

School of Electronics Engineering

M. Tech. – Automotive Electronics

Curriculum and Syllabus (2024-25 Admitted Students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OFTECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

To be a leader by imparting in-depth knowledge in Electronics Engineering, nurturing engineers, technologists and researchers of highest competence, who would engage in sustainable development to cater the global needs of industry and society.

MISSION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

- Create and maintain an environment to excel in teaching, learning and applied research in the fields of electronics, communication engineering and allied disciplines which pioneer for sustainable growth.
- Equip our students with necessary knowledge and skills which enable themto be lifelong learners to solve practical problems and to improve the quality of human life

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The graduates of the programme will be able to

1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems

2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry

3. Graduates will function in their profession with social awareness and responsibility

4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country

5. Graduates will be successful in pursuing higher studies in engineering or management

6. Graduates will pursue career paths in teaching or research

PROGRAMME OUTCOMES (POs)

On completion of the Programme the students will have the

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment

PO_03: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information

PO_04: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice

PO_05: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems

PO_06: Having adaptive thinking and adaptability in relation to environmental context and sustainable development

PO_07: Having a clear understanding of professional and ethical responsibility

PO_08: Having a good cognitive load management skills related to project management and finance

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. Automotive Electronics, graduates will be able to:

PSO1. Apply advanced concepts of Automotive Electronics to design and develop components and systems for applications in automotive systems.

PSO2. Use state-of-art hardware and software tools to experiment the automotive electronics systems to solve industry and real-world problems.

PSO3. Independently carry out research on diverse Automotive Electronics strategies to address practical problems and present a substantial technical report.

	CREDIT INFO	
S.no	Catagory	Credits
1	Discipline Core	24
2	Discipline Elective	12
3	Projects and Internship	26
4	Open Elective	3
5	Skill Enhancement	5
	Total Credits	70

		Discipline Core							
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	т	Р	J	Credits
1	MAME501L	Sensors and Engine Management Systems	Theory Only	1.0	3	0	0	0	3.0
2	MAME502L	Microcontrollers for Vehicular Systems	Theory Only	1.0	3	0	0	0	3.0
3	MAME502P	Microcontrollers for Vehicular Systems Lab	Lab Only	1.0	0	0	2	0	1.0
4	MAME503L	Vehicle Control Systems	Theory Only	1.0	3	0	0	0	3.0
5	MAME504L	Automotive Networking and Protocols	Theory Only	1.0	3	0	0	0	3.0
6	MAME504P	Automotive Networking and Protocols Lab	Lab Only	1.0	0	0	2	0	1.0
7	MAME505L	Electric and Electronic Power Systems for Vehicles	Theory Only	1.0	3	0	0	0	3.0
8	MAME506L	Automotive Power Electronics and Motor Drives	Theory Only	1.0	3	0	0	0	3.0
9	MAME506P	Automotive Power Electronics and Motor Drives Lab	Lab Only	1.0	0	0	2	0	1.0
10	MAME507L	Alternative Drives, Traction and Controls	Theory Only	1.0	3	0	0	0	3.0

		Discipline Elective							
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	т	Р	J	Credits
1	MAME605L	Vehicular Information and Communication Systems	Theory Only	1.0	3	0	0	0	3.0
2	MAME606L	Parallel Programming using Multi cores and Graphical Programming Units	Theory Only	1.0	3	0	0	0	3.0
3	MAME607L	Digital Signal Processing and its Applications	Theory Only	1.0	3	0	0	0	3.0
4	MAME607P	Digital Signal Processing and its Applications Lab	Lab Only	1.0	0	0	2	0	1.0
5	MAME608L	Open Source Hardware and Software System Design	Theory Only	1.0	3	0	0	0	3.0
6	MAME609L	Machine Vision System for Automotive	Theory Only	1.0	3	0	0	0	3.0
7	MAME609P	Machine Vision System for Automotive Lab	Lab Only	1.0	0	0	2	0	1.0
8	MAME610L	Automotive Fault Diagnostics	Theory Only	1.0	3	1	0	0	4.0
9	MAME611L	Emission Control and Diagnosis	Theory Only	1.0	3	0	0	0	3.0
10	MAME612L	Vehicle Safety Systems	Theory Only	1.0	2	0	0	0	2.0
11	MAME613L	Vehicle Bodies	Theory Only	1.0	2	0	0	0	2.0
12	MAME614L	Engine Peripherals	Theory Only	1.0	2	0	0	0	2.0
13	MAME615L	Vehicle Security and Comfort Systems	Theory Only	1.0	3	0	0	0	3.0
14	MAME616L	Automotive IoT	Theory Only	1.0	3	0	0	0	3.0

		Discipline Electiv	ve						
15	MAME617L	Augmented and Virtual Reality for Automotive Applications	Theory Only	1.0	3	0	0	0	3.0
16	MAME618L	Soft Computing Techniques	Theory Only	1.0	3	0	0	0	3.0
17	MEDS501L	Embedded System Design	Theory Only	1.0	3	0	0	0	3.0
18	MEDS601L	Electromagnetic Interference and Compatibility in ESD	Theory Only	1.0	3	0	0	0	3.0
19	MEDS616L	Machine Learning and Deep Learning	Theory Only	1.0	3	0	0	0	3.0

		Projects and Interns	hip						
sl.no	Course Code	Course Title	Course Type	Ver sio	L	т	Ρ	J	Credits
				n					
1	MAME696J	Study Oriented Project	Project	1.0	0	0	0	0	2.0
2	MAME697J	Design Project	Project	1.0	0	0	0	0	2.0
3	MAME698J	Internship I/ Dissertation I	Project	1.0	0	0	0	0	10.0
4	MAME699J	Internship II/ Dissertation II	Project	1.0	0	0	0	0	12.0

		Open Elective	-						
sl.no	Course Code	Course Title	Course Type	Ver sio	L	т	Ρ	J	Credits
				n					
1	CFOC508M	Entrepreneurship	Online Course	1.0	0	0	0	0	3.0
2	MFRE501L	Francais Fonctionnel	Theory Only	1.0	3	0	0	0	3.0
3	MGER501L	Deutsch fuer Anfaenger	Theory Only	1.0	3	0	0	0	3.0
4	MSTS601L	Advanced Competitive Coding	Soft Skill	1.0	3	0	0	0	3.0

		Skill Enhancement							
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	т	Р	J	Credits
1	MENG501P	Technical Report Writing	Lab Only	1.0	0	0	4	0	2.0
2	MSTS501P	Qualitative Skills Practice	Soft Skill	1.0	0	0	3	0	1.5
3	MSTS502P	Quantitative Skills Practice	Soft Skill	1.0	0	0	3	0	1.5

Course Code	Course Title			L	Γ	Ρ	C
MAME501L	Sensors and Engine Manageme	nt Systems		3	0	0	3
Pre-requisite	Nil		Syl	labu		ersi	on
					1.0		
Course Objective							
The course is aim			- I	م ال			
	ails of the Engine sensor waveforms and n						
	an overview of petrol and diesel engines us ghts into the operation of ECU with the sui					0.0).
5. Giving insi			y 01 S	01130	JI 5.		
Course Outcome							
	course, the student will be able to						
	nd the concepts of ECU design for automo	otive application	ons.				
	sponse of Transducers and sensors for au			ons			
	d the various after treatment and alternativ						
4. Comprehe	nd the operation of petrol engine manager	nent systems					
	d the operation of automotive sensors and			ems.			
	nd the Electronic control unit pertaining to	chassis and b	oody.				
7. Illustrate th	ne various Automotive subsystems.						
	ronic Control Unit(ECU) Design		<u></u>			ho	
	ECU design for automotive applications						
	otive, design complexities of ECUs, \	/-IVIODEI TOP	Autor	moti	ve	ECU	JS
	og and digital interfaces.				6	ha	
	cs of Engine Control systems		an fo	ω Λ		ho	
	tion – Petrol and Diesel; IC engine as a pr						
emission limits an	ne controls and management; Control ob d vehicle performance; advantages of usin	a Electronic e	nain		ntro	lenu	у,
	ol Engine Management Systems		Jingin	0.00		' ho	urs
	l engine controls, Electronic ignition, multi	-point fuel inie	ection	dir			
	f ignition system and fuel injection system					h	
multi point fuel inj		,		-			
Module:4 Dies	el Engine Management Systems				6	i ho	urs
Basics of Diesel e	ngine Controls ; Evolution of diesel engine	e controls; in-l	ine fu	iel p	ump);	
	EGR control; Electric motor driven fuel put	mp; electronic	c fuel	inje	ctior	ר	
control and timing							
	Treatment and Alternate Fuel					i ho	
	sion – source, control, tests, standards (Inc				circu	ulatio	on
	converter, Alternative fuels – hydrogen – C	NG, LPG, Bio	odiese	el.			
	sducer Principles					ho	
	sification and basic principles, General						
	d dynamic characteristics of instruments,						
	nductor strain gages and their signal con						
0	sensors, Hall effect sensors, Capacit		ers,	Piez	20	elec	tric
	heir signal conditioning, Ultrasonic sensors	5.			6	ho	ire
	-	n air flow son	sore	Tor			
Module:7 Sens	ralla cancare/ Farca cancare Sancare Fig	up an now sen					
Module:7 Sens Vehicle Body:- To	rque sensors/ Force sensors, Sensors Fla	ain'- Fual lave	n agu	SULS			
Module:7 Sens Vehicle Body:- To sensor, Ultrasonio	sensors, Ranging radar (ACC) Power Tra						
Module:7 Sens Vehicle Body:- To sensor, Ultrasonio and RPM sensors	s sensors, Ranging radar (ACC) Power Tra , Lambda Oxygen sensor, Hotwire air mas	ss meter Cha	ssis:-	Ste	erin	g	М
Module:7 Sens Vehicle Body:- To sensor, Ultrasonio and RPM sensors	sensors, Ranging radar (ACC) Power Tra	ss meter Cha	ssis:-	Ste	erin	g	M
Module:7 Sens Vehicle Body:- To sensor, Ultrasonic and RPM sensors wheel angle sens sensors.	s sensors, Ranging radar (ACC) Power Tra , Lambda Oxygen sensor, Hotwire air mas	ss meter Cha	ssis:-	Ste	erin anc	g	

		То	tal Lecture ho	ours:	45 hours
Tex	xt Book	(s)			
1.		mentals of Internal Combust	ion Engines - I	H.N. Gupt	a - Second edition (2015)
	– PHI I	oublisher			
2.	Interna	I Combustion Engines - 201	2 -V Ganesan	-Tata Mc	Graw Hill
3.	Autom	otive Sensors (Sensors Tee	chnology) –20	09 by Jol	hn Turner & Joe Watson
	(Autho	r)			
Re	ference	Books			
1.	Autom	otive Sensors, BOSCH. 2002	2		
2.	Funda	mentals of Automotive Electr	onics Book - S	ixth Editic	on-2015 - Alma Hillier
Мо	de of E	valuation: Continuous Asse	ssment Test,	Digital As	ssignment, Quiz and Final
Ass	sessmer	nt Test		-	-
Re	commer	nded by Board of Studies	28-07-2022		
Ар	proved b	y Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title			LT	Ρ	С
MAME502L	Microcontrollers for Vehicular	Systems		3 0	0	3
Pre-requisite	Nil		Svlla	abus ve	-	-
				1.0		
Course Objectiv	28					
The course is aim						
1. Introducin	g the students to various automotive grade	microcontro	oller for	vehicle	s.	
	Embedded C programming with 8051 cont		RM pro	cessor.		
3. Explaining	the architecture and features of ARM proc	cessor.				
Course Outcome						
	course, the students will able to					
	d the architecture of 8051 Microcontroller.	vo o o o trollo r				
	rams for solving problems using 8051 Mici	rocontroller.				
	end ARM architecture & its features he architecture of Cortex-M.					
	RM processor based experiments using Ei	mbedded C	nroarai	mmina	tool	
	overview of the types of ARM cores in the					le
	an application.					
	and various Microcontroller for powertrain a	and body ele	ctronics	6.		
· · · · · ·		-				
Module:1 Intro	duction to 8 bit microcontrollers			Ę	5 hou	ırs
	d Harvard / Princeton, 8bit Architecture	•	8], Exte	ernal m	emo	ry
	imers/counters, Serial Communication, Int	terrupts.				
	microcontrollers programming for v, Safety and Temperature			7	7 hou	ırs
		cations on	Body	safe	tv a	nd
Temperature.	Embedded C [0031, FICTO], Appin	cations on	Bouy,	Sale	ly a	iu
	Architecture			7	7 hou	irs
	losophy, Overview of ARM architecture,	States[ARM	l. Thur			
	, Conditional Execution, Pipelining, Vector					,
	Core				s hou	Jrs
Architecture of Co	ortex-M, Memory Addressing, IO ports, Tim	ners/counter	, Watcl	n Dog T	īmei	, ,
PWM, ADC/DAC	UART, Interrupts, Displays, C programmi	ng.		•		
	core programming				δ hoι	ırs
	gramming for IO ports, Timers, PWM, ADC	and Extern	al inter			
	motive 32-bit MCU				δ hoι	
	for Automotive Applications, Atmel – SMA	RT ARM ba	sed MC	CU, ST-	SPC	25
	MCU, NXPAutomotive MCU.					
	motive MCU by Applications				<u>ho</u>	
	ocontrollers for Powertrain Control, Hy	ybrid and	Electric	: Auxil	iaries	5,
	Body Electronics.) h a i	
Module:8 Cont	emporary Issues				2 hou	JIS
1	Total Lecture hours:			A 6	5 hou	ire
				43		G IL
Text Book(s)			aa la la		0	
	licrocontroller and Embedded Systems	USING ASSE	mbly a	ina C	-3rd	
Reference Book						
	s ontrollers - David Calcutt, Fred Cowan, Ha	econ Darch	izadah		noco	
	finitive Guide to the ARM Cortex M0 - Jose				1622	_
	licrocontrollers, Volume 2 by Ronald K. Ju				12	

Mode of Assessment: Continuous Ass	essment and Fi	nal Asses	sment Test
Recommended by Board of Studies	28-07-2022		
Approved by Academic Council	No. 67	Date	08-08-2022

	Irse Code		Cours			L	TP	С
	ME502P		ntrollers for V	ehicular Syst		0	0 2	-
Pre	-requisite	Nil				Syllabı		sion
							1.0	
	irse Objectiv							
	course is ain		_					
		g the students to						
		Embedded C pro				process	sor.	
	3. Explaining	g the architecture	e and reatures c	ARIM proces	sor.			
Cοι	Irse Outcom	e						
At th	he end of the	course, the stude	ents will able to					
		nd the architectu						
		grams for solving			ontroller.			
	•	end ARM archite		ires				
		the architecture of						
		RM processor b		Ģ			•	
		overview of the t	types of ARM of	cores in the n	harket and to	make	a suita	able
		an application.	ocontroller for r	owertrain and	hody electror	nics		
						103.		
Indi	icative Exper	iments						
1.		o controller usir	na Embedded	C in Keil and		2 h	ours	
		ation in 8051 Mi						
		ng with Arithmetic						
2.		ng with timer – us				4 ho	ours	
3.		ng with Serial Co	mmunication -	Serial commu	unication data	4 ho	ours	
	transfer and							
4.		ng with Interrupt -	 providing external 	ernal interrupt	to activate	4 ho	ours	
_	ISR							
	Programmir	ig with LCD – int			<u> </u>	2 6		
5.				display output			ours	
5. 6.		o controller usir	ng Embedded	C using simu			ours ours	
	LPC2148 -	ARM microcont	ng Embedded (troller] (expt. 6	C using simu to 10)	lator and			
	LPC2148 – Programmir	ARM microcont	ng Embedded (troller] (expt. 6	C using simu to 10)	lator and			
6.	LPC2148 – Programmir like addition	ARM microcont ng with Arithmetion, subtraction.	ng Embedded troller] (expt. 6 c logic instructio	C using simu to 10) ons – Basic pr	Ilator and ogramming	2 ho		
	LPC2148 – Programmir like addition Programmir	ARM microcont	ng Embedded troller] (expt. 6 c logic instructio	C using simu to 10) ons – Basic pr	Ilator and ogramming	2 ho	ours	
6.	LPC2148 – Programmir like addition Programmir , OR etc., lo	ARM microcont ng with Arithmetic n, subtraction. ng with Arithmetic	ng Embedded roller] (expt. 6 c logic instruction c logic instruction	C using simu to 10) ons – Basic pr ons - multiply,	l lator and ogramming division, AND	2 ho 2 ho	ours	
6. 7.	LPC2148 – Programmir like addition Programmir , OR etc., lo GPIO progra Timers prog	ARM microcont ng with Arithmetion, subtraction. ng with Arithmetion ogic execution	ng Embedded (roller] (expt. 6 c logic instruction c logic instruction icrocontroller - 0	C using simu to 10) ons – Basic pr ons - multiply, GPIO program	Ilator and ogramming division, AND ming	2 ho 2 ho 4 ho	ours	
6. 7. 8. 9.	LPC2148 – Programmir like addition Programmir , OR etc., lo GPIO progra Timers prog delay	ARM microcont ng with Arithmetic ng with Arithmetic gic execution amming ARM mi gramming ARM M	ng Embedded croller] (expt. 6 c logic instruction c logic instruction crocontroller - (/licrocontroller-	C using simu to 10) ons – Basic pr ons - multiply, GPIO program using timer fo	Ilator and ogramming division, AND ming or calculating	2 ho 2 ho 4 ho 4 ho	ours ours ours ours	
6. 7. 8.	LPC2148 – Programmir like addition Programmir , OR etc., lo GPIO progra Timers prog delay	ARM microconting with Arithmetic subtraction. The with Arithmetic regic execution amming ARM mi	ng Embedded croller] (expt. 6 c logic instruction c logic instruction crocontroller - (/licrocontroller - (C using simulation to 10) ons – Basic propose - multiply, GPIO program using timer for motor control	Ilator and ogramming division, AND ming or calculating	2 ho 2 ho 4 ho 2 ho 2 ho	ours	
6. 7. 8. 9. 10.	LPC2148 – Programmir like addition Programmir , OR etc., lo GPIO progra Timers prog delay PWM Gene	ARM microcont ng with Arithmetic ng with Arithmetic gic execution amming ARM mi gramming ARM M	ng Embedded croller] (expt. 6 c logic instruction c logic instruction crocontroller - 0 /licrocontroller- ocontroller- DC	C using simulation to 10) ons – Basic proposed and the second sec	Ilator and ogramming division, AND ming or calculating	2 ho 2 ho 4 ho 2 ho 2 ho	ours ours ours ours ours	
6. 7. 8. 9. 10.	LPC2148 – Programmir like addition Programmir , OR etc., lo GPIO progra Timers prog delay PWM Gene	ARM microcont ng with Arithmetic ng with Arithmetic ogic execution amming ARM mi gramming ARM Micro	ng Embedded croller] (expt. 6 c logic instruction c logic instruction crocontroller - (Aicrocontroller- ocontroller- DC	C using simulation to 10) ons – Basic proposed for the second sec	Ilator and ogramming division, AND ming or calculating	2 ho 2 ho 4 ho 2 ho 2 ho	ours ours ours ours ours	

Course Code	Course Title			L.	Τ Ρ	С			
MAME503L	Vehicle Control Systems	6		3 (0 0	3			
Pre-requisite	Nil		Sylla	bus	versi	on			
•			,	1.					
Course Objective	PS								
The course is aim									
1. Getting the	e know-how required for mathematical mode	elina, perfor	mance	and	l stab	ility			
	f feedback vehicle control system.	5/1				,			
	a comprehensive coverage of controller	r design, s	tate s	pace	des	ign			
methods a	and digital control system.	U		•		U			
	the skills for carrying out typical projects in	nvolving vel	hicle c	ontro	ols us	sing			
MATLAB	and SIMULINK.	C C				•			
Course Outcome									
	course, the student will be able to								
	d the modeling aspects involved in the desi	gn of the ph	nysical	syst	em fo	r			
vehicle ap	1								
	e steady state and transient response of the		der of	the s	syster	n,			
	s performance and compute error coefficient								
	he stability of the system in frequency doma								
	controller for automotive application using M	AILAB/SIIVI	ULINK						
 Comprehend the Classical controller design Identify the state space design methods like SISO, etc. 									
	e stability test procedure and get introduced		ntrolla	r dag	ian				
	e stability test procedure and get introduced			i ucc	ngri.				
Module:1 Syste	em Modeling using Transfer function				6 h	ours			
	modeling -transfer function approach. Int	roduction to	block	, dia	-				
	s. Introduction to SIMULINK.			v ula	gram	30			
	ormance of Feedback Control System				6 h	ours			
	nd order control system response for step,	ramp and in	npulse	inpu	uts. E	rror			
	umber -characteristic equation -Poles and Z								
and performance	•		•		,				
	ility analysis of feedback control				6 h	ours			
syst									
Frequency respo	onse plots -frequency domain specificati	ions -stabili	ity an	alysi	s- R	outh			
Hurwitz stability of	criteria -Root Locus - stability in the frequ	lency doma	in –ga	ain a	nd pł	nase			
	t stability criterion.								
Module:4 Cont	0					ours			
	gral, Derivative controllers, P, PI, and PID co								
	MULINK to build 'P', 'PI', 'PID'controller mod	ules and ca	rry out	exp	erime	nts.			
	terpretations of results.								
	sical controller design				6 h	ours			
	n the frequency domain- lead, lag compens	ator design.							
	ern control theory	, ,		:		ours			
	n methods: SISO, MIMO systems, Various		present	tatioi	n of ti	ıe			
	n, etc), controllability and observability, state	e observer.			<u></u>				
	duction to Digital Control				6 N	ours			
Discrete Time of		tions Out	0 00 1	m c	0055				
	ystems, Sampling and aliasing consideration								
	ury's stability test -mapping s to z plane	-Digital cor	noner	ues	ign:	nom			
analog to digital d	emporary Issues				2 6	ours			
	chiporaly issues				2 110	Juis			

		То	tal Lecture ho	urs:	45 hours			
Тех	xt Book	(s)						
1.								
	2. K. Ogata, —Discrete-Time Control Systems, Prentice-Hall, Inc., 1994							
Re	Reference Books							
1.	. I.J. Nagrath and M. Gopal, "Control Systems Engineering", New Age International (P)							
	Limited	, 4th Edition, 2006		-				
2.	Norma	n S. Nise," Control Systems	Engineering ",	6th Editio	on December 2015			
3.	Uwe K	iencke, Lars Nielsen, —Auto	motive Contro	I Systems	s: For Engine, Driveline, and			
	Vehicle	ell, Springer; 1 edition, March	n 30, 2000	-	-			
Мо	de of E	valuation: Continuous Ass	essment Test	Digital	Assignment, Quiz and Final			
Ass	Assessment Test							
Re	commer	nded by Board of Studies	28-07-2022					
Ар	proved b	y Academic Council	No. 67	Date	08-08-2022			

Course Cod	e	Course Title			L	Т	Ρ	С
MAME504L	-	Automotive Networking and Protoco	ols		3	0	0	3
Pre-requisite	е	Nil		Syl	labu	ls v	ersi	on
•						1.0		
Course Obje	ective	S						
The course is								
		an overview of automotive network systems.						
		students to the aspects of design, develo	opment,	app	olica	tion	ar	nd
		ce issues associated with automotive network sy						
•		•						
Course Outo	come							
At the end of	the c	ourse, the student will be able to						
1. Illustra	ate th	e basics of automotive networking and protocols	6					
2. Comp	orehei	nd the general protocols and their usage in auto	motive s	secto	r			
3. Unde	rstand	d the LIN protocol and implement inconvenience	feature	appl	icati	ons		
4. Desig	yn and	implement CAN protocol for chassis and powe	r train a	pplica	ation	S		
5. Unde	rstand	d the concepts of time triggered protocols and it	s usage	in au	utom	notiv	/e fie	əld
		implement in media-oriented system transport				ons		
7. Unde	rstand	d FlexRay protocol and their usage in safety criti	cal appl	icatic	ns			
		luction to Automotive Networking					i ho	
		communication and networking -need for In-Ve				-la	yers	of
		del –multiplexing and de-multiplexing concepts -	-vehicle	bus	es.			
		ral purpose protocols				6	i ho	urs
		al purpose networks and protocols –Ethernet, T	CP, UD	P, IP				
		ocol for low data rate				6	i ho	urs
		cations						
LIN standard	lover	view –workflow concept-applications –LIN proto	col spec	cificat	ion ·	–sig	Inals	3 –
Frame trans	sfer -	-Frame types -Schedule tables -Task bel	naviour	mod	let	–Ne	etwo	rk
		atus management.						
		col for medium data rate				7	' ho	urs
		cations						
		-fundamentals -Message transfer -frame typ	bes-Erro	or ha	ndlir	ng -	-fau	lt
		ne requirements						
		triggered protocol				6	i ho	urs
		N open –TTCAN –Device net –SAE J1939						
		col for infotainment				-	i ho	
		of data channels -control channel-synchronou						
		device model -functions-methods-properties-p		basio	cs-	Net	work	(
		port –Blocks –frames –Preamble-boundary des	criptor					
		ocols for safety critical				6	6 ho	urs
		cations						
		on -network topology -ECUs and bus interface						
		ation controls –media access control and frame	and syn	l loan	oroc	ess	ing ·	-
coding/decod						_)	
Module:8	Conte	emporary Issues				2	2 ho	urs
I						4 -	- b -	
		Total Lecture hours:				45	i ho	urs
Text Book(s)								
		Automotive in-vehicle networks, John Wiley & S	Sons, Li	mited	l, 20	16		
Reference B	Books	· · · · · ·						
1. Robert B	Bosch	, Bosch automotive networking, Bentley publishe	ers,2007	,				

2. Society of automotive engineers, In-vehicle networks ,2015

- 3. Ronald K Jurgen, —Automotive Electronics Handbook, McGraw-Hill Inc. 1999.
- 4. IndraWidjaja, Alberto Leon-Garcia, —Communication Networks: Fundamental Concepts and Key Architectures, McGraw-Hill College; 1st edition, 2000.
- 5. Konrad Etschberger, Controller Area Network, IXXAT Automation, August 22, 2001.
- 6. Olaf Pfeiffer, Andrew Ayre, Christian Keydel, —Embedded Networking with CAN and CANopen, Anna books/Rtc Books, 2003

Mode of Assessment: Continuous Assessment and Final Assessment Test					
Recommended by Board of Studies 28-07-2022					
Approved by Academic Council	ed by Academic Council No. 67 Date 08-08-2022				

CO	urse Code		Course Tit	le			L	Т	Ρ	С
	ME504P	Automotive	Networking a	-	cols Lab		0	0	2	1
Pre	-requisite	Nil	<u> </u>			Sv	labi	us v	ers	ion
	•							1.0		
Со	urse Objective	S								
The	e course is aim	ed at:								
	1. Providing	an overview of autor	motive network	systems.						
	2. Exposing	students to the	aspects of de	sign, de	evelopmen	t, app	olica	tion	ar	าd
	performan	ce issues associate	d with automoti	ve netwo	rk systems	i.				
	urse Outcome									
At		course, the student v								
		ne basics of automo								
		end the general proto								
		d the LIN protocol a								
		d implement CAN p								
		d the concepts of tir								əld
		d implement in medi						ons		
	7. Understan	d FlexRay protocol	and their usage	in safety	critical app	Dilcatio	ons			
Inc	licative Experi	monte								
1.		ode communication		mieropon	trollor		8 ho			
١.		will be sent and rece					0 110	Juis)	
		LIN protocol								
2.	•	node communicatio		2 microcc	ntroller		8 ho	nure		
۷.		will be sent and rece					0 10	Juis)	
		CAN protocol								
3.	•	munication using E	/R0S12XE512E	board			6 h	nire		
0.		ble Data bytes sent u					011	Juio	•	
4.		nunication using Lab	<u> </u>				4 h	ours		
		ng data to particular		sina TCP	/IP protoco			Juio		
5.		mmunication using L	•			-	4 h	ours		
0.	Sending data to particular port address using TCP/UDP protocol									
		<u> </u>			oratory Ho		30	nou	rs	
Мо	de of Assessm	ent: Continuous Ass							-	
		/ Board of Studies	28-07-2022			-				
	Approved by Academic Council No. 67 Date 08-08-2022									

Course Code	Course Title			L	Т	Ρ	С
MAME505L	Electric and Electronic Power Systems f	or Vehicl	es	3	0	0	3
Pre-requisite	Nil		Syl	labı	is v	ersi	ion
					1.0		
Course Objectiv	es						
The course to ain	ned at						
1. Developin	ig the skills to understand the circuit and ele	ectrical w	iring (diag	ram	n an	d
interpret t	he same.						
	students with a good understanding of automo						
	emphasize on batteries, charging, ignition, sta						
	students the knowledge about the new develo	pments a	nd ad	van	cem	ent	S
of automo	tive electrical technologies.						
Course Outcom							
	course, the student will be able to						
	he electrical wiring, circuit diagram for automot	ive applica	ations				
	nd the role of batteries in vehicles						
•	a charging system for vehicles						
	nd the starter and ignition systems in vehicles ate knowledge on lighting systems for vehicles						
	and the passive restraint systems and electrica		rios in	vol	nicle		
	id implement various electrical outlet systems f			VEI	licie	5	
7. Doolgirai			0				
Module:1 Elect	trical Systems and Circuits				6	i ho	urs
	h -electrical wiring, terminals and switching -	nultiplexe	d wiri	na	svst	ems	s –
	grams and symbols, Requirements for two whe						
	heavy vehicles- trucks and trailers.	,					,
Module:2 Batte					6	i ho	urs
Vehicle Batteries	-Lead-Acid batteries -maintenance and charge	ging –diag	gnosir	g L	ead	acio	d
battery faults -ad	lvanced battery technology.			-			
Module:3 Char	rging systems				7	' ho	urs
	charging systems —generation of electrical						
physical principle	es – alternators –characteristic curves –ch	narging c	ircuits	—C	liag	nosi	ng
charging system							
Module:4 Star						i ho	
•	starter motors and circuits -types of starter r	motors –c	diagno	sin	g st	artir	ng
system faults.	lien evetem						
	tion system	(i ho	
	electronic ignition –programmed ignition –dis	tridutor ie	ess ig	nitic	n –	aire	CT
	g ignition –diagnosing faults.				6	i ho	
Module:6 Ligh			(at a m				
	arth return systems, positive and negative		ystem	5, (Jon	ceal	iea
	ng circuit types, glare and preventive methods. ges, Accessories and Passive				6	i ho	ure
	raint systems				U		urə
	mp, speedometer, oil and temperature gaug	es. Horns	s. Win	ers	Wa	ashe	ers
•	Defoggers, Power windows, seats, door locks		•				
pretensioners		,	2,010	,	20		
	emporary Issues				2	ho	urs
	Total Lecture hours:				45	i ho	urs
Text Book(s)							
. ,	Electricals / Electronics System and Compo	nents. To	om D	ento	on.	3rd	

	Edition, 2015						
Reference Books							
1.	. Judge, A.W., —Modern Electrical Equipment of AutomobilesII, Chapman & Hall London, 1992						
2.	2. Young, A.P., &Griffiths.L., —Automobile Electrical EquipmentII, English Languages Book Society & New Press, 1990						
3.	3. Automotive Electricals Electronics System and Components, Robert Bosch Gmbh, 4th Edition, 2004						
4.	Automotive Hand Book, Robert Bos	sch, Bently Pu	blishers, ²	1997			
5.	Jurgen, R., Automotive Electronics	Hand Book, 2	015				
Мо	Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final						
Ass	Assessment Test						
Re	commended by Board of Studies	28-07-2022					
Ар	Approved by Academic Council No. 67 Date 08-08-2022						

Course Code	Course Title		L	Τ	Ρ	С
MAME506L	Automotive Power Electronics and Motor Drives	;	3	0	0	3
Pre-requisite	Nil		llabi	-	-	-
		-,		1.0		
Course Objective	28					
The course is aim						
	an in-depth knowledge about power electronics devices	usina	a MA	TL/	٩В	
	the design capability of converters and inverters for the					id
	. Gaining knowledge on the different motors and their ar					
vehicles						
Course Outcome						
	course, the student will be able to					
	d the operation of power semiconductor devices					
	d the operation of AC-DC converters at different loads					
	d the operation of three phase inverters					
	erent converters: buck, boost and buck-boost converters d the concepts of ultracapacitor and its usage in automo		field			
	he different speed control methods of induction motors	live	ieiu			
	is about the operation and characteristics of different mo	tore				
		1013				
Module:1 Powe	er Electronics			6	6 ho	urs
Introduction to po	ower electronics- Structure, operation and characteri	stics	of	auto	omo	tive
	vices -SCR, Power Transistor, Power MOSFET and IG					
circuits - series a	and parallel operation of SCR -protection Circuits -d	esigr	n of	รทเ	lbbe	er
circuits		•				
	erters				6 ho	
	lled converter with R,RL-RLE load, fully controlled con					
	phase half wave controlled converter with R-RL load-	Thr	ee p	has	se fu	ılly
controlled convert						
Module:3 Inver					6 ho	
	verter with 120 degree and 180 degree conduction mod	e-cui	rent	SOL	urce	
inverters – PWM t						
Module:4 Chop				ť	6 ho	urs
	down choppers –Different types of coppers – use of cho	pper	S	6	<u>.</u> ha	
	capacitors				b ho	
	nic double layer capacitance-model and cell balancir	ig-siz	ing	Crit	eria-	-
	e-ultracapacitors in combination with batteries motive motor Control			6	i ho	
				C		urs
	Iling speed – Induction and DC Motor controls motive drive system			7	' ho	ure
	istruction, characteristics and operation -Open loop and	close				
	d current sensors-Switched Reluctance Motor -Motor co				JIIII	J
operation and its a		11511		11,		
	emporary Issues			2	2 ho	urs
						210
	Total Lecture hours:			45	i ho	urs
•						
Text Book(s)						
()	, "Power Electronics:", Khanna Publishers, 14th edition,2	2015				

1.	Ali Emadi, "Handbook of Automotive power electronics and motor Drives" CRC Press,						
	2015.						
2.	Bimal K Bose, "Power Electronics and Motor Drive: Advances and Trends", Elsevier,						
	Inc., 2006.						
Мо	de of Assessment: Continuous Ass	sessment and F	inal Asses	ssment Test			
Re	commended by Board of Studies	28-07-2022					
Ар	proved by Academic Council	No. 67	Date	08-08-2022			

Course Code Course Title							L	Т	Ρ	С
MAME506P Automotive Power Electronics and Motor Drives							0	0	2	1
Pre	e-requisite	Nil				Syl	llabı	is v	ersi	ion
							1	0.1		
	urse Objectiv									
The	e course is ain									
		an in-depth knowled								
		the design capability								
		 Gaining knowledge 	e on the differen	t motors a	and their a	applica	ation	in e	ect	tric
	vehicles									
~	•									
	urse Outcom									
At		course, the student								
		nd the operation of p								
		nd the operation of A			ent loads					
		nd the operation of th								
		fferent converters: bu					field			
		nd the concepts of ul the different speed c				louve	neia			
		ils about the operation				otore				
				131103 01 0		01013				
Ind	licative Exper	riments								
1.		study of anode currer	nt curve usina S	CR			2 hc	ours		
2.		study of transfer and			MOSFET		4 hc	ours		
3.		study of transfer and					4 hc	ours		
4.		e half wave controlled					4 hc			
		m microcontroller.			J /	,				
5.		half wave controlled	convertor with	R, RL, Ioa	ad using		4 hc	ours		
	MATLAB			, ,	0					
6.	Three Phase	voltage source inve	rter (VSI) 120 de	gree mo	de of		4 hc	ours		
		Ising MATLAB	()	0						
7.		pper and step-down	chopper using N	IATLAB			4 hc	ours		
8.		C (BLDC) motor mod					4 hc	ours		
					oratory Ho	ours	30 ł	nou	rs	
Мо	de of Assessn	nent: Continuous As	sessment and Fi	nal Asse	ssment Te	st				
	commended h		28-07-2022							
Re		by Board of Studies	20-07-2022							

Course Code	Course Title		LTPC
MAME507L	Alternative Drives, Traction and	I Controls	3 0 0 3
Pre-requisite	MAME505L		Syllabus version
•			1.0
Course Objective	es		
The course is aim			
	g students with the basics of propulsion	usina IC e	engines and electric
motors	5	J	5
2. Knowing a	bout different energy storage and conversion	ion schemes	s for Hybrid vehicles
	tails about the different architectures for Hy		
Course Outcome			
	course, the students will able to		
	d automotive electrical systems		
	n alternate vehicle technology		
	d the difference in electric motors and	d IC engine	es for propulsion in
automobile			
	he charging systems for different storages		
	d the types of motors used and control	mechanism	involved for these
	notors in vehicles	- h ¹ - l	
	e various architectures for Hybrid electric v		<u>.</u>
7. Understar	d the need of fuel cells and use them for h	ybrid veriicie	5
Module:1 Auto	motive Electrical Systems		6 hours
	ns and Circuits - Starting systems - I	anition Syst	
	ctromagnetic Interference and Compatibilit		enis - Lighting a
	id Vehicle Technology	у	6 hours
	need for alternate vehicle technologies for	, propulsion	
	nsportation and regulating standards - P		
	v sources - Alternate technologies for vehic		
	ng availability of resources - Importan		
technology	5 5 1	,	
Module:3 Basi	cs of Vehicle Propulsion		7 hours
Components con	prising traction torque - Vehicle perform	nance Parar	neters - Speed and
Acceleration - Fu	el economy in IC engine vehicles - Torqui	ue – Speed	characteristics of IC
	arison of Electric motors and IC engine		
	s of Electric vehicles - Types of Mot	ors and th	e speed – Torque
characteristics			
	gy Storage / Energy Conversion		6 hours
	Batteries for Electric vehicles - Lead acid		
-	n ion batteries - Comparison of differe		
	tems / Energy Management Systems - W		
	s - Super Capacitors - Fuel Cells - Solar Er	nergy Conve	
	ors and Controllers	a Mathaala	6 hours
	constant) (/ f control - Induction motor drive		•
	Constant V / f control - Vector control met		
	of BLDC motors - Performance analysis		
	nique for driving BLDC motors - Regenera eration - Optimizing energy recovery.		J WITH ELECTIC ONVE -
	itectures for Hybrid Electric		6 hours
Vehi			0 11001 5
	nd series – parallel hybrids - Different a	architectures	s for Hybrid Electric
	Hybrid Electric vehicle basics - Sizing of m		
	el Hybrid electric vehicle basics - Engine		
<u> </u>			

		rcing - Drive train rating - d hybrid electric vehicle syst		nybrid Ele	ectric drive system - Series-		
Мо	dule:7	Industry examples of I Vehicle	lybrid Elect	ric	6 hours		
Fue	el cell: B	asic principles of fuel cells					
Мо	dule:8	Contemporary Issues			2 hours		
		То	tal Lecture ho	ours:	45 hours		
Te	xt Book	(s)					
1.		n Electric, Hybrid Electric a Sebatien Gay and Ali Emadi;					
Re	ference	Books					
1.	Iqbal H	lusain, Electric & Hybrid Veh	icles, CRC Pre	ess, 2015	5		
2. Ronald K Jurgen, Automotive Electronics Handbook, McGraw-Hill Inc. 1999							
Мо	de of E	valuation: Continuous Asse	essment Test,	Digital A	Assignment, Quiz and Final		
	sessmer		,	U	C		
Re	commer	nded by Board of Studies	28-07-2022				
Ap	proved b	y Academic Council	No. 67	Date	08-08-2022		

Course Code	Course Title			L	Т	Ρ	С
MAME605L	Vehicular Information and Communi	cation Svste	ms	3	0	0	3
Pre-requisite	Nil			labu		-	ion
			- ,		.0		-
Course Objec	tives			-			
The course is a							
1. Teachir	ng the students concepts of data proces	sing, instrum	nentati	on	and	E E	CU
	ng equipment.	0					
2. Providii	ng students, a good understanding about a	automotive so	ound s	syste	em	and	
	ion for vehicular systems						
3. Providii	ng details about the positioning and guidance	systems.					
Course Outco							
	ne course, the student will be able to						
	tand the data processing in motor vehicles.						
	ehend the networking in automotive. nowledge about the information & communica	tion					
	tand the ECU recording equipment and Parki						
	the sound system for automotive	ing systems					
	tand the Positioning and Map Matching for ve	hicles					
	tand the Route Planning and Route Guidance		for aut	omo	otive	;	
		•					
Module:1 Da	ata processing in motor vehicles				5	ho	urs
	, Electronic control unit (ECU), Architecture, C	CARTRONIC.					
	utomotive networking					ho	
	functions, Requirements for bus systems,	Classificatio	on of	bus	sys	stem	ns,
	the vehicle, Coupling of networks, Example.						
	strumentation				-	ho	
Information an Display types	d communication areas, Driver information	systems, Ins	strume	ent c	clus	ters	,
	CU recording equipment and Parking stems				6	ho	urs
Legal requirer	ments, Design variations, parking aid with	n ultrasonic	senso	rs,	Fur	ther	•
development							
	utomotive sound systems					ho	
	, Conventional tuners, Digital receivers, Auxiliary equipment, Vehicle antennas.	Reception of	quality	, R		ptio	
	ositioning and Map Matching					' ho	
	ng, Global Positioning System , Sensor fusior		nal ma	p ma	atch	ning,	,
	sed Map matching, Map aided Sensor calibra	ation.				h -	
	bute Planning and Route Guidance			. ام		ho	
	, Heuristic Search, Bidirectional Search , Hiera dance while off Route , Guidance with dynam			Idan	ice	while	e
	ontemporary Issues		1		2	ho	IIre
					2		a i J
	Total Lecture hours:				45	ho	urs
Text Book(s)							
	utomotive Handbook", 8th Edition, SAE public	ation 2015					
Reference Bo		2013					
1. Intelligent	Vehicle Technologies Theory and	Appications	– L	1	'laci	C	М
	arashima - Butterworth Heinemann, 2015	πρρισατιοι 15	L	v	au	υ,	IVI
Vahiala la	ention and Neutration Oustance Villa Zhao	Artoch Llour		~~			
2. Venicie loo	cation and Navigation Systems – Yilin Zhao –	- Artech Hous	se inc.	, 20	16		

3.	3. 14. NY: Springer, 2010								
4.	4. Mashrur A. Chowdhury, and Adel Sadek, Fundamentals of Intelligent Transportation Systems Planning, Artech House, Inc., 2003								
Мо	de of Evaluation: Continuous Asse	ssment Test,	Digital A	ssignment, Quiz and Final					
As	sessment Test								
Re	Recommended by Board of Studies 28-07-2022								
Ap	Approved by Academic Council No. 67 Date 08-08-2022								

MAME606L Parallel Programming using Multi cores and Graphical Programming Units 3 0 0 1 Pre-requisite Nit Syliabus version Course Objectives 1.0 The course is aimed at: 1. 1. Impact on platforms 2. Providing the basic concept of threads error diffusion and parallel error diffusion. 3. Elaborating the details of Deadlock and Semaphores and implementation of dependent threading features. Course Outcome At the end of the course, the student will be able to 1. Understand the basic concepts of multi-core architecture 2. Demonstrate knowledge of the core architectural aspects of Parallel Computing 3. Develop efficient parallel algorithms and apply a suite of techniques that can be applied across a wide range of applications 4. Apply the concept of threading for large scale systems 5. Apply methods to support and manage virtualization 7. Analyze the gblockldx and threadidx Module:1 Multi-core Architecture 0 Yerview of Single core processor Architecture and its limitations, Architectural Innovations Need for Multi-core Processor Architecture and its limitations, Architectural Innovations Need for Multi-core Processor and its Limitati	Course Code	Course Title	L	. T	Ρ	С
1.0 Course Objectives The course is aimed at: 1. Imparting the knowledge about implementation of multi-threading on single core versus multi-core platforms 2. Providing the basic concept of threads error diffusion and parallel error diffusion. 3. Elaborating the details of Deadlock and Semaphores and implementation of dependent threading features. Course Outcome At the end of the course, the student will be able to 1. Understand the basic concepts of multi-core architecture 2. Dewolop efficient parallel algorithms and apply a suite of techniques that can be applied across a wide range of applications 3. Apely the concept of threading for large scale systems 5. Apply methods to support and manage virtualization 6. Develop and implement the various Parallel Programming Concepts in Linux Platform 7. Analyze the gblockIdx and threadIdx Module:1 Multi-core Architecture 6 hour Overview of Single core processor Architecture and its limitations, Architectural Innovations programming models and threads in side the OS – threads inside the hardware – Application programming models and threads inside the OS – threads inside the hardware – Application programming models and threading – virtual environment – Run time virtualization – System virtualization Module:2 Fundamental concepts of parallel 6 hour Module:3 Fundamental concepts of parallel programmi	MAME606L		3	0	0	3
Course Objectives The course is almed at: 1. Imparting the knowledge about implementation of multi-threading on single core versus multi-core platforms 2. Providing the basic concept of threads error diffusion and parallel error diffusion. 3. Elaborating the details of Deadlock and Semaphores and implementation of dependent threading features. Course Outcome At the end of the course, the student will be able to 1. Understand the basic concepts of multi-core architecture 2. Demonstrate knowledge of the core architectural aspects of Parallel Computing 3. Develop efficient parallel algorithms and apply a suite of techniques that can be applied across a wide range of applications 4. Apply the concept of threading for large scale systems 5. Apply methods to support and manage virtualization 6. Develop and implement the various Parallel Programming Concepts in Linux Platform 7. Analyze the gblockldx and threadldx Module:1 Multi-core Architecture 6 hour Overview of Single core processor Architecture and its limitations, Architectural Innovations Need for Multi-core Processor and its Limitations, Classification Multicores, Multicore system virtualization Module:3 Overview of Threading – virtual environment – Run time virtualization – System virtualization Module:3 Fundamental concepts of parallel 6 hour programming	Pre-requisite	Nil	Syllal		vers	ion
The course is aimed at: 1. Imparting the knowledge about implementation of multi-threading on single core versus multi-core platforms 2. Providing the basic concept of threads error diffusion and parallel error diffusion. 3. Elaborating the details of Deadlock and Semaphores and implementation of dependent threading features. Course Outcome At the end of the course, the student will be able to 1. Understand the basic concepts of multi-core architecture 2. Demonstrate knowledge of the core architectural aspects of Parallel Computing 3. Develop efficient parallel algorithms and apply a suite of techniques that can be applied across a wide range of applications 4. Apply the concept of threading for large scale systems 5. Apply methods to support and manage virtualization 6. Develop and implement the various Parallel Programming Concepts in Linux Platform 7. Analyze the gblockldx and threadldx Module:1 Multi-core Architecture 6 hour Overview of Single core processor Architecture and its limitations, Architectural Innovations Need for Multi-core Processor and its Limitations, Classification Multicores, Multicore syster software stack. 6 hour Module:2 Overview of Threading 6 hour programming models and threading – virtual environment – Run time virtualization – System virtualization System Module:3: Fundamental concepts of parallel programming models. Shared Memory-level Parallelism, Cache Coherence, Parallel program				1.0		
1. Imparting the knowledge about implementation of multi-threading on single core versus multi-core platforms 2. Providing the basic concept of threads error diffusion and parallel error diffusion. 3. Elaborating the details of Deadlock and Semaphores and implementation of dependent threading features. Course Outcome At the end of the course, the student will be able to 1. Understand the basic concepts of multi-core architecture 2. Demonstrate knowledge of the core architectural aspects of Parallel Computing 3. Develop efficient parallel algorithms and apply a suite of techniques that can be applied across a wide range of applications 4. Apply the concept of threading for large scale systems 5. Apply methods to support and manage virtualization 6. Develop and implement the various Parallel Programming Concepts in Linux Platform 7. Analyze the gblockldx and threadldx 7. Analyze the gblockldx and threading Module:1 Multi-core Architecture Overview of Single core processor Architecture and its limitations, Architectural Innovations Need for Multi-core Processor and its Limitations, Classification Multicores, Multicore system software stack. Module:3 Fundamental concepts of parallel 6 hour programming models and threading – virtual environment – Run time virtualization – System virtualization 5 Module:3 Fundamental concepts of paral						
versus multi-core platforms 2. Providing the basic concept of threads error diffusion and parallel error diffusion. 3. Elaborating the details of Deadlock and Semaphores and implementation of dependent threading features. Course Outcome At the end of the course, the student will be able to 1. Understand the basic concepts of multi-core architecture 2. Demonstrate knowledge of the core architectural aspects of Parallel Computing 3. Develop efficient parallel algorithms and apply a suite of techniques that can be applied across a wide range of applications 4. Apply the concept of threading for large scale systems 5. Apply methods to support and manage virtualization 6. Develop and implement the various Parallel Programming Concepts in Linux Platform 7. Analyze the gblockldx and threadldx Module:1 Multi-core Architecture d 6 hour Overview of Single core processor Architecture and its limitations, Architectural Innovations Need for Multi-core Processor and its Limitations, Classification Multicores yster Defining threads – threads inside the OS – threads inside the hardware – Application Forgarmming models and threading – virtual environment – Run time virtualization – Syster virtualization Module:3 Fundamental concepts of parallel Module:4 Parallelism(TLP), Instruction Level Parallelism(ILP), Comparisons, Cache Hierarchy and Memory-level Parallelism, Cache Coherence, Parallel programming models. Shared Memory and Message Passing, Vectorization Module:5 OpenMP : Portable solution for threading features Module:6 OpenMP : Portable solution for threading features Module:7 CuDA Programming constructs Module:7 CuDA Programming constructs Module:7 CuDA Programming – interleaving single thread and multi-thread execution – Data copy-in and copy-out – Protecting updates of shared variables – OpenMP Library functions CopendP environmental variables – multithreading debugging techniques Module:7 CuDA threads and threading – predefined variables – Neurshare Apel Coportiem and Nowait – Interleaving single thread and multi-thr				·		
 Providing the basic concept of threads error diffusion and parallel error diffusion. Elaborating the details of Deadlock and Semaphores and implementation of dependent threading features. Course Outcome At the end of the course, the student will be able to Understand the basic concepts of multi-core architecture Demonstrate knowledge of the core architectural aspects of Parallel Computing Develop efficient parallel algorithms and apply a suite of techniques that can be applied across a wide range of applications Apply methods to support and manage virtualization Develop efficient parallel algorithms and apply a suite of techniques that can be applied across a wide range of applications Apply the toots to support and manage virtualization Develop and implement the various Parallel Programming Concepts in Linux Platform Analyze the gblockldx and threadldx Module:1 Multi-core Architecture Module:2 Overview of Threading G hour Overview of Single core processor and its Limitations, Classification Multicores, Multicore syster software stack. Module:2 Overview of Threading – virtual environment – Run time virtualization – Syster virtualization Module:3 Fundamental concepts of parallel And memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, Vectorization Module:4 Parallel programming constructs Analy and Memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, Vectorization Module:5 OpenMP: Portable solution for threading features Module:6 OpenMP: Portable solution for threading features Module:7 Openanting constructs Analy and Memory-level Parallelism, Cache Coherence, Parallel programming model			ng on s	ingle	cor	e
 Elaborating the details of Deadlock and Semaphores and implementation of dependent threading features. Course Outcome At the end of the course, the student will be able to Understand the basic concepts of multi-core architecture Demonstrate knowledge of the core architectural aspects of Parallel Computing Develop efficient parallel algorithms and apply a suite of techniques that can be applied across a wide range of applications Apply the concept of threading for large scale systems Apply the concept of threading for large scale systems Apply methods to support and manage virtualization Develop and implement the various Parallel Programming Concepts in Linux Platform Analyze the gblockldx and threadldx Module:1 Multi-core Architecture is Limitations, Classification Multicores, Multicore syster software stack. Module:2 Overview of Threading – virtual environment – Run time virtualization – System virtualization Module:3 Fundamental concepts of parallel			orror diff	fucio	n	
dependent threading features. Course Outcome At the end of the course, the student will be able to 1. Understand the basic concepts of multi-core architecture 2. Demonstrate knowledge of the core architectural aspects of Parallel Computing 3. Develop efficient parallel algorithms and apply a suite of techniques that can be applied across a wide range of applications 4. Apply the concept of threading for large scale systems 5. Apply methods to support and manage virtualization 6. Develop and implement the various Parallel Programming Concepts in Linux Platform 7. Analyze the gblockldx and threadldx Module:1 Multi-core Architecture 6 hour Overview of Single core processor Architecture and its limitations, Architectural Innovations Need for Multi-core Processor and its Limitations, Classification Multicores, Multicore syster software stack. Module:2 Overview of Threading – virtual environment – Run time virtualization – Syster virtualization Module:3 Fundamental concepts of parallel more contraction Module:3 Fundamental concepts of parallel Module:4 Parallelism(TLP), Instruction Level Parallelism(ILP), Comparisons, Cache Hierarchy and Memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, Vectorization Module:5 OpenMP : Portable solution for threading / Y hour Loop carried dependence – Data-race conditions – Managing shared and private Data Loop S						of
Course Outcome At the end of the course, the student will be able to 1. Understand the basic concepts of multi-core architecture 2. Demonstrate knowledge of the core architectural aspects of Parallel Computing 3. Develop efficient parallel algorithms and apply a suite of techniques that can be applied across a wide range of applications 4. Apply the concept of threading for large scale systems 5. Apply methods to support and manage virtualization 6. Develop and implement the various Parallel Programming Concepts in Linux Platform 7. Analyze the gblockldx and threadldx Module:1 Multi-core Architecture 6 hour Overview of Single core processor Architecture and its limitations, Architectural Innovations Need for Multi-core Processor and its Limitations, Classification Multicores, Multicore syster software stack. Module:2 Overview of Threading 6 hour Derigramming models and threading – virtual environment – Run time virtualization – System virtualization System Module:3 Fundamental concepts of parallel 6 hour Programming Charter – Implementation dependent threading features Modules, Sage Passing, Vectorization Module:3 Fundamental concepts of parallel 6 hour Shared Memory-level Parallelism(TLP), Instruction Level Parallelism(ILP), Comparisons, Cache Hierarchy and Memory-level Parallelelism,			npionio	incant		
At the end of the course, the student will be able to 1. Understand the basic concepts of multi-core architecture 2. Demonstrate knowledge of the core architectural aspects of Parallel Computing 3. Develop efficient parallel algorithms and apply a suite of techniques that can be applied across a wide range of applications 4. Apply methods to support and manage virtualization 6. Develop and implement the various Parallel Programming Concepts in Linux Platform 7. Analyze the gblockldx and threadldx Module:1 Multi-core Architecture Overview of Single core processor Architecture and its limitations, Architectural Innovations Need for Multi-core Processor and its Limitations, Classification Multicores, Multicore syster software stack. Module:2 Overview of Threading Defining threads – threads inside the OS – threads inside the hardware – Application programming models and threading – virtual environment – Run time virtualization – Syster virtualization Module:3 Fundamental concepts of parallel programming models and threading – virtual environment – Run time virtualization – Syster Shared Memory-level Parallelism, Cache Coherence, Parallel programming models. Shared Memory-level Parallelism, Cache Coherence, Parallel programming models. Module:4 Parallel programming constructs Module:5 OpenMP Protable solution for threading Module:4 Opendence – Data-race conditions – Managing shared and private Data Loop Scheduling and Partitioning – Effective use of reductions – work-sharing sections - Message – Fence – Barrier – Implementation dependent thread execution – Data copy-in and copy-out – Protecting updates of shared variables – OpenMP Library functions OpenMP environmental variables – multithreading debugging techniques Module:6 CUDA Programming						
1. Understand the basic concepts of multi-core architecture 2. Demonstrate knowledge of the core architectural aspects of Parallel Computing 3. Develop efficient parallel algorithms and apply a suite of techniques that can be applied across a wide range of applications 4. Apply the concept of threading for large scale systems 5. Apply methods to support and manage virtualization 6. Develop and implement the various Parallel Programming Concepts in Linux Platform 7. Analyze the gblockldx and threadldx Module:1 Multi-core Architecture 6 hour Overview of Single core processor Architecture and its limitations, Architectural Innovations Need for Multi-core Processor and its Limitations, Classification Multicores, Multicore syster software stack. Module:2 Overview of Threading 6 hour Defining threads – threads inside the OS – threads inside the hardware – Application programming models and threading – virtual environment – Run time virtualization – Syster virtualization System Module:3 Fundamental concepts of parallel forgaramming models, Shared Memory-level Parallelism, Cache Coherence, Parallel programming constructs 6 hour <td>Course Outcom</td> <td>e</td> <td></td> <th></th> <td></td> <td></td>	Course Outcom	e				
 2. Demonstrate knowledge of the core architectural aspects of Parallel Computing 3. Develop efficient parallel algorithms and apply a suite of techniques that can be applied across a wide range of applications 4. Apply the concept of threading for large scale systems 5. Apply methods to support and manage virtualization 6. Develop and implement the various Parallel Programming Concepts in Linux Platform 7. Analyze the gblockIdx and threadIdx Module:1 Multi-core Architecture 6 hour Overview of Single core processor Architecture and its limitations, Architectural Innovations Need for Multi-core Processor and its Limitations, Classification Multicores, Multicore syster software stack. Module:2 Overview of Threading – virtual environment – Run time virtualization – System virtualization Module:3 Fundamental concepts of parallel 6 hour programming models and threading – virtual environment – Run time virtualization – System virtualization Module:4 Parallelism(TLP), Instruction Level Parallelism(ILP), Comparisons, Cache Hierarchy and Memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, Vectorization Module:5 OpenMP : Portable solution for threading features Module:5 OpenMP : Portable solution for threading sections – Messages – Fence – Barrier – Implementation dependent thread and private Data Loop Scheduling and Partitioning – Effective use of reductions – work-sharing sections – Datarcace conditions – Managing shared and private Data Copy-in and copy-out – Protecting updates of shared variables – OpenMP Library functions OpenMP environmental variables – multithread and wulti-thread execution – Data Copy-in and copy-out – Protecting updates of shared variables – OpenMP Library functions OpenMP environmental variables – multithread and multi-thread execution – Data Copy on t – Protecti						
 3. Develop efficient parallel algorithms and apply a suite of techniques that can be applied across a wide range of applications 4. Apply the concept of threading for large scale systems 5. Apply methods to support and manage virtualization 6. Develop and implement the various Parallel Programming Concepts in Linux Platform 7. Analyze the gblockIdx and threadIdx Module:1 Multi-core Architecture Architecture and its limitations, Architectural Innovations Need for Multi-core Processor Architecture and its limitations, Architectural Innovations Need for Multi-core Processor and its Limitations, Classification Multicores, Multicore syster software stack. Module:2 Overview of Threading 6 hour Defining threads – threads inside the OS – threads inside the hardware – Application programming models and threading – virtual environment – Run time virtualization – System virtualization Module:3 Fundamental concepts of parallel 6 hour programming Thread Level Parallelism(TLP), Instruction Level Parallelism(ILP), Comparisons, Cache Hierarchy and Memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, Vectorization Module:4 Parallel programming constructs 6 hour consistence 6 hour synchronization – Critical sections – Deadlock – Semaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading features Module:5 OpenMP : Portable solution for threading / Thour Loop carried dependence – Data-race conditions – Managing shared and private Data - Loop Scheduling and Partitioning – Effective use of reductions – work-sharing sections - Using barrier and Nowait – Interleaving single thread and multi-thread execution – Data copy-in and copy-out – Protecting updates of shared variables – OpenMP Library functions. OpenMP environmental variables – multithread execution – Data copy-						
applied across a wide range of applications 4. Apply the concept of threading for large scale systems 5. Apply methods to support and manage virtualization 6. Develop and implement the various Parallel Programming Concepts in Linux Platform 7. Analyze the gblockldx and threadldx Module:1 Multi-core Architecture 6 hour Overview of Single core processor Architecture and its limitations, Architectural Innovations Need for Multi-core Processor and its Limitations, Classification Multicores, Multicore system software stack. Module:2 Overview of Threading 6 hour Defining threads – threads inside the OS – threads inside the hardware – Application programming models and threading – virtual environment – Run time virtualization – System virtualization 6 hour Module:3 Fundamental concepts of parallel for programming models, Shared Memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, Vectorization 6 hour Synchronization – Critical sections – Deadlock – Semaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading features 7 hour Loop carried dependence – Data-race conditions – Managing shared and private Data - Loop Scheduling and Partitioning – Effective use of reductions – work-sharing sections - Deatlock – CopenMP Library functions OpenMP environmental variables – multithread execution – Data copy-in and copy-out – Protecting updates of shared variables – OpenMP Library functions OpenMP envir			•			
 Apply the concept of threading for large scale systems Apply methods to support and manage virtualization Develop and implement the various Parallel Programming Concepts in Linux Platform Analyze the gblockldx and threadldx Module:1 Multi-core Architecture 6 hour Overview of Single core processor Architecture and its limitations, Architectural Innovations Need for Multi-core Processor and its Limitations, Classification Multicores, Multicore syster software stack. Module:2 Overview of Threading 6 hour Defining threads – threads inside the OS – threads inside the hardware – Application programming models and threading – virtual environment – Run time virtualization – System virtualization Module:3 Fundamental concepts of parallel 6 hour Module:4 Parallelism(TLP), Instruction Level Parallelism(ILP), Comparisons, Cache Hierarchy and Memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, Vectorization Module:4 Parallel programming constructs 6 hour Synchronization – Critical sections – Deadlock – Semaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading features Module:5 OpenMP : Portable solution for threading to rhour Loop carried dependence – Data-race conditions – Managing shared and private Data-copy-in and copy-out – Protecting updates of shared variables – openMP Library functions. OpenMP environmental variables – multithreading debugging techniques Module:6 CUDA Programming 6 hour Gording a Partitioning – Effective use of reductions – work-sharing sections – Deavlock – Samaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading features Module:6 CUDA Programming Module:7 Over – Protecting updates of shared variables – OpenMP Library functions. OpenMP environmental variables – multithreading debugging	•		iiques ti	hat c	an	be
 5. Apply methods to support and manage virtualization 6. Develop and implement the various Parallel Programming Concepts in Linux Platform 7. Analyze the gblockldx and threadldx 7. Analyze the gblockldx and threadldx Module:1 Multi-core Architecture 6 hour Overview of Single core processor Architecture and its limitations, Architectural Innovations Need for Multi-core Processor and its Limitations, Classification Multicores, Multicore syster software stack. Module:2 Overview of Threading 6 hour Defining threads – threads inside the OS – threads inside the hardware – Application programming models and threading – virtual environment – Run time virtualization – System virtualization Module:3 Fundamental concepts of parallel 6 hour programming models and threading – virtual concerce Parallelism(ILP), Comparisons, Cache Hierarchy and Memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, Vectorization Module:4 Parallel programming constructs 6 hour Synchronization – Critical sections – Deadlock – Semaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading features Module:5 OpenMP : Portable solution for threading / Thour Loop carried dependence – Data-race conditions – Managing shared and private Data Loop Scheduling and Partitioning – Effective use of reductions – work-sharing sections Using barrier and Nowait – Interleaving single thread and multi-thread execution – Data copy-in and copy-out – Protecting updates of shared variables – Device memories and data transfer – Kernel functions and threading – predefined variables – Device memories and data transfer – Kernel functions and threading – predefined variables – Runtee PI Module:7 CUDA thread and Memories 6 hour 						
6. Develop and implement the various Parallel Programming Concepts in Linux Platform 7. Analyze the gblockldx and threadldx Module:1 Multi-core Architecture 6 hour Overview of Single core processor Architecture and its limitations, Architectural Innovations Need for Multi-core Processor and its Limitations, Classification Multicores, Multicore syster software stack. 6 hour Module:2 Overview of Threading 6 hour Defining threads – threads inside the OS – threads inside the hardware – Application programming models and threading – virtual environment – Run time virtualization – Syster virtualization 6 hour Module:3 Fundamental concepts of parallel 6 hour programming 6 hour 6 hour Module:4 Parallelism(TLP), Instruction Level Parallelism(ILP), Comparisons, Cache Hierarchy and Memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, Vectorization 6 hour Module:4 Parallel programming constructs 6 hour Synchronization – Critical sections – Deadlock – Semaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading features Module:5 Module:5 OpenMP : Portable solution for threading 7 hour Loop Scheduling and Partitioning – Effective use of reductions – work-sharing sections – Using barrier and Nowait – Interleaving single thread and multi-thread exe						
Platform 7. Analyze the gblockldx and threadldx Module:1 Multi-core Architecture 6 hour Overview of Single core processor Architecture and its limitations, Architectural Innovations Need for Multi-core Processor and its Limitations, Classification Multicores, Multicore system software stack. Module:2 Overview of Threading 6 hour Defining threads – threads inside the OS – threads inside the hardware – Application programming models and threading – virtual environment – Run time virtualization – System virtualization Fundamental concepts of parallel 6 hour Module:3 Fundamental concepts of parallel 6 hour 6 hour Programming Thread Level Parallelism, Cache Coherence, Parallel programming models, Shared Memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, Vectorization 6 hour Module:4 Parallel programming constructs 6 hour Synchronization – Critical sections – Deadlock – Semaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading features 7 hour Loop carried dependence – Data-race conditions – Managing shared and private Data Loop Scheduling and Partitioning – Effective use of reductions – work-sharing sections – Using barrier and Nowait – Interleaving single thread and multi-thread execution – Data 6 hour OpenMP envinonmental variables – multithreading debugging techni			concepts	s in	Lini	IX
Module:1 Multi-core Architecture 6 hour Overview of Single core processor Architecture and its limitations, Architectural Innovations Need for Multi-core Processor and its Limitations, Classification Multicores, Multicore syster software stack. Module:2 Overview of Threading 6 hour Defining threads – threads inside the OS – threads inside the hardware – Application programming models and threading – virtual environment – Run time virtualization – System virtualization 6 hour Module:3 Fundamental concepts of parallel programming 6 hour Thread Level Parallelism(TLP), Instruction Level Parallelism(ILP), Comparisons, Cache Hierarchy and Memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, Vectorization 6 hour Module:4 Parallel programming constructs 6 hour Synchronization – Critical sections – Deadlock – Semaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading features 7 hour Loop carried dependence – Data-race conditions – Managing shared and private Data Loop Scheduling and Partitioning – Effective use of reductions – work-sharing sections – OpenMP environmental variables – multithreading debugging techniques Module:6 Module:6 CUDA Programming 6 hour GPUs as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDA program structure – Matrix – Matrix multiplication example – Device memories and data tra			oncopie			
Overview of Single core processor Architecture and its limitations, Architectural Innovations Need for Multi-core Processor and its Limitations, Classification Multicores, Multicore syster software stack. Module:2 Overview of Threading 6 hour Defining threads – threads inside the OS – threads inside the hardware – Application programming models and threading – virtual environment – Run time virtualization – System virtualization 6 hour Module:3 Fundamental concepts of parallel programming 6 hour Thread Level Parallelism(TLP), Instruction Level Parallelism(ILP), Comparisons, Cache Hierarchy and Memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, Vectorization 6 hour Module:4 Parallel programming constructs 6 hour Synchronization – Critical sections – Deadlock – Semaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading features 7 hour Loop carried dependence – Data-race conditions – Managing shared and private Data Loop Scheduling and Partitioning – Effective use of reductions – work-sharing sections – Using barrier and Nowait – Interleaving single thread and multi-thread execution – Data copy-in and copy-out – Protecting updates of shared variables – OpenMP Library functions Module:6 CUDA Programming 6 hour GPUS as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDA program structure – Matrix – Matrix multiplication example – Device memories and data transfer – Kernel functions and threading –	7. Analyze t	he gblockIdx and threadIdx				
Overview of Single core processor Architecture and its limitations, Architectural Innovations Need for Multi-core Processor and its Limitations, Classification Multicores, Multicore syster software stack. Module:2 Overview of Threading 6 hour Defining threads – threads inside the OS – threads inside the hardware – Application programming models and threading – virtual environment – Run time virtualization – System virtualization 6 hour Module:3 Fundamental concepts of parallel programming 6 hour Thread Level Parallelism(TLP), Instruction Level Parallelism(ILP), Comparisons, Cache Hierarchy and Memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, Vectorization 6 hour Module:4 Parallel programming constructs 6 hour Synchronization – Critical sections – Deadlock – Semaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading features 7 hour Loop carried dependence – Data-race conditions – Managing shared and private Data Loop Scheduling and Partitioning – Effective use of reductions – work-sharing sections – Using barrier and Nowait – Interleaving single thread and multi-thread execution – Data copy-in and copy-out – Protecting updates of shared variables – OpenMP Library functions Module:6 CUDA Programming 6 hour GPUS as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDA program structure – Matrix – Matrix multiplication example – Device memories and data transfer – Kernel functions and threading –						
Need for Multi-core Processor and its Limitations, Classification Multicores, Multicore system software stack. Module:2 Overview of Threading 6 hour Defining threads – threads inside the OS – threads inside the hardware – Application programming models and threading – virtual environment – Run time virtualization – System virtualization 6 hour Module:3 Fundamental concepts of parallel programming 6 hour Module:4 Parallelism(TLP), Instruction Level Parallelism(ILP), Comparisons, Cache Hierarchy and Memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, Vectorization 6 hour Synchronization – Critical sections – Deadlock – Semaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading features 7 hour Module:5 OpenMP : Portable solution for threading 7 hour Loop Scheduling and Partitioning – Effective use of reductions – work-sharing sections – Using barrier and Nowait – Interleaving single thread and multi-thread execution – Data copy-in and copy-out – Protecting updates of shared variables – OpenMP Library functions OpenMP environmental variables – multithreading debugging techniques 6 hour Module:6 CUDA Programming 6 hour 6 hour GPUs as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDA programming 6 hour GPUs as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDA programming 6 hour						
software stack. Module:2 Overview of Threading 6 hour Defining threads – threads inside the OS – threads inside the hardware – Application programming models and threading – virtual environment – Run time virtualization – System virtualization – Sustem virtualization – Critical sections – Deadlock – Semaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading features 6 hour Module:3 OpenMP : Portable solution for threading 7 hour Loop carried dependence – Data-race conditions – Managing shared and private Data – Locy – CopenMP : Portable solution for thread and multi-thread execution – Data copy-in and copy-out – Protecting updates of shared variables – OpenMP Library functions – OpenMP environmental variables – multithreading debugging techniques 6 hour GPUs as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDA program structure – Matrix – Matrix multiplication example – Device memories and data transfer – Kernel functions and threading – predefined variables – Runtime API Module:7 CUDA threads and Memories 6 hour						
Module:2 Overview of Threading 6 hour Defining threads – threads inside the OS – threads inside the hardware – Application programming models and threading – virtual environment – Run time virtualization – System Module:3 Fundamental concepts of parallel programming 6 hour programming 6 hour 6 hour Thread Level Parallelism(TLP), Instruction Level Parallelism(ILP), Comparisons, Cache 6 hour Hierarchy and Memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, Vectorization 6 hour Module:4 Parallel programming constructs 6 hour Synchronization – Critical sections – Deadlock – Semaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading features 7 hour Loop carried dependence – Data-race conditions – Managing shared and private Data Loop Scheduling and Partitioning – Effective use of reductions – work-sharing sections – Using barrier and Nowait – Interleaving single thread and multi-thread execution – Data copy-in and copy-out – Protecting updates of shared variables – OpenMP Library functions OpenMP environmental variables – multithreading debugging techniques 6 hour Module:6 CUDA Programming 6 hour 6 GPUs as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDA program structure – Matrix – Matrix multiplication example – Device memories and data transfer – Kernel functions and threading – predefi		re Processor and its Limitations, Classification Multicore	es, Multi	core	syst	tem
Defining threads – threads inside the OS – threads inside the hardware – Application programming models and threading – virtual environment – Run time virtualization – System virtualization Module:3 Fundamental concepts of parallel programming 6 hour for programming Module:3 Fundamental concepts of parallel programming 6 hour for programming Thread Level Parallelism(TLP), Instruction Level Parallelism(ILP), Comparisons, Cache Hierarchy and Memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, Vectorization 6 hour Synchronization – Critical sections – Deadlock – Semaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading features 7 hour Module:5 OpenMP : Portable solution for threading 7 hour Loop carried dependence – Data-race conditions – Managing shared and private Data – Loop Scheduling and Partitioning – Effective use of reductions – work-sharing sections – Using barrier and Nowait – Interleaving single thread and multi-thread execution – Data copy-in and copy-out – Protecting updates of shared variables – OpenMP Library functions – OpenMP Library functions – GenUB – environmental variables – multithreading debugging techniques Module:6 CUDA Programming 6 hour GPUs as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDA program structure – Matrix – Matrix multiplication example – Device memories and data transfer – Kernel functions and threading – predefined variables – Runtime API Module:7 CUD		wiew of Threading			s ho	ure
programming models and threading – virtual environment – Run time virtualization – System virtualization Module:3 Fundamental concepts of parallel programming 6 hour Module:3 Fundamental concepts of parallel programming 6 hour Thread Level Parallelism(TLP), Instruction Level Parallelism(ILP), Comparisons, Cache Hierarchy and Memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, Vectorization 6 hour Module:4 Parallel programming constructs 6 hour Synchronization – Critical sections – Deadlock – Semaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading features 7 hour Loop carried dependence – Data-race conditions – Managing shared and private Data 7 hour Loop scheduling and Partitioning – Effective use of reductions – work-sharing sections – Using barrier and Nowait – Interleaving single thread and multi-thread execution – Data Copy-in and copy-out – Protecting updates of shared variables – OpenMP Library functions OpenMP environmental variables – multithreading debugging techniques Module:6 CUDA Programming GPUs as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDA program structure – Matrix – Matrix multiplication example – Device memories and data transfer – Kernel functions and threading – predefined variables – Runtime API Module:7 CUDA threads and Memories			ware _			
Virtualization 6 hour Module:3 Fundamental concepts of parallel programming 6 hour Thread Level Parallelism(TLP), Instruction Level Parallelism(ILP), Comparisons, Cache Hierarchy and Memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, Vectorization Module:4 Parallel programming constructs 6 hour Synchronization – Critical sections – Deadlock – Semaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading features 6 hour Module:5 OpenMP : Portable solution for threading 7 hour Loop carried dependence – Data-race conditions – Managing shared and private Data Loop Scheduling and Partitioning – Effective use of reductions – work-sharing sections 9 Using barrier and Nowait – Interleaving single thread and multi-thread execution – Data copy-in and copy-out – Protecting updates of shared variables – OpenMP Library functions 9 Module:6 CUDA Programming 6 hour GPUs as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDA program structure – Matrix – Matrix multiplication example – Device memories and data transfer – Kernel functions and threading – predefined variables – Runtime API Module:7 CUDA threads and Memories 6 hour						
programmingThread Level Parallelism(TLP), Instruction Level Parallelism(ILP), Comparisons, CacheHierarchy and Memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, VectorizationModule:4Parallel programming constructs6 hourSynchronization – Critical sections – Deadlock – Semaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading features7 hourModule:5OpenMP : Portable solution for threading7 hourLoop carried dependence – Data-race conditions – Managing shared and private Data Loop Scheduling and Partitioning – Effective use of reductions – work-sharing sections OpenMP environmental variables – multithreading debugging techniques6 hourModule:6CUDA Programming6 hourGPUs as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDA program structure – Matrix – Matrix multiplication example – Device memories and data transfer – Kernel functions and threading – predefined variables – Runtime APIModule:7CUDA threads and Memories6 hourCUDA thread organization – Using block and thread – synchronization and Transparent			aanzatio		<i>y</i> y o t	0111
Thread Level Parallelism(TLP), Instruction Level Parallelism(ILP), Comparisons, Cache Hierarchy and Memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, Vectorization Module:4 Parallel programming constructs Synchronization – Critical sections – Deadlock – Semaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading features Module:5 OpenMP : Portable solution for threading Loop carried dependence – Data-race conditions – Managing shared and private Data Loop Scheduling and Partitioning – Effective use of reductions – work-sharing sections Using barrier and Nowait – Interleaving single thread and multi-thread execution – Data copy-in and copy-out – Protecting updates of shared variables – OpenMP Library functions OpenMP environmental variables – multithreading debugging techniques Module:6 CUDA Programming GPUs as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDA program structure – Matrix – Matrix multiplication example – Device memories and data transfer – Kernel functions and threading – predefined variables – Runtime API Module:7 CUDA threads and Memories GUDA threads organization – Using block and thread – synchronization and Transparent	Module:3 Fund	damental concepts of parallel		(6 ho	urs
Hierarchy and Memory-level Parallelism, Cache Coherence, Parallel programming models, Shared Memory and Message Passing, Vectorization Module:4 Parallel programming constructs 6 hour Synchronization – Critical sections – Deadlock – Semaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading features 7 hour Module:5 OpenMP : Portable solution for threading 7 hour Loop carried dependence – Data-race conditions – Managing shared and private Data Loop Scheduling and Partitioning – Effective use of reductions – work-sharing sections Using barrier and Nowait – Interleaving single thread and multi-thread execution – Data CopenMP environmental variables – multithreading debugging techniques Module:6 CUDA Programming 6 hour GPUs as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDA program structure – Matrix – Matrix multiplication example – Device memories and data transfer – Kernel functions and threading – predefined variables – Runtime API 6 hour Module:7 CUDA threads and Memories 6 hour	prog	ramming				
Shared Memory and Message Passing, Vectorization Module:4 Parallel programming constructs 6 hour Synchronization – Critical sections – Deadlock – Semaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading features Module:5 OpenMP : Portable solution for threading 7 hour Loop carried dependence – Data-race conditions – Managing shared and private Data – Mosaging shared and private Data Loop Scheduling and Partitioning – Effective use of reductions – work-sharing sections – Data Using barrier and Nowait – Interleaving single thread and multi-thread execution – Data – Data OpenMP environmental variables – multithreading debugging techniques 6 hour Module:6 CUDA Programming 6 hour GPUs as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDA program structure – Matrix – Matrix multiplication example – Device memories and data transfer – Kernel functions and threading – predefined variables – Runtime API 6 hour Module:7 CUDA threads and Memories 6 hour CUDA thread organization – Using block and thread – synchronization and Transparent 6 hour						
Module:4Parallel programming constructs6 hourSynchronization – Critical sections – Deadlock – Semaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading features7 hourModule:5OpenMP : Portable solution for threading7 hourLoop carried dependence – Data-race conditions – Managing shared and private Data Loop Scheduling and Partitioning – Effective use of reductions – work-sharing sections9Using barrier and Nowait – Interleaving single thread and multi-thread execution – Data copy-in and copy-out – Protecting updates of shared variables – OpenMP Library functions6Module:6CUDA Programming6GPUs as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDA program structure – Matrix – Matrix multiplication example – Device memories and data transfer – Kernel functions and threading – predefined variables – Runtime API6Module:7CUDA threads and Memories66CUDA thread organization – Using block and thread – synchronization and Transparent			ogrammi	ing n	node	els,
Synchronization – Critical sections – Deadlock – Semaphores – Locks – Condition variables – Messages – Fence – Barrier – Implementation dependent threading featuresModule:5OpenMP : Portable solution for threading7 hourLoop carried dependence – Data-race conditions – Managing shared and private Data Loop Scheduling and Partitioning – Effective use of reductions – work-sharing sections Using barrier and Nowait – Interleaving single thread and multi-thread execution – Data copy-in and copy-out – Protecting updates of shared variables – OpenMP Library functions OpenMP environmental variables – multithreading debugging techniquesModule:6CUDA Programming6 hourGPUs as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDA program structure – Matrix – Matrix multiplication example – Device memories and data transfer – Kernel functions and threading – predefined variables – Runtime API6 hourModule:7CUDA threads and Memories6 hourCUDA thread organization – Using block and thread – synchronization and Transparent					<u>.</u>	
Messages - Fence - Barrier - Implementation dependent threading featuresModule:5OpenMP : Portable solution for threading7 hourLoop carried dependence - Data-race conditions - Managing shared and private DataLoop Scheduling and Partitioning - Effective use of reductions - work-sharing sectionsUsing barrier and Nowait - Interleaving single thread and multi-thread execution - Datacopy-in and copy-out - Protecting updates of shared variables - OpenMP Library functionsOpenMP environmental variables - multithreading debugging techniquesModule:6CUDA ProgrammingGPUs as Parallel computers - architecture of a modern GPU - Data Parallelism - CUDAprogram structure - Matrix - Matrix multiplication example - Device memories and datatransfer - Kernel functions and threading - predefined variables - Runtime APIModule:7CUDA threads and Memories6 hourCUDA thread organization - Using block and thread - synchronization and Transparent						
Module:5OpenMP : Portable solution for threading7 hourLoop carried dependence – Data-race conditions – Managing shared and private DataLoop Scheduling and Partitioning – Effective use of reductions – work-sharing sectionsUsing barrier and Nowait – Interleaving single thread and multi-thread execution – Datacopy-in and copy-out – Protecting updates of shared variables – OpenMP Library functionsOpenMP environmental variables – multithreading debugging techniquesModule:6CUDA ProgrammingGPUs as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDAprogram structure – Matrix – Matrix multiplication example – Device memories and datatransfer – Kernel functions and threading – predefined variables – Runtime APIModule:7CUDA threads and Memories6 hourCUDA thread organization – Using block and thread – synchronization and Transparent				л va	IIADI	es
Loop carried dependence – Data-race conditions – Managing shared and private DataLoop Scheduling and Partitioning – Effective use of reductions – work-sharing sectionsUsing barrier and Nowait – Interleaving single thread and multi-thread execution – Datacopy-in and copy-out – Protecting updates of shared variables – OpenMP Library functionsOpenMP environmental variables – multithreading debugging techniquesModule:6CUDA ProgrammingGPUs as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDAprogram structure – Matrix – Matrix multiplication example – Device memories and datatransfer – Kernel functions and threading – predefined variables – Runtime APIModule:7CUDA threads and MemoriesGUDA thread organization – Using block and thread – synchronization and Transparent				-	7 ho	urs
Loop Scheduling and Partitioning – Effective use of reductions – work-sharing sectionsUsing barrier and Nowait – Interleaving single thread and multi-thread execution – Data copy-in and copy-out – Protecting updates of shared variables – OpenMP Library functionsOpenMP environmental variables – multithreading debugging techniquesModule:6CUDA ProgrammingGPUs as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDA program structure – Matrix – Matrix multiplication example – Device memories and data transfer – Kernel functions and threading – predefined variables – Runtime APIModule:7CUDA threads and MemoriesGUDA thread organization – Using block and thread – synchronization and Transparent			and pri			
Using barrier and Nowait – Interleaving single thread and multi-thread execution – Data copy-in and copy-out – Protecting updates of shared variables – OpenMP Library functions – OpenMP environmental variables – multithreading debugging techniques Module:6 CUDA Programming 6 hour GPUs as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDA program structure – Matrix – Matrix multiplication example – Device memories and data transfer – Kernel functions and threading – predefined variables – Runtime API Module:7 CUDA threads and Memories 6 hour CUDA threads and Memories 6 hour 6 hour						
OpenMP environmental variables – multithreading debugging techniques Module:6 CUDA Programming 6 hour GPUs as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDA program structure – Matrix – Matrix multiplication example – Device memories and data transfer – Kernel functions and threading – predefined variables – Runtime API Module:7 CUDA threads and Memories 6 hour CUDA thread organization – Using block and thread – synchronization and Transparent						
Module:6CUDA Programming6 hourGPUs as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDA program structure – Matrix – Matrix multiplication example – Device memories and data transfer – Kernel functions and threading – predefined variables – Runtime APIModule:7CUDA threads and Memories6 hourCUDA thread organization – Using block and thread – synchronization and Transparent	copy-in and copy	-out – Protecting updates of shared variables – OpenMF	² Library	y fun	ctior	າຣ –
GPUs as Parallel computers – architecture of a modern GPU – Data Parallelism – CUDA program structure – Matrix – Matrix multiplication example – Device memories and data transfer – Kernel functions and threading – predefined variables – Runtime API Module:7 CUDA threads and Memories 6 hour CUDA thread organization – Using block and thread – synchronization and Transparent		<u> </u>				
program structure – Matrix – Matrix multiplication example – Device memories and data transfer – Kernel functions and threading – predefined variables – Runtime APIModule:7CUDA threads and Memories6 hourCUDA thread organization – Using block and thread – synchronization and Transparent			<u> </u>			
transfer – Kernel functions and threading – predefined variables – Runtime API Module:7 CUDA threads and Memories 6 hour CUDA thread organization – Using block and thread – synchronization and Transparent						
Module:7CUDA threads and Memories6 hourCUDA thread organization – Using block and thread – synchronization and Transparent				es ar	na a	ata
CUDA thread organization - Using block and thread - synchronization and Transparent					6 ho	lire
			n and T			
					•	
strategy for reducing global memory traffic	•	•		- , . ,	r 00	

Modu	ule:8	Contemporary Issues			2 hours
		т	otal Lecture ho	ours:	45 hours
Text	Book	(s)			
S	Shame	Core Programming, Increas eem Akhter and Jason Rob Books	0	0	Software Multi-threading, blications, New Delhi, 2015
1. F	Progra			ands-on a	approach, David B. Kirk and
		valuation: Continuous Ass	sessment Test,	Digital A	ssignment, Quiz and Final
Reco	mmer	nded by Board of Studies	28-07-2022		
		y Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title			т	Ρ	С
MAME607L	Digital Signal Processing and its Applications		3	0	0	3
Pre-requisite	Nil	Sv	-		/ersi	-
				1.0		
Course Objective	25	1				
The course is aim						
1. Introducine	the concepts of sampling, digital filter, adaptive digital	svste	m			
	he concepts of information theory and source coding di			plica	atior	าร
	methods and algorithms which would enable communic					
	e maximum information transfer rate as possible			•••		
	·					
Course Outcome						
At the end of the o	course, the student will be able to					
1. Gain insig	ht into digital models and algorithms to process the	signa	als,	afte	r du	ie
	n of signals from analog to digital					
	the techniques to perform analog to digital and	digita	al to	o ar	nalo	g
conversior						ľ
	aptive filters based on the signal processing and commu					
	ne signal spectrum from the received signal and r	nodul	atio	n s	chei	me
	r information transmission					
	the statistical properties of the signal ent ways of minimizing the number of bits, needed to	- ropi		nt c	a aiu	(o n
	information	repi	ese	nte	ı giv	en
	ods to minimize the probability of communication errors	with	out	affo	cting	r
	communication process	,	out	anc	cung	1
Module:1 Basic	S			5	5 ho	urs
	ital signal processing : Measurements and analysis, T	eleco	mm			
	ion, Household appliances and toys, Automotive, Digit					
	us and discrete signals, Sampling and reconstru-					
Processing mode	Is for discrete-time series, Common filters may be a	dded	dig	ital	filte	ís:
	s, Filter synthesis, Digital control systems : Proportio	nal-ir	itegi	ral-c	deriv	ate
controllers, Adva						
	og Digital interface				7 ho	
	ations : Encoding and modulation, Number representation					
	o-analog conversion: Multiplying digital-to-analog con					
	converters, Bitstream digital-to-analog converters, Sa					
	ers, Analog-to-digital conversion: Anti-aliasing filter					
	alog-to-digital converters , Successive approximati ting analog-to-digital converters , Integrating analog-to-					
	Ita analog-to-digital converters	uigita		nve	liers	• •
	tive digital systems			F	6 ho	urs
	em structure The processor and the performance funct	ion 7	The			
	The performance function , Adaptation algorithms : The					
	i's method, The least mean square algorithm, Ap					
-	nel, Equalizers, Adaptive beam forming	P				
	tral analysis and modulation			7	7 ho	urs
	ransform and fast Fourier transform: Spectral analysi	s,D	iscr			
	t Fourier, transform approaches, "Z" transforms Using					
	gram averaging, Parametric spectrum analysis, Mod					
	ζ), Frequency shift keying (FSK), Phase shift keyir					
	Hilbert transformer					
Module:5 Kalm	an filters			4	l ho	urs
						

An intuitive approach : Recursive least square estimat	•					
Kalman filter : The signal model , The filter, Kalman filter	properties, Applications.					
Module:6 Data compression	7 hours					
An information theory primer: Information and entropy,						
Delta modulation, adaptive delta modulation and o						
modulation, DPCM adaptive DPCM techniques, Speech coding, adaptive predictive coding						
and sub-band coding, Vocoders and linear predictive of						
Lempel–Ziv algorithm, Recognition techniques: Speech re	<u> </u>					
Module:7 Error-correcting codes	7 hours					
Channel coding: The channel model , The channel of						
Hamming distance and error correction, Linear block						
codes, Viterbi decoding, Interleaving, Concatenated cod						
Module:8 Contemporary Issues	2 hours					
Total Lecture hours	: 45 hours					
Text Book(s)						
1. Digital signal processing and applications, Dag S	Stranneby and William Walker,					
Second Edition, Elsevier, New York, 2015						
Reference Books						
1. Advanced digital signal processing noise reduction	, SaeedV.Vasaghi, Fourth edition,					
Wiley, New Delhi, 2015						
2. Disitel Circal Dressesing: Eurodementals and Applies	tions bulli Ton First adition 2007					
Digital Signal Processing: Fundamentals and Applica	tions, by LI Tan, First edition 2007					
Mode of Evaluation: Continuous Assessment, Digital Assi	ignment, Quiz and Final					
Assessment Test						
Assessment lest						
Assessment Test Recommended by Board of Studies 28-07-2022						
	ate 08-08-2022					

Cou	Irse Code		Course Title	۵			1	т	Р	С
	ME607P	Digital Signal P			ationsIa	ah	0	0	2	1
	requisite	Nil	socooning and				llabi	-		•
110						Cy		1.0		UII
Соц	Irse Objective	28								
	course is aim									
		g the concepts of sa	mpling, digital fil	ter, adaptiv	ve digital	syste	m			
	2. Providing	the concepts of infor	mation theory a	nd source	coding di	fferer	nt ap			
		methods and algorith				ation	to h	арр	en a	as
	close to th	e maximum informa	tion transfer rate	e as possik	ble					
0.00										
	Irse Outcome		will be able to							
		course, the student when the student when the student when the student student when the student student student when the student stu		me to prov	coss tha	sign		ofto	r du	
		n of signals from ana				Signa	ais, 1	ane	i ut	ie
		the techniques to		og to digi	ital and	digita	al to	ar	nalo	a
	conversior	•	•	5 5		0			•	
		aptive filters based o								
4		he signal spectrum		eived sign	al and r	modu	latio	n s	che	me
		r information transm		- 1						
		the statistical prope ent ways of minimized			boodod tr	o ropi		nt c		(0 D
		information				o repi	656	in c	a giv	en
-		ods to minimize the	probability of co	mmunicati	on errors	. with	out	affe	cting	Ľ
		communication pro				,				,
	cative Experi									
1.	Auto correlat						2 ho	ours		
		nplement auto-corre	lation using Mat	ab						
2.	LMS algorith		ana uning Matlak	_			4 ho	ours		
3.		nplement the algorith	nm using matiat)			4 ho	ro		
J.	RLS algorith	nplement the algorith	om using Matlat	`			4 10	Juis		
4.	ASK, FSK, F		ini using matia	,			4 ho	nire		
т.		nplement digital mod	dulation techniqu	ies usina	Matlab		- 11	Juis		
5.	Complex mo						4 ho	ours		
_		nplement complex m	nodulation techn	iques usin	g Matlab					
6.		non encoding and de			•		4 ho	ours	i	
	• To p	erform reed-Solomo	n encoding and	decoding						
7.		ng and decoding					4 ho	ours		
		erform cyclic redund								
8.		livision and linear fe		sters			4 ho	ours		ľ
	• To p	erform division using					<u>.</u>	1		
N.4 -		anti Onntinue A		otal Labor			30 I	nou	rs	
		ent: Continuous Ass		nai Assess	sment le	st				
	ommended by roved by Acad	/ Board of Studies	28-07-2022 No. 67	Date	08-08-20	122				
чүү	TOVED by ACat		110.07	Dale	00-00-20	JZZ				

Course Code	Course Title		L	Т	Ρ	С
MAME608L	Open Source Hardware and Software System De	sign	3	0	0	3
Pre-requisite	Nil	Sy	llabı	ls v	ersi	on
				1.0		
Course Objective	S					
The course is aim						
	g to the students the foundation of open source progra					
	d client-server architectural model for web applications					
3. Teaching t	he students the basis of Automation using Raspberry	Pi.				
Course Outcome						
	ourse, the student will be able to					
	d the importance of Open Source programming		I			
	d apply appropriate server side programming for web	based	appi	Icati	ons	
	d various database operations	22				
	nd the operation of different type of Socket programm			otor	-	
	d the details of Raspberry Pi fundamentals and explor nd implement the various Raspberry Pi project	ny GP		nen	ace	
	PIO Interface					
Module:1 Basic	S			5	ho	urs
	basic operators – decision making – loops – string	ıs-lis	ts –			
	and Time – Functions – Modules – Files – Excep					
Objects			U.C.	.000	<i></i> u	
	nd Web programming			7	' ho	urs
	ning – Tkinter Widgets - CGI – Web server suppor	t – Er	viro	nme	ental	
	nd POST methods – Passing information using POS					
Module:3 Data				6	ho	urs
MySQLdb - datab	ase connection – Creating database table – INSERT	– REA	D –	UPI	DAT	E
•	IMIT – ROLEBACK					
Module:4 Netwo	ork Programming			7	' ho	urs
Sockets – Server	socket – Client Socket – General Socket methods – S	ending	g an	HT.	ГР е	-
	attachment as an email		_			
Module:5 Rasp	berry Pi fundamentals			6	i ho	urs
	tting up the Raspberry Pi – Interacting with Raspbe	erry co	mm	and	line) —
	rial port – Connect Pi to network					
	berry Basic Projects				' ho	
	ightness of LED – Buzzing sound – Switch high po					
	ys - controlling high voltage AC device - Using PWI					
	types of motors – servo motor – DC motor – Steppe	er moto	or -	Disp	olayi	ng
HD images – Play					b -	
	nced Raspberry projects				ho	
	nterface – Controlling GPIO output – Detecting GP					
	ds – Interfacing various sensors – measuring light –					
flash drive	ration – measuring temperature – measuring distance	– logg	ing i	110	a U	Ър
	emporary Issues			2	ho	ILLE
				2		ui 3
	Total Lecture hours:			45	ho	ILLE
				-10		JI J
Text Book(s)			<u> </u>			
	amming for Raspberry Pi in 24 hours, Richard Blu	n and	Chr	istir	ne	
	ams Teach Yourself, Indiana, 2015					
Reference Books						

1.	1. Raspberry Pi Cookbook, Simon Monk, O'Reilly, California, 2015						
	Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test						
Re	commended by Board of Studies	28-07-2022					
Ар	proved by Academic Council	No. 67	Date	08-08-2022			

Course Code	Course Title	L T P C
MAME609L	Machine Vision System for Automotive	3 0 0 3
Pre-requisite	NIL	Syllabus version
		1.0
Course Objecti		
The course is ai		
1. Providing algorithm	the basic concepts of digital image process	essing and related
	ng the concepts of motion estimation, multi came	era view processing
•	ng on automation considerations and auton	notive components
Course Outcon	nes	
	e course, the student will be able to	
	nd the elements of computer vision based syste	ems
	with image formation and processing methods	
	nd advanced algorithms for depth estimation	and multi-camera
views		
	nd various feature extraction techniques	
	with motion estimation and SLAM algorithms	
	nd various operational behaviours of Componer	
	end the operation of different type of Cylinde	er blocks, detecting
	alls and behaviours	
8. To apply	machine vision algorithms to solve challenging	problems
	mante of Commuter Vision Custom	F have
	ments of Computer Vision System	5 hours
Industrial mach	ine vision, System architecture, Sensors, Can	nera interfaces and
video standard	s, adjacency conventions, Image acquisition	i nardware, speed
	Steps involved in Computer vision System: Data	Indestion. Data pre-
Drocessina. Mor		ingeotion, Duta pro
Modulo 2 Dia	telling process, Inference and logging.	. .
Module:2 Dig	ital Image Formation and Processing	6 hours
Module:2 Dig Photometric ima	ital Image Formation and Processing age formation, Geometric primitives and trar	6 hours
Module:2 Dig Photometric ima operators, Linea	ital Image Formation and Processing age formation, Geometric primitives and trar ar filtering, Non-linear filtering, Histogram proc	6 hours nsformations, Point cessing, Geometric
Module:2 Dig Photometric ima operators, Linea transformations,	ital Image Formation and Processing age formation, Geometric primitives and tran ar filtering, Non-linear filtering, Histogram proc Fourier transforms, Pyramids and wavelets, Re	6 hours asformations, Point cessing, Geometric estoration
Module:2DigPhotometricimage: operators,operators,Lineadtransformations,Module:3Dep	ital Image Formation and Processing age formation, Geometric primitives and tran ar filtering, Non-linear filtering, Histogram proc Fourier transforms, Pyramids and wavelets, Re oth estimation and Multi-camera views	6 hours nsformations, Point cessing, Geometric estoration 7 hours
Module:2DigPhotometricimageoperators,Lineatransformations,Module:3Module:3DepStereo vision:P	ital Image Formation and Processing age formation, Geometric primitives and trar ar filtering, Non-linear filtering, Histogram proc Fourier transforms, Pyramids and wavelets, Re oth estimation and Multi-camera views erspective, Binocular Stereopsis, Camera and	6 hours insformations, Point cessing, Geometric estoration 7 hours Epipolar Geometry;
Module:2DigPhotometricimageoperators,Lineatransformations,Module:3DepStereo vision:PHomography,R	ital Image Formation and Processing age formation, Geometric primitives and tran ar filtering, Non-linear filtering, Histogram proc Fourier transforms, Pyramids and wavelets, Re oth estimation and Multi-camera views	6 hours insformations, Point cessing, Geometric estoration 7 hours Epipolar Geometry;
Module:2DigPhotometricimage: operators, Lineaoperators, Lineatransformations,Module:3DegStereo vision: PHomography, Rcalibration.	ital Image Formation and Processing age formation, Geometric primitives and tran ar filtering, Non-linear filtering, Histogram proc Fourier transforms, Pyramids and wavelets, Re oth estimation and Multi-camera views erspective, Binocular Stereopsis, Camera and ectification, DLT, RANSAC, 3-D reconstruction	6 hours asformations, Point cessing, Geometric estoration 7 hours Epipolar Geometry; n framework; Auto-
Module:2DigPhotometricimageoperators,Lineatransformations,Module:3Module:3DejStereo vision:PHomography,Rcalibration.Module:4Module:4Fea	ital Image Formation and Processing age formation, Geometric primitives and tran ar filtering, Non-linear filtering, Histogram proc Fourier transforms, Pyramids and wavelets, Re oth estimation and Multi-camera views erspective, Binocular Stereopsis, Camera and ectification, DLT, RANSAC, 3-D reconstruction ature Extraction in Vision based Systems	6 hours hsformations, Point cessing, Geometric estoration 7 hours Epipolar Geometry; n framework; Auto- 7 hours
Module:2DigPhotometricimaoperators,Lineatransformations,Module:3Module:3DepStereo vision:PHomography,Rcalibration.Module:4Module:4FeaEdgedetectors:	ital Image Formation and Processing age formation, Geometric primitives and tran ar filtering, Non-linear filtering, Histogram proc Fourier transforms, Pyramids and wavelets, Re oth estimation and Multi-camera views erspective, Binocular Stereopsis, Camera and ectification, DLT, RANSAC, 3-D reconstruction ature Extraction in Vision based Systems at Canny, LOG, DOG; Line detectors Hough T	6 hours hsformations, Point cessing, Geometric estoration 7 hours Epipolar Geometry; n framework; Auto- 7 hours
Module:2DigPhotometricimageoperators,Lineatransformations,Module:3Module:3DelStereo vision: PHomography, Rcalibration.Module:4Module:4FeaEdgedetectors:Harris and Hess	ital Image Formation and Processing age formation, Geometric primitives and tran ar filtering, Non-linear filtering, Histogram proc Fourier transforms, Pyramids and wavelets, Re oth estimation and Multi-camera views erspective, Binocular Stereopsis, Camera and tectification, DLT, RANSAC, 3-D reconstruction ature Extraction in Vision based Systems Canny, LOG, DOG; Line detectors Hough T sian Affine, SIFT, SURF, HOG, GLOH	6 hours Insformations, Point Cessing, Geometric Estoration 7 hours Epipolar Geometry; n framework; Auto- 7 hours ransform, Corners -
Module:2DigPhotometricimaoperators,Lineatransformations,DejModule:3DejStereo vision:PHomography,Rcalibration.FeaModule:4FeaEdgedetectors:Harris and HessModule:5Module:5Module:5	ital Image Formation and Processing age formation, Geometric primitives and tran ar filtering, Non-linear filtering, Histogram proc Fourier transforms, Pyramids and wavelets, Re oth estimation and Multi-camera views erspective, Binocular Stereopsis, Camera and tectification, DLT, RANSAC, 3-D reconstruction ature Extraction in Vision based Systems canny, LOG, DOG; Line detectors Hough T sian Affine, SIFT, SURF, HOG, GLOH tion estimation and SLAM	6 hours Insformations, Point Cessing, Geometric Estoration 7 hours Epipolar Geometry; n framework; Auto- 7 hours ransform, Corners 6 hours
Module:2DigPhotometricimaoperators,Lineatransformations,Module:3Module:3DegStereo vision:PHomography,Rcalibration.FeaEdge detectors:Harris and HessModule:5ModGeometricintrin	ital Image Formation and Processing age formation, Geometric primitives and tran ar filtering, Non-linear filtering, Histogram proc Fourier transforms, Pyramids and wavelets, Re oth estimation and Multi-camera views erspective, Binocular Stereopsis, Camera and tectification, DLT, RANSAC, 3-D reconstruction ature Extraction in Vision based Systems Canny, LOG, DOG; Line detectors Hough T sian Affine, SIFT, SURF, HOG, GLOH tion estimation and SLAM nsic calibration, Two-frame structure from r	6 hours isformations, Point cessing, Geometric estoration 7 hours Epipolar Geometry; n framework; Auto- 7 hours ransform, Corners 6 hours motion, Multi-frame
Module:2DigPhotometricimageoperators,Lineatransformations,DegModule:3DegStereo vision:PHomography,Rcalibration.EdgeModule:4FeaEdgedetectors:Harris and HessModule:5Module:5Module:5Module:6from	ital Image Formation and Processing age formation, Geometric primitives and trar ar filtering, Non-linear filtering, Histogram proc Fourier transforms, Pyramids and wavelets, Re oth estimation and Multi-camera views erspective, Binocular Stereopsis, Camera and tectification, DLT, RANSAC, 3-D reconstruction ature Extraction in Vision based Systems canny, LOG, DOG; Line detectors Hough T sian Affine, SIFT, SURF, HOG, GLOH tion estimation and SLAM nsic calibration, Two-frame structure from r motion, Simultaneous Localization and	6 hours Insformations, Point Cessing, Geometric Sestoration 7 hours Epipolar Geometry; n framework; Auto- 7 hours ransform, Corners 6 hours Mapping (SLAM),
Module:2DigPhotometricimageoperators,Lineatransformations,DegModule:3DegStereo vision:PHomography,Rcalibration.EdgeModule:4FeaEdgedetectors:Harris and HessModule:5Module:5Module:5Module:6IntristructurefromTranslational ali	ital Image Formation and Processing age formation, Geometric primitives and trar ar filtering, Non-linear filtering, Histogram proc Fourier transforms, Pyramids and wavelets, Re oth estimation and Multi-camera views erspective, Binocular Stereopsis, Camera and tectification, DLT, RANSAC, 3-D reconstruction ature Extraction in Vision based Systems Canny, LOG, DOG; Line detectors Hough T sian Affine, SIFT, SURF, HOG, GLOH tion estimation and SLAM nsic calibration, Two-frame structure from r motion, Simultaneous Localization and gnment, Parametric motion, Optical flow, Layere	6 hours Insformations, Point Cessing, Geometric Sestoration 7 hours Epipolar Geometry; n framework; Auto- 7 hours ransform, Corners 6 hours Mapping (SLAM),
Module:2DigPhotometricimageoperators,Lineatransformations,Module:3Module:3DeStereo vision:PHomography,Rcalibration.Module:4Module:4FeaEdge detectors:Harris and HessModule:5ModGeometricintriisstructurefromTranslationalaliModule:6Aut	ital Image Formation and Processing age formation, Geometric primitives and trar ar filtering, Non-linear filtering, Histogram proc Fourier transforms, Pyramids and wavelets, Re oth estimation and Multi-camera views erspective, Binocular Stereopsis, Camera and tectification, DLT, RANSAC, 3-D reconstruction ature Extraction in Vision based Systems canny, LOG, DOG; Line detectors Hough T sian Affine, SIFT, SURF, HOG, GLOH tion estimation and SLAM nsic calibration, Two-frame structure from r motion, Simultaneous Localization and	6 hours Insformations, Point Insformations, Point Insformation 7 hours Epipolar Geometry; In framework; Auto- 7 hours Insform, Corners Insform, Corners Insform, Multi-frame Mapping (SLAM), Instead motion. 6 hours Instead

Мо	dule:7	Automotive component	it testing a	oplicat	tions	6 hours		
		ng types of cylinder blocl						
		lls in bearings – chec						
diff	differentiating gear types - detecting a lack of sealing compound - detecting							
imp	improper assembly of a fuse box – Checking an LCD panel.							
NIO	aule:8	Contémporary Issues				2 hours		
			Total	Lectu	re hours:	45 hours		
Te	xt Books	;						
1.		er Vision: Algorithms a		tions,	Richard S	Szeliski, 2nd	ed.,	
	Springe	r, 2022, ISBN: 97830303	43712.					
2.		er and machine vision					E.R.	
	Davies,	Fourth Edition (Kindle Ed	dition), 2012	, ISBN	I- 9780123	869081		
Re	ference	Books						
1.		atics for Machine Learr						
-		Soon Ong. Cambridge U						
2.		Intelligence, Machine					vald	
		sato. Mercury Learning &						
3.		nt Vision systems for Ind			atchelor an	d Paul F. Whe	lan,	
N 4 -		r, London, 2012, ISBN: 9					I	
		aluation: Continuous As	sessment I	est, L	ngital Assi	gnment, Quiz	and	
		sment Test						
		ded by Board of Studies	07-06-202					
Ар	proved b	y Academic Council	No. 70	Date	24-06-2	2023		

Course Code	Course Title	L	Т	Ρ	С
MAME609P	Machine Vision System for Automotive	0	0	2	1
	Lab				
Pre-requisite	NIL	Sylla	bus '	versi	on
•			1.0		
Course Obje	tives				
The course is					
	ng the basic concepts of digital image proc	essing	and	rela	ted
algorit					
	cing the concepts of motion estimation, multi cam	era vie	w pro	cess	ing
	pth estimation				
3. Elabor testing	ating on automation considerations and autor	notive	com	pone	nts
Course Outo	omes				
	the course, the student will be able to				
	tand the elements of computer vision based system	ems			
	nt with image formation and processing methods				
3. Unders	stand advanced algorithms for depth estimation	n and	multi	-cam	era
views	o				
4. Unders	tand various feature extraction techniques				
5. Acqua	nt with motion estimation and SLAM algorithms				
6. Unders	tand various operational behaviours of Compone	nts in A	Auton	natior	۱
7. Compi	ehend the operation of different type of Cylinde	er bloc	ks, c	letect	ing
missin	g balls and behaviours				-
8. То арр	ly machine vision algorithms to solve challenging	proble	ms		
Indicative Ex	periments				
1 To	perform digital image filtering using various masks	,	4	Hou	rs
	Explore Wavelets and Pyramids for frequency		1 4	Hou	rs
ima	ge processing				
	implement binocular stereopsis process		4	Hou	rs
4 To	extract features using edge detectors, line de ner detectors	tectors	, 4	Hou	rs
	lement object tracking using optical flow technique			Hou	rc
	form welding inspection of motor parts using			Hou	
	cessing	imaye	3 4	FTIOU	15
7 İm	element program for missing-roller inspection for be	arings	6	6 Hou	rs
	· · · · · · · · · · · · · · · · · · ·	Tota	I 30) Hol	ırs
Text Books					
	nputer Vision: Algorithms and Applications, Richa inger, 2022, ISBN:9783030343712,	rd Sze	liski,	2nd e	ed.,
	nger, 2022, 13BN.9783030343712, nputer and machine vision : Theory, Algorithm an	d Pract	icaliti	oc F	P
	vies, Fourth Edition (Kindle Edition), 2012, ISBN-				.1
Reference B	ooks				
	thematics for Machine Learning. Marc Peter [)eisenr	oth.	A. A	ldo
Fa	sal, Cheng Soon Ong. Cambridge University				
97	31108679930.				

2.	Artificial Intelligence, Machine Learning, and Deep Learning. Oswald					
3.	Campesato. Mercury Learning & Information.2020. ISBN: 9781683924661 Intelligent Vision systems for Industry, Bruce G. Batchelor and Paul F. Whelan, Springer, London, 2012, ISBN: 9781447104315					
Mode of	Mode of Evaluation: Continuous Assessment Test and Final Assessment Test					
Recomm	Recommended by Board of Studies 07-06-2023					
Approved	Approved by Academic Council No. 70 Date 24-06-2023					

Course Code	Course Title		L	ΤP	С
MAME610L	Automotive Fault Diagno	stics	3	1 0	4
Pre-requisite	Nil		Syllab	us vers	sion
			-	1.0	
Course Objective	es				
The course is aim	ed at:				
1. Familiarising	students with the basic concepts of autor	motive fault diag	nostics		
	dents about the fault sensors output wav				
3. Elaborating t	he operation of Automotive Oscilloscopes	s, OBD II and Fa	ult code	reade	rs
Course Outcome					
	course, the student will be able to				
	he basic concepts of fault diagnosis in au	itomotive field.			
	MIL for various automotive faults.				
	f idea of various sensors and assess	s ECU failures	with th	ne help	o of
oscilloscope					
	the operation of fault-finding systems (O		votomo		
	ectify the faults of automotive sensors ar arious failure modes in Electronic contro/				
	he concepts of Electrical systems fault di			ly units	
		agnostics			
Module:1 Diag	nostic			6 h	ours
U	iques - diagnostic process - diagnostics	on paper - mec	hanical		
	rical diagnostic techniques - fault codes				
Data sources					
	s and Equipment			6 h	ours
	- Oscilloscopes - Scanners - Fault code r	eaders - Engine	Analyse		
	lloscope diagnostics	l	ý		ours
	rs - Ignition System - Other components				
Module:4 On-b	oard diagnostics			6 h	ours
A first perspective	- Petrol / Gasoline on-board diagnostics	monitors - a sec	cond per	spectiv	/e
Module:5 Engi	ne Systems			7 h	ours
Diagnostics of Er	gine operation - Fuel system - Ignition -	Emission - Fuel	Injectior	n - Dies	sel
	management - Fault finding information		l exhau	st syste	ems
V	ion - batteries - starting system - chargin	g system			
	sis System				ours
0	akes - anti-lock brakes diagnostics - trac	tion control diagr	nostics	 steeri 	ng
	stics - suspension diagnostics	1			
Module:7 Elect					ours
	nents and circuits diagnosis - multiplex				
	a car entertainment security and comm				
	g instruments system faults - HVAC diagr	nostics - Cruise (control o	liagnos	tics
	t tensions diagnostics emporary lssues			2 h	ours
	emporary issues			2 110	Juis
	Total Lecture hours:			45 h	oure
				40 N	Juis
Text Book(s)				00 / -	
	echnician Training, Tom Denton, Taylor	and ⊢rancis, Ne	w York,	2015	
Reference Books	-				
	Electrical and Electronic Systems : A				nicle
	and Repair, Tom Denton, Fourth Edition				
	Itomotive Fault Diagnosis: Automotive T		ncie Ma	Intenar	nce
Lang Kepair.	om Denton, Third Edition, Elsevier, New	tork, 2012.			

Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test

Recommended by Board of Studies	28-07-2022		
Approved by Academic Council	No. 67	Date	08-08-2022

Course Code Course Title L T P C							
MAME611L	Emission Control and Diagnosis		3	0	0	3	
Pre-requisite	Nil	Sy	llabu	IS V	ersi	on	
-				1.0			
Course Objective	es						
The course is aim	ed at:						
1. Preparing	the students to analyze automotive pollution control te	chniqu	es				
2. Introducin	g the concepts of formation and control techniqu	es of	pollu	Itani	is li	ike	
	O, NOx and particulate matter						
3. Preparing	the students to analyze smoke for both SI and CI eng	nes					
Course Outeers							
Course Outcome							
	course, the student will be able to s of the emission from automobiles						
	mission from Spark Ignition Engine						
	mission from Compression Ignition Engine						
	pout the exhaust emissions						
•	and the Emission Control Legislation - I						
	and the Emission Control Legislation – II						
	d about the Exhaust gas measuring techniques						
	sion From Automobiles				hou		
	Pollution. Various emissions from Automobiles - F						
	ironment and human beings. Emission control techni						
	ent 11 devices. Emission standards. Automotive wa	ste ma	nage	mer	nt, c	bld	
	recycling, tyre recycling						
	sion From Spark Ignition Engine And			7	hou	urs	
	ion in SI Engines- Carbon monoxide & Carbon	di ovid		Un	Surr	hod	
	Dx, Smoke —Effects of design and operating va						
	olling of pollutants - Catalytic converters, Charcoal Ca						
	ilation system, Secondary air injection, thermal re						
Combustion							
	sion From Compression Ignition			6	hou	urs	
	ne And Its Control						
	hite, Blue, and Black Smokes, NOx, soot, sul						
	pounds – Physical and Chemical delay — Significan						
	ssion formation — Fumigation, Split injection, Cata	lytic C	oatin	g, E	GR	,	
Module:4 Exha	Traps, SCR, Fuel additives — Cetane number Effect.			6	hai	uro	
	ucts, Properties of exhaust gas components			Ø	hou	urs	
	sion control legislation - I			6	hou	ire	
	legislation, EPA legislation, EU legislation, Japanese	lenislat	ion	0		ui S	
	sion control legislation - II	iogioiai		6	hou	urs	
	r passenger cars and light duty trucks, European tes	t cvcle	s for				
	ty trucks, Japanese test cycles for passenger cars						
0	avy commercial vehicles	2.10 11	u	y		,	
,	ust gas measuring techniques – I			6	hou	urs	
	on chassis dynamometers, Exhaust gas measuring d	evices.	Dies				
	aporative emission test						
	emporary Issues			2	hou	urs	

		т	otal Lecture ho	urs:	45 hours			
Tex	xt Book	(s)						
1.	1. G.P.Springer ad D.J.Patterson, Engine Emissions, Pollutant formation, Plenum Press,							
	New Y	ork, 1986.	C					
2.	D.J.Pa	tterson and N.A.Henin, 'En	nission from Cor	nbustion	Engine and their control', Anna			
	Arbor \$	Science Publication, 1985.			-			
3.		<u>tive Handbook – 9th Editior</u>	n – 2015, BOSC	H				
Re	ference	Books						
1.	V.Gan	esan, 'Internal combustion	Engines', Tata M	AcGraw H	Hill Book Co, Eighth Reprint,			
	2005.							
2.	Crouse	e and Anglin, 'Automotive	Emission Cont	rol', McG	raw Hill company.,Newyork			
3.	1993.							
			-		als of Electric Circuits," 2015,			
	5th Edition, Tata McGraw Hill Education Private Limited, New Delhi, India.							
Мо	Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final							
	sessmer							
		ided by Board of Studies	28-07-2022					
Ар	proved b	y Academic Council	No. 67	Date	08-08-2022			

Course Code	Course Title		LTPC					
MAME612L	Vehicle Safety Systems	;	2 0 0 2					
Pre-requisite	Nil	Sylla	abus version					
			1.0					
Course Obje								
The course is								
	better understanding of good design prac							
	mprovement that manifests significantly less risk to humans, machines and the							
	vironment							
	Sain the ability to design and demonstrate the vehicle safety critical systems to reduce							
	em errors and faults ing the students to do design safety systems u		ation					
5. milouuc	ing the students to do design salety systems a							
Course Outc	ome							
	the course, the student will be able to							
	and the basic concept of vehicle safety							
	and the operation of braking system design and	t its operation						
	and the braking system for passenger vehicles							
4. Know th	e working principle of ABS and traction control							
5. Underst	and the concepts of braking systems for comm	ercial vehicles						
	and the vehicle stabilization for commercial veh							
7. Underst	and about the airbag system for passenger saf	ety						
	asic concepts of vehicle safety	in the second states	4 hours					
	rinciples-cause and effect –safety factors-des		-identifying					
	afety factor-Digital models and man testing -co traking systems	npliance	4 hours					
		braking system	-brake-circuit					
	inciples-design and components of s- s-braking system design	blaking system						
	raking system for passenger cars and		4 hours					
	ght utility vehicles		1					
	r-brake master cylinder-braking force limiters-d	sk brakes-drum bra	kes					
	ehicle stabilization systems for		4 hours					
p	assenger cars							
Anti-Lock k	oraking system(ABS)-traction control sy	stem(TCS)-Electror	nic stability					
)-Electrohydraulic brakes							
	raking system for commercial vehicles		4 hours					
•	configuration-air supply and processing-Tra	nsmission device-w	heel brakes-					
	system-retarder braking system							
	ehicle stabilization system for		4 hours					
	ommercial vehicles	biolog Flagtrania-II						
	tability program(ESP) for commercial ve		/ controlled					
	function-system design-components-electro p	ieumatic praking	4 hours					
	river		4 110015					
	proper use of head restraints-Airbags-distractor	s and risk reduction	-information					
processing								
	contemporary Issues		2 hours					
	······································							
	Total Lecture hours:		30 hours					
Text Book(s)		 .						
1. George A	A. Peters, Barbara J. Peters, "Automotive vehic	ie satety", Taylor ar	nd ⊢rancis,3rd					

	edition, 2015					
Reference Books						
1. Robert Bosch, "Automotive handbook",9th edition,2015						
2.	2. Bimal K Bose, "Power Electronics and Motor Drive: Advances and Trends", Elsevier,					
	Inc., 2006					
Мо	de of Evaluation: Continuous Ass	sessment Test,	Digital As	ssignment, Quiz and Final		
Ass	Assessment Test					
Re	Recommended by Board of Studies 28-07-2022					
Ар	Approved by Academic Council No. 67 Date 08-08-2022					

Course Code Course Title L T P C							
MAME613L	Vehicle Bodies		2 0 0 2				
Pre-requisite	Nil	Sy	Ilabus version				
			1.0				
Course Objective							
The course is aim							
	1. Giving insight into the vehicle construction						
2. Design and construction of vehicular bodies for passenger car and commercial							
vehicles							
3. Providing	an overview of lighting in vehicles						
Course Outcome	A CONTRACTOR OF						
	course, the student will be able to						
	d Road-vehicle systematics						
	d Vehicle bodies for passenger cars						
	nd and analyze commercial vehicles bodie	es					
4. Classify E	xternal lighting technologies						
	ternal lighting technologies						
	t Automotive windshield and window glass						
7. Comprehe	nd the windshield and rear-window cleaning	ng systems					
Module:1 Road	-vehicle systematics		2 hours				
	ording to ECE, Classification according to	USA	2 110010				
	cle bodies- passenger cars		4 hours				
	, Body design, Aerodynamics, Aeroac	oustics, body stru	ucture. Bodv				
	urface, Body finishing components, Safety		,				
	cle bodies-commercial vehicles		4 hours				
Commercial vehic	les, Light utility vans, Medium and heavy-	duty trucks and tra	actor vehicles,				
Buses, Passive sa	afety in commercial vehicles	-					
Module:4 Light			5 hours				
· •	ations and equipment, Definitions and tern	•	•				
	adlamps, European regulations, Head						
•	lamp leveling, Europe, Headlamp cleaning	g systems, Fog lan	nps, Auxiliary				
driving lamps	ing technology-ll		5 houro				
Ŭ	<u> </u>	Sido morkor olo	5 hours				
•	, Hazard-warning and turn-signal flashers mps, License-plate lamps, Stop lamps, R						
	unning lamps, Reversing lamps, Daytim						
devices, Motor-ve		ie running lamps,	outer lighting				
	motive windshield and window glass		4 hours				
The material prop	erties of glass, Automotive glazing, Function	onal design glazing	3				
Module:7 Wind syste	shield and rear-window cleaning ms		4 hours				
	systems, Rear-window wiper systems, He	adlamp cleaning s	systems, Wiper				
motors, Washing		-	-				
Module:8 Cont	emporary Issues		2 hours				
Ι	Total Lootuna bauma	[20 6 6				
	Total Lecture hours:		30 hours				
Toxt Book(a)							
Text Book(s) 1. Powloski J., "Vehicle Body Engineering", Business books limited, London, 1970							
Reference Books			.,				
	, "Automotive handbook", 9th edition, SAE	E publication 2015					
		-					

Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test

Recommended by Board of Studies	28-07-2022		
Approved by Academic Council	No. 67	Date	08-08-2022

Course Code	1	Course Title	е			L	Т	Ρ	С
MAME614L		Engine Periphe				2	0	0	2
Pre-requisite	Nil	5 1			Sv	llabu	IS VE	ersi	on
							.0		
Course Objective	es								
The course is aim									
1. Preparing the students to understand engine peripherals connections and operation									
theory		0 1	•				•		
2. Introducin	g the basics of engine	e cooling and lu	bricatio	on					
	to study and analyze	emission reduc	ction te	echniques					
Course Outcome									
	course, the student w	vill be able to							
	erview of Engine								
	end the techniques fo		g						
	id about Engine lubric								
	ate knowledge on Air								
	end the concepts of e								
	d turbochargers and								
	d emission reduction	systems and e	xnaus	t gas system	IS		2	hai	
Module:1 Over							3	hοι	irs
	, Engine components	s, Engine types					-	hou	
	ne Cooling		1			1- 1-			
	ir cooling, Intercooli		el cool	ing, cooling	moau	le te	cnn	0100	ју,
	I management, Exha	ust gas cooling					2	hou	
	ne lubrication	m lubrication of	20000	onto			ა	ΠΟ	IIS
	eed lubrication syste	m, iudrication co	Smpon	ieniis			2	hοι	I.C.
Air pollution, Air fi							2	ΠΟ	IIS
	r engine peripherals	<u></u>					5	hou	Irc
	vacuum pump, steel		tako s	vetom ovh		ctom		1100	112
	ochargers and supe			System, exh	ausi sy	SIGITI		hou	15
engir		erchargers for i					5	not	11.2
Superchargers	(mechanical driven)	, Pressure w	/ave,	Exhaust g	gas a	nd	mult	tista	ge
superchargers, A	cceleration aids				-				-
	sion reduction syst	ems and exhau	ust				6	hοι	ırs
•	rculation systems, s	econdarv air ir	niectio	n. Evaporat	ive en	nissio	on o	ontr	.ol
•	e ventilation, Manifol	•	•						
connecting eleme		-, ,		-, -			-,		-
•	emporary Issues						2	hοι	ırs
			•						
	Τe	otal Lecture ho	ours:				30	hοι	ırs
Text Book(s)									
· · /	landbook – BOSCH -	- 9th Edition -20)15						
Reference Books			-						
	-	wton and Willia	am Ste	eds. "The	Motor	Vehi	cle"	13	th
1. T. Kenneth Garrett, Kenneth Newton and William Steeds, "The Motor Vehicle" 13th Edition, Butterworth-Heinemann Limited, London, 2015									
Heinemann, New York, 2002									
	ion: Continuous As	sessment Test.	Diait	al Assianm	ent. Q	uiz a	and	Fir	al
Assessment Test			, <u> </u>		, x				
	y Board of Studies	28-07-2022							
Approved by Aca		No. 67	Date	08-08-2	2022				
					•				

Course Code	Course Title		L	TP	С		
MAME615L	Vehicle Security and Comfort	Systems	3	00	3		
Pre-requisite	Nil		Syllal	bus vers	sion		
•				1.0			
Course Objective	es						
The course is aim	ed at:						
1. Teaching	the students about locking systems and th	eft-deterrent :	svstems				
	the technical knowhow of acoustic si			auccup	ant-		
protection systems							
3. Discussing about the Power-window drives, comfort and safety functions in the							
	r compartment and driver assistance syste		5				
Course Outcome							
	course, the student will be able to						
	nd about locking systems						
	nd the concept of theft-deterrent systems						
	nd about the acoustic signalling devices						
	ate the knowledge about occupant-protect	ion systems					
	t power-window drives						
-	ne technique for comfort and safet	y functions i	in the p	asseng	er		
compartm							
	nd about driver-assistance systems						
8. Design an	d implement vehicle security and comfort	systems					
Madula 4		l		<u> </u>			
	ing systems				ours		
	re, operating principle, Open by wire, E						
	Electronic vehicle immobilizer, functional	description (Comfort	Entry/G	0		
system		[0.1			
	t-deterrent systems				ours		
	missible alarm signals. System design,	alarm detecto	ors, Alar	m syste	m		
	n siren, Tilt sensor, Interior monitoring Istic signaling devices			6 h	ours		
	devices applications, Horn, Fanfare horn			0 110	Juis		
	ipant-protection systems	5		6 h	ours		
	eat-belt pretensioners, Front airbag, Sid	e airbag, Co	mponent	is, Rolic	ver		
protection system	er-window drives			6 h			
		of drives		o no	ours		
	otors, Power-window control, Power sunro			C h			
	fort and safety functions in the enger compartment			o no	ours		
	ustment, Electrical steering-column adjust	ment Multin		ctuator			
	er-assistance systems				ours		
9	situations, Causes of accidents and						
Convenience and safety functions, Sensors for all round electronic visibility, Sensor-data							
fusion.							
Module:8 Cont	emporary Issues			2 h	ours		
T		I					
	Total Lecture hours:			45 he	ours		
Text Book(s)		•					
1. Automotive H	landbook – BOSCH – 9th Edition -2015						
Reference Book	6						

1.	Bosch, "Safety, Comfort & Convenience Systems" 7th Edition - 2016						
Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test							
Red	Recommended by Board of Studies 28-07-2022						
Арр	Approved by Academic Council No. 67 Date 08-08-2022						

Course Code	Course Title	L	Т	Ρ	С						
MAME616L	Automotive IoT	3	0	0	3						
Pre-requisite	NIL	Syll	abus	versi	on						
			1.	0							
Course Objectives											
	The course is aimed at making the students to										
	1. Acquire the required Automotive fundamentals for IoT System Design										
2. Get an exposure about the IoT applications in automotive systems.											
Develop design skills in automotive IoT Systems.											
Course Outcomes											
	course, the students will be able to										
	Ind the required fundamentals for Automotive I	oT an	d Cor	nnreh	end						
	ations of Networked Vehicles using IoT			npren	Crita						
	e IoT Safety Management in Automotive										
	e Efficiency management using IoT.										
4. Associate	the Automotive Cyber Security with IoT Syste										
	e need and importance of Smart Vehicles and			d Cars	;						
6. Design lo	F based solutions for real time automotive app	licatio	ns.								
BA			71								
	nents of Automotive IoT (AloT)			ours	nei						
	f Automotive Onboard Diagnostics, Automoti vigation and control, Electronic toll collection										
	bayment systems, Smart Transportation, Smar			u pair	ang						
	vorked Vehicles using IoT			ours							
	avoidance, Lane change algorithm, Optimal	traffic			sina						
Smart applicatio	ns in IoT, Green traffic management usin	g loT	. Intr	a veł	icle						
	icle to internet connectivity	0									
Module:3 IoT S	Safety Management in Automotive		6 h	ours							
Tire pressure N	lonitoring using IoT, Immobilizers and Veh	icle a	larm	syste	ms,						
Remote Diagnos	tics using IoT, Vehicle tracking, Integrated in	fotain	ment	syste	ms,						
	g systems using IoT		5 14								
	iency management using IoT			ours							
	icro hybrids, mild hybrids, Self-driving and AD, ces, Automated fuel injection mechanisms, Ac										
using IoT	es, Automateu luer injection mechanisms, Au	IVALICE	eu ioc	Jonior	ives						
	based Navigation		8 h	ours							
	on - Sharing, Forwarding, optimal paths,	Onlin			and						
	olving LTE to 5G, Research Challenges and										
	re network): Network slicing, C-RAN, NFV, S										
Use Cases: Cellu	Use Cases: Cellular Vehicle-2-Everything (C-V2X).										
Module:6 Automotive Cyber Security 8 hours											
	notive systems, CMAP - CAN bus mapper, S										
	landated legislation and Non mandated co										
	ehicle tracking and recovery, Attack vectors -	remot	e veh	licle th	ieft,						
exfiltration, Virtua	rt Vehicles and Connected Cars Training		Δh	ours							
	/2V Communication, single vehicle application	IS. CO			rs -						
	ks and turmoil. Policies and Standards	5, 00									

dule:8	Contemporary Issues				2 hours						
Text Book(s)											
1. O. Vermesan, Digitizing the Industry: Internet of things connecting Physical, Digital and Virtual Worlds, Jan 2016, River Publishers, The Netherlands											
 Tim Schule, Beate Müller, Gereon Meyer, Advanced Microsystems for Automotive Applications: Smart Systems for Green and Automated Driving, 2016, Springer Publishers, USA. 											
ference	Books										
Enviro	nments and Integrated										
	0	net of Thir	ngs with	IPv4 and	d IPv6, Oct 2015,						
 Erik Dahlman, Johan Skold, and Stefan Parkvall, 5G NR: The Next Generation Wireless Access Technology, 2018, Academic Press, Elsevier. Marko Wolf, Secure In-Vehicle Communications, 2012, Springer, USA. The Internet of Things and Connected Cars, Business White paper, 2015, HPE. 											
		sessment T	est, Dig	ital Assig	nment, Quiz and						
		07-06-202	23								
		No. 70	Date	24-06-2	023						
	t Book O. Ver Digital Tim S Autome 2016, S ference O. Ve Environ Nether Daniel John V Erik Da Wireles Marko The Int de of E al Asses commer	 O. Vermesan, Digitizing the Inde Digital and Virtual Worlds, Jan 20 Tim Schule, Beate Müller, Ge Automotive Applications: Smart 2016, Springer Publishers, USA. ference Books O. Vermesan Internet of Thin Environments and Integrated Netherlands. Daniel Minouli, Building the Inter John Wiley, USA Erik Dahlman, Johan Skold, and Wireless Access Technology, 201 Marko Wolf, Secure In-Vehicle Co The Internet of Things and Conne 	Total Kt Book(s) O. Vermesan, Digitizing the Industry: Interne Digital and Virtual Worlds, Jan 2016, River P Tim Schule, Beate Müller, Gereon Meyer Automotive Applications: Smart Systems for 2016, Springer Publishers, USA. ference Books O. Vermesan Internet of Things - Contenvironments and Integrated Ecosystem Netherlands. Daniel Minouli, Building the Internet of Thir John Wiley, USA Erik Dahlman, Johan Skold, and Stefan Parl Wireless Access Technology, 2018, Academ Marko Wolf, Secure In-Vehicle Communicati The Internet of Things and Connected Cars, I de of Evaluation: Continuous Assessment T al Assessment Test commended by Board of Studies 07-06-202	Total Lecture Kt Book(s) O. Vermesan, Digitizing the Industry: Internet of th Digital and Virtual Worlds, Jan 2016, River Publishers Tim Schule, Beate Müller, Gereon Meyer, Adva Automotive Applications: Smart Systems for Green 2016, Springer Publishers, USA. ference Books O. Vermesan Internet of Things - Converging Environments and Integrated Ecosystems, 2015 Netherlands. Daniel Minouli, Building the Internet of Things with John Wiley, USA Erik Dahlman, Johan Skold, and Stefan Parkvall, 5G Wireless Access Technology, 2018, Academic Press Marko Wolf, Secure In-Vehicle Communications, 201 The Internet of Things and Connected Cars, Business de of Evaluation: Continuous Assessment Test, Dig al Assessment Test commended by Board of Studies 07-06-2023	Total Lecture hours: tt Book(s) O. Vermesan, Digitizing the Industry: Internet of things com Digital and Virtual Worlds, Jan 2016, River Publishers, The Ne Tim Schule, Beate Müller, Gereon Meyer, Advanced M Automotive Applications: Smart Systems for Green and Aut 2016, Springer Publishers, USA. ference Books O. Vermesan Internet of Things - Converging Technol Environments and Integrated Ecosystems, 2015, River Netherlands. Daniel Minouli, Building the Internet of Things with IPv4 and John Wiley, USA Erik Dahlman, Johan Skold, and Stefan Parkvall, 5G NR: The Wireless Access Technology, 2018, Academic Press, Elsevier Marko Wolf, Secure In-Vehicle Communications, 2012, Spring The Internet of Things and Connected Cars, Business White part de of Evaluation: Continuous Assessment Test, Digital Assig al Assessment Test commended by Board of Studies 07-06-2023						

Course Code	Course Title	L	Т	Ρ	С							
MAME617L												
<u> </u>	Automotive Applications	<u> </u>			<u> </u>							
Pre-requisite	Syllabus version											
1.0												
Course Objectiv	ned at making the students to											
		vetom	ເລກດ	l Vir	tual							
1. Understand the concepts of Computer Graphics, VR systems and Virtual Environment.												
2. Understand the concepts of Augmented Reality.												
3. Apply Augmented and Virtual Reality for automotive applications.												
Course Outcom												
	course, the students will be able to											
	end the basics of computer graphics.											
2. Comprehe	end the geometric modelling and Geometric Tra	insforr	natior	าร								
	end VR systems, VR Hardware, Virtual	Envir	onme	nt	and							
Augmente	d Develop a Prototype											
	Product for automotive applications.											
	augmented and virtual reality to solve challe	naina	nroh	lem	s in							
	e industry.	nging	prop		,							
Module:1 Geo	metric Modelling and Geometric		6 ho	urs								
	sformations											
Geometric Mode	lling: Introduction, from 2D to 3D, 3D space cu	irves,	3D b	ounc	lary							
representation C	Geometrical Transformations: Introduction, Fra	ames	of rei	terer	ice,							
detection.	ormations, Instances, Picking, Flying, Scaling	, the	VE, C	~0III5	sion							
	al Reality and Computer Graphics		7 ho	urs								
	d Virtual Environment: Introduction, Computer	aranhi			ime							
	cs, Flight Simulation, Virtual environment requi											
	istorical development of VR, Scientific Landm											
	uction, The Virtual world space, positioning the v											
	ection, human vision, stereo perspective proje											
5	Simple 3D modelling, Illumination models,											
5	ms, Radiosity, Hidden Surface Removal, Real	ism -S	Stereo	ograp	blic							
image.	systems and Hardware		4 10 0									
	em: Introduction, Virtual environment, Compute	ar onv	<u>4 ho</u>									
	el of interaction, VR Systems. VR Hardware: I											
	coupled displays, Acoustic hardware, Integrate											
	al Environment		7 ho									
Animating the Vi	rtual Environment: Introduction, The dynamics	of nur	nbers	, Lin	ear							
and Non-linear	interpolation, the animation of objects, line	ear ar	nd no	n-lin	iear							
	e & object inbetweening, free from deformation											
	tion: Introduction, Objects falling in a gravitation											
wheels, Elastic collisions, projectiles, simple pendulum, springs, Flight dynamics of												
an aircraft.												

Modu	ule:5	Augmented Reality		6 hours					
Taxor	nomy,	technology and features of augmented realit	ty, differ	rence between AR					
and VR, Challenges with AR, AR systems and functionality, Augmented reality									
methods, visualization techniques for augmented reality, enhancing interactivity in									
AR er	nviron	ments, evaluating AR systems.		o					
Modu	ule:6	Design and Development of Prototype		6 hours					
Auton	notive	Design Process: Development of concept in	3D - De	esign the process -					
		collaborative environment creation, Virtual Prot							
		he process - Modifying concepts and overcom							
		nds on resources associated with physica							
		n of idea and Validation of a new vehicle's ent							
Modu	ule:7	Product Development, Manufacturing and		7 hours					
	nd Dr	Training	c and d	ocianing now onoc					
		oduct Development: Repairing existing models d remote assistance in real-time - AR-bas							
		s fit into existing vehicle designs, AR and VR							
		embly line: reconfiguration and optimization of							
		based retrofitting - Creation of immersive el							
		s and engineers, VR and Digital Training: E							
trainir	na del	livery methods - Simulation-based training -	l earnir	a outcomes while					
		sk and training costs.	Louin	ig outcomos mino					
		Contemporary Issues		2 hours					
ł									
 		Total Lecture I	hours:	45 hours					
	Book	(s)							
1. E	Ella Ha	(s) assanien, Deepak Gupta, Ashish Khanna, A	dam S	lowik, "Virtual and					
1. E A	Ella Ha Augme	(s) assanien, Deepak Gupta, Ashish Khanna, A ented Reality for Automobile Industry:	dam S Innovat	lowik, "Virtual and ion Vision and					
1. E A	Ella Ha Augme	(s) assanien, Deepak Gupta, Ashish Khanna, A ented Reality for Automobile Industry:	dam S Innovat	lowik, "Virtual and ion Vision and					
1. E A 2. J	Ella Ha Augme Applica Iohn V	(s) assanien, Deepak Gupta, Ashish Khanna, A ented Reality for Automobile Industry: ations", Springer International Publishing, 2022 ince, "Virtual Reality Systems ", Pearson Educ	dam S Innovat	lowik, "Virtual and ion Vision and					
1. E A 2. J Refer	Ella Ha Augme Applica Iohn V rence	(s) assanien, Deepak Gupta, Ashish Khanna, A ented Reality for Automobile Industry: ations", Springer International Publishing, 2022 ince, "Virtual Reality Systems ", Pearson Educ Books	dam S Innovat	lowik, "Virtual and ion Vision and sia, 2007.					
1. E A 2. J Refer 1. A	Ella Ha Augme Applica Iohn V rence Alan B	(s) assanien, Deepak Gupta, Ashish Khanna, A ented Reality for Automobile Industry: ations", Springer International Publishing, 2022 ince, "Virtual Reality Systems ", Pearson Educ Books Craig, "Understanding Augmented Reality, Co	dam S Innovat	lowik, "Virtual and ion Vision and sia, 2007.					
1. E A 2. J [.] Refer 1. A	Ella Ha Augme Applica John V rence Alan B Morgar	(s) assanien, Deepak Gupta, Ashish Khanna, A ented Reality for Automobile Industry: ations", Springer International Publishing, 2022 ince, "Virtual Reality Systems ", Pearson Educ Books . Craig, "Understanding Augmented Reality, Co n Kaufmann, 2013.	dam S Innovat cation A oncepts	lowik, "Virtual and ion Vision and sia, 2007. and Applications",					
1. E A 2. Jr Refer 1. A V 2. A	Ella Ha Augme Applica John V rence Alan B Alan B Adams	(s) assanien, Deepak Gupta, Ashish Khanna, A ented Reality for Automobile Industry: ations", Springer International Publishing, 2022 ince, "Virtual Reality Systems ", Pearson Educ Books . Craig, "Understanding Augmented Reality, Co n Kaufmann, 2013. ., "Visualizations of Virtual Reality", Tata McGr	adam S Innovat cation A oncepts	lowik, "Virtual and ion Vision and sia, 2007. and Applications", 2000.					
1. E A 2. J Refer 1. A 2. A 3. C	Ella Ha Augme Applica Iohn V rence Alan B Morgar Adams Grigore	(s) assanien, Deepak Gupta, Ashish Khanna, A ented Reality for Automobile Industry: ations", Springer International Publishing, 2022 ince, "Virtual Reality Systems ", Pearson Educ Books . Craig, "Understanding Augmented Reality, Co n Kaufmann, 2013. ., "Visualizations of Virtual Reality", Tata McGr e C. Burdea, Philippe Coiffet, "Virtual Reality	adam S Innovat cation A oncepts	lowik, "Virtual and ion Vision and sia, 2007. and Applications", 2000.					
1. E A 2. J Refer 1. A 2. A 3. G S	Ella Ha Augme Applica Iohn V Iohn V Iohn V Iohn V Alams Adams Grigore Scienc	(s) assanien, Deepak Gupta, Ashish Khanna, A ented Reality for Automobile Industry: ations", Springer International Publishing, 2022 ince, "Virtual Reality Systems ", Pearson Educ Books . Craig, "Understanding Augmented Reality, Co n Kaufmann, 2013. ., "Visualizations of Virtual Reality", Tata McGr e C. Burdea, Philippe Coiffet, "Virtual Reality e, 2nd Edition, 2016.	adam S Innovat cation A oncepts aw Hill, Techn	lowik, "Virtual and ion Vision and sia, 2007. and Applications", 2000. ology", Wiley Inter					
1. E A A 2. J ⁻ Refer 1. A V 2. A 3. C S 4. V	Ella Ha Augme Applica Iohn V rence Alan B Morgar Adams Grigore Scienc William	(s) assanien, Deepak Gupta, Ashish Khanna, A ented Reality for Automobile Industry: ations", Springer International Publishing, 2022 ince, "Virtual Reality Systems ", Pearson Educ Books . Craig, "Understanding Augmented Reality, Co n Kaufmann, 2013. ., "Visualizations of Virtual Reality", Tata McGr e C. Burdea, Philippe Coiffet, "Virtual Reality e, 2nd Edition, 2016. n R. Sherman, Alan B. Craig, "Understanding	adam S Innovat cation A oncepts aw Hill, Techn	lowik, "Virtual and ion Vision and sia, 2007. and Applications", 2000. ology", Wiley Inter					
1. E A A 2. J Refer 1. A V 2. A 3. C S 4. V A	Ella Ha Augme Applica Iohn V rence Alan B Morgar Adams Grigore Scienc Villiam Applica	(s) assanien, Deepak Gupta, Ashish Khanna, A ented Reality for Automobile Industry: ations", Springer International Publishing, 2022 ince, "Virtual Reality Systems ", Pearson Educ Books . Craig, "Understanding Augmented Reality, Co n Kaufmann, 2013. ., "Visualizations of Virtual Reality", Tata McGr e C. Burdea, Philippe Coiffet, "Virtual Reality e, 2nd Edition, 2016. n R. Sherman, Alan B. Craig, "Understanding ation and Design", Morgan Kaufmann, 2008.	adam S Innovat cation A oncepts aw Hill, Techn	lowik, "Virtual and ion Vision and sia, 2007. and Applications", 2000. ology", Wiley Inter Reality: Interface,					
1. E A A 2. J Refer 1. A V 2. A 3. C S 4. V A 5. A	Ella Ha Augme Applica Iohn V rence Alan B Morgar Adams Grigore Scienc Villiam Applica Auksta	(s) assanien, Deepak Gupta, Ashish Khanna, A ented Reality for Automobile Industry: ations", Springer International Publishing, 2022 ince, "Virtual Reality Systems ", Pearson Educ Books . Craig, "Understanding Augmented Reality, Co n Kaufmann, 2013. ., "Visualizations of Virtual Reality", Tata McGr e C. Burdea, Philippe Coiffet, "Virtual Reality e, 2nd Edition, 2016. n R. Sherman, Alan B. Craig, "Understanding ation and Design", Morgan Kaufmann, 2008. kalnis S. Practical augmented reality: "A g	adam S Innovat cation A oncepts aw Hill, Techn Virtual uide to	lowik, "Virtual and ion Vision and sia, 2007. and Applications", 2000. ology", Wiley Inter Reality: Interface, the technologies,					
1. E A A 2. J ⁰ Refer 1. A V 2. A 3. C S 4. V 5. A a	Ella Ha Augme Applica Iohn V Iohn V Iohn V Grigore Adams Grigore Colenc Villiam Applica Applica	(s) assanien, Deepak Gupta, Ashish Khanna, A ented Reality for Automobile Industry: ations", Springer International Publishing, 2022 ince, "Virtual Reality Systems ", Pearson Educ Books . Craig, "Understanding Augmented Reality, Co n Kaufmann, 2013. ., "Visualizations of Virtual Reality", Tata McGr e C. Burdea, Philippe Coiffet, "Virtual Reality e, 2nd Edition, 2016. n R. Sherman, Alan B. Craig, "Understanding ation and Design", Morgan Kaufmann, 2008.	adam S Innovat cation A oncepts aw Hill, Techn Virtual uide to	lowik, "Virtual and ion Vision and sia, 2007. and Applications", 2000. ology", Wiley Inter Reality: Interface, the technologies,					
1. E A A 2. J ¹ Refer N 1. A 2. A 3. C 3. C 4. W 5. A 2. A	Ella Ha Augme Applica Iohn V Iohn V I	(s) assanien, Deepak Gupta, Ashish Khanna, A ented Reality for Automobile Industry: ations", Springer International Publishing, 2022 ince, "Virtual Reality Systems ", Pearson Educ Books . Craig, "Understanding Augmented Reality, Co n Kaufmann, 2013. ., "Visualizations of Virtual Reality", Tata McGr e C. Burdea, Philippe Coiffet, "Virtual Reality e, 2nd Edition, 2016. n R. Sherman, Alan B. Craig, "Understanding ation and Design", Morgan Kaufmann, 2008. kalnis S. Practical augmented reality: "A guitions, and human factors for AR and VR". Add	adam S Innovat cation A oncepts aw Hill, Techno Virtual uide to lison-We	lowik, "Virtual and ion Vision and sia, 2007. and Applications", 2000. ology", Wiley Inter Reality: Interface, the technologies, esley Professional;					
1. E A A 2. J Refer 1. A V 2. A 3. C S 4. W A 5. A a 2 Mode	Ella Ha Augme Applica Iohn V rence Alan B Morgar Adams Grigore Scienc Villiam Applica Auksta Applica 2016. e of E	(s) assanien, Deepak Gupta, Ashish Khanna, A ented Reality for Automobile Industry: ations", Springer International Publishing, 2022 ince, "Virtual Reality Systems ", Pearson Educ Books . Craig, "Understanding Augmented Reality, Co n Kaufmann, 2013. ., "Visualizations of Virtual Reality", Tata McGr e C. Burdea, Philippe Coiffet, "Virtual Reality e, 2nd Edition, 2016. n R. Sherman, Alan B. Craig, "Understanding ation and Design", Morgan Kaufmann, 2008. kalnis S. Practical augmented reality: "A g ations, and human factors for AR and VR". Add valuation: Continuous Assessment Test, Digi	adam S Innovat cation A oncepts aw Hill, Techno Virtual uide to lison-We	lowik, "Virtual and ion Vision and sia, 2007. and Applications", 2000. ology", Wiley Inter Reality: Interface, the technologies, esley Professional;					
1. E A A 2. J Refer N 1. A 2. A 3. G 4. M 5. A 2. A 5. A A A 5. A A A A A A A A A A A A A A A A A A A A A A A A A A A A B B B </td <td>Ella Ha Augme Applica Iohn V Iohn V Iohn V Iohn B Alams Adams Grigore Scienc Villiam Applica Applica 2016. e of E Asses</td> <td>(s) assanien, Deepak Gupta, Ashish Khanna, A ented Reality for Automobile Industry: ations", Springer International Publishing, 2022 ince, "Virtual Reality Systems ", Pearson Educ Books . Craig, "Understanding Augmented Reality, Co n Kaufmann, 2013. ., "Visualizations of Virtual Reality", Tata McGr e C. Burdea, Philippe Coiffet, "Virtual Reality e, 2nd Edition, 2016. n R. Sherman, Alan B. Craig, "Understanding ation and Design", Morgan Kaufmann, 2008. kalnis S. Practical augmented reality: "A g titions, and human factors for AR and VR". Add valuation: Continuous Assessment Test, Digi assment Test</td> <td>adam S Innovat cation A oncepts aw Hill, Techno Virtual uide to lison-We</td> <td>lowik, "Virtual and ion Vision and sia, 2007. and Applications", 2000. ology", Wiley Inter Reality: Interface, the technologies, esley Professional;</td>	Ella Ha Augme Applica Iohn V Iohn V Iohn V Iohn B Alams Adams Grigore Scienc Villiam Applica Applica 2016. e of E Asses	(s) assanien, Deepak Gupta, Ashish Khanna, A ented Reality for Automobile Industry: ations", Springer International Publishing, 2022 ince, "Virtual Reality Systems ", Pearson Educ Books . Craig, "Understanding Augmented Reality, Co n Kaufmann, 2013. ., "Visualizations of Virtual Reality", Tata McGr e C. Burdea, Philippe Coiffet, "Virtual Reality e, 2nd Edition, 2016. n R. Sherman, Alan B. Craig, "Understanding ation and Design", Morgan Kaufmann, 2008. kalnis S. Practical augmented reality: "A g titions, and human factors for AR and VR". Add valuation: Continuous Assessment Test, Digi assment Test	adam S Innovat cation A oncepts aw Hill, Techno Virtual uide to lison-We	lowik, "Virtual and ion Vision and sia, 2007. and Applications", 2000. ology", Wiley Inter Reality: Interface, the technologies, esley Professional;					
1.EA2.JRefer1.A2.A3.C3.C4.M5.A5.AFinalRecon	Ella Ha Augme Applica Iohn V rence Alan B Aorgan Adams Grigore Scienc Villiam Applica Applica 2016. e of E Asses ommer	(s) assanien, Deepak Gupta, Ashish Khanna, A ented Reality for Automobile Industry: ations", Springer International Publishing, 2022 ince, "Virtual Reality Systems ", Pearson Educ Books . Craig, "Understanding Augmented Reality, Co n Kaufmann, 2013. ., "Visualizations of Virtual Reality", Tata McGr e C. Burdea, Philippe Coiffet, "Virtual Reality e, 2nd Edition, 2016. n R. Sherman, Alan B. Craig, "Understanding ation and Design", Morgan Kaufmann, 2008. kalnis S. Practical augmented reality: "A g ations, and human factors for AR and VR". Add valuation: Continuous Assessment Test, Digi	adam S Innovat cation A oncepts aw Hill, Techno Virtual uide to lison-We	lowik, "Virtual and ion Vision and sia, 2007. and Applications", 2000. ology", Wiley Inter Reality: Interface, the technologies, esley Professional; gnment, Quiz and					

Course Code	Course Title	L	Т	P	С				
MAME618L	Soft Computing Techniques	3	0	0	3				
Pre-requisite	NIL	Syl	labus	versi	on				
P				.0					
Course Objectiv	/es								
The course is aimed at making the students to									
1. Understanding about the fundamentals of machine learning, neural networks,									
optimization and Deep Learning									
2. Enabling the students to acquire knowledge about data selection and									
classification									
Apply soft	computing techniques to solve practical proble	ms.							
Course Outcom									
	course, the students will be able to								
	end the categorization of machine learning algo	rithm	s and	conce	epts				
	programming.								
	with artificial neural network terminologies.								
	nd advanced algorithms for artificial neural network								
	with the working mechanisms of evolutionary a		nms						
5. Apply gen	etic algorithms to solve soft computing problem	ns Notior		d im					
o. Understar	nd advanced algorithms for object dete tion and comprehend advanced neural ne		i ani ko fo	or nati	age				
			KS 10	n Hau	urai				
language	processing.								
				hours					
	ning Problems and Python programming cepts		5	nours	•				
	ches to learning problems (such as Supervised	. Ser	ni-sup	ervise	d.				
	d), Python: Data structures (Lists, Tuples, Diction								
	nditional statements, Functions, Objects and cla				0				
Module:2 Artif	icial Neural Network - I		4	hours	5				
Biological inspira	tion and historical context, Activation functions	and t	heir p	ropert	ies,				
Forward propaga	ation and the role of weights and biases, McC	ulloc	h-Pitts	s Neur	ron,				
Perceptron, Tra	ining a single-layer neural network, Limitati	ons	of si	ngle-la	iyer				
networks, Applic	ations of single-layer neural networks.								
				hours					
	lultilayer Perceptron (MLP), Backpropagation a								
	c Gradient Descent algorithm and weight optin	nizati	on teo	chniqu	es,				
	tuning in MLPs, Applications of MLP.								
	mization in Soft Computing-I			hours					
	otimization in soft computing, Basic Evolu								
	stems as Problem Solvers, Canonical Evolut								
	ogramming, Evolution Strategies, A Unified V								
	Applications of Optimization in Soft Computin	g: Fe	eature	Select	uon				
	ity reduction, Data clustering and classification mization in Soft Computing-II		7	hours					
	enetic algorithms, Biological Background, Tradi	tiona							
	niques, Genetic Algorithm and Search Space, O								
	ing Conditions for Genetic Algorithm Flow, Prot								
		JOIL	001011	9 0 31	'9				
Genetic Algorithr	n' Maximizing a Function								

Мо	dule:6	Deep Learning: Object Det	tection a	nd Segn	nentation	7 hours			
		l of Object Detection, R-CNN							
		Segmentation: FCN, SegN				nd Application:			
Object detection for Self driving cars using Python/ Simulink.									
		Deep Learning: Natural La				7 hours			
		guage Models, Part Of Spee							
		rent Neural Networks, Se			Informatio	on Extraction,			
		anslation, Application: Speed	ch Recog	nizer.					
Мо	dule:8	Contemporary Issues				2 hours			
			To	al Lectu	re hours:	45 hours			
	t Book								
1.		e Learning Algorithms a							
		mad Badruddin Khan, Eiha	b Bashie	r Moham	imed Bashi	er, CRC Press,			
	2017.								
2.		earning, Ian Goodfellow, Yo	shuaBer	igio and l	Aaron Cour	ville, MEI Press,			
2)780262035613, 2016.	المالية		Karaa Ara	d Tanaar Flaun			
3.		On Machine Learning Wi ots, Tools, And Techniques							
	O'Reilly	Media, Inc., ISBN: 978149	2032649	. 2019	i Systems, r	Aurelien Geron,			
4.		es of Soft Computing, S.			S.N. Deer	oa Wiley (3rd			
	edition	, ISBN: 9788126577132, 20	118	iunium,		ou, whey (ord			
Ref	ference								
1.	Mather	natics for Machine Learnin	g. Marc	Peter D	eisenroth, J	A. Aldo Faisal,			
	Cheng	Soon Ong. Cambridge Univ	versity Pr	ess. ISB	N: 9781108	3679930. 2020.			
2.		I Intelligence, Machine							
		sato. Mercury Learning & In							
3.		Language Processing wi			ip Rao, Br	rian McMahan,			
	,	/ Media, Inc. ISBN: 9781491							
		valuation: Continuous Asses	ssment 7	est, Dig	ital Assignr	nent, Quiz and			
		sment Test							
		5	07-06-20						
App	proved b	y Academic Council	No. 70	Date	24-06-202	3			

MEDS501L	Course Title		L	Т	Ρ	С				
WEDSSUIL	Embedded System Design		3	0	0	3				
Pre-requisite	NIL	Syl	labı	ls v	ersi	on				
		-		1.0						
Course Objective	es la									
The course aimed	lat									
 Ability to ι 	nderstand comprehensively the technologies and techn	iques	s un	derl	ying	in				
building a	n embedded solution to a wearable, mobile and portable	syst	em.							
2. Analyze UML diagrams and advanced Modelling schemes for different use cases.										
3. Understar	d the building process of embedded systems									
Course Outcome										
The students will										
	embedded system and compare with general purpose sy									
	the methods adapted for the development of a typical e	embe	dde	d sy	ster	۵.				
	uced to RTOS and related mechanisms.									
	pes of processors and memory architecture									
	te the features of components and networks in embedde									
	eal-time working prototypes of different small-scale and	nd m	edit	ım-	scale	Э				
	l Systems. d the various concepts in Multi-Tasking									
7. Apprenen	a the various concepts in Multi-Tasking									
Module:1 Intro	duction to Embedded System			,	i ho	irs				
	n processor, hardware unit, software embedded into a s	weta	m F							
	tem, Embedded Design life cycle, Layers of Embedded				npie	01				
	edded System Design Methodologies	Oyst	eme		i ho	urs				
	m modelling [FSM, SysML, MARTE], UML as Design to		MI r							
	lysis and Use case Modelling, Design Examples	01, 01		1010	lion	,				
	ing Process For Embedded Systems			4	ho	urs				
	ompiling, Cross Compiling, Linking, Locating, Compiler	Drive	r I		-					
Files, Linker Scripts and scatter loading, Loading on the target, Embedded File System.										
	em design using general purpose	d File		ster		•				
	em design using general purpose essor	d File		ster	n.					
Module:4 System proce	essor		e Sy	ster 7	n. ' ho	urs				
Module:4 System proce		tegic	sel	ster 7 ectio	n. 'ho on c	urs of				
Module:4 Syste processor processor and m Various mapping	essor rchitectures (RISC, CISC), Embedded Memory, Strat emory, Memory Devices and their Characteristics, C techniques, DMA.	tegic	sel	ster 7 ectio	n. 'ho on c	urs of				
Module:4SystemMicrocontroller aprocessor and mVarious mappingModule:5Com	essor rchitectures (RISC, CISC), Embedded Memory, Strat emory, Memory Devices and their Characteristics, C techniques, DMA. conent Interfacing & Networks	tegic ache	sel Me	ster 7 ectio emo	n. ' ho on c ry a) ho	urs of nd urs				
Module:4SystemMicrocontroller aprocessor and mVarious mappingModule:5ComMemory Interfaci	essor rchitectures (RISC, CISC), Embedded Memory, Strat emory, Memory Devices and their Characteristics, C techniques, DMA. bonent Interfacing & Networks ng, I/O Device Interfacing, Interrupt Controllers, Network	tegic ache orks f	sel Sel	ster cctic ectic emo	n. ' ho on c ry a) ho edd	urs of nd urs ed				
Module:4SystemMicrocontroller aprocessor and mVarious mappingModule:5ComMemory Interfacionalsystems- USB, P	rchitectures (RISC, CISC), Embedded Memory, Strat emory, Memory Devices and their Characteristics, C techniques, DMA. Donent Interfacing & Networks ng, I/O Device Interfacing, Interrupt Controllers, Network CI,PCI Express, UART, SPI, I2C, CAN, Wireless Applic	tegic ache orks f	sel Sel	ster cctic ectic emo	n. ' ho on c ry a) ho edd	urs of nd urs ed				
Module:4SystemMicrocontroller aprocessor and mVarious mappingModule:5ComMemory Interfacionalsystems- USB, PZigbee,Wi-Fi.,6Lc	essor rchitectures (RISC, CISC), Embedded Memory, Strat emory, Memory Devices and their Characteristics, C techniques, DMA. Donent Interfacing & Networks ng, I/O Device Interfacing, Interrupt Controllers, Network CI,PCI Express, UART, SPI, I2C, CAN, Wireless Applic WPAN , Evolution of Internet of things (IoT).	tegic ache orks f	sel Sel	ster cectio ectio emo g Emb Blue	n. ' ho ry a) ho edd etoo	of nd urs ed th,				
Module:4SystemMicrocontroller aprocessor and mVarious mappingModule:5ComMemory Interfacisystems- USB, PZigbee,Wi-Fi.,6LcModule:6Oper	rechitectures (RISC, CISC), Embedded Memory, Strat emory, Memory Devices and their Characteristics, C techniques, DMA. Donent Interfacing & Networks ng, I/O Device Interfacing, Interrupt Controllers, Network CI,PCI Express, UART, SPI, I2C, CAN, Wireless Applic WPAN , Evolution of Internet of things (IoT). ating Systems	tegic ache orks f	sel Me for E	ster ctic mo Smb Emb	n. 7 ho on c ry a 9 ho edd etoo 7 ho	urs of nd urs ed th, urs				
Module:4SystemMicrocontroller aprocessor and mvarious mappingModule:5ComMemory Interfacionalsystems- USB, PZigbee,Wi-Fi.,6LcModule:6OperIntroduction to C	rchitectures (RISC, CISC), Embedded Memory, Strat emory, Memory Devices and their Characteristics, C techniques, DMA. Donent Interfacing & Networks ng, I/O Device Interfacing, Interrupt Controllers, Network CI,PCI Express, UART, SPI, I2C, CAN, Wireless Applic WPAN , Evolution of Internet of things (IoT). ating Systems perating Systems, Basic Features & Functions of an	tegic ache orks f catior Opei	sel Me for E ns -	ster ectio mo g S	n. ' ho on c ry a) ho edd etoo ' ho yste	urs of nd urs ed th, urs m,				
Module:4SystemMicrocontroller aprocessor and mvarious mappingModule:5ComMemory Interfacionalsystems- USB, PZigbee,Wi-Fi.,6LcModule:6OpenIntroduction to CKernel & its Feat	rchitectures (RISC, CISC), Embedded Memory, Strat emory, Memory Devices and their Characteristics, C techniques, DMA. Donent Interfacing & Networks ng, I/O Device Interfacing, Interrupt Controllers, Network CI,PCI Express, UART, SPI, I2C, CAN, Wireless Applic WPAN , Evolution of Internet of things (IoT). ating Systems perating Systems, Basic Features & Functions of an tures [polled loop system, interrupt driven system, r	tegic ache orks f catior Oper nulti	sel Me for E ns -	ster ection emo Semo Blu G S e sy	n. ' ho ry a) ho edd etoo ' ho yste vster	urs of nd urs ed th, urs :m, n],				
Module:4System processorMicrocontroller a processor and m Various mappingModule:5ComMemory Interfaci systems- USB, P Zigbee,Wi-Fi.,6LcModule:6OperIntroduction to C Kernel & its Fea Processes/Task a	essor Image: Construct of the state o	tegic ache orks f catior Oper nulti	sel Me for E ns -	ster cectic emo smo Smb Blu g S g S g S g S g S g S	n. ' ho pn c ry a) ho edd edd etoo ' ho yster vster atch	urs of nd urs ed th, urs m, n], er.				
Module:4System processorMicrocontroller a processor and m Various mappingModule:5ComMemory Interfaci systems- USB, P Zigbee,Wi-Fi.,6LcModule:6Oper Introduction to C Kernel & its Fea Processes/Task a Module:7	essor rchitectures (RISC, CISC), Embedded Memory, Strate emory, Memory Devices and their Characteristics, C techniques, DMA. ponent Interfacing & Networks ng, I/O Device Interfacing, Interrupt Controllers, Network CI,PCI Express, UART, SPI, I2C, CAN, Wireless Applic WPAN , Evolution of Internet of things (IoT). ating Systems perating Systems, Basic Features & Functions of an tures [polled loop system, interrupt driven system, r nd its states, Process/Task Control Block, Threads, Sch Tasking	tegic ache orks f catior Oper nulti edule	sela Me for E ns - ratin rate er, D	ster 7 ectio emo § Emb Blu g S g S g S g S g S g S g S g S g S g S	n. ' ho Dn c ry a) ho edd edd edd edd vster vster vster atch) ho	urs of nd urs ed th, urs er, n], er. urs				
Module:4System processorMicrocontroller a processor and m Various mappingModule:5ComMemory Interfaci systems- USB, P Zigbee,Wi-Fi.,6LcModule:6OperIntroduction to C Kernel & its Fea Processes/Task aModule:7Multi Context Switchi	essor rchitectures (RISC, CISC), Embedded Memory, Strate emory, Memory Devices and their Characteristics, C techniques, DMA. conent Interfacing & Networks ng, I/O Device Interfacing, Interrupt Controllers, Network CI,PCI Express, UART, SPI, I2C, CAN, Wireless Applic WPAN , Evolution of Internet of things (IoT). ating Systems perating Systems, Basic Features & Functions of an tures [polled loop system, interrupt driven system, r nd its states, Process/Task Control Block, Threads, Sch Tasking ng , Scheduling and various Scheduling algorith	tegic ache orks f catior Oper nulti edule	e Sy sel Me for E for E ratin rate er, D	ster 7 eectik emo § Emb Blu g S g S g S g S g S g S g S g S g S g S	n. ' ho pn c ry a) ho edd edd edd edd edd vyste vster atch i ho proce	urs of nd urs ed th, urs er, n], er. urs ess				
Module:4System processorMicrocontroller a processor and m Various mappingModule:5ComMemory Interfacion systems- USB, P Zigbee,Wi-Fi.,6LccModule:6Oper OperIntroduction to C Kernel & its Feat Processes/Task aModule:7Multi Context Switchi Communication (essor rchitectures (RISC, CISC), Embedded Memory, Strate emory, Memory Devices and their Characteristics, C techniques, DMA. conent Interfacing & Networks ng, I/O Device Interfacing, Interrupt Controllers, Network CI,PCI Express, UART, SPI, I2C, CAN, Wireless Applic WPAN , Evolution of Internet of things (IoT). ating Systems perating Systems, Basic Features & Functions of an tures [polled loop system, interrupt driven system, r nd its states, Process/Task Control Block, Threads, Sch Tasking ng , Scheduling and various Scheduling algorith Shared Memory, Mail Box, Message Queue), Inter Tag	tegic ache orks f catior Oper nulti edule	sele Me for E ratin rate er, D	ster 7 eectikemo Semo Blu g S g S g S g S g S g S g S g S g S g S	n. ' ho pn c ry a) ho edd edd edd etoo yste ster atch j ho proce izati	of nd urs ed th, m], er. urs ess on				
Module:4System processorMicrocontroller a processor and m Various mappingModule:5ComMemory Interfaci systems- USB, P Zigbee,Wi-Fi.,6LcModule:6OperIntroduction to C Kernel & its Fea Processes/Task aModule:7Multi Context Switchi Communication ((Semaphore, Multi	essor rchitectures (RISC, CISC), Embedded Memory, Strate emory, Memory Devices and their Characteristics, C techniques, DMA. conent Interfacing & Networks ng, I/O Device Interfacing, Interrupt Controllers, Network CI,PCI Express, UART, SPI, I2C, CAN, Wireless Applic WPAN , Evolution of Internet of things (IoT). ating Systems perating Systems, Basic Features & Functions of an tures [polled loop system, interrupt driven system, r nd its states, Process/Task Control Block, Threads, Sch Tasking ng , Scheduling and various Scheduling algorith Shared Memory, Mail Box, Message Queue), Inter Ta- tex), Dead Lock, Priority Inversion (bounded and unb	tegic ache orks f catior Oper nulti edule	sele Me for E ratin rate er, D	ster 7 eectikemo Semo Blu g S g S g S g S g S g S g S g S g S g S	n. ' ho pn c ry a) ho edd edd edd etoo yste ster atch j ho proce izati	of nd urs ed th, m], er. urs ess on				
Module:4System processorMicrocontroller a processor and m Various mappingModule:5ComMemory Interfaci systems- USB, P Zigbee,Wi-Fi.,6LcModule:6Oper Introduction to C Kernel & its Fea Processes/Task a Module:7Module:7Multi Context Switchi Communication ((Semaphore, Mu Ceiling Protocol 8	essor rchitectures (RISC, CISC), Embedded Memory, Strate emory, Memory Devices and their Characteristics, C techniques, DMA. ponent Interfacing & Networks ng, I/O Device Interfacing, Interrupt Controllers, Network CI,PCI Express, UART, SPI, I2C, CAN, Wireless Applied WPAN, Evolution of Internet of things (IoT). ating Systems perating Systems, Basic Features & Functions of an tures [polled loop system, interrupt driven system, r nd its states, Process/Task Control Block, Threads, Sch Tasking ng , Scheduling and various Scheduling algorith Shared Memory, Mail Box, Message Queue), Inter Tar ex), Dead Lock, Priority Inversion (bounded and unb Priority Inheritance Protocol	tegic ache orks f catior Oper nulti edule	sele Me for E ratin rate er, D	ster cectic ectic emo Section g S g S jispa cectic ection g S g S cectic ection	n. ' ho on c ry a) ho edd edd edd etoo ' ho yster ster ster izati iority	urs of nd urs ed th, er. urs ess on /				
Module:4System processorMicrocontroller a processor and m Various mappingModule:5ComMemory Interfaci systems- USB, P Zigbee,Wi-Fi.,6LcModule:6Oper Introduction to C Kernel & its Fea Processes/Task a Module:7Module:7Multi Context Switchi Communication ((Semaphore, Mu Ceiling Protocol 8	essor rchitectures (RISC, CISC), Embedded Memory, Strate emory, Memory Devices and their Characteristics, C techniques, DMA. conent Interfacing & Networks ng, I/O Device Interfacing, Interrupt Controllers, Network CI,PCI Express, UART, SPI, I2C, CAN, Wireless Applic WPAN , Evolution of Internet of things (IoT). ating Systems perating Systems, Basic Features & Functions of an tures [polled loop system, interrupt driven system, r nd its states, Process/Task Control Block, Threads, Sch Tasking ng , Scheduling and various Scheduling algorith Shared Memory, Mail Box, Message Queue), Inter Ta- tex), Dead Lock, Priority Inversion (bounded and unb	tegic ache orks f catior Oper nulti edule	sele Me for E ratin rate er, D	ster cectic ectic emo Section g S g S jispa cectic ection g S g S cectic ection	n. ' ho pn c ry a) ho edd edd edd etoo yste ster atch j ho proce izati	urs of nd urs ed th, er. urs ess on /				
Module:4System processorMicrocontroller a processor and m Various mappingModule:5ComMemory Interfaci systems- USB, P Zigbee,Wi-Fi.,6LcModule:6Oper Introduction to C Kernel & its Fea Processes/Task a Module:7Module:7Multi Context Switchi Communication ((Semaphore, Mu Ceiling Protocol 8	essor rchitectures (RISC, CISC), Embedded Memory, Strate emory, Memory Devices and their Characteristics, C techniques, DMA. Donent Interfacing & Networks ng, I/O Device Interfacing, Interrupt Controllers, Network CI,PCI Express, UART, SPI, I2C, CAN, Wireless Applic WPAN , Evolution of Internet of things (IoT). ating Systems perating Systems, Basic Features & Functions of an tures [polled loop system, interrupt driven system, r nd its states, Process/Task Control Block, Threads, Sch Tasking ng , Scheduling and various Scheduling algorith Shared Memory, Mail Box, Message Queue), Inter Tate ex), Dead Lock, Priority Inversion (bounded and unb Priority Inheritance Protocol emporary Issues	tegic ache orks f catior Oper nulti edule	sele Me for E ratin rate er, D	ster cectic ectic emo Server ispace ispa	n. ' ho Dn c ry a) ho edd etoo ' ho yster atch b ho oroce izati iority ? ho	if nd urs ed th, urs ern, n], er. urs ess on /				
Module:4System processorMicrocontroller a processor and m Various mappingModule:5ComMemory Interfaci systems- USB, P Zigbee,Wi-Fi.,6LcModule:6Oper Introduction to C Kernel & its Fea Processes/Task a Module:7Module:7Multi Context Switchi Communication ((Semaphore, Mu Ceiling Protocol &	essor rchitectures (RISC, CISC), Embedded Memory, Strate emory, Memory Devices and their Characteristics, C techniques, DMA. ponent Interfacing & Networks ng, I/O Device Interfacing, Interrupt Controllers, Network CI,PCI Express, UART, SPI, I2C, CAN, Wireless Applied WPAN, Evolution of Internet of things (IoT). ating Systems perating Systems, Basic Features & Functions of an tures [polled loop system, interrupt driven system, r nd its states, Process/Task Control Block, Threads, Sch Tasking ng , Scheduling and various Scheduling algorith Shared Memory, Mail Box, Message Queue), Inter Tar ex), Dead Lock, Priority Inversion (bounded and unb Priority Inheritance Protocol	tegic ache orks f catior Oper nulti edule	sele Me for E ratin rate er, D	ster cectic ectic emo Server ispace ispa	n. ' ho on c ry a) ho edd edd edd etoo ' ho yster ster ster izati iority	if nd urs ed th, urs ern, n], er. urs ess on /				

Tex	Text Book(s)								
1.		Raj Kamal, "Embedded systems Architecture, Programming and Design", Tata							
	McGraw- Hill, 2016.								
2.									
	Design", The Morgan Kaufmann Serie	es in Compu	ter Archite	ecture and Design, 2013.					
Re	eference Books								
1.	Lyla B. Das," Embedded Systems an I	Integrated A	pproach"	, Pearson Education, 2013.					
2.	Shibu K V," Introduction to Embedded	d Systems",	McGraw H	Hill Education(India) Private					
	Limited, 2014								
3.	Sriram V Iyer, Pankaj Gupta " En	nbedded R	eal Time	Systems Programming",					
	Tata McGraw- Hill, 2012								
4.	Steve Heath, "Embedded Systems De	esign", EDN	Series, 20	013.					
Мо	ode of Evaluation: Continuous Assessme	ent, Digital /	Assignme	nt, Quiz and Final					
	ssessment Test	ý Q	Ŭ						
Re	Recommended by Board of Studies 28-07-2022								
Ap	Approved by Academic Council No. 67 Date 08-08-2022								
· · · ·	· ·								

Course Code	Course Title	L	Т	Р	С					
MEDS601L	Electromagnetic Interference and 3 0 0									
	Čompatibility									
Pre-requisite NIL Syllabus version										
-	1.0									
Course Objectives										
The course is aimed at:										
1. Imparting knowledge about EMI environment										
Teaching EMI coupling principles, EMI control techniques and design of PCBs for EMC										
	posure to EMI Standards, Regulations and Mea	asurei	nents							
U. Chung ch	positio to Enit otaliadas, rtogalationo ana mot	150101	nonto							
Course Outcon	nes									
At the end of the	e course, the student will be able to									
	nd terminologies of EMI and EMC									
	and understand various EMI coupling mechanis	sms								
	us EMI Test and Measurement methods									
	various techniques needed to suppress EMI									
	different EMC regulations followed worldwide	6								
ο. Ability to 7 Analyze	design an Electromagnetic Compatible system and comprehend different techniques needed	5. H for '	Siana	l Intor	nritv					
	y to understand various models for EMI/EMC		Signa	i inteț	jiity					
Module:1 EM	I Environment		4 h	ours						
EMI-EMC Defir	nitions and units of Parameters, Sources of E	EMI, c	condu	icted a	and					
radiated EMI, T										
	I Coupling Mechanisms			ours						
	diated and Transient Coupling, Common									
	ated Common Mode and Ground Loop									
Power Supply C	e Coupling, Near Field Cable to Cable Couplin	ig, Po	weriv	lains	and					
	I Test and Measurements		0 h	ours						
	on / Standards / Limits: Units of specifications	S Civ			ards					
	ds. EMI Test Instruments / Systems, EMI									
Chamber, Op	5									
	s/Couplers. EMI Measurement Methods: Milita									
	libration Procedures, Modeling interferences	Ū								
	I Control Techniques			ours						
	ering, Grounding, Bonding, Isolation Tran									
	Cable Routing, Signal Control, Compone	ent S	Select	tion a	and					
	trostatic discharge protection schemes MC Standards and Regulations		5 h							
	tentional standardizing organizations- FCC, (ours	חר					
	FCC CE and RE standards, CISPR, CE and RE	Stan	darde	IFC/	FN					
	SAE Automotive EMC standard, Frequency as									
conversation.				1-200	•					
	stem Design for EMC		8 h ¢	ours						
	ross Talk, Impedance Control, Power Distr rboard Designs and Propagation Delay Pe									
			0000	N / I	ole					

System Enclosures, Power line filter placement, Interconnection and Number of Printed Circuit Boards, PCB and subsystem decoupling									
Мо	dule:7	Signal Integrity and EMI	EMC Mo	dels	Ŭ	5 hours			
Effe	Effect of terminations on line wave forms, Matching schemes for Signal Integrity,								
Effe	Effects of line discontinuities, Statistical EMI/EMC models.								
Мо	dule:8	Contemporary Issues				2 hours			
Gu	est Lectu	ires from Industry and, Res	earch and	d Develo	oment C	organizations			
			Total L	_ecture h	nours:	30 hours			
Тех	kt Book((s)							
1.	Clayton edition.	R. Paul,Introductiont , Wiley & Sons, New Jers		nagnetic	compat	ibility,2010, 2			
Re	ference	Books							
1.	HenryW	l.ott, Electromagnetic Co	mpatibility	y Engine	ering,	2011, 1sted. John			
	Wiley a	nd Sons, NewJersey.			0				
2.	Patrick	G. André and Kenneth	Wyatt, E	MI Trou	bleshoo	ting Cookbook for			
		Designers 2014, 1st ed.,							
Mo	de of Ev	aluation: Continuous Asse	ssment, C	Digital As	signmer	nt, Quiz and Final			
	sessmen								
Red	commen	ded by Board of Studies	07-06-20)23					
App	Approved by Academic Council No. 70 Date 24-06-2023								

Course Code	Course Title	1	Т	Р	С				
MEDS616L	Machine Leaning and Deep Learning	3	0	0	3				
Pre-requisite	NIL	Sylla	bus v	/ersi	on				
-			1.0						
Course Objectives									
The course is ai									
	nding about the fundamentals of machine le	arning	g and	neı	iral				
networks									
	the students to acquire knowledge about pattern				1:6 -				
 Motivating problems 	the students to apply deep learning algorithms	TOF SC	living	real	me				
problems									
Course Outcom	les								
	course the student will be able to								
	end the categorization of machine learning algor	ithms							
2. Understar	nd the types of neural network architectures, act	ivatio		tions	5				
	with the pattern association using neural networ								
	arious terminologies related with pattern recogn								
	erent feature selection and classification technic								
	nd the architectures of convolutional neur end advanced neural network architectures				INA IN,				
	ders, and GANs.	suc	ii as		NIN,				
Autoenco									
Module:1 Lear	ning Problems and Algorithms		4 h o	urs					
	gms of learning problems, Supervised, Ser	ni-sup	ervis	ed a	nd				
Unsupervised al	gorithms								
Module:2 Neu			8 h a						
	een Biological and Artificial Neural Networks - Ty								
	on Functions, Multi-layer neural network, Linear S	Separa	ability	, Heb	b				
Module:3 Neu	Adaline, Standard Back propagation		8 h o						
	nms for Pattern Association - Hebb rule and	Dolta			oro				
	associative, Kohonen Self Organising Maps, Ex								
	Vector Quantization, Gradient descent, Bo	•							
Learning									
	hine Learning: Terminologies		7 h a						
	ples: The confusion matrix, Accuracy, Precision,								
	ensionality, training, testing, validation, cross val			erfittir	ng,				
Ĭ	data, early stopping, regularization, bias and var	iance							
Clas	hine Learning: Feature Selection and		7 h a						
	n, normalization, dimensionality reduction, Clas								
	Naïve Bayes, Binary classification, multi c	ass	classi	ricati	on,				
clustering.	volutional Neural Networks		5 ho	urc					
	etworks, Activation functions, backpropagation in				rc				
batch normalization, convolution layers, pooling layers, fully connected layers, dropout, Examples of CNNs.									

Мо	dule:7	RNNs, Auto encoders an	d GANs			4 hours		
Sta	ite, Stru	cture of RNN Cell, LSTM an	d GRU, T	ime distr	ributed lay	ers, Generating		
		encoders: Convolutional A			0			
Variational auto encoders, GANs: The discriminator, generator, DCGANs								
Мо	dule:8	Contemporary Issues				2 hours		
Gue	est Lect	ures from Industry and, Rese	earch and	Develop	ment Orga	anizations		
			Tota	Lecture	e hours:	45 hours		
Тех	<mark>(t Book</mark>	(s)						
1.	J. S. R	. Jang, C. T. Sun, E. Mizu	tani, Neu	ro Fuzz	y and Sc	oft Computing -		
	A Com	putational Approach to L	earning a	and Mad	chine Inte	elligence, 2012,		
	PHI le	arning	_			_		
2.		_earning, Ian Good fellow,		Bengio a	and Aaror	n Courville, MIT		
	Press,	ISBN: 9780262035613, 20	16.					
Ref	ference	Books						
1.		lements of Statistical Lear		vor Has	tie, Robei	rt Tibshirani and		
	Jerom	e Friedman. Second Edition	. 2009.					
2.	Unders	standing Machine Learning	. ShaiSha	lev-Shw	artz and	Shai Ben-David.		
	Cambr	idge University Press. 2017						
Мо	de of Ev	aluation: Continuous Asses	sment, Di	igital Ass	signment,	Quiz and Final		
Ass	sessmer	nt Test		0	Ũ			
Red	commer	ided by Board of Studies	07-06-20)23				
App	proved b	y Academic Council	No. 70	Date	24-06-20)23		