code modulation (DPCM) tion noise in DM, Adaptive Delta Modulation. e Codes of line codes – Unipolar, Polar, Bipolar using NRZ an ry codes, Differential encoding, Properties and application density of line codes.	d RZ	ta Mo 6 ho 7, Mar f line 5 ho (ISI),	odula ours nches code ours Nyq	tion ster, ss –
Ratio, Robust of (DM) - Quantization Module:3 Line Representation Polar Quaternation Power spectral of Module:4 Base Baseband data criterion for zero	auantization. Differential pulse code modulation (DPCM) tion noise in DM, Adaptive Delta Modulation. e Codes of line codes – Unipolar, Polar, Bipolar using NRZ an ry codes, Differential encoding, Properties and application density of line codes. Seband System a transmission of binary data - Inter Symbol Interfere o ISI, Raised cosine filtering, correlative coding (duo binar	d RZ	ta Mo 6 ho 7, Mar f line 5 ho (ISI),	odula ours nches code ours Nyq	tion ster, ss – uist
Ratio, Robust of (DM) - Quantization Module:3 Line Representation Polar Quaternation Power spectral of Module:4 Base Baseband data criterion for zero	auantization. Differential pulse code modulation (DPCM) tion noise in DM, Adaptive Delta Modulation. e Codes of line codes – Unipolar, Polar, Bipolar using NRZ an ry codes, Differential encoding, Properties and application density of line codes.	d RZ	ta Mo 6 ho 7, Mar f line 5 ho (ISI),	odula ours nches code ours Nyq	tion ster, ss – uist
Ratio, Robust of (DM) - Quantization Module:3 Line Representation Polar Quaternal Power spectral of Module:4 Base Baseband data criterion for zero binary coding), e	auantization. Differential pulse code modulation (DPCM) tion noise in DM, Adaptive Delta Modulation. e Codes of line codes – Unipolar, Polar, Bipolar using NRZ an ry codes, Differential encoding, Properties and application density of line codes. Seband System a transmission of binary data - Inter Symbol Interfered o ISI, Raised cosine filtering, correlative coding (duo binar eye pattern – Equalization.	d RZ	6 h d , Mar f line 5 h d (ISI), d mod	odula ours nches code ours Nyq ified	tion ster, es – uist duo
Ratio, Robust of (DM) - QuantizationModule:3LineRepresentationPolar QuaternationPower spectral ofBaseband datacriterion for zerobinary coding), ofModule:5Bar	 quantization. Differential pulse code modulation (DPCM) tion noise in DM, Adaptive Delta Modulation. e Codes of line codes – Unipolar, Polar, Bipolar using NRZ an ry codes, Differential encoding, Properties and application density of line codes. a transmission of binary data - Inter Symbol Interference of ISI, Raised cosine filtering, correlative coding (duo binar eye pattern – Equalization. 	, Del	ta Mo <u>6 ho</u> , Mar f line 5 ho (ISI), d mod	odula ours nches code ours Nyq ified	uist
Ratio, Robust of (DM) - QuantizationModule:3LineRepresentationPolar QuaternationPower spectral ofBaseband datacriterion for zerobinary coding), ofModule:5BarGram-Schmidt	 quantization. Differential pulse code modulation (DPCM) tion noise in DM, Adaptive Delta Modulation. e Codes of line codes – Unipolar, Polar, Bipolar using NRZ an ry codes, Differential encoding, Properties and application density of line codes. seband System a transmission of binary data - Inter Symbol Interference pattern – Equalization. ndpass system Orthogonalization Procedure. Correlation and Match 	, Del	6 ho , Mar f line (ISI), d mod 12 h ;ilter	odula ours nches code ours Nyq ified	uist duo ver.
Ratio, Robust of (DM) - QuantizationModule:3LineRepresentationPolar QuaternationPower spectral ofModule:4BaseBaseband datacriterion for zerobinary coding), ofModule:5BarGram-SchmidtCoherent module	 quantization. Differential pulse code modulation (DPCM) tion noise in DM, Adaptive Delta Modulation. e Codes of line codes – Unipolar, Polar, Bipolar using NRZ an ry codes, Differential encoding, Properties and application density of line codes. beband System a transmission of binary data - Inter Symbol Interference of ISI, Raised cosine filtering, correlative coding (duo binare eye pattern – Equalization. of dpass system Orthogonalization Procedure. Correlation and Match ation techniques - BASK, BPSK, BFSK, QPSK, MSK, High 	, Del d RZ ons o ence y ance y ance ied f gher-c	ita Mo 6 ho 7, Mar f line 5 ho (ISI), d mod 12 h iilter prder	odula ours code ours Nyq ified ours recei PSK	tion ster, es – uist duo ver. and
Ratio, Robust of (DM) - QuantizationModule:3LineRepresentationPolar QuaternationPower spectral ofModule:4BaseBaseband datacriterion for zerobinary coding), ofModule:5BarGram-SchmidtCoherent module	 auantization. Differential pulse code modulation (DPCM) tion noise in DM, Adaptive Delta Modulation. a Codes of line codes – Unipolar, Polar, Bipolar using NRZ an ry codes, Differential encoding, Properties and application density of line codes. a transmission of binary data - Inter Symbol Interference of ISI, Raised cosine filtering, correlative coding (duo binar eye pattern – Equalization. b Tothogonalization Procedure. Correlation and Match ation techniques - BASK, BPSK, BFSK, QPSK, MSK, High Bandwidth efficiency analysis. Non-coherent modulation 	, Del d RZ ons o ence y ance gher-o	ita Mo 6 ho 7, Mar f line 5 ho (ISI), d mod 12 h iilter prder	odula ours code ours Nyq ified ours recei PSK	tion ster, es – uist duo ver. and
Module:3LineModule:3LineRepresentationPolar QuaternalPolar QuaternalPower spectralPower spectralModule:4BasebandBaseBasebanddatacriterion for zerobinary coding), eModule:5BarGram-SchmidtCoherent modulQAM, BER and	 auantization. Differential pulse code modulation (DPCM) tion noise in DM, Adaptive Delta Modulation. a Codes of line codes – Unipolar, Polar, Bipolar using NRZ an ry codes, Differential encoding, Properties and application density of line codes. a transmission of binary data - Inter Symbol Interference of ISI, Raised cosine filtering, correlative coding (duo binar eye pattern – Equalization. b Tothogonalization Procedure. Correlation and Match ation techniques - BASK, BPSK, BFSK, QPSK, MSK, High Bandwidth efficiency analysis. Non-coherent modulation 	, Del d RZ ons o ence y ance gher-o	ita Mo 6 ho 7, Mar f line 5 ho (ISI), d mod 12 h iilter prder	odula ours code ours Nyq ified ours recei PSK	tion ster, es – uist duo ver. and
Ratio, Robust of (DM) - Quantization Module:3 Line Representation Polar Quaternation Power spectral of Module:4 Base Baseband data criterion for zero binary coding), of Module:5 Bar Gram-Schmidt Coherent modul QAM, BER and BASK, BFSK, D	 auantization. Differential pulse code modulation (DPCM) tion noise in DM, Adaptive Delta Modulation. a Codes of line codes – Unipolar, Polar, Bipolar using NRZ an ry codes, Differential encoding, Properties and application density of line codes. a transmission of binary data - Inter Symbol Interference of ISI, Raised cosine filtering, correlative coding (duo binar eye pattern – Equalization. b Data System Orthogonalization Procedure. Correlation and Match lation techniques - BASK, BPSK, BFSK, QPSK, MSK, High Bandwidth efficiency analysis. Non-coherent modulation 	, Del d RZ ons o ence y ance gher-o	6 ho , Mar f line (ISI), d mod 12 h ilter order techr	odula ours code ours Nyq ified ours recei PSK	tion ster, es – uist duo ver. and
Ratio, Robust of (DM) - Quantization (DM) - Quantization Polar Quaternation Power spectral of Power spectral of Module:4Line Base Base baseModule:5Base base base base base base baseModule:6Spr	 auantization. Differential pulse code modulation (DPCM) tion noise in DM, Adaptive Delta Modulation. Codes of line codes – Unipolar, Polar, Bipolar using NRZ an ry codes, Differential encoding, Properties and application density of line codes. Geband System a transmission of binary data - Inter Symbol Interfered or ISI, Raised cosine filtering, correlative coding (duo binare eye pattern – Equalization. Orthogonalization Procedure. Correlation and Match ation techniques - BASK, BPSK, BFSK, QPSK, MSK, Higd Bandwidth efficiency analysis. Non-coherent modula PSK. 	, Del	ita Mo 6 ho 7, Mar f line 5 ho (ISI), d mod 12 h ilter order techr 5 ho	odula ours code ours Nyq ified ours recei PSK nique	tion ster, es – uist duo ver. and s –
Ratio, Robust of (DM) - Quantization Module:3 Line Representation Polar Quaternation Power spectral of Module:4 Base Baseband data criterion for zero binary coding), efficiency Module:5 Bar Gram-Schmidt Coherent modul QAM, BER and BASK, BFSK, D Module:6 Spr	 quantization. Differential pulse code modulation (DPCM) tion noise in DM, Adaptive Delta Modulation. Codes of line codes – Unipolar, Polar, Bipolar using NRZ an ry codes, Differential encoding, Properties and application density of line codes. Beband System a transmission of binary data - Inter Symbol Interference of ISI, Raised cosine filtering, correlative coding (duo binare pattern – Equalization. Depass system Orthogonalization Procedure. Correlation and Match ation techniques - BASK, BPSK, BFSK, QPSK, MSK, High Bandwidth efficiency analysis. Non-coherent modula PSK. 	, Del	6 ho , Mar f line 5 ho (ISI), d mod 12 h iilter order techr 5 ho oerties	odula ours code ours Nyq ified ours recei PSK nique ours s, Di	tion ster, es – uist duo ver. and s – rect
Ratio, Robust of (DM) - Quantization Module:3 Line Representation Polar Quaternal Power spectral of Module:4 Base Baseband data criterion for zero binary coding), of Module:5 Bar Gram-Schmidt Coherent modul QAM, BER and BASK, BFSK, D Module:6 Spr Principles of sp Sequence Spr	 auantization. Differential pulse code modulation (DPCM) tion noise in DM, Adaptive Delta Modulation. a Codes of line codes – Unipolar, Polar, Bipolar using NRZ an ry codes, Differential encoding, Properties and application density of line codes. a transmission of binary data - Inter Symbol Interference of ISI, Raised cosine filtering, correlative coding (duo binare eye pattern – Equalization. b Tothogonalization Procedure. Correlation and Match ation techniques - BASK, BPSK, BFSK, QPSK, MSK, Higd Bandwidth efficiency analysis. Non-coherent modula PSK. b Spectrum and Multiple Access Techniques b read spectrum (DSSS), Processing gain, Probability Frequency- Hop Spread Spectrum (FHSS). Multiple access 	, Del	ita Mo 6 ho 7, Mar f line 5 ho (ISI), 1 mod 12 h iilter order techr techr 5 ho oerties rror,	odula ours nches code ours Nyq ified ours recei PSK nique ours s, Di Anti-	tion ter, es – uist duo ver. and s – rect jam

		Introduction to Informa				5 hours
Ent	tropy, M	utual information and char	nnel capacity theo	rem. Fundan	nentals of e	error correction
- H	amming	codes.				
Мо	dule:8	Contemporary issues				2 hours
	Total lecture hours:					45 hours
Tex	xt Book	(s)			•	
1.	Simon	Haykin, Digital Communic	ations, 2017, 1 st I	Edition, John	Wiley, Indi	a.
Re	ference	Books				
1.	John (G. Proakis, Masoud Sale	ehi, Digital Com	munication, 2	2018, 5 th I	Edition (Indian
	edition), Mc Graw Hill Education,	India.			
2.	Bernar	d Sklar and Fredric J.	Harris, Digital	Communicati	ons: Fund	amentals and
	Applica	ations, 2020, 3 rd Edition, P	earson , UK.			
3.	BPL	athi, Zhi Ding, Modern D	igital And Analog	g Communic	ation Syste	ems, 2017, 4 th
	Edition	, Oxford university Press,	India.	-	-	
Мо	de of E	Evaluation: Continuous A	ssessment Test,	Digital Assi	gnment, C	uiz and Final
Ass	sessmer	nt Test				
Re	commer	ided by Board of Studies	14-05-2022			
Ap	proved b	y Academic Council	No. 66	Date	16-06-202	22

Οοι	urse Code		Course Title			L	T	Ρ	С
BE	ECE306P	Digital Com	nmunication Sys	stems La	b	0	0	2	1
Pre-re	quisite	BECE206L, BEC	CE206P			Syll	abus	vers	ion
							1.	0	
Cours	e Objectives								
		/arious waveform c							
		ious baseband and							
		the principles and	importance of m	ultiple acc	ess tecl	hniqu	es in	the	
c	context of com	munication.							
Cours	e Outcome								·
	nts will be able	e to							
		nalyse various wav	eform coding te	chniaues.					
		its for band pass n			eir perfo	ormar	nce.		
		ad spectrum techni							
	•		•						
Indica	tive Experime	ents							
1.	Generation a	nd reconstruction of	of PCM, DPCM a	and DM			4	Hou	rs
2	Generation o	of baseband signals	s using various l	ine coding	g format	s for	4	Hou	rs
	the given bina	ary sequence	-		-				
3.	Generation a	nd detection of bar	ndpass modulation	on technic	ues		12	2 Hou	irs
4.	BER analysis	s of bandpass mod	ulation technique	es			2	Hou	rs
5	Generation o	f PN sequence and	d verification of it	s properti	es		4	Hou	rs
6.	Implementati	on of multiple acce	ss schemes				4	Hou	rs
			То	tal Labor	atory H	ours	30) hou	Irs
Mode	of Assessmen	t: Continuous Asse	essment and Fina	al Assessr	nent Te	st			
Recon	nmended by B	oard of Studies	14-05-2022						
Approv	ved by Acaden	nic Council	No. 66	Date	16-06-2	2022			

Course Code	Course Title	I	т	Р	С
BECE317L	Wireless and Mobile Communications	3	0	0	3
Pre-requisite	BECE306L, BECE306P	-	-	s vers	-
	,,	- , .	1.		
Course Objective	es:				
1. To familia	rize the concepts of wireless communication.				
	students the fundamentals of multipath fading and prop		n mo	dels.	
	nt students with different generations of mobile network				
4. To describ	be the diversity and MIMO schemes as applied in wirele	ess co	mmu	nicati	ion.
Course Outcome					
Course Outcome The students will b					
	wireless channel using path loss models and inter	nrat t	ho i	mnac	t of
	channel parameters.	pier	ne i	mpac	
	the functions and services of cellular networks.				
	ate the principles of multicarrier modulation.				
	uitable diversity technique to combat the multipath fadir	na effe	cts.		
	table MIMO techniques to enhance the spectrum efficie				
	ne features of next generation wireless technologies.	,			
	bile Radio Propagation: Large Scale Fading			9 hc	
	eless Communication, Cellular concept – Frequency				
	gies – Handoff strategies – Interference and system				
	vice – Improving coverage and capacity in cellular s				
	e space model, Two ray model, Outdoor and indoor p	propag	atior	n moc	dels,
Link budget desig	n.				
Module:2 Mo	bile Radio Propagation : Small Scale Fading			6 hc	ours
	bath propagation, Parameters of multipath channels, T	Vnes	of sn		
fading, Rayleigh a		урсз	01 31		caic
Module:3 Wir	eless Systems and Standards			5 hc	ours
	S, EDGE, UMTS, LTE, LTE-A.				
Module:4 OF	DM Technology			5 hc	ours
Introduction and	Challenges in Multicarrier Systems, OFDM System	Mode	- F	FT/	FFT
	ematical Model - Cyclic Prefix, PAPR and reduction tech	chniqu	les -	SNR	and
BER performance	- ICI-SC-FDMA.				
				<u> </u>	
	ersity Techniques		_	6 hc	
	Wireless Systems-System Model, Types of Diversity: A				
· · · · ·	le Analysis with Diversity, Optimal Receiver Comb	ining,	IVIR	С, Е	GC,
Diversity Order.					
Module:6 MIN	IO Technology			7 hc	lire
	odel – Zero Forcing and Minimum Mean Square Error	receiv	ere -		
	tion - Channel Capacity - Optimal Water filling Powe				
	Aultiplexing, BLAST Architectures, Distributed MIMO.	. /	20101		Jun
g opulari					
Module:7 Nex	t Generation Wireless Communication			5 hc	ours
5G Wireless Tech	nnologies - NR Standard, filter bank multicarrier, Non	-ortho	gona	l mul	tiple

intellig	gent sur	faces.							
Modu	le:8	Contemporary Issues	;			2 hours			
			То	tal Lectu	re hours:	45hours			
Text E	Book(s)								
1.		Rappaport, T.S., Wireless Communications: Principles and Practice, 2018, (Reprint), Pearson Education, Noida, India.							
Refer	ence B	ooks							
1.		a Goldsmith, Wireless Co	ommunicat	ions, 202	0, 2 nd Editio	n, Cambridge			
	-	rsity Press							
2.	-	K. Jagannatham," Princ	iples of M	lodern W	ireless Com	munications Systems",			
		McGraw Hill Education							
3.		ingal, Wireless Communi tion, New Delhi, India.	cations, 20	014, (Rep	orint), Tata N	AcGraw Hill Education,			
4.		Q T Zhang, Wireless Co 1 st edition, John Wiley &				eory and Methodology,			
Mode		uation: Continuous Asses				, Quiz and Final			
	sment -			Ŭ	U U				
Recor	nmende	ed by Board of Studies	28-07-20	22					
Appro	oved by	Academic Council	No. 67	Date	08-08-2022	2			

BECE317P Wireless and Mobile Communications Lab 0 0 2 1 Pre-requisite BECE306L, BECE306P Syllabus version 1.0 1.0 Course Objectives 1.0 To analyse the fundamentals of multipath fading and propagation models. 3. To demonstrate the diversity techniques and MIMO Technology. Course Outcome Students will be able to 1. Examine and estimate wireless channel using path loss models. 2. Demonstrate the principles of multicarrier modulation. 3. Implement the diversity techniques and MIMO concept in different wireless applications. 1. Study how call blocking probability varies as the load on a GSM network is continuously increased using Network Simulator 4 Hours 2. To study the effect of various fading channels such as Rayleigh, Ricean and various noise channel such as AWGN and Laplacian noise 4 Hours 3. Simulate to compute the pathloss of urban, suburban and rural environment for LTE/WiMAX/WLAN system using free space, Ericson, COST 231, ECC, Hata and SUI model 2 Hours 4. Testing and validating principles of Pathloss in Mobile Radio 2 Hours 7. Write a program to analyse the Bit Error Rate (BER) performance of OFDM using BPSK, QPSK and QAM modulation schemes. 2 Hours 7. Write a program to analyse the following technique. 1 (iii) Windowing Technique. 2 Hours	Cou	rse Code		Course Title)		L	Т	Р	С
Course Objectives 1.0 Course Objectives 1.0 1. To analyse the fundamentals of multipath fading and propagation models. 2. To understand the principles of multicarrier modulation. 3. To demonstrate the diversity techniques and MIMO Technology. Course Outcome Students will be able to 1. Examine and estimate wireless channel using path loss models. 2. Demonstrate the principles of multicarrier modulation. 3. Implement the diversity techniques and MIMO concept in different wireless applications. Indicative Experiments 4 Hours 1. Study how call blocking probability varies as the load on a GSM network is continuously increased using Network Simulator 4 Hours 2. To study the effect of various fading channels such as Rayleigh, Ricean and various noise channel such as AWGN and Laplacian noise 4 Hours 3. Simulate to compute the pathloss of urban, suburban and rural environment for LTE/WIMAX/WLAN system using free space, Ericsson, COST 231, ECC, Hata and SUI model 2 Hours 4. Tosting and validating principles of Pathloss in Mobile Radio 2 Hours 5. Throughput analysis of LTE network with respect to varying distance between the ENB and UE (User Equipment) 2 Hours 6 Write a program to analyse the following techniques to reduce the PAPR in OFDM. 4 Hours (i)Selective Mapping (SLM) technique. (ii) Windowing Technique. 2 Hours			Wireless and I			Lab	0			
1.0 Course Objectives 1. To analyse the fundamentals of multipath fading and propagation models. 2. To understand the principles of multicarrier modulation. 3. To demonstrate the diversity techniques and MIMO Technology. Course Outcome Students will be able to 1. Examine and estimate wireless channel using path loss models. 2. Demonstrate the principles of multicarrier modulation. 3. Implement the diversity techniques and MIMO concept in different wireless applications. Indicative Experiments 1. Study how call blocking probability varies as the load on a GSM network is continuously increased using Network Simulator 2. To study the effect of various fading channels such as Rayleigh, Ricean and various noise channel such as AWGN and Laplacian noise 3. Simulate to compute the pathloss of urban, suburban and rural environment for LTE/WIMAX/WLAN system using free space, Ericsson, COST 231, ECC, Hata and SUI model 4. Testing and validating principles of Pathloss in Mobile Radio 2 Hours between the ENB and UE (User Equipment) 2 Hours 6 Write a program to analyse the Bit Error Rate (BER) performance of OFDM using BPSK, QPSK and QAM modulation schemes. 2 Hours 7. Write a program to analyse the following techniques to reduce the PAPR in OFDM. 2 Hours 8. Comparison of ZE and MMSE MIMO receivers 4 Hours	Pre-	requisite	BECE306L, BECE	306P			Syl	labus	vers	ion
1. To analyse the fundamentals of multipath fading and propagation models. 2. To understand the principles of multicarrier modulation. 3. To demonstrate the diversity techniques and MIMO Technology. Course Outcome Students will be able to 1. Examine and estimate wireless channel using path loss models. 2. Demonstrate the principles of multicarrier modulation. 3. Implement the diversity techniques and MIMO concept in different wireless applications. Indicative Experiments 1. Study how call blocking probability varies as the load on a GSM network is continuously increased using Network Simulator 4 Hours 2. To study the effect of various fading channels such as Rayleigh, Ricean and various noise channel such as AWGN and Laplacian noise 4 Hours 3. Simulate to compute the pathloss of urban, suburban and rural environment for LTE/WIMAX/WLAN system using free space, Ericsson, COST 231, ECC, Hata and SUI model 4 Hours 4. Testing and validating principles of Pathloss in Mobile Radio 2 Hours 5. Throughput analysis of LTE network with respect to varying distance between the ENB and UE (User Equipment) 6 6. Write a program to analyse the following techniques to reduce the PAPR in OFDM. 2 Hours 9. Comparison of MRC and EGC schemes with SISO fading 2 Hours </td <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <th></th> <td></td>		•								
2. To understand the principles of multicarrier modulation. 3. To demonstrate the diversity techniques and MIMO Technology. Course Outcome Students will be able to 1. Examine and estimate wireless channel using path loss models. 2. Demonstrate the principles of multicarrier modulation. 3. Implement the diversity techniques and MIMO concept in different wireless applications. Indicative Experiments 1. Study how call blocking probability varies as the load on a GSM network is continuously increased using Network Simulator 4 Hours 2. To study the effect of various fading channels such as Rayleigh, Ricean and various noise channel such as AWGN and Laplacian noise 4 Hours 3. Simulate to compute the pathloss of urban, suburban and rural environment for LTE/WIMAX/WLAN system using free space, Ericsson, COST 231, ECC, Hata and SUI model 2 Hours 4. Testing and validating principles of Pathloss in Mobile Radio 2 Hours 5. Throughput analysis of LTE network with respect to varying distance between the ENB and UE (User Equipment) 4 Hours 6 Write a program to analyse the following techniques to reduce the PAPR in OFDM. 2 Hours 9. Comparison of XRC and EGC schemes with SISO fading 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours	Cou	rse Objectiv	/es							
3. To demonstrate the diversity techniques and MIMO Technology. Course Outcome Students will be able to 1. Examine and estimate wireless channel using path loss models. 2. Demonstrate the principles of multicarrier modulation. 3. Implement the diversity techniques and MIMO concept in different wireless applications. Indicative Experiments 1. Study how call blocking probability varies as the load on a GSM network is continuously increased using Network Simulator 4 Hours 2. To study the effect of various fading channels such as Rayleigh, Ricean and various noise channel such as AWGN and Laplacian noise 4 Hours 3. Simulate to compute the pathloss of urban, suburban and rural environment for LTE/WiMAX/WLAN system using free space, Ericsson, COST 231, ECC, Hata and SUI model 4 Hours 4. Testing and validating principles of Pathloss in Mobile Radio 2 Hours 7. Write a program to analyse the Bit Error Rate (BER) performance of OFDM using BPSK, QPSK and QAM modulation schemes. 2 Hours 7. Write a program to analyse the following techniques to reduce the PAPR in OFDM. 2 Hours 8. Comparison of XRC and EGC schemes with SISO fading 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 9. Comparison of ZF and MMSE MIMO receivers <td></td> <td></td> <td></td> <td></td> <td></td> <td>agation m</td> <td>odels</td> <td>•</td> <th></th> <td></td>						agation m	odels	•		
Course Outcome Students will be able to 1. Examine and estimate wireless channel using path loss models. 2. Demonstrate the principles of multicarrier modulation. 3. Implement the diversity techniques and MIMO concept in different wireless applications. Indicative Experiments 1. Study how call blocking probability varies as the load on a GSM network is continuously increased using Network Simulator 4 Hours 2. To study the effect of various fading channels such as Rayleigh, Ricean and various noise channel such as AWGN and Laplacian noise 4 Hours 3. Simulate to compute the pathloss of urban, suburban and rural environment for LTE/WIMAX/WLAN system using free space, Ericsson, COST 231, ECC, Hata and SUI model 4 Hours 4. Testing and validating principles of Pathloss in Mobile Radio 2 Hours 5. Throughput analysis of LTE network with respect to varying distance between the ENB and UE (User Equipment) 2 Hours 6 Write a program to analyse the Bit Error Rate (BER) performance of OFDM using BPSK, QPSK and QAM modulation schemes. 2 Hours 7. Write a program to analyse the following techniques to reduce the PAPR in OFDM. 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 9. Comparison of ZF and M										
Students will be able to 1. Examine and estimate wireless channel using path loss models. 2. Demonstrate the principles of multicarrier modulation. 3. Implement the diversity techniques and MIMO concept in different wireless applications. Indicative Experiments 1. Study how call blocking probability varies as the load on a GSM network is continuously increased using Network Simulator 4 Hours 2. To study the effect of various fading channels such as Rayleigh, Ricean and various noise channel such as AWGN and Laplacian noise 4 Hours 3. Simulate to compute the pathloss of urban, suburban and rural environment for LTE/WiMAX/WLAN system using free space, Ericsson, COST 231, ECC, Hata and SUI model 2 Hours 4. Testing and validating principles of Pathloss in Mobile Radio Propagation through Smartphone and CRFO 2 Hours 5. Throughput analysis of LTE network with respect to varying distance between the ENB and UE (User Equipment) 4 Hours 6 Write a program to analyse the following techniques to reduce the PAPR in OFDM. 2 Hours (i) Selective Mapping (SLM) technique 4 Hours 9. Comparison of XFC and MMSE MIMO receivers 4 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulation using a real-time radio simulator	3.	To demons	trate the diversity tec	hniques and N	MIMO Techno	ology.				
Students will be able to 1. Examine and estimate wireless channel using path loss models. 2. Demonstrate the principles of multicarrier modulation. 3. Implement the diversity techniques and MIMO concept in different wireless applications. Indicative Experiments 1. Study how call blocking probability varies as the load on a GSM network is continuously increased using Network Simulator 4 Hours 2. To study the effect of various fading channels such as Rayleigh, Ricean and various noise channel such as AWGN and Laplacian noise 4 Hours 3. Simulate to compute the pathloss of urban, suburban and rural environment for LTE/WiMAX/WLAN system using free space, Ericsson, COST 231, ECC, Hata and SUI model 2 Hours 4. Testing and validating principles of Pathloss in Mobile Radio Propagation through Smartphone and CRFO 2 Hours 5. Throughput analysis of LTE network with respect to varying distance between the ENB and UE (User Equipment) 4 Hours 6 Write a program to analyse the following techniques to reduce the PAPR in OFDM. 2 Hours (i) Selective Mapping (SLM) technique 4 Hours 9. Comparison of XFC and MMSE MIMO receivers 4 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulation using a real-time radio simulator		•								
1. Examine and estimate wireless channel using path loss models. 2. Demonstrate the principles of multicarrier modulation. 3. Implement the diversity techniques and MIMO concept in different wireless applications. Indicative Experiments 1. Study how call blocking probability varies as the load on a GSM network is continuously increased using Network Simulator 4 Hours 2. To study the effect of various fading channels such as Rayleigh, Ricean and various noise channel such as AWGN and Laplacian noise 4 Hours 3. Simulate to compute the pathloss of urban, suburban and rural environment for LTE/WIMAX/WLAN system using free space, Ericsson, COST 231, ECC, Hata and SUI model 2 Hours 4. Testing and validating principles of Pathloss in Mobile Radio Propagation through Smartphone and CRFO 2 Hours 5. Throughput analysis of LTE network with respect to varying distance between the ENB and UE (User Equipment) 4 Hours 6 Write a program to analyse the Bit Error Rate (BER) performance of OFDM using BPSK, QPSK and QAM modulation schemes. 2 Hours 7. Write a program to analyse the following techniques to reduce the PAPR in OFDM. 2 Hours 8. Comparison of MRC and EGC schemes with SISO fading 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulat										
2. Demonstrate the principles of multicarrier modulation. 3. Implement the diversity techniques and MIMO concept in different wireless applications. Indicative Experiments 1. Study how call blocking probability varies as the load on a GSM network is continuously increased using Network Simulator 4 Hours 2. To study the effect of various fading channels such as Rayleigh, Ricean and various noise channel such as AWGN and Laplacian noise 4 Hours 3. Simulate to compute the pathloss of urban, suburban and rural environment for LTE/WIMAX/WLAN system using free space, Ericsson, COST 231, ECC, Hata and SUI model 4 Hours 4. Testing and validating principles of Pathloss in Mobile Radio Propagation through Smartphone and CRFO 2 Hours 5. Throughput analysis of LTE network with respect to varying distance between the ENB and UE (User Equipment) 4 Hours 6 Write a program to analyse the bit Error Rate (BER) performance of OFDM using BPSK, QPSK and QAM modulation schemes. 4 Hours 7. Write a program to analyse the following techniques to reduce the PAPR in OFDM. 2 Hours (i) Selective Mapping (SLM) technique. 4 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulation using a r				shannal using	nath loss m	adala				
3. Implement the diversity techniques and MIMO concept in different wireless applications. Indicative Experiments 1. Study how call blocking probability varies as the load on a GSM network is continuously increased using Network Simulator 4 Hours 2. To study the effect of various fading channels such as Rayleigh, Ricean and various noise channel such as AWGN and Laplacian noise 4 Hours 3. Simulate to compute the pathloss of urban, suburban and rural environment for LTE/WiMAX/WLAN system using free space, Ericsson, COST 231, ECC, Hata and SUI model 4 Hours 4. Testing and validating principles of Pathloss in Mobile Radio Propagation through Smartphone and CRFO 2 Hours 5. Throughput analysis of LTE network with respect to varying distance between the ENB and UE (User Equipment) 2 Hours 6 Write a program to analyse the Bit Error Rate (BER) performance of OFDM using BPSK, QPSK and QAM modulation schemes. 2 Hours 7. Write a program to analyse the following techniques to reduce the PAPR in OFDM. 2 Hours (i)Selective Mapping (SLM) technique. 2 Hours 9. Comparison of MRC and EGC schemes with SISO fading 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours 10 HF Radio Channel Simulation using a re						Jueis.				
applications. Indicative Experiments 1. Study how call blocking probability varies as the load on a GSM network is continuously increased using Network Simulator 4 Hours 2. To study the effect of various fading channels such as Rayleigh, Ricean and various noise channel such as AWGN and Laplacian noise 4 Hours 3. Simulate to compute the pathloss of urban, suburban and rural environment for LTE/WiMAX/WLAN system using free space, Ericsson, COST 231, ECC, Hata and SUI model 4 Hours 4. Testing and validating principles of Pathloss in Mobile Radio Propagation through Smartphone and CRFO 2 Hours 5. Throughput analysis of LTE network with respect to varying distance between the ENB and UE (User Equipment) 2 Hours 6 Write a program to analyse the Bit Error Rate (BER) performance of OFDM using BPSK, QPSK and QAM modulation schemes. 2 Hours 7. Write a program to analyse the following techniques to reduce the PAPR in OFDM. 2 Hours (i) Selective Mapping (SLM) technique (ii) Windowing Technique. 2 Hours 9. Comparison of XRC and EGC schemes with SISO fading 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours 9. Compari						lifferent w	vireles	2		
Indicative Experiments 1. Study how call blocking probability varies as the load on a GSM network is continuously increased using Network Simulator 4 Hours 2. To study the effect of various fading channels such as Rayleigh, Ricean and various noise channel such as AWGN and Laplacian noise 4 Hours 3. Simulate to compute the pathloss of urban, suburban and rural environment for LTE/WiMAX/WLAN system using free space, Ericsson, COST 231, ECC, Hata and SUI model 4 Hours 4. Testing and validating principles of Pathloss in Mobile Radio Propagation through Smartphone and CRFO 2 Hours 5. Throughput analysis of LTE network with respect to varying distance between the ENB and UE (User Equipment) 4 Hours 6 Write a program to analyse the following techniques to reduce the PAPR in OFDM. (i)Selective Mapping (SLM) technique (ii) Partial Transmit (PTM) Technique. (iii) Windowing Technique. (iii) Windowing Technique. 2 Hours 9. Comparison of MRC and EGC schemes with SISO fading Partial Transmit (PTM) Technique. (iii) Windowing Technique. 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 9. Comparison of ZF and MMSE MIMO receivers 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 30 hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours 1	0.	•			oonoopt in c			.0		
1. Study how call blocking probability varies as the load on a GSM network is continuously increased using Network Simulator 4 Hours 2. To study the effect of various fading channels such as Rayleigh, Ricean and various noise channel such as AWGN and Laplacian noise 4 Hours 3. Simulate to compute the pathloss of urban, suburban and rural environment for LTE/WiMAX/WLAN system using free space, Ericsson, COST 231, ECC, Hata and SUI model 4 Hours 4. Testing and validating principles of Pathloss in Mobile Radio Propagation through Smartphone and CRFO 2 Hours 5. Throughput analysis of LTE network with respect to varying distance between the ENB and UE (User Equipment) 2 Hours 6 Write a program to analyse the Bit Error Rate (BER) performance of OFDM using BPSK, QPSK and QAM modulation schemes. 2 Hours 7. Write a program to analyse the following techniques to reduce the PAPR in OFDM. 2 Hours 8. Comparison of MRC and EGC schemes with SISO fading 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours 10 Mode of Assessment: Continuous Assessment and Final Assessment Test 30 hours										
network is continuously increased using Network Simulator 2. To study the effect of various fading channels such as Rayleigh, Ricean and various noise channel such as AWGN and Laplacian noise 4 Hours 3. Simulate to compute the pathloss of urban, suburban and rural environment for LTE/WiMAX/WLAN system using free space, Ericsson, COST 231, ECC, Hata and SUI model 4 Hours 4. Testing and validating principles of Pathloss in Mobile Radio Propagation through Smartphone and CRFO 2 Hours 5. Throughput analysis of LTE network with respect to varying distance between the ENB and UE (User Equipment) 2 Hours 6 Write a program to analyse the Bit Error Rate (BER) performance of OFDM using BPSK, QPSK and QAM modulation schemes. 4 Hours 7. Write a program to analyse the following techniques to reduce the PAPR in OFDM. (i)Selective Mapping (SLM) technique (ii) Partial Transmit (PTM) Technique. (iii) Windowing Technique. 2 Hours 8. Comparison of MRC and EGC schemes with SISO fading 9. 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 10 4 Hours 30 hours Mode of Assessment: Continuous Assessment and Final Assessment Test Recommended by Board of Studies 28-07-2022	Indic	cative Expe	riments							
2. To study the effect of various fading channels such as Rayleigh, Ricean and various noise channel such as AWGN and Laplacian noise 4 Hours 3. Simulate to compute the pathloss of urban, suburban and rural environment for LTE/WiMAX/WLAN system using free space, Ericsson, COST 231, ECC, Hata and SUI model 4 Hours 4. Testing and validating principles of Pathloss in Mobile Radio Propagation through Smartphone and CRFO 2 Hours 5. Throughput analysis of LTE network with respect to varying distance between the ENB and UE (User Equipment) 2 Hours 6 Write a program to analyse the Bit Error Rate (BER) performance of OFDM using BPSK, QPSK and QAM modulation schemes. 4 Hours 7. Write a program to analyse the following techniques to reduce the PAPR in OFDM. 2 Hours (ii) Selective Mapping (SLM) technique (ii) Partial Transmit (PTM) Technique. 2 Hours 9. Comparison of MRC and EGC schemes with SISO fading 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours 10 HF Radio Channel Simulation using a real-time radio simulato	1.	Study how	call blocking probabil	ity varies as th	ne load on a	GSM		4 H	lours	\$
Ricean and various noise channel such as AWGN and Laplacian noise 3. Simulate to compute the pathloss of urban, suburban and rural environment for LTE/WiMAX/WLAN system using free space, Ericsson, COST 231, ECC, Hata and SUI model 4 Hours 4. Testing and validating principles of Pathloss in Mobile Radio Propagation through Smartphone and CRFO 2 Hours 5. Throughput analysis of LTE network with respect to varying distance between the ENB and UE (User Equipment) 2 Hours 6 Write a program to analyse the Bit Error Rate (BER) performance of OFDM using BPSK, QPSK and QAM modulation schemes. 4 Hours 7. Write a program to analyse the following techniques to reduce the PAPR in OFDM. (i)Selective Mapping (SLM) technique (ii) Partial Transmit (PTM) Technique. (iii) Windowing Technique. 2 Hours 8. Comparison of MRC and EGC schemes with SISO fading 9. 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 10 HF Radio Channel Simulation using a real-time radio simulator 10 HF Radio Channel Simulation using a real-time radio simulator 10 HF Radio Channel Simulation using a real-time radio simulator 10 HF Radio Channel Simulation using a real-time radio simulator 10 HF Radio Channel Simulation using a real-time radio simulator 10 HF Radio Channel Simulation using a real-time radio simulator 10 HF Radio Channel Simulation using a real-time radio simulator 10 HF Radio Channel Simulation using a real-time radio simulator 10 HF Radio Channel Simulation using a real-time radio simulator 10 HF Radio Channel Simulation using a real-time radio simulator 10 HF Radio Channel Simulation										
3. Simulate to compute the pathloss of urban, suburban and rural environment for LTE/WiMAX/WLAN system using free space, Ericsson, COST 231, ECC, Hata and SUI model 4 Hours 4. Testing and validating principles of Pathloss in Mobile Radio Propagation through Smartphone and CRFO 2 Hours 5. Throughput analysis of LTE network with respect to varying distance between the ENB and UE (User Equipment) 2 Hours 6 Write a program to analyse the Bit Error Rate (BER) performance of OFDM using BPSK, QPSK and QAM modulation schemes. 4 Hours 7. Write a program to analyse the following techniques to reduce the PAPR in OFDM. 2 Hours (ii) Selective Mapping (SLM) technique (iii) Windowing Technique. 2 Hours 9. Comparison of MRC and EGC schemes with SISO fading 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours 10 HF Radio Channel Simulation using a 28-07-2022 30 hours	2.							4 H	lours	3
environment for LTE/WiMAX/WLAN system using free space, Ericsson, COST 231, ECC, Hata and SUI model 2 Hours 4. Testing and validating principles of Pathloss in Mobile Radio Propagation through Smartphone and CRFO 2 Hours 5. Throughput analysis of LTE network with respect to varying distance between the ENB and UE (User Equipment) 2 Hours 6 Write a program to analyse the Bit Error Rate (BER) performance of OFDM using BPSK, QPSK and QAM modulation schemes. 4 Hours 7. Write a program to analyse the following techniques to reduce the PAPR in OFDM. 2 Hours (i)Selective Mapping (SLM) technique (ii) Partial Transmit (PTM) Technique. 2 Hours 8. Comparison of MRC and EGC schemes with SISO fading 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours Mode of Assessment: Continuous Assessment and Final Assessment Test 30 hours Recommended by Board of Studies 28-07-2022 4-07-2022										
Ericsson, COST 231, ECC, Hata and SUI model 4. Testing and validating principles of Pathloss in Mobile Radio Propagation through Smartphone and CRFO 2 Hours 5. Throughput analysis of LTE network with respect to varying distance between the ENB and UE (User Equipment) 2 Hours 6 Write a program to analyse the Bit Error Rate (BER) performance of OFDM using BPSK, QPSK and QAM modulation schemes. 4 Hours 7. Write a program to analyse the following techniques to reduce the PAPR in OFDM. 2 Hours (i)Selective Mapping (SLM) technique (ii) Partial Transmit (PTM) Technique. 2 Hours 8. Comparison of MRC and EGC schemes with SISO fading 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours Mode of Assessment: Continuous Assessment and Final Assessment Test 30 hours	3.							4 H	lours	\$
4. Testing and validating principles of Pathloss in Mobile Radio 2 Hours Propagation through Smartphone and CRFO 2 Hours 5. Throughput analysis of LTE network with respect to varying distance between the ENB and UE (User Equipment) 2 Hours 6 Write a program to analyse the Bit Error Rate (BER) performance of OFDM using BPSK, QPSK and QAM modulation schemes. 4 Hours 7. Write a program to analyse the following techniques to reduce the PAPR in OFDM. 2 Hours (i)Selective Mapping (SLM) technique 4 Hours (ii) Partial Transmit (PTM) Technique. 4 Hours 9. Comparison of MRC and EGC schemes with SISO fading 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours Mode of Assessment: Continuous Assessment and Final Assessment Test 30 hours					Ų	free spa	ace,			
Propagation through Smartphone and CRFO 5. Throughput analysis of LTE network with respect to varying distance between the ENB and UE (User Equipment) 2 Hours 6 Write a program to analyse the Bit Error Rate (BER) performance of OFDM using BPSK, QPSK and QAM modulation schemes. 4 Hours 7. Write a program to analyse the following techniques to reduce the PAPR in OFDM. (i)Selective Mapping (SLM) technique (ii) Partial Transmit (PTM) Technique. (iii) Windowing Technique. 2 Hours 8. Comparison of MRC and EGC schemes with SISO fading 9. 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 10 HF Radio Channel Simulation using a real-time radio simulator Mode of Assessment: Continuous Assessment and Final Assessment Test Recommended by Board of Studies 28-07-2022	4					ia		21	Jours	
5. Throughput analysis of LTE network with respect to varying distance between the ENB and UE (User Equipment) 2 Hours 6 Write a program to analyse the Bit Error Rate (BER) performance of OFDM using BPSK, QPSK and QAM modulation schemes. 4 Hours 7. Write a program to analyse the following techniques to reduce the PAPR in OFDM. 2 Hours (i)Selective Mapping (SLM) technique (ii) Partial Transmit (PTM) Technique. 2 Hours 8. Comparison of MRC and EGC schemes with SISO fading 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours Total Laboratory Hours Mode of Assessment: Continuous Assessment and Final Assessment Test Recommended by Board of Studies 28-07-2022	4.				i woolle Rau	10		2 Г	Tours	5
between the ENB and UE (User Equipment) 4 Hours 6 Write a program to analyse the Bit Error Rate (BER) performance of OFDM using BPSK, QPSK and QAM modulation schemes. 4 Hours 7. Write a program to analyse the following techniques to reduce the PAPR in OFDM. (i)Selective Mapping (SLM) technique (ii) Partial Transmit (PTM) Technique. (iii) Windowing Technique. 2 Hours 8. Comparison of MRC and EGC schemes with SISO fading 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours Total Laboratory Hours Mode of Assessment: Continuous Assessment and Final Assessment Test 30 hours	5				ect to varvin	n distance	2	21	Hours	
6 Write a program to analyse the Bit Error Rate (BER) performance of OFDM using BPSK, QPSK and QAM modulation schemes. 4 Hours 7. Write a program to analyse the following techniques to reduce the PAPR in OFDM. (i)Selective Mapping (SLM) technique (ii) Partial Transmit (PTM) Technique. (iii) Windowing Technique. 2 Hours 8. Comparison of MRC and EGC schemes with SISO fading 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours Total Laboratory Hours 30 hours Mode of Assessment: Continuous Assessment and Final Assessment Test Recommended by Board of Studies 28-07-2022	0.					g distanto	5	21	Iours	,
OFDM using BPSK, QPSK and QAM modulation schemes. 2 Hours 7. Write a program to analyse the following techniques to reduce the PAPR in OFDM. 2 Hours (i)Selective Mapping (SLM) technique 4 Hours (ii) Partial Transmit (PTM) Technique. 4 Hours (iii) Windowing Technique. 4 Hours 9. Comparison of MRC and EGC schemes with SISO fading 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours Mode of Assessment: Continuous Assessment and Final Assessment Test 30 hours	6				(BER) perfor	mance of	F	4 F	lours	3
PAPR in OFDM. (i)Selective Mapping (SLM) technique (ii) Partial Transmit (PTM) Technique. (iii) Windowing Technique. (iii) Windowing Technique. 2 Hours 8. Comparison of MRC and EGC schemes with SISO fading 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours Total Laboratory Hours 30 hours Mode of Assessment: Continuous Assessment and Final Assessment Test Recommended by Board of Studies 28-07-2022										
(i) Selective Mapping (SLM) technique (ii) Partial Transmit (PTM) Technique. (iii) Windowing Technique. 2 Hours 8. Comparison of MRC and EGC schemes with SISO fading 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours Total Laboratory Hours 30 hours Mode of Assessment: Continuous Assessment and Final Assessment Test Recommended by Board of Studies 28-07-2022	7.	Write a pro	ogram to analyse th				the	2 H	lours	\$
(ii) Partial Transmit (PTM) Technique. (iii) Windowing Technique. 8. Comparison of MRC and EGC schemes with SISO fading 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours Total Laboratory Hours 30 hours Mode of Assessment: Continuous Assessment and Final Assessment Test Recommended by Board of Studies 28-07-2022		-		_						
(iii) Windowing Technique. 2 Hours 8. Comparison of MRC and EGC schemes with SISO fading 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours Total Laboratory Hours 30 hours Mode of Assessment: Continuous Assessment and Final Assessment Test Recommended by Board of Studies 28-07-2022		.,		•						
8. Comparison of MRC and EGC schemes with SISO fading 2 Hours 9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours Total Laboratory Hours Mode of Assessment: Continuous Assessment and Final Assessment Test Recommended by Board of Studies		· · ·	()	nique.						
9. Comparison of ZF and MMSE MIMO receivers 4 Hours 10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours Total Laboratory Hours 30 hours Mode of Assessment: Continuous Assessment and Final Assessment Test Recommended by Board of Studies 28-07-2022	0		<u> </u>						1	
10 HF Radio Channel Simulation using a real-time radio simulator 2 Hours Total Laboratory Hours 30 hours Mode of Assessment: Continuous Assessment and Final Assessment Test Recommended by Board of Studies 28-07-2022										
Total Laboratory Hours30 hoursMode of Assessment: Continuous Assessment and Final Assessment TestRecommended by Board of Studies28-07-2022										
Mode of Assessment: Continuous Assessment and Final Assessment TestRecommended by Board of Studies28-07-2022							lire			
Recommended by Board of Studies 28-07-2022	Mode	e of Assess	ment: Continuous Ass	sessment and				50	nour	و
					1 1101 / 00000		51			
	-			No. 67	Date	08-08-2	022			

Course Objectives 1. To understand the principles of optical fibers and their signal degra 2. To familiarize with the fundamentals of optical sources and communications. 3. To learn WDM techniques and its components in concommunication systems. Course Outcomes At the end of the course, the students will be able to: 1. List the fundamental optical laws, structures and waveguides. 2. Comprehend the various signal degradation in the fiber optical corr 3. Design the optical transmitters and receivers and evaluate their pet 4. Estimate the system requirements for point to point communications 5. Examine the significance of WDM techniques and their applications 6. Comprehend and analyse the performance of the various optical at Module:1 Optical Fiber: Structures, Waveguides Key elements of optical fiber system-Ray optics, Mode theory, Obscription, Fiber Types - specialty fibers. Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending losses, Dispersion-Mat Dispersion, Polarization Mode Dispersion, Intermodal dispersion, Mi Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPN Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Modulators - Direct and ex Transmitter Design. M	adation. detecto atempora nmunica	0 version 1.0 ors used	
Pre-requisite BECE306L, BECE306P Sy Course Objectives 1. To understand the principles of optical fibers and their signal degra 2. To familiarize with the fundamentals of optical sources and communications. 3. To learn WDM techniques and its components in cont communication systems. Course Outcomes	rilabus 1 adation. detecto atempora	version 1.0 ors used	
Course Objectives 1. To understand the principles of optical fibers and their signal degra 2. To familiarize with the fundamentals of optical sources and communications. 3. To learn WDM techniques and its components in concommunication systems. Course Outcomes At the end of the course, the students will be able to: 1. List the fundamental optical laws, structures and waveguides. 2. Comprehend the various signal degradation in the fiber optical corr 3. Design the optical transmitters and receivers and evaluate their pet 4. Estimate the system requirements for point to point communication 5. Examine the significance of WDM techniques and their applications 6. Comprehend and analyse the performance of the various optical at Module:1 Optical Fiber: Structures, Waveguides Key elements of optical fiber system-Ray optics, Mode theory, Obscription, Fiber Types - specialty fibers. Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending losses, Dispersion-Mat Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPN Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation B: DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and ex Transmitter Design. Module:4<	adation. detecto atempora nmunica	1.0 ors used	
 To understand the principles of optical fibers and their signal degra To familiarize with the fundamentals of optical sources and communications. To learn WDM techniques and its components in contemunication systems. Course Outcomes At the end of the course, the students will be able to: List the fundamental optical laws, structures and waveguides. Comprehend the various signal degradation in the fiber optical com Design the optical transmitters and receivers and evaluate their pet Estimate the system requirements for point to point communications Examine the significance of WDM techniques and their applications. Comprehend and analyse the performance of the various optical at Module:1 Optical Fiber: Structures, Waveguides Key elements of optical fiber system-Ray optics, Mode theory, Opescription, Fiber Types - specialty fibers. Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending losses, Dispersion-Mat Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPN Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation B: DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and ex Transmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNR, Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performaterror, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budge System performance- Attenuation, Dispersion measurements-OTDR.	adation. detecto itempora itempora	ors used	
 To understand the principles of optical fibers and their signal degra To familiarize with the fundamentals of optical sources and communications. To learn WDM techniques and its components in contemunication systems. Course Outcomes At the end of the course, the students will be able to: List the fundamental optical laws, structures and waveguides. Comprehend the various signal degradation in the fiber optical com Design the optical transmitters and receivers and evaluate their pet Estimate the system requirements for point to point communications Examine the significance of WDM techniques and their applications. Comprehend and analyse the performance of the various optical at Module:1 Optical Fiber: Structures, Waveguides Key elements of optical fiber system-Ray optics, Mode theory, Opescription, Fiber Types - specialty fibers. Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending losses, Dispersion-Mat Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPN Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation B: DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and ex Transmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNR, Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performaterror, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budge System performance- Attenuation, Dispersion measurements-OTDR.	detecto itempora nmunica	ors used	
 To familiarize with the fundamentals of optical sources and communications. To learn WDM techniques and its components in concommunication systems. Course Outcomes At the end of the course, the students will be able to: List the fundamental optical laws, structures and waveguides. Comprehend the various signal degradation in the fiber optical corrigination in the optical transmitters and receivers and evaluate their performance of the various optical and evaluate their performance of the various optical and analyse the performance of the various optical and comprehend and analyse the performance of the various optical and Module:1 Optical Fiber: Structures, Waveguides Key elements of optical fiber system-Ray optics, Mode theory, Opescription, Fiber Types - specialty fibers. Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending losses, Dispersion-Mat Dispersion, Polarization Mode Dispersion, Intermodal dispersion, Mi Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPN Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation B: DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and ex Transmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNR, Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performa error, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budge System performance- Attenuation, Dispersion measurements-OTDR. 	detecto itempora nmunica	ors used	
 communications. 3. To learn WDM techniques and its components in concommunication systems. 3. To learn WDM techniques and its components in concommunication systems. Course Outcomes At the end of the course, the students will be able to: List the fundamental optical laws, structures and waveguides. Comprehend the various signal degradation in the fiber optical corr Design the optical transmitters and receivers and evaluate their per Estimate the system requirements for point to point communication Examine the significance of WDM techniques and their applications Comprehend and analyse the performance of the various optical at Module:1 Optical Fiber: Structures, Waveguides Key elements of optical fiber system-Ray optics, Mode theory, Opescription, Fiber Types - specialty fibers. Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending losses, Dispersion-Mat Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPN Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation B: DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and extransmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNR, Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performateror, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budge System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components	nmunica		
 To learn WDM techniques and its components in concommunication systems. Course Outcomes At the end of the course, the students will be able to: List the fundamental optical laws, structures and waveguides. Comprehend the various signal degradation in the fiber optical corrigination in the system requirements for point to point communication is. Examine the significance of WDM techniques and their applications. Comprehend and analyse the performance of the various optical and analyse the performance of the various optical and their applications. Comprehend and analyse the performance of the various optical and their applications. Comprehend and analyse the performance of the various optical and their applications. Module:1 Optical Fiber: Structures, Waveguides Key elements of optical fiber system-Ray optics, Mode theory, Opescription, Fiber Types - specialty fibers. Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending losses, Dispersion-Matt Dispersion, Polarization Mode Dispersion, Intermodal dispersion, M. Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPN Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation B: DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and extransmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNR: Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performaterror, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budge System p	nmunica	ary opti	ical
communication systems. Course Outcomes At the end of the course, the students will be able to: 1. List the fundamental optical laws, structures and waveguides. 2. Comprehend the various signal degradation in the fiber optical corr 3. Design the optical transmitters and receivers and evaluate their per 4. Estimate the system requirements for point to point communication 5. Examine the significance of WDM techniques and their applications 6. Comprehend and analyse the performance of the various optical and Module:1 Optical Fiber: Structures, Waveguides Key elements of optical fiber system-Ray optics, Mode theory, O Description, Fiber Types - specialty fibers. Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending losses, Dispersion-Mat Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPN Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Modulators - Direct and ex Transmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNR Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performa er	nmunica		
Course Outcomes At the end of the course, the students will be able to: 1. List the fundamental optical laws, structures and waveguides. 2. Comprehend the various signal degradation in the fiber optical corr 3. Design the optical transmitters and receivers and evaluate their per 4. Estimate the system requirements for point to point communication 5. Examine the significance of WDM techniques and their applications 6. Comprehend and analyse the performance of the various optical and Module:1 Optical Fiber: Structures, Waveguides Key elements of optical fiber system-Ray optics, Mode theory, Opescription, Fiber Types - specialty fibers. Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending losses, Dispersion-Mat Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPN Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation B: DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and ex Transmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNR. Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performaterror, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements <t< td=""><td>rformar</td><td></td><td></td></t<>	rformar		
At the end of the course, the students will be able to: 1. List the fundamental optical laws, structures and waveguides. 2. Comprehend the various signal degradation in the fiber optical corr 3. Design the optical transmitters and receivers and evaluate their per 4. Estimate the system requirements for point to point communication 5. Examine the significance of WDM techniques and their applications 6. Comprehend and analyse the performance of the various optical at Module:1 Optical Fiber: Structures, Waveguides Key elements of optical fiber system-Ray optics, Mode theory, O Description, Fiber Types - specialty fibers. Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending losses, Dispersion-Mat Dispersion, Polarization Mode Dispersion, Intermodal dispersion, Mu Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPN Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation B: DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and ex Transmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNR: Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performa error, Bit Error rate, Eye-Diagram. <td>rformar</td> <td></td> <td></td>	rformar		
At the end of the course, the students will be able to: 1. List the fundamental optical laws, structures and waveguides. 2. Comprehend the various signal degradation in the fiber optical corr 3. Design the optical transmitters and receivers and evaluate their per 4. Estimate the system requirements for point to point communication 5. Examine the significance of WDM techniques and their applications 6. Comprehend and analyse the performance of the various optical at Module:1 Optical Fiber: Structures, Waveguides Key elements of optical fiber system-Ray optics, Mode theory, O Description, Fiber Types - specialty fibers. Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending losses, Dispersion-Mat Dispersion, Polarization Mode Dispersion, Intermodal dispersion, Mu Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPN Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation B: DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and ex Transmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNR: Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performa error, Bit Error rate, Eye-Diagram. <td>rformar</td> <td></td> <td></td>	rformar		
 List the fundamental optical laws, structures and waveguides. Comprehend the various signal degradation in the fiber optical corr Design the optical transmitters and receivers and evaluate their per Estimate the system requirements for point to point communication Examine the significance of WDM techniques and their applications Comprehend and analyse the performance of the various optical an Module:1 Optical Fiber: Structures, Waveguides Key elements of optical fiber system-Ray optics, Mode theory, Opescription, Fiber Types - specialty fibers. Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending losses, Dispersion-Mat Dispersion, Polarization Mode Dispersion, Intermodal dispersion, Mu Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPN Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation Bit DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and ex Transmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNR Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performaterror, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budges System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components 	rformar		
 Comprehend the various signal degradation in the fiber optical corr Design the optical transmitters and receivers and evaluate their per Estimate the system requirements for point to point communication Examine the significance of WDM techniques and their applications Comprehend and analyse the performance of the various optical and Module:1 Optical Fiber: Structures, Waveguides Key elements of optical fiber system-Ray optics, Mode theory, Opescription, Fiber Types - specialty fibers. Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending losses, Dispersion-Mat Dispersion, Polarization Mode Dispersion, Intermodal dispersion, Mu Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPN Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation Bid DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and extransmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNR Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performaterror, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budge System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components 	rformar		
 Design the optical transmitters and receivers and evaluate their per 4. Estimate the system requirements for point to point communication 5. Examine the significance of WDM techniques and their applications 6. Comprehend and analyse the performance of the various optical and module:1 Optical Fiber: Structures, Waveguides Key elements of optical fiber system-Ray optics, Mode theory, 0 Description, Fiber Types - specialty fibers. Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending Iosses, Dispersion-Mat Dispersion, Polarization Mode Dispersion, Intermodal dispersion, Mu Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPN Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation Bi DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and extransmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNR Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performaterror, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budge System performance- Attenuation, Dispersion measurements-OTDR. 	rformar	ation	
 4. Estimate the system requirements for point to point communication 5. Examine the significance of WDM techniques and their applications 6. Comprehend and analyse the performance of the various optical and Module:1 Optical Fiber: Structures, Waveguides Key elements of optical fiber system-Ray optics, Mode theory, Opescription, Fiber Types - specialty fibers. Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending losses, Dispersion-Mat Dispersion, Polarization Mode Dispersion, Intermodal dispersion, Mu Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPN Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation Bi DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and ex Transmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNR, Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performaterror, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budge system performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components 			
 Examine the significance of WDM techniques and their applications Comprehend and analyse the performance of the various optical and Module:1 Optical Fiber: Structures, Waveguides Key elements of optical fiber system-Ray optics, Mode theory, Opescription, Fiber Types - specialty fibers. Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending losses, Dispersion-Matt Dispersion, Polarization Mode Dispersion, Intermodal dispersion, Mu Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPN Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation Bi DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and extransmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNR, Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performaterror, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budge System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components 	1.	1003.	
 Comprehend and analyse the performance of the various optical and module:1 Optical Fiber: Structures, Waveguides Key elements of optical fiber system-Ray optics, Mode theory, Opescription, Fiber Types - specialty fibers. Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending losses, Dispersion-Matting Dispersion, Polarization Mode Dispersion, Intermodal dispersion, Mattenuation-Absorption, Scattering, Nonlinear Optical Effects- SRS, SBS, SPN Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation BaDFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and extransmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNRS Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performaterror, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budge System performance- Attenuation, Dispersion measurements-OTDR. 			
Module:1 Optical Fiber: Structures, Waveguides Key elements of optical fiber system-Ray optics, Mode theory, Opescription, Fiber Types - specialty fibers. Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending losses, Dispersion-Mat Dispersion, Polarization Mode Dispersion, Intermodal dispersion, Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation B: DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and ex Transmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNRe Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performaterror, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budge: System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components		S	
Key elements of optical fiber system-Ray optics, Mode theory, Opescription, Fiber Types - specialty fibers. Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending losses, Dispersion-Mat Dispersion, Polarization Mode Dispersion, Intermodal dispersion, Mode Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPM Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation Bartansmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNRA Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performaterror, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budger System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components		<u>o.</u>	
Key elements of optical fiber system-Ray optics, Mode theory, Opescription, Fiber Types - specialty fibers. Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending losses, Dispersion-Mat Dispersion, Polarization Mode Dispersion, Intermodal dispersion, Mode Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPM Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation Bartansmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNRA Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performaterror, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budger System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components		6 hou	ure
Description, Fiber Types - specialty fibers. Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending losses, Dispersion-Mat Dispersion, Polarization Mode Dispersion, Intermodal dispersion, Mode Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPN Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation Bi DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and ex Transmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNR Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performa error, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budge System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components	Geome		
Module:2 Signal Degradation Attenuation-Absorption, Scattering, Bending Iosses, Dispersion-Mat Dispersion, Polarization Mode Dispersion, Intermodal dispersion, Mat Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPN Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation Ba DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and ex Transmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNRA Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performa error, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budge System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components	Geome	incal-Opi	1105
Attenuation-Absorption, Scattering, Bending Iosses, Dispersion-Mat Dispersion, Polarization Mode Dispersion, Intermodal dispersion, Mat Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPN Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation Ba DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and ex Transmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNRA Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performa error, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budge: System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components			
Attenuation-Absorption, Scattering, Bending Iosses, Dispersion-Mat Dispersion, Polarization Mode Dispersion, Intermodal dispersion, Mat Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPN Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation Ba DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and ex Transmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNRA Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performa error, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budge: System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components		7 hou	
Dispersion, Polarization Mode Dispersion, Intermodal dispersion, Mode Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPM Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation Bab DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and ex Transmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNR Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performaterror, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budger System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components	torial		
Dispersion-Induced Limitations, Nonlinear Optical Effects- SRS, SBS, SPM Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation Ba DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and ex Transmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNRA Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performa error, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budget System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components			
Module:3 Optical Transmitters Sources: LED-Structures-Quantum Efficiency, Power and Modulation Ba DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and ex Transmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNRe Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performa error, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budget System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components			ne,
Sources: LED-Structures-Quantum Efficiency, Power and Modulation Bill DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and ex Transmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNReceiver, Quantum limit, Sensitivity Degradation, Receiver Performaterror, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budget System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components		I, FVVIVI.	
Sources: LED-Structures-Quantum Efficiency, Power and Modulation Bill DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and ex Transmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNReceiver, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budge: System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components			
DFB, DBR, VCSEL, Quantum Efficiency, Modulators - Direct and extransmitter Design. Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNResensitivity, Quantum limit, Sensitivity Degradation, Receiver Performaterror, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budget System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components	<u> </u>	<u>6 hou</u>	
Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNRA Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performa error, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budget System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components			
Module:4 Optical Receivers Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNRA Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performa error, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budget System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components	ternal	modulato	ors,
Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNR Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performa error, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budget System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components			
Photodetector-PIN, APD, Receiver Design, Receiver Noise-CNR Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performa error, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budget System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components			
Sensitivity, Quantum limit, Sensitivity Degradation, Receiver Performate error, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budger System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components		7 hou	
error, Bit Error rate, Eye-Diagram. Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budger System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components	.&SNR),	, Receiv	
Module:5 Digital links and Measurements Digital links: Point-to-Point Links-System Consideration-Link power budge System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components	ance-Pr	obability	of
Digital links: Point-to-Point Links-System Consideration-Link power budger System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components			
Digital links: Point-to-Point Links-System Consideration-Link power budger System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components			
System performance- Attenuation, Dispersion measurements-OTDR. Module:6 WDM Concepts and Components		<u>6 hou</u>	
Module:6 WDM Concepts and Components	t-Rise t	ime budg	get,
Overview of MOM Elber Courses Mene and a course of the		7 hou	
Overview of WDM, Fiber Coupler-Wave guide coupler-Star couple			
Circulators - Fiber Bragg Grating, Filters, Multiplexers, WDM System Pe	erforma	nce Issue	es-
Compensation techniques.			
Module:7 Optical Amplifiers		4 hoւ	urs
Semiconductor Optical Amplifiers, Raman Amplifiers, Erbium-Doped Fiber		iers.	
· · · ·	 r Amplif		
Module:8 Contemporary Issues	 r Amplif	2 hou	
	r Amplif		urs

					Total L	ecture hours:	45 hours			
Tex	kt Book	(s)								
1.	Gerd	Keiser, Optical	Fiber C	ommunicatio	ns, 2017	7, 5 th Edition,	McGraw Hill			
	Education, India.									
Re	ference	Books								
1.	Conwa	Conway, E., Optical Fiber Communications Principles and Practice, 2018, 1 st Edition,								
	ED-TE	ED-TECH Press, United Kingdom.								
2.	Singal	T. L. Optical	Fiber Co	mmunication	s: Princi	oles and Appli	cations, 2017,			
	Cambr	idge University F	Press, Indi	a.						
3.	Keiser	, G., Fiber Optic	Communi	cations, 2021	, 1 st Editio	on, Springer, Si	ngapore			
Мо	de of E	Evaluation: Cont	inuous As	ssessment T	est, Digi	tal Assignment,	, Quiz and Final			
Ass	sessmer	nt Test			-	-				
Re	commer	nded by Board of	Studies	28-07-2022						
Ар	proved b	by Academic Cou	uncil	No. 67	Date	08-08-2022				

Course Code		Course Title			L	Т	Ρ	С
BECE318P	Optical Fib	er Communic	ations Lab		0	0	2	1
Pre-requisite	BECE306L, BECE3	306P			Syl	abus	vers	sion
						1.0)	
Course Object	ives							
	n the optical communic							
	arize wavelength divisi			and asso	ociate	comp	oner	nts.
3. To estimate the link power budget and rise time budget.								
Course Outco								
	e course, the students							
	the optical link and es							
	the optical amplifiers a							
3. Design a	nd analyse the WDM	techniques and	componen	tS.				
Indiactiva Exp	orimonto							
1. Design of c	optical transmission lir	ok to onolygo	the DED no	rformono	o for	6	hour	<u> </u>
	ie coding techniques,					0	nour	5
length of th	. .	modulation b		avelengin	anu			
0	d analysis of gain,	noise figure a	and saturati	ion of or	tical	4	hour	'S
	EDFA, SOA.	noise ngure e			noui	• •	liea	•
	ce analysis of wav	elength divisi	on multiple	exing (W	DM)	8	hour	S
techniques	and passive optical	components (Optical cou	ipler, Isol	ator,			
Circulator,	FBG & OADM)	-	-	-				
4. Analyse the	e different dispersion of	compensation t	techniques	and fiber	non-	8	hour	S
linear effec								
	point-to-point optical sy		e the power	and rise-	time	4	hour	S
budget and	detect the fiber faults	using OTDR.						
			Total Labo			30	hou	rs
	sment: Continuous As		Final Asses	sment Te	st			
	by Board of Studies	28-07-2022						
Approved by Ac	cademic Council	No. 67	Date	08-08-20	22			

Course Code	Course Title	L	T	Ρ	С
BECE401L	Computer Communications and Networks	3	0	0	3
Pre-requisite	BECE306L, BECE306P	Syll	abus	Versi	on
			1.0)	
Course Objectiv					
	arize the students with the basic terminologies and co	oncepts	s of O	SI, TO	CP/IP
	model and functions of various layers.				
	the students understand the design and performa unctioning of LANs and WLANs.	nce is	sues a	assoc	lated
	uce the students to analyze the IP addressing and l	hasics	of trai	nenor	t and
	n layer protocols.	000100		ispoi	t and
Course Outcom	e:				
The students will	be able to:				
	basic concepts of OSI and TCP reference mode	l in co	ompute	er ne	twork
	and internetworking devices.	-			
	the LAN bridges such as Transparent Bridges and So			g Brid	Iges
	e error & flow control mechanism and medium acces the network with IP address and find the shortest pa		01.		
	ransport layer protocols and congestion control algor				
	nd the fundamentals of DNS, FTP, SMTP, HTTP and		rk sec	uritv.	
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	······································			<u></u>	
	yered Network Architecture				nours
	a Networks – Network Topologies –Switching Techr				
	etworks – ISO/OSI Reference Model – TCP/IP N	Nodel	– Ado	dressi	ing –
Network perform	ance metrics.				
Module:2 Int	tornotworking dovices			5 6	ours
	ternetworking devices is – Switches – Bridges: Transparent and Source Rol	uting	Pouto		lours
Trepeaters – Hub	s – Switches – Dinges. Transparent and Source Not	Jung-	Noulei	5.	
Module:3 Da	ata Link Layer- Logical Link Control			6 h	ours
	echniques – ARQ protocols – Framing – HDLC –Poi	nt to P	oint pr		
Module:4 Da	ata Link Layer- Medium Access Control			8 h	nours
	Protocols – Ethernet (IEEE 802.3) – Wireless				2.11);
Scheduling appro	paches to MAC – Controlled Access – Token Bus/Rin	ıg (IEE	E 802	.4/5).	
Modulo 5 No	twork Lover			0 6	
	e twork Layer - IP Addressing – Subnetting – IPv4 and IPv6– Rou	uting	Dictor		ours
	outing – Routing Protocols.	ning –	Distai	ice v	ecioi
Module:6 Tr	ansport Layer			5 h	ours
	ted and Connectionless Service – User Datagram F	rotoco	I – Tra	ansmi	ssion
	– Congestion Control – QoS parameters.				
	oplication Layer		<u> </u>		ours
	ystem – Simple Mail Transfer Protocol – File Transfe				
	bl; Network Security and Cryptography– Virtual LA and Trends – Private Network.	N – VI	- NI	Enter	prise
	and Henus - Frivale Nelwork.				
Module:8 Co	ontemporary Issues			2 h	ours
	······································	I			
	Total Lecture	:		45 h	nours
· · ·		.			

Text B	ook(s)						
1.	Alberto Leon-Garcia, Communic	Alberto Leon-Garcia, Communication Networks, 2017, 2 nd Edition, Tata McGraw-Hill,					
	USA.						
Refere	Reference Books						
1.	Dimitri P. Bertsekas & Robert Gallager, Data Networks, 2013, 2 nd Edition, Prentice						
	Hall, USA.						
2.	W. Stallings, Data and Computer Communications, 2017, 10 th Edition, Pearson						
	Prentice Hall, USA.						
3.	Behrouz A Forouzan, Data Com	munications	and Network	king, 2017, 5 th Edition, Tata			
	McGraw-Hill, USA.			-			
Mode	of Evaluation: Continuous Asse	ssment Test	, Digital As	signment, Quiz and Final			
Assess	sment Test		-	-			
Recom	mended by Board of Studies	14-05-2022					
Approv	Approved by Academic Council No. 66 Date 16-06-2022						

Course Code		Course Title				Т	Ρ	С
BECE401P	Computer Comn		d Networks	Lab	0	0	2	1
Pre-requisite	BECE306L, BECE				Svlla	bus '	_	ion
	,				•]	1.0		
Course Objectiv	/es:			I		-		
1. To familia	rize the students with	the basic term	inologies an	d con	cepts o	of OS	I, TC	P/IP
reference	model and functions	of various layer	S.					
2. To make	the students unders	tand the desig	n and perfo	rmanc	e issu	es as	ssoci	ated
with the fu	e functioning of LANs and WLANs.							
	uce the students to a		ddressing a	nd ba	sics of	trans	sport	and
	n layer protocols.	5	0				•	
Course Outcom								
The students will								
	he performance of ir	nternetworking	devices and	netw	ork top	oologi	es u	ising
simulatior								
2. Analyze t	the performance of e	error detection	and medium	n acce	ess co	ntrol	proto	cols
using sim	ulation tools.							
3. Implemer	nt and analyze the ro	outing algorithm	ns and trans	sport l	ayer p	rotoco	ols u	ising
simulatior	ι tools.							
List of Challong	ing Experiments (In	dicativa)						
	ulation and performa	/	(in torms (D	6 h	ours	
		etwork topolog		queui		0 11	ours	,
	hanisms.		gies and	queun	''y			
	lyze the spanning tre	e algorithm by	varving the	nrior	itv	4 h	ours	
	ing the switches.	o agonann by	varynig tre	, buoi			ouro	'
	ulation of framing and	error detection	schemes.			4 h	ours	
	ulation and performa			Mediu	im		ours	
	ess Control schemes.							
	ementation of various	s routing algorit	hms to com	pute t	ne	6 h	ours	;
shortest path.						•		
	lysis of transport layer	protocols and	congestion c	control	.	6 h	ours	;
· · ·	<u> </u>		I Laborator			30 ł	nours	s
Mode of Assessr	nent: Continuous Ass	essment and Fi	nal Assessm	nent T	est			
Recommended by Board of Studies 14-05-2022								
Recommended b	y board of Studies	14-05-2022						

Pre-requisite BCSE101E Syllabus	Т	P	С
Course Objectives 1. To emphasize the scope and significance of Data Structures and Algorithms for world problems. 2. To enable a good understanding of the fundamental data structures. 3. To enable a study of algorithms for various kinds of applications. 4. To impart skill to theoretically analyze and evaluate performance of algorithms Course Outcome 4. At the end of the course, students will be able to 1. 1. Identify a suitable data structure technique that can solve a given problem. 2. Design an efficient algorithm for a given problem statement. For given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Inalysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Implementing on Strings Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:3 Algorithms on Strings Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floy	0	2	3
Course Objectives 1. To emphasize the scope and significance of Data Structures and Algorithms for world problems. 2. To enable a good understanding of the fundamental data structures. 3. To enable a study of algorithms for various kinds of applications. 4. To impart skill to theoretically analyze and evaluate performance of algorithms Course Outcome At the end of the course, students will be able to 1. Identify a suitable data structure technique that can solve a given problem. 2. Design an efficient algorithm for a given problem statement. For given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, numetc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithm solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms on Strings Pattern Matching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:3 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Pattern Matching- KMP, Rabin-karp algorithm, Starpairs (Floyd & Warshal's)	is ve	ersi	on
1. To emphasize the scope and significance of Data Structures and Algorithms for world problems. 2. To enable a good understanding of the fundamental data structures. 3. To enable a study of algorithms for various kinds of applications. 4. To impart skill to theoretically analyze and evaluate performance of algorithms Course Outcome At the end of the course, students will be able to 1. Identify a suitable data structure technique that can solve a given problem. 2. Design an efficient algorithm for a given problem statement. For given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, numetc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithms sort, Quick Sort. Module:3 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS,	1.0		
world problems. 2. To enable a good understanding of the fundamental data structures. 3. To enable a study of algorithms for various kinds of applications. 4. To impart skill to theoretically analyze and evaluate performance of algorithms Course Outcome At the end of the course, students will be able to 1. Identify a suitable data structure technique that can solve a given problem. 2. Design an efficient algorithm for a given problem statement. For given problet develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, nuretc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming.			
2. To enable a good understanding of the fundamental data structures. 3. To enable a study of algorithms for various kinds of applications. 4. To impart skill to theoretically analyze and evaluate performance of algorithms Course Outcome At the end of the course, students will be able to 1. Identify a suitable data structure technique that can solve a given problem. 2. Design an efficient algorithm for a given problem statement. For given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, nuretc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms on Strings Pattern Matching- Insertion sort, Binary Search, Divide and Conquer algorithms sort, Quick Sort. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming.	or rea	al	
3. To enable a study of algorithms for various kinds of applications. 4. To impart skill to theoretically analyze and evaluate performance of algorithms Course Outcome At the end of the course, students will be able to 1. Identify a suitable data structure technique that can solve a given problem. 2. Design an efficient algorithm for a given problem statement. For given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, nuretc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms on Strings Pattern Matching- Insertion sort, Binary Search, Divide and Conquer algorithms sort, Quick Sort. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming.			
4. To impart skill to theoretically analyze and evaluate performance of algorithms Course Outcome At the end of the course, students will be able to 1. Identify a suitable data structure technique that can solve a given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, nur etc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming.			
Course Outcome At the end of the course, students will be able to 1. Identify a suitable data structure technique that can solve a given problem. 2. Design an efficient algorithm for a given problem statement. For given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, nuretc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I <td></td> <td></td> <td></td>			
At the end of the course, students will be able to 1. Identify a suitable data structure technique that can solve a given problem. 2. Design an efficient algorithm for a given problem statement. For given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, nuetc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:3 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7	i		
At the end of the course, students will be able to 1. Identify a suitable data structure technique that can solve a given problem. 2. Design an efficient algorithm for a given problem statement. For given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, nuetc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization <t< td=""><td></td><td></td><td></td></t<>			
1. Identify a suitable data structure technique that can solve a given problem. 2. Design an efficient algorithm for a given problem statement. For given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, numetc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Introduction to NP Completeness, Search Heuristics,			
 2. Design an efficient algorithm for a given problem statement. For given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, numetc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:5 Graph Algorithms Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. 			
develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, nuretc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I	em		
etc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming.			
 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I 	umbe	ers	
 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics			
6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I	5	ho	
Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I	5	noi	112
Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I	3	ho	ire
Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, Interview of the search of the s			
Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search,	JIOTT		,
Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I	3	ho	ırs
Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I	ns-N	/lerg	je
Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, Intelligent exhaust	4	ho	ırs
Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, Intelligent exhaustick exhaustive search, Intelligent exhaustive s			
Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, Intelligent exhaustick exhaustive search, Intelligent exhaustive s	5	ho	ire
Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, Intelli	ligui		115.
Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I	5	ho	ırs
Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I	&	Lin	ear
Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
		ho	ırs
search neuristics.	, Loc	cal	
Module:8 Contemporary issues	2	ho	Ire
	4	1101	113
Total Lecture hours:	30	ho	Jrs
	-	-	

Tex	(t Book(s)				
1.	Introduction to Algorithms, Thomas	s H. Cormen	Charles F	Leiserson	Ronald L Rivest
''	Clifford Stein, MIT Press, Fourth ed				
2.	Mark A. Weiss, Data Structures & A	n 2013 Pearson			
 .	Education.		i, 2010, 1 ouroon		
Ref	ference Books				
1.	Michael T Goodrich, Roberto Tam	assia & Micha	ael H Gol	dwasser Dat	a Structures and
	Algorithms in Java, Wiley 2014.			undeeen, Da	
2.	Kent. D. Lee, Steve Hubbard, Data	Structures an	d Alaorith	nms with Pvth	on Springer
-	2015.		a / igona	inte mari ya	en, opinger,
Mo	de of Evaluation: Continuous Ass	essment Test	t. Digital	Assignment.	Quiz and Final
	sessment Test		.,	, .ee.g,	
Ind	icative Experiments				
1.	Implementing Linked list - Stacks 8	12 hours			
	Tables		,		
	by demonstrating applications for e	each.			
2.	Performance evaluation of Divide a		laorithms	6	4 hours
3.	Text Processing - Compression & I		5		4 hours
4.	Implementing Graph Algorithms				3 hours
5.	Implementation of Algorithms: Dyna	amic Program	mina. Gre	edv & Linear	3 hours
	Programming	5	0, -	y - 1	
6.	Search Algorithms				4 hours
Total Laboratory Hours					30 hours
Mo	de of Assessment: Continuous Asse				1
	commended by Board of Studies	14-05-2022			
	proved by Academic Council	No. 66	Date	16-06-2022	
	•				

Pre-requisite BCSE101E Syllabus	Т	P	С
Course Objectives 1. To emphasize the scope and significance of Data Structures and Algorithms for world problems. 2. To enable a good understanding of the fundamental data structures. 3. To enable a study of algorithms for various kinds of applications. 4. To impart skill to theoretically analyze and evaluate performance of algorithms Course Outcome 4. At the end of the course, students will be able to 1. 1. Identify a suitable data structure technique that can solve a given problem. 2. Design an efficient algorithm for a given problem statement. For given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Inalysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Implementing on Strings Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:3 Algorithms on Strings Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floy	0	2	3
Course Objectives 1. To emphasize the scope and significance of Data Structures and Algorithms for world problems. 2. To enable a good understanding of the fundamental data structures. 3. To enable a study of algorithms for various kinds of applications. 4. To impart skill to theoretically analyze and evaluate performance of algorithms Course Outcome At the end of the course, students will be able to 1. Identify a suitable data structure technique that can solve a given problem. 2. Design an efficient algorithm for a given problem statement. For given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, numetc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithm solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms on Strings Pattern Matching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:3 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Pattern Matching- KMP, Rabin-karp algorithm, Starpairs (Floyd & Warshal's)	is ve	ersi	on
1. To emphasize the scope and significance of Data Structures and Algorithms for world problems. 2. To enable a good understanding of the fundamental data structures. 3. To enable a study of algorithms for various kinds of applications. 4. To impart skill to theoretically analyze and evaluate performance of algorithms Course Outcome At the end of the course, students will be able to 1. Identify a suitable data structure technique that can solve a given problem. 2. Design an efficient algorithm for a given problem statement. For given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, numetc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithms sort, Quick Sort. Module:3 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS,	1.0		
world problems. 2. To enable a good understanding of the fundamental data structures. 3. To enable a study of algorithms for various kinds of applications. 4. To impart skill to theoretically analyze and evaluate performance of algorithms Course Outcome At the end of the course, students will be able to 1. Identify a suitable data structure technique that can solve a given problem. 2. Design an efficient algorithm for a given problem statement. For given problet develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, nuretc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming.			
2. To enable a good understanding of the fundamental data structures. 3. To enable a study of algorithms for various kinds of applications. 4. To impart skill to theoretically analyze and evaluate performance of algorithms Course Outcome At the end of the course, students will be able to 1. Identify a suitable data structure technique that can solve a given problem. 2. Design an efficient algorithm for a given problem statement. For given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, nuretc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms on Strings Pattern Matching- Insertion sort, Binary Search, Divide and Conquer algorithms sort, Quick Sort. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming.	or rea	al	
3. To enable a study of algorithms for various kinds of applications. 4. To impart skill to theoretically analyze and evaluate performance of algorithms Course Outcome At the end of the course, students will be able to 1. Identify a suitable data structure technique that can solve a given problem. 2. Design an efficient algorithm for a given problem statement. For given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, nuretc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms on Strings Pattern Matching- Insertion sort, Binary Search, Divide and Conquer algorithms sort, Quick Sort. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming.			
4. To impart skill to theoretically analyze and evaluate performance of algorithms Course Outcome At the end of the course, students will be able to 1. Identify a suitable data structure technique that can solve a given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, nur etc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming.			
Course Outcome At the end of the course, students will be able to 1. Identify a suitable data structure technique that can solve a given problem. 2. Design an efficient algorithm for a given problem statement. For given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, nuretc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I <td></td> <td></td> <td></td>			
At the end of the course, students will be able to 1. Identify a suitable data structure technique that can solve a given problem. 2. Design an efficient algorithm for a given problem statement. For given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, nuetc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:3 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7	i		
At the end of the course, students will be able to 1. Identify a suitable data structure technique that can solve a given problem. 2. Design an efficient algorithm for a given problem statement. For given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, nuetc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables.			
1. Identify a suitable data structure technique that can solve a given problem. 2. Design an efficient algorithm for a given problem statement. For given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, numetc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Introduction to NP Completeness, Search Heuristics,			
 2. Design an efficient algorithm for a given problem statement. For given problem develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, numetc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:5 Graph Algorithms Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. 			
develop algorithms and theoretically analyze the efficiency. 3. Develop efficient algorithms for handling different formats of data like text, nuretc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I	em		
etc. 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming.			
 4. Learn the systematic way of organizing large amounts of data. 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Becomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I	umbe	ers	
 5. Correlate and map real word problems to algorithmic solutions. 6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics			
6. Provide efficient algorithmic solution for real-world problems. Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
Module:1 Implementing Data Structures Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
Linked list, Stack, Queues, Trees, Maps, Hash Tables. Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I	5	ho	
Module:2 Algorithm Analysis Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I	5	noi	112
Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
Analysis Algorithms - Asymptotic notations – Recurrences -Substitution - Recursi The master method Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I	3	ho	ire
Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, Interview of the search of the s			
Module:3 Algorithms with Numbers Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search,	JIOTT		,
Sorting and Searching- Insertion sort, Binary Search, Divide and Conquer algorithm sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
sort, Quick Sort. Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I	3	ho	ırs
Module:4 Algorithms on Strings Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I	ns-N	/lerg	je
Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
Pattern Matching- KMP, Rabin-karp algorithm, Huffman Encoding. Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
Module:5 Graph Algorithms Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, Intelligent exhaust	4	ho	ırs
Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, Intelligent exhaustick exhaustive search, Intelligent exhaustive s			
Decomposition of graphs, Paths in graphs: BFS & DFS, Minimum Spaiining Al Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, Intelligent exhaustick exhaustive search, Intelligent exhaustive s	5	ho	ire
Prim's & Kruskals's - Single-Source (Dijktra's) & All-pairs (Floyd & Warshal's). Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Fractional Knapsack Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
Module:6 Algorithms for Optimization Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, Intelli	ligui		115.
Brute force, Dynamic programming, Greedy algorithms: Fractional Knapsack programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
programming. Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I	5	ho	ırs
Module:7 Search Heuristics Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I	&	Lin	ear
Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
Introduction to NP Completeness, Search Heuristics, Intelligent exhaustive search, I			
		ho	ırs
search neuristics.	, Loc	cal	
Module:8 Contemporary issues	2	ho	Ire
	4	1101	113
Total Lecture hours:	30	ho	Jrs
	-	-	

Tex	(t Book(s)				
1.	Introduction to Algorithms, Thomas	s H. Cormen	Charles F	Leiserson	Ronald L Rivest
''	Clifford Stein, MIT Press, Fourth ed				
2.	Mark A. Weiss, Data Structures & A	++ 4th Editio	n 2013 Pearson		
 .	Education.	agona in 7 and			i, 2010, 1 ouroon
Ref	ference Books				
1.	Michael T Goodrich, Roberto Tam	assia & Micha	ael H Gol	dwasser Dat	a Structures and
	Algorithms in Java, Wiley 2014.			undeeen, Da	
2.	Kent. D. Lee, Steve Hubbard, Data	Structures an	d Alaorith	nms with Pvth	on Springer
-	2015.		a / igona	inte mari ya	en, opinger,
Mo	de of Evaluation: Continuous Ass	essment Test	t. Digital	Assignment.	Quiz and Final
	sessment Test		.,	, .ee.g,	
Ind	icative Experiments				
1.	Implementing Linked list - Stacks 8	Queues. Tree	es. Maps	& Hash	12 hours
	Tables		,		
	by demonstrating applications for e	each.			
2.	Performance evaluation of Divide a		laorithms	6	4 hours
3.	Text Processing - Compression & I		5		4 hours
4.	Implementing Graph Algorithms				3 hours
5.	Implementation of Algorithms: Dyna	amic Program	mina. Gre	edv & Linear	3 hours
	Programming	5	0, -	y - 1	
6.	Search Algorithms				4 hours
	5	Тс	otal Labo	ratory Hours	30 hours
Mo	de of Assessment: Continuous Asse				1
	commended by Board of Studies	14-05-2022			
	proved by Academic Council	No. 66	Date	16-06-2022	
	•				

BECE209E Pre-requisite N	Structured and Object Oriented Programming	2	•		
Pre-requisite N		-	0	4	4
	llL	Syl	labus		sion
			1.	0	
and multi-din 2. To equip st pointers. 3. To introduce oriented prog 4. To teach stur- files through Course Outcomes: At the end of the cou 1. Implement by 2. Realize the in 3. Comprehence programming 4. Apply polyn programming 5. Infer and har 6. Access files 7. Comprehence solutions three	ze the usefulness of branching and looping statement nensional array programming. Judents with dynamic memory management throug e students the importance of polymorphism and inhe gramming. dents the way of supervising exceptions through exce file handlers. urse, students will be able to ranching and looping statements to handle 1D and 2E mportance of pointers to manage the memory dynam d the use of structures and unions to encapsulate dif g. norphism and inheritance which are imbibed in	ts in o ih an ritanc eptior D arra ically feren in ol lers.	1. one d exp e in han ys. t data oject	0 ertise an o dlers a typ	nsion e on bject and es in ented pose
Variables - Reserve Type Conversions ladder, switch state continue statements and its operations.	ed words, Data Types, Operators, Operator Preceder - I/O statements - Branching and Looping: if, if-els ement, goto statement - Loops: for, while and do s. Arrays: One Dimensional array - Two-Dimension	se, ne pwh	Expr ested ile, b ray –	essio if, if oreak – St	ons - -else and rings
Module:2 Function		11		<u>4 ho</u>	
Types of Functions - Variables. Declarati	tions: Declaration — Definition — call by value and - Recursive functions - Storage Classes - Scope, Visil ion and Access of Pointer Variables, Pointer arith – Pointers and arrays - Pointers and functions.	bility a	and L	ifetin	ne of
Module:3 Structu	ures and Unions			3 ho	urs
Declaration, Initialization	ation, Access of Structure Variables - Arrays of Struct within Structures - Structures and Functions — Point		- Arra	ays v	vithin
Module:4 Overvi	ew of Object-Oriented Programming			6 ho	urs
Features of OOP - Static Data Member reference - Function	Classes and Objects - "this" pointer - Constructors rs, Static Member Functions and Objects - Inline F is with default Arguments - Functions with Objects as d Classes. Dynamic Memory Allocation.	unctio	Des ons –	truct – Ca	ors - all by
Module:5 Inherita	ance and Polymorphism			6 ho	urs
Inheritance - Type	s of Inheritance: Single inheritance, Multiple Inhe hical Inheritance - Multipath Inheritance - Inheritance		ce, N	/lulti-	level

Mo	dule:6	Generic Programming	4 hours
		mplates and class templates, Standard Template Library.	
Мо	dule:7	Exception handling and files	3 hours
Intro	oductior	to exceptions, Try and catch blocks, throw statement, File handlin	g functions.
Seq	uential	and Random access.	
		Total Lecture hours:	30 hours
Tex	t Book		
1	Herber Educat	t Schildt, C: The Complete Reference, 2017, 4 th Edition, McGraw Hill ion.	
2	Herber	t Schildt, C++: The Complete Reference, 2017, 4 th Edition, McGraw H	lill
	Educat	ion.	
-	erence		
1		/ant Kanetkar, Let Us C: 2020, 17 th Edition, BPB Publications, 2020.	
2	-	/ Lippman and Josee Lajoie, C++ Primer, 2012, 5 th Edition, Addison-V	Vesley
	publish		
3		S Gottfried, Programming with C, 2018, 2018, 4 th Edition, Schaum's o	utline
	series.		
		valuation: Continuous Assessment Test, Digital Assignment, Quiz	z and Final
	essmer		
		Experiments	
1.	<u> </u>	ams using basic control structures, branching and looping	
2.		iment the use of 1-D, 2-D arrays and strings and Functions	
3.		nstrate the application of pointers	
4.		iment structures and unions	
5.		ams on basic Object-Oriented Programming constructs.	
6.		nstrate various categories of inheritance	
7. o	<u> </u>	am to apply kinds of polymorphism.	
8.		op generic templates and Standard Template Libraries.	
9. 10.		nstrate the use of Exception handling.	
10.		nstrate the working of file handling. Total Hours	60 hours
Mar			
		sessment: Continuous Assessment and Final Assessment Test ded by Board of Studies 14-05-2022	
		y Academic Council No. 66 Date 16-06-2022	
Ahh	noved b		

BECE209E Pre-requisite N	Structured and Object Oriented Programming	2	•		
Pre-requisite N		-	0	4	4
	llL	Syl	labus		sion
			1.	0	
and multi-din 2. To equip st pointers. 3. To introduce oriented prog 4. To teach stur- files through Course Outcomes: At the end of the cou 1. Implement by 2. Realize the in 3. Comprehence programming 4. Apply polyn programming 5. Infer and har 6. Access files 7. Comprehence solutions three	ze the usefulness of branching and looping statement nensional array programming. Judents with dynamic memory management throug e students the importance of polymorphism and inhe gramming. dents the way of supervising exceptions through exce file handlers. Jurse, students will be able to ranching and looping statements to handle 1D and 2E mportance of pointers to manage the memory dynam d the use of structures and unions to encapsulate dif g. norphism and inheritance which are imbibed in	ts in o Ih an ritanc eptior D arra ically feren in ol lers.	1. one d exp e in han ys. t data oject	0 ertise an o dlers a typ	nsion e on bject and es in ented pose
Variables - Reserve Type Conversions ladder, switch state continue statements and its operations.	ed words, Data Types, Operators, Operator Preceder - I/O statements - Branching and Looping: if, if-els ement, goto statement - Loops: for, while and do s. Arrays: One Dimensional array - Two-Dimension	se, ne pwh	Expr ested ile, b ray –	essio if, if oreak – St	ons - -else and rings
Module:2 Function		11		<u>4 ho</u>	
Types of Functions - Variables. Declarati	tions: Declaration — Definition — call by value and - Recursive functions - Storage Classes - Scope, Visil ion and Access of Pointer Variables, Pointer arith – Pointers and arrays - Pointers and functions.	bility a	and L	ifetin	ne of
Module:3 Structu	ures and Unions			3 ho	urs
Declaration, Initialization	ation, Access of Structure Variables - Arrays of Struct within Structures - Structures and Functions — Point		- Arra	ays v	vithin
Module:4 Overvi	ew of Object-Oriented Programming			6 ho	urs
Features of OOP - Static Data Member reference - Function	Classes and Objects - "this" pointer - Constructors rs, Static Member Functions and Objects - Inline F is with default Arguments - Functions with Objects as d Classes. Dynamic Memory Allocation.	unctio	Des ons –	truct – Ca	ors - all by
Module:5 Inherita	ance and Polymorphism			6 ho	urs
Inheritance - Type	s of Inheritance: Single inheritance, Multiple Inhe hical Inheritance - Multipath Inheritance - Inheritance		ce, N	/lulti-	level

Mo	dule:6	Generic Programming	4 hours
		mplates and class templates, Standard Template Library.	
Мо	dule:7	Exception handling and files	3 hours
Intro	oductior	to exceptions, Try and catch blocks, throw statement, File handlin	g functions.
Seq	uential	and Random access.	
		Total Lecture hours:	30 hours
Tex	t Book		
1	Herber Educat	t Schildt, C: The Complete Reference, 2017, 4 th Edition, McGraw Hill ion.	
2	Herber	t Schildt, C++: The Complete Reference, 2017, 4 th Edition, McGraw H	lill
	Educat	ion.	
-	erence		
1		/ant Kanetkar, Let Us C: 2020, 17 th Edition, BPB Publications, 2020.	
2	-	/ Lippman and Josee Lajoie, C++ Primer, 2012, 5 th Edition, Addison-V	Vesley
	publish		
3		S Gottfried, Programming with C, 2018, 2018, 4 th Edition, Schaum's o	utline
	series.		
		valuation: Continuous Assessment Test, Digital Assignment, Quiz	z and Final
	essmer		
		Experiments	
1.	<u> </u>	ams using basic control structures, branching and looping	
2.		iment the use of 1-D, 2-D arrays and strings and Functions	
3.		nstrate the application of pointers	
4.		iment structures and unions	
5.		ams on basic Object-Oriented Programming constructs.	
6.		nstrate various categories of inheritance	
7. o	<u> </u>	am to apply kinds of polymorphism.	
8.		op generic templates and Standard Template Libraries.	
9. 10.		nstrate the use of Exception handling.	
		nstrate the working of file handling. Total Hours	60 hours
Mar			
		sessment: Continuous Assessment and Final Assessment Test ded by Board of Studies 14-05-2022	
		y Academic Council No. 66 Date 16-06-2022	
Ahh	noved b		

Course Code	Course Title		L	Т	Ρ	С
BECE309L	Artificial Intelligence and Machine Learning		3	0	0	3
Pre-requisite	BMAT201L	Sy	llabi	ls v	ers	on
-				1.0		
Course Objectiv	es					
1. To get acqu	ainted with different types of intelligent agents.					
2. To understa	and the importance and significance of Machine learning	g.				
3. To preface	the essentials of Deep Learning.	-				
Course Outcome)					
At the end of the	course, students will be able to					
1. Comprehe	end different intelligent agents and its variants.					
2. Solve the	real-world problem using the various search algorithms					
Infuse var	ious symbolic knowledge representation.					
Apply dee	p learning algorithms for solving real-world problems.					
Module:1 Foun	dations of Al			4	ho	Jrs
Introduction – Ag	ents and rationality – Task environment – Agent Archite	ecture	е Тур	es.		
					ho	Jrs
Search Space - S	Search algorithms, strategies – Search in complex envi	ronme	ents.			
Module:3 Knov	wledge Representation			6	ho	Jrs
Knowledge-based	l agents, Agents based on Propositional Logic – First-o	rder l	ogic.			
Module:4 Prob	ability reasoning and uncertainty			6	ho	Jrs
Quantifying uncer	tainty, Knowledge representation in uncertainty, Decision	on ma	aking	j – (Sim	ole,
complex.					-	
Module:5 Data	Preparation for Machine Learning			4	ho	Jrs
Basics of Vector	s & Matrices – Overview: Data Cleaning, Integratior	n, Tra	ansfo	orma	atior	ı &
Reduction.						
			mble	e Le	arni	ng,
Case studies – M	achine Learning in Signal Processing, Intelligent Antenr	na.				
· · · ·						
					lutio	nal
Networks – Recu	rrent Neural Networks – Kernel Machines – Hidden Mar	kov N	Лоde	els.		
Module:8 Cont	emporary issues			2	ho	Jrs
	3. To preface the essentials of Deep Learning. Surse Outcome the end of the course, students will be able to 1. Comprehend different intelligent agents and its variants. 2. Solve the real-word problem using the various search algorithms. 3. Infuse various symbolic knowledge representation. 4. Employ intelligent agents for decision making. 5. Handle real-time issues using various learning methodologies. 6. Apply deep learning algorithms for solving real-world problems. odule:1 Foundations of Al 4 hours troduction – Agents and rationality – Task environment – Agent Architecture Types. odule:2 Problem-solving by Searching 7 hours earch Space – Search algorithms, strategies – Search in complex environments. odule:3 Knowledge Representation 6 hours owledge-based agents, Agents based on Propositional Logic – First-order logic. odule:4 Probability reasoning and uncertainty 6 hours antifying uncertainty, Knowledge representation in uncertainty, Decision making – Simple, mplex. 9 hours odule:5 Data Preparation for Machine Learning 4 hours sics of Vectors & Matrices – Overview: Data Cleaning, Integration, Transformation & aduction. 9 hours owrms of Learning from Examples 9 hours wrms of Learning no Trees –					
2. To understand the importance and significance of Machine learning. 3. To preface the essentials of Deep Learning. Course Outcome the end of the course, students will be able to 1. Comprehend different intelligent agents and its variants. 2. Solve the real-world problem using the various search algorithms. 3. Infuse various symbolic knowledge representation. 4. Employ intelligent agents for decision making. 5. Handle real-time issues using various learning methodologies. 6. Apply deep learning algorithms for solving real-world problems. Module:1 Foundations of Al 4 hours Introduction – Agents and rationality – Task environment – Agent Architecture Types. Module:2 Problem-solving by Searching 7 hours Search Space – Search algorithms, strategies – Search in complex environments. Inowledge-based agents, Agents based on Propositional Logic – First-order logic. Module:3 Nowledge representation in uncertainty 6 hours Quantifying uncertainty, Knowledge representation in uncertainty, Decision making – Simple, omplex. 9 hours Module:5 Data Preparation for Machine Learning 4 hours Rateuction. 9 hours Corms of Learning – Dimensionality reduction - Regression – Statistical Methods: Naïve-tayes, Nearest Neighbor, Decision Trees – Random Forest, Clustering, Ensemble Lear						
	sell. Peter Norwig, Artificial Intelligence – A modern an	proad	2	015	5. 3 ^{rc}	
		1.200	, 🛥		, •	
			Prin	rinle	<u>, 5</u>	and
. winde chan	ara 5.5, Anana naroonaran 5., Artinolai intelliyen			Julic	,	шu

	Applications, 2020, 2 nd Edition, PHI Learning Pvt. Ltd., India.									
2.	2. Alpaydin ethem, Introduction to Machine Learning, 2019, 3 rd edition, PHI Learning Pvt.									
	Ltd., India.									
	Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test									
Re	Recommended by Board of Studies 14-05-2022									
Арр	Approved by Academic Council No. 66 Date 16-06-2022									

Course Code	Course Title	L	Т	Ρ	С
BECE310L	Satellite Communications	3	0	0	3
Pre-requisite	BECE306L, BECE306P	Syllabu	-	-	-
		Junabe	1.0		011
Course Objectiv	/es				
	conceptual knowledge of communication through	n satell	tes.		
	a detailed understanding of navigation - both				by
navigation sa					,
3. To analyze ty	pical challenges of satellite based systems.				
Course Outcom					
	e course, students will be able to				
	oncept of orbits, launch vehicles and satellites				
	the design of satellite subsystems				
	sics of digital transmission related to satellite co	mmun	cati	on	
	avigation satellite services.	:			
-	mpact of diverse parameters on satellite link des	sign			
6. Apply the sate	ellite systems for various applications				
Module:1 Orb	ital Mechanics		6	ho	urs
	Ilite communication - Orbital mechanics - Equa	tions o		-	
	planetary motion - Orbital elements - Look and				
	on and determination		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	and	511 -
Module:2 Orbit			3	b ho	urs
	launch vehicles- Launch vehicle selection f	actors			
	geostationary orbit - Orbital effects in comm				
	oppler shift -Range variations - Solar eclipse and				
	nents of Communication Satellite				urs
Des					
	ems - Attitude and orbit control electronics - Tele				
	ems - Communication subsystems - Satellite an	tennas	- Re	eliab	oility
	Frequency modulation techniques.				
	tal Transmission Basics				urs
	Multiplexing -Multiple access techniques – FDN				
	and its types – Onboard processing- Satellite		ed I	DM	A –
	transmission and reception for satellite network	(S.			
	Ilite Link Design				urs
	on theory – System noise temperature and G/T				
	ature- Calculation of system noise temperature -				
	dgets - Uplink and downlink budget calculations hks - Prediction of rain attenuation and propa				
counter measure		gation	ΠP	ann	ient
	T and NGSO System		7	′ ho	urs
	VSAT systems-VSAT Network Architectu	res	One		Vay
	Two-Way Implementation, Delay Considerati	•			
······························					
Station Engineer	ing -NGSO Satellite Systems Constellation/ Co	ποισπα	uon	Dea	
	ing -NGSO Satellite Systems Constellation/ Co Starlink, One Web	nstella	lion	Dea	Jight
Considerations -	Starlink, One Web				urs

DBS Satellite Systems: DVB-S2X Standards -System Design for High-Throughput Applications, Antenna Considerations, Modulation Scheme Considerations, Error Coding Considerations, Remote Sensing Application, Navigation Satellite Systems GPS-Position Calculations and Accuracy, Navigation Messages, Receiver Design,-IRNSS

Мо	dule:8 Contemporary Issues				2 hours
_			Тс	otal	45 hours
	cture hours:				
	xt Book(s)				
1.	Pratt, C.W. Boastian and Jeremy A	Allnutt "Sat	ellite Co	ommunica	tion", 2018,
	2nd edition, John Wiley and Sons, B	angalore, l	ndia.		
Re	ference Books				
1.	D.Roddy, "Satellite Communication	s", 2011, -	4th edit	ion (sixth	reprint), Tata
	McGraw Hill, New York.				
2.	Anil K. Maini, Varsha Agrawal, "Sate	ellite Comm	unicatio	ons", 2018	, Wiley India
	Pvt. Ltd, New Delhi, India				-
3	G. Maral, M. Bousquet, Z. Sun, "Sat			-	•
	Techniques and Technology", 2020	(6th Editior	ו), John	Willy and	sons, New
	York.				
4		·			" 0004 Ord
4	Teresa M. Braun ,"Satellite Commur	nications Pa	ayload a	and Syster	m [°] , 2021, 2 nd
	edition, John Wiley and Sons, USA				
	de of Evaluation: Continuous Assess	sment lest	, Digita	al Assignm	nent, Quiz and
Fin	al Assessment Test				
Re	commended by Board of Studies	28-02-202	23		
	proved by Academic Council	No. 69	Date	16-03-2	023
		I		1	

Course Code	Course Title		LT	Ρ	С
BECE311L	Radar Systems		3 0	0	3
Pre-requisite		Svlla	abus v	_	on
		- J	1.0		
Course Objectiv	/es				
	and analyze various radar parameters.				
	nd design transmitter, receiver circuits and ant	tenna	as for	varic	bus
radars.	3				
3. To understand	and contrast the need for modern radars for diff	erent	t applie	catio	ns.
Course Outcom	es				
At the end of the	course, students will be able to				
1. Analyze the ra	dar range equation and radar cross section.				
	parameters to design and conduct radar experir	ments	5.		
Evaluate the p	erformance of transmitter and receiver circuits.				
	is signal and data processing steps involved in	the	recove	ery o	fa
signal.					
	esign antennas for different radars.				
6. Distinguish mo	odern radars for diverse applications.				
Module:1 Prine				hou	
	Radars, Radar principle, Doppler Effect, Radar				
	agram, Radar Range Equation, Radar Cross s	sectio	on of	arge	€S,
	bes of scattering, Applications of Radars				
Module:2 Rada				hou	
	vidth, Pulse Repetition Frequency, baud length				
	inge, coherent integration, FFT points, incoh				
techniques.	IR, receiver bandwidth, Transmit power, Pi	uise	comp	1622	ION
	smit and Receive modules(TRM)		2	hou	ire
	Timing and signal generation for TRM operation	n Ga			
	of power amplifiers, Transmit-receive switch, c				
-	amplifiers (linear amplifiers, low noise amplifie				-
amplifiers), and b			.u 001		
	al & Data Processing		6	ο hoι	urs
	and signal processing steps, DC and clutter re	movi			
	tation of spectral moments, computation of ve				
intensity (SNR) c	omputation, cross correlation and autocorrelation	on, ca	ipon ir	nagii	ng,
	y method for imaging.		•	Ŭ	0.
Module:5 Rada	ar Antennas		8	β hoι	Jrs
Antenna parame	eters for Radars, Parabolic Reflector antenna, Y	Yagi-l	Uda a	nteni	na,
Microstrip patch	antenna, Phased array system: Planar Arrays	, Ele	ctroni	bea	am
steering, Beam	forming, Phase Shifters, Active Phased array	and	Sem	act	ive
phased array sys					
	es of Radars			i hοι	
	ation, Block diagram, Advantages, limitations and				
	adar, MTI Radar, Synthetic Aperture Radar, a	nd M	leteor	ologi	cal
· · · · ·	l Doppler weather radar).				
Module:7 Stea	Ith Technology		3	hοι	Jrs

					red	luction,	RF	absor	rbers ar	nd Radar	stealth
		asures a									0 h a
IVIO	dule:8	Conter	прога	ry Issue	5						2 hours
						То	tal I	octure	hours:	Δ	5 hours
						10		coture	nours.		o nours
Тех	t Book	(s)									
1.		`	Introd	uction to	Rad	lar Syst	ems	, 3 rd Ec	lition, Mo	Graw-Hil	I, USA,
	2017.	,				,					, ,
	•	<u> </u>									
		Books									
1.					al Pr	rinciples	s of F	Radar,	CRC Pre	ess, Taylo	or &
	Francis	s Group	, USA,	2019.							
2.	Merrill	Skolnik	, Rada	r Handbo	ook,	3 rd Edit	ion,	McGra	w-Hill, U	SA, 2008	
3.	Mark A	. Richai	rds, Jar	nes A. S	chee	er, Willi	am A	A. Holm	(Editors	s), Princip	les of
_									•	ic, USA, 2	
4.	G.S.N.	Raju, R	adar e	ngineerir	ng ar	nd fund	ame	ntals o	f navigat	ional aids	
				/iley distr	•				•		,
N 4 -				-	<u> </u>		T -				<u></u>
				inuous A	Asse	ssment	Ies	st, Dig	ital Assi	gnment, C	Juiz and
Fina	al Asses	ssment -	lest								
Red	commer	nded by	Board	of Studie	es	28-02-	2023	3			
		by Acade				No. 69		Date	16-03-	2023	

Course Code	Course Title		L	Т	Ρ	С
BECE312L	Robotics and Automation		3	0	0	3
Pre-requisite	NIL	Sylla	abus		-	on
				.0		
Course Objectiv	ves			-		
	e basic understanding of robotics and automatic	on.				
	nstrate the need of various sensors and drives in		tic s	vst	em.	
	students understand about the robotic kinema					
	ent trajectories.	, I	I	•		5
	r the programming languages to design robo	ots in	pra	ctic	e a	ind
	for contemporary use.		•			
Course Outcom	les					
At the end	d of the course, students will be able to					
1. Classify re	obots and summaries their role in diverse applic	ations	5			
2. Infer the	working of basic electric, electronic, and oth	ner typ	oes	of	driv	/es
required i	n robots.					
Distinguis	h and interpret the sensors for various applicati	ions ir	n rob	otic	cs a	ind
automatic	n.					
4. Determine	e the mathematical model of robotic systems	and	ana	lyze	e th	eir
kinematic						
	bots for varied working environments encomp	assin	g al	l ty	bes	of
	cross different paths and diverse trajectories.					
	ideas in performing various robotic tasks for cor	ntemp	orar	y in	dus	stry
standards	using suitable programming skills.					
	otics and Automation				hοι	
	s, Types-Application, Mobility, DoF, Ter					
	performance characteristics, Industrial Robot	s, HF	KI, A	lutc	ma	ITIC
assembly syste				_	b a i	
	es for Robotics			5	hοι	irs
	, hydraulic and pneumatic drives.			71		
	sors for Robots				<u>10u</u>	
	- Proximity and range sensors – Optical S					
	array sensor- Acoustic sensors - Vision senso					
	m -Image processing and analysis - Image	uala	rec	JUC	lion	I —
	Feature extraction -Object recognition.			10	hai	
Kinematics of	ot Kinematics and Dynamics manipulators, rotational, translatio			10	hοι	irs
	manipulators, rotational, translatio Homogeneous, Transformations, Denava		nd ப	orto	nhc	hra
	•					-
	, Inverse Kinematics. Linearization of Robot ous and discrete models.	Dyna	IIIIC:	5 –	316	ale
Module:5 Path				5	hou	ire
	ctories, trajectory planning and avoidance of	l of ob:	etac			
					μa	สมา
	motion, joint integrated motion and straight lir g ramming of Robots				hou	ire
	ming: ROS1 and ROS2, languages and so		<u> </u>			
	1111111 INVAL AND INVAZ INNUUNUES AND SC	1111/1/241			aut	-65
		ntwar	e p	aun	age	
MATLAB/Simuli	ink, OpenRDK, Adams. lication of Robots		e p		hou	ire

	Industrial robots used for welding, painting and assembly, remote controlled robots, robots for nuclear, thermal and chemical plants, industrial automation,					
	typical examples of automated Industries, Humanoid robots, medical robots,					
		er robots, drones.				
Мо	dule:8	Contemporary Issues		2 hours		
			Total Lecture hours:	45 hours		
Тех	kt Book	(s)				
1.		M. Lynch, Frank C. Park, "Moo I", 2017, Cambridge Universi		lanning, and		
Ref		Books				
1.	R. K. N India,	littal, I. J. Nagrath, "Robotics	and Control", 2017, McGraw	Hill Education,		
2.	Contro	imar Gandhinathan, Lentin Jo I Robots Powered by the Rob	oot Operating System, Machi			
3.	Hutchi 2020, V	rtual Reality", 2019, Packt Pu nson, S., Spong, M. W., Vidya Wiley publications, United Kir	asagar, M. "Robot Modeling a ngdom.			
4.	Applica	k, A. M. Sensors and Ac ations, 2017, CRC Press, Uni	ited Kingdom.	C C		
5.	 Lentin Joseph, "Robot Operating System (ROS) for Absolute Beginners - Robotics Programming Made Easy, 2018, Apress. 					
		valuation: Continuous Asses ssment Test	sment Test, Digital Assignm	nent, Quiz and		
Red	Recommended by Board of Studies 28-02-2023					
		by Academic Council	No. 69 Date 16-03-2023	3		

Course Code	Course Title		L	Т	Ρ	С
BECE313L	BECE313L Information Theory and Coding 3 0					3
Pre-requisite BECE306L, BECE306P Syllabus					rsid	on
•			1.0			
Course Objectiv	ves					
1. This cours	se provides an understanding of fundamental	informa	ition	the	ore	tic
technique	s including applications to compression and e	error con	ntrol	coc	gnit	J.
2. It also ain	ns at quantitative measure of information may	y be use	əd in	or	der	to
build effici	ient solutions to multitudinous engineering pro	blems.				
Course Outcom	Ies					
	course, students will be able to					
	robability theory and evaluate the average an			orm	atic	m.
	different types of channels and determine thei					
	t various types of source coding algorithm	s and	analy	yze	th	eir
performar			lio on	ىأىر ام	daa	
	ious types of coding techniques and standards lear block codes and cyclic codes (encoding a				Jeo	•
-	nd build the channel coder for 5G standard.		Jung	<i>))</i> ·		
Module:1 Infor	rmation Measures	Τ		7 ł	าอน	rs
	bility Theory, Introduction to information theo	ry, Unce	ertair	nty,	se	elf-
	rage information, Marginal Entropy, Joint Ent					
	Information, Relationship between entropy an					
and their prope	rties, Markov statistical model for information	source	, Ent	rop	y a	nd
information rate	of markov source, Information measures of	continu	uous	ra	ndc	m
variables.						
Module:2 Chai	nnel Models and Capacity	Т		6 1	าอน	re
Importance and		Chan	nel		pac	
	Binary symmetric channel, binary erasure c					
	y and channel coding theorem - Shannon's li					
	bability based Source Coding			6 ł	nou	rs
	theorem - Huffman coding - Non binary					
-	an coding - Shannon Fano Elias coding - Non b	oinary S	hanr	າon	Fa	no
codes, Arithmetic	v	<u> </u>				
	Probability based Source Coding	function	<u> </u>		10u	
coding - JPEG a	ng, Run-length encoding and rate distortion nd JPEG 2000.	Tunction	1 - 1	ran	SIO	
	io and Video Coding				nou	
	ypes – Linear Predictive Coding (LPC) – C					
	ng - MPEG Audio Coding. Video Coding: M					
-	Types of Frames – Encoding and Decoding	j or ⊢ra	mes	_	VID	eo
Coding Standard Module:6 Chai		<u> </u>		91	าอน	re
	rror control codes - Block codes, linear block	codes	cycli			
	ies, Encoder and Decoder design- serial and p					
	onvolution Codes- Properties, Encoder-Tre					
			,			-

Dee				transfer Reed Sole					
Мо	dule:7	Chan	nel Codi	ng for 5G s	standard				5 hours
				code - L		e constru	uction,	constructi	on in 5G
				C codes, N					
				n, generato					
	ar codes	•		<i>,</i> 0	,				
			emporary	Issues					2 hours
			. ,						
					Total Le	ecture ho	ours:		45 hours
Tex	kt Book	(s)							
1			n, "Comm	unication S	Systems", 2	2017, 5 th	Editior	n, Wiley In	dia Pvt
	Ltd, Ind								
2	Khalid	Sayoo	d, "Introd	uction to Da	ata Compr	ession, 5	o th Editi	ion, The M	oragan
				ultimedia Ir					
Ret	ference								
1.	Ranjan	n Bose	, "Informa	ation Theor	y, Coding	and Cry	ptogra	phy", 2018	5, 1 st
	Edition	, McG	raw						
				vt. Ltd., Ind					
2	Murlidh	nar K <mark>u</mark> l	karni, K.S	S. Shivapra	kasha, ["] In	formatior	n Theo	ry and Co	ding As
	per AIC	CTE", 2	2019, 2 nd	Edition, Wi	ley India F	vt Ltd, In	idia.		
3	Orhan	Gazi, "	Polar Co	des: A Non	-Trivial Ap	proach te	o Char	nnel Codine	g", 2019.
	 Orhan Gazi, "Polar Codes: A Non-Trivial Approach to Channel Coding", 2019, 1st Edition, Springer Topics in Signal Processing Book 15. 								
Мо	de of Ev	valuatio	on: Contir	nuous Asse	essment T	est, Dia	ital As	signment.	Quiz and
	al Asses					<i>,</i> .9		J -,	
Re	commer	nded by	/ Board o	f Studies	28-02-2	023			
	Approved by Academic Council No. 69 Date 16-03-2023								

Course Code	Course Title		L	т	Ρ	С
BECE314L	Electromagnetic Interference and Compatib	ilitv	2	1	0	3
Prerequisite	BECE205L	Sylla				-
		<u> </u>		1.0		
Course Object	ives					
?	rstand importance of EMC and EMC compliance	for th	ne p	rod	ucts	
	rstand guidelines for reduced EMI in PCB design		•			
	•		me	asu	rem	nent
techniqu	es/standards to guarantee the correct working m	odalit	ties			
Course Outco						
	e course, students will be able to					
	and the concepts related to EMI and EMC					
	the various coupling methods		М. Л. Г.			
	proper EMI control technique for a specific identif	lied E	IVII	ISSU	le.	
	e guidelines for PCB Design ze with EMC Measurement Techniques					
	arious emission and susceptibility testing standa	rds w	hich	าล	nroc	luct
	omply with		11101	ľu	proc	1000
Module 1 EN	MI/EMC Concepts			4	Но	urs
	itions – Units - Sources of EMI: Classification, Ligl	htning	<u>ј, Е</u>	SD,	NE	MP
	nd radiated emission - Conducted and radiated s					
and inter syster	m EMI - In band interference - Spectrum conse	ervatio	on -	Ra	adia	tion
	ic Absorption Rate (SAR).					
	MI Coupling Principles					urs
	upling: Common-mode, Differential-mode - In	ducti	/e	cou	plin	g -
	oling - Radiative coupling	—				
	MI Control Techniques -I	<u> </u>				urs
	thing principle, Types of Grounding- system gro					
	y and shielding effectiveness, Shielding integrity tings, Cable shielding, Bonding: Shape and mat					
	lines for good bonds.	.cnai		001	iu si	лар
.	MI Control Techniques -II			8	Но	urs
	aracteristics of filters, Impedance mismatch effect	ts. Lui	mpe			
	ne filter design, Common mode filter, Differentia					
	vices and components: EMI suppression cables					
EMC gaskets, I	solation transformers, Transient and surge suppl	ressic	on d	evi	ces.	I.
Module 5 EN	MC Design of PCBs			8	Но	urs
	PCB - SMD / through hole components, Pins, Basi	•				
	ode - Board layout: Ground plane and Power plan					
	ion for two-layer boards, Power supply decoup		Boa	rd	zon	ıng,
	Cross talk, Trace routing - Cables and connectors	\$. 		_	11-	
	MI Measurements					urs
	erence measurements: Open area test site meas M cell; Reverberating chamber - Condu					nce
	Characterization of conduction currents voltag					
	supply lines, Conducted EMI from equipment - I					
	/EFT, Electrical surge - Time domain EMI measu				010	

Мо	dule 7	EMC Standards			4 Hours	
Mil	itary stan	dards, IEEE/ ANSI Stand	dards, CISPR/IEC	, FCC sta	andards, European	
		VDE Standards, Other				
cor	npliance	for wireless devices, Rad	io Equipment Dire	ective (RE	D).	
Мо	dule 8	Contemporary Issues			2 Hours	
			Total Lectur	e Hours	45 Hours	
Te	xt Books					
1.	Clayton	R.Paul, "Introduction	to Electromagn	etic Con	npatibility", Wiley-	
	Interscie	ence, 2022				
Re	ference l	Books:				
1.	Henry W	/.Ott., "Electromagnetic C	Compatibility Engir	neering", V	Viley, 2009.	
2.		ali, "Engineering E				
	Measure	ements, Technologies, a	and Computer N	/lodels", V	Viley-IEEE Press,	
	2001					
3.		Christopoulos, "Princi		niques of	f Electromagnetic	
		ibility", CRC Press, 2007.				
4.		Montrose, "EMC Made		Circuit B	oard and System	
		, Montrose Compliance S				
Мо	de of Ev	aluation: Continuous Ass	essment Test, D	igital Ass	ignment, Quiz and	
Fin	Final Assessment Test					
Re	commen	ded by Board of Studies	28-02-2023			
Ар	proved by	/ Academic Council	No. 69	Date	16-03-2023	

Course Code	Course Title			т	Ρ	С
BECE315L Optical Networks 3 0				0		3
	BECE308L, BECE308P/	Sylla	-		-	-
Pre-requisite	Pre-requisite BECE318L, BECE318P					
	,,		1	.0		
Course Objectiv	/es					
	Optical Components, Transmission system	n Eng	inee	ering	g a	ind
Optical Digita		0			0	
2. To design Op	tical WDM Networks and to understand the rou	ting te	chr	niqu	es.	
3. To elucidate a	about Optical packet switching, OTN and acces	s netv	vork	s.		
	ne various optical network performances and to	o unde	ersta	and	tra	ffic
management	, fault management and security.					
Course Outcom						
	the course, students will be able to					
	otical components and analyze the transmission	n syste	em.			
	arious Optical Digital Networks					
	al WDM Networks and to understand the routing		nıqı	les.		
	Optical packet switching, OTN and access network		roto	un d	+	ff: _
•	various optical network performance and to	unde	ารเล	ina	แล	IIIC
management	faults in optical networks and select the	cuitab	ا ما	orot	lacti	ion
techniques.	Taults in optical networks and select the	Suitab				UII
lechniques.						
Module:1 Opti	cal system components			6	hοι	ırs
	Components - Couplers, Isolators & Circulat	ors. M	lulti			
	mplifiers, Switches, Wavelength Converters; Tr					
	System model, Power penalty - transmitter					
	Il design considerations.				•	
Module:2 Opti	cal digital networks			6	hοι	ırs
	Optical Networks; SONET / SDH, Metropolit					
Layered Archited	ture; Broadcast and Select Networks – Topolog	gies, N	/led	ia-A	Acce	ess
	s and Testbeds; Wavelength Routing Architectu	ire.				
	elength routing networks				hοι	
WDM Network Design - Cost tradeoffs, Virtual Topology Design, Routing and						ind
wavelength assignment, Statistical Dimensioning Models.						
Module:4Packet switching and access networks6 hours						
	et Switching – OTDM, Multiplexing and				lexii	0,
	Header Processing, Buffering, Burst Switching	, lest	bed	s; A	ACCE	ess
Networks.						
•	cal transport network and network			6	hοι	ırs
	chronization	Structi	Irc	<u></u>	'N ~	nd
Introduction- OTN Network Layers - FEC in OTN- OTN Frame Structure- OTN and						
DWDM- OTN Management- Synchronization - The Timing Signal- Signal Quality-						
Transmission Factor- Jitter and Wander- Photodetector Responsivity and Noise Contributors.						196
	vork performance			8	hοι	ire
				U	100	113

Introduction-Channel Performance- Power-Bandwidth Ratio- Shannon's Limit - Optical Signal to Noise Ratio - Factors That Affect Channel Performance - Analysis of BER and SNR Related to Channel Performance - BER and SNR.

Traffic Management and Control-Client Bandwidth Management -Wavelength Management – Paths with --Congestion Management - Routing Discovery of Optical Network -Node and Network - Wavelength Management Strategies.

Module:7	Network protection, fault management and	5 hours
	security	

Introduction- Fault Detection and Isolation - Fault and Service Protection - Point-to-Point Networks- Mesh Network Protection -Ring-Network - Ring-to-Ring Protection - Multi-ring Shared Protection - Network Security Issues - Definitions -Security -Security Layers in Communication Networks.

Module:8	Contemporary Issues

2 hours

			To	tal Lectu	ire hours:	45 hours		
Tex	kt Book	(s)						
1.	1. Debasish Datta, "Optical Networks", OUP Oxford (2021), 1 st Edition.							
Re	ference	Books		·	•			
1.	Biswar	nath Mukherjee, "Optical W	DM Netwo	rks", Spr	inger, 2006	. 1 st Edition.		
2.	Stama	tios V. Kartalopoulos "Nex	t Generatio	n Intellig	ent Optical	Networks"		
	Spring	er Science Business Medi	a. LLC, 200	8, 1 st Ed	ition.			
			-					
Мо	de of E	valuation: Continuous Ass	essment To	est, Dig	ital Assignn	nent, Quiz and		
Fin	al Asse	ssment Test						
Re	<u>commer</u>	nded by Board of Studies	28-02-202	3				
Ap	Approved by Academic Council No.69 Date 16-03-2023							

Course Code	Course Title			Т	Р	С	
BECE316E	Digital Image Processing		3	0	2	4	
Pre-requisite						•	
	52020012,52020011	• • •	nus	<u>1.0</u>			
Course Objectiv	29						
	the fundamentals of Digital image process	sina	in s	spat	ial a	and	
	y domain.	Jing		put			
	various filtering methods for image enhanceme	ent.					
	stand the concepts of color image processing		diffe	erent	t ima	ade	
	sion techniques.					5	
4. To appre	hend various image segmentation algorithms	and	the	con	cep	t of	
descripto	rs.				•		
0							
Course Outcom							
	e course, Students will have the ability to,	4:					
	key concepts of Digital image processing in sp	Jalia	and	лпе	que	псу	
domain.		/ -			<i>.</i>		
•	the transform of an image by 2D-FFT, DCT, DW		na K	l tra	Inst	orm	
•	ne frequency domain enhancement techniques						
	e the color models and to propose the de	esire	d co	olor	Ima	age	
processin	•						
•	e various standard image compression techniqu	les a	ind c	liscr	imin	ate	
	ts in terms of data reduction						
	e various image segmentation algorithms ar	nd to	o rep	ores	ent	the	
	ng boundary and region descriptors						
	propriate tool to implement various algorithm	ns us	sing	the	ima	age	
processin	g concepts						
Module:1 Imag	ge sampling and transformations			7	' ho	ure	
	ndamental steps in DIP – Elements of visual		cont				
	uisition – Image Sampling and Quantization –						
	nathematical characterization- Basic relations						
	Transformations – Histogram Processing –						
filters- Sharpenir	• •	Om	000	iiiig	Spc		
Module:2 Imag				7	' ho	urs	
	I Fourier Transform- Properties – Fast Fourier	Tran	sforr		-		
	cosine transform and KL transform-Discrete						
	duction to Multiresolution analysis - Discrete						
the Haar wavelet	•						
	ge Enhancement in Frequency domain			6	6 ho	urs	
Smoothing frequ	ency domain filters- Sharpening frequency don	nain	filter	s-			
Homomorphic filtering - Restoration filters: Bandpass – Band reject - Notch filter							
Module:4 Color Image Processing 5 hours							
	Color models: RGB- HSI- CMYK -Pseudo color image processing- Color						
	transformations – Smoothening and Sharpening						
	ge Compression				6 ho		
	age Compression Techniques- Entropy En	codir	ng-	Huff	mar	ן – ו	
Arithmetic- LZW	- JPEG and MPEG standards						

N.4 -			7 4 4 4 4
	dule:6 Image Segmentation	 	7 hours
	ection of discontinuities – Edge linking and boundary detect		
	e based segmentation - Region based segmentation- Match	iing- MC	phological
	mentation- Watershed algorithm		E haura
	dule:7 Representation and Description		5 hours
	Indary descriptors - Region descriptors - Texture descriptors	- Use o	r Principai
	nponents for Description. dule:8 Contemporary Issues	1	2 hours
INIO			2 nours
	Total Lecture hours:		45 hours
			40 110013
Toy	t Book(s)		
1.	Rafael C.Gonzalez & Richard E.Woods, "Digital Image Pro	ocessing	7° 2017
1.	4 th edition, Pearson Education, USA	JCESSIII	y , 2017,
Ref	erence Books		
1.	Anil K.Jain, "Fundamentals of Digital Image Processing"	2015	1 st edition
	Pearson India, India	,	
2.	Mark Nixon & Alberto Aguado, "Feature Extraction, and I	mage P	rocessing",
	2012, 3 rd edition, Elsevier's Science & Technology Publica	tions, W	/oborn MA,
	Great Britain.		
3.	Scott E Umbaugh, "Digital Image Processing and Analysis:		
	Computer Vision Applications with CVIP tools", 2011, 2 nd ec	lition, Cl	RC press,
	Boca Raton, FL, USA.		
N4-	de of Evoluction: Continuous Accorrect Test. Disited Acc	ianna	
	de of Evaluation: Continuous Assessment Test, Digital Ass al Assessment Test	ignmen	i, Quiz and
	สา สรรธรรกาษากา กรร		
Ind	icative Experiments		
1	(a) Perform point to point operation on the given imag	e and	3 hours
	compute the following and interpret changes in image		
	i. Image Negative		
	ii. Power law transformation		
	iii. Log transformation		
	(b) Perform contrast stretching for the given poor contrast		
	(c) Perform histogram equalization for the given image and	ן נ	
2	analyze the enhanced quality of the image.	action	2 6 6
2	 a) Read the input Image and perform Interpolation and Decir Show the effect of image shrinking and zooming. 	nation.	3 hours
	b) Read the input image and show the effect of gray level	slicing	
	for different levels.	Silving	
	c) Perform Bitplane slicing for given image and comment or	the	
	number of visually significant bit planes in each image.		
3	Implement the following spatial domain filtering techniques	for an	3 hours
5	image		
	a) Low Pass Filtering		
	b) High Pass Filtering		
	c) Order Statistics (Median) Filtering		

4					
4	Perform DFT for the given image and obtain its Fourier spectrum. 3 hou				
	Compute IDFT. Verify the symme	ric property of DFT and			
	compare the result with Discrete	osine Transform (DCT).			
5	Removal of fine details in an image	e by frequency domain filtering 3 hours			
	and analysis of information loss.				
6	Perform image enhancement, fea	ure extraction studies and 3 hours			
	compression using DCT.				
7	a) Perform image enhancemen	feature extraction studies and 3 hours			
	compression using DWT.				
	b) Perform DWT of an image, ar	alyze and further reconstruct the			
	image using IDWT				
8	Segment the region of interest fro	n a given image using region- 3 hours			
	based segmentation and watersh	d algorithm.			
9	Identifying objects in an image ba	ed on their boundaries. 3 hours			
10	To detect moving objects in giver	image frames using 3 hours			
	background subtraction algorithm.				
	Total Laboratory Hours 30 hours				
Мос	Mode of assessment: Continuous assessment and FAT				
Rec	Recommended by Board of Studies 28-02-2023				
	proved by Academic Council	No. 69 Date 16-03-2023			

Course Code	C	ourse Title		L	Т	Ρ	С
BECE391J	Technical Answer	s to Real Problen	ns Project	t 0	0	0	3
Pre-requisite	NIL		S	yllabu	s ve	ersi	on
				1	.0		
Course Objecti	ves						
1. To gain a	in understanding of rea	al-life issues faced	by society	y.			
2. To study	appropriate technologi	es in order to find a	a solution t	o real	life i	ssu	es.
3. Students	will design system cor	nponents intended	l to solve a	a real-l	ife i	ssu	e.
Course Outcon	nes						
1. Identify re	eal life issue(s) faced b	y society.					
Apply approximation	propriate technologies t	to suggest a solutio	on to the id	lentifie	diss	sue((s).
Design tl	he related system co	mponents/process	es intend	ed to	pro	vide	e a
	o the identified issue(s						
Module Conten		(Project D					
	are expected to perfo	rm a survey and i	nteract wit	th soci	ety	to fi	ind
out the re	eal life issues.						
2. Logical s	steps with the applica	tion of appropriat	e technol	ogies	sho	uld	be
suggeste	d to solve the identified	d issues.					
3. Subsequ	ently the student shou	ld design the relat	ed system	n comp	one	ents	or
processe	s which is intended to	provide the solution	on to the i	dentifie	ed r	eal-	life
issues.							
General Guide							
	tion of real-life problem						
	ts can be arranged by t			fforopt			
discipline	n of 3 students can forr		ie same/u	merem	-		
	of eight hours on self-	managed team ac	tivitv				
	ate scientific methodolo			he ider	ntifie	ed	
issue							
	should be in the form o			ng/prod	luct		
	ocess design/relevant						
	ated report to be subm tion, involvement and c			ions di	irina	a th	þ
	ours will be used as th						
	eory component						
3	utcome to be evaluated			omical	, SO	cial,	,
	ental, political and den						
	ion of each group men					. . . ! -	
	ation: Evaluation involv	•	-	-			
	registered. Assessmen		•	пауе О	1 ZU	.30	.50
 Report to be submitted, presentation and project reviews Recommended by Board of Studies 12-10-2022 							
			10 10 00	22			
Approved by Ac		No. 68 Date	19-12-20	22			

Course Code	C	ourse Tit	le		L	Т	Ρ	С
BECE392J	De	sign Proj	ect		0	0	0	3
Pre-requisite	NIL			Sy	llabu	s v	ersi	on
					1	.0		
Course Object	ives							
1. Students	will be able to upgrad	e a prototy	ype to a	design proto	otype			
2. Describe	and demonstrate th	le techniq	ues and	l skills nec	essa	ry f	or t	the
project.								
3. Acquire	knowledge and better	understan	ding of d	esign syste	ns.			
Course Outcomes								
1. Develop new skills and demonstrate the ability to upgrade a prototype to a								
-	rototype or working mo		5	10 1		51		
2. Utilize th	e techniques, skills, ar	nd modern	tools ne	cessary for	the p	oroje	ect.	
3. Synthesi	ze knowledge and use	insight an	d creativi	ty to better i	unde	rsta	nd a	ind
improve	design systems.							
Module Conter	nt		(Project	Duration: 0	One S	Sem	est	er)
Students are ex	pected to develop new	v skills and	d demon	strate the al	oility ⁻	to d	eve	lop
prototypes to de	esign prototype or worl	king mode	ls related	l to an engir	neeri	ng p	rod	uct
or a process.								
Mode of Evalua	ation: Evaluation invol	ves period	lic reviev	s by the fac	ulty	with	who	om
the student has	the student has registered. Assessment on the project – Mark weightage of 20:30:50							
– Report to be submitted, presentation and project reviews.								
Recommended by Board of Studies 12-10-2022								
Approved by Ac	ademic Council	No. 68	Date	19-12-202	2			

Course Code	C	ourse Tit	е			L	Т	Ρ	С
BECE393J	Labo	oratory Pr	oject			0	0	0	3
Pre-requisite	NIL				Sylla	ıbu	s ve	ersi	on
						1	.0		
Course Object	ives								
1. The stud learnt.	ent will be able to co	onduct exp	periments	s on the	e cono	cep	ts a	Irea	idy
	experimental data.								
3. Present t	he results with approp	riate inter	pretation						
Course Outcomes									
1. Design and conduct experiments in order to gain hands-on experience on the									
concepts already studied.									
2. Analyse	and interpret experime	ental data.							
3. Write clea	ar and concise technic	al reports	and rese	earch ar	ticles				
Module Conter	it		Project	Duratio	on: On	ie S	Sem	est	er)
Students are ex	pected to perform ex	periments	and gai	n hands	s-on e	хрє	erier	nce	on
the theory cours	ses they have already s	studied or	registere	d in the	ongoi	ng	sen	nest	er.
The theory cour	se registered is not ex	pected to	have lab	oratory	compo	one	nt a	nd t	the
student is expec	ted to register with the	e same fac	ulty who	handled	d the th	neo	ry c	ours	se.
This is mostly	applicable to the ele	ctive cour	ses. The	e nature	e of th	ne	labo	orate	ory
experiments is a	depended on the cours	se.							-
Mode of Evalua	ation: Evaluation invol	ves period	lic review	s by the	e facul	ty v	vith	who	сm
the student has	the student has registered. Assessment on the project – Mark weightage of 20:30:50								
– Report to be s	- Report to be submitted, presentation and project reviews.								
	Recommended by Board of Studies 12-10-2022								
	ademic Council	No. 68	Date	19-12-	2022				

Course Code	C	ourse Tit	le			L	Т	Ρ	С
BECE394J	Product D	evelopme	ent Proje	ect		0	0	0	3
Pre-requisite	NIL				Sylla	ıbu	s ve	ersi	on
						1	.0		
Course Object	ives								
1. Students	s will be able to transla	te a protot	ype to a	useful p	roduc	t.			
	evant codes and stand	•		•					
	lent will be able to pre				-		teo	chni	cal
reports.				5					
Course Outco	mes								
1. Demonst	trate the ability to tran	slate the o	develope	d protot	ype/w	ork	ing	mo	del
to a viab	le product useful to so	ciety/indus	stry.						
2. Apply	the appropriate co	des/regula	ations/sta	andards	dur	ing	р	rod	uct
developr	nent.								
3. Write cle	ar and concise technic	al reports	and rese	earch ar	ticles				
Module Conter	nt	(F	Project D	Ouration	: Two	Se	eme	ste	rs)
Students are ex	epected to translate the	e develope	ed protot	ypes / w	/orkinę	g m	ode	els ii	nto
a product which	has application to so	ciety or inc	lustry.						
Mode of Evaluation	ation: Evaluation invol	ves period	lic reviev	vs by the	e facul	lty v	vith	who	om
the student has	the student has registered. Assessment on the project – Mark weightage of 20:30:50								
 Report to be submitted, presentation and project reviews 									
Recommended	ecommended by Board of Studies 12-10-2022								
Approved by Ac	cademic Council	No. 68	Date	19-12-	2022				

Course Code	Co	ourse Tit	е			LT	Ρ	С
BECE396J	Read	ding Cou	irse		(0 0	0	3
Pre-requisite	NIL				Syllab	ous v	ersi	on
						1.0		
Course Objecti	ves			·				
1. The stud	ent will be able to ar	alyse an	d interp	ret publi	ished li	iterat	ure	for
informatio	on pertaining to niche a	reas.						
2. Scrutinize	e technical literature an	d arrive a	at conclu	sions.				
3. Use insig	ht and creativity for a b	etter und	erstandir	ng of the	domair	h of ir	ntere	est.
Course Outcon	nes							
1. Retrieve,	analyse, and inter	pret put	olished	literature	e/books	s pro	ovidi	ing
informatio	on related to niche area	as/focuse	d domai	ns.				
2. Examine	technical literature, res	olve amb	oiguity, a	nd deve	lop con	clusio	ons.	
3. Synthesiz	ze knowledge and use i	nsight an	d creativ	ity to be	tter und	dersta	and t	the
domain o	f interest.							
Module Conten	nt		(Project	Duratio	n: One	Sem	nest	er)
This is oriented	towards reading publis	hed litera	ture or b	ooks rela	ated to	niche	e are	eas
or focussed don	nains under the guidan	ce of a fa	culty.					
Mode of Evalua	ation: Evaluation involv	es perioc	lic reviev	vs by the	e faculty	y with	who	om
the student has	the student has registered. Assessment on the project – Mark weightage of 20:30:50							
- Report to be submitted, presentation and project reviews.								
Recommended	Recommended by Board of Studies 12-10-2022							
Approved by Ac	ademic Council	No. 68	Date	19-12-2	2022			
Approved by AC		110. 08	Date	19-12-	2022			

Course Code	C	ourse Tit	е			L	Т	Ρ	С
BECE397J	Sp	ecial Proj	ect			0	0	0	3
Pre-requisite	NIL				Sylla	abu	s vi	ersi	on
						1	.0		
Course Objecti	ves			ľ					
1. Students	will be able to identify	and solve	problem	ns in a t	ime-bo	oun	d m	ann	er.
	major approaches an				terest.				
3. Present t	he results in a clear a	nd concise	e mannei	^ .					
Course Outcon	nes								
1. To identify, formulate, and solve problems using appropriate information and						nd			
approaches in a time-bound manner.									
	onstrate an understa		maior ai	oproach	nes, co	onc	epts	s, a	nd
	esearch findings in the	0	3 1	'	•		•		
	ear and concise rese			publica	ition ir	ıс	onfe	erer	nce
	ngs/peer-reviewed jou			Peneres					
Module Conter	<u> </u>	-	oject Du	ration:	Three	e Se	eme	ste	rs)
This is an open	-ended course in whi	ch the stu	dent is e	xpected	d to we	ork	on	a ti	me
	project under the su			•					
	in terms of publica	•		5			-	·	
v .	a peer-reviewed Sco								
	tion: Evaluation invol	•	÷		e facu	ltv v	with	wh	om
	registered. Assessme	•		5					
	to be submitted, prese	•	•		0 0	, - 0	0		
Recommended by Board of Studies 12-10-2022									
Approved by Academic Council No. 68 Date 19-12-2022									
		140.00	Date	13-12					

Course Code	Co	ourse Tit	е			L	Т	Ρ	С
BECE398J	Simu	lation Pro	oject			0	0	0	3
Pre-requisite	NIL				Sylla	ıbu	s ve	ersi	on
						1	.0		
Course Objecti	ves								
	will be able to simulate								
	ne variables which affeo								
3. Describe	the performance of a r	eal syste	m.						
Course Outcon	nes								
1. Demonstrate the ability to simulate and critically analyse the working of a real						eal			
system.									
2. Identify a	nd study the different v	ariables v	which aff	ect the	systen	n el	abo	rate	ely.
3. Evaluate	the impact and perforn	nance of t	the real	system.					
Module Conten	it	((Project	Duratio	on: On	ie S	Sem	est	er)
The student is	expected to simulate	and critic	ally ana	lyse the	e work	ing	of	a r	eal
system. Role o	f different variables w	/hich affe	ect the	system	has to	o b	e s	tud	ied
extensively such	n that the impact of eac	h step in	the proc	cess is ι	unders	too	d, tł	nere	by
the performance	e of each step of the en	gineering	j proces	s is eval	luated.				-
Mode of Evalua	ation: Evaluation involv	es period	lic reviev	vs by th	e facul	lty v	vith	wh	om
the student has	registered. Assessmen	t on the p	roject – I	Mark we	eightag	je o	f 20	:30	:50
– project report	to be submitted, preser	ntation ar	nd projec	t review	/S.				
Recommended by Board of Studies 12-10-2022									
Approved by Ac	ademic Council	No. 68	Date	19-12-	2022				

Course Code	Course Title	L	. T	Ρ	С
BECE403E	Embedded Systems Design	3		2	4
Pre-requisite	BECE204L, BECE204P	Syllal	-		on
		- ,	1.0		
Course Objectiv	/es				
1. To acquai lifecycle o	nt students with definition, characteristics, cha f Embedded Systems by imparting the fundam cing, serial communication protocols, wireless te	ental k	nowle	dge	of
2. To familia scheduling	rize the concepts and features of Real-time oper g, and inter-task communication. various programming tools, modeling and simu				
program, o	design, simulate and build Embedded Systems		-		
	course, students will be able to				
 Design an different d Apply the interface v Demonstratools. Analyze th modelling Compare 	y application, based on the given specifications esign metrics. skills attained to differentiate Microprocessor/l various peripherals for a particular application. ate proficiency in using device drivers, firmwan ne specific perspective of the embedded application languages and contrast various wired and wireless protocom	Microco are and ation us	ontroll d deb sing di	er a uggi ffere	ind ing ent
6. Explore th time syste	e concepts of RTOS and apply the knowledge ms	for dev	elopin	g re	al-
Module:1 Emb	edded System Product Development		4	hou	ırs
Characteristics Embedded prod	of embedded systems, Classification of er uct development cycle, Embedded System D d Benchmarking Tools.				
Module:2 Emb	edded Hardware Design		5	hou	ırs
processors, Mic	sification - general purpose, customized, a rocontroller architectures (RISC, CISC), Er on of processor and memory, Power Supply Des ystems.	nbedde	ed Me	emo	ory,
Module:3 Emb	edded Software Development Environn	nent	6	hou	ırs
Cross assemble make files, Cor Middleware - De Analyzer, Integra	rs/compilers, Linker, Runtime Library, Pre-pr npiler Tool chains – gcc & ARM, Device bugging tools: Emulators, Simulators, In-Circui ited Development Environment (IDE).	ocesso Driver	, Firn	nwa	re,
Module:4 Mod	eling Embedded Systems		6	hou	irs
language	graph, Finite state machine model, Petrinet M				
	gramming the Peripherals of Microcontr			hou	
Programming G ADC, DAC, LED	PIO pins, Timers / Counters, Watchdog Timer , switches, keypad, LCD.			ratio	on,
Module:6 Eme	rging Communication Protocols		8	hou	irs

	T, SPI, I2C, NFC, CAN, Bluetooth, Zigbee, Wi-Fi	
	ule:7 Embedded Real –Time Operating Systems	8 hours
	duction to basic concepts of RTOS- Task, process & threads, Mu	
	Multitasking, Preemptive and non-preemptive scheduling, S	
	ysis, Inter process Communication, Performance Metrics of RTO	
Mod	ule:8 Contemporary Issues	2 hours
<u> </u>		
	Total Lecture hours	: 45 hours
Text	Book(s)	
1.	Raj Kamal, "Embedded systems Architecture, Programming an 2017, Third Edition, McGraw Hill Education, India.	d Design",
Refe	erence Books	
1.	Marilyn Wolf, "Computers as components: Principles o Computing System Design", 2017, Fourth Edition, Morga publications (Elsevier), United States.	
2.	Jiacun Wang, "Real-Time Embedded Systems", 2017, First Edi Publishers, United States.	ion, Wiley
Mode		
	e of Evaluation: Continuous Assessment Test, Digital Assignme I Assessment Test	nt, Quiz and
Final	Assessment Test	ent, Quiz and
Final		ent, Quiz and
Final Indic	Assessment Test	4 hours
Final Indic 1.	I Assessment Test Cative Experiments Experiments based on interfacing I/O devices Experiments based on monitoring and control using sensors an	4 hours
Final Indic 1. 2.	Assessment Test	4 hours
Final Indic 1. 2. 3.	Assessment Test cative Experiments Experiments based on interfacing I/O devices Experiments based on monitoring and control using sensors an actuators Experiments based on wired Communications Protocols (UART SPI, I2C, CAN) Experiments based wireless Communications Protocols (Wi-Fi,	4 hours6 hours, 8 hours
Final Indic 1. 2. 3. 4.	Assessment Test cative Experiments Experiments based on interfacing I/O devices Experiments based on monitoring and control using sensors an actuators Experiments based on wired Communications Protocols (UART SPI, I2C, CAN) Experiments based wireless Communications Protocols (Wi-Fi, Bluetooth) Experiments based on RTOS	4 hours 6 hours 8 hours 6 hours 6 hours 6 hours
Final Indic 1. 2. 3. 4. 5.	I Assessment Test cative Experiments Experiments based on interfacing I/O devices Experiments based on monitoring and control using sensors an actuators Experiments based on wired Communications Protocols (UART SPI, I2C, CAN) Experiments based wireless Communications Protocols (Wi-Fi, Bluetooth)	4 hours 6 hours 8 hours 6 hours 6 hours 6 hours
Final Indic 1. 2. 3. 4. 5. Mode	Assessment Test cative Experiments Experiments based on interfacing I/O devices Experiments based on monitoring and control using sensors an actuators Experiments based on wired Communications Protocols (UART SPI, I2C, CAN) Experiments based wireless Communications Protocols (Wi-Fi, Bluetooth) Experiments based on RTOS	4 hours 6 hours 8 hours 6 hours 6 hours 6 hours

Course Code BECE404L Pre-requisite	Course Title Detection, Estimation and Modulation Th	0001			Ρ	C
Pre-requisite	•		3	0 (0	3
•	BECE207L	Sylla	-		-	-
		Cym	1.		151	<u>///</u>
Course Objective						
	the students a hypothesis testing for vario	us sig	nal	dete	ecti	on
	understand and apply Gaussian detection sch	eme.				
3. To make them p	proficient in scalar and vector parameter estin	nation.				
4. To let them dev	elop an expertise in Kalman filter based estim	nation.				
Course Outcome	S					
	ourse, students will be able to					
	ypothesis testing.					
	n detection in suitable signal processing appli	cation	s			
	eme to estimate scalar and vector parameters			cla	ssir	al
-	ameter estimation.	5 donig	y uno	Gia	3310	<i>j</i> ai
•	arameters of importance through Gaussian es	stimati	on m	noth	Ъл	
	plement the estimators for continuous time ra					
	filter based estimation in suitable signal proce		-			
		ssing	appi	ical		5.
Module:1 Class	sical Detection Theory			6 h	nou	rs
	ple Binary Hypothesis Tests - Decision Crit	eria -	Perf	orm	anc	e:
	ng Characteristic - M Hypotheses - Perforr					
	Vonte Carlo Simulation - Importance Samplir					
	- Independent Observations - Simulation of t					
Iterative Importance			0, _	, can		,
	ssian Detection			8 h	nou	rs
	r Complex Gaussian Random Vectors -	Gene	ral (
	Covariance Matrices - Independent Compon					
	s - Eigen decomposition - Optimum Signal D					
	- Subtractor - Low-Rank Models - Equal Mear					
	on H0: Equal Variance – Independent and Id					
	nts - Independent Signal Components: Ur					
•	Components - Low-Rank Signal Model - Syn					
•	ise - Nondiagonal Covariance Matrix on H0,			•		
	0	п, з	iyna	I OII	DU	<i>.</i>
Hypotheses, M Hy	sical Parameter Estimation			6 4		ro
	ar Parameter Estimation - Random Parameter	re: Roy			10U	
	ameter Estimation - Bayesian Bounds - Lower					
	avior - Exponential Family - Nonrandom Pai	amete	:15 -	ка		ЛЦ
	mary of Scalar Parameter Estimation			<u></u>		
	ple Parameter Estimation		Der		10U	
•	er Estimation - Estimation Procedures - Ra					
	neters - Measures of Error- Nonrandom Pa					
	unds on Estimation Error - Nonrandom Par					
•	brid Parameters - Hybrid Parameters - J	oint N	1L a	and	MA	١P
Estimation						
Module:5 Gaus	sian Estimation			7 h	nou	rs

Model - W Parameters One Signal	 Nonrandom Parameters - General Gaussian ikelihood Estimation - Crammer–Rao Bound - Fish 'hite Noise - Low-Rank Interference - Separable Covariance Matrix Parameters - White Noise - Co Matrix Plus White Noise - Rank One Signal Matrix ussian Mean and Covariance Matrix Parameters - W 	er Linear Gaussian Models for Mean blored Noise - Rank Plus Colored Noise
Module:6	Estimation of Continuous-Time Random	5 hours
	Processes	_
	inear Processors - Realizable Linear Filters: Sta	-
	t: Wiener Filters - Solution of Wiener–Hopf Equation	•
	Inrealizable Filters - Closed-Form Error Expression	
	Kalman Filter Based Estimation	6 hours
	Markov Processes: Kalman Filter - Differential Equa	•
	ystems and Random Process Generation - Kalma	
	Filter - Generalizations - Implementation Issues - Bay	
	ian Models - The Extended Kalman Filter - Linear A	
Module:8	ns - Linear AWGN Process, Nonlinear AWGN Obser Contemporary Issues	2 hours
Module.o	contemporary issues	2 110015
1		
	Total Lecture hours:	45 hours
Text Book		45 hours
Text Book 1. Harry Wiley,	(s) L. Van Trees, "Detection Estimation and Modulation	
1. Harry	s) L. Van Trees, "Detection Estimation and Modulation 2013.	
1. Harry Wiley, Reference 1. Bernar	s) L. Van Trees, "Detection Estimation and Modulation 2013. Books d C. Levy, "Principles of Signal Detection and Par	on Theory", John
1. Harry Wiley, Reference 1. Bernar Spring	(s) L. Van Trees, "Detection Estimation and Modulation 2013. Books Ind C. Levy, "Principles of Signal Detection and Par er New York, NY, ISBN 978-0-387-76542-6, 2008	on Theory", John ameter Estimation",
1.HarryWiley,Reference1.BernarSpring2.H. Vino	(s) L. Van Trees, "Detection Estimation and Modulation 2013. Books Ind C. Levy, "Principles of Signal Detection and Par er New York, NY, ISBN 978-0-387-76542-6, 2008 cent Poor, "An Introduction to Signal Detection and E	on Theory", John ameter Estimation",
1.HarryWiley,Reference1.BernarSpring2.H. Vino	(s) L. Van Trees, "Detection Estimation and Modulation 2013. Books Ind C. Levy, "Principles of Signal Detection and Par er New York, NY, ISBN 978-0-387-76542-6, 2008	on Theory", John ameter Estimation",
1.Harry Wiley,Reference1.Bernar Spring2.H. Vino New Y	(s) L. Van Trees, "Detection Estimation and Modulation 2013. Books rd C. Levy, "Principles of Signal Detection and Par er New York, NY, ISBN 978-0-387-76542-6, 2008 cent Poor, "An Introduction to Signal Detection and E ork, NY, 1994	on Theory", John ameter Estimation", Estimation", Springer
1.HarryWiley,Reference1.BernarSpring2.H. VinoNew YMode of Ev	(s) L. Van Trees, "Detection Estimation and Modulation 2013. Books Ind C. Levy, "Principles of Signal Detection and Par er New York, NY, ISBN 978-0-387-76542-6, 2008 cent Poor, "An Introduction to Signal Detection and E	on Theory", John ameter Estimation", Estimation", Springer
1.Harry Wiley,Reference1.Bernar Spring2.H. Vino New YMode of Exprinal Assess	(s) L. Van Trees, "Detection Estimation and Modulation 2013. Books Id C. Levy, "Principles of Signal Detection and Par er New York, NY, ISBN 978-0-387-76542-6, 2008 cent Poor, "An Introduction to Signal Detection and E ork, NY, 1994 valuation: Continuous Assessment Test, Digital As	on Theory", John ameter Estimation", Estimation", Springer

Course Code	Course Title	1	T	Ρ	С
BECE405L	Cognitive Radio Networks	3		0	3
	BECE307L, BECE307P/	Syllab	-		-
Pre-requisite	BECE317L, BECE317P	Oynas	u5 v		- ion
			1.0		
Course Objectiv	/es				
	stand the principles and importance of cognitive	radio in	the	cont	ext
	neration networks				
•	e various spectrum sensing, access and manag	gement	proto	ocols	3
	ice the challenges and opportunities associated				
networks	5 11	,	•		
Course Outcom	les				
At the end of the	course, the student will have the ability to				
1. Solve the fu	indamental challenges associated with securit	ty, med	ium	acce	ess
	network layers.				
-	e performance of various spectrum acce	ess, se	nsin	g a	and
managemen					
	etwork layer suitable for CRNs.				
	tools for the implementation of spectrum ac	cess, s	ensii	ng a	and
managemen	A	_			
5. Make a pres	entation on assigned topic related to this course	<u>е.</u>			
Madulard Inter	duction to Occupitive Declin		-	I a a 1	
	oduction to Cognitive Radio	- Comm		ho	
	nitive Radio, Cognitive Radio in 4G/5G Wireles -Interoperability, Dynamic Spectrum Access, R				
	s, Cognitive radio architecture, Introduction to				
-	chitecture and design principles, Recon				
communication s	• • •	ngurubi	, vi		500
	ctrum Access and Sharing		6	ho	urs
	ctrum Sharing, Licensed Spectrum Sharing, Se	econdar			
	eal-Time Spectrum Access and Sharing, Re				
	ring- Negotiated Access, Opportunistic Access,		-		
Underlay Approa	ich	-			
Module:3 Spe	ctrum Sensing and Management		8	ho	urs
Spectrum Sensi	ng to Detect Specific Primary System-Conv	ventiona	l sp	ectr	um
	control, Power-scaling power control, Coo				
	m sensing procedure. Spectrum Sensing for Co	ognitive	Mult	i-Ra	dio
	e system sensing, Radio resource sensing				
	ium Access Control			ho	
0	tive radios, Multi-channel MAC-Collision av				
•	ion, Slotted-ALOHA with Rate-Distance Adapt				
	h spatial reuse transmissions, Cross layer	power-r	ate	con	trol
scheme	work Lover Decian		~	h a :	
	work Layer Design	itivo no -		ho	
	e Ad Hoc Networks-Features of routing in cogni				
	source routing in MANET, Ad-hoc on-demain in CRN-Routing of dynamic and unidirectional of				
	In Gran-Routing of Gynamic and Unitilieotorial (Joyinuve	= Idu		11/2

in CRN, Control of CRN-Flow control and end-to-end error control, Network							
tomography, Self-Organized CRNs.							
Module:6Trusted Cognitive Radio Networks6 hours							
Framework of Trust in CRN, Trusted Association and Routing, Trust with Learning							
Modified Bayesian learning, Learning experiments for CRN, Security in CRN							
Dilemma of CRN security, Requirements and challenges for preserving user privac							
in CRNs, Implementation of CRN security.							
Module:7 Spectrum Management 4 hour							
Spectrum Sharing, Spectrum Pricing, Mobility Management of Heterogeneou							
Wireless Networks, Regulatory Issues and International Standards							
Module:8 Contemporary Issues 2 hour							
Total Lecture hours 45 hour							
Text Book(s)							
1. Ahmed Khattab, Dmitri Perkins, Magdy Bayoumi, Cognitive Radio Networks,							
Springer New York, NY, 2013.							
Reference Books							
1. Setoodeh, P., & Haykin, S. (2017). Fundamentals of cognitive radio. John Wile							
& Sons.							
2. Alexander M. Wyglinski, Maziar Nekovee, Thomas Hou, Cognitive Radi							
Communications and Networks, Academic Press, Elsevier, 2010.							
3. Xiao, Y., & Hu, F. (Eds.). (2019). Cognitive radio networks. CRC press.							
4 Frie Diulieui Audure I Orldenside I - I Orldenside I - D							
4. Ezio Biglieri, Andrea J. Goldsmith, Larry J. Greenstein, Narayan B.							
Mandayam, H. Vincent Poor, "Principles of Cognitive Radio", Cambridge, 201							
Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz an							
Final Assessment Test							
Recommended by Board of Studies 28-02-2023							
Approved by Academic Council No. 69 Date 16-03-2023							

Course Code	Course Title		T	Ρ	С
BECE406E	FPGA Based System Design	2	0	г 2	3
Pre-requisite		<u>∣∠</u> yllabu	-		
Fie-lequisite			<u>s ve</u> 1.0	51 310	
Course Objectiv			1.0		
	nd FPGA Architecture and technologies				
	of complex digital sub-systems				
	tation of complex FPGA applications in real world	econo	rio		
5. Implemen		SUCIIA	110		
Course Outcom	les				
	d of the course, students will be able to				
	nd architectures of programmable logic devices				
	nd various abstraction level in Verilog HDL				
	high speed arithmetic and memory circuits				
	ne synthesis and timing constraints/reports				
	e system using soft core processors				
	he FPGA based system for various applications in s	ignal r	oroc	essi	ng
	and prototype digital systems using FPGA	U			0
•					
Module:1 Prog	grammable Logic Devices		4	hοι	ırs
Types of Progra	mmable Logic Devices: PLA, PAL, CPLD - FPG	A Arcl	nited	cture) –
Programming To	echnologies-Chip I/O- Programmable Logic Blo	cks- F	abr	ic a	nd
Architecture of F	PGA.				
Module:2 HDL				hοι	
-	oral, Data Flow and Structural Modeling, L	lseful	Mc	deli	ng
Techniques.					
	lementation of Arithmetic system			hοι	irs
	ts: High Speed Adders, Carry look-ahead adder, C		ave		
	nal Sum adders, Sequential and Parallel Multiplier	s		<u>.</u>	
	l and memory modelling			hou	
-	d Asynchronous FIFO – Single port and Dual port				
	odeling of Sequence detector - Serial adder - Vend	ding m			
	thesis and Timing Analysis			hοι	
	nization of Speed: Introduction, Strategies for Timir	ng Imp	orove	eme	nt;
	Area, Optimization of power		-	b a :	
Module:6 SoC		المحد		hou	
	ardware – software codesign, Introduction to Qsys a				
	II Software Build Tools for Eclipse, Incorporate cu	stom p	berip	ner	ais
	o an embedded system.		4	hai	
	A Applications m design using FPGAs, DSP using FPGAs, Dyna			hou	
	reconfigurable systems, application case studie				
	exercises of combinational, sequential and DSP k				
Altera boards.	Cheroises of combinational, sequential and DOP M	511013			~ /
	temporary Issues		2	hou	irs
	Total Lecture hours	s:		hou	
Text Book(s)					

1.	Michael D Ciletti, Advanced Digita	al Design v	with the \	/erilog HDL,	Prentice Hall,	
	Second					
	Edition, 2017.					
Re	ference Books					
1.	Charles H Roth Jr, Lizy Kurian Joh using Verilog, Cengage Learning,				/stems Design	
2.	Wayne Wolf, FPGA Based Semiconductor Design Series, 20		Design,	Prentices	Hall Modern	
3.	Ming-Bo Lin, Digital Systems De FPGAs, Create Space Independe					
Мо	de of Evaluation: Continuous Asse	essment T	est, Dig	ital Assignm	ent, Quiz and	
Fin	al Assessment Test					
Ind	licative Experiments					
1.	Design of adders and Multipliers				6 hours	
2.	Design of FSM				6 hours	
3.	Design of Memory circuits				6 hours	
4.	Synthesis and Timing Analysis				6 hours	
5.	System design using Qsys				6 hours	
	Total Laboratory Hours 30 hours					
Мо	de of assessment: Continuous ass	essment a	and FAT			
Re	Recommended by Board of Studies 28-02-2023					
Ap	proved by Academic Council	No. 69	Date	16-03-2023	3	

Course Code	Course Title		L	I	Ρ	С
BECE407E	ASIC Design BECE303L, BECE303P		2	0	2	3
Pre-requisite	Sylla			ersi	on	
	`		1	.0		
Course Objectiv						
	e HDL coding guidelines, synthesizable HDL	constru	ucts	an	d R	TL
	Flow with respect to different cost functions.					
	w to perform Static Timing Analysis for ASIC de	•				
	ne guidelines at each abstraction level in physic		•			
4. Provide de	etailed insight on importance of physical desigr	n verifio	catic	n		
Course Outcom						
	course the student will be able to					
•	digital system by adhering to synthesizable HD					
-	e the given design by considering various	constr	aint	s a	ind	to
optimize t		Timelin	~ ^ /			far
	nd various timing parameters and perform Static		g Ar	aly	SIS	TOF
ASIC desi	hysical design by adhering to guidelines.					
	d the importance of physical design verification					
••	SIC based systems using industry standard too					
0. Design Ad	bio based systems using industry standard too	13.				
	C Design Methodology & Design Flow			3	hou	irs
	Strategies for Digital ICs: Custom IC Design-	Cell-h	ase			
	rray based implementation approaches - Trad					
Compiler based		lional	ana			o cai
	log HDL Coding Style for Synthesis			6	hou	irs
	e – Guidelines and Recommendation - FSM Co	oding (Guid			
	Synthesis. Datapath and Control Logic Design	•				
Module:3 RTL				3	hou	irs
RTL synthesis F	low – Synthesis Design Environment & Constr	aints -	- Aro	chit	ectu	Jre
of Logic Synthe	sizer - Technology Library Basics- Compone	ents o	f Te	chr	nolo	ogy
	esis Optimization- Technology independent					
	nesis- Data path Synthesis – Low Power S	Synthe	sis	- F	orn	nal
Verification.			1			
	ic Timing Analysis				hou	
	er Definition – Setup Timing Check- Hold Timin	g Cheo	ck- N	/luli	icyc	cle
	e Paths- False Paths		1			
	anced Timing Analysis				hou	
	mization – On-Chip Variations- AOCV-Time Bo	prrowin	g- S	setu	ip a	nd
Hold Violation Fiz			1	_		
Module:6 Phys					hou	
	Physical Design Flow- Guidelines for Floor pla	an, Pla	cem	ieni	t, C	IS
	O flow – Signal Integrity Issues.			2	h	
	sical Design Verification	יי סם־	<u>ר ר</u>		hou	ırs
	Physical Verification – Signoff DRC and LVS, E	-RU. II	ĸυr	op		
		- ,		•		
Analysis, Electro	-Migration Analysis and ESD Analysis. temporary Issues	- ,			hou	

			Т	otal Lec	ture hours:	30 hours	
Tex	kt Book	(s)					
1.							
Re	ference	Books					
1.		ow Golshan, PHYSICAL nentation Perspective, Firs			TIALS An A	SIC Design	
2.		el John Sebastian Smith, A n, 2002.	pplication-S	Specific I	ntegrated Cir	cuits, First	
3.		sker and Rakesh Chadha, s, Springer, First Edition, 2		ng Analys	sis for Nanon	neter	
		valuation: Continuous Ass ssment Test	sessment Te	est, Digit	tal Assignme	nt, Quiz and	
Ind	licative	Experiments					
1.	Desigr	of Digital Architecture for	given speci	fication		6 hours	
2.	Logica	I Synthesis of Digital Archi	tecture			6 hours	
3.	Netlist	Optimization and Formal	/erification			6 hours	
4.	Physic	al Synthesis of Digital Arcl	nitecture			6 hours	
5.	Physic	al Verification of digital arc	hitecture			6 hours	
	Total Laboratory Hours 30 hours						
Мо	de of as	sessment: Continuous ass	sessment ar	nd FAT			
Re	Recommended by Board of Studies 28-02-2023						
Ap	proved b	by Academic Council	No. 69	Date	16-03-2023		

Course Code	Course Title	L	Т	Ρ	С
BECE408L	· · · · · · · · · · · · · · · · · · ·				
Pre-requisite	BECE305L, BECE305P Syll	abu	s ve	ersio	n
-			1.0		
Course Objectiv	ves				
1. To have t	he essential knowledge of various planar microstrip	circu	uits		
To design	and analyse various types of microwave planar cire	cuits			
3. To acqua	int the fabrication techniques and tolerances for MIC	C circ	cuits	;	
Course Outcom					
	d of the course, students will be able to				
•	end the importance of various microstrip lines and th	ie los	ses	due	e to
	icrostrip discontinuities				
	e lumped elements for microwave circuits				
	arious microstrip resonators				
	nd analyze band pass filters				
	e various microwave amplifiers, oscillators and mixe		n	oiro:	uita
	the performance of various fabrication techniques fo	i pia	nar	CITCL	IIIS
Module:1 Plan	ar transmission lines		6	hou	ire
	es of MICs and their technology; Microstrip lines, str	rin lir	-		-
Introduction typ					hot
lines, co-planar	waveguides, coupled lines and SIW. Losses				
lines, co-planar transmission line	waveguides, coupled lines and SIW. Losses es.	in	mi	crost	trip
lines, co-planar transmission line Module:2 Pas	waveguides, coupled lines and SIW. Losses es. sive elements for MICs and discontinuities	in	mio 8	hou	trip urs
lines, co-planar transmission line Module:2 Pas Lumped microst	waveguides, coupled lines and SIW. Losses es. sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct	in in	mio 8 capa	crost hou acito	trip urs ors,
lines, co-planar transmission line Module:2 Pas Lumped microst resistors, Quasi	waveguides, coupled lines and SIW. Losses es. sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct umped microstrip elements: Open and short circuited	in iors, d	mio 8 capa bs (hou hou acito quar	trip urs ors, ter
lines, co-planar transmission line Module:2 Pas Lumped microst resistors, Quasi l wavelength, ha	waveguides, coupled lines and SIW. Losses es. sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct	ors, o d stu	mio 8 capa bs (hou hou acito quar	trip urs ors, ter
lines, co-planar transmission line Module:2 Pas Lumped microst resistors, Quasi I wavelength, ha Discontinuities: (waveguides, coupled lines and SIW. Losses es. sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct umped microstrip elements: Open and short circuited If wavelength). Interdigital capacitors, Approxim	ors, o d stu	mic 8 capa bs (ar	hou hou acito quar	trip urs ors, ter sis.
lines, co-planar transmission line Module:2 Pas Lumped microst resistors, Quasi I wavelength, ha Discontinuities: 0 Module:3 Mic	waveguides, coupled lines and SIW. Losses s. sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct umped microstrip elements: Open and short circuited If wavelength). Interdigital capacitors, Approxin Corners, symmetrical step, T-junction and series ga	d stu ps	mic 8 capa bs (ar 6	hou acito quar nalys	trip ors, ter sis.
lines, co-planar transmission line Module:2 Pas Lumped microst resistors, Quasi I wavelength, ha Discontinuities: 0 Module:3 Mic Analysis and De	waveguides, coupled lines and SIW. Losses s. sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct umped microstrip elements: Open and short circuited lf wavelength). Interdigital capacitors, Approxin Corners, symmetrical step, T-junction and series ga rostrip Resonators	d stu ps	mic 8 capa bs (ar 6	hou acito quar nalys	trip ors, ter sis.
lines, co-planar transmission line Module:2 Pas Lumped microst resistors, Quasi I wavelength, ha Discontinuities: 0 Module:3 Mic Analysis and De Patch resonators	waveguides, coupled lines and SIW. Losses s. sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct umped microstrip elements: Open and short circuited of wavelength). Interdigital capacitors, Approxin Corners, symmetrical step, T-junction and series ga rostrip Resonators esign of Quarter & Half wave length resonators, R	d stu ps	mic capa bs (ar 6 reso	hou acito quar nalys	trip urs ors, ter sis. urs ors,
lines, co-planar transmission line Module:2 Pas Lumped microst resistors, Quasi I wavelength, ha Discontinuities: 0 Module:3 Mic Analysis and De Patch resonators Module:4 Mic	waveguides, coupled lines and SIW. Losses sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct umped microstrip elements: Open and short circuited of wavelength). Interdigital capacitors, Approxin Corners, symmetrical step, T-junction and series ga rostrip Resonators esign of Quarter & Half wave length resonators, R s and Slot resonators.	ors, ors, of stuments in the second stuments of the second stuments	mic capa bs (ar 6 reso	hou acito quar nalys hou nato	trip JITS Jors, ter Sis. JITS JITS
lines, co-planar transmission line Module:2 Pas Lumped microst resistors, Quasi I wavelength, ha Discontinuities: 0 Module:3 Mic Analysis and De Patch resonators Module:4 Mic Introduction, Bar band pass, Desig	waveguides, coupled lines and SIW. Losses sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct umped microstrip elements: Open and short circuited of wavelength). Interdigital capacitors, Approxin Corners, symmetrical step, T-junction and series ga rostrip Resonators esign of Quarter & Half wave length resonators, R is and Slot resonators. rowave Filter Design and pass filter: Insertion loss method, Conversion fro gn of band pass filter using lumped elements, distributed in the series of the series o	ors, d ors, d d stu mate ps ing r	mic capa bs (ar 6 reso 7 7	hou acito quar nalys hou nato	trip urs ors, ter sis. urs ors, urs to
lines, co-planar transmission line Module:2 Pas Lumped microst resistors, Quasi I wavelength, ha Discontinuities: 0 Module:3 Mic Analysis and De Patch resonators Module:4 Mic Introduction, Bar band pass, Desig impedance inver	waveguides, coupled lines and SIW. Losses sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct umped microstrip elements: Open and short circuited of wavelength). Interdigital capacitors, Approxin Corners, symmetrical step, T-junction and series ga rostrip Resonators esign of Quarter & Half wave length resonators, R and Slot resonators. rowave Filter Design and pass filter: Insertion loss method, Conversion fro gn of band pass filter using lumped elements, distribu- ters and coupled line filters.	ors, d ors, d d stu mate ps ing r	mic 8 capa bs (ar 6 7 7 5 0 1 ele	hou acito quar halys hou nato	trip urs ors, ter sis. urs ors, urs to nts,
lines, co-planar transmission line Module:2 Pas Lumped microst resistors, Quasi I wavelength, ha Discontinuities: 0 Module:3 Mic Analysis and De Patch resonators Module:4 Mic Introduction, Bar band pass, Desig impedance inver	waveguides, coupled lines and SIW. Losses sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct umped microstrip elements: Open and short circuited of wavelength). Interdigital capacitors, Approxin Corners, symmetrical step, T-junction and series ga rostrip Resonators esign of Quarter & Half wave length resonators, R is and Slot resonators. rowave Filter Design and pass filter: Insertion loss method, Conversion fro gn of band pass filter using lumped elements, distribu- ters and coupled line filters. rowave Amplifiers	ing r	mic 8 capa bs (ar 6 reso 7 7 7 7 7 7 7 7 8 6	hou acito quar nalys hou nato	trip JITS ors, ter sis. JITS ors, JITS to nts, JITS
lines, co-planar transmission line Module:2 Pas Lumped microst resistors, Quasi I wavelength, ha Discontinuities: 0 Module:3 Micr Analysis and De Patch resonators Module:4 Micr Introduction, Bar band pass, Designing impedance inver Module:5 Micr Single stage am	waveguides, coupled lines and SIW. Losses sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct umped microstrip elements: Open and short circuited of wavelength). Interdigital capacitors, Approxin Corners, symmetrical step, T-junction and series gar rostrip Resonators esign of Quarter & Half wave length resonators, R is and Slot resonators. rowave Filter Design and pass filter: Insertion loss method, Conversion fro gn of band pass filter using lumped elements, distribu- ters and coupled line filters. rowave Amplifiers plifier design for maximum and specific gain, Noise	in ors, o d stu mate ps ing r om lo outed	mic 8 capa bs (ar 6 reso 7 7 7 7 7 7 7 7 7 7 7 7 7	hou acito quar nalys hou nato nato nato nato nato	trip urs ors, ter sis. urs ors, urs to nts, urs ign
lines, co-planar transmission line Module:2 Pas Lumped microst resistors, Quasi I wavelength, ha Discontinuities: 0 Module:3 Mic Analysis and De Patch resonators Module:4 Mic Introduction, Bar band pass, Desig impedance inver Module:5 Micr Single stage am of low noise am	waveguides, coupled lines and SIW. Losses sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct umped microstrip elements: Open and short circuited of wavelength). Interdigital capacitors, Approxin Corners, symmetrical step, T-junction and series ga rostrip Resonators esign of Quarter & Half wave length resonators, R and Slot resonators. rowave Filter Design and pass filter: Insertion loss method, Conversion fro gn of band pass filter using lumped elements, distribu- ters and coupled line filters. rowave Amplifiers uplifier design for maximum and specific gain, Noise uplifiers, Gain compression, Intermodulation distort	in ors, o d stu mate ps ing r om lo outed	mic 8 capa bs (ar 6 reso 7 7 7 7 7 7 7 7 7 7 7 7 7	hou acito quar nalys hou nato nato nato nato nato	trip urs ors, ter sis. urs ors, urs to to to to to to to to to to
lines, co-planar transmission line Module:2 Pas Lumped microst resistors, Quasi I wavelength, ha Discontinuities: 0 Module:3 Mic Analysis and De Patch resonators Module:4 Mic Introduction, Bar band pass, Desig impedance inver Module:5 Micr Single stage am of low noise am intercept point, d	waveguides, coupled lines and SIW. Losses sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct umped microstrip elements: Open and short circuited of wavelength). Interdigital capacitors, Approxin Corners, symmetrical step, T-junction and series gares rostrip Resonators esign of Quarter & Half wave length resonators, R and Slot resonators. rowave Filter Design nd pass filter: Insertion loss method, Conversion fro gn of band pass filter using lumped elements, distribu- ters and coupled line filters. rowave Amplifiers uplifier design for maximum and specific gain, Noise uplifiers, Gain compression, Intermodulation distort lynamic range.	in ors, o d stu mate ps ing r om lo outed	mic 8 capa bs (ar 6 reso 7 7 7 7 7 7 7 7 7 7 7 1 elee 6 1 re, third	hou acito quar nalys hou nato bass mer bass d ore	trip Jrs ors, ter sis. Jrs ors, Jrs to to ts, Jrs ors, Jrs ors, Jrs ors, Jrs
lines, co-planar transmission line Module:2 Pas Lumped microst resistors, Quasi I wavelength, ha Discontinuities: 0 Module:3 Micr Analysis and De Patch resonators Module:4 Micr Introduction, Bar band pass, Designing impedance inver Module:5 Micr Single stage am of low noise am intercept point, of Module:6 Micr	waveguides, coupled lines and SIW. Losses sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct umped microstrip elements: Open and short circuited If wavelength). Interdigital capacitors, Approxin Corners, symmetrical step, T-junction and series gan rostrip Resonators esign of Quarter & Half wave length resonators, R is and Slot resonators. rowave Filter Design nd pass filter: Insertion loss method, Conversion from gn of band pass filter using lumped elements, distribu- ters and coupled line filters. rowave Amplifiers uplifier design for maximum and specific gain, Noise uplifiers, Gain compression, Intermodulation distort lynamic range. rowave Oscillators and Mixers	ing r	mic 8 capa bs (ar 6 reso 7 7 7 7 7 7 7 7 7 7 7 7 7	hou acito quar halys hou bass mer bass d ord hou	trip Irs ors, ter sis. Irs ors, Irs to nts, Irs ign der Irs
lines, co-planar transmission line Module:2 Pas Lumped microst resistors, Quasi I wavelength, ha Discontinuities: 0 Module:3 Mic Analysis and De Patch resonators Module:4 Mic Introduction, Bar band pass, Desig impedance inver Module:5 Micr Single stage am of low noise am intercept point, of Module:6 Micr Conditions for	waveguides, coupled lines and SIW. Losses sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct umped microstrip elements: Open and short circuited of wavelength). Interdigital capacitors, Approxin Corners, symmetrical step, T-junction and series ga rostrip Resonators esign of Quarter & Half wave length resonators, R and Slot resonators. rowave Filter Design and pass filter: Insertion loss method, Conversion fro gn of band pass filter using lumped elements, distribu- ters and coupled line filters. rowave Amplifiers uplifier design for maximum and specific gain, Noise uplifiers, Gain compression, Intermodulation distort lynamic range. rowave Oscillators and Mixers oscillations, one port oscillator, two port oscillators.	ing r	mic 8 capa bs (ar 6 reso 7 7 7 1 ele 6 1 ele 6 1 re, third 5 (Tra	hou acito quar halys hou nato hou Des d oro hou ansis	trip Irs ors, ter sis. Irs to ors, Irs to to, ter to to to to to to ter ter ter ter ter ter ter ter
lines, co-planar transmission line Module:2 Pas Lumped microst resistors, Quasi I wavelength, ha Discontinuites: 0 Module:3 Micr Analysis and De Patch resonators Module:4 Micr Introduction, Bar band pass, Desig impedance inver Module:5 Micr Single stage am of low noise am intercept point, of Module:6 Micr Conditions for oscillators), Cha	waveguides, coupled lines and SIW. Losses sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct umped microstrip elements: Open and short circuited of wavelength). Interdigital capacitors, Approxin Corners, symmetrical step, T-junction and series gares rostrip Resonators esign of Quarter & Half wave length resonators, R is and Slot resonators. rowave Filter Design and pass filter: Insertion loss method, Conversion from gn of band pass filter using lumped elements, distribu- ters and coupled line filters. rowave Amplifiers polifier design for maximum and specific gain, Noise polifiers, Gain compression, Intermodulation distort lynamic range. rowave Oscillators and Mixers oscillations, one port oscillator, two port oscilla racteristics of mixer, Single ended diode mixer, Sin	ing r	mic 8 capa bs (ar 6 reso 7 7 7 1 ele 6 1 ele 6 1 re, third 5 (Tra	hou acito quar halys hou nato hou Des d oro hou ansis	trip Irs ors, ter sis. Irs to to ts, Irs ign der Irs to to to to to to to to to to
lines, co-planar transmission line Module:2 Pas Lumped microst resistors, Quasi I wavelength, ha Discontinuities: 0 Module:3 Micr Analysis and De Patch resonators Module:4 Micr Introduction, Bar band pass, Desig impedance inver Module:5 Micr Single stage am of low noise am intercept point, of Module:6 Micr Conditions for oscillators), Cha mixer and Image	waveguides, coupled lines and SIW. Losses sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct umped microstrip elements: Open and short circuited of wavelength). Interdigital capacitors, Approxin Corners, symmetrical step, T-junction and series ga rostrip Resonators esign of Quarter & Half wave length resonators, R is and Slot resonators. rowave Filter Design and pass filter: Insertion loss method, Conversion fro gn of band pass filter using lumped elements, distribu- ters and coupled line filters. rowave Amplifiers plifier design for maximum and specific gain, Noise plifiers, Gain compression, Intermodulation distort lynamic range. rowave Oscillators and Mixers oscillations, one port oscillator, two port oscillator aracteristics of mixer, Single ended diode mixer, Single ereject mixer.	ing r	mic 8 capa bs (ar 6 reso 7 7 7 7 7 7 7 7	hou acito quar halys hou nato bass mer bass d oro hou ansis ed F	trip ITS ors, ter sis. ITS ors, ITS ors, ITS ors, ITS ors, tor tor tor tor tor tor tor ter ter ter ter ter ter ter te
lines, co-planar transmission line Module:2 Pas Lumped microst resistors, Quasi I wavelength, ha Discontinuities: 0 Module:3 Mic Analysis and De Patch resonators Module:4 Mic Introduction, Bar band pass, Desig impedance inver Module:5 Micr Single stage am of low noise am intercept point, do Module:6 Micr Conditions for oscillators), Cha mixer and Image	waveguides, coupled lines and SIW. Losses sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct umped microstrip elements: Open and short circuited of wavelength). Interdigital capacitors, Approxin Corners, symmetrical step, T-junction and series ga rostrip Resonators esign of Quarter & Half wave length resonators, R is and Slot resonators. rowave Filter Design and pass filter: Insertion loss method, Conversion fro gn of band pass filter using lumped elements, district ters and coupled line filters. rowave Amplifiers uplifier design for maximum and specific gain, Noise uplifiers, Gain compression, Intermodulation distort lynamic range. rowave Oscillators and Mixers oscillations, one port oscillator, two port oscilla racteristics of mixer, Single ended diode mixer, Sin e reject mixer. and MMIC Fabrication Technologies	ing r	mic 8 capa bs (ar 6 reso 7 7 reso 7 7 reso 7 7 7 7 7 7 7 7 7 7 7 7 7	hou acito quar halys hou nato hou bass mer bass d ord hou ansis ed F	trip Irs ors, ter sis. Irs ors, Irs to to ts, ter to ts, Irs to ts, Irs trs, Irs trs, Irs ter Irs , Irs , Ir
lines, co-planar transmission line Module:2 Pas Lumped microst resistors, Quasi I wavelength, ha Discontinuities: 0 Module:3 Mic Analysis and De Patch resonators Module:4 Mic Introduction, Bar band pass, Designing impedance inver Module:5 Micr Single stage am of low noise am intercept point, d Module:6 Micr Conditions for oscillators), Cha mixer and Image Module:7 MIC Hybrid MICs, Co	waveguides, coupled lines and SIW. Losses sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct umped microstrip elements: Open and short circuited If wavelength). Interdigital capacitors, Approxin Corners, symmetrical step, T-junction and series ga rostrip Resonators esign of Quarter & Half wave length resonators, R is and Slot resonators. rowave Filter Design nd pass filter: Insertion loss method, Conversion from gn of band pass filter using lumped elements, distribu- ters and coupled line filters. rowave Amplifiers polifier design for maximum and specific gain, Noise polifiers, Gain compression, Intermodulation distort lynamic range. rowave Oscillators and Mixers oscillations, one port oscillator, two port oscillar racteristics of mixer, Single ended diode mixer, Sin- ereject mixer. and MMIC Fabrication Technologies nfiguration, Dielectric substances, thick and thin film	ing r ors, o d stu mate ps ing r om lo outed outed ion, e figu ion, itor ngle e	mice 8 capa bs (ar 6 reso 7 7 7 7 7 7 7 7 7 7 7 7 7	hou acito quar nalys hou nato hou Des d oro hou nsis ed F hou logy	trip Irs ors, ter sis. Irs ors, Irs to to to to to to Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs
lines, co-planar transmission line Module:2 Pas Lumped microst resistors, Quasi I wavelength, ha Discontinuities: 0 Module:3 Microst Analysis and De Patch resonators Module:4 Microst Introduction, Bar band pass, Designing impedance invert Module:5 Microst Single stage am of low noise am intercept point, of Module:6 Microst Conditions for oscillators), Char mixer and Image Module:7 MIC Hybrid MICs, Con LTCC, HTCC, P	waveguides, coupled lines and SIW. Losses sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct umped microstrip elements: Open and short circuited of wavelength). Interdigital capacitors, Approxin Corners, symmetrical step, T-junction and series ga rostrip Resonators esign of Quarter & Half wave length resonators, R is and Slot resonators. rowave Filter Design and pass filter: Insertion loss method, Conversion fro gn of band pass filter using lumped elements, district ters and coupled line filters. rowave Amplifiers uplifier design for maximum and specific gain, Noise uplifiers, Gain compression, Intermodulation distort lynamic range. rowave Oscillators and Mixers oscillations, one port oscillator, two port oscilla racteristics of mixer, Single ended diode mixer, Sin e reject mixer. and MMIC Fabrication Technologies	ing r ors, o d stu mate ps ing r om lo outed outed ion, e figu ion, itor ngle e	mice 8 capa bs (ar 6 reso 7 7 7 7 7 7 7 7 7 7 7 7 7	hou acito quar nalys hou nato hou Des d ord hou nais bas d ord hou nais bas d ord hou nais	trip Irs ors, ter sis. Irs ors, Irs to to to to to to Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs
lines, co-planar transmission line Module:2 Pas Lumped microst resistors, Quasi I wavelength, ha Discontinuities: 0 Module:3 Mic Analysis and De Patch resonators Module:4 Mic Introduction, Bar band pass, Desig impedance inver Module:5 Micr Single stage am of low noise am intercept point, d Module:6 Micr Conditions for oscillators), Cha mixer and Image Module:7 MIC Hybrid MICs, Co LTCC, HTCC, P	waveguides, coupled lines and SIW. Losses sive elements for MICs and discontinuities rip components: Design of microstrip and chip induct umped microstrip elements: Open and short circuited If wavelength). Interdigital capacitors, Approxin Corners, symmetrical step, T-junction and series ga rostrip Resonators esign of Quarter & Half wave length resonators, R is and Slot resonators. rowave Filter Design nd pass filter: Insertion loss method, Conversion from gn of band pass filter using lumped elements, distribu- ters and coupled line filters. rowave Amplifiers polifier design for maximum and specific gain, Noise polifiers, Gain compression, Intermodulation distort lynamic range. rowave Oscillators and Mixers oscillations, one port oscillator, two port oscillar racteristics of mixer, Single ended diode mixer, Sin- ereject mixer. and MMIC Fabrication Technologies nfiguration, Dielectric substances, thick and thin film	ing r ors, o d stu mate ps ing r om lo outed outed ion, e figu ion, itor ngle e	mic 8 capa bs (ar 6 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 7 reso 6 6 6 6 6 6 6 6	hou acito quar nalys hou nato hou Des d ord hou nais bas d ord hou nais bas d ord hou nais	trip Irs ors, ter sis. Irs ors, Irs to to ts, Irs to ts, Irs ors, Irs to ts, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs ors, Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs Irs

			Тс	otal Lect	ure hours:	45 hours		
Tex	Text Book(s)							
1.								
Ref	ference	Books						
1.	Ali A E	Behagi, RF and Microwave	e Circuit De	sign: A	Design Appr	oach using		
	ADS, 2	2017, 1e, Techno Search,	India.	-		_		
2.	D. M. I	Pozar, Microwave enginee	ring, 2020,	4e, John	Wiley, India			
3.	G Gon	zalez, Microwave transisto	or amplifiers	s, 1997, 2	2e, PHI Inc.,	NJ		
Mo	de of E	valuation: Continuous Ass	essment T	est, Dig	ital Assignm	ent, Quiz and		
Fin	Final Assessment Test							
Red	Recommended by Board of Studies 28-02-2023							
Арр	proved b	by Academic Council	No. 69	Date	16-03-2023			

Course Code	Course Title	L	Т	Ρ	С
BECE409E	Sensors Technology	2	0	2	3
Pre-requisite	NIL S	yllab	us	vers	ion
			1.0		
Course Objectiv	/es				
	a broad familiarity with the principle of sensing and	differ	ent	sens	sors
	orld applications • various sensor technologies for the measuren	ant	of	ahve	ical
	and develop suitable signal conditioning circuits.	ient		Jirya	icai
	lost suitable sensors for each measurement app	olicati	on	and	aet
	d with fabrication and interfacing process	neat	•		901
I	51				
Course Outcom	les				
At the end of the	course, students will be able to				
	nd the sensors, sensor materials and sensor techn				
	rious RLC and self-generating sensors for mea	asurir	ng l	ohys	ical
quantities					
• •	ppropriate signal conditioning and compensating	circu	its 1	or F	RLC
sensors	verieve concern veing different febrication technic				
	various sensors using different fabrication techniq	ues			
	dvanced sensing mechanisms. mart sensors and IOT for various sensor applicatio	ne			
	the various sensors, work with them and interpret t		ta c	btai	ned
-	us applications.			, o tan	iea
	sing Mechanism		4	4 ho	urs
	ensing: Resistive, Capacitive, Magnetic, Inductiv	e, Pi	ezo	elec	tric,
	, Pyro-electric, Hall effect, RF sensing. Senso				
	ties. Sensor Technologies: Micro Technology				
	ems Technology, Nanotechnology. Example of S	mart	Se	nsor	s in
	learing, Touch, and Smell).				
	and Self Generating Sensors			<u>4 ho</u>	
	ors – Strain Gauges, Resistance Tempera				
	ht dependent resistors, Self and Mutual Inducti ve Transducers, Variable Distance, Variable				
	Capacitive Sensors. Self-Generating Sensors –				
51	electric Sensors, Pyroelectric sensors, Photo				
Electrochemical					,
	sor Signal Conditioning		4	4 ho	urs
	Resistance Measurements-Wheatstone Bridge, K	elvin			
Bridges for Cap	pacitance and Inductance Measurements-AC E	ridge	e, S	sche	ring
•	Compensation Circuits-Temperature, Non-linea	rity	and	Of	fset
Compensation.		-			
Module:4 Sens				<u>4 ho</u>	
	ilm Sensor Fabrication – Screen Printing Technol				
	MEMS and NEMS Sensors – Lithography,	Micr	oma	achir	ning
Techniques		- [
Module:5 Adva	anced Sensors		4	4 ho	urs

Pos	sition E	Encoders, Resonant Sensors, Sensors Based on	Semiconductor
	nctions.		
	,	ucting Quantum Interference Devices (SQUIDs).	,
		Smart Sensors	4 hours
-		nsducers: Smart Sensors, Components of Smart Ser	
		e of Smart Sensors, Evolution of Smart Sensors, Advantag	
		art Sensors.	
		Sensors for IoT	4 hours
		oud; Fog Computing, Smart Cities and Smart Home	
		Smart Grid, Industrial IoT, Case Study: Agriculture, Heal	•
	nitoring		, ,
	dule:8	Contemporary Issues	2 hours
		· · · · · · · · · · · · · · · · · · ·	
		Total Lecture hours:	30 hours
To	xt Book	(s)	
1.		y Y. Du, "Resistive, Capacitive, Inductive, and Ma	anetic Sensor
		ologies", 2019, 1 st Edition, CRC press, London.	gnette Gensor
2.	B. C.	Nakra and K. K. Chaudhary, "Instrumentation, Measu	rement and
۷.		is", 2016, 4 th Edition, McGraw Hill Education India Private	
Re	ference		
1.		awhney, "A Course in Electronic Measurements and Inst	strumentation",
		Dhanpat Rai & Co. (P) Limited.	
2.		n Pallás-Areny and John G. Webster, "Sensors and Signa	I Conditioning"
2		2 nd Edition, John Wiley and Sons, Inc.	ingo: Epobling
3.		u Raj and Anupama C. Raman, "The Internet of Th ologies, Platforms, and Use Cases", CRC Press, 2017.	ings. Enabling
4.		nov, Stoyan, and Antonio Luque, eds. Smart sensors	and MEMS.
4.		ent sensing devices and microsystems for industria	
	•	nead Publishing, 2018.	
		valuation: Continuous Assessment Test, Digital Assignn	nent, Quiz and
FIN	al Asses	ssment Test	
Lis	t of Exp	periments	
1		racteristics of Thermistor	2 hours
2	Cha	racteristics of Strain Gauge	2 hours
3	Chai	racteristics of Light Dependent Resistor	2 hours
4	Cha	racteristics of Resistance Temperature Detector	2 hours
5	Cha	racteristics of Angular potentiometer transducer model.	2 hours
6		racteristics of LVDT	2 hours
7		racteristics of Capacitive Level Sensor	2 hours
8		racteristics of Thermocouples	2 hours
9		racteristics of Photoelectric Tachometer	2 hours
10		pration of RTD and signal conditioning of RTD	2 hours
11		pration of Thermistor and signal conditioning of thermistor	
12		racteristics of piezoelectric and Hall effect sensors	2 hours

13	13 Simulation of Biosensors/Chemical Sensors					
14	Simulation and design of senso	rs using M	ATLAB/L	ABVIEW/	2 hours	
	COMSOL					
15	15 PC based Data acquisition system.					
		То	tal Labo	ratory Hours	30 hours	
Mode	Mode of assessment: Continuous assessment & Final Assessment Test					
Reco	Recommended by Board of Studies 28-02-2023					
	Approved by Academic Council No. 69 Date					

Course Code	Course Title	<u> </u>	Т	Ρ	С
BECE410L	Micro-Electromechanical Systems	3	0	0	3
Pre-requisite	NIL	Syllab		ersi	on
			1.0		
Course Objecti					
The course is ai					
	EMS technology and their application as Sensors				
	ling various materials used in MEMS devices an	d also	Micro	o-Na	ino
fabrication te	chniques involved.				
0					
Course Outcon Students will be					
	evolution of MEMS in various applications alor	a with	tho	مصا	ina
effects.		ig with	uie	scai	ing
	the rudiments of materials like silicon, polymers	and r	netal	s 119	ed
	MEMS sensors.	, and i	nota	o uc	JCu
0	ous fabrication techniques for MEMS devices				
	ious sensing mechanisms and applications base	d on th	e sa	me	
	ious actuating mechanisms and applications bas				•
	e basics of Bio-MEMS and simple application mo				
7. Understand	flexible, printable types of devices and their app	lication	s		
	cro-electro Mechanical Systems (MEMS)			hοι	
	ground and evolution of Micro Electro Me				
. ,	for MEMS sensors -Real-world sensor/actuator	-	oles;	MEI	MS
	nobiles, smartphones, and Bio-medical application		、 .·.		
	IS - Scaling of length, surface area, and volum				
	-Scaling in optics - Scaling in the electrostatic ar	na elec	roma	agne	etic
	I domain - Scaling in microfluidics. EMS Materials and Properties		6	hou	ire
	tes and wafers, Silicon and Silicon compounds	Silico			
	rystal Silicon growth (CZ and FZ methods); Thin r				
	ers (SU8, PMMA, PDMS); Glass and Quartz; Pap				
	nene - MoS ₂ ; Choice and role of these substrate				
realizing miniatu					
•	erial properties-Young modulus - Poisson's	ratio	- De	ensit	ty -
Piezoresistive co	pefficients - Piezoelectric coefficients- TCR - The	ermal co	ondu	ctivi	tý -
Material structur	е.				
	EMS Fabrication Technology			hοι	
	Cleaning - Oxidation - PVD (Thermal and E-b				
	D - Lithography - Bulk- and surface-micromac	hining	- L	IGA	
Bonding, and Pa		-			
	ation Techniques for Polymers, Soft-Lithograph	ıy; Міс	ro m	oldi	ng;
	, and Micro contact printing.				
•	esses for flexible sensors - Printing technology, I	von-Co	ntac	tly	pe-
	tact type - Screen printing, Gravure printing.	Γ	_	h c	
	nsing Mechanisms and MEMS Sensors			hou	
	nechanisms – Capacitive, Piezoelectric, , Optical, and Resonant sensing principles	Pie	zore	sisti	ve,

MEMS Son	ense Pressure sensors	Accelerom	eters G	as sensors	Elow sensors	
MEMS Sensors: Pressure sensors, Accelerometers, Gas sensors, Flow sensors, Gyroscopes, Microcantilevers as sensors, Imaging and displays, and Fiber-optic						
	tion devices.		ging and	alopiayo,		
Module:5	Actuation Mechanism	s and MEN	/IS Actua	ators	7 hours	
Actuation	Mechanisms: Electrosta	atic, Piezo	pelectric,	Electroth	nermal, Shape	
memory all	oy (SMA)					
	uators: Microcantilever a		•			
	, Micro motor, RF MEM	S switch, F	Phase sh	nifter, Vara	ctor, and Micro	
heater.						
Module:6	BioMEMS				6 hours	
	nsors, In Vitro and In Vivo					
	o, Drug delivery systems,					
•	Micro needles – Microele		•		nd catheter end	
	aper-based microfluidic de		osensors	S.		
Module:7					5 hours	
	d polymers-based flexib					
	pidermal Sensors, Tattoo		isors, ha	ptic gloves	, strain sensors,	
	, and physiological sensor	ſS.				
Module:8	Contemporary Issues				2 hours	
		Tot	alloctu	re hours:	45 hours	
		101			40 110013	
Text Book	(s)					
	h Hsu, MEMS and Micros				ıre, 2017, 1st	
	Tata McGraw-Hill Publish	ning Compa	any Ltd.,	India.		
Reference						
	ei Li, Gang Liu , Flexible a			tronics Ma	terials, Designs,	
	vices – 2019, Taylor and I					
	2. Marc J. Madou, Fundamentals of Microfabrication and Nanotechnology, 2018, CRC Press					
3 Chang	Liu , Foundations of MEM	S, 2016, F	Pearson I	ndia		
Mode of Ev	aluation: Continuous Ass	essment T	est, Dig	ital Assigni	ment, Quiz, and	
Final Asses	sment Test		-	-		
Recommen	Recommended by Board of Studies 28-02-2023					
	y Academic Council	No. 69	Date	16-03-202	23	
	-		•			

Course Code	Course Title			ΓΙΡ	С
BECE411L	Cryptography and Network Security		3 (0 0	3
	BECE401L, BECE401P/	Sylla	bus '	Vers	ion
Pre-requisite	BCSE308L, BCSE308P	- , -			-
	,		1.0)	
Course Objectiv	/es				
	nt students with the basic concepts in need for s	ecurity	mec	han	sm,
classical a	and traditional Encryption techniques.	-			
2. To impar	knowledge to students regarding the signifi	cance	of n	ness	age
confidenti	ality, Integrity and availability using Cryptograph	יy.			
	nt the students to the different types of network	c & inte	ernet	sec	urity
and its sig	nificance.				
Course Outcom					
	course, students will be able to				
	SI Security Architecture and Classical Encrypti		.		
	ne various mathematical techniques in crypt	• •			•
Discrete L	neory, Finite Field, modulo operator, Elliptic Cu	live A	IIIIII	euc	and
	lodern block and stream ciphers, Data Encryptic	on Sta	ndar	4 (DI	191
	Encryption Standard (AES), IDEA and Key Exe			•	
	symmetric ciphers: RSA, ElGamal, RABIN Cry	•	•	onui	
	and the various types of data integrity and author			chen	nes
	arious network and Internet security mechanisr		011 0	onen	100.
Module:1 Cryp	tography: Overview			4 hc	urs
	I Security Architecture, Security Attacks, Sec	curity S	Servi	ces	and
	assical Encryption Techniques.	,			
iviechanisms, Cia					
	nematical Foundations			6 hc	urs
Module:2 Math	nematical Foundations and Finite Fields (Group, Ring and Fields), Fe	ermat's			
Module:2 Math Number Theory			s and	l Eu	er's
Module:2 Math Number Theory Theorems, The	and Finite Fields (Group, Ring and Fields), Fe	entiati	s anc on,	l Eu Disc	er's rete
Module:2 Math Number Theory Theorems, The Logarithms, Ellip Generation.	and Finite Fields (Group, Ring and Fields), Fe Chinese Remainder Theorem, Fast Expon tic Curve Arithmetic, and Principles of Pseu	entiati	s anc on,	l Eu Disc	er's rete
Module:2MathNumber TheoryTheorems, TheLogarithms, EllipGeneration.Module:3Sym	and Finite Fields (Group, Ring and Fields), Fe Chinese Remainder Theorem, Fast Expon otic Curve Arithmetic, and Principles of Pseu metric Ciphers	ientiati doranc	s and on, lom	d Eu Disc Num 8 hc	er's rete nber o urs
Module:2MathNumber TheoryTheorems, TheLogarithms, EllipGeneration.Module:3SymModern Block	and Finite Fields (Group, Ring and Fields), Fe Chinese Remainder Theorem, Fast Expon otic Curve Arithmetic, and Principles of Pseu metric Ciphers Ciphers and Modern Stream Ciphers- D	entiati doranc DES,	s and on, Jom IDEA	d Eu Disc Num 8 hc	er's rete ber urs ES,
Module:2MathNumber TheoryTheorems, TheLogarithms, EllipGeneration.Module:3SymModern BlockPseudorandom	and Finite Fields (Group, Ring and Fields), Fe Chinese Remainder Theorem, Fast Expon otic Curve Arithmetic, and Principles of Pseu metric Ciphers Ciphers and Modern Stream Ciphers- D Number Generation based on symmetric ciph	entiati doranc DES,	s and on, Jom IDEA	d Eu Disc Num 8 hc	er's rete ber urs ES,
Module:2MathNumber TheoryTheorems, TheLogarithms, EllipGeneration.Module:3SymModern BlockPseudorandomAlgorithm: Diffie-	and Finite Fields (Group, Ring and Fields), Fe Chinese Remainder Theorem, Fast Expon otic Curve Arithmetic, and Principles of Pseu metric Ciphers Ciphers and Modern Stream Ciphers- D Number Generation based on symmetric ciph Hellman Key Exchange.	entiati doranc DES,	s and on, dom IDEA ey Ex	l Eul Disc Num 8 hc A, A xcha	er's rete iber urs ES, nge
Module:2MathNumber TheoryTheorems, TheLogarithms, EllipGeneration.Module:3SymModern BlockPseudorandomAlgorithm: Diffie-Module:4Asy	and Finite Fields (Group, Ring and Fields), Fe Chinese Remainder Theorem, Fast Expon- otic Curve Arithmetic, and Principles of Pseu metric Ciphers Ciphers and Modern Stream Ciphers- D Number Generation based on symmetric ciph Hellman Key Exchange. mmetric Ciphers	ientiati doranc DES, ner, Ke	s and on, lom IDEA ey Ex	d Eul Disc Num 8 hc A, A xcha 7 hc	er's rete bber wurs ES, nge
Module:2MathNumber TheoryTheorems, TheLogarithms, EllipGeneration.Module:3SymModern BlockPseudorandomAlgorithm: Diffie-Module:4AsyRSA cryptosystem	and Finite Fields (Group, Ring and Fields), Fe Chinese Remainder Theorem, Fast Expon- otic Curve Arithmetic, and Principles of Pseu metric Ciphers Ciphers and Modern Stream Ciphers- D Number Generation based on symmetric ciph Hellman Key Exchange. mmetric Ciphers em, ElGamal Cryptosystem, RABIN Cryptosys	DES, DES, Der, Ke	s anc on, lom IDEA ey Ex Ellipti	I Eu Disc Num 8 hc (, A (, A (, A () () () () () () () () () () () () ()	er's rete ber urs ES, nge urs urve
Module:2MathNumber TheoryTheorems, TheLogarithms, EllipGeneration.Module:3SymModern BlockPseudorandomAlgorithm: Diffie-Module:4AsyRSA cryptography sin	and Finite Fields (Group, Ring and Fields), Fe Chinese Remainder Theorem, Fast Expon- otic Curve Arithmetic, and Principles of Pseu metric Ciphers Ciphers and Modern Stream Ciphers- D Number Generation based on symmetric ciph Hellman Key Exchange. mmetric Ciphers em, ElGamal Cryptosystem, RABIN Cryptosys nulating Elgamal, Pseudorandom Number Gene	DES, DES, Der, Ke	s anc on, lom IDEA ey Ex Ellipti	I Eu Disc Num 8 hc (, A (, A (, A () () () () () () () () () () () () ()	er's rete ber urs ES, nge urs urve
Module:2MathNumber TheoryTheorems, TheLogarithms, EllipGeneration.Module:3SymModern BlockPseudorandomAlgorithm: Diffie-Module:4AsyRSA cryptosysteCryptography sinasymmetric Ciph	and Finite Fields (Group, Ring and Fields), Fe Chinese Remainder Theorem, Fast Expon- otic Curve Arithmetic, and Principles of Pseu metric Ciphers Ciphers and Modern Stream Ciphers- D Number Generation based on symmetric ciph Hellman Key Exchange. mmetric Ciphers em, ElGamal Cryptosystem, RABIN Cryptosys nulating Elgamal, Pseudorandom Number Gene er.	DES, DES, Der, Ke	s and on, dom IDEA ey Ex Ellipti base	I Eu Disc Num 8 hc , A xcha 7 hc c Cu ed or	er's rete iber urs ES, nge urs urve n an
Module:2MathNumber TheoryTheorems, TheLogarithms, EllipGeneration.Module:3SymModern BlockPseudorandomAlgorithm: Diffie-Module:4AsyRSA cryptography sirasymmetric CiphModule:5Data	and Finite Fields (Group, Ring and Fields), Fe Chinese Remainder Theorem, Fast Expon- otic Curve Arithmetic, and Principles of Pseu metric Ciphers Ciphers and Modern Stream Ciphers- D Number Generation based on symmetric ciph Hellman Key Exchange. mmetric Ciphers em, ElGamal Cryptosystem, RABIN Cryptosys nulating Elgamal, Pseudorandom Number Gene er. a Integrity Algorithms	DES, DES, Der, Ke Der, Ke	s and on, dom IDEA ey Ex Ellipti base	I Eu Disc Num 8 hc xcha 7 hc c Cu ed or 7 hc	er's rete iber urs ES, nge urs urve n an
Module:2MathNumber TheoryTheorems, TheLogarithms, EllipGeneration.Module:3SymModern BlockPseudorandomAlgorithm: Diffie-Module:4AsyRSA cryptography sirasymmetric CiphModule:5DataCryptographic H	and Finite Fields (Group, Ring and Fields), Fe Chinese Remainder Theorem, Fast Expon- otic Curve Arithmetic, and Principles of Pseu metric Ciphers Ciphers and Modern Stream Ciphers- D Number Generation based on symmetric ciph Hellman Key Exchange. mmetric Ciphers em, ElGamal Cryptosystem, RABIN Cryptosys nulating Elgamal, Pseudorandom Number Gene er. a Integrity Algorithms ash Functions: MD4, SHA-512, Whirlpool, Mess	DES, DES, Der, Ke Der, Ke	s and on, dom IDEA ey Ex Ellipti base	I Eu Disc Num 8 hc xcha 7 hc c Cu ed or 7 hc	er's rete iber urs ES, nge urs urve n an
Module:2MathNumber TheoryTheorems, TheLogarithms, EllipGeneration.Module:3SymModern BlockPseudorantomAlgorithm: Diffie-Module:4AsyRSA cryptography sinasymmetric CiphModule:5DataCryptographic HCodes, Digital Si	and Finite Fields (Group, Ring and Fields), Fe Chinese Remainder Theorem, Fast Expon- otic Curve Arithmetic, and Principles of Pseu metric Ciphers Ciphers and Modern Stream Ciphers- D Number Generation based on symmetric ciph Hellman Key Exchange. mmetric Ciphers em, ElGamal Cryptosystem, RABIN Cryptosys nulating Elgamal, Pseudorandom Number Gene er. a Integrity Algorithms ash Functions: MD4, SHA-512, Whirlpool, Mess gnatures: RSA, Elgamal, Schnorr, DSS.	DES, DES, Der, Ke Der, Ke	s and on, dom IDEA ey Ex Ellipti base	I Eu Disc Num 8 hc , A xcha 7 hc c Cu ed or 7 hc ntica	er's rete ber urs ES, nge urs urve n an urs tion
Module:2MathNumber TheoryTheorems, TheLogarithms, EllipGeneration.Module:3SymModern BlockPseudorandomAlgorithm: Diffie-Module:4AsyRSA cryptography sirasymmetric CiphModule:5DataCryptographic HCodes, Digital SiModule:6Mut	and Finite Fields (Group, Ring and Fields), Fe Chinese Remainder Theorem, Fast Expon- otic Curve Arithmetic, and Principles of Pseu metric Ciphers Ciphers and Modern Stream Ciphers- D Number Generation based on symmetric ciph Hellman Key Exchange. mmetric Ciphers em, ElGamal Cryptosystem, RABIN Cryptosys nulating Elgamal, Pseudorandom Number Gene er. a Integrity Algorithms ash Functions: MD4, SHA-512, Whirlpool, Mess gnatures: RSA, Elgamal, Schnorr, DSS. ual Trust	DES, DES, Der, Ke Stem, E Stem, E	s and on, dom IDEA y Ex Ellipti base	I Eu Disc Num 8 hc 3 hc 3 hc 7 hc 7 hc ntica 5 hc	er's rete iber ES, nge urve n an ours tion
Module:2MathNumber TheoryTheorems, TheLogarithms, EllipGeneration.Module:3SymModern BlockPseudorandomAlgorithm: Diffie-Module:4AsyRSA cryptography sinasymmetric CiphModule:5DataCryptographic HCodes, Digital SiModule:6Mut	and Finite Fields (Group, Ring and Fields), Fe Chinese Remainder Theorem, Fast Expon- otic Curve Arithmetic, and Principles of Pseu metric Ciphers Ciphers and Modern Stream Ciphers- D Number Generation based on symmetric ciph Hellman Key Exchange. mmetric Ciphers em, ElGamal Cryptosystem, RABIN Cryptosys nulating Elgamal, Pseudorandom Number Gene er. a Integrity Algorithms ash Functions: MD4, SHA-512, Whirlpool, Mess gnatures: RSA, Elgamal, Schnorr, DSS. ual Trust it and Distribution, X.509, User Authentication P	DES, DES, Der, Ke Stem, E Stem, E	s and on, dom IDEA ay Ex Ellipti base uthe	I Eu Disc Num 8 hc 3 hc xcha 7 hc c Cu ed or 7 hc of 7 hc of 5 hc erbe	er's rete ber ES, nge urs urve n an urs tion ours ros.
Module:2MathNumber TheoryTheorems, TheLogarithms, EllipGeneration.Module:3SymModern BlockPseudorantomAlgorithm: Diffie-Module:4AsyRSA cryptograptorRSA cryptograptorSymmetric CiphModule:5DataCryptograptic HickCodes, Digital SiModule:6MutKey ManagemerModule:7Netw	and Finite Fields (Group, Ring and Fields), Fe Chinese Remainder Theorem, Fast Expon- otic Curve Arithmetic, and Principles of Pseu metric Ciphers Ciphers and Modern Stream Ciphers- D Number Generation based on symmetric ciph Hellman Key Exchange. mmetric Ciphers em, ElGamal Cryptosystem, RABIN Cryptosys nulating Elgamal, Pseudorandom Number Gene er. Integrity Algorithms ash Functions: MD4, SHA-512, Whirlpool, Mess gnatures: RSA, Elgamal, Schnorr, DSS. ual Trust it and Distribution, X.509, User Authentication P work and Internet Security	DES, DES, Der, Ke Deration Sage A	s and on, dom IDEA ey Ex Ellipti base uthe	I Eu Disc Num 8 hc x cha 7 hc c Cu ed or 7 hc ntica 5 hc 6 hc	er's rete ber ES, nge urs urve n an urs tion urs ros.
Module:2MathNumber TheoryTheorems, TheLogarithms, EllipGeneration.Module:3SymModern BlockPseudorandomAlgorithm: Diffie-Module:4AsyRSA cryptography sinasymmetric CiphModule:5DataCryptographic HCodes, Digital SiModule:6MutKey ManagemerModule:7Netw	and Finite Fields (Group, Ring and Fields), Fe Chinese Remainder Theorem, Fast Expon- otic Curve Arithmetic, and Principles of Pseu metric Ciphers Ciphers and Modern Stream Ciphers- D Number Generation based on symmetric ciph Hellman Key Exchange. mmetric Ciphers em, ElGamal Cryptosystem, RABIN Cryptosys nulating Elgamal, Pseudorandom Number Gene er. a Integrity Algorithms ash Functions: MD4, SHA-512, Whirlpool, Mess gnatures: RSA, Elgamal, Schnorr, DSS. ual Trust it and Distribution, X.509, User Authentication P	DES, DES, Der, Ke Deration Sage A	s and on, dom IDEA ey Ex Ellipti base uthe	I Eu Disc Num 8 hc x cha 7 hc c Cu ed or 7 hc ntica 5 hc 6 hc	er's rete ber ES, nge urs urve n an urs tion urs ros.

Мо	dule:8		2 hours			
			Total Le	ecture h	ours:	45 hours
Tex	kt Book	(s)				
1.		n Stallings, "Cryptograph e", 8th Edition, 2020, Pear				Principles and
Ret	ference	Books				
1.		ahate, "Cryptography And w Hill Company.	Network S	Security",	4th Ed	lition, 2019, The
2		uz A.Forouzan, Debdeep ty", 3 rd edition, 2015, The N				aphy & Network
		•		-	-	
Мо	de of E	valuation: Continuous Ass	essment T	est, Dig	ital Ass	ignment, Quiz and
Fin	al Asse	ssment Test				
Re	commer	nded by Board of Studies	28-02-202	23		
App	proved b	by Academic Council	No. 69	Date	16-03-	-2023

Course Code Course Title L						Т	Ρ	С		
BECE	399J	Summer I	ndustrial	Internsh	nip	0 0 0				1
Pre-re	equisite	NIL				Syllabus version				
						1.0				
Cours	e Objecti	ves			·					
1.	The cours	se is designed so as to	o expose t	he stude	nts to in	Idustry	ı en	viro	nm	ent
	and to tal	ke up on-site assignm	ent as trai	nees or	interns.					
Cours	e Outcon	nes								
1.	Demonst	rate professional and	ethical res	sponsibili	ity.					
2.	Understa	nd the impact of engir	neering so	lutions ir	n a globa	al, ecc	nor	nic,		
		ental and societal con								
		the ability to engage ir		and to i	nvolve i	n life-l	ong	j lea	arnir	וg.
		end contemporary iss	ues.							
Modu	le Conter	it	4 Weeks (28 hours)							
Four weeks of work at industry site.										
Supervised by an expert at the industry.										
Mode	of Evalua	ation: Internship Repo	ort, Preser	ntation ar	nd Proje	ect Rev	viev	V		
Recon	nmended	by Board of Studies	12-10-20	22						
Appro	ved by Ac	ademic Council	No. 68 Date 19-12-2022							

Course Code	C	ourse Tit	le			L	Τ	Ρ	С	
BECE497J		Project-l			0 0 0					
Pre-requisite	NIL				Syllabus version					
					1.0					
Course Object	ives			·						
1. To provi	de sufficient hands-or	n learning	experie	ence re	elated to	o th	ne c	lesi	gn,	
developn	nent and analysis of su	iitable pro	duct / pr	ocess	so as to	en	har	ice t	the	
technical	skill sets in the chose	n field.								
Course Outcor										
	rate professional and		•	5						
	evidence to determine	•								
	nd support peers to ac			•				•		
	nulti-disciplinary teams	s and prov	vide solu	tions to	o proble	ems	tha	t ar	ise	
	lisciplinary work.	1								
Module Conter	nt		(Project	Durat	ion: Or	ne S	Sem	est	er)	
analysis, protot	a theoretical analysis ype design, fabrication	n of new e	equipme	nt, cor	relation	an	d ar	naly	sis	
	e development, applie			5				ies.		
	al work or a group proj									
	projects, the individua contribution to the grou			each s'	tudent s	shou	uld s	spec	cify	
Carried out institution.	ide or outside the uni	versity, in	any rel	evant	industry	y or	re	seai	rch	
Publications in the peer reviewed journals / International Conferences will be an							an			
added advantag	je.									
Mode of Evalu	ation: Assessment or	the proje	ect - proj	ject re	port to l	se s	subi	nitte	ed,	
presentation an	d project reviews.									
Recommended	by Board of Studies	12-10-20	22		s 12-10-2022					

Course Code	C	Course Tit	e			L .	T F) (С
BECE498J	BECE498J Project-II / Internship 0 0) 5	5
Pre-requisite	NIL				Sylla	abus	ver	sio	n
						1.0)		
Course Object	ives								
	de sufficient hands-o	-						-	
-	nent and analysis of s	-	duct / pi	ocess s	o as to	o enh	ance	e th	ie
technical	skill sets in the chose	en field.							
Course Outcor	nes								
1. Formulat	te specific problem sta	atements f	or ill-de	fined rea	al life p	oroble	ems	wit	th
	ole assumptions and c								
	literature search and /	•							
	experiments / Desi	ign and A	Analysis	/ solu	tion it	eratio	ons	an	ıd
	nt the results.								
	error analysis / bench	•	•						
-	ze the results and a	arrive at s	scientific	c conclu	usions	/ pr	odu	cts	1
solution.									
	nt the results in the for								_
Module Conter	nt		(Project	t Duratio	on: Or	ne Se	me	stei	r)
1. Project	may be a theor		alysis,		0		nula		
-	entation & analysis, pr	•••	-			•	-		
	on and analysis of data	a, software	develop	oment, a	pplied	rese	arch	an	Id
5	r related activities.					c			.1
5	an be for one or two s				mpletic	on of	requ	lire	a
	of credits as per the ad		-		um of 3		lont		
	 Can be individual work or a group project, with a maximum of 3 students. In case of group projects, the individual project report of each student should 						Ы		
specify the individual's contribution to the group project.						iu			
5. Carried out inside or outside the university, in any relevant industry or						or			
	research institution.						וכ		
		ed Journal	s / Inter	national	Confe	rence	s w	ill h)e
 Publications in the peer reviewed Journals / International Conferences will be an added advantage. 							, o		
	ation: Assessment o	n the proje	oct pro	ioct ron	ort to	ho ci	hm	ttor	Ч
	d project reviews.	n uie proje	su - pru	ject tep		ue si		ແບບ	u,
•		40.40.00							
Recommended	by Board of Studies	12-10-20	22						