

SCHOOL OF ELECTRONICS ENGINEERING

M. Tech VLSI Design

(M.Tech MVD)

Curriculum

(2023-24 Admitted Students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OFTECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF ELECTRONICSENGINEERING

To be a leader by imparting in-depth knowledge in Electronics Engineering, nurturing engineers, technologists and researchers of highest competence, who would engage in sustainable development to cater the global needs of industry and society.

MISSION STATEMENT OF THE SCHOOL OF ELECTRONICSENGINEERING

- Create and maintain an environment to excel in teaching, learning and applied research in the fields of electronics, communication engineering and allied disciplines which pioneer for sustainable growth.
- Equip our students with necessary knowledge and skills which enable them to be lifelong learners to solve practical problems and to improve the quality of human life.

M. Tech. VLSI Design

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.

2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.

3. Graduates will function in their profession with social awareness and responsibility.

4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.

5. Graduates will be successful in pursuing higher studies in engineering or management.

6. Graduates will pursue career paths in teaching or research.

M. Tech. VLSI Design

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment

PO_03: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information

PO_04: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice

PO_05: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems

PO_06: Having adaptive thinking and adaptability in relation to environmental context and sustainable development

PO_07: Having a clear understanding of professional and ethical

responsibility

PO_08: Having a good cognitive load management skills related to project management and finance

M. Tech. VLSI Design PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (VLSI Design) programme, graduates will be able to

PSO1: Apply advanced concepts in Physics of semiconductor devices to design VLSI Systems.

PSO2: Design ASIC and FPGA based systems using industry standard tools.

PSO3: Solve research gaps and provide solutions to socio-economic, and environmental problems.

12

03

26

02

02

10

12

Master of Technology in VLSI Design School of Electronics Engineering

MVLD699J

Internship II/ Dissertation II

Programme	e Credit Structure	Credits	Discipline E	lective Courses				12
Discipline (Skill Enhan	Core Courses cement Courses	24 05	MVLD601L	Computer Aided Design for VLSI	3	0	0	3
Discipline I	Elective Courses	12	MVLD602L	Low Power IC Design	3	0	0	3
Open Elect	ive Courses	03	MVLD603L	VLSI Verification Methodologies	3	0	0	3
Project/ Inte	ernship	26	MVLD606L	Mixed Signal IC Design	3	0	0	3
Total Grade	d Credit Requirement	70	MVLD607L	RFIC Design	3	0	0	3
	-		MVLD608L	VLSI Digital Signal Processing	3	0	0	3
Discipline (Core Courses	24	MVLD610L	Nanoscale Devices and Circuit Design	3	0	0	3
			MVLD611L	Advanced Computer Architectur	3	0	0	3
		LTPC	MVLD613L	System Design with FPGA	3	0	0	3
MVLD501L	Physics of VLSI Devices	3003	MVLD616L	Scripting Languages for	3	0	0	3
MVLD502L	Digital IC Design	3003		Electronic Design Automation				
MVLD503L	Digital Design with FPGA	2002	MVLD617L	Neuromorphic Engineering and Hardware Accelerators	3	0	0	3
MVLD503P	Digital Design with FPGA Lab	0 0 2 1	MEDS601L	Electromagnetic Interference and Compatibility	3	0	0	3
MVLD504L	Analog IC Design	3003	MEDS616L	Machine Leaning and Deep	3	0	0	3
MVLD504P	Analog IC Design Lab	0 0 2 1		Learning				
MVLD505L	ASIC Design	3003	MEDS501L	Embedded System Design	3	0	0	3
MVLD505P	ASIC Design lab	0 0 2 1		,				
MVLD506L	VLSI Testing and Testability	3003						
MVLD506P	VLSI Testing and Testability	0 0 2 1	Open Electiv	/e Courses			(03
MVLD507L	IC Technology	3003	-					
			Engineering	Disciplines Social Sciences				
Skill Enhand	cement Courses	05						
MENG501P	Technical Report Writing	0 0 4 2	Project and	Internship			2	26
MSTS501P	Qualitative Skills Practice	0 0 3 1.5		Other the Order and a di Dara i a at				~~
MSTS502P	Quantitative Skills Practice	0 0 3 1.5		Study Uriented Project				02
				Design Project				02
			IVIVLD698J	Internship I/ Dissertation I				10

Course Co	de	Course Title	L	Т	Ρ	С
MVLD501L		Physics of VLSI Devices	3	0	0	3
Pre-requis	ite	NIL	Syll	abus	vers	ion
Course Ob	ie eti:			1.	0	
	Jectiv	/es: 	aduct	are wi	th co	rrior
	ontra	tion Modeling and physics of various carrier c	urron	JIS WI t tran	ui ca snort	and
tunn	elina	mechanisms	unch	t tran	sport	anu
2. Intro	duce	detailed physics and modeling of PN Junctio	n, M	DS ca	apacit	tors,
and	MOSI	FETs	·		•	
3. Revi	ew ar	nd discuss in detail the short channel effects an	d the	issue	s of d	leep
sub-	micro	n (DSM) and ultra-deep sub-micron technology	uDS	SM) tr	ansis	tors
4. Phys	sics of	f multi-gate transistors.				
Course Ou	itcom	es:				
At the end	of the	course the student will be able to				
1. Desi	gn e	extrinsic semiconductors with specific carr	ier (conce	ntrati	ons,
	erstan	a the band Structure and diagrams of semicon	aucto	ors.	ctore	
2. Calc 3 Desi	an of	PN- junctions for given specifications	Senno	Jonuu		
4 Unde	erstar	id the Physics of MOS canacitors MOSEETs a	and co	omnad	ct mo	dels
of M	OSFE	Ts		, nipa		
5. Unde	erstar	d the short channel effects in DSM and UDSM	1 tech	nolog	У	
6. Unde	erstar	d the concept of multi-gate transistors and o	desigi	า of โ	ĎSМ	and
UDS	M tra	nsistors to mitigate the short channel effects	Ŭ			
Module:1	Sem	iconductor Physics			5 ho	urs
Energy ban	ids in	solids - Intrinsic and Extrinsic semiconductors	- Dire	ect an	d Indi	irect
bandgap -	Densit	y of states - Fermi distribution -Free carrier de	ensitie	es - B	oltzm	ann
statistics -	I herm	al equilibrium- Generation and Recombination	of ca	rriers	4 1	
Wodule:2		ter Transport in Semiconductors	labilit	v of	4 nc	ours
Current der	w me nsitv <i>e</i>	chamisms. Drift current, Dinusion current - Non-	nopin	y or	Came	:15 -
Module:3	P-N	Junctions			5 hc	ours
Thermal eq	guilibr	ium physics - Energy band diagrams - Spa	ice c	narde	lave	ers -
Poisson eq	uatior	n - Electric fields and Potentials - p-n junction	under	appl	ied bi	ias -
Static curre	ent-vo	Itage characteristics of p-n junctions - Breal	kdowi	n me	chani	sms
(Zener Bre	akdov	wn-Tunneling mechanism and Avalanche Bre	eakdo	wn-h	ot ca	rrier
effect)						
Module:4	MOS	Capacitor			8 hc	ours
Accumulati	on - L	Depletion - Strong inversion - Threshold voltage	e - Co	ontact	pote	ntial
- Gate work	runct	ion - Oxide and interface charges - Body effect	- U-V	cnara	icteris	SUCS
Module:5	MOS	FFTs and Compact Models			8 hc	ours
Drain curre	nt - 9	aturation voltage - Sub-threshold conduction	- Fffe	ect of	date	and
drain volta	qe o	n carrier mobility - Compact models for N	NOSF	ET a	and t	their
implementa	ation i	n SPICE: Level 1, 2 and 3 - MOS model param	neters	in SI	PICE.	
Module:6	Scal	ing and Short Channel Effects			6 hc	ours

Constant Electric Field scaling and constant Power supply scaling, Effect of scaling							
breakdown - Drain-induced barrier lowering.							
Module:7 Deep sub-micron (DSM) and Ultra Deep Sub-Micron 7 hour							
(UDSM) Transistor Design Issues							
Effect of oxide thickness (tox) - Effect of high-k and low-k dielectrics on the gat							
leakage and Source and drain leakage - tunnelling effects - Different gate structure							
(Double gate, Trigate etc.) in DSM and UDSM - Impact and reliability challenges i							
DSM and UDSM, SOI MOSFETs and FINFETs.							
Module:8 Contemporary Issues 2 hour							
Guest lectures from Industries and R&D Organizations							
I otal Lecture hours: 45 hour							
Text Book(s)							
1. Ben G. Streetman and S. Banerjee, Solid State Electronic Devices, 2018							
Seventh Edition, Pearson Education.							
2 Donald A. Neamen , Semiconductor Physics and Devices, Basic Principle							
2017, Seventh Edition, McGraw-Hill Education							
Reference Books							
1. Y.P. Isividis and Colin McAndrew, Operation and Modelling of the MO							
Iransistor, 2011, Third Edition, Oxford University Press, U.S.							
2 Introduction to Semiconductor Materials and devices by M.S. Tyagi, John Wile							
& Sons, 5th Edition, 2005.							
3 J.P. Colinge and C. A. Colinge, Physics of Semiconductor Devices, 201							
Kluwer Academic Publishers, U.S.							
4 J.P. Colinge, FINFETs and other multi-gate Transistors, 2020, Springer.							
iniode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz an							
Final Assessment Lest							
Recommended by Board OF Studies 07-00-2023							
Approved by Academic Council No. 70 Date 24-06-2023							

Course Co	ode	Course Title	L	Т	Ρ	С
MVLD502L	-	Digital IC Design	3	0	0	3
Pre-requis	site	NIL	Syll	abus	vers	ion
				1.	0	
Course Ob	ojectiv	/es				
The course	e is air	ned to				
1. App	ly the	models for state-of-the-art VLSI components, fa	abrica	tion s	teps,	and
hiera	archic	al design flow.				
2. Foci	us on	the systematic analysis and design of bas	ic dig	jital i	ntegra	ated
circu	lits in	CMOS technology.				
3. Enh	ance	problem solving and creative circuit design tech	nniqu	es.	_	
4. Emp	onasiz	e on the layout design of various digital integra		Ircuits	5. to di	منعما
5. FOCL	us or	i the methodologies and design techniques	s rela	ated	το αι	gitai
	grated					
At the ord	of the	es				
At the end	orstar	design motric and MOS physics				
	ian lay	yout for various digital integrated circuits				
	ian th	e CMOS inverter with optimized power area a	nd tim	nina		
4 Desi	ian st	atic and dynamic digital CMOS circuits	iu un	my.		
5 Und	erstar	and the timing concepts in latch and flin-flops				
6. Desi	ian Cl	MOS memory arrays, understand interconnect	and c	lockir	na issi	ues.
Module:1	Intro	oduction			4 hc	ours
Issues in [Digital	IC Design- Quality Metrics of a Digital Design	n – R	eviev	of N	<i>l</i> OS
Transistor ⁻	Theor	у				
Module:2	CMC	S Fabrication and Layout			6 hc	ours
CMOS Pro	ocess	Technology N-well, P-well process, Stick d	iagrar	n for	Boo	lean
functions, C	Optimi	ization using Euler Theorem, Layout Design Ru	ules			
Module:3	The	CMOS Inverter			6 ho	ours
Static CMC)S Inv	erter- Static and Dynamic Behavioural Practice	es of (CMO	S Inve	erter
– Noise Ma	argin.	Components of Energy and Power – Switchin	g -Sh	ort-C	ircuit	and
Leakage C	ompo	nents. Technology scaling and its impact on the	ne inv	verter	metr	ics -
Passive an	d Acti	ve Devices.				
Module:4	Peri CMC	formance estimation of Static & Dynam DS Design	IC		8 hc	ours
Designing	Fast	CMOS Circuits -Logical Effort, Complementa	ary C	MOS	-Rat	ioed
Logic (Psei	udo N	MOS, DCVSL) - Pass Transistor Logic - Trans	missi	ion ga	ate lo	gic -
Dynamic L	ogic E	Design Considerations - Speed and Power Dis	sipati	on of	Dyna	amic
logic -Signa	al inte	grity issues -Domino Logic.				
Module:5	CMC	OS Sequential Logic Circuit Design			6 hc	ours
Introductio	n - Sta	atic Latches and Registers - Dynamic Latches a	nd Re	egiste	rs - P	ulse
Based Re	gisters	s - Sense Amplifier based registers -Latch	vs. F	legist	er ba	ased
pipeline str	ucture	es. Setup and Hold time calculation.				
Module:6	Des	Igning Memory & Array structures			7 hc	ours
SRAM and	ע ג RAU ג	ANI Memory Core - memory peripheral circui	try –	(Mer	nory	Cell
Stability)-M	lemor	y reliability and yield - Power dissipation in r	nemc	ries.	(Men	nory
Design issu	ues ar	nd Challenges, Various Memory bit cell and de	sign r	netric	<u>s)</u>	
Module:7	Inte	rconnects and Datapath Structures			6 hc	ours

Resistive, Capacitive and Inductive Parasitics - Computation of R, L and C for given interconnects - Capacitance and Reliability -Resistance and Reliability - The Full Adder: Circuit Design Considerations - Barrel Shifter - Power and Speed Trade-off's in Datapath Structures.

Module:8 Contemporary Issues

2 hours

Guest lecture from Industries and R & D Organizations

Total Lecture hours: 45 hours

Text Book(s)

- 1. Jan M. Rabaey, AnanthaChadrakasan and BorivojeNikolic, Digital Integrated Circuits: A Design Perspective, 2016, Second Edition, PHI.
- 2. Neil.H, E.Weste, David Harris and Ayan Banerjee, CMOS VLSI Design: A Circuit and Systems Perspective, 2015, Fourth Edition, Pearson Education.

Reference Books

- 1. Sung-Mo Kang, Yusuf Leblebici, CMOS Digital Integrated Circuits Analysis and Design, 2014, Fourth Edition, McGraw-Hill.
- 2. Sorab K Gandhi, VLSI Fabrication Principles: Si and GaAs, 2010, Second Edition, John Wiley and Sons.
- 3 Ivan Sutherland, R. Sproull and D. Harris, "Logical Effort: Designing Fast CMOS Circuits", 1999, Publisher: Morgan Kaufmann
- 5 Andrei Pavlov, Manoj Sachdev, "CMOS SRAM Circuit Design and Parametric Test in Nano-Scaled Technologies: Process-Aware SRAM Design and Test" ,2008, Springer
- 6 Jawar Singh, Saraju P. Mohanty, Dhiraj K. Pradhan, "Robust SRAM Designs and Analysis", 2013, Springer-Verlag New York

Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test.

Recommended by Board of Studies	07-06-202	23		
Approved by Academic Council	No. 70	Date	24-06-2023	

Course Co	ode	Course Title	L	Т	Ρ	С
MVLD503	L	Digital Design with FPGA	2	0	0	2
Pre-requis	site	NIL	Syll	abus	Versi	on
				1.	0	
Course O	bjectiv	ves				
This cours	e is air	ned to				
1. Und	lerstar	id the various abstraction level in Verilog HDL.				
2. Mo	del the	complex combinational and sequential circuits	with V	erilog	HDL	
3. Pro	vide in	depth understanding of state machine design	and r	nodel	ing us	ing
ver	llog HL	JL. Ind a baset different EDCA Architecture like Vilia	ام مر م	A I T		ام مر
		a about different FPGA Architecture like XIIIn	x anu	ALT	ERA a	anu
KAI	vi allu					
Course O	utcom	<u>م</u>				
After comr	letion	of the course the student will be able to:				
	sign an	d implement digital circuits using Data Flow & S	tructi	ral M	odelin	a
2. Des	sign an	d develop combinational circuits using data flow		bach	ouoiiii	9.
3. Des	sign an	d implement sequential digital circuits using Bel	navior	al Mo	deling	
4. Unc	derstar	and develop data-path and controller design			5	
5. Dev	elop a	nd test memory sub-system.				
6. Buil	d digit	al designs using FPGÅ.				
Module:1	Veril	og HDL – Data Flow & Structural Modeling			6 hc	ours
Verilog Fu	ndame	entals - Operators - Gate Level Modeling - Data	Flow	Mode	ling - ⁻	Test
Bench.	1					
Module:2	Desi	gn and Modeling of Combinational Circuits			4 hc	ours
Ripple ca	rry A	dders – Carry look ahead adder – Unsigne	ed bir	ary N	Nultipl	iers.
Synthesiza	ble Co	oding Style for Combinational Circuits.				
Module:3	Veril	og HDL – Behavioral Modeling		<u> </u>	4 hc	burs
Behaviora	level	Modeling- Procedural Assignment Statements	- Blo	cking	and M	von-
		nents - Tasks & Functions - System Tasks & Co	mplie	r Dire		
ESM mode		gn and Modeling of Sequential Circuits	obina	- Sun	4 NC	oblo
Coding St	ling of do for '	Sequence delector - Senai adder - Vending ma		. Syn	ulesiz	aule
Module:5		an and Modeling of Datapath and Controller	logic		3 hr	NIRG
Case Stud	v Bina	ary Counter - Bus Protocol	logic		5110	Jui S
		eling of FIFO and Memory			3 ho	nirs
Synchrone	1 1 1 1 1 1 1 1 1 1	Asynchronous FIEO – Single port and Dual po	rt RO	Mano		1
Module:7		A Architecture			4 hc	burs
Types of P	rograr	nmable Logic Devices: PLA, PAL, CPLD - FPG	A Arch	itectu	ure -	
Programm	ing T	echnologies-Chip I/O- Programmable Logic I	Blocks	- Fa	bric a	nd
Architectu	re of F	PGA - Xilinx / Intel / Actel FPGA Architecture -	Case	Stud	у	
Module:8	Cont	emporary Issues			2 hc	ours
Guest lect	ure fro	m Industries and R & D Organizations		•		
		Total Lecture	hours	5:	30 ho	ours
Text Book	(s)					
1. Micha	ael D	Ciletti, Advanced Digital Design with the Ver	ilog F	IDL,	2017,	
Seco	nd Edit	ion, Pearson Education.				

2.	Ming-Bo Lin, Digital Systems Design and Practice: Using Verilog HDL and								
	FPGAs, 2015, Second Edition, Create Space Independent Publishing Platform.								
Refe	Reference Books								
1.	1. Wayne Wolf, FPGA Based System Design, 2011, Prentices Hall Modern								
	Semiconductor Design Series.								
2.	Charles H Roth Jr, Lizy Kurian John and Byeong Kil Lee, Digital Systems								
	Design using Verilog, 2016, First Edition, Cengage Learning.								
Moc	le of Evaluation: Continuous Ass	sessment T	est, Digi	tal Assignment, Quiz and					
Fina	al Assessment Test		U	C C					
Rec	Recommended by Board of Studies 07-06-2023								
Арр	roved by Academic Council	No. 70	Date	24-06-2023					

Course Code Course Title					Τ	Ρ	С
ΜV	LD503P	Digital Design with FPGA Lab		0	0	2	1
Pre	-requisite	NIL	Syll	abu	s ve	ersi	on
					1.0		
Co	urse Objectiv	es					
Thi	s course is ain	ned to					
	 Model the complex combinational and sequential circuits using Verilog HDL 						
Co	Course Outcome						
Afte	er completion of	of the course the student will be able to:					
	1. Design ar	nd optimize complex combinational and sequential	digital	cire	cuite	s us	sing
	Verilog.						
	2. Implement	t the designed digital design using FPGA.					
Ind	icative Exper	iments					
1.	Many ink-jet	printers have six cartridges for different colored ink: bl	ack,	4 h	our	S	
	cyan, magen	a, yellow, light cyan and light magenta. A multibit sign	al in				
	such a printe	r indicates selection of one of the colors. Write a data	flow				
	Verilog mode	el for a decoder for use in the inkjet printer descr	ibed				
	above. The	decoder has three input bits representing the choic	e of				
	color cartridg	e and six output bits, one to select each cartridge. V	erity				
	the output of	the design using test bench by simulating in Mode	Isim				
	Simulator. Im	plement the design in ALTERA DE2-115 Board and v	erity				
2		lly. Word Varilag and to divide the ALTERA DES 115 D		1 -	21.125		
Ζ.	vvnie a bena	VIOLAI VEILIOG CODE LO DIVIDE LIE ALTERA DEZ-115 BI	bard	4 N	Jurs		
	CIOCK ITEQUE	utput using LEDs available in the board	piay				
2		mplement a sireuit on the DE2 115 heard that acts	20.0	1 h	our		
э.	time of day of	lock It should display the hour (from 0 to 22) on the	as a o 7	4 1	our	5	
	segment disr	slave HEX7-6, the minute (from 0 to 60) on HEX5-4	and				
	the second (from 0 to 60) on HEX3-2 Use the switches SW15-	0 to				
	nreset the ho	ur and minute parts of the time displayed by the clock	0.0				
4	We wish to in	polement a finite state machine (ESM) that recognizes	two	8 h	ours		
	specific sequ	ences of applied input symbols, namely four consecu	utive	0	0010		
	1s or four c	consecutive 0s. There is an input w and an output	it z.				
	Whenever w	= 1 or $w = 0$ for four consecutive clock pulses the value	e of				
	z has to be 1	; otherwise, z = 0. Overlapping sequences are allowed	l, so				
	that if w = 1 f	or five consecutive clock pulses the output z will be e	qual				
	to 1 after the	fourth and fifth pulses. Design and Implement the de	sign				
	using DE2-11	5 Board.					
5.	Write a beh	avioral Verilog code to design FIFO with the follow	wing	10 I	noui	s	
	specification						
	a_in: input da	ta; 8 bit width is considered					
	d_out: output	data; 8 bit width is considered ·					
	w_en: write e						
	r nevt en re	auro signal ad next enable					
		rite next enable					
	w clk. write c	lock: 10 MHz for this design					
	r clk: read cl	ock: 50 MHz for this design					
	w ptr. write a	ddress pointer: 4 bit to address depth of 16					
	r ptr: read ac	dress pointer: 4 bit to address depth of 16					
	ptr diff: addre	ess pointer difference: 4 bit width					
	f full flag: Fl	FO full flag; asserted when FIFO is full					
	f empty flag	FIFO empty flag; asserted when FIFO is empty					
	Use Dual Por	t RAM available in ALTERA IP library to realize the FIF	Ю.				
	Implement th	e design using ALTERA DE2-115 board.					

	Тс	tal Labor	atory Hours	30 hours			
Mode of Assessment: Continuous Assessment and Final Assessment Test							
Recommended by Board of Studies	28-07-2022						
Approved by Academic Council	No. 67	Date	08-08-2022				

Course Code	Course title	L	Т	Ρ	С	
MVLD504L	Analog IC Design	3	0	0	3	
Pre-requisite NIL Syllab						
			1.	0		
Course Object	ves					
The course is ai	med to					
1. Analyze a	and design single-ended and differential IC amp	olifiers	5.			
2. Understa	nd the relationships between devices, circuits a	ind sy	stem	S.		
3. Emphasi	ze the design of practical amplifiers, small syste	ems a	nd the	eir des	sign	
paramete	er trade-offs.					
Course Outeer	m oo					
At the end of the	nes o courso tho student will be able to					
$1 \Delta nalyzo$	low-frequency characteristics of single-sta	an s	mnlif	ors	and	
differenti	al amplifiers	ye c	mpin	015	anu	
2 Analyze I	high-frequency response and noise of amplifier	s				
3. Understa	nd the feedback concepts.					
4. Analyze	and design of high gain amplifiers.					
5. Understa	nd stability analysis and frequency compens	ation	techr	niques	s of	
amplifiers	S.			•		
6. Understa	nd Bandgap reference circuits and PMICs.					
Module:1 Cu	rrent source and Amplifier design:			7 ho	ours	
MOS Device n	nodels, MOS Current Sources and Sinks, Ci	urrent	Mirr	or: B	asic	
Current Mirrors,	Cascode current Mirrors. Single stage Amplifi	ies: B	asic o	conce	epts,	
Common Source	e stage, Common Gate stage, Cascode stage	e. Diff	erent	ial sta	age:	
Single ended ar	nd Differential operation. Basic Differential Pair.		-			
Module:2 Fre	quency response and Noise analysis of Am	olifie	<u>'s:</u>	8 hc	ours	
Miller effect, Fre	equency response of Common Source stage, C	omm	on Ga	ite sta	age,	
Cascode stage	and Differential pair. Noise in Amplifiers: Company Cases de stage. Differential pair. Noise R	imon	Sour	ce sta	age,	
Modulo:2 For	stage, Cascode stage, Differential pair. Noise B	anuw		7 60		
Idoal foodback of	auation Gain consitivity. Effect of Negative For	dhac	k on F	/ HU	tion	
Types of Foodh	ack Amplifiers Feedback configurations; volta		n UH L	CUIT	ont	
voltage curren	t-current voltage-current feedback Practical	conf	inurat	, cun ions	and	
Effect of loading	l.	00111	iguiut	10113	ana	
Module:4 Op	erational Amplifier			6 ho	ours	
Need for Single	and Multistage amplifiers – Telescopic, Folded,	Gain	boos	tina.	Two	
stage Op Amps	, Performance Analysis: DC gain, Frequency r	espor	ise, S	Slew r	ate,	
Common mode	Feedback, Common Mode Rejection Ratio, Pov	ver Su	upply	Rejec	tion	
Ratio.	-			5		
Module:5 Sta	bility and Frequency Compensation			7 ho	ours	
Basic Concept	s, Multipole Systems, Gain Margin, Phase	Marg	in, F	reque	ency	
Compensation:	 Dominant pole, Miller Compensation, Comper 	isatio	n of N	liller F	RHP	
Zero, Nested Mi	ller Compensation, Reversed Nested Miller Cor	npens	sation	, Stat	oility	
Criterion Nyqui	st and Root Locus.					
	nagap References			<u>4 hc</u>	ours	
Supply-Indeper	ident Biasing, Temperature-Independent Refere	ences	PIA	I Cur	rent	
Generation, Col	Islant-GM Blasing					

Mod	dule:7	Phase Locked Loops				4 hours
Prot	blem of	Lock acquisition, Phase D	etector, Ba	asic PLL	and its dynamic	s, Charge-
pum	וף PLL,	Non-ideal effects in PLL:	PFD/CL	non idea	ilities, Jitter, Del	ay Locked
Loo	p, Appli	cations.				
Mod	dule:8	Contemporary Issues				2 hours
Gue	est lectu	re from Industries and R &	D Organi	zations		
				Total I	_ecture hours:	45 hours
Tex	t Book	(s)				
1.	1. Behzad Razavi, Design of Analog CMOS Integrated Circuits, 2017, Second Edition, McGraw-Hill.					
2.	Behzad Univers	Razavi, "Design of Cl ity Press, 2020.	MOS Pha	ise-Lock	ed Loops", Ca	mbridge
Ref	erence	Books				
1.	Phillip I Second	E. Allen and Douglas R. H Edition, Oxford University	lolberg, C Press, Ul	MOS Ar K.	alog Circuit Des	sign, 2010,
2.	2. R. Jacob Baker, CMOS Circuit Design, Layout and Simulation, 2010, Third Edition, IEEE Press Series on Microelectronic Systems, Wiley Publications.					
Moc Fina	Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test.					
Rec	ommen	ded by Board of Studies	07-06-20	23		
Арр	roved b	y Academic Council	No. 70	Date	24-06-2023	

Course Co	de	Cou	rse Title			L	Т	Р	C
MVLD504P)	Analog IC	C Design l	Lab		0	0	2	1
Pre-requisi	ite	NIL				Syll	abus	versi	on
							1.	0	
Course Objectives									
The course	is a	imed to							
1. Analy	yze	and design single-end	ed and dif	ferential	IC amp	olifiers	S.		
2. Unde	ersta	ind the relationships b	etween de	evices, ci	rcuits a	nd sy	stem	S.	
3. Emp	nasi	ze the design of practi	cai amplif	iers, sma	ill syste	ems a	na the	eir	
desiç	jn pa	arameter trade-ons.							
	tcor	no							
At the end of	of the	e course students will	he able to						
1. Desi	an a	nd characterize amplif	fiers. Low	Dropout	Regula	ntor a	cordi	ina to	
desid	an si	pecifications in industr	v standard	EDA to	ol.		soora	ing to	
`	2 - 1		,		-				
Indicative I	Ехре	eriments							
1. Simulat	ion d	of MOSFET IV Charac	teristics, S	Second o	rder		2	hours	j
parame	ters								
2. CMOS	Inve	rter - DC, AC, Transie	nt Analysis	s, Post la	ayout		2	hours	i
simulati	on								
3. Design	of B	asic Single Stage Am	olifiers (Co	ommon S	ource,		4	hours	r.
Commo	on G	ate and Common Drai	<u>n)</u>	1.0					
4. Analysis	s an	d Design of Simple Cl	irrent Mirro	or and C	ascode		4	nours	,
E Anolyci		<u>UI.</u> d Docian of Difforentia	Amplifior			dana		hours	
5. Analysi:	5 all 5 all	u Design of Differentia	li Ampimei		lve loa	u anc	4	nours	,
6 Lavout		ifferential Δmnlifier					6	hours	
7 Analysi	s an	d Design of Cascode /	Amplifier a	nd Suga	est a C	ircuit	4	hours	
to over	come	e Voltage Headroom L	imitation.	ind odgg	00100	mount		nours	
8. Analysi	s an	d Design of Two-Stage	e Opamp v	with Frec	uencv		4	hours	
Compe	Compensation.								
Total Laboratory Hours 30 hou						0 hou	rs		
Mode of Ev	alua	tion: Mode of Assessn	nent: Cont	inuous A	ssessr	nent	and F	inal	
Assessmen	t Te	st							
Recommen	ded	by Board of Studies	07-06-20	23	1				
Approved b	y Ac	ademic Council	No. 70	Date	24-06	-2023	3		

Course Code	Course Title	L	Т	Ρ	С			
MVLD505L	ASIC Design	3	0	0	3			
Pre-requisite		Syll	<u>abus</u>	versi	on			
Course Obiesti			1.	0				
The course objective	Ves							
1 Undorsta	u io nd the DTL synthesis Flow with respect to diffe	ront c	oct fu	nction	c			
2 Analyso S	Static Timing requirements for ASIC design		USL IU	IICUOII	5.			
2. Analyse 2 3. Discuss th	he quidelines at each abstraction level in physic	cal de	sian					
4 Understa	nd the importance of physical design verification	n	siyn.					
	ind the importance of physical design vermedia							
Course Outcom	105							
At the end of the	e course the student will be able to							
1. Synthesiz	e the given design by considering various cons	straint	s and	optim	ize			
the same.				-				
2. Understar	nding the logical equivalence checking.							
3. Understar	nd various timing parameters and perform Station	c Timi	ng An	alysis	for			
ASIC des	ign.							
4. Compare	OCV modelling techniques.							
5. Perform physical design by adhering to guidelines.								
6. Understar	nd the importance of physical design verificatio	n.						
Modulo 1 ASI	C Design Methodology & Design Flow			1 60	IFC			
Implementation	Strategies for Digital ICs: Custom IC Design	റപ	haco	4 000	ign i			
Mothodology A	Strategies for Digital ICS. Custoff IC Design	- Celli litions	Jand	Des Dhysi	igi i cal			
Compiler based	ASIC Flow	annone	ii anu	гнузі	Cai			
Module:2 RTI	Synthesis			6 hoi	irs			
RTL synthesis F	Flow – Synthesis Design Environment & Const	raints	– Arc	hitect	ure			
of Logic Synthe	sizer - Technology Library Basics- Compon	ents	of Te	chnolo	av			
Library –Synthe	esis Optimization- Technology independen	t and	d Te	chnolo	ypc			
dependent synth	nesis- Data path Synthesis – Low Power Synthe	esis			55			
Module:3 Forr	nal Verification			6 hou	Jrs			
Combinational E	Equivalence Checking- Constrained EC - Cu	t Poir	nt-Bas	ed E	C -			
Sequential Equiv	valence Checking - Register Correspondence	- Mo	del Cl	neckin	g -			
Property Checki	ng							
Module:4 Bas	ic Timing Analysis			7 hou	ırs			
Timing Paramete	er Definition – Setup Timing Check- Hold Timir	ng Ch	eck- N	/lulticy	cle			
Paths-Half-Cycl	e Paths-False Paths							
Module:5 Adv	anced Timing Analysis	N/ T:		/ noi	Jrs			
CIOCK SKEW OP	timization – On-Chip variations- AOCV-POC	V-III	ne Bo	Drrowli	ng-			
Setup and Hold	J VIOIAtion Fixing. Origins of Clock Skew/JI	tter a	na in	ipact	on			
Modulo:6 Dhy	vsical Design			9 hou	Irc			
Detailed stops in	Physical Design Flow, Guidelines for Floor pl	an Di	acom	ont C	213 27			
and routing $= FCO$ flow $=$ Signal Integrity Issues								
Module:7 Phv	sical Design Verification			5 hoi	Jrs			
Timing Sign-off	Timing Sign-off, Physical Verification – Signoff DRC and LVS, FRC, IR Drop							
Analysis, Antenna Check, Electro-Migration Analysis and ESD Analysis.								
Module:8 Con	temporary Issues	<u>.</u>		2 hoi	ırs			
			1					

Guest lecture from Industries and R & D Organizations								
				Total Le	ecture hours:	45 hours		
Tex	<u>kt Book</u>	(s)						
1.	1. Vaibbhav Taraate, ASIC Design and Synthesis RTL Design Using Verilog,							
	2021, First Edition, Springer, Singapore.							
2.	2. J. Bhasker and Rakesh Chadha, Static Timing Analysis for Nanometer							
	Designs, 2010, First Edition, Springer, USA.							
Re	ference	Books						
1.	Khosro	w Golshan, PHYSICAL	DESIGN	ESSEN	ITIALS An As	SIC Design		
	Implen	nentation Perspective, 201	0, First Edi	tion, Spi	ringer.			
2.	Michae	el John Sebastian Smith, A	pplication-	Specific	Integrated Circ	uits, 2002,		
	First E	dition, Addison Wesley.						
					·· · · ·			
	de of E	valuation: Continuous Ass	essment I	est, Dig	jital Assignmer	it, Quiz and		
Fin	Final Assessment Test							
Re	commer	nded by Board of Studies	07-06-20	23	1			
Ар	proved b	by Academic Council	No. 70	Date	24-06-2023			

Cou	rse Code		Course Title	e			L	Т	Ρ	С
MVL	_D505P		ASIC Design	_ab			0	0	2	1
Pre-	requisite	NIL				Syll	abu	s v	ersi	on
	-						-	1.0		
Cou	rse Objectiv	es								
The	course is aim	ed to								
	1. To apply t	heoretical knowledge	e gained in the A	SIC Desi	gn course	e and	get	han	nds-	on
	experience	e of the topics.	•		•		•			
Cou	rse Outcome)								
At th	ne end of the o	course the student w	/ill be able to							
.	1. Design, si	mulate and synthesiz	ze complex digit	al system						
	2. Analyse a	nd fix the timing viola	ations							
	3. Design AS	SIC based digital sys	tems using indu	stry stand	ard EDA	tools.				
	~			•						
Indi	cative Exper	iments								
1.	Design of Dig	ital Architecture for	given specificati	on			6 ho	ours	5	
2.	Logical Synth	esis of Digital Archit	ecture				6 ho	ours	5	
3.	Netlist Optimi	zation, GLS and For	rmal Verification				6 ho	ours	5	
4.	Physical Synt	thesis of Digital Arch	itecture				6 ho	ours	5	
5.	Physical Veri	fication of Digital Arc	chitecture				6 ho	ours	5	
Total Laboratory Hours						ours	30 I	nou	Irs	
Mod	Mode of Assessment: Continuous Assessment and Final Assessment Test									
Rec	ommended by	y Board of Studies	28-07-2022							
App	roved by Aca	demic Council	No. 67	Date	08-08-2	022				

Course Code		Course Titl	6				P	С		
MVLD506P	VLSI Tes	sting and Tes	- tability La	ab		0 0	2	1		
Pre-requisite	NIL	sung und roo	<u></u>		Svlla	abus	vers	ion		
						1.0)			
Course Objectiv	/es									
The course is int	The course is intended to									
1. Introduce the	concept of modeling a	nd simulation	of logic a	nd memor	v testir	na				
2. Familiarize d	ifferent design for testa	ability techniqu	les for im	provina th	e vield	d of I	C des	sian		
using industr	y standard EDA tools	, , , , , , , , , , , , , , , , , , , ,		5	- ,			3		
	·									
Course Outcom	es:									
After completion	of the course the stude	ent will be able	to:							
1. Generate tes	1. Generate test patterns and perform fault simulation for digital logic and memory circuits.									
2. Apply DFT te	schniques viz. scan ba	ased testing, E	SIST and	boundary	scan	for ir	npro	/ing		
testability usi	ng EDA tools.									
Indiantina Franci										
						4 1				
1. Fault Simula	tion and Test generation	on for combina	tion circu	ts	4	1 nou	rs			
2. Clock and re	set rule check at RIL				4	1 hou	rs			
3. Scan Chain	Insertion, DRC and AT	PG			2	2 hou	rs			
4. At-Speed Pa	tterns and On-Chip Clo	ock Controllers	s (LoS and	d LoC)	4	1 hou	rs			
5. Advanced fa	ult modeling				2	2 hou	rs			
6. SDF annotat	ed simulation				4	4 hou	rs			
7. Boundary sc	an test				4	4 hou	rs			
8. Testing of memories (BIST insertion, validation and BIST repair)						6 hours				
Total Laboratory Hours 30 hours										
Mode of Assessment: Continuous Assessment and Final Assessment Test										
Recommended b	Recommended by Board of Studies 28-07-2022									
Approved by Aca	ademic Council	No. 67	Date	08-08-20)22					

Course Code Course Title L T P C					С		
ΜVI	LD506L	VLSI Testing and Testability		3	0	0	3
Pre	-requisite	NIL	Syl	labı	ıs V	ers	ion
-					1.0		
Cours	se Objecti	ves :					
The c	ourse is in	tended to					
1. li	ntroduce th	ne concept of modeling and simulation of logic and memo	ory te	estin	ıg.		
2. F	amiliarize	different design for testability techniques for improv	ing	the	yiel	ld o	f IC
d	lesign.		-				
Cours	se Outcon	nes :					
After	completion	of the course students will be able to					
1. L	Jnderstand	the Fault Models and generate test patterns for digital c	ircuit	ts.			
2. A	Apply DFT	techniques viz. scan based testing, BIST and boundary	y sca	an fo	or in	npro	ving
te	estability					-	-
3. L	Jse of test	vector compression and test response compaction tea	chnic	ques	to	redu	uce
te	est time an	d memory storage					
4. T	Fest, diagn	ose and repair memory faults in SoC					
Modu	Ile:1 VLS	I Testing and Fault Modelling		6	hοι	ırs	
Impor	tance of T	esting - Testing during the VLSI Lifecycle - Challenges in	n the) VL	SI T	Testi	ng:
Test (Generation	- Fault Models - Levels of Abstraction in VLSI Testing	- His	stori	cal	Rev	iew
of VLS	SI Test Te	chnology - Fault Equivalence - Fault Dominance - Fault	Colla	apsi	ng -	Ch	eck
point ⁻	Theorem.						
Modu	ile:2 Fau	t Simulation and Test Generation		5	hοι	ırs	
Fault	Simulatior	: Serial, Parallel, Deductive, Concurrent, Fault sampl	ina -	· Co	omb	inati	onal
Test (Generation	s -ATPG for Combinational Circuits - D-Algorithm – Clas	sifica	atior	l of	fault	s.
Modu	ile:3 Des	ign for Testability		7	ho	urs	
Testa	bility Analy	vsis: SCOAP measures for Combinational Circuits - De	sian	for	Tes	stabi	litv
Basic	s - Ad Hoc	Approach - Structured Approach - Scan Cell Designs -	Scar	n Aro	chite	ectu	res
- Scar	n Design R	ules - Scan Design Flow – Special Purpose Scan Design	ns				
Modu	ile:4 Log	ic Built-in Self-Test		7	hοι	ırs	
BIST	Design R	Rules - Test Pattern Generation: Exhaustive Testing	, Ps	seuc	lo-R	land	om
Testir	ng, Pseudo	p-Exhaustive Testing, Delay Fault Testing - Output Re	espo	nse	Ana	alysi	is -
Logic	BIST Arch	itectures					
Modu	ile:5 Tes	st Compression and Boundary scan		6	hοι	ırs	
Test	Stimulus	Compression Techniques: Linear-Decompression-B	asec	a s	sche	me	s –
Broad	lcast base	d compression schemes. Test Response Compaction	- D	igita	al B	oun	dary
Scan	(IEEE Sto	I. 1149.1): Test Architecture and Operations - On-Chip	o Te	st S	upp	ort	with
Bound	dary Scan	- Board and System-Level Boundary-Scan Control Ard	chite	ctur	es -	- IJ ⁻	ГAG
archit	ectures.						
Modu	ile:6 Me	emory Testing and Built-In Self-Test			6	6 ho	urs
RAM	Functiona	I Fault Models and Test Algorithms - RAM Fault S	imul	atio	n a	nd	Test
Algori	ithm Gener	ation - Memory Built-In Self-Test					
Modu	ile:7 Me	emory Diagnosis and Built-In Self-Repair			6	ho	urs
BIST Repai	with Diagr ir	nostic Support - RAM Defect Diagnosis and Failure Ana	alysis	s - E	3uilt	-In S	Self-
Modu	ile:8 Co	ontemporary Issues			2	hou	ırs
				I			

						Total Lect	ure hours:	45 hours	
Text	t Book(s	5)							
1.	Laung-T Archited	「erng \ ctures,	Wang, Cheng-We 2013, The Morga	en Wu, an an Kaufma	nd Xiaoqing ' ann.	Wen, VLSI 1	Fest Princip	les and	
2.	 M. Bushnell, Vishwani Agrawal - Essentials of Electronic Testing for Digital, Memory, and Mixed-Signal VLSI Circuits, 2006, Springer. 								
Refe	erence E	Books							
1.	Laung-T Architec	Ferng tures:	Wang, Charles Nanometer Desi	E. Stro gn for Tes	oud, Nur A stability", 20	. Touba, 08, Morgan	"System-or Kaufmann F	n-chip Test Publishers.	
Mod Asse	Node of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test								
Rec	ommend	led by	Board of Studies	;	28-07-202	2			
Арр	roved by	Acad	emic Council		No. 67	Date	08-08-2022	2	

Course CodeCourse TitleLTPC						
MVLD507L	IC Technology	3	0	0	3	
Pre-requisite	NIL	Syll	abus	versi	on	
			1.	0		
Course Objectiv	ves					
The course is int	ended to					
1. Introduce	the process involved in semiconductor manufa	acturii	ng, litl	nograp	bhy	
and fabric	ation.				_	
2. Model the	e oxidation growth rate, to understand oxidatio	n pro	cess,	diffus	ion	
process a	nd to expound the Ion Implantation process.					
3. Explain th	le thin film deposition process and review the	amere	ences	betwe	en	
MOS and Bipolar Process Integration.						
Course Outeer						
At the end of the	IES					
At the end of the	Course the student will be able to	ictori	monut	facturi	na	
lithograph	and fabrication		Hallu	acturn	ng,	
2 Understar	ny anu rabination. 24 8. Evaluate the various lithography techniqu		sod fr	n natte	orn	
transfer		105 U.	Scu it	n patt		
3. Analyze t	ne diffusion and ion implantation mechanism in	semi	condi	ictors		
4. Apply mo	dels for understanding the oxide growth	00111	oona	1010101		
5. Analyze tl	ne process involved in thin film deposition and	etchir	ıa.			
6. Evaluate	the difference between MOS and Bipolar Proce	ess	· J·			
Module:1 Crys	stal Growth			5 hou	ırs	
Introduction to S	Semiconductor Manufacturing and Fabrication,	Clea	n Ro	om typ	bes	
and Standards,	Crystal Structures, Defects in Crystals, Phy	sics	of the	e Crys	stal	
growth, Process	flow, wafer fabrication and basic properties of	silicor	n wafe	ers.		
Module:2 Lithe	ography			7 hou	ırs	
The Photolithog	graphic Process, Photomask Fabrication, Co	ompai	rison	betwe	en	
positive and neg	ative photoresists, Exposure Systems, Charact	eristi	cs of I	Exposi	ure	
Systems, E-bear	n Lithography, X- ray lithography					
Module:3 Oxic	lation			6 hou	ırs	
The Oxidation P	rocess, Modeling Oxidation, Masking Propertie	s of S	Silicon	Dioxi	de,	
Lechnology of O	xidation, Si-SiO ₂ Interface			<u> </u>		
Module:4 Diffu	ision and Ion Implantation			<u>6 hou</u>	urs	
The Diffusion Pr	ocess, Mathematical Model for Diffusion Con	stant,	Ine	Diffus	ion	
Coefficient, Suc	cessive Diffusions, Diffusion Systems, Impla	ntatio	n leo	chnolo	gy,	
	lodel for ion implantation, Selective implan	tatior	i, Ch	anneili	ng,	
Modulo:5 Thin	and Annealing, Shallow Implantations.	iald		0 hou	IRC	
Chomical Van	ar Deposition, Contacts, packaging and y	n F	nitavı			
Interconnections	and Contact Technology Silicides and	⊔, ∟ Muul	tilavo	r_{-} Cont	act	
Technology Conner Interconnects and Damascono Processos Passivation						
techniques. Wafer Thinning and Die Separation Die Attachment Wire Bonding						
Packages. Yield				Jonul	··9′	
Module:6 Etch	lina			6 hoi	Jrs	
Isotropic and An	isotropic, Selectivity, Wet and Drv etching – R	eactiv	ve lon	Etchi	ng-	
CMP.					5	

Module	e:7	Process Integration for	Advanced	Device	S	4 hours		
FinFET	s, C	ompound Semiconductor	(III-V) base	ed device	es			
Module	e:8	Contemporary Issues				2 hours		
Guest l	lectu	re from Industries and R &	D Organiz	zations				
				Total Le	ecture hours:	45 hours		
Text Bo	ook	(s)						
1. S.N	1. S.M. Sze, VLSI technology, 2017, Second Edition, Tata McGraw-Hill.							
2. James D. Plummer, Michael Deal and Peter D. Griffin, "Silicon VLSI Technology: Fundamentals, Practice and Modelling", April 2020, Prentice Hall Electronics and VLSI Series.								
Refere	nce	Books						
1. S.A 201	ት. C 12,	ampbell, The science and Second Edition, Oxford Uni	l engineer	ing of m ess, UK.	icroelectronics	fabrication,		
2. Sin 201	non 11, \	M. Sze, Gary S. May, F Viley.	undament	als of S	Semiconductor	Fabrication,		
3. R.C Pre	3. R.C. Jaeger, Introduction to microelectronic fabrication, 2013, Second Edition, Prentice Hall.							
Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test								
Recom	mer	ded by Board of Studies	07-06-20	23				
Approv	ed b	y Academic Council	No. 70	Date	24-06-2023			

Course Code	Course Title	L	Т	Ρ	С		
MVLD601L	Computer Aided Design For VLSI	3	0	0	3		
Pre-requisite	NIL	Sylla	bus	Vers	ion		
•			1.0	1			
Course Objectiv	ves						
The course is ain	ned to						
1. Acquire t	ne fundamentals of graphs, the relevance and, th	eir ap	plicat	tions	to		
VLSI des	sign automation and introduce the estimation	of co	mput	ation	al		
complexit	ty and the general classes of computational prob	lems.					
2. Explain V	Vith relevant examples and algorithms demonstr	rate p	artitic	ning,			
floor plan	ning,area routing, clock routing and pin assignr	nent	of phy	/sical	I		
design flo	DW.						
3. Introduce	3. Introduce the students to machine learning concepts in physical design.						
Course Outcom	es						
At the end of the	course students will be able to						
I. Develop	the graphs for the given problems; determine	e and	a ana	iyse	the		
Computat	ional complexity of physical design algorithms.						
2. Create tri	e partition for a given design.	andi		mout	tor		
3. Develop and change the hoorplans in an abstract manner and use computer algorithms tomake large and optimized floorplans							
4 Create optimized placements on the silicon chip and perform complex							
routing us	singalgorithms and computer codes.		ompic	~~~			
5. Desian c	lock trees to distribute the clock signals on the	e chi	o whi	le			
satisfying	variousconstraints like clock skew and wire lend	ıth.					
6. Understa	nd machine learning concepts in computer aide	, d des	sign fo	or			
VLSI.	3		0				
Module:1 Grap	h theory and Computational complexity of			6 hou	ırs		
algor	ithms						
Y Chart- Physica	al design top down flow- Review of graph theor	y: co	mplet	e gra	aph,		
connectedgraph,	sub graph, isomorphism, bi partite graph tree. Bi	g-O r	otatio	on- C	ass		
P- class NP -NP-	nard- NP-complete.			7 1			
Nodule:2 Parti	lioning ian Grave Mignatian Algorithms Kamighan Lin S	·		/ nol	Irs		
Problem formula	ion- Group Migration Algorithm: Kernighan-Lin S	simula	ated a	nnea	ling		
	j. I plopping			6 hou	IFC		
Stock Mover of	planning acrithm Wong Live algorithm (Normalized po	lich	overo				
Sluck Weyer al	gonunn- wong-Liu algonunn (Normalizeu po spriguo	11511	expre	55101	<i>ŋ,</i>		
Module 4 Din A	ssignment and Placement			6 hou	ire		
Pin Assignment	Concentric circle manning. Topological nin assi	amme	nt ₋ Pr		and		
aroundrouting P	lacement. Wire length estimation models for pla	ceme	nt - C)uadr	atic		
placement	accinent. Whe length estimation models for pla	come		(uuui	auc		
Module:5 Rout	ing		· ·	7 hoi	ırs		
Routing: Grid rou	uting- Maze routing- Line Probe algorithms, Wei	ahteo	1 Stei	ner ti	ree		
approach. Global routing: Rectilinear routing(spanning tree, steiner tree)-Diikstra's							
algorithm-routing							
Detailed routing	: Problem formulation- Two layer channel re	outing	j: Lei	ft Ec	lge		
algorithm, Dogle	g router- Net Merge channel router - Introduc	tion t	o sw	itch k) OX		

routing.								
Module:6	Clock Tree Topologies				8 hours			
Clocking tr	ee topologies: H-tree, Xtree- Me	ethod of M	eans and	Mediar	ns (MMM) -			
recursive g	eometric matching- Elmore delay	model to ca	alculate sk	kew- Buf	fer insertion			
in clock tre	es- Exact Zero skew clock rou	iting algorit	hm. Cloc	k mesh	topologies:			
uniform and	uniform and non-uniformmesh.							
Module:7	Machine Learning in Physical	Design	·		3 hours			
Machine Le	arning for Datapath Placement,	Machine Le	earning foi	r Routab	ollity-Driven			
Placement,	Machine Learning for Clock Opt	imization.			0.1			
Wodule:8	Contemporary issues				2 nours			
Guest lecit	res from industries and R&D Org	janizations						
	Total Loc	sturo houro		[15 hours			
	Total Let				45 Hours			
Text Book	(s)							
1. Andrev	/ B. Kahng, Jens Lienig, Igor I	Markov,	JinHu, V	LSI Phy	sical			
Design	: From Graph Partitioning to Tim	ing Closure	e, 2022, S	econd e	dition,			
Springe	er International Publishing.							
2. Sung	Kyu Lim, Practical Problems in V	LSI Physic	al Design	Automa	tion, 2011,			
Spring	jer, India.							
Reference	Books	0		<u> </u>				
1. Rajesh	K. Maurya , Ganesh M. Magar,	Swati R. I	Maurya, C	Fraph I	heory &			
Applica	Itions, 2016, Tecnnical Publicatio	ns, India		0				
Z. Brian C	Infistion and Tom Griffiths, Algori	to LIV	e By: The	Compu	ter			
2 Elfodol	brohim M. Duono S. Boning of	nd Vin Li	Illiani Coll Iochino Io	$\frac{115, 05}{100}$	۸. ۵			
	, IDI al III III IVI., Duarie S. Borling, a omputor Aided Design 2010 Fir	rt odition	Springor	Switzorla	1 and			
VLSI Computer-Alded Design, 2019, First edition, Springer, Switzenand.								
FinalAssessment Test								
Recommer	ided by Board of Studies	07-06-202	23					
Approved k	y Academic Council	No. 70	Date	24-06-2	2023			

Course Code Course Title L T P C							
MVLD602L	Low Power IC Design	3	0	0	3		
Pre-requisite	NIL	Syl	abus	vers	ion		
			1.	0			
Course Obje	tives:						
The course is	aimed to						
1. To und	erstand the concept of VLSI circuit for low power	consi	umptio	on			
2. To desi	gn various circuits with optimal power consumption	on.					
3. To get	an insight on low power issues and challenge	s at v	variou	is de	sign		
levels.							
4. Io des	gn a system with multiple supply and threshold	volta	ges a	pplica	able		
for vari	bus applications.						
	mas						
At the end of t	he course the student will be able to:						
1 Analyse	the need for low power VI SI circuits						
2. Apply t	echniques to estimate power consumption of VLS	l circ	uits.				
3. Optimiz	e the power consumption using algorithmic and	d arc	hitect	ural l	evel		
approa	ch.						
4. Apply I	pgic-level and RTL techniques in various design	s to c	ptimi	ze po	wer		
consun	ption of the VLSI circuits.		_				
5. Apply v	arious circuit techniques to optimize the power co	onsun	nption				
6. Analyse	and explore the usage of sleep transistors an	d IP	desig	n for	low		
power.							
Module 1 In	troduction to Low Power Design Methods			l hou	rs		
Motivation- C	ontext and Objectives-Sources of Power dissin	ation	in Ul	tra D	een		
Submicron CN	IOS Circuits – Static, Dynamic and Short circuit	comp	onent	ts Effe	ects		
of scaling on	power consumption- Low power design flow- N	orma	lized	Figur	e of		
Merit – PDP&	EDP- Overview of power optimization at various	levels	5.	•			
Module:2 P	ower Estimation		6	6 hou	rs		
Theoretical b	ackground – Calculation of Steady state pro	obabi	lity, T	ransi	ition		
probability, C	onditional probability, Transition probability of	corr	elate	d inp	uts,		
I ransition der	sity; Estimation of Switching activity, Estimation of	of glite	hing	powe	<u>r.</u>		
Nodule:3 A	gorithmic and Architecture Level Optimization	<u>1</u>		nou	rs		
Computer arit	nmetic techniques for low power. Software level	powe	er opti	mizat	lion.		
Multiplo suppl	v voltago for low power MVS DVS AVS DVES	Juwei Ont	iiiiii Mala	1111Zal Hrivor	.iuii, s. of		
high speed lov	y nower ICs	, Ορι			5 01		
Module:4 R	egister Transfer Level Optimization		7	/ hou	rs		
Low power cle	ock-Interconnect and layout designs- Low power	mem	ory de	esian	and		
low power SRAM architectures. Pre-computation, Clock gating. Data gating Bus							
Encoding techniques, Deglitching for low power, Synthesis of FSM for low power							
Module:5 G	ate and Circuit Level Optimization		6	6 hou	rs		
Transistor variable re-ordering for power reduction. Low power library cell design							
(GDI). Circuit	techniques for reducing power consumption in A	dders	, Mult	ipliers	- · ɔ. · S.		
Module:6 Le	akage Power Reduction		8	8 hou	rs		

Leakage power reduction techniques-stacking techniques, sleepy keeper technique, super cut off CMOS, VTCMOS, MTCMOS, DTCMOS- energy constrained and delay constrained. Sleep Transistor Design- switch efficiency, area efficiency, IR drop, normal Vs reverse body bias. Inrush current and current latency. Power gating – course grain and fine grain. Isolation, retention, power down and wake up methods.

Мо	dule:7	Low Power Techniques	s Automation			5 hours		
L٥١	<i>w</i> power	design techniques autom	nation levels, Po	wer-Aware	e design	flow, Unified		
рои	ver form	at (UPF): Necessity, UPF	tutorial, Low po	wer design	example	e using UPF,		
Des	sign flov	modification with UPF.						
Мо	dule:8	Contemporary Issues				2 hours		
Gue	est lectu	re from Industries and R	& D Organization	ons				
			Tota	al Lecture	hours:	45 hours		
Тех	kt Book	(s)						
1.	Kaushi	k Roy, Sharat Prasad, L	ow Power CM	os vlsi (Circuit De	esign, 2010,		
	Secon	d edition, John Wiley and	Sons Inc,			_		
2.	. Ajit Pal , Low Power VLSI circuits and Systems, 2016, First edition, Springer,							
	India,							
Ref	ference	Books						
1.	Gary K.Yeap, Practical Low Power Digital VLSI Design, 2010, First Edition,							
	Springer, USA.							
2.	Jan M	Rabaey, Massoud Pedra	am, Low power	[.] Design m	nethodolo	ogies, 2014,		
	First E	dition, Springer, US.						
3.	Soudri	s, Dimitrios, Christrian Pig	gnet, Goutis, Co	ostas, Desi	gning CN	MOS circuits		
	for low	power, 2011, First Edition	n, Springer, US	Α.				
4.	Michae	el Keating, David Flynn, I	Robert Aitken, /	Alan Gibbo	ons, Kaiji	an Shi, Low		
	power	methodology manual: for	r system-on-chi	p design, 2	2007, Sp	oringer, New		
	York.							
5.	Abdella	atif Bellaouar, Mohamed I	Elmasry, Low-P	ower Digita	al VLSI D	esign:		
	Circuits	s And Systems, 2019, Sp	ringer, New Yor	<u>'k.</u>				
6.	Low P	ower Digital VLSI Desig	gn Circuits and	d Systems	by S. R	amamurthy,		
	Medteo	c, 1st Edition, June 2014						
Mo	de of E	valuation: Continuous As	sessment Test	, Digital As	ssignmer	nt, Quiz and		
Fin	al Asses	ssment Lest.	07.00.0000					
Red	commer	ided by Board of Studies	07-06-2023					
Арр	proved b	y Academic Council	No. 70	Date	24-06-2	2023		

Course Code	Course Title	L	Т	Р	С
MVLD603L	VLSI Verification Methodologies	3	0	0	3
Pre-requisite	NIL	Sylla	bus v	versi	on
			1.0)	
Course Object	ives				
The course is a	imed to				
1. To introd	uce various verification techniques.				
2. To write	Test bench using System Verilog.				
To devel	op UVM test bench environment				
Course Outco	nes				
At the end of th	e course students will be able to				
1. Demonst	trate the VLSI verification techniques.				
Define cl	asses and create objects.				
3. Develop	design using System Verilog				
 4. Create V 	erification environment using System Verilog				
5. Perceive	the UVM Verification environment.				
6. Create re	eusable verification environment using UVM.				
Module:1 Ver	ification Techniques			6 hoi	Jrs
Introduction to	Verification - Testing Vs Verification - Verification	ation Te	echno	ologie	S -
Functional Veril	ication- Code coverage – Functional coverage.	Test b	ench	– Lin	ear
Test bench - Lir	near Random Test bench - Self-checking Test b	ench –	Regr	essic	n -
RTL Formal Ve	rification.				
Module:2 Bas		<u> </u>		5 hou	Jrs
OOP Terminol	ogy, Creating Object, object deallocation, co	pying c	object	s, sta	atic
variables, Globa	al variables, Inheritance, Polymorphism				
Module:3 Sys	stem Verilog – Data Types & Procedural stat	ements	5	/ hou	<u>ırs</u>
Introduction to :	System Verilog – Literal values-data Types – Ari	ays – A	rray r	netho)ds
- Creating new	types with type def – user defined structures –	Enume	erated	type	s –
attributes - ope	erators – expressions - Procedural statements	s and o	contro	of tion	N -
Processes in Sy	/stem verling – Task and functions – Routine ar	gument	S – R	eturn	ing
Irom a routine	mention Test handle and Desire			<u>C la a i</u>	
Drogrom Inter	inecting rest bench and Design	<u>`oppost</u>	ing t		
Program, Interface, Stimulus timing, Module interactions, Connecting together,					
Monitor Chock	r Sereboard	, mans	actor		er,
Modulo:5 Day	er, Scoreboard			7 60	Irc
Dandomization	in system Verileg Constraints Function		orago		<u> </u>
	r groups Assertions		eraye	, cr	122
Module:6 Uni	versal Verification Methodology			6 hoi	irs
Introduction to	IVM - Verification components - Transaction le		Telina		212
Module:7 LIV	M – Verification Environments			6 hoi	irs
Developing reu	sable verification components - Using Verific	ation c	ompo	nonte	
Developing reu	sable verification environment Dedictor class	SCAC	Ruel	Droto	, – ,
Verification (AU	$ \mathbf{R}/\Delta\mathbf{PR} $	JJCJ -	Dub		001
Module 8 Co	ntemporary Issues			2 hoi	ire
Guest lecture fr	om Industries and P & D Organizations				C IL
	Total Lecture	hours	· 1	5 hou	ır٩
1		110013		~	- J

Тех	kt Book(s)			Text Book(s)						
1.	Ashok B. Mehta, Introduction to S	System Ver	ilog, 202	21, Springer, New York.						
2.	Srivatsa Vasudevan, Practical UV	VM Step b	y Step v	with IEEE 1800.2, 2020,						
Second edition, R R Bowker, CA, USA.										
Reference Books										
1.	1. Vanessa R. Copper, "Getting started with UVM: A Beginner's Guide", 2013, First									
	Edition, Verilab Publishing									
2.	. Christian B Spear, "System Verilog for Verification: A guide to learning the									
	Testbench language features", 2012, Third Edition, Springer, USA.									
3.	Janick Bergeron, "Writing Testbe	nches usir	ig Syste	m Verilog″ 2006, Synopsys						
	Inc., Springer, USA.									
4.	Ray Salmei, "The UVM Primer: A	Step-by-S	tep Intro	oduction to the Universal						
	Verification Methodology" 2013, First Edition, Boston Light Press.									
Мо	de of Evaluation: Continuous Ass	essment 7	Fest, Dig	jital Assignment, Quiz and						
Fin	Final Assessment Test.									
Re	commended by Board of Studies	07-06-20	23							
Ар	proved by Academic Council	No. 70	Date	24-06-2023						

Course Code Course Title L T P C				С		
MVLD606L	Mixed Signal IC Design		3	0	0	3
Pre-requisite	MVLD504L	Syll	abu	IS V	ersi	ion
•		r		1.0		
Course Objective	es:					
The course is aim	ed to					
1. Introduce the	design aspects of dynamic analog circuits and analog-d	iaital i	inte	rfac	e	
electronics in	CMOS technology.	3			-	
2. Specify design	n implementation of ADC & DAC.					
	•					
Course Outcome	9S:					
At the end of the	course the student will be able to					
1. Understand the theory of discrete-time signal processing and its implementation using						
analog techniques.						
2. Design Sampl	e and Hold Circuits using MOS by considering the non-i	dealit	ies.			
3. Analyze CMO	S based Switched Capacitor Circuits.					
4. Understanding	basics of Data Converters.					
5. Analyze the a	rchitectures of ADCs and DAC.					
6. Understand th	e oversampling converter architecture.					
Module:1 Samp	bling:			5	ho	urs
Introduction – sar	mpling - Spectral properties of sampled signals - Overs	ampli	ng -	- Ar	nti-a	lias
filter design. Time	e Interleaved Sampling - Ping-Pong Sampling System	- Ána	alysi	is o	f off	fset
and gain errors in	Time Interleaved Sample and Hold.		,			
Module:2 Samp	bling Circuits			5	ho	urs
Sampling circuits	- Distortion due to switch - Charge injection - Thermal r	noise	in s	amr	ole a	and
holds - Bottom	plate sampling - Gate bootstrapped switch -Nakago	ome (cha	rge	pur	mp.
Characterizing Sa	mple and hold - Choice of input frequency.			0	•	•
Module:3 Swite	hed Capacitor Circuits:			6	ho	urs
Switched Capacit	or (SC) circuits- Parasitic Insensitive Switched Capaci	tor ar	npli	fiers	3 - N	√on
idealities in SC	Amplifiers – Finite gain - DC offset - Gain Bandw	idth /	Prod	duct	ι. F	ully
differential SC circ	cuits - DC negative feedback in SC circuits.					,
Module:4 A/D a	nd D/A Converters Fundamentals:			5	ho	urs
Data converter	fundamentals: Offset and gain Error - Linearity	error	s -	D	vna	mic
Characteristics -	SQNR - Quantization noise spectrum.				,	
Module:5 Analo	og to Digital Converter Architectures:			7	ho	urs
Flash ADC - Red	enerative latch - Preamp offset correction - Preamp D	esian	- n	ece	ssitv	√ of
up-front sample a	nd hold for good dynamic performance. Folding ADC -	Multic	le-E	3it F	'ipe	line
ADCs and SAR A	DC.				.1	
Module:6 Digita	al to Analog Converter Architectures:			7	ho	urs
DAC spectra and	pulse shapes - NRZ vs RZ DACs. DAC Architectures	: Bina	arv	wei	ahte	d -
Thermometer DA	C - Current steering DAC - Current cell design in curr	ent s	teer	rina	DA	C -
Charge Scaling D	AC - Pipeline DAC.					-
Module:7 Over	sampling Converter:			8	ho	urs
Benefits of Overs	ampling -Oversampling with Noise Shaping - Signal	and N	lois	e T	rans	sfer
Functions - First a	and Second Order Delta-Sigma Converters. Introduction	to Co	ontir	านอเ	us-ti	ime
Delta Sigma Mod	ulators - time-scaling - inherent antialiasing property - E	xces	s Lo		Dela	av -
Influence of Op-a	mp non idealities - Effect of Op-amp non idealities - fini	ite da	in b	and	lwid	th -
Effect of ADC and	DAC non idealities - Effect of Clock iitter.	<u>J</u>				
Module:8 Cont	emporary Issues			2	ho	urs
	· · · · · · · · · · · · · · · · · · ·					
	Total Lecture	hour	s:	45	hoi	urs
Text Book(s)		<u> </u>				
1. Frank Ohnhauser, Analog-Digital Converters for Industrial Applications Including an						

	Introduction to Digital-Analog Converters, 2015, First Edition, Springer Publishers.						
2.	. David Johns and Ken Martin, Analog Integrated Circuit Design, 2012, Second Edition						
	John Wiley & Sons Inc.						
Re	Reference Books						
1.	1. Ahmed M.A.Ali, High Speed Data Converters, 2016, First Edition, IET Materials, Circuits						
	& Devices.						
2.	. S.Pavan, R. Schreier and Gabor. C. Temes, Understanding Delta – Sigma Data						
	Converters, 2017, First Edition, IEEE Press.						
Мо	Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final						
Assessment Test							
Re	Recommended by Board of Studies 28-07-2022						
Ар	Approved by Academic Council No. 67 Date 08-08-2022						

Course Code	Course Title	L	Т	Ρ	С
MVLD607L	RFIC Design	3 0 0		3	
Pre-requisite	NIL	Syllabus version			ion
			1.	0	
Course Objecti	ves				
The course is ai	med to				
1. Familiariz	ze with the design of integrated radio frequency	front	-end o	circuit	S.
2. Design o	f transceivers.				
Course Outcor	nes				
At the end of the	e course the student will be able to				
1. Understa	nd the concepts of RF IC Design.		C 1		
2. Understa	nd the High Frequency model of MOS and impo	rtance	e of Im	ipeda	nce
Matching					
3. Classify a	and comprehend the design of Power Amplifiers	S.			
4. Design L	ow Noise ampliners and Mixers with specification	JNS.	malia	tione	ta
5. Design	voos and riequency synthesizers and tr		ihhiica	auons	ιο
	er design of transpoiver				
Module:1 Intr	oduction to RF & Wireless Technology:			5 hoi	ırs
Complexity des	ign and applications - Choice of Technology - F	Basic	conce	nts in	RF
Design: Nonline	arly - Time Variance - Intersymbol Interference	- rand	dom p	roces	ses
- Noise. Definitio	ons of sensitivity - dynamic range -conversion (Gain a	nd Di	stortio	on.
Module:2 Hia	h Frequency Model of RF Transistors and M	atchi	na	5 hc	ours
Net	works:		5		
MOSFET behav	vior at RF frequencies - Noise performance and	limita	tion o	of dev	ices
- Impedance ma	tching networks - transformers and baluns.				
Module:3 Low	Noise Amplifiers and Mixers			5 ho	ours
Low Noise Amp	lifiers: Common Source LNA - Common Gate L	NA -0	Casco	de LN	NA.
Mixers: Design	of Active and Passive Mixers.				
Module:4 RF	Power Amplifiers:			8 ho	ours
Class A, AB, B,	C amplifiers - Class D, E, F amplifiers - RF Pov	ver ar	nplifie	er des	ign.
Module:5 Volt	age Controlled Oscillators:			8 ho	ours
Basic topologie	es, Types of Oscillator- Cross coupled Os	cillato	r, Ih	ree-p	oint
Oscillator, LC V	COs architecture, Tuning range with continuou	s and	discr	ete, V	CO /
phase noise, Qu	adrature Oscillators- basic concepts and topole	ogies.			
Module:6 Free	quency Synthesizers:	NI - : -		8 hc	ours
Analysis of sir	npie PLL, Charge-pump PLL, Jitter, Phase		Se, ⊢ aliuialau	reque	ency
Madular7 Dec	rcnitectures-integer-N and Fractional-N, Freque	ency o		[. 	
Svotom lovel or	agin of fransceiver:	0,004		4 NC	
Modulo:8	ecinication, Receiver design, transmitter design,	, syriti		ues ווי	iyn.
	rom Industrias and D&D Organizations			2 110	uis
	IOITI ITUUSITIES ATU KAD OLYAHIZAUUTS				
	Total Lecture	hour	s:	45 ho	urs
Text Book(s)					
1 B Razavi F	RE Microelectronics 2013 Second Edition Pr	Parso	n Edi	Icatio	n
Limited.		54150		-5410	

2.	Hooman Darabi, Radio-Frequency Integrated Circuits and Systems, 2020,
	Second Edition Cambridge University Press, New York, USA.

Reference Books

- 1. Gu, Qizheng, RF System Design of Transceivers for Wireless Communications, 2010, Springer, USA.
- 2. Bosco Leung, VLSI for Wireless Communication, 2011, Second Edition, Springer, USA.

Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test

Recommended by Board of Studies	07-06-2023			
Approved by Academic Council	No. 70	Date	24-06-2023	

Course Code Course Title L T P		Ρ	С			
MVLD608L	08L VLSI Digital Signal Processing		3	0	0	3
Pre-requisite	NIL	Svl	abu	S V	ersi	on
				1.0		
Course Objective						
The course is aim	ed to					
1. Familiarise va	rious representation methods of DSP algorithms, unders	stand	the			
significance of	the iteration bound and to calculate the same for a give	n sin	ale-	rate	•	
and/or multi-ra	ate DFG.	-	3 -			
2. Understand a	nd apply the architectural transformation techniques suc	h as	retin	ning	١,	
unfolding and	folding on a given DFG.			0		
3. Introduce the	algorithmic and numerical strength reduction methods for	or per	form	nand	ce	
improvement.						
4. Signify and calculate the effects of scaling and round-off noise for a given digital filter						
with limited wo	ord length.		-			
Course Outcome	9S:					
At the end of the	course the student will be able to					
1. Compare varie	ous representation methods of DSP algorithms.					
2. Find iteration	bound of a given single and/or multi-rate DFG.					
3. Understand a	nd transform the given DFG using retiming with constrain	nts.				
4. Apply unfoldin	g and folding transformations on the given DFG.					
5. Understand a	nd apply algorithmic and numerical strength reduction m	etho	ds.			
6. Understand a	nd calculate scaling and round-off noise of the given digi	ital fil	ter v	vith	limi	ted
word length.						
Module:1 Intro	duction to Digital Signal Processing			5 I	hou	rs
Typical DSP Alg	prithms - DSP Application Demands and Scaled CM	OS 1	Tech	nolo	ogie	s -
Representations of	of DSP Algorithms - Data-Flow Graph Representations.		<u> </u>			
Module:2 Iterat	ion Bound			5	ho	urs
Introduction - Loc	p Bound and Iteration Bound - Algorithms for Computi	ng Ite	erati	on I	Bou	nd:
Longest Path Mat	rix and Multiple Cycle Mean algorithms - Iteration Boun	d of I	Mult	I-rat	e D	ata
Flow Graphs.			—			
Module:3 Pipel	ining, Parallel processing and Retiming		<u> </u>	8	ho	urs
Pipelining and Pa	arallel Processing - Introduction to Retiming - Definition	ns ar	id P	rope	ertie	;s -
Solving Systems	of Inequalities - The Bellman-Ford Algorithm - Th	ne F	loyd	W	arsl	nall
Algorithm- Retimi	ng Lechniques.		<u> </u>			
Module:4 Unto				6	ho	urs
Introduction, An	Algorithm for Unfolding, Properties of Unfolding, Critic	al Pa	ath,	Unf	oldi	ng,
and Retiming, Ap	Dications of Unfolding.					
Module:5 Foldi	ng			6	ho	urs
Introduction, Fo	Iding Iransformation, Register Minimization Lec	hniqu	les,	R	egis	ster
Minimization in Fo	bided Architectures.		<u> </u>			
	Titnmic & Numerical Strength Reduction			<u> </u>	our	S
Introduction to Al	gorithmic Strength Reduction, Cook-Toom Algorithm, Ite	erate	a Co	onvo	oluti	on,
Cyclic Convolution	Dn, Discrete Cosine Fransform. Introduction to N	iume	rical	SI	ren	gth
Reduction, Canor	nic Signed Digit Arithmetic, Sub-expression Elimination	, Mu	itiple) (C	onst	ant
iviuitiplication, Sub	p-expression Sharing in Digital Fliters.				I a -	
wooule:/ Scall	ng and Kounding Noise			6		urs
Introduction, Sca	ling and Rounding Noise, State Variable Description	1 Of	Digi	tal	⊢iite	ers,
Scaling and Roun	aing Noise Computation, Rounding Noise in Pipelined II	K FI	ters.		k.	
woaule:8 Cont	emporary issues			2	no	urs
1						

Imple	Text Book(s)							
, imple	ementation,							
ciples,	Algorithms							
ation F	Processing,							
	_							
roces	sing, 2010,							
	-							
ch, 20	10, Fourth							
Edition, McGraw-Hill.								
Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final								
Assessment Test								
Approved by Academic Council No. 67 Date 08-08-2022								
ma 	inciples, mation F Process oach, 20 nt, Quiz							

Course Code Course Title L T P C					С			
MVLD610L	LD610L Nanoscale Devices and Circuit Design				3			
Pre-requisite	MVLD501L	Sylla	ıbu	s vers	sion			
			1	0				
Course Objective	26.			.0				
The course is aim	ed to							
1. Understan	d the CMOS scaling.							
2. Design of	digital, analog circuits using multigate devices, m	nateria	als	and	their			
properties	used for designing Microsensors.							
3. Understan	d the concepts of Microsystem technologies u	sed	for	reali	zing			
Microsens	ors and actuators.							
4. Understan	d the working principles of Interface Electronic Cir	cuits	for	resis	tive,			
capacitive	and temperature sensors.							
Course Outeers								
At the end of the	S:							
At the end of the t	d the CMOS scaling issues							
2 Explain the	a need of novel MOSEET							
3 Explain the	e physics of multicate MOS system							
4. Model nan	owire FETs.							
5. Design dig	ital and analog circuit using multigate devices.							
6. Understan	d the physics of CNTFET							
Module:1 CMO	S Scaling Issues and Solutions			5 ho	ours			
MOSFET scaling	, short channel effects, quantum effects, volume ir	versi	эn,	thres	hold			
voltage, channel e	engineering, source/drain engineering, high-k dielectric,	strain	ı en	ginee	ring,			
multigate technolo	bgy mobility, gate stack.		<u> </u>					
	Suction to novel MOSFEIS			4 no	ours			
SUI WOSFET, M	ulligate transistors, single gate, double gate, triple ga	ale, si	JLLO	una g	jate,			
Module:3 Physi	ics of Multi-gate MOS System			6 ha	ours			
MOS electrostatio	s. 1D. 2D MOS electrostatics, ultimate limits, double	gate	MO	S svs	tem.			
gate voltage effect	t, semiconductor thickness effect, asymmetry effect, ox	ide th	ickn	ess e	ffect			
, electron tunnel c	urrent, two dimensional confinement, scattering.							
Module:4 Nano	wire FETS			6 ho	ours			
Silicon nanowire	MOSFETs, evaluation of I-V characteristics, I-V char	acteria	stics	s for	non-			
degenerate carrie	r statistics, I-V characteristics for degenerate carrier s	statisti	CS,	electr	onic			
conduction in mol	ecules, general model for ballistic nano transistors, CNT	-FETs	3.					
Module:5 Digita	al Circuit Design using Multi-gate Devices			<u>7 ho</u>	ours			
Digital circuits design, impact of device performance on digital circuits, leakage performance								
trade off, multi VT devices and circuits, SRAM design.								
	og Circuit Design using Multi-gate Devices	(heat		<u>9 no</u>	ours			
Analog circuit des	sign, trans-conductance, intrinsic gain, nicker noise, seil	-neau	ng,	Dana	gap			
voltage reference, operational amplifier, comparator designs, mixed signal, successive								
Module 7 Carbo	on Nanotube FFT		<u> </u>	6 ho	urs			
CNT-FFT CNT m	nemories CNT based switches logic gates CNT based	dRF	devi	ices (
based RTDs. CN	FET based applications.			000,				
Module:8 Conte	emporary Issues		Τ	2 hou	ırs			
	Total Lecture h	ours	:	45 ho	ours			
Text Book(s)								
1. J P Colinge, FINFETs and other Multi-gate Transistors, 2010, Springer, Germany.								

2.	B.G.Park, S.W. Hwang &Y.J.Park, Nanoelectronic Devices, 2012, Pan Stanford
	Publisher, Singapore.
Re	ference Books
1.	N. Collaert, CMOS Nanoelectronics: Innovative Devices, Architectures and Applications,
	2012, Reprint Pan Stanford publisher, Singapore.
2.	Niraj K. Jha, Deming Chen, Nanoelectronic Circuit Design, 2011, First Edition, Springer
	London.
Мо	de of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final
Ass	sessment Test

Recommended by Board of Studies 28-07-2022

	20 01 2022		
Approved by Academic Council	No. 67	Date	08-08-2022

Course Code		Course Title	L	Т	Ρ	С
MVLD611L	•	Advanced Computer Architecture	3 0		0	3
Pre-requisi	ite	NIL	Sylla	bus \	/ersi	on
				1.0		
Course Ob	jectiv	/es				
The course	is air	ned to				
I. Intro	duce	advanced concepts of computer architecture.	for m	ultior	0000	cor
	lie k om or	anowiedge on various interconnect topology		unupr	oces	501
3 Unde	erstar	nd Different pipelining techniques.	nultinro	00000	or a	hud
multi	icomr	nuter systems.	nunupre		л u	ind
Course Ou	tcom	les				
At the end of	of the	course the student will be able to:				
1. Unde	erstar	nd the architecture of the various m	ultiproc	esso	rs a	ind
multi	icomp	outer.				
2. Dete	ermine	e the required static or dynamic interconr	iect ne	etworl	< for	a
multi	proce	essor system.				
3. Unde	erstar	nd the Data level parallelism in Vector architect	ure, SI	MD, (JPU	
4. Appi	y ante	erent pipelining techniques to reduce computation	nd mu	e. ticom	nuto	r
5. Aliai	yse u an sc	alable parallel architecture for multiprocessor of	nu nu	ucom	puter	
0. Desi	yn sc		system			
Module:1	Para	llel computer models			5 hoi	Jrs
The state	of c	computing - Conditions of parallelism - [Data a	nd r	esou	rce
Dependenc	:es -	Hardware and software parallelism - Progra	am pa	rtition	ing a	and
scheduling	- G	rain Size and latency Classification of pa	arallel	comp	outers	s -
Multiproces	sors	and Multicomputer				
Module:2	Syst	em Interconnect Architectures			<u>7 hοι</u>	Jrs
Network pr	ropert	ies and routing - Static interconnection N	etwork	s - C)ynar	nic
interconnec	tion I	Networks - Multiprocessor system Interconnec	ts - Hie	erarch	ical b	ous
systems -	Cross	sbar switch and multiport memory - Multista	age ar	id co	mbin	ing
network.	Data	level Develleliers in Vester and CDU Archit			7 6 9 1	
Voctor Arch	Data	revel Parallelism in vector and GPU Archit	ecture	S	/ not	
Registers a	nd dy	mamic typing loads and store parallelism duri	na veci		ecuti	115, on
SIMD Instri	uction	extension for multimedia-Graphics Processi	ng Uni	ts- D	etect	ina
and enhance	cina la	pop-level parallelism	ng on		01001	mg
Module:4	Pipe	lining			7 hoi	Jrs
Linear pipel	line p	rocessor - nonlinear pipeline processor - Instruc	ction pi	peline	Des	ign
- Mechanis	ms İc	r instruction pipelining - Dynamic instruction	schedu	ling -	Brar	ĩch
Handling te	Handling techniques - branch prediction - Arithmetic Pipeline Design.					
Module:5	Merr	ory Hierarchy Design			<u>δ hoι</u>	ırs
Cache bas	ics &	cache performance - reducing miss rate	and m	iss p	enalt	у-
multilevel c	cache	hierarchies - main memory organizations -	desigi	ר of ו	nem	ory
hierarchies.						
Module:6	Shar	red Memory Architectures			<u>ö hoi</u>	Jrs

Symmetric shared memory architectures – distributed shared memory architectures – cache coherence protocols – scalable cache coherence – directory protocols – memory-based directory protocols – cache-based directory protocols.

Module:7 Multiprocessor Architectures 5 hours

Computational models – An Argument for parallel Architectures – Scalability of Parallel Architectures – Benchmark Performances.

Module:8 Contemporary Issues

2 hours

Guest lectures from Industries and R & D Organizations

	Total Lecture hours: 45 hours								
Tex	Text Book(s)								
1.	Kai Hwang, NareshJotwani, Advanced Computer Architecture: Parallelism,								
	Scalability, Programmability, 2017, Third edition, Tata McGraw Hill Education,								
	India.								
2.	David	Patterson, Andrew Wate	erman, T	he RIS	C-V Reader:	An Open			
	Archite	cture Atlas, 2017, First edition	on, Straw	berry Ca	nyon, USA.				
Re	ference	Books							
1.	John L	. Hennessy, David A. Patter	rson, Con	nputer A	rchitecture: A C	antitative			
	Approa	<u>ach, 2011, Fifth edition, Morc</u>	gan Kaufn	nann.					
2.	Dezso	Sima, Terence Fountain, Pe	terr Karsu	ik, Adva	nced computer				
	Archite	ctures – A Design Space Ap	proach, 2	2014, Pe	arson Education	n, India.			
3.	Ananth	i Grama, Anshul Gupta, Geo	orge Kary	pis and \	/ipin Kumar,				
	—Intro	duction to Parallel Computin	ig, 2009, i	Second	edition, Pearsor	ו ו			
	Educat	ion, India.							
Мо	de of E	valuation: Continuous Asse	ssment T	est, Dig	ital Assignment	, Quiz and			
Fin	Final Assessment Test.								
Re	commer	ided by Board of Studies	07-06-20	023					
Api	oroved t	v Academic Council	No. 70	Date	24-06-2023				

Course Code	Course Title	L	Т	Ρ	С			
MVLD613L	System Design with FPGA	3	0	0	3			
Prerequisite	NIL	Sy	llabus	versi	ion			
			1.0					
Course Object	ves :							
This course is a	imed to							
1. Provide a	an overview of FPGA architectures and expound	1 on tl	he soft	core	and			
hard- cor	e processors in association with hardware and s	oftwa	re co-c	lesigr	า.			
2. Understa	2. Understand the specification and operation of Programming for peripheral							
Interface	s and Interconnect Fabrics.							
3. Impleme	nt digital system and IP blocks for various DSP a	Igorith	ims.					
	2							
After completion	nes :							
Alter completion	nd and got an idea about SoC and EDCA archite	oturo	-					
2 Understa	ind and yet an idea about SOC and FPGA alchite	clure:	5.					
2. Ondersid	the working of hardware and software co-design	flow						
4 Interpret	the usage of various peripheral interfaces for sys	tem d	lesian					
5 Develop	a system by choosing suitable interconnect fabric	icini o IS	lesigin					
6. Design t	he system using NIOS II soft core processor, r	nodel	the s	vsterr	ו bv			
using IP	block and design and develop embedded synthe	sis us	sina FF	GA.	. ~J			
y								
Module:1 SoC	Architecture		6	ີ hou	rs			
An Overview of	System on Design – FPGA SoC Architecture –	Case	Study	: Xilin	IХ			
/ Intel FPGA								
Module:2 Soft	Core and Hard Core Processor		10) hou	rs			
Processor Archi	tecture and Configurability Features: Nios II Prod	cesso	r – Nio	S				
V Processor –	ARM cortex A9 architecture							
Module:3 Har	dware – Software Co-design Flow		Z	<u>' nou</u>	rs			
Hardware Desig	IN FIOW – Software Design FIOW - EDA Tool Hard	iware	and					
Module:4 Proc	ramming for paripharal Interfaces		6	bou	rc			
	32 SDDAM SDAM Controllor VCA Audio and	Vidoo) nou	15			
External Bus br	idge and IrDA	viueu	, 110,					
Module:5 Inte	rconnect Fabrics			l hou	rs			
Avalon Switch	Fabric Interconnect - Implementation and	Functi	ions-In	teara	ted			
Design Environi	ment			<u>J</u>				
Module:6 Syst	em Design		6	3 hou	rs			
Traffic light Con	troller, Real Time Clock - Interfacing using FPGA	: VGA	, LCD	, Carr	nera			
Module:7 IP co	pres based SoC design		8	3 hou	rs			
Edge detection	Edge detection algorithm- Image edge detection in FPGA using SOBEL Edge							
Detection/ Can	ny Edge Detection Algorithm, Colour and Brightn	ess E	nhanc	emer	nt			
algorithm- Contrast enhancement using RGB to HSV algorithm based on FPGA –								
SRAM Configuration using Controllers								
Module:8 Cont	emporary Issues		2	<u> 2 hou</u>	rs			
Guest lecture fr	om Industry and R & D Organizations							
	Total Lecture	hours	s: 4	5 hοι	ırs			
Text Book(s)								

1.	ZainalabedinNavabi, "Embedded Core Design with FPGAs", 2011, Tata McGraw Hill Ltd, India.								
2.	Pong P. Chu, Embedded SoPC Design with NIOS II Processor and VERILOG examples", 2012, Wiley, USA.								
Ref	Reference Books								
1	Donald G. Bailey," Design for Embedded Image Processing on FPGAs", 2012, Wiley, USA.								
2	Jivan S. Parab, Rajendra S Gad, G.M. Naik, "Hands-on Experience with Altera FPGA Development Boards", 2018, Springer, USA.								
3	Joseph Yu, System-on-Chip Design with Arm Cortex-M Processors, 2019, ARM Education Media								
Мо	de of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and								
Fin	Final Assessment Test.								
Red	commended by Board of Studies 07-06-2023								
App	Approved by Academic Council No. 70 Date 24-06-2023								

Course Code	Course Title	L	Т	Р	C
MVLD616L	Scripting Languages For Electronic	3	0	0	3
	Design Automation				
Pre-requisite NIL			abus	s versi	on
			1	.0	
	Ves:				
The course is all	med to				
	te scripts in the LINUX environment.	orl T(ים וי	d Duth	on
2. TO Siu 2. To siu	to the scripts for automation using the language	en, ru Se like	Dorl		on.
Dythou	n		FEII	, ICL 6	inu
i yuloi					
Course Outcon	ies:				
At the end of the	e course the student will be able to				
1. Explai	in and apply commands in LINUX environment				
2. Devel	op and execute the Perl scripts.				
3. Analyz	ze and Handle files, directories and manage p	roces	ses i	using F	Perl
scripts	S.			Ū	
4. Use T	CL scripts for automation.				
5. Build	TCL scripts to Handle files, directories and mai	nage p	proce	SS.	
6. Devel	op Python scripts to interpret files and directori	es.			
Module:1 LIN	JX Basics			5 hou	urs
Introduction to L	inux, File System of Linux, General usage of Lir	iux Ke	ernel	and Ba	sic
Commands, Lin	iux users and group, Permissions for file, o	lirecto	ry a	nd use	ers,
Searching a file	and directory, zipping and unzipping concepts.				
	L Basics	1	<u></u>	/ hoi	urs
HISTORY and Co	ncepts of PERL - Scalar Data - Arrays and	LISU		- Con	troi
Structures – Has	nes - Basics I/O - Regular Expressions – Funci	ions -	IVIISC	ellaneo	Jus
Module:3 Adv	anced Topics in DEDI			6 hoi	ire
Directory acces	s - File and Directory manipulation - Proc		lana		urs it -
Packages and	Modules Applications of PERI scripts to	Fler	rtr∩ni	r Des	ian
Automation.	modules Appliediens of TERE scipts to		20011	0 000	igii
Module:4 TCL	Basics			7 hou	urs
An Overview of	TCL and Tk -Tcl Language syntax – Variables -	- Expr	essic	ns – Li	sts
- Control flow – I	procedures - Errors and exceptions - String ma	nipula	ations	5.	
Module:5 Adv	anced Topics in TCL	•		6 hou	urs
Accessing files-	Processes. Applications - Controlling Tools - E	Basics	of T	k.	
Module:6 Pyth	non Basics			6 hou	urs
Introduction to F	Python – Using Python interpreter – Brief tour	on sta	Indar	d librai	ry -
Control flow Too	ls – Data structures – Regular Expressions.				
Module:7 Adv	Module:7 Advanced Topics in Python 6 hours				
Input and Outpu	ut – Errors and Exceptions – Classes – Modu	les- I	Appli	cations	of
Python scripts to	Electronic Design Automation.			<u>.</u>	
Module:8 Contemporary Issues: 2 hou					urs
Guest lectures fr	rom industry and R&D Organizations				
 	T	h c · · ·	<u>.</u>	E la a co	
	I otal Lecture	nour	s: 4	o nour	S

Tex	Text Book(s)							
1.	Larry Wall, Tom Christiansen, John	sen, John Orwant, Programming PERL, 2012,						
	Fourth Edition, Oreilly Publications.							
2.	John K. Ousterhout, Ken Jones, Tcl and	the '	Tk Toolki	it, 2010, Second Edition,				
	Pearson Education, India							
Re	eference Books							
1.	Guido van Rossum Fred L. Drake, Jr.	, edi	or, Pyth	on Tutorial Release 3.2.3,				
	2012, Python Software Foundation.		-					
2.	Randal L. Schwartz, Brian D Foy, T	om F	hoenix,	Learning Perl, 2021, 8th				
	Edition, O'Reilly Media, Inc.			-				
3.	Mark Lutz, Learning Python, 2013, 5th	Editi	on, O'Re	illy Media, Inc.				
Мо	ode of Evaluation: Continuous Assessm	ent T	est, Dig	ital Assignment, Quiz and				
Fin	nal Assessment Test		-	-				
Re	Recommended by Board of Studies 07-06-2023							
Ар	oproved by Academic Council No	. 70	Date	24-06-2023				

Course Code Course Title	L	Т	Р	С		
MVLD617L Neuromorphic Engineering and	3	0	0	3		
Hardware Accelerators				_		
Pre-requisite NIL Syllabus V						
	J	1.	0			
Course Objectives:			-			
The course is aimed to						
1. Provide an overview of the current trends and method	ls in	Neur	omor	phic		
 Describe the neuronal dynamics of biological neural circu 	uits					
3. Describe the mechanisms of signal encoding, plasticity,	and n	etwor	'k.			
4. To design a system with multiple supply and threshold	volta	aes a	solia	able		
for various applications.		J	1-1			
5. Discuss the fundamental concepts and current tre	ends	in d	desia	ning		
neuromorphic devices, circuits and systems.			5	5		
Course Outcomes:						
At the end of the course the student will be able to:						
 Understand various aspects of computational neuroscier 	ice.					
Demonstrate the trade-offs between various neuromorph	nic im	pleme	entati	ons.		
3. Demonstrate the ability to identify and formulate problem	ns of	neur	omor	phic		
computing.	_					
4. Perform analog electrical modelling of Neuromorphic Blo	cks.					
5. Utilize computer design tools and experimental measure	emen	t in th	ne de	sign		
of neuromorphic Architectures.						
6. Understanding Neuromorphic Accelerators						
Module:1 Brain as a potential Technology		4	hou	rs		
The Nature of Neuronal Computation, Approaches to Unders	stand	ing B	rains,	An		
Example Model of Neural Circuit Processing, Toward Neuromo	rphic	Cogn	ition.			
Module:2 Artificial Neural Networks in Hardware		6	i hou	rs		
Digital Accelerators, FPGA-Based Accelerators, Analog/Mixed-	Signa	I Acc	elerat	tors,		
Case Study: An Energy-Efficient Accelerator for Adaptive Dyna	mic F	rogra	mmir	ng.		
Module:3 Hardware implementation of Spiking Neural		7	' hou	rs		
Networks						
Different Generations of Neural Networks, Spiking Neuron (Opera	ating	Princi	iple,		
Models of Spiking Neurons, Methods of Data Representation	n in S	Spikin	ig Ne	ural		
Networks and Network Learning Methods, Assessment of N	letwo	rk Pr	oces	sing		
Efficiency. Edge Computing Using Spiking Neurons, Har	dwar	e As	pects	s of		
Semiconductor Implementations of Spiking Neurons, Netwo	rk R	econf	igurat	tion,		
Synapse Plasticity, Neuro-Processors.						
Module:4Understanding Neuromorphic System7 hours						
Address-Event Representation, AER Encoders, Arbitration Med	chani	sms,	Enco	ding		
Mechanisms, Multiple AER Endpoints, Address Mapping, Rout	ting, (Consi	derat	ions		
for AER Link Design.						
Module:5 Building Neuromorphic Systems- Silicon Neuro	ns	6	hou	rs		

Introduction, Silicon Neuron Circuit Blocks, Conductance Dynamics Spike-Event Generation, Spiking Thresholds and Refractory Periods, Spike-Frequency Adaptation and Adaptive Thresholds, Axons and Dendritic Trees, Additional Useful Building Blocks, Silicon Neuron Implementations, Subthreshold Biophysically Realistic Models, Compact I&F Circuits for Event-Based Systems, Generalized I&F Neuron Circuits, Above Threshold, Accelerated-Time, and Switched-Capacitor Designs.

Module:6Building Neuromorphic Systems- Silicon Synapse8 hoursIntroduction, Silicon Synapse Implementations, Non-Conductance-Based CircuitsConductance-Based Circuits, NMDA Synapse, Dynamic Plastic Synapses, Short-Term Plasticity, Long-Term Plasticity.

Мо	dule:7	Accelerating DNNs in Ha	ardware			5 hours		
GP	'Us, Sp	atial Accelerators, Systolic	: Arrays, HW-	-SW Co-D	esign, B	Sinary Neural		
Net	works,	Bit-Precision, Pruning and	l Sparsity, Ve	ctor Archit	ectures,	FPGAs and		
GΡ	U Archi	tectures, ASIC Accelerator	s, In-Memory	Computing	g Accele	rator Design,		
Nei	uromorp	hic Accelerators, Custom a	and reconfigur	able accel	erators,	Case studies		
on	archited	ctures for machine learnin	g, Emerging	Technolog	ies, ReF	RAM, Analog		
Acc	elerato	rs, Emerging Hardware Arc	hitectures, Me	emristor ba	ised des	igns, Spiking		
Arc	hitectur	es.						
Мо	dule:8	Contemporary Issues				2 hours		
Gue	est lectu	ire from Industry and R & D	Organization	IS				
			Tota	I Lecture	hours:	45 hours		
Тех	t Book	(s)						
1.	Liu, Sł	ih-Chii, Tobi Delbruck, Gia	acomo Indiver	ri, Adrian V	Vhatley,	and Rodney		
	Dougla	as, Event-based neuromorp	hic systems, 1	2014, Johr	n Wiley 8	& Sons, USA.		
2.	Gerstn	er, Wulfram, Werner M.	Kistler, Richa	ard Naud,	and Lia	am Paninski.		
	Neuro	nal dynamics: From Single I	Neurons to Ne	tworks and	Models	of Cognition,		
	2014,	Cambridge University Pres	s, USA.			0		
Ref	ference	Books						
1.	Amari,	Shun'ichi. The Handbook	of Brain Theo	ory and Ne	ural Net	works, 2003,		
	MIT pr	ess, Cambridge, USA.		-				
2.	Mead,	Carver, and Mohammed Is	smail, Analog	VLSI Impl	ementati	ion of Neural		
	Syster	ns, 1989, Springer Science	& Business N	ledia, USA	۱.			
3.	Jan M	.Rabaey, Massoud Pedrar	n, Low powei	r Design n	nethodol	logies, 2014,		
	First E	dition, Springer, US.						
4.	Abdera	azek Ben Abdallah and k	Khanh Dang	Ngo Neuro	omorphic	c Computing		
	Principles and Organization, 2022, First Edition, Springer, USA.							
Мо	de of E	valuation: Continuous Ass	essment Test	, Digital A	ssignme	nt, Quiz and		
Fin	al Asse	ssment Test.		•	-			
Red	Recommended by Board of Studies 07-06-2023							
Apr	proved I	by Academic Council	No. 70	Date	24-06-2	2023		

Course Code	L	Т	Р	С		
MEDS601L	Electromagnetic Interference and	3	0	0	3	
	Čompatibility					
Pre-requisite	NIL	Syl	labus	versi	ion	
			1.	.0		
Course Objecti	Ves					
The course is ai	med at:					
1. Imparting	knowledge about EMI environment					
2. Teaching	EMI coupling principles, EMI control techniques	s and	desi	gn of		
PCBs for	EMC					
3. Giving ex	posure to EMI Standards, Regulations and Mea	asure	ments	5		
Course Outcon	nes					
At the end of the	e course, the student will be able to					
1. Understa	nd terminologies of EMI and EMC					
2. Analyze a	and understand various EMI coupling mechanis	ms				
3. List vario	us EMI Test and Measurement methods					
4. Analyze v	arious techniques needed to suppress EMI					
5. Perceive	different ENIC regulations followed worldwide					
6. Ability to	design an Electromagnetic Compatible systems	5. 	- :			
7. Analyze a	and comprehend different techniques needed	for :	signa	Integ	rity	
and ability	y to understand various models for EIVII/EIVIC					
	Environment		1 h	ourc		
	itions and units of Daramators. Sources of E		<u>4 N</u>	ours atod a	nd	
radiated EML T	initions and units of Parameters, Sources of E	ivii, C	onuu	cieu a	unu	
Module:2 FM	Coupling Mechanisms		6 hc	ure		
Conducted Ra	idiated and Transient Coupling Common I	mner	lanco	Grou	ind	
Coupling Radi	ated Common Mode and Ground Loop (nipet `ounl	ina	Radia	hot	
Differential Mod	e Coupling Near Field Cable to Cable Coupling	ι Ρο	wer M	lains a	and	
Power Supply C		y, i O			ind	
Module:3 EM	Test and Measurements	8 hours				
EML Specificatio	on / Standards / Limits: Units of specifications	Civi	lian	standa	rds	
Military standar	ds FMI Test Instruments / Systems FMI T	, on est	FMI	Shield	her	
Chamber. On	en Area Test Site. TFM Cell Antei	nnas.	Cc	onduct	ors	
Sensors/Injector	s/Couplers. EMI Measurement Methods: Milita	rv Te	st Me	thod a	and	
Procedures, Cal	ibration Procedures, Modeling interferences	J				
Module:4 EM	Control Techniques		7 ho	ours		
Shielding, Filte	ring, Grounding, Bonding, Isolation Trans	form	er, 7	Fransi	ent	
Suppressors,	Cable Routing, Signal Control, Compone	nt S	Select	ion a	and	
Mounting, Elect	rostatic discharge protection schemes					
Module:5 E	MC Standards and Regulations		5 hc	ours		
National and In	tentional standardizing organizations- FCC, C	ISPR	, AN	SI, DO	DD,	
IEC, CENEEC, I	FCC CE and RE standards, CISPR, CE and RE	Stan	dards	, IEC/I	ΞN,	
CS standards, S	SAE Automotive EMC standard, Frequency ass	ignm	ent -	spectr	um	
conversation.	· · ·	-				
Module:6 Sys	stem Design for EMC		8 ho	ours		
PCB Traces C	ross Talk, Impedance Control, Power Distril	outio	n De	coupli	ng,	
Zoning, Motherboard Designs and Propagation Delay Performance Models,						

Sy	System Enclosures, Power line filter placement, Interconnection and Number of						
Pri	Printed Circuit Boards, PCB and subsystem decoupling						
Мо	Module:7 Signal Integrity and EMI/EMC Models 5 hours						
Eff	Effect of terminations on line wave forms, Matching schemes for Signal Integrity,						
Eff	ects of li	ne discontinuities, Statistica	al EMI/EN	/IC mode	ls.		
Мо	dule:8	Contemporary Issues				2 hours	
Gu	est Lecti	ures from Industry and, Res	search ar	nd Develo	opment	Organizations	
			Total I	Lecture I	nours:	30 hours	
Te	xt Book	(s)					
1.	Claytor	R. Paul, Introduction	toElectro	magneti	ccompa	tibility,2010, 2 nd	
	edition	., Wiley & Sons, New Jers	sey				
Re	ference	Books					
1.	HenryV	I.ott, Electromagnetic Co	mpatibility	y Engine	ering,	2011, 1sted. John	
	Wiley a	nd Sons, NewJersey.					
2.	Patrick	G. André and Kenneth	Wyatt, E	MI Trou	bleshoo	ting Cookbook for	
	Produc	t Designers 2014, 1st ed., :	SciTech F	Publishin	g, New .	Jersey	
Mo	de of Ev	aluation: Continuous Asses	ssment, D	Digital As	signmer	nt, Quiz and Final	
As	Assessment Test						
	Recommended by Board of Studies 07-06-2023						
Re	Recommended by Board of Studies 07-06-2023						

Course Code	Course Title	L	Т	Ρ	С		
MEDS616L Machine Leaning and Deep Learning				0	3		
Pre-requisite	Syllabus version						
1.0							
Course Objectiv	/es						
The course is air	ned at						
1. Understar	nding about the fundamentals of machine le	arning	g and	l neu	ıral		
networks							
2. Enabling	he students to acquire knowledge about pattern	reco ر	gnitio	n.			
3. Motivating) the students to apply deep learning algorithms	for s	olving	real	lite		
problems.							
Course Outeem							
At the end of the	ies course the student will be able to						
1 Comprehe	and the categorization of machine learning algo	rithmo					
2 Understar	ad the types of neural network architectures ac	tivatio	, n fund	rtions			
3 Acquaint	with the pattern association using neural network	ks	iii iuni		,		
4. Explore v	arious terminologies related with pattern recogn	ition					
5. Adopt diff	erent feature selection and classification technic	nues					
6. Understar	nd the architectures of convolutional neu	ral n	etwor	ks a	and		
Comprehe	end advanced neural network architectures	s suc	ch as	s RN	JN,		
Autoenco	ders, and GANs.						
Module:1 Lear	ning Problems and Algorithms		4 ho	ours			
Various paradio	gms of learning problems, Supervised, Sei	ni-sup	pervis	ed a	and		
Unsupervised al	gorithms						
Module:2 Neu	ral Network – I		<u>8 ho</u>	ours			
Differences betw	een Biological and Artificial Neural Networks - 1	ypica	Arch	itectu	ire,		
Common Activat	Ion Functions, Multi-layer neural network, Linear	Sepa	rabili	ту, не	epp		
Meduler2 New	Adaline, Standard Back propagation		0 hc				
Training Algorith	a Network - II	Dolto			oro		
associativo Auto	associative Kohonen Self Organising Mans F	vamn	las of	Foat			
Mans Learning	Vector Quantization Gradient descent B	oltzm	ann I	Mach	ino		
Learning	vector Quantization, Oradient descent, D	JILZING	1 1111	viacri	IIIC		
Module:4 Mac	hine Learning: Terminologies		7 hc	ours			
Classifying Sam	ples: The confusion matrix. Accuracy, Precision	. Reca	all. F1	- Scc	ore.		
the curse of dim	ensionality, training, testing, validation, cross va	lidatio	n, ov	erfitti	na,		
under-fitting the	data, early stopping, regularization, bias and va	riance	;		9,		
Module:5 Mac	hine Learning: Feature Selection and		7 ho	ours			
Clas	sification						
Feature Selection	n, normalization, dimensionality reduction, Clas	sifiers	s: K <mark>N</mark> I	N, S∖	/M,		
Decision trees,	Naïve Bayes, Binary classification, multi c	lass	classi	ficati	on,		
clustering.							
Module:6 Con	volutional Neural Networks		<u>5 ho</u>	ours			
Feed forward ne	tworks, Activation functions, backpropagation i	n CNI	N, opt	imize	ers,		
batch normaliza	tion, convolution layers, pooling layers, fully	conn	ected	laye	ers,		
aropout, Exampl	es of UNINS.						

Мо	dule:7	RNNs, Auto encoders an	d GANs			4 hours
Sta	ite, Stru	cture of RNN Cell, LSTM ar	າd GRU, 1	Fime dist	ributed la	yers, Generating
Тех	kt, Auto	encoders: Convolutional	Auto enco	oders, D	e-noising	auto encoders,
Var	iational	auto encoders, GANs: The	discrimina	ator, gen	erator, DO	CGANs
Мо	dule:8	Contemporary Issues				2 hours
Gu	est Lect	ures from Industry and, Res	earch and	d Develo	pment Or	ganizations
			Tota	l Lecture	e hours:	45 hours
Тех	t Book	(s)				
1.	J. S. R	. Jang, C. T. Sun, E. Mizu	tani, Neu	ro Fuzz	y and Sc	oft Computing -
	A Com	putational Approach to L	earning a	and Mac	hine Inte	elligence, 2012,
	PHI le	arning				
2.	Deep	Learning, Ian Good fellow,	Yoshua	Bengio a	and Aaror	n Courville, MIT
	Press,	ISBN: 9780262035613, 201	16.			
Ref	ference	Books				
1.	The E	lements of Statistical Leari	ning. Trev	vor Hast	ie, Rober	t Tibshirani and
	Jerome	e Friedman. Second Edition	. 2009.			
2.	Unders	standing Machine Learning.	ShaiSha	lev-Shw	artz and	Shai Ben-David.
	Cambr	idge University Press. 2017				
Mo	de of Ev	aluation: Continuous Asses	sment, Di	gital Ass	ignment,	Quiz and Final
Ass	sessmer	nt Test		-	-	
Red	commer	nded by Board of Studies	07-06-20)23		
Apr	proved b	y Academic Council	No. 70	Date	24-06-20)23

Course Co	Code Course Title L T P						С		
MEDS501L	-	Embedded System Desi	gn	3	0	0	3		
Pre-requis	ite	NIL		Syllal	ous	vers	ion		
•				-	1.0)			
Course Ob	jective	es							
The course aimed at									
1. Abil	1. Ability to understand comprehensively the technologies and techniques underlying in								
buil	ding ar	embedded solution to a wearable, mobile	e and portable s	systen	n.	,	0		
2. Ana	lyze U	ML diagrams and advanced Modelling sch	nemes for differe	ent us	se ca	ses.			
3. Unc	lerstan	d the building process of embedded syste	ms						
Course Ou	itcome								
The studen	ts will I	be able to							
1. Defi	ine an	embedded system and compare with gene	eral purpose sys	stem.					
2. App	reciate	the methods adapted for the developmer	nt of a typical en	nbedo	ded s	syste	em.		
3. Get	introdu	uced to RTOS and related mechanisms.				-			
4. Clas	ssify ty	pes of processors and memory architectur	re						
5. Diffe	erentia	te the features of components and networ	ks in embedded	d syst	ems				
6. Dev	elop r	eal-time working prototypes of different	small-scale a	nd m	ediu	m-s	cale		
emt	bedded	Systems.							
7. Арр	rehend	the various concepts in Multi-Tasking							
Module:1	Intro	luction to Embedded System				5 hc	urs		
Embedded	syster	n processor, hardware unit, software emb	edded into a sy	/stem	, Exa	ampl	e of		
an embedd	ed sys	tem, Embedded Design life cycle, Layers	of Embedded S	Systen	าร.				
Module:2	Embe	dded System Design Methodologies				<u>5 hc</u>	urs		
Embedded	Syste	m modelling [FSM, SysML, MARTE], UN	IL as Design to	ool, U	MLı	notat	ion,		
Requireme	nt Ana	<u>ysis and Use case Modelling, Design Exa</u>	mples						
Module:3	Build	ing Process For Embedded Systems				4 hc	urs		
Preprocess	sing, C	ompiling, Cross Compiling, Linking, Locat	ting, Compiler D	Driver	, Lin	ker I	Иар		
Files, Linke	er Scrip	ts and scatter loading, Loading on the tar	get, Embedded	File S	syste	m.			
Module:4	Syste	m design using general purpose				7 hc	urs		
	proce	essor							
Microcontro	oller a	rchitectures (RISC, CISC), Embedded	Memory, Strat	tegic	sele	ctior	n of		
processor	and m	emory, Memory Devices and their Cha	racteristics, Ca	che l	vlem	ory	and		
Various ma	ipping i	echniques, DMA.							
Module:5	Comp	onent Interfacing & Networks				<u>9 no</u>	urs		
Memory In	iterfacii	ng, I/O Device Interfacing, Interrupt Con	trollers, Network	'ks to	r En	lped	ded		
systems- U	15B, P	CI, PCI Express, UART, SPI, 12C, CAN, V	vireiess Applica	ations	- BI	ueto	oth,		
Zigbee, VVI-	FI.,6L0	VVPAN, Evolution of Internet of things (Io	I).						
WOQUIE:6	Opera	ating Systems	a ations at a	<u>)</u>		<u>/ nc</u>	ours		
Introduction	n to U	perating Systems, Basic Features & Fur	nctions of an O	pera	ing	Syst	em,		
Kernel & I	ts ⊢ea	tures ipolied loop system, interrupt driv	ven system, m	iuiti ra	ate	syste	emj,		
Processes/Task and its states, Process/Task Control Block, Threads, Scheduler, Dispatcher.									
	wulti		ulian els 20		- 1 -	o no	ours		
Context S	Context Switching , Scheduling and various Scheduling algorithms, Inter-process								
Communication (Shared Memory, Mail Box, Message Queue), Inter Task Synchronization									
(Semaphor	e, Mui	ex), Dead Lock, Priority Inversion (bol	unded and unb	Jound	ea),	Prie	onty		
Ceiling Pro						ን ኡ -			
woaule:8	Conte	sinporary issues					urs		
						5 6 -			
		i otai Lecture nours:			4	อ ทด	urs		

Tex	Text Book(s)								
1.	Raj Kamal, "Embedded systems	Architecture,	Program	nming and Design", Tata					
	McGraw- Hill, 2016.								
2.	Wayne Wolf "Computers as compo	nents: Principl	es of Eml	bedded Computing System					
	Design", The Morgan Kaufmann Se	eries in Compu	iter Archit	ecture and Design, 2013.					
Re	eference Books								
1.	Lyla B. Das," Embedded Systems a	an Integrated A	Approach'	, Pearson Education, 2013.					
		-							
2.	Shibu K V," Introduction to Embedo	ded Systems",	McGraw	Hill Education(India) Private					
	Limited, 2014	-							
3.	Sriram V Iyer, Pankaj Gupta "	' Embedded	Real Tir	me Systems Programming",					
	Tata McGraw- Hill, 2012								
4.	Steve Heath, "Embedded Systems	Design", EDN	Series, 2	013.					
Мо	ode of Evaluation: Continuous Assess	sment, Digital	Assignme	nt, Quiz and Final					
Ass	Assessment Test								
Re	Recommended by Board of Studies 28-07-2022								
Ap	Approved by Academic Council No. 67 Date 08-08-2022								
				1					

Course Code	Co	urse Title	tle L T P								
MVLD696J	Study O	riented Pro	ject					02			
Pre-requisite	NIL				Syll	abus	vers	ion			
	1.0				0						
Course Objective	es:										
1. The stude	nt will be able to analys	e and inter	oret publis	shed litera	ture f	or inf	orma	tion			
pertaining	to niche areas.										
2. Scrutinize	technical literature and a	arrive at con	clusions.								
3. Use insigh	t and creativity for a bett	er understa	nding of th	ne domain	of int	erest	•				
Course Outcome	;:										
1. Retrieve, related to	analyse, and interpret niche areas/focused don	published nains.	literature/	books pro	ovidin	g inf	orma	tion			
2. Examine to	echnical literature, resolv	/e ambiguity	, and dev		usion	IS.					
3. Synthesize	e knowledge and use ins	sight and cre	eativity to	better und	ersta	nd the	e don	nain			
4. Publish th	ne findings in the pe	er reviewed	d journals	s / Natio	nal /	Inte	rnatio	onal			
Conference	es.										
Module Content			(Proje	ect duratio	on: O	ne se	emes	ter)			
This is oriented focussed domains	This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty.										
Mode of Evalua	tion: Evaluation involve	s periodic	reviews b	y the facu	ulty w	vith w	hom	the			
student has regis	student has registered. Assessment on the project - Report to be submitted, presentation										
and project reviev	and project reviews - Presentation in the National / International Conference on Science,										
Engineering Technology.											
Recommended by	Board of Studies	28-07-202	2								
Approved by Academic Council No. 67 Date 08-08-2022											

Course Code	Course Title	L	Т	Р	С
MVLD697J	Design Project				02
Pre-requisite	NIL	Syll	Syllabus versio		
			1.0		
O					

Course Objectives:

- 1. Students will be able to design a prototype or process or experiments.
- 2. Describe and demonstrate the techniques and skills necessary for the project.
- 3. Acquire knowledge and better understanding of design systems.

Course Outcome:

- 1. Develop new skills and demonstrate the ability to upgrade a prototype to a design prototype or working model or process or experiments.
- 2. Utilize the techniques, skills, and modern tools necessary for the project.
- 3. Synthesize knowledge and use insight and creativity to better understand and improve design systems.
- 4. Publish the findings in the peer reviewed journals / National / International Conferences.

Module Content	(Project duration: One semester)

Students are expected to develop new skills and demonstrate the ability to develop prototypes to design prototype or working models related to an engineering product or a process.

Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science, Engineering Technology.

Recommended by Board of Studies	28-07-202	2	
Approved by Academic Council	No. 67	Date	08-08-2022

		•	
			10
Syllabus versio		sion	
1.0			
	Syll	Syllabus	Syllabus vers

Course Objectives:

To provide sufficient hands-on learning experience related to the design, development and analysis of suitable product / process so as to enhance the technical skill sets in the chosen field and also to give research orientation.

Course Outcome:

- 1. Considerably more in-depth knowledge of the major subject/field of study, including deeper insight into current research and development work.
- 2. The capability to use a holistic view to critically, independently and creatively identify, formulate and deal with complex issues.
- 3. A consciousness of the ethical aspects of research and development work.
- 4. Publications in the peer reviewed journals / International Conferences will be an added advantage.

Module	e Content	(1	Project du	ration: one semester)					
1.	 Dissertation may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities. 								
2.	2. Dissertation should be individual work.								
3.	Carried out inside or outside the university, in any relevant industry or research institution.								
4.	4. Publications in the peer reviewed journals / International Conferences will be an added advantage.								
Mode of Evaluation: Assessment on the project - Dissertation report to be submitted, presentation, project reviews and Final Oral Viva Examination.									
Recommended by Board of Studies 28-07-2022									
Approved by Academic Council No. 67 Date 08-08-2022									

Course	Code		Course Title	Title L T P					
MVLD69	99J	Internst	nip II/ Disserta	ation II					12
Pre-requ	uisite	NIL				Syll	abus	vers	ion
							1.0	D	
Course	Course Objectives:								
To provi	de sufficie	ent hands-on learning	g experience r	elated to	the desigr	n, dev	elopn	nent	and
analysis field.	of suitabl	e product / process s	so as to enhan	ce the tec	hnical skil	ll sets	in the	e cho	sen
Course	Outcome	:							
Upon su	ccessful o	completion of this cou	irse students w	ill be able	to				
1. F	⁻ ormulate easonable	specific problem secific assumptions and co	statements fo onstraints.	r ill-defin	ed real	life p	roble	ms	with
2. F	Perform lite	erature search and / o	or patent searc	h in the a	rea of inte	rest.			
3. C	Conduct e esults.	xperiments / Design	and Analysis	/ solution	iterations	and	docur	ment	the
4. F	Perform er	ror analysis / benchm	narking / costin	g.					
5. 5	Synthesize	the results and arriv	e at scientific o	conclusion	s / produc	ts / so	olutior	۱.	
6. L		the results in the form	n of technical i	eport / pre	esentation				
Module	Content			(Proj	ect durat	ion: o	ne se	emes	ter)
1. C a da 2. C	Dissertatio analysis, p ata, softw Dissertatio	n may be a theoretic prototype design, fabr are development, app n should be individua	al analysis, mo rication of new plied research al work.	odeling & equipme and any o	simulation nt, correla ther relate	i, expe tion a ed acti	erimei nd ar vities	ntatio nalysi	n & s of
3. 0	Carried ou	ut inside or outside	the university	in any r	elevant ir	ndustr	y or	resea	arch
4. F	nstitution. Publicatior dded adva	ns in the peer review	wed journals ,	Internati	onal Conf	erenc	es w	ill be	an
Mode of Evaluation: Assessment on the project - Dissertation report to be submitted, presentation, project reviews and Final Oral Viva Examination.									
Recommended by Board of Studies 28-07-2022									
Approved by Academic Council No. 67 Date 08-08-2022									

Cou	se code	Course Title	L	T	Ρ	С				
MEN	G501P	Technical Report Writing	0	0	4	2				
Pre-I	requisite	Nil	Syll	abus	s ver	sion				
	-			1	.0					
Cou	se Objectivo	es								
1.To	develop writi	ng skills for preparing technical reports.								
2. To	2. To analyze and evaluate general and complex technical information.									
3 To	enable profi	ciency in drafting and presenting reports								
0.10	o. To onable pronoioney in dratting and presenting reports.									
Cou	se Outcome									
	se end of the	, course, the student will be able to								
	nstruct error	free sentences using appropriate grammar, vocabulary	and s	tvle						
2 Ar	not det enter	need rules of grammar for proofreading reports		lyio.						
2.74	orprot inform	ation and concents in propering reports.								
		ation and concepts in preparing reports.								
4. De	emonstrate th	le structure and function of technical reports.								
5. Im	prove the ab	ility of presenting technical reports.								
	-									
Indic	ative Experi	ments								
	Basics of T	echnical Communication								
1.	General and	d Technical communication,								
	Process of o	communication, Levels of communication								
	Vocabulary	/& Editing								
2.	Word usage	e: confusing words, Phrasal verbs								
	Punctuation	and Proof reading								
	Advanced	Grammar								
3.	Shifts: Voice	e, Tense, Person, Number								
	Clarity: Pror	foun reference, Misplace and unclear modifiers								
	Elements of	percentrical writing	aliabá	0.000		20				
4.	Sentence cl	arity and combining	Silche	sanc	i siai	iy				
		condensation								
5	Steps to eff	ective precis writing								
0.	Paraphrasir	and summarizing								
6	Technical F	Reports: Meaning Objectives Characteristics and Cate	aorie	s						
0.	Formats of	reports and Prewriting: purpose audience sources	of info	rmati	on					
7.	organizing t	he material		maa	on,					
	Data Visua	lization								
8.	Interpreting	Data - Graphs - Tables – Charts - Imagery - Info grag	ohics							
_	Systematiz	ation of Information: Preparing Questionnaire								
9.	Techniques	to Converge Objective-Oriented data in Diverse Techn	ical R	epor	ts					
10	Research a	Ind Analyses: Writing introduction and literature review	, Refe	erenc	e sty	/les,				
10.	Synchronize	e Technical Details from Magazines, Articles and e-cont	tent		-					
	Structure of	of Reports								
11	Title – Prefa	ace – Acknowledgement - Abstract/Summary – Introduc	ction -	Mate	erials	s and				
	Methods – I	Results – Discussion - Conclusion - Suggestions/Reco	mmer	ndatic	ons					
12	Writing the	Report: First draft, Revising,								
12.	Thesis state	ement, Developing unity and coherence								
13	Writing sci	entific abstracts: Parts of the abstract, Revising the al	ostrac	t						
10.	Avoiding Pla	agiarism, Best practices for writers								
14	Supplemen	tary Texts								
17.	Appendix –	Index – Glossary – References – Bibliography - Notes								
15	Presentatio	on								

	Presenting Technical Reports									
	Planning creating and digital presentation of reports									
	Total Laboratory hours : 60 hours									
Text	Text Book(s)									
1.	Raman, Meenakshi and Sangeeta Sharma, (2015).Technical Communication: Principles and Practice, Third edition, Oxford University Press, New Delhi.									
Refe	erence Books									
1.	Aruna, Koneru, (2020). Englis Education, Noida.	h Language	Skills	for Engineers	. McGraw Hill					
2.	Rizvi,M. Ashraf (2018)Effective Hill Education, Chennai.	Technical C	ommunic	ation Second	Edition. McGraw					
3.	Kumar, Sanjay and Pushpalatha, for Engineers, Oxford University I	(2018). Engl Press.	ish Lang	uage and Corr	munication Skills					
4.	 4. Elizabeth Tebeaux and Sam Dragga, (2020).The Essentials of Technical Communication, Fifth Edition, Oxford University Press. 									
Mode	e of Evaluation : Continuous Asses	ssment Tests	Quizzes	, Assignment,	Final					
Asse	essment Test			-						
Reco	ommended by Board of Studies	19-05-2022								
Appr	oved by Academic Council	No. 66	Date	16-06-2022						

Course Co	de	Course Title	L	Т	Ρ	С
MSTS501P		Qualitative Skills Practice	0	0	3	1.5
Pre-requisi	te	Nil	Sylla	abus	s ver	sion
				1.	.0	
Course Obj	jective	S:				
	develo	p the quantitative ability for solving basic level problems	5.			
2. 10	Improv	e the verbal and professional communication skills.				
	4					
At the end	tcome	course, the student will be able to				
		course, the student will be able to				
		ppropriate analytical skills.				
	ve pro	beins pertaining to quantitative and reasoning ability.				
J. Lea	ann bei monotr	ter vocabulary for workplace communication.				
4. Dei	nonsu	ate appropriate benavior in an organized environment.				
	Busi	ness Etiquette: Social and Cultural Etiquette; Writing	g			
Module:1	Com	pany Blogs; Internal Communications and Planning	:		9 ho	ours
	Writi	ng press release and meeting notes				
Value, Man	ners-	Netiquette, Customs, Language, Tradition, Building a	blog	, De	evelo	ping
brand mess	age, F	AQs', Assessing Competition, Open and objective Cor	nmur	nicat	ion,	Two
way dialogu	ie, Un	derstanding the audience, Identifying, Gathering Infor	matic	n,	Analy	ysis,
Determining	j, Sele	cting plan, Progress check, Types of planning, Write	eas	shor	t, ca	tchy
headline, G	et to th	ne Point –summarize your subject in the first paragrap	h., B	ody-	- Ma	ke it
relevant to y	/our au					
Module:2	Time	management skills			3 ho	ours
Prioritizatior	ı, Proc	rastination, Scheduling, Multitasking, Monitoring, Worki	ng un	der	pres	sure
and adherin	ig to de	adlines				
	Prese	entation skills – Preparing presentation; Organizing				
Module:3	mate	rials; Maintaining and preparing visual aids; Dealing	ł		7 ho	ours
10 Tine to	with	questions				
Toot Plue	prepar	e PowerPoint presentation, Outlining the content, Pas	sing	the	Elev	ator
Stratagia pr	sky un	nking, Introduction, body and conclusion, use of Fo	to or	nse antiv		JIOI,
oudience [Josian	of posters. Setting out the ground rules. Dealing	with	into	runti	your one
Staving in c	ontrol	of the questions. Handling difficult questions	WILLI	me	Tupu	0113,
		titative Ability I 1-Numberproperties: Averages:				
Module:4	Prog	ressions: Percentages: Ratios			11 ho	ours
Number of	factors	. Factorials. Remainder Theorem. Unit digit position.	Tens	diai	t pos	sition.
Averages, \	Weight	ed Average, Arithmetic Progression, Geometric Prog	ressi	on,	Harn	nonic
Progression	i, incr	ease and Decrease or Successive increase, Typ	es c	of ra	atios	and
proportions.						
Module:5	Reas	oning Ability - L1 – Analytical Reasoning			8 ho	ours
Data Arrang	gement	(Linear and circular & Cross Variable Relationship), Blo	od R	elat	ions,	
Ordering / ra	anking	/ grouping, Puzzle test, Selection Decision table.				
Module:6	Verba	al Ability -L1 – Vocabulary Building			7 ho	ours

Synonyms & Antonyms, One word substitutes, Word Pairs, Spellings, Idioms, Sentence completion, Analogies.

	Total Lecture hours: 45 hours							
Reference Books								
1.	Kerry Patterson, Joseph Grenny, Ron McMillan and Al Switzler, (2017).2 nd Edition, Crucial Conversations: Tools for Talking when Stakesare High .McGraw-Hill Contemporary, Bangalore.							
2.	Dale Carnegie,(2016).How to Win Friends and Influence People. Gallery Books, New York.							
3.	Scott Peck. M, (2003). Road Less Travelled. Bantam Press, New York City.							
4.	SMART, (2018). Place Mentor, 1 st edition. Oxford University Press, Chennai.							
5.	FACE, (2016). Aptipedia Aptitude Encyclopedia. Wiley publications, Delhi.							
6.	ETHNUS, (2013). Aptimithra. McGraw – Hill Education Pvt .Ltd, Bangalore.							
Websites:								
1.	www.chalkstreet.com							
2.	www.skillsyouneed.com							
3.	www.mindtools.com							
4.	www.thebalance.com							
5.	www.eguru.ooo							
Mode of Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final Assessment Test								
Rec	ommended by Board of Studies 19-05-2022							
Арр	roved by Academic Council No.66 Date 16-06-2022							

Course Code		Course Title	L	Т	P	С			
MSTS502P		Quantitative Skills Practice	0	0	3	1.5			
Pre-requisi	te	Nil	Syllabus version						
					1.0				
Course Objectives:									
1. To develop the students' advanced problem solving skills.									
2. To enhance critical thinking and innovative skills.									
Course Outcome:									
At the end of the course, the student will be able to									
1. Create positive impression during official conversations and interviews.									
Demonstrate comprehending skills of various texts.									
3. Improve advanced level thinking ability in general aptitude.									
4. Develop emotional stability to tackle difficult circumstances.									
Resume skills – Resume Template; Use of power verbs;				os;	0 k				
Module: 1	Туре	s of resume; Customizing resume			21	iours			
Structure of	a star	dard resume, Content, color, font, Introduction to P	ower	verb	s and	Write			
up, Quiz c	on typ	es of resume, Frequent mistakes in customizi	ng r	esum	ne, La	ayout-			
Understand	ing diff	erent company's requirement, Digitizing career portf	olio.						
Module:2 Inte		view skills – Types of interview; Techniques to fa ote interviews and Mock Interview	to face		3 h	iours			
Structured	Structured and unstructured interview orientation. Closed questions and hypothetical								
questions, I	ntervie	wers' perspective, Questions to ask/not ask during	g an	inter	view, `	√ideo			
interview, R	ecorde	ed feedback, Phone interview preparation, Tips to c	ustoi	mize	prepa	ration			
for personal	interv	iew, Practice rounds.							
Module:3	Emot storn	ional Intelligence - L1 – Transactional Analysis; ning; Psychometric Analysis; SWOT analysis	Braiı	n	12 H	ours			
Introduction, Contracting, ego states, Life positions, Individual Brainstorming, Group									
Brainstormi	ng, St	epladder Technique, Brain writing, Crawford's S	lip w	riting	appr	oach,			
Reverse bra	ainstori	ning, Star bursting, Charlette procedure ,Round rob	in bra	ainsto	orming	, Skill			
Test, Perso	nality T	est, More than one answer, Unique ways, SWOT ar	nalys	is.					
Module:4	Qual Prob Loga	arithms; Functions; Quadratic Equations; Set The	ation omet eory	ıs; ry;	14 H	ours			
Counting, G	Groupin	g, Linear Arrangement, Circular Arrangements, Co	onditi	onal	Proba	ıbility,			
Independent and Dependent Events, Properties of Polygon, 2D & 3D Figures, Area &									
Volumes, Heights and distances, Simple trigonometric functions, Introduction to logarithms,									
Basic rules of logarithms, Introduction to functions, Basic rules of functions, Understanding									
Quadratic Equations, Rules & probabilities of Quadratic Equations, Basic concepts of Venn									
Module:5	Reas and I	oning ability - L3 – Logical reasoning; Data Analy nterpretation	ysis		7 h	ours			

Syllogisms, Binary logic, Sequential output tracing, Crypto arithmetic, Data Sufficiency, Data Interpretation-Advanced, Interpretation tables, pie charts & bar chats. Verbal Ability - L3 – Comprehension and Critical Module:6 7 hours reasoning Reading comprehension, Para Jumbles, Critical Reasoning (a) Premise and Conclusion, (b) Assumption & Inference, (c) Strengthening & Weakening an Argument. **Total Lecture hours:** 45 hours Reference Books Michael Farra and JIST Editors, (2011). Quick Resume & Cover Letter Book: Write 1. and Use an Effective Resume in Just One Day. Jist Works, Saint Paul, Minnesota. Flage Daniel E, (2003). The Art of Questioning: An Introduction to Critical 2. Thinking. Pearson, London. David Allen, (2015). Getting Things done: The Art of Stress-Free productivity. 3. Penguin Books, New York City. SMART, (2018). Place Mentor 1st edition. Oxford University Press, Chennai. 4. 5. FACE, (2016). Aptipedia Aptitude Encyclopedia. Wileypublications, Delhi. 6. ETHNUS, (2013). Aptimithra. McGraw-Hill Education Pvt Ltd, Bangalore. Websites: www.chalkstreet.com 1. www.skillsyouneed.com 2. www.mindtools.com 3. www.thebalance.com 4. 5. www.eguru.ooo Mode of Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final Assessment Test Recommended by Board of Studies 19-05- 2022 Approved by Academic Council No.66 Date 16-06-2022