

# **School of Electronics Engineering**

## M. Tech. – Automotive Electronics

Curriculum and Syllabus 2023-24

### VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

#### MISSION STATEMENT OF VELLORE INSTITUTE OFTECHNOLOGY

**World class Education**: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

**Cutting edge Research**: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

**Rewarding Co-creations**: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

## VISION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

To be a leader by imparting in-depth knowledge in Electronics Engineering, nurturing engineers, technologists and researchers of highest competence, who would engage in sustainable development to cater the global needs of industry and society.

#### MISSION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

- Create and maintain an environment to excel in teaching, learning and applied research in the fields of electronics, communication engineering and allied disciplines which pioneer for sustainable growth.
- Equip our students with necessary knowledge and skills which enable themto be lifelong learners to solve practical problems and to improve the quality of human life

## **PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)**

#### The graduates of the programme will be able to

1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems

2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry

3. Graduates will function in their profession with social awareness and responsibility

4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country

5. Graduates will be successful in pursuing higher studies in engineering or management

6. Graduates will pursue career paths in teaching or research

## **PROGRAMME OUTCOMES (POs)**

On completion of the Programme the students will have the

PO\_01: Having an ability to apply mathematics and science in engineering applications.

PO\_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment

PO\_03: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information

PO\_04: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice

PO\_05: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems

PO\_06: Having adaptive thinking and adaptability in relation to environmental context and sustainable development

PO\_07: Having a clear understanding of professional and ethical responsibility

PO\_08: Having a good cognitive load management skills related to project management and finance

## **PROGRAMME SPECIFIC OUTCOMES (PSOs)**

## On completion of M. Tech. Automotive Electronics, graduates will be able to:

**PSO1.** Apply advanced concepts of Automotive Electronics to design and develop components and systems for applications in automotive systems.

**PSO2**. Use state-of-art hardware and software tools to experiment the automotive electronics systems to solve industry and real-world problems.

**PSO3**. Independently carry out research on diverse Automotive Electronics strategies to address practical problems and present a substantial technical report.

|      | CREDIT INFO             |         |  |  |  |  |  |  |  |  |
|------|-------------------------|---------|--|--|--|--|--|--|--|--|
| S.no | Catagory                | Credits |  |  |  |  |  |  |  |  |
| 1    | Discipline Core         | 24      |  |  |  |  |  |  |  |  |
| 2    | Discipline Elective     | 12      |  |  |  |  |  |  |  |  |
| 3    | Projects and Internship | 26      |  |  |  |  |  |  |  |  |
| 4    | Open Elective           | 3       |  |  |  |  |  |  |  |  |
| 5    | Skill Enhancement       | 5       |  |  |  |  |  |  |  |  |
|      | Total Credits           | 70      |  |  |  |  |  |  |  |  |

|                   | Discipline Core |                                                    |             |                                              |   |     |   |     |     |     |  |     |  |     |  |   |   |         |
|-------------------|-----------------|----------------------------------------------------|-------------|----------------------------------------------|---|-----|---|-----|-----|-----|--|-----|--|-----|--|---|---|---------|
| sl.no Course Code |                 | ourse Code Course Title                            |             | Course Title Course Type Ver L T<br>sio<br>n |   | sio |   | sio |     | sio |  | sio |  | sio |  | Ρ | J | Credits |
| 1                 | MAME501L        | Sensors and Engine Management Systems              | Theory Only | 1.0                                          | 3 | 0   | 0 | 0   | 3.0 |     |  |     |  |     |  |   |   |         |
| 2                 | MAME502L        | Microcontrollers for Vehicular Systems             | Theory Only | 1.0                                          | 3 | 0   | 0 | 0   | 3.0 |     |  |     |  |     |  |   |   |         |
| 3                 | MAME502P        | Microcontrollers for Vehicular Systems Lab         | Lab Only    | 1.0                                          | 0 | 0   | 2 | 0   | 1.0 |     |  |     |  |     |  |   |   |         |
| 4                 | MAME503L        | Vehicle Control Systems                            | Theory Only | 1.0                                          | 3 | 0   | 0 | 0   | 3.0 |     |  |     |  |     |  |   |   |         |
| 5                 | MAME504L        | Automotive Networking and Protocols                | Theory Only | 1.0                                          | 3 | 0   | 0 | 0   | 3.0 |     |  |     |  |     |  |   |   |         |
| 6                 | MAME504P        | Automotive Networking and Protocols Lab            | Lab Only    | 1.0                                          | 0 | 0   | 2 | 0   | 1.0 |     |  |     |  |     |  |   |   |         |
| 7                 | MAME505L        | Electric and Electronic Power Systems for Vehicles | Theory Only | 1.0                                          | 3 | 0   | 0 | 0   | 3.0 |     |  |     |  |     |  |   |   |         |
| 8                 | MAME506L        | Automotive Power Electronics and Motor Drives      | Theory Only | 1.0                                          | 3 | 0   | 0 | 0   | 3.0 |     |  |     |  |     |  |   |   |         |
| 9                 | MAME506P        | Automotive Power Electronics and Motor Drives Lab  | Lab Only    | 1.0                                          | 0 | 0   | 2 | 0   | 1.0 |     |  |     |  |     |  |   |   |         |
| 10                | MAME507L        | Alternative Drives, Traction and Controls          | Theory Only | 1.0                                          | 3 | 0   | 0 | 0   | 3.0 |     |  |     |  |     |  |   |   |         |

|       |             | Discipline Elective                                                       |             |                 |   |   |   |   |         |
|-------|-------------|---------------------------------------------------------------------------|-------------|-----------------|---|---|---|---|---------|
| sl.no | Course Code | Course Code Course Title                                                  |             | Ver<br>sio<br>n | L | т | Р | J | Credits |
| 1     | MAME605L    | Vehicular Information and Communication Systems                           | Theory Only | 1.0             | 3 | 0 | 0 | 0 | 3.0     |
| 2     | MAME606L    | Parallel Programming using Multi cores and Graphical<br>Programming Units | Theory Only | 1.0             | 3 | 0 | 0 | 0 | 3.0     |
| 3     | MAME607L    | Digital Signal Processing and its Applications                            | Theory Only | 1.0             | 3 | 0 | 0 | 0 | 3.0     |
| 4     | MAME607P    | Digital Signal Processing and its Applications Lab                        | Lab Only    | 1.0             | 0 | 0 | 2 | 0 | 1.0     |
| 5     | MAME608L    | Open Source Hardware and Software System Design                           | Theory Only | 1.0             | 3 | 0 | 0 | 0 | 3.0     |
| 6     | MAME609L    | Machine Vision System for Automotive                                      | Theory Only | 1.0             | 3 | 0 | 0 | 0 | 3.0     |
| 7     | MAME609P    | Machine Vision System for Automotive Lab                                  | Lab Only    | 1.0             | 0 | 0 | 2 | 0 | 1.0     |
| 8     | MAME610L    | Automotive Fault Diagnostics                                              | Theory Only | 1.0             | 3 | 1 | 0 | 0 | 4.0     |
| 9     | MAME611L    | Emission Control and Diagnosis                                            | Theory Only | 1.0             | 3 | 0 | 0 | 0 | 3.0     |
| 10    | MAME612L    | Vehicle Safety Systems                                                    | Theory Only | 1.0             | 2 | 0 | 0 | 0 | 2.0     |
| 11    | MAME613L    | Vehicle Bodies                                                            | Theory Only | 1.0             | 2 | 0 | 0 | 0 | 2.0     |
| 12    | MAME614L    | Engine Peripherals                                                        | Theory Only | 1.0             | 2 | 0 | 0 | 0 | 2.0     |
| 13    | MAME615L    | Vehicle Security and Comfort Systems                                      | Theory Only | 1.0             | 3 | 0 | 0 | 0 | 3.0     |
| 14    | MAME616L    | Automotive IoT                                                            | Theory Only | 1.0             | 3 | 0 | 0 | 0 | 3.0     |

|    |          | Discipline Electiv                                           | e           |     |   |   |   |   | -   |
|----|----------|--------------------------------------------------------------|-------------|-----|---|---|---|---|-----|
| 15 | MAME617L | Augmented and Virtual Reality for Automotive<br>Applications | Theory Only | 1.0 | 3 | 0 | 0 | 0 | 3.0 |
| 16 | MAME618L | Soft Computing Techniques                                    | Theory Only | 1.0 | 3 | 0 | 0 | 0 | 3.0 |
| 17 | MEDS501L | Embedded System Design                                       | Theory Only | 1.0 | 3 | 0 | 0 | 0 | 3.0 |
| 18 | MEDS601L | Electromagnetic Interference and Compatibility in ESD        | Theory Only | 1.0 | 3 | 0 | 0 | 0 | 3.0 |
| 19 | MEDS616L | Machine Learning and Deep Learning                           | Theory Only | 1.0 | 3 | 0 | 0 | 0 | 3.0 |

|       | Projects and Internship |                                |             |          |   |   |   |   |         |  |  |  |
|-------|-------------------------|--------------------------------|-------------|----------|---|---|---|---|---------|--|--|--|
| sl.no | Course Code             | Course Title                   | Course Type | Ver      | L | т | Ρ | J | Credits |  |  |  |
|       |                         |                                |             | sio<br>n |   |   |   |   |         |  |  |  |
| 1     | MAME696J                | Study Oriented Project         | Project     | 1.0      | 0 | 0 | 0 | 0 | 2.0     |  |  |  |
| 2     | MAME697J                | Design Project                 | Project     | 1.0      | 0 | 0 | 0 | 0 | 2.0     |  |  |  |
| 3     | MAME698J                | Internship I/ Dissertation I   | Project     | 1.0      | 0 | 0 | 0 | 0 | 10.0    |  |  |  |
| 4     | MAME699J                | Internship II/ Dissertation II | Project     | 1.0      | 0 | 0 | 0 | 0 | 12.0    |  |  |  |

|       |             | Open Elective               |               |          |   |   |   |   |         |
|-------|-------------|-----------------------------|---------------|----------|---|---|---|---|---------|
| sl.no | Course Code | Course Title                | Course Type   | Ver      | L | т | Ρ | J | Credits |
|       |             |                             |               | sio<br>n |   |   |   |   |         |
| 1     | CFOC508M    | Entrepreneurship            | Online Course | 1.0      | 0 | 0 | 0 | 0 | 3.0     |
| 2     | MFRE501L    | Francais Fonctionnel        | Theory Only   | 1.0      | 3 | 0 | 0 | 0 | 3.0     |
| 3     | MGER501L    | Deutsch fuer Anfaenger      | Theory Only   | 1.0      | 3 | 0 | 0 | 0 | 3.0     |
| 4     | MSTS601L    | Advanced Competitive Coding | Soft Skill    | 1.0      | 3 | 0 | 0 | 0 | 3.0     |

|       |             | Skill Enhancement            |             |            |   |   |   |   |         |
|-------|-------------|------------------------------|-------------|------------|---|---|---|---|---------|
| sl.no | Course Code | Course Title                 | Course Type | Ver<br>sio | L | т | Р | J | Credits |
|       |             |                              |             | n          |   |   |   |   |         |
| 1     | MENG501P    | Technical Report Writing     | Lab Only    | 1.0        | 0 | 0 | 4 | 0 | 2.0     |
| 2     | MSTS501P    | Qualitative Skills Practice  | Soft Skill  | 1.0        | 0 | 0 | 3 | 0 | 1.5     |
| 3     | MSTS502P    | Quantitative Skills Practice | Soft Skill  | 1.0        | 0 | 0 | 3 | 0 | 1.5     |

| Course Code                   | Course Title                                                                                     |         | L     | Τ   | Ρ           | С       |
|-------------------------------|--------------------------------------------------------------------------------------------------|---------|-------|-----|-------------|---------|
| MAME501L                      | Sensors and Engine Management Systems                                                            |         | 3     | 0   | 0           | 3       |
| Pre-requisite                 | Nil                                                                                              | Syl     | labı  |     | ersi        | on      |
|                               |                                                                                                  |         |       | 1.0 |             |         |
| Course Objective              |                                                                                                  |         |       |     |             |         |
| The course is aim             |                                                                                                  |         |       |     |             |         |
|                               | ails of the Engine sensor waveforms and methods to a                                             |         |       |     |             |         |
| 0                             | an overview of petrol and diesel engines using Engine                                            |         |       | •   |             | J).     |
| <ol><li>Giving insi</li></ol> | ghts into the operation of ECU with the suitable mappir                                          | ng of s | sens  | ors |             |         |
|                               |                                                                                                  |         |       |     |             |         |
| Course Outcome                |                                                                                                  |         |       |     |             |         |
|                               | course, the student will be able to                                                              |         |       |     |             |         |
|                               | nd the concepts of ECU design for automotive applicat                                            |         |       |     |             |         |
|                               | sponse of Transducers and sensors for automotive ap                                              |         |       |     |             |         |
|                               | d the various after treatment and alternative fuel-based                                         |         | ems   | •   |             |         |
| •                             | nd the operation of petrol engine management system                                              |         |       |     |             |         |
|                               | d the operation of automotive sensors and fuel injection                                         |         |       | 5.  |             |         |
|                               | nd the Electronic control unit pertaining to chassis and                                         | body    | •     |     |             |         |
| 7. Illustrate th              | ne various Automotive subsystems.                                                                |         |       |     |             |         |
|                               | rania Control Unit(ECU) Design                                                                   |         |       | 6   | ho          |         |
|                               | ronic Control Unit(ECU) Design                                                                   |         |       |     |             |         |
|                               | ECU design for automotive applications, Need for otive, design complexities of ECUs, V-Model for |         |       |     |             |         |
|                               |                                                                                                  | Auto    | mot   | ive | EC          | US      |
|                               | og and digital interfaces.                                                                       |         |       | 6   | ho          |         |
|                               | cs of Engine Control systems<br>tion – Petrol and Diesel; IC engine as a propulsion sou          | roo fo  | r Ai  |     |             |         |
|                               | ne controls and management; Control objectives link                                              |         |       |     |             |         |
|                               | d vehicle performance; advantages of using Electronic                                            |         |       |     |             | icy,    |
|                               | ol Engine Management Systems                                                                     | engi    |       |     | ' <b>ho</b> | ure     |
|                               | I engine controls, Electronic ignition, multi-point fuel inju                                    | ection  | dir   |     |             |         |
|                               | of ignition system and fuel injection system; Architecture                                       |         |       |     | th          |         |
| multi point fuel inj          | • • • •                                                                                          |         |       | 0   |             |         |
|                               | el Engine Management Systems                                                                     |         |       | 6   | ho          | urs     |
|                               | ngine Controls ; Evolution of diesel engine controls; in-                                        | line fi | uel n |     |             | <u></u> |
|                               | EGR control; Electric motor driven fuel pump; electronic                                         |         |       |     |             |         |
| control and timing            | · · ·                                                                                            |         |       |     | •           |         |
|                               | Treatment and Alternate Fuel                                                                     |         |       | 6   | ho          | urs     |
|                               | sion – source, control, tests, standards (Indian), Exhau                                         | st Ga   | s Re  |     |             |         |
|                               | converter, Alternative fuels – hydrogen – CNG, LPG, Bi                                           |         |       |     |             |         |
|                               | sducer Principles                                                                                |         | _     | 6   | ho          | urs     |
|                               | sification and basic principles, General Input-output                                            | confi   | aura  |     |             |         |
|                               | d dynamic characteristics of instruments, Variable res                                           |         |       |     |             |         |
|                               | nductor strain gages and their signal conditioning ,In                                           |         |       |     |             |         |
|                               | sensors, Hall effect sensors, Capacitive transduc                                                |         |       |     |             |         |
| •                             | neir signal conditioning, Ultrasonic sensors.                                                    |         |       |     |             |         |
|                               | ors for Transportation                                                                           |         |       | 6   | ho          | urs     |
|                               | rque sensors/ Force sensors, Sensors Flap air flow ser                                           | nsors.  | Ter   |     |             |         |
|                               | sensors, Ranging radar (ACC) Power Train:- Fuel leve                                             |         |       |     |             |         |
|                               | , Lambda Oxygen sensor, Hotwire air mass meter Cha                                               |         |       |     |             |         |
|                               | or, Vibration and acceleration sensors, Pressure senso                                           |         |       |     |             | РΜ      |
|                               |                                                                                                  | •       |       |     |             |         |
| sensors.                      |                                                                                                  |         |       |     |             |         |
|                               | emporary Issues                                                                                  |         |       | 2   | ho          | urs     |

|     |                                                                              | Το                                       | tal Lecture ho | ours:         | 45 hours                   |  |  |  |  |
|-----|------------------------------------------------------------------------------|------------------------------------------|----------------|---------------|----------------------------|--|--|--|--|
| Tex | kt Book                                                                      | (S)                                      |                |               |                            |  |  |  |  |
| 1.  |                                                                              | mentals of Internal Combust<br>oublisher | ion Engines -  | H.N. Gup      | ta - Second edition (2015) |  |  |  |  |
| 2.  | Interna                                                                      | I Combustion Engines - 201               | 2 -V Ganesan   | –Tata Mc      | Graw Hill                  |  |  |  |  |
| 3.  | 3. Automotive Sensors (Sensors Technology) –2009 by John Turner & Joe Watson |                                          |                |               |                            |  |  |  |  |
|     | (Autho                                                                       | r)                                       |                |               |                            |  |  |  |  |
| Re  | ference                                                                      | Books                                    |                |               |                            |  |  |  |  |
| 1.  | Autom                                                                        | otive Sensors, BOSCH. 2002               | 2              |               |                            |  |  |  |  |
| 2.  | Funda                                                                        | mentals of Automotive Electr             | onics Book - S | Sixth Edition | on-2015 - Alma Hillier     |  |  |  |  |
| Мо  | de of E                                                                      | Evaluation: Continuous Ass               | essment Test   | , Digital     | Assignment, Quiz and Final |  |  |  |  |
|     | Assessment Test                                                              |                                          |                |               |                            |  |  |  |  |
| Re  | commer                                                                       | nded by Board of Studies                 | 28-07-2022     |               |                            |  |  |  |  |
| Ap  | proved b                                                                     | y Academic Council                       | No. 67         | Date          | 08-08-2022                 |  |  |  |  |

| Course Code                        | Course Title                                                                      |               |           | LT     | Ρ           | С        |
|------------------------------------|-----------------------------------------------------------------------------------|---------------|-----------|--------|-------------|----------|
| MAME502L                           | Microcontrollers for Vehicular                                                    | Systems       |           | 3 0    | 0           | 3        |
| Pre-requisite                      | Nil                                                                               |               | Syllab    |        | ersic       | <u>n</u> |
|                                    |                                                                                   |               |           | 1.0    |             |          |
| Course Objective                   |                                                                                   |               |           |        |             |          |
| The course is aim                  |                                                                                   | miaraaantr    | aller for | vahial | ~~          |          |
|                                    | g the students to various automotive grade                                        |               |           |        |             |          |
|                                    | Embedded C programming with 8051 cont<br>the architecture and features of ARM pro |               |           | 85501  | •           |          |
|                                    | The architecture and reatures of Artim pro                                        | 003301.       |           |        |             |          |
| Course Outcome                     |                                                                                   |               |           |        |             |          |
|                                    | course, the students will able to                                                 |               |           |        |             |          |
|                                    | d the architecture of 8051 Microcontroller.                                       |               |           |        |             |          |
| 2. Write prog                      | rams for solving problems using 8051 Mic                                          | rocontroller. |           |        |             |          |
| 3. Comprehe                        | nd ARM architecture & its features                                                |               |           |        |             |          |
|                                    | he architecture of Cortex-M.                                                      |               |           |        |             |          |
|                                    | RM processor based experiments using E                                            |               |           |        |             |          |
|                                    | overview of the types of ARM cores in th                                          | e market an   | d to ma   | ke a s | suita       | ble      |
|                                    | an application.                                                                   |               |           |        |             |          |
| 7. Comprene                        | nd various Microcontroller for powertrain a                                       | and body ele  | ctronics  | •      |             |          |
| Module:1 Intro                     | duction to 8 bit microcontrollers                                                 |               |           | F      | i hou       | ire      |
|                                    | d Harvard / Princeton, 8bit Architecture                                          | [8051 PIC1    | 81 Exte   |        |             |          |
|                                    | imers/counters, Serial Communication, In                                          | -             |           | indi i | nom         | 01 y     |
|                                    | microcontrollers programming for                                                  |               |           | 7      | ' hou       | urs      |
|                                    | , Safety and Temperature                                                          |               |           | -      |             |          |
|                                    | Embedded C [8051, PIC18], Appli                                                   | cations on    | Body,     | safe   | ty a        | and      |
| Temperature.                       |                                                                                   |               |           |        | ,           |          |
| Module:3 ARM                       |                                                                                   |               |           |        | ' hou       |          |
|                                    | losophy, Overview of ARM architecture                                             |               |           |        |             | le],     |
|                                    | , Conditional Execution, Pipelining, Vector                                       | Tables, Exc   | eption h  |        | -           |          |
| Module:4 ARM                       |                                                                                   |               |           |        | <u>6 ho</u> |          |
| Architecture of Co                 | ortex-M, Memory Addressing, IO ports, Ti                                          | imers/counte  | er, Watc  | h Dog  | Tim         | ıer,     |
|                                    | UART, Interrupts, Displays, C programmi                                           | ng.           |           |        |             |          |
|                                    | core programming                                                                  |               | al interf |        | 6 hou       | urs      |
|                                    | gramming for IO ports, Timers, PWM, ADC                                           | and Extern    | al intern |        | . hai       |          |
|                                    | motive 32-bit MCU<br>for Automotive Applications, Atmel – SMA                     |               |           |        | b hou       |          |
| 32-bit Automotive                  | MCU, NXPAutomotive MCU.                                                           |               | seu mo    | 0, 31  | - 35        | 05       |
|                                    | motive MCU by Applications                                                        |               |           | F      | i hoi       | irs      |
|                                    | ocontrollers for Powertrain Control, H                                            | lybrid and    | Electric  |        |             |          |
|                                    | Body Electronics.                                                                 |               | LICOUR    | , //u/ | man         | 00,      |
| Module:8 Conte                     |                                                                                   |               |           | 2      | 2 hou       | urs      |
|                                    |                                                                                   |               |           |        |             |          |
|                                    | Total Lecture hours:                                                              |               |           | 45     | i hou       | urs      |
|                                    |                                                                                   |               |           |        |             |          |
| Text Book(s)                       |                                                                                   |               |           |        |             |          |
|                                    | icrocontroller and Embedded Systems                                               | Usina Asse    | mblv ar   | nd C   | -3rd        |          |
|                                    | ammad Ali Mazidi -2015                                                            | 20g / 000     |           |        | 5,0         |          |
|                                    |                                                                                   |               |           |        |             |          |
| <b>Reference Books</b>             |                                                                                   |               |           |        |             |          |
|                                    | •<br>Introllers - David Calcutt, Fred Cowan, H                                    | assan Parch   | izadeh ·  | – New  | /nes        | s –      |
| 1. 8051 Microco<br>2. 2011 The Def |                                                                                   | eph Yiu –Ne   | wness -   | 2015   |             | s –      |

| Mode of Assessment: Continuous Assessment and Final Assessment Test |            |      |            |  |  |  |  |
|---------------------------------------------------------------------|------------|------|------------|--|--|--|--|
| Recommended by Board of Studies                                     | 28-07-2022 |      |            |  |  |  |  |
| Approved by Academic Council                                        | No. 67     | Date | 08-08-2022 |  |  |  |  |

| Cou        | rse Code       |                                        | Course Tit         | le          |               |        | L     | T    | Ρ     | С   |
|------------|----------------|----------------------------------------|--------------------|-------------|---------------|--------|-------|------|-------|-----|
| MAN        | ME502P         |                                        | ollers for Vehic   | ular Syste  | ems Lab       |        | -     | -    | 2     | 1   |
| Pre-       | requisite      | Nil                                    |                    |             |               | Syl    | labu  |      | ersi  | on  |
|            |                |                                        |                    |             |               |        | 1     | .0   |       |     |
|            | rse Objective  |                                        |                    |             |               |        |       |      |       |     |
|            | course is aim  |                                        |                    |             |               |        |       |      |       |     |
|            |                | g the students to va                   |                    |             |               |        |       |      | es.   |     |
|            |                | Embedded C progra                      |                    |             |               | M pro  | ocess | sor. |       |     |
|            | 3. Explaining  | the architecture an                    | d features of AF   | RM proces   | sor.          |        |       |      |       |     |
| Cou        | rse Outcome    | •                                      |                    |             |               |        |       |      |       |     |
|            |                | course, the students                   | will able to       |             |               |        |       |      |       |     |
|            |                | d the architecture o                   |                    | troller     |               |        |       |      |       |     |
|            |                | rams for solving pro                   |                    |             | ontroller.    |        |       |      |       |     |
|            |                | nd ARM architectur                     |                    |             |               |        |       |      |       |     |
| 4          | 4. Describe t  | he architecture of C                   | ortex-M.           |             |               |        |       |      |       |     |
|            |                | RM processor base                      |                    |             |               |        |       |      |       |     |
| 6          |                | verview of the type                    | es of ARM core     | s in the m  | arket and     | to m   | ake a | a si | uital | ble |
| _          |                | an application.                        | 6 H 6              |             |               |        |       |      |       |     |
|            | 7. Comprehe    | nd various Microco                     | ntroller for powe  | rtrain and  | body elec     | tronic | CS.   |      |       |     |
| اله ما     |                |                                        |                    |             |               |        |       |      |       |     |
| 1.         | cative Experi  | controller using E                     | mbaddad C in       | Kail and    |               |        | 2 ho  | uro  |       |     |
| ١.         |                | tion in 8051 Micro                     |                    |             |               |        | 2 110 | uis  |       |     |
|            | Programmin     | g with Arithmetic log                  | aic instructions - | - GPIO pr   | oarammino     | u l    |       |      |       |     |
| 2.         |                | g with timer – using                   |                    |             |               |        | 4 ho  | urs  |       |     |
| 3.         |                | g with Serial Comm                     |                    |             |               |        | 4 ho  |      |       |     |
|            | transfer and   |                                        |                    |             |               |        |       |      |       |     |
| 4.         | Programming    | g with Interrupt – pr                  | oviding external   | interrupt   | to activate   |        | 4 ho  | urs  |       |     |
|            | ISR            | -                                      | _                  |             |               |        |       |      |       |     |
| 5.         | Programming    | g with LCD – interfa                   | ace LCD to displ   | ay outputs  | 3             |        | 2 ho  |      |       |     |
| 6.         |                | controller using E                     |                    |             | lator and     |        | 2 ho  | urs  |       |     |
|            |                | RM microcontroll                       |                    | ,           |               |        |       |      |       |     |
|            |                | g with Arithmetic log                  | gic instructions - | - Basic pro | ogramming     | 1      |       |      |       |     |
| 7          | like addition, |                                        |                    |             | aliviaiana Al |        | 0 6 6 |      |       |     |
| 7.         |                | g with Arithmetic log<br>gic execution | yic instructions - | multiply,   | uivision, Al  | עע     | 2 ho  | urs  |       |     |
| 8.         |                | imming ARM micro                       | controller - CPIC  | ) nroaram   | mina          |        | 4 ho  | lire |       |     |
| <u>9</u> . |                | ramming ARM Micro                      |                    |             |               |        | 4 ho  |      |       |     |
| <b>J</b> . | delay          |                                        |                    | ig and io   |               | יש     |       | u 3  |       |     |
| 10.        |                | ation ARM Microco                      | ntroller- DC mot   | or control  |               |        | 2 ho  | urs  |       |     |
|            | ·              |                                        | Te                 | otal Labo   | ratory Hou    | Jrs    | 30 h  | our  | S     |     |
| Mod        | le of Assessm  | ent: Continuous As                     | sessment and F     | inal Asses  | ssment Te     | st     |       |      |       |     |
|            |                | / Board of Studies                     | 28-07-2022         |             |               |        |       |      |       |     |
| App        | roved by Acad  | lemic Council                          | No. 67             | Date        | 08-08-20      | 22     |       |      |       |     |

| Course Code                      | Course Title                                                                     |                 | LTPC                  |
|----------------------------------|----------------------------------------------------------------------------------|-----------------|-----------------------|
| MAME503L                         | Vehicle Control Syster                                                           | ns              | 3 0 0 3               |
| Pre-requisite                    | Nil                                                                              |                 | Syllabus version      |
| •                                |                                                                                  |                 | 1.0                   |
| Course Objective                 | es                                                                               |                 |                       |
| The course is aim                |                                                                                  |                 |                       |
| 1. Getting the                   | e know-how required for mathematical me                                          | odeling, perfo  | ormance and stability |
|                                  | f feedback vehicle control system.                                               | •               |                       |
| 2. Providing                     | a comprehensive coverage of control                                              | ller design,    | state space design    |
|                                  | and digital control system.                                                      |                 |                       |
|                                  | the skills for carrying out typical projects                                     | s involving ve  | ehicle controls using |
| MATLAB a                         | and SIMULINK.                                                                    |                 |                       |
| Course Outeers                   |                                                                                  |                 |                       |
| Course Outcome                   | -                                                                                |                 |                       |
|                                  | course, the student will be able to<br>ad the modeling aspects involved in the o | docian of the   | physical system for   |
| vehicle ap                       | •                                                                                | uesign of the   | physical system for   |
| •                                | e steady state and transient response of                                         | the different   | order of the system   |
|                                  | s performance and compute error coefficie                                        |                 |                       |
|                                  | he stability of the system in frequency dor                                      |                 |                       |
|                                  | controller for automotive application using                                      |                 | /ULINK                |
|                                  | end the Classical controller design                                              |                 |                       |
|                                  | e state space design methods like SISO, (                                        |                 |                       |
| <ol><li>Explain the</li></ol>    | e stability test procedure and get introduce                                     | ed to digital c | ontroller design.     |
|                                  |                                                                                  |                 |                       |
|                                  | em Modeling using Transfer function                                              |                 | 6 hours               |
|                                  | modeling -transfer function approach.                                            | Introduction t  | o block diagrams &    |
|                                  | s. Introduction to SIMULINK.                                                     | 1               |                       |
|                                  | ormance of Feedback Control System                                               | <u> </u>        | 6 hours               |
|                                  | nd order control system response for ste                                         |                 |                       |
|                                  | number -characteristic equation -Poles an                                        | ia zeroes cor   | icept -Error Analysis |
| and performance<br>Module:3 Stab |                                                                                  | 1               | 6 hours               |
| syst                             | ility analysis of feedback control                                               |                 | 6 110015              |
|                                  | onse plots -frequency domain specific                                            | ations -stabi   | lity analysis- Routh  |
|                                  | criteria –Root Locus – stability in the fre                                      |                 |                       |
| •                                | t stability criterion.                                                           | . ,             | 5 1                   |
| Module:4 Cont                    |                                                                                  |                 | 6 hours               |
| Proportional, Integ              | gral, Derivative controllers, P, PI, and PID                                     | control actio   | ns and mathematical   |
| models. Using SI                 | MULINK to build 'P', 'PI', 'PID'controller me                                    | odules and ca   | arry out experiments. |
|                                  | nterpretations of results.                                                       |                 |                       |
|                                  | sical controller design                                                          |                 | 6 hours               |
| Classical design                 | in the frequency domain- lead, lag compe                                         | nsator design   | l.                    |
|                                  | ern control theory                                                               |                 | 7 hours               |
|                                  | gn methods: SISO, MIMO systems, Vario                                            |                 | •                     |
|                                  | n, etc), controllability and observability, st                                   | ate observer.   |                       |
|                                  | oduction to Digital Control                                                      |                 | 6 hours               |
| Syst                             |                                                                                  |                 |                       |
|                                  | ystems, Sampling and aliasing conside                                            |                 |                       |
|                                  | ury's stability test -mapping s to z plan                                        | e -Digital co   | nuoller design: from  |
| analog to digital d              | esign.<br>emporary Issues                                                        |                 | 9 hours               |
|                                  | emporary issues                                                                  |                 | 2 hours               |
|                                  |                                                                                  |                 |                       |

|     |          | Το                              | al Lecture ho | ours:       | 45 hours                       |
|-----|----------|---------------------------------|---------------|-------------|--------------------------------|
| Тех | xt Book  | (s)                             |               |             |                                |
| 1.  |          | iko Ogata, —Modern Contro       |               |             |                                |
| 2.  | K. Oga   | ta, —Discrete-Time Control      | Systems, Prer | ntice-Hall, | Inc., 1994                     |
| Re  | ference  | Books                           |               |             |                                |
| 1.  | I.J. Na  | grath and M. Gopal, "Contr      | ol Systems Ei | ngineering  | g", New Age International (P)  |
|     | Limited  | d, 4th Edition, 2006            |               | -           |                                |
| 2.  |          | n S. Nise," Control Systems     |               |             |                                |
| 3.  |          |                                 |               | ol System   | ns: For Engine, Driveline, and |
|     |          | ell, Springer; 1 edition, March |               |             |                                |
| Мо  | de of E  | Evaluation: Continuous Ass      | essment Test  | , Digital   | Assignment, Quiz and Final     |
| Ass | sessmer  | nt Test                         |               |             |                                |
| Re  | commer   | nded by Board of Studies        | 28-07-2022    |             |                                |
| Ар  | proved b | y Academic Council              | No. 67        | Date        | 08-08-2022                     |

| Course Code                         | Course Title                                 |                  | LTPC                  |
|-------------------------------------|----------------------------------------------|------------------|-----------------------|
| MAME504L                            | Automotive Networking and P                  | Protocols        |                       |
| Pre-requisite                       | Nil                                          |                  | Syllabus version      |
| Tre requisite                       |                                              |                  | 1.0                   |
| Course Objective                    | es                                           |                  |                       |
| The course is aim                   |                                              |                  |                       |
|                                     | an overview of automotive network system     | ns.              |                       |
|                                     | students to the aspects of design,           |                  | . application and     |
|                                     | ce issues associated with automotive network |                  | , approation and      |
|                                     |                                              |                  |                       |
| Course Outcome                      | 9                                            |                  |                       |
| At the end of the                   | course, the student will be able to          |                  |                       |
|                                     | ne basics of automotive networking and pr    | otocols          |                       |
| 2. Comprehe                         | nd the general protocols and their usage i   | in automotive s  | sector                |
| 3. Understan                        | d the LIN protocol and implement inconve     | nience feature   | applications          |
|                                     | d implement CAN protocol for chassis and     |                  |                       |
| 5. Understan                        | d the concepts of time triggered protocols   | and it's usage   | in automotive field   |
| 6. Design an                        | d implement in media-oriented system trai    | nsport protocol  | applications          |
|                                     | d FlexRay protocol and their usage in safe   |                  |                       |
|                                     |                                              |                  |                       |
|                                     | duction to Automotive Networking             |                  | 6 hours               |
| Overview of Data                    | communication and networking -need for       | r In-Vehicle ne  | tworking -layers of   |
| OSI reference mo                    | del –multiplexing and de-multiplexing con    | cepts -vehicle   | buses.                |
| Module:2 Gene                       | ral purpose protocols                        | •                | 6 hours               |
| Overview of gene                    | ral purpose networks and protocols –Ethe     | ernet, TCP, UD   | P, IP                 |
|                                     | ocol for low data rate                       |                  | 6 hours               |
| appl                                | ications                                     |                  |                       |
|                                     | view -workflow concept-applications -LIN     | l protocol spec  | cification -signals - |
|                                     | -Frame types -Schedule tables -Ta            |                  |                       |
|                                     | atus management.                             |                  |                       |
|                                     | ocol for medium data rate                    |                  | 7 hours               |
| appl                                | ications                                     |                  |                       |
|                                     | N –fundamentals –Message transfer –fr        | ame types-Eri    | ror handling -fault   |
| confinement-Bit ti                  | 0                                            |                  | Ū                     |
| Module:5 Time                       | triggered protocol                           |                  | 6 hours               |
|                                     | AN open –TTCAN –Device net –SAE J193         | 9                |                       |
|                                     | ocol for infotainment                        |                  | 6 hours               |
|                                     | of data channels -control channel-sync       | hronous chan     |                       |
|                                     | device model -functions-methods-prop         |                  |                       |
| 5                                   | port –Blocks –frames –Preamble-boundar       |                  |                       |
|                                     | ocols for safety critical                    | <i>y</i>         | 6 hours               |
|                                     | ications                                     |                  | ••                    |
|                                     | ion –network topology –ECUs and bus int      | erfaces -contr   | oller host interface  |
|                                     | ation controls –media access control and     |                  |                       |
| coding/decoding u                   |                                              |                  |                       |
|                                     | emporary Issues                              |                  | 2 hours               |
|                                     |                                              |                  |                       |
|                                     | Total Lecture hours:                         |                  | 45 hours              |
|                                     |                                              |                  |                       |
|                                     |                                              |                  |                       |
|                                     |                                              |                  |                       |
| Text Book(s)                        | A , , , I I I I                              |                  | <u> </u>              |
| 1. J.Gabrielleen                    | , Automotive in-vehicle networks, John Wi    | iley & Sons, Lir | mited, 2016           |
| 1. J.Gabrielleen<br>Reference Books |                                              | •                |                       |

2. Society of automotive engineers, In-vehicle networks ,2015

- 3. Ronald K Jurgen, —Automotive Electronics Handbook, McGraw-Hill Inc. 1999.
- 4. IndraWidjaja, Alberto Leon-Garcia, —Communication Networks: Fundamental Concepts and Key Architectures, McGraw-Hill College; 1st edition, 2000.
- 5. Konrad Etschberger, Controller Area Network, IXXAT Automation, August 22, 2001.
- 6. Olaf Pfeiffer, Andrew Ayre, Christian Keydel, —Embedded Networking with CAN and CANopen, Anna books/Rtc Books, 2003

| Mode of Assessment: Continuous Assessment and Final Assessment Test |            |      |            |  |
|---------------------------------------------------------------------|------------|------|------------|--|
| Recommended by Board of Studies                                     | 28-07-2022 |      |            |  |
| Approved by Academic Council                                        | No. 67     | Date | 08-08-2022 |  |

|                      | urse Code                                                                              |                                                                                                                                                                                          | Course Tit                                                                              | е                                              |             |       | L            | Τ    | Ρ     | С    |
|----------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------|-------------|-------|--------------|------|-------|------|
| MA                   | ME504P                                                                                 |                                                                                                                                                                                          | Networking an                                                                           | nd Proto                                       | cols Lab    |       | 0            | 0    | 2     | 1    |
| Pre                  | e-requisite                                                                            | Nil                                                                                                                                                                                      |                                                                                         |                                                |             | Syl   | labı         | is v | ersi  | ion  |
|                      |                                                                                        |                                                                                                                                                                                          |                                                                                         |                                                |             |       | 1            | 0.1  |       |      |
|                      | urse Objectiv                                                                          |                                                                                                                                                                                          |                                                                                         |                                                |             |       |              |      |       |      |
| Th                   | e course is aim                                                                        |                                                                                                                                                                                          |                                                                                         |                                                |             |       |              |      |       |      |
|                      |                                                                                        | an overview of auto                                                                                                                                                                      |                                                                                         |                                                |             |       |              |      |       |      |
|                      |                                                                                        | students to the                                                                                                                                                                          |                                                                                         |                                                |             |       | oplic        | atio | n a   | and  |
|                      | performan                                                                              | ce issues associate                                                                                                                                                                      | d with automotiv                                                                        | /e networ                                      | k systems   | •     |              |      |       |      |
|                      | •                                                                                      |                                                                                                                                                                                          |                                                                                         |                                                |             |       |              |      |       |      |
| -                    | urse Outcome                                                                           |                                                                                                                                                                                          |                                                                                         |                                                |             |       |              |      |       |      |
| At                   |                                                                                        | course, the student                                                                                                                                                                      |                                                                                         |                                                |             |       |              |      |       |      |
|                      |                                                                                        | ne basics of automo                                                                                                                                                                      |                                                                                         |                                                |             | aaata |              |      |       |      |
|                      |                                                                                        | end the general proto<br>d the LIN protocol a                                                                                                                                            |                                                                                         |                                                |             |       |              | iona |       |      |
|                      |                                                                                        | d implement CAN p                                                                                                                                                                        |                                                                                         |                                                |             |       |              |      | 5     |      |
|                      |                                                                                        | d the concepts of tir                                                                                                                                                                    |                                                                                         |                                                |             |       |              |      | vo fi | لمام |
|                      |                                                                                        | d implement in med                                                                                                                                                                       |                                                                                         |                                                |             |       |              |      |       | leiu |
|                      |                                                                                        | d FlexRay protocol                                                                                                                                                                       |                                                                                         |                                                |             |       |              |      | 5     |      |
|                      |                                                                                        |                                                                                                                                                                                          | and then douge                                                                          | mounty                                         | ontiour up  | phout |              |      |       |      |
| Inc                  | licative Exper                                                                         | ments                                                                                                                                                                                    |                                                                                         |                                                |             |       |              |      |       |      |
| 1.                   |                                                                                        | ode communication                                                                                                                                                                        | using HCS512                                                                            | microcor                                       | troller     |       | 8 ho         | ours |       |      |
|                      | Data v                                                                                 | will be sent and rece                                                                                                                                                                    | eived from maste                                                                        | er and sla                                     | ive node    |       |              |      |       |      |
|                      | using                                                                                  | LIN protocol                                                                                                                                                                             |                                                                                         |                                                |             |       |              |      |       |      |
| 2.                   |                                                                                        | node communicatio                                                                                                                                                                        | n using HCS51                                                                           | 2 microco                                      | ontroller   |       | 8 ho         | ours |       |      |
|                      |                                                                                        | will be sent and rece                                                                                                                                                                    |                                                                                         |                                                |             |       |              |      |       |      |
|                      |                                                                                        | CAN protocol                                                                                                                                                                             |                                                                                         |                                                |             |       |              |      |       |      |
|                      | using                                                                                  |                                                                                                                                                                                          |                                                                                         |                                                |             |       |              | ours |       |      |
| 3.                   |                                                                                        | munication using E\                                                                                                                                                                      | /B9S12XF512E                                                                            | board                                          |             |       | 6 ho         |      |       |      |
| 3.                   | FlexRay com<br>Multip                                                                  | munication using E\<br>le Data bytes sent u                                                                                                                                              | ising FlexRay pi                                                                        |                                                |             |       | 6 ho         |      |       |      |
| 3.<br>4.             | FlexRay com<br>Multip                                                                  | munication using E\                                                                                                                                                                      | ising FlexRay pi                                                                        |                                                |             |       | 6 ho<br>4 ho | ours |       |      |
|                      | FlexRay com<br>Multip<br>TCP/IP comn<br>Sendi                                          | munication using E\<br>le Data bytes sent u<br>nunication using Lab<br>ng data to particular                                                                                             | ising FlexRay pi<br>View<br>port address us                                             | rotocol                                        | /IP protoco |       | -            | ours |       |      |
|                      | FlexRay com<br>Multip<br>TCP/IP comn<br>Sendi                                          | munication using E\<br>le Data bytes sent u<br>nunication using Lab                                                                                                                      | ising FlexRay pi<br>View<br>port address us                                             | rotocol                                        | /IP protoco | bl    | -            |      |       |      |
| 4.                   | FlexRay com<br>Multip<br>TCP/IP comn<br>Sendi<br>TCP/UDP co                            | munication using E\<br>le Data bytes sent u<br>nunication using Lab<br>ng data to particular                                                                                             | ising FlexRay pi<br>oView<br>∵port address us<br>_abView<br>∵port address us            | rotocol<br>sing TCP,<br>sing TCP,              | /UDP prote  |       | 4 ho<br>4 ho | ours |       |      |
| 4.<br>5.             | FlexRay com<br>Multip<br>TCP/IP comn<br>Sendi<br>TCP/UDP con<br>Sendi                  | munication using EV<br>le Data bytes sent u<br>nunication using Lab<br>ng data to particular<br>mmunication using L<br>ng data to particular                                             | ising FlexRay pi<br>oView<br>port address us<br>abView<br>port address us<br><b>T</b> o | rotocol<br>sing TCP,<br>sing TCP,<br>otal Labo | UDP prote   |       | 4 hc         | ours |       |      |
| 4.<br>5.<br>Mo       | FlexRay com<br>Multip<br>TCP/IP comn<br>Sendi<br>TCP/UDP col<br>Sendi<br>de of Assessm | munication using E<br>le Data bytes sent u<br>nunication using Lab<br>ng data to particular<br>mmunication using L<br>ng data to particular<br>nent: Continuous Ass                      | ising FlexRay pi<br>oView<br>port address us<br>abView<br>port address us<br><b>T</b> o | rotocol<br>sing TCP,<br>sing TCP,<br>otal Labo | UDP prote   |       | 4 ho<br>4 ho | ours |       |      |
| 4.<br>5.<br>Mo<br>Re | FlexRay com<br>Multip<br>TCP/IP comn<br>Sendi<br>TCP/UDP col<br>Sendi<br>de of Assessm | munication using E<br>le Data bytes sent u<br>nunication using Lab<br>ng data to particular<br>mmunication using L<br>ng data to particular<br>ent: Continuous Ass<br>y Board of Studies | ising FlexRay pi<br>oView<br>port address us<br>abView<br>port address us<br><b>T</b> o | rotocol<br>sing TCP,<br>sing TCP,<br>otal Labo | UDP prote   |       | 4 ho<br>4 ho | ours |       |      |

| Course Code       | Course Title                                   |                     |        | LT      | Ρ     | С              |
|-------------------|------------------------------------------------|---------------------|--------|---------|-------|----------------|
| MAME505L          | Electric and Electronic Power System           | ms for Vehicle      | es     | 3 0     | 0     | 3              |
| Pre-requisite     | Nil                                            |                     |        | labus   | vers  | ion            |
|                   |                                                |                     | - 1    | 1.0     |       |                |
| Course Objectiv   | es                                             |                     |        |         |       |                |
| The course to aim |                                                |                     |        |         |       |                |
|                   | g the skills to understand the circuit ar      | nd electrical w     | virina | diagra  | am a  | and            |
| interpret th      | •                                              |                     | 5      | 5       |       |                |
|                   | students with a good understanding of a        | utomotive elec      | ctrica | l syste | ms v  | vith           |
|                   | emphasize on batteries, charging, ignition     |                     |        |         |       |                |
| 3. Imparting      | students the knowledge about the new c         | levelopments        | and a  | advanc  | eme   | nts            |
| of automo         | tive electrical technologies.                  |                     |        |         |       |                |
|                   |                                                |                     |        |         |       |                |
| Course Outcome    |                                                |                     |        |         |       |                |
|                   | course, the student will be able to            |                     |        |         |       |                |
|                   | he electrical wiring, circuit diagram for auto | omotive application | ations | S       |       |                |
|                   | nd the role of batteries in vehicles           |                     |        |         |       |                |
| •                 | charging system for vehicles                   |                     |        |         |       |                |
|                   | nd the starter and ignition systems in vehic   |                     |        |         |       |                |
|                   | ate knowledge on lighting systems for veh      |                     |        |         |       |                |
|                   | end the passive restraint systems and elec     |                     |        | n venic | les   |                |
| 7. Design an      | d implement various electrical outlet syste    | ms for venicles     | S      |         |       |                |
| Module:1 Elect    | rical Systems and Circuits                     |                     |        |         | 6 ho  | urs            |
|                   | n –electrical wiring, terminals and switchir   | na –multiplexe      | d wir  |         |       |                |
|                   | grams and symbols, Requirements for two        |                     |        |         |       |                |
|                   | heavy vehicles- trucks and trailers.           |                     | •      |         |       | ,              |
| Module:2 Batte    |                                                |                     |        | (       | 6 ho  | urs            |
| Vehicle Batteries | -Lead-Acid batteries -maintenance and          | charging -dia       | agnos  | sing Le | ad a  | icid           |
|                   | vanced battery technology.                     | 5 5 5               | 5      | 5       |       |                |
| Module:3 Char     |                                                |                     |        | -       | 7 ho  | urs            |
| Requirements of   | charging systems —generation of elec           | trical energy       | in m   | otor ve | hicle | <del>.</del> – |
|                   | es – alternators –characteristic curves        |                     |        |         |       |                |
| charging system I | aults.                                         |                     |        |         | -     | •              |
| Module:4 Star     | ting system                                    |                     |        | (       | 6 ho  | urs            |
| Requirements -s   | starter motors and circuits -types of sta      | rter motors –       | diagr  | nosing  | start | ing            |
| system faults.    |                                                |                     |        |         |       |                |
|                   | ion system                                     |                     |        |         | 6 ho  |                |
|                   | electronic ignition -programmed ignition       | -distributor le     | ess i  | gnition | -dir  | ect            |
|                   | g ignition –diagnosing faults.                 |                     |        |         |       |                |
| Module:6 Ligh     |                                                |                     |        |         | 6 ho  |                |
|                   | arth return systems, positive and nega         |                     | /stem  | ns, Co  | ncea  | led            |
|                   | g circuit types, glare and preventive metho    | ods.                |        |         |       |                |
| resti             | ges, Accessories and Passive<br>raint systems  |                     |        |         | 6 ho  |                |
|                   | mp, speedometer, oil and temperature g         |                     |        |         |       |                |
|                   | Defoggers, Power windows, seats, door le       | ocks, Air bag       | syste  | ems, S  | eat b | celt           |
| pretensioners     |                                                | l                   |        |         |       |                |
| Module:8 Cont     | emporary Issues                                |                     |        |         | 2 ho  | urs            |
|                   | Total Lastura have                             |                     |        | A 1     | 5 hai |                |
|                   | Total Lecture hours:                           |                     |        | 4:      | 5 ho  | urs            |
|                   |                                                |                     |        |         |       |                |
| Text Book(s)      |                                                |                     |        |         |       |                |
| 1. Automotive     | Electricals / Electronics System and Co        | omponents, To       | om D   | enton,  | 3rc   | <u>i</u>       |

|     | Edition, 2015                                                                                                       |                |                        |                             |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------|----------------|------------------------|-----------------------------|--|--|--|--|
| Ref | Reference Books                                                                                                     |                |                        |                             |  |  |  |  |
| 1.  | Judge, A.W., —Modern Electrical Equipment of Automobilesll, Chapman & Hall London, 1992                             |                |                        |                             |  |  |  |  |
| 2.  | Young, A.P., &Griffiths.L., —Automobile Electrical Equipmentll, English Languages Book<br>Society & New Press, 1990 |                |                        |                             |  |  |  |  |
| 3.  | Automotive Electricals Electronics Edition, 2004                                                                    | System and (   | Compone                | nts, Robert Bosch Gmbh, 4th |  |  |  |  |
| 4.  | Automotive Hand Book, Robert Bos                                                                                    | sch, Bently Pu | blishers, <sup>-</sup> | 1997                        |  |  |  |  |
| 5.  | Jurgen, R., Automotive Electronics                                                                                  | Hand Book, 2   | 015                    |                             |  |  |  |  |
|     |                                                                                                                     |                |                        |                             |  |  |  |  |
| Mo  | de of Evaluation: Continuous Ass                                                                                    | essment Test   | , Digital              | Assignment, Quiz and Final  |  |  |  |  |
| Ass | sessment Test                                                                                                       |                | -                      | -                           |  |  |  |  |
| Red | commended by Board of Studies                                                                                       | 28-07-2022     |                        |                             |  |  |  |  |
| App | Approved by Academic Council No. 67 Date 08-08-2022                                                                 |                |                        |                             |  |  |  |  |

| Course Code                  | Course Title                                                                            |                       |         | L 1      | ГР          | С     |
|------------------------------|-----------------------------------------------------------------------------------------|-----------------------|---------|----------|-------------|-------|
| MAME506L                     | Automotive Power Electronics and                                                        | Motor Drives          | ;       | 3 (      | ) ()        | 3     |
| Pre-requisite                | Nil                                                                                     |                       | Syll    | abus     | s vers      | sion  |
| •                            |                                                                                         |                       |         | 1.       | 0           |       |
| Course Objective             | es                                                                                      |                       |         |          |             |       |
| The course is aim            | ned at:                                                                                 |                       |         |          |             |       |
|                              | an in-depth knowledge about power electr                                                |                       |         |          |             |       |
|                              | the design capability of converters and in                                              |                       |         |          |             |       |
|                              | . Gaining knowledge on the different moto                                               | ors and their ap      | oplica  | tion i   | n ele       | ctric |
| vehicles                     |                                                                                         |                       |         |          |             |       |
| Course Outcome               |                                                                                         |                       |         |          |             |       |
|                              | ≠<br>course, the student will be able to                                                |                       |         |          |             |       |
|                              | id the operation of power semiconductor d                                               | evices                |         |          |             |       |
|                              | id the operation of AC-DC converters at di                                              |                       |         |          |             |       |
|                              | d the operation of three phase inverters                                                |                       |         |          |             |       |
|                              | ferent converters: buck, boost and buck-b                                               | oost converter        | s       |          |             |       |
| 5. Understan                 | nd the concepts of ultracapacitor and its us                                            | age in automo         | tive fi | ield     |             |       |
|                              | he different speed control methods of indu                                              |                       |         |          |             |       |
| <ol><li>Give detai</li></ol> | Is about the operation and characteristics                                              | of different mo       | otors   |          |             |       |
|                              |                                                                                         |                       |         |          |             |       |
|                              | er Electronics                                                                          |                       |         | <i>,</i> | <u>6 hc</u> |       |
|                              | ower electronics- Structure, operation a                                                |                       |         |          |             |       |
|                              | evices -SCR, Power Transistor, Power MC                                                 |                       |         |          |             |       |
| circuits – series            | and parallel operation of SCR -protect                                                  | ion circuits –        | desig   | n oi     | Shu         | Jper  |
| Module:2 Conv                | verters                                                                                 |                       |         |          | 6 hc        | ours  |
|                              | lled converter with R,RL-RLE load, fully                                                | controlled cor        | verte   | rs w     |             |       |
|                              | phase half wave controlled converter wi                                                 |                       |         |          |             |       |
|                              | ter with R-RL load                                                                      |                       |         | - 1-     |             | j     |
| Module:3 Inve                | rters                                                                                   |                       |         |          | 6 hc        | ours  |
| Voltage source ir            | overter with 120 degree and 180 degree                                                  | conduction m          | ode-c   | urre     | nt sou      | urce  |
| inverters – PWM              |                                                                                         |                       |         |          |             |       |
| Module:4 Cho                 |                                                                                         |                       |         |          | 6 hc        | ours  |
|                              | down choppers -Different types of copper                                                | <u>s – use of cho</u> | ppers   | 6        |             |       |
|                              | acapacitors                                                                             |                       |         |          | 6 hc        |       |
|                              | onic double layer capacitance-model a                                                   |                       | cing-s  | sizing   | crite       | eria- |
|                              | e-ultracapacitors in combination with batte                                             | eries                 |         |          | ~ 1         |       |
|                              | omotive motor Control                                                                   | tuala                 |         |          | 6 hc        | ours  |
|                              | olling speed – Induction and DC Motor con                                               | trois                 |         |          | 7 6 4       |       |
|                              | omotive drive system                                                                    | )non loon and         |         | loon     |             | ours  |
|                              | nstruction, characteristics and operation -C<br>d current sensors-Switched Reluctance M |                       |         |          |             | 101   |
| operation and its            |                                                                                         |                       | nstrut  | CUOIT    | ,           |       |
|                              | emporary Issues                                                                         |                       |         |          | 2 hc        | ours  |
|                              |                                                                                         |                       |         |          |             |       |
|                              | Total Lecture hours:                                                                    |                       |         |          | 45 hc       | ours  |
|                              |                                                                                         |                       |         |          | -           | -     |
| Text Book(s)                 |                                                                                         |                       |         |          |             |       |
|                              | , "Power Electronics:", Khanna Publishers                                               | 14th edition 3        | 2015    |          |             |       |
| Reference Book               |                                                                                         | , 1 101 001001,2      | _010    |          |             |       |
|                              | <u> </u>                                                                                |                       |         |          |             |       |

| 1.  | Ali Emadi, "Handbook of Automo   | otive power elec | ctronics a | nd motor Drives" CRC Press,  |
|-----|----------------------------------|------------------|------------|------------------------------|
|     | 2015.                            |                  |            |                              |
| 2.  | Bimal K Bose, "Power Electronic  | cs and Motor D   | Drive: Adv | ances and Trends", Elsevier, |
|     | Inc., 2006.                      |                  |            |                              |
| Mo  | de of Assessment: Continuous Ass | sessment and F   | inal Asse  | ssment Test                  |
| Ree | commended by Board of Studies    | 28-07-2022       |            |                              |
| App | proved by Academic Council       | No. 67           | Date       | 08-08-2022                   |

| Course Code      |                                                        | Course Titl     | P                     |                |        | 1     | Т            | Ρ    | С    |
|------------------|--------------------------------------------------------|-----------------|-----------------------|----------------|--------|-------|--------------|------|------|
|                  | MAME506P Automotive Power Electronics and Motor Drives |                 |                       |                |        |       | 0            | 2    | 1    |
| Pre-requisite    | Nil                                                    |                 |                       |                |        | lab   | us v         | ers  | ion  |
|                  |                                                        |                 |                       |                |        |       | 1.0          |      |      |
| Course Objecti   | ves                                                    |                 |                       |                |        |       |              |      |      |
| The course is ai | med at:                                                |                 |                       |                |        |       |              |      |      |
|                  | g an in-depth knowledg                                 |                 |                       |                |        |       |              |      |      |
|                  | g the design capability                                |                 |                       |                |        |       |              |      |      |
|                  | 3. Gaining knowledge                                   | on the differen | t motor               | s and their a  | applic | atior | n in         | elec | tric |
| vehicles         |                                                        |                 |                       |                |        |       |              |      |      |
| Course Outcon    |                                                        |                 |                       |                |        |       |              |      |      |
|                  | e course, the student w                                | ill he able to  |                       |                |        |       |              |      |      |
|                  | and the operation of po                                |                 | uctor de              | vices          |        |       |              |      |      |
|                  | and the operation of AC                                |                 |                       |                |        |       |              |      |      |
|                  | and the operation of thr                               |                 |                       |                |        |       |              |      |      |
|                  | lifferent converters: bud                              |                 |                       | ost converte   | ers    |       |              |      |      |
| 5. Understa      | and the concepts of ultr                               | a-capacitor an  | d its us              | age in autor   | notive | fiel  | d            |      |      |
|                  | e the different speed co                               |                 |                       |                |        |       |              |      |      |
| 7. Give det      | ails about the operatior                               | n and characte  | ristics c             | of different m | notors |       |              |      |      |
|                  |                                                        |                 |                       |                |        |       |              |      |      |
| Indicative Expe  |                                                        |                 |                       |                |        | 0 4   |              |      |      |
|                  | study of anode current                                 |                 |                       |                |        |       | ours<br>ours |      |      |
|                  | study of transfer and o<br>study of transfer and o     |                 |                       |                |        |       | ours         |      |      |
| 0                | se half wave controlled                                |                 |                       |                |        |       | ours         |      |      |
|                  | om microcontroller.                                    | convertor with  | IN IOAU               |                | ,      | 4 11  | oura         | •    |      |
|                  | e half wave controlled                                 | convertor with  | R RI                  | load using     |        | 4 h   | ours         |      |      |
| MATLAB           |                                                        |                 | · · ·, · · <b>仁</b> , | loud doinig    |        |       | oure         |      |      |
| 6. Three Phas    | e voltage source invert                                | er (VSI) 120 de | egree n               | node of        |        | 4 h   | ours         | ;    |      |
|                  | using MATLAB                                           |                 | 5                     |                |        |       |              |      |      |
| 7. Step-up-cho   | opper and step-down cl                                 | hopper using N  | 1ATLAE                | 3              |        | 4 h   | ours         | ;    |      |
| 8. Brushless D   | C (BLDC) motor mode                                    | ling using MA   | LAB                   |                |        | 4 h   | ours         | 5    |      |
|                  |                                                        |                 |                       | boratory Ho    |        | 30    | hou          | rs   |      |
|                  | ment: Continuous Asse                                  |                 | inal As               | sessment Te    | est    |       |              |      |      |
|                  | by Board of Studies                                    | 28-07-2022      |                       |                |        |       |              |      |      |
| Approved by Ac   | ademic Council                                         | No. 67          | Date                  | 08-08-2        | 022    |       |              |      |      |

| Course Code       | Course Title                                                                              |              | LTPC                    |
|-------------------|-------------------------------------------------------------------------------------------|--------------|-------------------------|
| MAME507L          | Alternative Drives, Traction and 0                                                        | Controls     |                         |
| Pre-requisite     | MAME505L                                                                                  |              | Syllabus version        |
|                   |                                                                                           |              | 1.0                     |
| Course Objectiv   | PS                                                                                        |              | 1.0                     |
| The course is aim |                                                                                           |              |                         |
|                   | ng students with the basics of propulsion                                                 | using IC     | engines and electric    |
| motors            | ig students with the basies of propulsion                                                 | using io     | engines and electric    |
|                   | about different energy storage and conversic                                              | on scheme:   | s for Hybrid vehicles   |
|                   | etails about the different architectures for Hyb                                          |              |                         |
|                   |                                                                                           |              |                         |
| Course Outcom     | <br>0                                                                                     |              |                         |
| At the end of the | course, the students will able to                                                         |              |                         |
|                   | nd automotive electrical systems                                                          |              |                         |
|                   | an alternate vehicle technology                                                           |              |                         |
| 3. Understar      | nd the difference in electric motors and                                                  | IC engine    | es for propulsion in    |
| automobil         | es                                                                                        | -            |                         |
| 4. Describe       | the charging systems for different storages d                                             | levices      |                         |
|                   | nd the types of motors used and control                                                   | mechanisr    | n involved for these    |
| 21                | notors in vehicles                                                                        |              |                         |
|                   | e various architectures for Hybrid electric ve                                            |              |                         |
| 7. Understar      | nd the need of fuel cells and use them for hy                                             | brid vehicle | es                      |
|                   |                                                                                           |              |                         |
|                   | motive Electrical Systems                                                                 |              | 6 hours                 |
|                   | ms and Circuits - Starting systems - Ig                                                   |              | stems - Lighting &      |
|                   | ctromagnetic Interference and Compatibility                                               |              |                         |
|                   | id Vehicle Technology                                                                     | <u> </u>     | 6 hours                 |
|                   | need for alternate vehicle technologies for                                               |              |                         |
|                   | ansportation and regulating standards - Pro                                               |              |                         |
|                   | y sources - Alternate technologies for vehic<br>ng availability of resources - Importance |              |                         |
| technology        | ig availability of resources - importance                                                 |              |                         |
|                   | cs of Vehicle Propulsion                                                                  |              | 7 hours                 |
|                   | nprising traction torque - Vehicle performa                                               | ance Parar   |                         |
|                   | iel economy in IC engine vehicles - Torque                                                |              |                         |
|                   | arison of Electric motors and IC engines                                                  |              |                         |
|                   | s of Electric vehicles - Types of Moto                                                    |              |                         |
| characteristics   |                                                                                           |              |                         |
|                   | rgy Storage / Energy Conversion                                                           |              | 6 hours                 |
|                   | Batteries for Electric vehicles - Lead acid                                               | batteries,   |                         |
|                   | n ion batteries - Comparison of different                                                 |              |                         |
|                   | tems / Energy Management Systems - Wir                                                    |              |                         |
| Charging System   | s - Super Capacitors - Fuel Cells - Solar Ene                                             | ergy Conve   | erters.                 |
|                   | ors and Controllers                                                                       |              | 6 hours                 |
| DC motors - Pri   | nciple and control - Induction motor drives                                               | - Methods    | s of speed control of   |
| Induction motor - | Constant V / f control - Vector control method                                            | od - Inverte | er for Vector control - |
|                   | of BLDC motors - Performance analysis a                                                   |              |                         |
|                   | nique for driving BLDC motors - Regenerat                                                 | ive braking  | g with electric drive - |
|                   | eration - Optimizing energy recovery.                                                     |              |                         |
|                   | nitectures for Hybrid Electric                                                            |              | 6 hours                 |
|                   | cles                                                                                      |              | · · · · · · · · · · · · |
|                   | and series – parallel hybrids - Different a                                               |              |                         |
|                   | Hybrid Electric vehicle basics - Sizing of m                                              |              |                         |
| sourcing - Parall | el Hybrid electric vehicle basics - Engine c                                              | on / off co  | ntrol strategy - Peak   |

| Mo              | rallel mil         | Industry examples of I        |                 | ric      | 6 hours                    |
|-----------------|--------------------|-------------------------------|-----------------|----------|----------------------------|
| WIC             | aule.7             | Vehicle                       |                 |          | 0 110013                   |
| Fu              | el cell: B         | asic principles of fuel cells |                 |          |                            |
| Мо              | dule:8             | Contemporary Issues           |                 |          | 2 hours                    |
|                 |                    |                               |                 |          |                            |
|                 |                    | То                            | tal Lecture ho  | urs:     | 45 hours                   |
|                 |                    |                               |                 |          |                            |
| Te              | xt Book            | (s)                           |                 |          |                            |
| 1.              |                    |                               |                 |          | - by MehrdadEhsani, Yimin  |
|                 |                    | sebatien Gay and Ali Emadi;   | Published by (  | CRC pre  | ss,2015                    |
| Re              | ference            | Books                         |                 |          |                            |
| 1.              | Iqbal H            | lusain, Electric & Hybrid Veh | nicles, CRC Pre | ess, 201 | 5                          |
|                 | Donald             | K Jurgen, Automotive Elect    | tronics Handbo  | ok McC   | Fraw-Hill Inc. 1999        |
| 2.              | Ronaid             | <b>J</b> ,                    |                 |          |                            |
|                 | Ronaid             | <b>0</b>                      |                 |          |                            |
| 2.              |                    | <b>.</b>                      |                 |          |                            |
| 2.<br>Mo        | de of E            | Evaluation: Continuous Ass    |                 |          | Assignment, Quiz and Final |
| 2.<br>Mo<br>As: | de of E<br>sessmer | Evaluation: Continuous Ass    |                 |          |                            |

| Course Code       | Course Title                                                                    |                |          | L .   | ΓΡ       | С    |
|-------------------|---------------------------------------------------------------------------------|----------------|----------|-------|----------|------|
| MAME605L          | Vehicular Information and Communi                                               | cation Syste   | ms       |       | 0 0      | 3    |
| Pre-requisite     | Nil                                                                             | ,              |          | abus  | s vers   | sion |
|                   |                                                                                 |                |          | 1.    |          |      |
| Course Objective  | es                                                                              |                |          |       |          |      |
| The course is aim | ed at:                                                                          |                |          |       |          |      |
| 1. Teaching       | the students concepts of data proces                                            | sing, instrun  | nentatio | on a  | and E    | ECU  |
| recording         | equipment.                                                                      |                |          |       |          |      |
|                   | students, a good understanding about                                            | automotive     | sound    | sys   | tem      | and  |
|                   | for vehicular systems                                                           |                |          |       |          |      |
| 3. Providing      | details about the positioning and guidance                                      | systems.       |          |       |          |      |
| Course Outcome    | <u></u>                                                                         |                |          |       |          |      |
|                   | z<br>course, the student will be able to                                        |                |          |       |          |      |
|                   | d the data processing in motor vehicles.                                        |                |          |       |          |      |
|                   | and the networking in automotive.                                               |                |          |       |          |      |
|                   | ledge about the information & communica                                         | tion           |          |       |          |      |
|                   | d the ECU recording equipment and Parki                                         |                |          |       |          |      |
|                   | e sound system for automotive                                                   |                |          |       |          |      |
| 6. Understan      | d the Positioning and Map Matching for ve                                       |                |          |       |          |      |
| 7. Understan      | d the Route Planning and Route Guidance                                         | e techniques   | for aut  | omo   | tive     |      |
|                   |                                                                                 |                |          |       |          |      |
|                   | processing in motor vehicles                                                    |                |          |       | 5 ho     | urs  |
|                   | ectronic control unit (ECU), Architecture, (                                    | CARTRONIC      | •        |       | <u> </u> |      |
|                   | motive networking                                                               | Clossificati   | on of    | huo   | 6 ho     |      |
|                   | nctions, Requirements for bus systems,                                          | Classificatio  | on or    | bus   | syste    | ms,  |
| Module:3 Instru   | e vehicle, Coupling of networks, Example.                                       |                |          |       | 6 ho     |      |
|                   | communication areas, Driver informatio                                          | n svetems      | Instrum  | nont  |          |      |
| Display types     | communication areas, Driver informatio                                          | n systems,     | motrun   | iont  | 01001    | 010, |
|                   | recording equipment and Parking                                                 |                |          |       | 6 ho     | ours |
| syste             | •••••                                                                           |                |          |       |          |      |
| Legal requireme   | nts, Design variations, parking aid w                                           | ith ultrasoni  | c sen    | sors, | Fur      | ther |
| development       |                                                                                 |                |          |       |          |      |
|                   | motive sound systems                                                            |                |          |       | 7 ho     |      |
| improvement, Aux  | Conventional tuners, Digital receivers,<br>kiliary equipment, Vehicle antennas. | Reception      | quality  | y, F  | -        |      |
|                   | ioning and Map Matching                                                         |                |          |       | 7 ho     |      |
|                   | Global Positioning System, Sensor fusi                                          |                | onal m   | nap r | natch    | ing, |
|                   | Map matching, Map aided Sensor calibra                                          | ation.         |          |       | <u> </u> |      |
|                   | e Planning and Route Guidance                                                   |                |          |       | 6 ho     |      |
|                   | euristic Search, Bidirectional Search, Hier                                     |                | •        | idan  | ce wn    | lie  |
|                   | nce while off Route , Guidance with dynan<br>emporary Issues                    | ne mornatio    | n        |       | 2 ho     | ure  |
| Module.0 Cont     |                                                                                 |                |          |       | 2 110    | ui S |
|                   | Total Lecture hours:                                                            |                |          |       | 45 ho    | ours |
|                   |                                                                                 |                |          |       |          |      |
| Text Book(s)      |                                                                                 |                |          |       |          |      |
|                   | motive Handbook", 8th Edition, SAE public                                       | ation. 2015    |          |       |          |      |
| Reference Books   |                                                                                 |                |          |       |          |      |
| 1. Intelligent    | /ehicle Technologies Theory and<br>shima - Butterworth Heinemann, 2015          | Appications    | – L      | VI    | acic,    | М    |
| 2. Vehicle locati | on and Navigation Systems – Yilin Zhao –                                        | Artech Hous    | se Inc., | 201   | 6        |      |
|                   | seph. Perspectives on Intelligent Transpo                                       | ortation Syste | ems (IT  | S). I | NewY     | ork, |

3. 14. NY: Springer, 2010

4. Mashrur A. Chowdhury, and Adel Sadek, Fundamentals of Intelligent Transportation Systems Planning, Artech House, Inc., 2003

Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test

| Recommended by Board of Studies | 28-07-2022 |      |            |
|---------------------------------|------------|------|------------|
| Approved by Academic Council    | No. 67     | Date | 08-08-2022 |

| Course Code                                | Course Title                                                                                              |                     |             | TF      | ) C   |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------|-------------|---------|-------|
| MAME606L                                   | Parallel Programming using Multi<br>Graphical Programming Ur                                              |                     | 3           | 0 0     | 3     |
| Pre-requisite                              | Nil                                                                                                       |                     | Syllabu     |         | rsion |
| Course Objectiv                            |                                                                                                           |                     |             | 1.0     |       |
| Course Objectiv                            |                                                                                                           |                     |             |         |       |
|                                            | the knowledge about implementation of                                                                     | multi-throad        | lina on c   | inalo   | coro  |
|                                            | Ilti-core platforms                                                                                       | muni-ineau          | ing on a    | lingle  | COLE  |
|                                            | the basic concept of threads error diffusion                                                              | and parallel        | error diff  | usion.  |       |
|                                            | g the details of Deadlock and Semap                                                                       |                     |             |         | n of  |
|                                            | t threading features.                                                                                     |                     | •           |         |       |
|                                            |                                                                                                           |                     |             |         |       |
| Course Outcom                              |                                                                                                           |                     |             |         |       |
|                                            | course, the student will be able to                                                                       |                     |             |         |       |
|                                            | nd the basic concepts of multi-core architect                                                             |                     |             |         |       |
|                                            | ate knowledge of the core architectural aspe                                                              |                     |             |         |       |
|                                            | efficient parallel algorithms and apply a s                                                               | ulte of tech        | niques tr   | nat ca  | n be  |
|                                            | cross a wide range of applications<br>concept of threading for large scale system                         | c                   |             |         |       |
|                                            | hods to support and manage virtualization                                                                 | 5                   |             |         |       |
|                                            | and implement the various Parallel Pro                                                                    | ogramming (         | Concepts    | in I    | inux  |
| Platform                                   |                                                                                                           | ·9· ······9         | ••••••      |         |       |
| 7. Analyze tł                              | e gblockldx and threadIdx                                                                                 |                     |             |         |       |
|                                            |                                                                                                           |                     |             |         |       |
|                                            | -core Architecture                                                                                        |                     |             |         | ours  |
|                                            | le core processor Architecture and its limita                                                             |                     |             |         |       |
|                                            | re Processor and its Limitations, Classificat                                                             | ion Multicore       | s, Multice  | ore sy  | stem  |
| software stack.                            |                                                                                                           |                     |             |         |       |
|                                            | view of Threading                                                                                         |                     |             |         | ours  |
|                                            | <ul> <li>threads inside the OS – threads insi<br/>dels and threading – virtual environment – l</li> </ul> |                     |             |         |       |
| virtualization                             | dels and threading – virtual environment – i                                                              | sun ume viru        | ualizatioi  | i – Sy  | Stem  |
|                                            | amental concepts of parallel                                                                              |                     |             | 6 h     | ours  |
|                                            | ramming                                                                                                   |                     |             | • •     | ouro  |
|                                            | arallelism(TLP), Instruction Level Paralleli                                                              | sm(ILP), Co         | ompariso    | ns. C   | ache  |
|                                            | emory-level Parallelism, Cache Coherence                                                                  |                     |             |         |       |
|                                            | and Message Passing, Vectorization                                                                        | •                   | •           | •       |       |
|                                            | llel programming constructs                                                                               |                     |             |         | ours  |
| •                                          | <ul> <li>Critical sections – Deadlock – Semaphore</li> </ul>                                              |                     |             | n varia | ables |
|                                            | nce – Barrier – Implementation dependent t                                                                | hreading fea        | itures      |         |       |
|                                            | MP : Portable solution for threading                                                                      |                     |             |         | ours  |
|                                            | endence – Data-race conditions – Manag                                                                    |                     |             |         |       |
|                                            | and Partitioning – Effective use of reduct<br>d Nowait – Interleaving single thread and                   |                     | •           |         |       |
|                                            | out – Protecting updates of shared variable                                                               |                     |             |         |       |
|                                            | nental variables – multithreading debugging                                                               | •                   | •           | uncu    | 5113  |
| Module:6 CUD                               |                                                                                                           | <u>, toorniquoo</u> |             | 6 h     | ours  |
|                                            | computers – architecture of a modern G                                                                    | PU – Data F         | Parallelisr |         |       |
|                                            | e – Matrix – Matrix multiplication example                                                                |                     |             |         |       |
|                                            | functions and threading – predefined variab                                                               |                     |             |         |       |
| transfer – Kernel                          |                                                                                                           |                     |             |         |       |
|                                            | A threads and Memories                                                                                    |                     |             | 6 h     | ours  |
| Module:7CUDCUDA thread or                  | ganization – Using block and thread – sy                                                                  |                     | on and T    | ransp   | arent |
| Module:7CUDCUDA thread orScalability - Thr |                                                                                                           |                     | on and T    | ransp   | arent |

| Мо  | dule:8             | Contemporary Issues                                    |                 |           | 2 hours                                                    |
|-----|--------------------|--------------------------------------------------------|-----------------|-----------|------------------------------------------------------------|
|     |                    | т                                                      | otal Lecture ho | ours:     | 45 hours                                                   |
| Tex | xt Book            | (s)                                                    |                 |           |                                                            |
| 1.  |                    |                                                        |                 |           | n Software Multi-threading,<br>blications, New Delhi, 2015 |
| Re  | ference            | Books                                                  |                 |           |                                                            |
| 1.  | •                  | mming Massively Parallel<br>nei W. Hwu, Elesevier, New |                 | hands-on  | approach, David B. Kirk and                                |
|     | de of E<br>sessmer |                                                        | sessment Test   | , Digital | Assignment, Quiz and Final                                 |
| Re  | commer             | nded by Board of Studies                               | 28-07-2022      |           |                                                            |
| Ар  | proved b           | y Academic Council                                     | No. 67          | Date      | 08-08-2022                                                 |

| Course Code         | Course Title                                            |             | LT                   | Ρ       | С         |
|---------------------|---------------------------------------------------------|-------------|----------------------|---------|-----------|
| MAME607L            | Digital Signal Processing and its Applicati             | ons         | 3 0                  | 0       | 3         |
| Pre-requisite       | Nil                                                     |             | llabus v             |         |           |
|                     |                                                         |             | 1.0                  |         |           |
| Course Objective    | 29                                                      |             | 1.0                  |         |           |
| The course is aim   |                                                         |             |                      |         |           |
|                     | g the concepts of sampling, digital filter, adaptive di | nital evet  | om                   |         |           |
|                     | the concepts of information theory and source codi      |             |                      | ratio   | ne        |
|                     | methods and algorithms which would enable com           |             |                      |         |           |
|                     | e maximum information transfer rate as possible         | nunicatio   | n to na <sub>b</sub> | pen     | 23        |
|                     |                                                         |             |                      |         |           |
| Course Outcome      | 2                                                       |             |                      |         |           |
|                     | course, the student will be able to                     |             |                      |         |           |
|                     | ht into digital models and algorithms to process        | the sia     | nals af              | ter c   | -<br>1110 |
|                     | n of signals from analog to digital                     | , the sig   | nais, ai             |         | Juc       |
|                     | the techniques to perform analog to digital             | and dic     | uital to             | ana     | loa       |
| conversior          |                                                         | and alg     |                      | unu     | log       |
|                     | aptive filters based on the signal processing and co    | mmunica     | ation cor            | ncept   | ts        |
|                     | he signal spectrum from the received signal a           |             |                      |         |           |
|                     | r information transmission                              |             |                      |         |           |
|                     | the statistical properties of the signal                |             |                      |         |           |
|                     | rent ways of minimizing the number of bits, need        | ed to rep   | resent               | a qiv   | /en       |
|                     | information                                             |             |                      | 0       |           |
| 7. Find meth        | ods to minimize the probability of communication        | errors, w   | vithout a            | ffect   | ing       |
|                     | communication process                                   | ,           |                      |         | 0         |
|                     | <b>I</b>                                                |             |                      |         |           |
| Module:1 Basic      | S                                                       |             | Ę                    | 5 hou   | urs       |
| The history of dig  | ital signal processing : Measurements and analysis      | s, Teleco   | ommuni               | catio   | ns,       |
|                     | ion, Household appliances and toys, Automotive, I       |             |                      |         |           |
| basics: Continuo    | us and discrete signals, Sampling and recon             | struction   | Quan                 | tizati  | on,       |
| Processing mode     | els for discrete-time series, Common filters may        | be adde     | d digita             | l filte | ers:      |
| Filter architecture | s, Filter synthesis, Digital control systems : Prop     | ortional-ii | ntegral-o            | deriv   | ate       |
| controllers , Adva  | nced controllers                                        |             | -                    |         |           |
|                     | og Digital interface                                    |             |                      | 7 hou   |           |
| System considera    | ations : Encoding and modulation, Number represe        | ntation a   | nd com               | band    | ing       |
| systems, Digital-t  | o-analog conversion: Multiplying digital-to-analog      | converte    | rs,Inte              | egrat   | ing       |
| digital-to-analog   | converters, Bitstream digital-to-analog converters      | , Sample    | e-and-h              | old a   | and       |
|                     | ers, Analog-to-digital conversion: Anti-aliasing        |             |                      |         |           |
|                     | alog-to-digital converters, Successive approxi          |             |                      |         |           |
|                     | nting analog-to-digital converters, Integrating analog  | og-to-digi  | tal conv             | verte   | rs,       |
| Dither, Sigma-de    | elta analog-to-digital converters                       |             |                      |         |           |
|                     | tive digital systems                                    |             |                      | 6 hou   |           |
| •                   | em structure The processor and the performance          |             |                      | •       |           |
|                     | The performance function, Adaptation algorithms:        |             |                      | •       |           |
| -                   | n's method, The least mean square algorithm,            | Applica     | tions: A             | dapt    | ive       |
|                     | nel, Equalizers, Adaptive beam forming                  |             |                      |         |           |
|                     | tral analysis and modulation                            | <u> </u>    |                      | 7 hou   |           |
|                     | transform and fast Fourier transform: Spectral and      |             |                      |         |           |
|                     | t Fourier, transform approaches , "Z" transforms U      |             |                      |         |           |
|                     | gram averaging, Parametric spectrum analysis,           |             |                      | •       |           |
|                     | (), Frequency shift keying (FSK), Phase shift I         | keying (F   | rsk), C              | omp     | lex       |
|                     | Hilbert transformer                                     |             |                      |         |           |
| Module:5 Kalm       | an filters                                              |             | 4                    | 1 hou   | urs       |

| An intuitive enpresed : Resurgive least square estimations                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| An intuitive approach : Recursive least square estima                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                  |
| Kalman filter : The signal model , The filter, Kalman filter p                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |
| Module:6 Data compression                                                                                                                                                                                                                                                                                                                                                                       | 7 hours                                                                                                                          |
| An information theory primer: Information and entropy ,S                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                  |
| Delta modulation, adaptive delta modulation and co                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  |
| modulation, DPCM adaptive DPCM techniques, Speech                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                  |
| and sub-band coding, Vocoders and linear predictive c                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                  |
| Lempel-Ziv algorithm, Recognition techniques: Speech re                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                  |
| Module:7 Error-correcting codes                                                                                                                                                                                                                                                                                                                                                                 | 7 hours                                                                                                                          |
| Channel coding: The channel model, The channel c                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |
| Hamming distance and error correction, Linear block of                                                                                                                                                                                                                                                                                                                                          | codes, Cyclic codes, Convolution                                                                                                 |
| codes, Viterbi decoding, Interleaving, Concatenated code                                                                                                                                                                                                                                                                                                                                        | es and turbo codes                                                                                                               |
| Module:8 Contemporary Issues                                                                                                                                                                                                                                                                                                                                                                    | 2 hours                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |
| Total Lecture hours:                                                                                                                                                                                                                                                                                                                                                                            | 45 hours                                                                                                                         |
| i otal Leotale nouis.                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |
| Text Book(s)                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |
| Text Book(s)                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                  |
| Text Book(s)         1.       Digital signal processing and applications, Dag S                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |
| Text Book(s)1.Digital signal processing and applications, Dag SSecond Edition, Elsevier, New York, 2015                                                                                                                                                                                                                                                                                         | tranneby and William Walker,                                                                                                     |
| Text Book(s)         1.       Digital signal processing and applications, Dag S         Second Edition, Elsevier, New York, 2015         Reference Books                                                                                                                                                                                                                                        | tranneby and William Walker,                                                                                                     |
| Text Book(s)         1.       Digital signal processing and applications, Dag S         Second Edition, Elsevier, New York, 2015         Reference Books         1.       Advanced digital signal processing noise reduction, Wiley, New Delhi, 2015         2                                                                                                                                  | tranneby and William Walker,<br>SaeedV.Vasaghi, Fourth edition,                                                                  |
| Text Book(s)         1.       Digital signal processing and applications, Dag S         Second Edition, Elsevier, New York, 2015         Reference Books         1.       Advanced digital signal processing noise reduction, Wiley, New Delhi, 2015                                                                                                                                            | tranneby and William Walker,<br>SaeedV.Vasaghi, Fourth edition,                                                                  |
| Text Book(s)         1.       Digital signal processing and applications, Dag S<br>Second Edition, Elsevier, New York, 2015         Reference Books         1.       Advanced digital signal processing noise reduction,<br>Wiley, New Delhi, 2015         2.       Digital Signal Processing: Fundamentals and Applicat                                                                        | tranneby and William Walker,<br>SaeedV.Vasaghi, Fourth edition,<br>ions, by Li Tan, First edition 2007                           |
| Text Book(s)         1.       Digital signal processing and applications, Dag S         Second Edition, Elsevier, New York, 2015         Reference Books         1.       Advanced digital signal processing noise reduction, Wiley, New Delhi, 2015         2                                                                                                                                  | tranneby and William Walker,<br>SaeedV.Vasaghi, Fourth edition,<br>ions, by Li Tan, First edition 2007                           |
| Text Book(s)         1.       Digital signal processing and applications, Dag S<br>Second Edition, Elsevier, New York, 2015         Reference Books         1.       Advanced digital signal processing noise reduction,<br>Wiley, New Delhi, 2015         2.       Digital Signal Processing: Fundamentals and Applicat         Mode of Evaluation: Continuous Assessment, Digital Assignation | tranneby and William Walker,<br>SaeedV.Vasaghi, Fourth edition,<br>ions, by Li Tan, First edition 2007                           |
| Text Book(s)         1.       Digital signal processing and applications, Dag S Second Edition, Elsevier, New York, 2015         Reference Books         1.       Advanced digital signal processing noise reduction, Wiley, New Delhi, 2015         2.       Digital Signal Processing: Fundamentals and Applicat         Mode of Evaluation: Continuous Assessment, Digital Assignal          | tranneby and William Walker,<br>SaeedV.Vasaghi, Fourth edition,<br>ions, by Li Tan, First edition 2007<br>gnment, Quiz and Final |

| Cou | rse Code      |                                                | Course Titl       | <u>ه</u>  |             |        | 1      | т      | PC     |
|-----|---------------|------------------------------------------------|-------------------|-----------|-------------|--------|--------|--------|--------|
|     | ME607P        | Digital Signal Pr                              |                   |           | ications L  | ab     | 0      |        | 2 1    |
|     | requisite     | Nil                                            | j                 |           |             |        | llab   |        | ersion |
| -   |               |                                                |                   |           |             | - 1    |        | 1.0    |        |
| Cou | rse Objectiv  | es                                             |                   |           |             |        |        |        |        |
|     | course is aim |                                                |                   |           |             |        |        |        |        |
|     |               | g the concepts of sar                          |                   |           |             |        |        |        |        |
|     |               | the concepts of infor                          |                   |           |             |        |        |        |        |
|     |               | methods and algorit                            |                   |           |             | icatio | n to   | happ   | en as  |
|     | close to th   | e maximum informat                             | ion transfer rate | e as poss | sidie       |        |        |        |        |
| Cou | rse Outcome   |                                                |                   |           |             |        |        |        |        |
|     |               | z<br>course, the student v                     | vill he able to   |           |             |        |        |        |        |
|     |               | the into digital mode                          |                   | nms to p  | process the | e sia  | nals   | afte   | er due |
|     |               | n of signals from ana                          |                   |           |             | e e.g. | ,      |        |        |
| 2   | 2. Determine  | the techniques to                              | perform ana       | alog to   | digital and | d dig  | jital  | to a   | analog |
|     | conversior    |                                                |                   |           |             |        |        |        |        |
|     |               | aptive filters based o                         |                   |           |             |        |        |        |        |
| 2   |               | he signal spectrum                             |                   | eived się | gnal and    | modu   | Ilatio | on so  | cheme  |
| L   |               | r information transmi                          |                   | ol        |             |        |        |        |        |
|     |               | the statistical prope<br>ent ways of minimized |                   |           | needed t    | o ron  | rocc   | nt a   | aiven  |
| ,   |               | information                                    |                   |           | necucu i    |        | 1030   | in a   | given  |
| 7   |               | ods to minimize the                            | probability of a  | communi   | cation erro | ors, w | vithou | ut aff | ecting |
|     |               | communication proc                             |                   |           |             |        |        |        | 0      |
|     |               |                                                |                   |           |             |        |        |        |        |
|     | cative Experi |                                                |                   |           |             |        |        |        |        |
| 1.  | Auto correlat |                                                |                   |           |             |        | 2 ho   | ours   |        |
| 0   |               | nplement auto-correl                           | ation using Mat   | lab       |             |        | 4.1    |        |        |
| 2.  | LMS algorith  |                                                |                   | L-        |             |        | 4 no   | ours   |        |
| 3.  | RLS algorith  | nplement the algorith                          | im using iviatia  | D         |             |        | 4 64   | ours   |        |
| э.  | -             | nplement the algorith                          | musing Matla      | h         |             |        | 4 110  | Juis   |        |
| 4.  | ASK. FSK. F   | · •                                            | in using mata     | 0         |             |        | 4 h    | ours   |        |
| ч.  | - ) - )       | nplement digital mod                           | lulation techniq  | ues usino | n Matlab    |        | ŦIK    | 5015   |        |
| 5.  | Complex mo    | · •                                            |                   |           | , matiai    |        | 4 ho   | ours   |        |
|     | •             | nplement complex m                             | odulation techr   | niques us | ing Matlat  | c      |        |        |        |
| 6.  |               | non encoding and de                            |                   |           | 0           |        | 4 ho   | ours   |        |
|     |               | erform reed-Solomor                            |                   | decoding  | g           |        |        |        |        |
| 7.  | CRC encodi    | ng and decoding                                |                   |           |             |        | 4 ho   | ours   |        |
|     |               | erform cyclic redund                           |                   |           |             |        |        |        |        |
| 8.  | •             | livision and linear fee                        | •                 | isters    |             |        | 4 ho   | ours   |        |
|     | • Top         | erform division using                          |                   |           |             |        |        |        |        |
|     |               |                                                |                   |           | oratory Ho  |        | 30 I   | hour   | S      |
|     |               | ent: Continuous Ass                            |                   | inal Asse | essment Te  | est    |        |        |        |
|     |               | / Board of Studies                             | 28-07-2022        | Dete      |             | 000    |        |        |        |
| ADD | roved by Aca  | demic Council                                  | No. 67            | Date      | 08-08-2     | 022    |        |        |        |

| Course Code        | Course Title                                |               |            | L        | Т      | Ρ               | С          |
|--------------------|---------------------------------------------|---------------|------------|----------|--------|-----------------|------------|
| MAME608L           | Open Source Hardware and Software           | System Des    | sian       | 3        | 0      | 0               | 3          |
| Pre-requisite      | Nil                                         |               |            | labı     |        | -               | ion        |
|                    |                                             |               | - ,        |          | .0     |                 |            |
| Course Objective   | 28                                          |               |            |          |        |                 |            |
| The course is aim  |                                             |               |            |          |        |                 |            |
|                    | g to the students the foundation of open so | ource program | nminc      | 1.       |        |                 |            |
|                    | d client-server architectural model for web |               |            | ,-       |        |                 |            |
|                    | he students the basis of Automation using   |               |            |          |        |                 |            |
| o. roadning (      |                                             | racpoonyr     |            |          |        |                 |            |
| Course Outcome     | <u>\</u>                                    |               |            |          |        |                 |            |
|                    | course, the student will be able to         |               |            |          |        |                 |            |
|                    | d the importance of Open Source program     | mina          |            |          |        |                 |            |
|                    | d apply appropriate server side programm    |               | hased      | ann      | lica   | tions           | 2          |
| •                  | d various database operations               |               | aseu       | app      | lica   | uona            | ,          |
|                    | nd the operation of different type of Socke | t programmi   | ~ <b>~</b> |          |        |                 |            |
|                    | d the details of Raspberry Pi fundamental   |               |            |          | nta    | fact            | _          |
|                    | nd implement the various Raspberry Pi pro   |               | ng Gr      | 101      | nie    | lace            | ;          |
|                    |                                             | Jeci          |            |          |        |                 |            |
| 7. Explore G       |                                             |               |            |          |        |                 |            |
| Module:1 Basic     |                                             |               |            |          | 5      | ho              | Irc        |
|                    | -                                           | ono otrina    |            | to       |        |                 |            |
| Variable types –   | basic operators - decision making - lo      | ops – string  | iono       |          | - IL   | spie            | 5 —<br>5 — |
|                    | and Time – Functions – Modules – Fil        | es – Except   | ions -     | - 0      | ass    | es a            | and        |
| Objects            |                                             |               |            |          |        | . <b>b</b> . e. |            |
|                    | Ind Web programming                         |               |            | _        |        | ' ho            |            |
| Tkinter Program    | ning – Tkinter Widgets - CGI – Web          | server suppo  | ort –      | Env      | iron   | mer             | ntal       |
|                    | nd POST methods – Passing information       | using POST    | metho      | bd       |        | -               |            |
| Module:3 Data      |                                             |               |            |          |        | ho              |            |
|                    | base connection – Creating database tabl    | e – INSERT    | – RE/      | AD -     | - UI   | PDA             | TE         |
|                    | 1MIT – ROLEBACK                             |               |            |          |        |                 |            |
|                    | ork Programming                             |               |            |          |        | ' ho            |            |
|                    | socket - Client Socket - General Socket     | methods – S   | Sendir     | ng a     | n H    | TTF             | ' e-       |
|                    | attachment as an email                      |               |            |          |        |                 |            |
|                    | berry Pi fundamentals                       |               |            |          |        | ho              |            |
| Architecture - se  | etting up the Raspberry Pi – Interacting    | with Raspbe   | rry co     | mm       | anc    | l line          | э —        |
| Setting up I2C, se | rial port – Connect Pi to network           |               |            |          |        |                 |            |
| Module:6 Rasp      | berry Basic Projects                        |               |            |          | 7      | ' ho            | urs        |
| Controlling the br | ightness of LED – Buzzing sound – Swit      | ch high pow   | er DC      | ) so     | urce   | e us            | ing        |
|                    | ays - controlling high voltage AC device -  |               |            |          |        |                 |            |
|                    | types of motors - servo motor - DC mot      |               |            |          |        |                 |            |
| HD images - Play   | ••                                          |               |            |          |        | . ,             | 0          |
|                    | nced Raspberry projects                     |               |            |          | 5      | ho              | urs        |
|                    | nterface - Controlling GPIO output - De     | etecting GPIC | ) inpu     | ıt –     |        |                 |            |
|                    | ds – Interfacing various sensors – measu    |               |            |          |        |                 |            |
|                    | ration – measuring temperature – measur     |               |            |          |        |                 |            |
| flash drive        |                                             | 5             | - 99       | .9       |        |                 |            |
|                    | emporary Issues                             |               |            |          | 2      | ho              | urs        |
|                    | • • •                                       |               |            |          |        |                 |            |
|                    | Total Lecture hours:                        |               |            |          | 45     | ho              | urs        |
|                    |                                             |               |            |          |        |                 |            |
|                    |                                             |               |            |          |        |                 |            |
| Text Book(s)       | amming for Dearbarry Di to 04 h             | Diakand D'    |            | <u> </u> | Ne :-! |                 |            |
|                    | amming for Raspberry Pi in 24 hours,        | Richard Blu   | im an      | ia C     | , nris | stine           | ;          |
|                    | ams Teach Yourself, Indiana, 2015           |               |            |          |        |                 |            |
| Reference Books    | 5                                           |               |            |          |        |                 |            |

| 1.  | Raspberry Pi Cookbook, Simon Monk, O'Reilly, California, 2015                                      |            |      |            |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------|------------|------|------------|--|--|--|--|
|     | Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test |            |      |            |  |  |  |  |
|     | commended by Board of Studies                                                                      | 28-07-2022 |      |            |  |  |  |  |
| Арр | proved by Academic Council                                                                         | No. 67     | Date | 08-08-2022 |  |  |  |  |

| Course Code                                                                                              | Course Title                                                                                                                                                                                                                                         | L                     | Т                                              | Р                                         | С          |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------|-------------------------------------------|------------|
| MAME609L                                                                                                 | Machine Vision System for Automotive                                                                                                                                                                                                                 | 3                     | 0                                              | 0                                         | 3          |
| Pre-requisite                                                                                            | NIL                                                                                                                                                                                                                                                  | Syll                  | abus                                           | versi                                     | ion        |
|                                                                                                          |                                                                                                                                                                                                                                                      |                       | 1.                                             | 0                                         |            |
| Course Object                                                                                            | ves                                                                                                                                                                                                                                                  |                       |                                                |                                           |            |
| The course is ai                                                                                         | med at:                                                                                                                                                                                                                                              |                       |                                                |                                           |            |
| 1. Providing                                                                                             | the basic concepts of digital image proce                                                                                                                                                                                                            | essing                | g and                                          | d rela                                    | ted        |
| algorithm                                                                                                | S                                                                                                                                                                                                                                                    |                       |                                                |                                           |            |
|                                                                                                          | ng the concepts of motion estimation, multi cam                                                                                                                                                                                                      | era vi                | ew pi                                          | ocess                                     | sing       |
|                                                                                                          | nestimation                                                                                                                                                                                                                                          | _                     |                                                |                                           |            |
|                                                                                                          | ng on automation considerations and autor                                                                                                                                                                                                            | notive                | e cor                                          | npone                                     | ents       |
| testing                                                                                                  |                                                                                                                                                                                                                                                      |                       |                                                |                                           |            |
| Course Outoor                                                                                            |                                                                                                                                                                                                                                                      |                       |                                                |                                           |            |
| Course Outcor                                                                                            |                                                                                                                                                                                                                                                      |                       |                                                |                                           |            |
|                                                                                                          | e course, the student will be able to                                                                                                                                                                                                                | me                    |                                                |                                           |            |
|                                                                                                          | nd the elements of computer vision based syste<br>with image formation and processing methods                                                                                                                                                        | enis                  |                                                |                                           |            |
|                                                                                                          | nd advanced algorithms for depth estimation                                                                                                                                                                                                          | and                   | mul                                            | ti cam                                    | ora        |
| views                                                                                                    | nd advanced algonanns for depart estimation                                                                                                                                                                                                          |                       | mui                                            | u-cam                                     | era        |
|                                                                                                          | nd various feature extraction techniques                                                                                                                                                                                                             |                       |                                                |                                           |            |
|                                                                                                          | with motion estimation and SLAM algorithms                                                                                                                                                                                                           |                       |                                                |                                           |            |
|                                                                                                          | nd various operational behaviours of Component                                                                                                                                                                                                       | nts in                | Auto                                           | matio                                     | n          |
|                                                                                                          | end the operation of different type of Cylinde                                                                                                                                                                                                       |                       |                                                |                                           |            |
|                                                                                                          | alls and behaviours                                                                                                                                                                                                                                  |                       |                                                |                                           | 5          |
| 8. To apply                                                                                              | machine vision algorithms to solve challenging                                                                                                                                                                                                       | probl                 | ems                                            |                                           |            |
|                                                                                                          |                                                                                                                                                                                                                                                      |                       |                                                |                                           |            |
|                                                                                                          | ments of Computer Vision System                                                                                                                                                                                                                      |                       |                                                | ours                                      |            |
|                                                                                                          | ine vision, System architecture, Sensors, Can                                                                                                                                                                                                        |                       |                                                |                                           |            |
|                                                                                                          | s, adjacency conventions, Image acquisition                                                                                                                                                                                                          |                       |                                                |                                           |            |
|                                                                                                          | Steps involved in Computer vision System: Data                                                                                                                                                                                                       | inges                 | stion,                                         | Data p                                    | ore-       |
| processing, ivio                                                                                         | lelling process, Inference and logging.                                                                                                                                                                                                              |                       | <u> </u>                                       |                                           |            |
|                                                                                                          | ital Image Formation and Processing                                                                                                                                                                                                                  | nofor:                |                                                | ours                                      | aint       |
| Photometric im                                                                                           | age formation, Geometric primitives and trai<br>ar filtering, Non-linear filtering, Histogram pro                                                                                                                                                    |                       | nauo<br>na C                                   | 105, P                                    | om         |
|                                                                                                          | Fourier transforms, Pyramids and wavelets, Re                                                                                                                                                                                                        |                       |                                                | eome                                      | uic        |
|                                                                                                          | oth estimation and Multi-camera views                                                                                                                                                                                                                |                       |                                                | ours                                      |            |
|                                                                                                          | erspective, Binocular Stereopsis, Camera and                                                                                                                                                                                                         | Ening                 |                                                |                                           | htrv:      |
|                                                                                                          | ectification, DLT, RANSAC, 3-D reconstructio                                                                                                                                                                                                         |                       |                                                |                                           |            |
| calibration.                                                                                             |                                                                                                                                                                                                                                                      | in indi               | none                                           | ,,,,,,,                                   | ato        |
| Evanuration.                                                                                             |                                                                                                                                                                                                                                                      |                       |                                                |                                           |            |
|                                                                                                          | ture Extraction in Vision based Systems                                                                                                                                                                                                              |                       | 7 h                                            | ours                                      |            |
| Module:4 Fea                                                                                             | ture Extraction in Vision based Systems<br>Canny, LOG, DOG; Line detectors Hough Tr                                                                                                                                                                  | ransfo                |                                                | <b>ours</b><br>Corne                      | rs -       |
| Module:4 Fea                                                                                             | Canny, LOG, DOG; Line detectors Hough Tr                                                                                                                                                                                                             | ransfo                |                                                |                                           | rs -       |
| Module:4FeaEdge detectorsHarris and Hess                                                                 |                                                                                                                                                                                                                                                      | ransfo                | orm, (                                         |                                           | rs -       |
| Module:4FeaEdge detectorsHarris and HessModule:5                                                         | Canny, LOG, DOG; Line detectors Hough Tr<br>ian Affine, SIFT, SURF, HOG, GLOH                                                                                                                                                                        |                       | orm,(<br>6 h                                   | Corne<br>ours                             |            |
| Module:4FeaEdge detectorsHarris and HessModule:5                                                         | Canny, LOG, DOG; Line detectors Hough Tr<br>ian Affine, SIFT, SURF, HOG, GLOH<br>tion estimation and SLAM                                                                                                                                            |                       | orm, (<br><u>6 h</u><br>n, M                   | Corne<br>ours                             | me         |
| Module:4FeaEdge detectorsHarris and HessModule:5MoGeometric intristructure from                          | Canny, LOG, DOG; Line detectors Hough Tr<br>ian Affine, SIFT, SURF, HOG, GLOH<br>tion estimation and SLAM<br>nsic calibration, Two-frame structure from r                                                                                            | notio<br>Map          | orm, (<br>6 h<br>n, M<br>ping                  | Corne<br><b>ours</b><br>ulti-fra          | ime        |
| Module:4FeaEdge detectors:Harris and HessModule:5MoGeometric intristructure fromTranslational ali        | Canny, LOG, DOG; Line detectors Hough Tr<br>ian Affine, SIFT, SURF, HOG, GLOH<br>tion estimation and SLAM<br>nsic calibration, Two-frame structure from r<br>motion, Simultaneous Localization and                                                   | notio<br>Map          | orm, 0<br>6 h<br>n, M<br>ping<br>ption.        | Corne<br><b>ours</b><br>ulti-fra          | me         |
| Module:4FeaEdge detectors:Harris and HessModule:5MoGeometricintristructurefromTranslationalaliModule:6Au | Canny, LOG, DOG; Line detectors Hough Tr<br>ian Affine, SIFT, SURF, HOG, GLOH<br>tion estimation and SLAM<br>nsic calibration, Two-frame structure from r<br>motion, Simultaneous Localization and<br>gnment, Parametric motion, Optical flow, Layer | notio<br>Map<br>ed mo | orm, 0<br>6 h<br>n, M<br>ping<br>ption.<br>6 h | Corne<br>ours<br>ulti-fra<br>(SLA<br>ours | ime<br>M), |

|     |          | Automotive componer                                |            |        |             |                    |
|-----|----------|----------------------------------------------------|------------|--------|-------------|--------------------|
|     |          | ng types of cylinder block                         |            |        |             |                    |
|     |          | lls in bearings - chec                             |            |        |             |                    |
|     |          | ng gear types – detecti                            |            |        |             | ound – detecting   |
|     |          | sembly of a fuse box – C                           | hecking an | LCD p  | anel.       |                    |
| Mo  | dule:8   | Contemporary Issues                                |            |        |             | 2 hours            |
|     |          |                                                    |            |        |             |                    |
|     |          |                                                    | Total      | Lectur | e hours:    | 45 hours           |
| Tex | xt Books | 5                                                  |            |        |             |                    |
| 1.  |          | er Vision: Algorithms a<br>r, 2022, ISBN: 97830303 |            | tions, | Richard S   | Szeliski, 2nd ed., |
| 2.  |          | er and machine vision<br>Fourth Edition (Kindle Ec |            |        |             |                    |
| Re  | ference  | Books                                              |            |        |             |                    |
| 1.  |          | natics for Machine Learr                           |            |        |             |                    |
|     |          | Soon Ong. Cambridge U                              |            |        |             |                    |
| 2.  |          | I Intelligence, Machine                            |            |        |             |                    |
|     |          | sato. Mercury Learning &                           |            |        |             |                    |
| 3.  |          | nt Vision systems for Ind                          |            |        | tchelor an  | d Paul F. Whelan,  |
|     |          | r, London, 2012, ISBN: 9                           |            |        |             |                    |
|     |          | aluation: Continuous As                            | sessment T | est, D | igital Assi | gnment, Quiz and   |
|     |          | sment Test                                         |            |        |             |                    |
|     |          | ded by Board of Studies                            | 07-06-202  |        |             |                    |
| Ар  | proved b | y Academic Council                                 | No. 70     | Date   | 24-06-2     | 2023               |

| Course Co                                                        | ode                                                                                 | Course Title                                                                                                                                                                                                                                                                                                                                         | L                                                                               | Т                                            | Ρ                                                  | С                                     |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|---------------------------------------|
| <b>MAME609</b>                                                   | P                                                                                   | Machine Vision System for Automotive                                                                                                                                                                                                                                                                                                                 | 0                                                                               | 0                                            | 2                                                  | 1                                     |
|                                                                  |                                                                                     | Lab                                                                                                                                                                                                                                                                                                                                                  |                                                                                 |                                              |                                                    |                                       |
| Pre-requis                                                       | site                                                                                | NIL                                                                                                                                                                                                                                                                                                                                                  | Sylla                                                                           | ous v                                        | versi                                              | on                                    |
| •                                                                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                      |                                                                                 | 1.0                                          |                                                    |                                       |
| Course Ob                                                        | biectiv                                                                             | /es                                                                                                                                                                                                                                                                                                                                                  | I                                                                               |                                              |                                                    |                                       |
| The course                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |                                              |                                                    |                                       |
|                                                                  |                                                                                     | the basic concepts of digital image proce                                                                                                                                                                                                                                                                                                            | essina                                                                          | and                                          | relat                                              | ted                                   |
|                                                                  | prithms                                                                             |                                                                                                                                                                                                                                                                                                                                                      | eeeg                                                                            | ana                                          |                                                    |                                       |
|                                                                  |                                                                                     | g the concepts of motion estimation, multi cam                                                                                                                                                                                                                                                                                                       | era viev                                                                        | w pro                                        | cess                                               | ina                                   |
|                                                                  |                                                                                     | estimation                                                                                                                                                                                                                                                                                                                                           | 0.0.00                                                                          | . 6                                          |                                                    | 9                                     |
|                                                                  |                                                                                     | g on automation considerations and autor                                                                                                                                                                                                                                                                                                             | notive                                                                          | com                                          | pone                                               | nts                                   |
| test                                                             |                                                                                     | g                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                                              | I · · -                                            |                                       |
|                                                                  | 5                                                                                   |                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |                                              |                                                    |                                       |
| Course Ou                                                        | utcom                                                                               |                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |                                              |                                                    |                                       |
|                                                                  |                                                                                     | course, the student will be able to                                                                                                                                                                                                                                                                                                                  |                                                                                 |                                              |                                                    |                                       |
|                                                                  |                                                                                     | id the elements of computer vision based syste                                                                                                                                                                                                                                                                                                       | ems                                                                             |                                              |                                                    |                                       |
|                                                                  |                                                                                     | with image formation and processing methods                                                                                                                                                                                                                                                                                                          |                                                                                 |                                              |                                                    |                                       |
|                                                                  |                                                                                     | d advanced algorithms for depth estimation                                                                                                                                                                                                                                                                                                           | n and i                                                                         | nulti                                        | -cam                                               | era                                   |
| view                                                             |                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                                              |                                                    |                                       |
| 4. Und                                                           | lerstan                                                                             | nd various feature extraction techniques                                                                                                                                                                                                                                                                                                             |                                                                                 |                                              |                                                    |                                       |
|                                                                  |                                                                                     | vith motion estimation and SLAM algorithms                                                                                                                                                                                                                                                                                                           |                                                                                 |                                              |                                                    |                                       |
|                                                                  |                                                                                     | nd various operational behaviours of Component                                                                                                                                                                                                                                                                                                       | nts in A                                                                        | utom                                         | natior                                             |                                       |
|                                                                  |                                                                                     | end the operation of different type of Cylinde                                                                                                                                                                                                                                                                                                       |                                                                                 |                                              |                                                    |                                       |
|                                                                  |                                                                                     | alls and behaviours                                                                                                                                                                                                                                                                                                                                  |                                                                                 | ,                                            |                                                    | 5                                     |
|                                                                  |                                                                                     | nachine vision algorithms to solve challenging                                                                                                                                                                                                                                                                                                       | probler                                                                         | ns                                           |                                                    |                                       |
|                                                                  | 115                                                                                 | 5 5 5                                                                                                                                                                                                                                                                                                                                                | •                                                                               |                                              |                                                    |                                       |
| Indicative                                                       | Exper                                                                               | riments                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                              |                                                    |                                       |
| 1                                                                | To per                                                                              | form digital image filtering using various masks                                                                                                                                                                                                                                                                                                     | S                                                                               | 4                                            | Hou                                                | rs                                    |
| 2                                                                | To Ex                                                                               | plore Wavelets and Pyramids for frequency                                                                                                                                                                                                                                                                                                            | domair                                                                          | 4                                            | Hou                                                | rs                                    |
|                                                                  |                                                                                     | processing                                                                                                                                                                                                                                                                                                                                           |                                                                                 |                                              |                                                    |                                       |
|                                                                  |                                                                                     | blement binocular stereopsis process                                                                                                                                                                                                                                                                                                                 |                                                                                 | 4                                            | Hou                                                | rs                                    |
|                                                                  |                                                                                     | tract features using edge detectors, line de                                                                                                                                                                                                                                                                                                         | tectors                                                                         |                                              | Hou                                                |                                       |
|                                                                  |                                                                                     |                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |                                              | · i iou                                            | 15                                    |
|                                                                  | corner                                                                              | detectors                                                                                                                                                                                                                                                                                                                                            |                                                                                 | '                                            | · Hou                                              | 15                                    |
| 5                                                                |                                                                                     | detectors<br>nent object tracking using optical flow techniqu                                                                                                                                                                                                                                                                                        |                                                                                 |                                              | Hou                                                |                                       |
|                                                                  | Implen                                                                              | nent object tracking using optical flow techniqu                                                                                                                                                                                                                                                                                                     | le                                                                              | 4                                            | Hou                                                | rs                                    |
| 6                                                                | Implen<br>Perfori                                                                   | nent object tracking using optical flow techniqu<br>m welding inspection of motor parts using                                                                                                                                                                                                                                                        | le                                                                              | 4                                            |                                                    | rs                                    |
| 6                                                                | Implen<br>Perfori<br>proces                                                         | nent object tracking using optical flow techniqu<br>m welding inspection of motor parts using<br>ssing                                                                                                                                                                                                                                               | ie<br>image                                                                     | 4                                            | Hou<br>Hou                                         | rs<br>rs                              |
| 6                                                                | Implen<br>Perfori<br>proces                                                         | nent object tracking using optical flow techniqu<br>m welding inspection of motor parts using                                                                                                                                                                                                                                                        | ie<br>image<br>earings                                                          | 4                                            | Hou<br>Hou                                         | rs<br>rs<br>rs                        |
| 6<br>7                                                           | Implen<br>Perfori<br>proces<br>Implen                                               | nent object tracking using optical flow techniqu<br>m welding inspection of motor parts using<br>ssing                                                                                                                                                                                                                                               | ie<br>image                                                                     | 4                                            | Hou<br>Hou                                         | rs<br>rs<br>rs                        |
| 6<br>7<br>Text Book                                              | Implen<br>Perfori<br>proces<br>Implen                                               | nent object tracking using optical flow techniqu<br>m welding inspection of motor parts using<br>ssing<br>nent program for missing-roller inspection for b                                                                                                                                                                                           | image<br>image<br>earings<br>Tota                                               | 4<br>4<br>6<br>1 30                          | Hou<br>Hou<br>Hou<br>Hou                           | rs<br>rs<br>rs<br><b>Irs</b>          |
| 6<br>7<br><b>Text Book</b><br>1.                                 | Implen<br>Perfori<br>proces<br>Implen<br>s <b>s</b><br>Compl                        | nent object tracking using optical flow techniqu<br>m welding inspection of motor parts using<br>ssing<br>nent program for missing-roller inspection for b<br>uter Vision: Algorithms and Applications, Richa                                                                                                                                        | image<br>image<br>earings<br>Tota                                               | 4<br>4<br>6<br>1 30                          | Hou<br>Hou<br>Hou<br>Hou                           | rs<br>rs<br>rs<br><b>Irs</b>          |
| 6<br>7<br><b>Text Book</b><br>1.                                 | Implen<br>Perfori<br>proces<br>Implen<br>s <b>s</b><br>Compu<br>Spring              | nent object tracking using optical flow techniqu<br>m welding inspection of motor parts using<br>sing<br>nent program for missing-roller inspection for b<br>uter Vision: Algorithms and Applications, Richa<br>er, 2022, ISBN:9783030343712,                                                                                                        | image<br>image<br>earings<br>Tota<br>rd Szel                                    | 4<br>4<br>6<br>1 3(                          | - Hou<br>- Hou<br>- Hou<br>- Hou<br>- Hou<br>2nd e | rs<br>rs<br><b>irs</b><br>ars         |
| 6<br>7<br><b>Text Book</b><br>1.<br>2.                           | Implen<br>Perfori<br>proces<br>Implen<br>Spring<br>Compu<br>Compu                   | nent object tracking using optical flow techniqu<br>m welding inspection of motor parts using<br>sing<br>nent program for missing-roller inspection for b<br>uter Vision: Algorithms and Applications, Richa<br>er, 2022, ISBN:9783030343712,<br>uter and machine vision : Theory, Algorithm and                                                     | image<br>image<br>earings<br>Tota<br>Ird Szel<br>d Practi                       | 4<br>4<br>6<br>1 30<br>iski,<br>caliti       | Hou<br>Hou<br>Hou<br>Hou<br>Hou<br>2nd e<br>es, E  | rs<br>rs<br><b>irs</b><br>ars         |
| 6<br>7<br><b>Text Book</b><br>1.<br>2.                           | Implen<br>Perfori<br>proces<br>Implen<br>Spring<br>Compu<br>Compu                   | nent object tracking using optical flow techniqu<br>m welding inspection of motor parts using<br>sing<br>nent program for missing-roller inspection for b<br>uter Vision: Algorithms and Applications, Richa<br>er, 2022, ISBN:9783030343712,                                                                                                        | image<br>image<br>earings<br>Tota<br>Ird Szel<br>d Practi                       | 4<br>4<br>6<br>1 30<br>iski,<br>caliti       | Hou<br>Hou<br>Hou<br>Hou<br>Hou<br>2nd e<br>es, E  | rs<br>rs<br><b>irs</b><br>ars         |
| 6<br>7<br><b>Text Book</b><br>1.<br>2.                           | Implen<br>Perfori<br>proces<br>Implen<br>Spring<br>Compi<br>Compi<br>Davies         | nent object tracking using optical flow techniqu<br>m welding inspection of motor parts using<br>sing<br>nent program for missing-roller inspection for b<br>uter Vision: Algorithms and Applications, Richa<br>er, 2022, ISBN:9783030343712,<br>uter and machine vision : Theory, Algorithm and<br>s, Fourth Edition (Kindle Edition), 2012, ISBN-9 | image<br>image<br>earings<br>Tota<br>Ird Szel<br>d Practi                       | 4<br>4<br>6<br>1 30<br>iski,<br>caliti       | Hou<br>Hou<br>Hou<br>Hou<br>Hou<br>2nd e<br>es, E  | rs<br>rs<br><b>irs</b><br>ars         |
| 6<br>7<br>Text Book<br>1.<br>2.<br>Reference                     | Implen<br>Perfori<br>proces<br>Implen<br>Spring<br>Compu<br>Davies<br>Book          | nent object tracking using optical flow techniqu<br>m welding inspection of motor parts using<br>sing<br>nent program for missing-roller inspection for b<br>uter Vision: Algorithms and Applications, Richa<br>er, 2022, ISBN:9783030343712,<br>uter and machine vision : Theory, Algorithm and<br>s, Fourth Edition (Kindle Edition), 2012, ISBN-  | ie<br>image<br>earings<br>Tota<br>Ird Szel<br>d Practi<br>978012                | 4<br>4<br>6<br>1 30<br>iski,<br>3869         | <u>Hou</u><br>Hou<br>Hou<br>2nd e<br>es, E         | rs<br>rs<br>ars<br>ed.,               |
| 6<br>7<br><b>Text Book</b><br>1.<br>2.<br><b>Reference</b><br>1. | Implen<br>Perfori<br>proces<br>Implen<br>Spring<br>Compi<br>Davies<br>Book<br>Mathe | nent object tracking using optical flow techniqu<br>m welding inspection of motor parts using<br>sing<br>nent program for missing-roller inspection for b<br>uter Vision: Algorithms and Applications, Richa<br>er, 2022, ISBN:9783030343712,<br>uter and machine vision : Theory, Algorithm and<br>s, Fourth Edition (Kindle Edition), 2012, ISBN-9 | image<br>image<br>earings<br>Tota<br>Ird Szel<br>d Practi<br>978012<br>Deisenre | 4<br>4<br>6<br>1 3(<br>iski,<br>3869<br>0th, | <u>Hou</u><br>Hou<br>Hou<br>2nd e<br>es, E<br>0081 | rs<br>rs<br><b>irs</b><br>ed.,<br>.R. |

| 2.                                                                  | Artificial Intelligence, Machine Lea                                                                                        | arning, an | d Deep    | Learning.  | Oswald |  |  |  |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------|-----------|------------|--------|--|--|--|
| Campesato. Mercury Learning & Information.2020. IS<br>9781683924661 |                                                                                                                             |            |           |            |        |  |  |  |
| 3.                                                                  | Intelligent Vision systems for Industry, Bruce G. Batchelor and Paul F. Whelan, Springer, London, 2012, ISBN: 9781447104315 |            |           |            |        |  |  |  |
| Mode of E                                                           | Evaluation: Continuous Assessment                                                                                           | Test and F | Final Ass | sessment T | est    |  |  |  |
| Recommended by Board of Studies 07-06-2023                          |                                                                                                                             |            |           |            |        |  |  |  |
| Approved                                                            | l by Academic Council                                                                                                       | No. 70     | Date      | 24-06-202  | 23     |  |  |  |

| Course Code       | Course Title                                 |                   |       | L     | Т            | Ρ     | С     |
|-------------------|----------------------------------------------|-------------------|-------|-------|--------------|-------|-------|
| MAME610L          | ME610L Automotive Fault Diagnostics          |                   |       |       |              |       | 4     |
| Pre-requisite     | Nil                                          |                   | Sy    | llab  | us           | vers  | ion   |
| •                 |                                              |                   |       |       | 1.0          |       |       |
| Course Objective  | 28                                           |                   |       |       |              | -     |       |
| The course is aim |                                              |                   |       |       |              |       |       |
|                   | students with the basic concepts of auton    | notive fault diad | anos  | stics |              |       |       |
|                   | dents about the fault sensors output wave    |                   | 9     |       |              |       |       |
|                   | ne operation of Automotive Oscilloscopes     |                   | ault  | cod   | e re         | ade   | s     |
| g.                |                                              | ,                 |       |       | • • •        |       | -     |
| Course Outcome    |                                              |                   |       |       |              |       |       |
|                   | course, the student will be able to          |                   |       |       |              |       |       |
|                   | he basic concepts of fault diagnosis in aut  | tomotive field.   |       |       |              |       |       |
|                   | MIL for various automotive faults.           |                   |       |       |              |       |       |
|                   | f idea of various sensors and assess         | ECU failures      | wi    | th t  | he           | help  | of    |
| oscilloscope      |                                              |                   |       |       |              |       | •.    |
|                   | the operation of fault-finding systems (OE   | BD)               |       |       |              |       |       |
|                   | ectify the faults of automotive sensors and  |                   | svst  | ems   | S.           |       |       |
|                   | various failure modes in Electronic control  |                   |       |       |              | units |       |
|                   | he concepts of Electrical systems fault dia  |                   |       |       |              |       |       |
|                   |                                              | 0                 |       |       |              |       |       |
| Module:1 Diag     | nostic                                       |                   |       |       | (            | 6 ho  | urs   |
|                   | iques - diagnostic process - diagnostics     | on paper - me     | char  | nica  | l dia        | aano  | stic  |
|                   | trical diagnostic techniques - fault codes   |                   |       |       |              |       |       |
| Data sources      |                                              |                   |       | -     |              |       |       |
|                   | s and Equipment                              |                   |       |       | (            | 6 ho  | urs   |
|                   | - Oscilloscopes - Scanners - Fault code re   | eaders - Engine   | e An  | alvs  |              |       |       |
|                   | loscope diagnostics                          |                   |       |       |              | 4 ho  | urs   |
|                   | rs - Ignition System - Other components      |                   |       |       |              |       |       |
|                   | oard diagnostics                             |                   |       |       | (            | 6 ho  | urs   |
|                   | - Petrol / Gasoline on-board diagnostics     | monitors - a se   | con   | d ne  |              |       |       |
| Module:5 Engi     |                                              |                   | 0011  | u pt  |              | 7 ho  |       |
| ¥                 | ngine operation - Fuel system - Ignition -   | Emission - Eur    | al In | ioct  |              |       |       |
|                   | management - Fault finding information       |                   |       |       |              |       |       |
| •                 | ion - batteries - starting system - charging | • • •             | u c/  | inat  | 131 1        | sysic | ,1113 |
| Module:6 Chas     |                                              | Joyston           |       |       |              | 7 ho  | ure   |
|                   | akes - anti-lock brakes diagnostics - tract  | ion control dia   | ano   | etica |              |       |       |
|                   | stics - suspension diagnostics               |                   | gno.  | 51103 | <b>)</b> - ( | 3100  | ing   |
| Module:7 Elect    |                                              |                   |       |       |              | 7 ho  | ure   |
|                   | nents and circuits diagnosis - multiplexir   | a - liabtina - d  | liaar | noei  |              |       |       |
|                   | a car entertainment security and commu       |                   |       |       |              |       |       |
|                   | g instruments system faults - HVAC diagn     |                   |       |       |              |       |       |
|                   | t tensions diagnostics                       |                   | COII  | 10    | ula          | gnos  | 1105  |
| Module:8 Cont     |                                              |                   |       |       |              | 2 ho  | ure   |
|                   |                                              |                   |       |       |              | 2 110 | urs   |
| <u> </u>          | Total Lecture hours:                         |                   |       |       | 4            | 5 ho  | ure   |
|                   |                                              |                   |       |       |              | 5 110 | ui 3  |
|                   |                                              |                   |       |       |              |       |       |
| Text Book(s)      |                                              |                   | _     |       | <i>c</i>     |       |       |
|                   | echnician Training, Tom Denton, Taylor a     | nd Francis, Ne    | w Y   | ork,  | 20           | 15    |       |
| Reference Book    |                                              |                   |       |       |              | -     | -     |
|                   | Electrical and Electronic Systems : Au       |                   |       |       |              |       | icle  |
|                   | and Repair, Tom Denton, Fourth Edition,      |                   |       |       |              |       |       |
|                   | itomotive Fault Diagnosis: Automotive T      |                   | ehicl | e N   | lain         | tena  | nce   |
| and Repair. 1     | om Denton, Third Edition, Elsevier, New      | York, 2012.       |       |       |              |       |       |

Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test

| Recommended by Board of Studies | 28-07-2022 |      |            |
|---------------------------------|------------|------|------------|
| Approved by Academic Council    | No. 67     | Date | 08-08-2022 |

| Course Code                                                                    | Course Title                                                                       |                  | L         | Τ     | Ρ    | С    |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------|-----------|-------|------|------|
| MAME611L                                                                       | Emission Control and Diag                                                          | nosis            | 3         | 0     | 0    | 3    |
| Pre-requisite                                                                  | Nil                                                                                |                  | Syllab    | us v  | ersi | ion  |
| •                                                                              |                                                                                    |                  |           | 1.0   |      |      |
| Course Objectiv                                                                | es                                                                                 | I                |           | -     |      |      |
| The course is aim                                                              |                                                                                    |                  |           |       |      |      |
| 1. Preparing                                                                   | the students to analyze automotive pollution                                       | on control techr | niaues    |       |      |      |
|                                                                                | g the concepts of formation and contro                                             |                  |           | lutar | nts  | like |
|                                                                                | O, NOx and particulate matter                                                      | •                | •         |       |      |      |
| •                                                                              | the students to analyze smoke for both SI                                          | and CI engines   | 6         |       |      |      |
|                                                                                | ž                                                                                  | U                |           |       |      |      |
| Course Outcome                                                                 | 9                                                                                  |                  |           |       |      |      |
| At the end of the                                                              | course, the student will be able to                                                |                  |           |       |      |      |
| 1. Get details                                                                 | s of the emission from automobiles                                                 |                  |           |       |      |      |
| 2. Analyze e                                                                   | mission from Spark Ignition Engine                                                 |                  |           |       |      |      |
|                                                                                | mission from Compression Ignition Engine                                           |                  |           |       |      |      |
|                                                                                | out the exhaust emissions                                                          |                  |           |       |      |      |
|                                                                                | end the Emission Control Legislation - I                                           |                  |           |       |      |      |
| 6. Comprehe                                                                    | end the Emission Control Legislation – II                                          |                  |           |       |      |      |
| 7. Understar                                                                   | d about the Exhaust gas measuring techni                                           | iques            |           |       |      |      |
|                                                                                |                                                                                    |                  |           |       |      |      |
|                                                                                | sion From Automobiles                                                              |                  |           |       | ho   |      |
|                                                                                | Pollution. Various emissions from Automo                                           |                  |           |       |      |      |
|                                                                                | ronment and human beings. Emission cor                                             |                  |           |       |      |      |
|                                                                                | ent 11 devices. Emission standards. Auto                                           | omotive waste    | manag     | jeme  | ent, | old  |
|                                                                                | recycling, tyre recycling                                                          |                  |           |       |      |      |
|                                                                                | sion From Spark Ignition Engine And                                                |                  |           | 7     | ho   | urs  |
|                                                                                | ontrol                                                                             |                  |           |       |      |      |
|                                                                                | ion in SI Engines- Carbon monoxide &                                               |                  |           |       |      |      |
|                                                                                | Dx, Smoke —Effects of design and op                                                |                  |           |       |      |      |
|                                                                                | olling of pollutants - Catalytic converters, (                                     |                  |           |       |      |      |
|                                                                                | ilation system, Secondary air injection,                                           | thermal reacto   | r, Lase   | er A  | SSIS | ted  |
| Combustion                                                                     | cion From Compression Impition                                                     |                  |           |       | ha   |      |
|                                                                                | sion From Compression Ignition                                                     |                  |           | 0     | ho   | urs  |
|                                                                                | he And Its Control                                                                 | aaat aulahuu     |           |       |      |      |
|                                                                                | hite, Blue, and Black Smokes, NOx,                                                 |                  |           |       |      |      |
|                                                                                | pounds – Physical and Chemical delay —<br>ission formation — Fumigation, Split inj |                  |           |       |      |      |
|                                                                                |                                                                                    |                  |           | ung,  |      | אכ,  |
| Module:4 Exha                                                                  | Traps, SCR, Fuel additives — Cetane nur                                            | IDEI EIIECI.     |           | 6     | ho   | ire  |
|                                                                                | ucts, Properties of exhaust gas component                                          | to               |           | 0     |      | u    |
|                                                                                | sion control legislation - I                                                       | 13               |           | F     | ho   | ure  |
|                                                                                |                                                                                    | lononoco logi    | alation   |       |      | 112  |
|                                                                                | legislation, EPA legislation, EU legislation                                       | , Japanese legi  | รเลแบก    |       | ha   | ure  |
|                                                                                | sion control legislation - II                                                      | ronoon toot our  | aloo for  |       | ho   |      |
|                                                                                | passenger cars and light duty trucks, Eu                                           |                  |           |       |      |      |
| -cars and light du                                                             | ty trucks, Japanese test cycles for pass                                           | enger cars and   | a light ( | July  | uruc | ĸs,  |
|                                                                                | avy commercial vehicles                                                            |                  |           |       | he   | -    |
| test cycles for hea                                                            | ust ass messuring techniques                                                       |                  |           |       |      |      |
| test cycles for heat Module:7 Exha                                             | ust gas measuring techniques – I                                                   |                  |           |       |      | urs  |
| test cycles for hea<br>Module:7 Exha<br>Exhaust gas test                       | on chassis dynamometers, Exhaust gas n                                             | neasuring devic  | ces, Di   |       |      |      |
| test cycles for hea<br>Module:7 Exha<br>Exhaust gas test<br>emission test, Eva |                                                                                    | neasuring devic  | ces, Di   | esel  |      | oke  |

|     |                                                     | T                          | otal Lecture ho   | ours:      | 45 hours                         |  |  |  |  |
|-----|-----------------------------------------------------|----------------------------|-------------------|------------|----------------------------------|--|--|--|--|
| Tex | Text Book(s)                                        |                            |                   |            |                                  |  |  |  |  |
| 1.  | G.P.Sp                                              | ringer ad D.J.Patterson, I | Engine Emissio    | ns, Pollut | ant formation, Plenum Press,     |  |  |  |  |
|     | New Yo                                              | ork, 1986.                 | -                 |            |                                  |  |  |  |  |
| 2.  | D.J.Pat                                             | terson and N.A.Henin, 'Err | nission from Cor  | nbustion   | Engine and their control', Anna  |  |  |  |  |
|     | Arbor S                                             | cience Publication, 1985.  |                   |            | -                                |  |  |  |  |
| 3.  | Autmoti                                             | ive Handbook – 9th Editior | n – 2015, BOSC    | Н          |                                  |  |  |  |  |
| Re  | ference                                             | Books                      |                   |            |                                  |  |  |  |  |
| 1.  | V.Gane                                              | san, 'Internal combustion  | Engines', Tata    | McGraw     | Hill Book Co, Eighth Reprint,    |  |  |  |  |
|     | 2005.                                               |                            |                   |            |                                  |  |  |  |  |
| 2.  | Crouse                                              | and Anglin, 'Automotive    | Emission Cor      | trol', Mc  | Graw Hill company.,Newyork       |  |  |  |  |
| 3.  | 1993.                                               |                            |                   |            |                                  |  |  |  |  |
|     | Charles                                             | s K. Alexander, Matthew N  | l. O. Sadiku, "Fi | undament   | als of Electric Circuits," 2015, |  |  |  |  |
|     | 5th Edit                                            | tion, Tata McGraw Hill Edu | cation Private L  | imited, N  | ew Delhi, India.                 |  |  |  |  |
| Мо  | de of E                                             | valuation: Continuous As   | sessment Test     | , Digital  | Assignment, Quiz and Final       |  |  |  |  |
| Ass | sessmen                                             | t Test                     |                   |            |                                  |  |  |  |  |
| Re  | commen                                              | ded by Board of Studies    | 28-07-2022        |            |                                  |  |  |  |  |
| Ар  | Approved by Academic Council No. 67 Date 08-08-2022 |                            |                   |            |                                  |  |  |  |  |

|               | e Course Title                                   | L   T                        | P C       |
|---------------|--------------------------------------------------|------------------------------|-----------|
| MAME612L      | Vehicle Safety System                            |                              | 0 2       |
| Pre-requisite | e Nil                                            | Syllabus v                   | ersion    |
|               |                                                  | 1.0                          |           |
| Course Obje   | ctives                                           |                              |           |
| The course is | aimed at:                                        |                              |           |
| 1. Have a     | better understanding of good design prac         | tices which will enable p    | product   |
| improve       | ement that manifests significantly less risk     | to humans, machines a        | nd the    |
| environi      | ment                                             |                              |           |
| 2. Gain the   | e ability to design and demonstrate the vehicle  | e safety critical systems to | reduce    |
|               | em errors and faults                             |                              |           |
|               | cing the students to do design safety systems ι  | using MATLAB simulation      |           |
|               | · · · ·                                          | ~                            |           |
| Course Outo   | ome                                              |                              |           |
| At the end of | the course, the student will be able to          |                              |           |
|               | and the basic concept of vehicle safety          |                              |           |
|               | and the operation of braking system design ar    | nd its operation             |           |
|               | and the braking system for passenger vehicles    | •                            |           |
|               | he working principle of ABS and traction contro  |                              |           |
|               | and the concepts of braking systems for com      |                              |           |
|               | and the vehicle stabilization for commercial ve  |                              |           |
|               | and about the airbag system for passenger sa     |                              |           |
|               | and about the andag bystern for passenger sa     |                              |           |
| Module:1 E    | Basic concepts of vehicle safety                 | 4                            | hours     |
|               | principles-cause and effect -safety factors-c    |                              |           |
|               | afety factor-Digital models and man testing -co  |                              | intrying  |
|               | Braking systems                                  |                              | hours     |
|               | rinciples-design and components of               | braking system-brake         |           |
|               | s-braking system design                          | blaking system-blake         | Circuit   |
|               | Braking system for passenger cars and            | 1                            | hours     |
|               | ight utility vehicles                            | +                            | noui s    |
|               | r-brake master cylinder-braking force limiters-  | dick brakes drum brakes      |           |
|               | ehicle stabilization systems for                 |                              | hours     |
|               | -                                                | 4                            | nours     |
|               | bassenger cars                                   | vators (TCC) Electronic      |           |
|               |                                                  | ystem(TCS)-Electronic        | stability |
|               | P)-Electrohydraulic brakes                       |                              | h         |
|               | Braking system for commercial vehicles           |                              | hours     |
| •             | configuration-air supply and processing-Tra      | ansmission device-wheel a    | orakes-   |
|               | e system-retarder braking system                 |                              |           |
|               | ehicle stabilization system for                  | 4                            | hours     |
|               | commercial vehicles                              |                              |           |
|               | tability program(ESP) for commercial v           | 5                            | ntrolled  |
|               | -function-system design-components-electro p     |                              |           |
|               | Occupant injury prevention and distracted        | 4                            | hours     |
|               | Iriver                                           |                              | -         |
| •             | proper use of head restraints-Airbags-distractor | ors and risk reduction-infor | mation    |
| processing    |                                                  |                              |           |
| Module:8 C    | Contemporary Issues                              | 2                            | hours     |
|               |                                                  |                              |           |
|               |                                                  |                              | hours     |
|               | Total Lecture hours:                             | 30                           | nours     |
|               | Total Lecture hours:                             | 30                           | nours     |
| Text Book(s)  |                                                  | 30                           | nours     |

|                 | edition, 2015                                                                     |               |           |                            |  |  |  |  |
|-----------------|-----------------------------------------------------------------------------------|---------------|-----------|----------------------------|--|--|--|--|
| Reference Books |                                                                                   |               |           |                            |  |  |  |  |
| 1.              | 1. Robert Bosch, "Automotive handbook",9th edition,2015                           |               |           |                            |  |  |  |  |
| 2.              | Bimal K Bose, "Power Electronics and Motor Drive: Advances and Trends", Elsevier, |               |           |                            |  |  |  |  |
|                 | Inc., 2006                                                                        |               |           |                            |  |  |  |  |
| Мо              | de of Evaluation: Continuous As                                                   | sessment Test | , Digital | Assignment, Quiz and Final |  |  |  |  |
| Assessment Test |                                                                                   |               |           |                            |  |  |  |  |
| Re              | commended by Board of Studies                                                     | 28-07-2022    |           |                            |  |  |  |  |
| Ар              | Approved by Academic Council No. 67 Date 08-08-2022                               |               |           |                            |  |  |  |  |

| Course Code       | Course Title                                |                  | LTPC                 |
|-------------------|---------------------------------------------|------------------|----------------------|
| MAME613L          | Vehicle Bodies                              |                  | 2 0 0 2              |
| Pre-requisite     | Nil                                         |                  | Syllabus version     |
| •                 |                                             |                  | 1.0                  |
| Course Objective  | es                                          | I                |                      |
| The course is aim |                                             |                  |                      |
|                   | ght into the vehicle construction           |                  |                      |
|                   | nd construction of vehicular bodies for     | passenger ca     | r and commercial     |
| vehicles          |                                             |                  |                      |
| 3. Providing      | an overview of lighting in vehicles         |                  |                      |
|                   |                                             |                  |                      |
| Course Outcome    | }                                           |                  |                      |
|                   | course, the student will be able to         |                  |                      |
|                   | d Road-vehicle systematics                  |                  |                      |
|                   | d Vehicle bodies for passenger cars         |                  |                      |
|                   | and analyze commercial vehicles bodi        | es               |                      |
|                   | xternal lighting technologies               |                  |                      |
|                   | ternal lighting technologies                |                  |                      |
|                   | t Automotive windshield and window glass    | 6                |                      |
|                   | end the windshield and rear-window cleani   |                  |                      |
| I                 |                                             | <u> </u>         |                      |
| Module:1 Road     | -vehicle systematics                        |                  | 2 hours              |
|                   | ording to ECE, Classification according to  | USA              |                      |
| Module:2 Vehic    | cle bodies- passenger cars                  |                  | 4 hours              |
|                   | s, Body design, Aerodynamics, Aeroa         | coustics body    |                      |
|                   | urface, Body finishing components, Safety   |                  | y olluolaio, Douy    |
|                   | cle bodies-commercial vehicles              |                  | 4 hours              |
|                   | cles, Light utility vans, Medium and heavy  | /-duty trucks ar |                      |
|                   | afety in commercial vehicles                |                  |                      |
|                   | ing technology-l                            |                  | 5 hours              |
|                   | ations and equipment, Definitions and te    | rms. Main hea    |                      |
|                   | eadlamps, European regulations, Head        |                  |                      |
|                   | llamp leveling, Europe, Headlamp cleanir    |                  |                      |
| driving lamps     | amp leveling, Europe, Headiamp cleanin      | ig systems, i c  | by lamps, Auxiliary  |
| · · · ·           | ing technology-II                           |                  | 5 hours              |
|                   | , Hazard-warning and turn-signal flashers   | Side-marker      |                      |
|                   | mps, License-plate lamps, Stop lamps, R     |                  |                      |
|                   | running lamps, Reversing lamps, Daytin      | • •              |                      |
| devices, Motor-ve |                                             | no running lui   | inpo, other lighting |
|                   | motive windshield and window glass          |                  | 4 hours              |
|                   | erties of glass, Automotive glazing, Functi | ional design gla |                      |
|                   | shield and rear-window cleaning             | ional acoign gi  | 4 hours              |
| syste             | -                                           |                  |                      |
|                   | systems, Rear-window wiper systems, He      | adlamn cleani    | ing systems Winer    |
| motors, Washing   |                                             |                  |                      |
|                   | emporary Issues                             |                  | 2 hours              |
|                   |                                             |                  | 2 110013             |
|                   | Total Lecture hours:                        |                  | 30 hours             |
|                   |                                             |                  | 50 110015            |
|                   |                                             |                  |                      |
| Text Book(s)      |                                             |                  |                      |
| 1. Powloski J.,   | "Vehicle Body Engineering", Business bo     | oks limited, Loi | ndon,1970            |
| Reference Book    |                                             |                  |                      |
| 1. Robert Bosch   | n, "Automotive handbook", 9th edition, SAE  | E publication 20 | 015                  |
|                   |                                             |                  |                      |

Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test

| Recommended by Board of Studies | 28-07-2022 |      |            |
|---------------------------------|------------|------|------------|
| Approved by Academic Council    | No. 67     | Date | 08-08-2022 |

| Course Code                | Course Title                                |                  |         | L             | TI     | P      | С    |
|----------------------------|---------------------------------------------|------------------|---------|---------------|--------|--------|------|
| MAME614L                   | Engine Peripherals                          |                  |         | 2             |        |        | 2    |
| Pre-requisite              | Nil                                         |                  | Svl     | labu          | is ve  | -      |      |
|                            |                                             |                  | - ]-    |               | .0     |        |      |
| Course Objective           | l<br>8S                                     |                  |         |               |        |        |      |
| The course is aim          |                                             |                  |         |               |        |        |      |
|                            | the students to understand engine perip     | herals conne     | ctions  | and           | ope    | rati   | on   |
| theory                     |                                             |                  |         |               | -1     |        |      |
|                            | g the basics of engine cooling and lubrica  | ition            |         |               |        |        |      |
|                            | to study and analyze emission reduction     |                  |         |               |        |        |      |
| Course Outcome             | ;                                           |                  |         |               |        |        |      |
| At the end of the          | course, the student will be able to         |                  |         |               |        |        |      |
| 1. Get an ove              | erview of Engine                            |                  |         |               |        |        |      |
| <ol><li>Comprehe</li></ol> | end the techniques for Engine Cooling       |                  |         |               |        |        |      |
| 3. Understan               | d about Engine lubrication                  |                  |         |               |        |        |      |
|                            | ate knowledge on Air filtration             |                  |         |               |        |        |      |
|                            | end the concepts of engine peripherals      |                  |         |               |        |        |      |
|                            | d turbochargers and superchargers for IC    |                  |         |               |        |        |      |
|                            | d emission reduction systems and exhau      | st gas system    | S       |               |        |        |      |
| Module:1 Over              |                                             |                  |         |               | 3 ł    | าอน    | irs  |
|                            | , Engine components, Engine types           |                  |         |               |        |        |      |
|                            | ne Cooling                                  |                  |         |               |        | าอน    |      |
|                            | ir cooling, Intercooling, Oil and fuel coo  | oling, cooling   | modu    | le te         | echno  | oloç   | ју,  |
|                            | management, Exhaust gas cooling             | 1                |         |               |        |        |      |
|                            | ne lubrication                              |                  |         |               | 3 ł    | าอน    | irs  |
|                            | eed lubrication system, lubrication compo   | onents           |         |               |        |        |      |
|                            | Itration                                    |                  |         |               | 2 ł    | าอน    | irs  |
| Air pollution, Air fi      |                                             |                  |         |               |        |        |      |
|                            | r engine peripherals                        |                  |         |               |        | าอน    | irs  |
|                            | vacuum pump, steering pump, air intake      | system, exha     | ust sy  | sten          |        |        |      |
|                            | ochargers and superchargers for IC          |                  |         |               | 5 h    | าอน    | irs  |
| engir                      |                                             |                  |         |               |        |        |      |
|                            | mechanical driven), Pressure wave,          | Exhaust ga       | as ar   | nd            | multi  | sta    | ge   |
| superchargers, A           |                                             |                  |         |               | ~ ~ ~  |        |      |
|                            | sion reduction systems and exhaust          |                  |         |               | 6 r    | าอน    | irs  |
|                            | systems                                     | <br>             |         | <u></u>       |        |        |      |
|                            | rculation systems, secondary air injecti    |                  |         |               |        |        |      |
|                            | e ventilation, Manifold, Catalytic converte | ers, particulate | e conv  | enter         | s, m   | une    | HS.  |
| connecting eleme           | emporary Issues                             |                  |         |               | 21     | าอน    | ur o |
|                            |                                             |                  |         |               | 21     | 100    | 15   |
|                            | Total Lecture hours:                        |                  |         |               | 30 ł   |        | ire  |
|                            |                                             |                  |         |               | 30 ľ   | 100    | 115  |
| Text Book(s)               |                                             |                  |         |               |        |        |      |
|                            | andbook – BOSCH – 9th Edition -2015         |                  |         |               |        |        |      |
| Reference Books            |                                             | N                |         | <u>)/-</u>    |        | 40     | 211- |
|                            | Garrett, Kenneth Newton and William S       |                  | iviotor | ver           | IICIE" | 13     | រព   |
| -                          | rworth-Heinemann Limited, London, 201       |                  | ion '   | D             |        | nth    |      |
|                            | er, "Advanced Vehicle Technology",          | second edit      | iuii, I | Dutte         | el WOI | l (f ) | -    |
|                            | New York, 2002                              | uital Accience   | nt O    | <u>), .:-</u> | 004    | E:-    | 201  |
| Assessment Test            | ion: Continuous Assessment Test, Dig        | na Assignme      | FIIL, G | luiz          | anu    | гI     | ıdl  |
|                            | y Board of Studies 28-07-2022               |                  |         |               |        |        |      |
| Approved by Aca            |                                             | e 08-08-2        | 022     |               |        |        |      |
| Approved by Acat           |                                             | 00-00-2          | 022     |               |        |        |      |

| Course Code                 | Course Title                               |                | LTPC                 |
|-----------------------------|--------------------------------------------|----------------|----------------------|
| MAME615L                    | Vehicle Security and Comfort               | Systems        | 3 0 0 3              |
| Pre-requisite               | Nil                                        | Cjotomo        | Syllabus version     |
| i io ioquiono               |                                            |                | 1.0                  |
| Course Objectiv             | es                                         |                | 1.0                  |
| The course is aim           |                                            |                |                      |
|                             | the students about locking systems and th  | eft-deterrent  | systems              |
|                             | the technical knowhow of acoustic si       |                |                      |
| protection                  |                                            | grialing dovi  |                      |
|                             | g about the Power-window drives, con       | nfort and saf  | etv functions in the |
|                             | r compartment and driver assistance syste  |                |                      |
| pacconge                    |                                            |                |                      |
| Course Outcom               | 9                                          |                |                      |
| At the end of the           | course, the student will be able to        |                |                      |
|                             | nd about locking systems                   |                |                      |
|                             | d the concept of theft-deterrent systems   |                |                      |
|                             | d about the acoustic signalling devices    |                |                      |
|                             | ate the knowledge about occupant-protect   | tion systems   |                      |
|                             | t power-window drives                      | -              |                      |
|                             | he technique for comfort and safe          | ty functions   | in the passenger     |
| compartm                    |                                            |                | · -                  |
| <ol><li>Understar</li></ol> | nd about driver-assistance systems         |                |                      |
| <ol><li>Design an</li></ol> | d implement vehicle security and comfort   | systems        |                      |
|                             |                                            |                |                      |
|                             | ing systems                                |                | 6 hours              |
|                             | re, operating principle, Open by wire, E   |                |                      |
| locking system,             | Electronic vehicle immobilizer, function   | al descriptior | n Comfort Entry/Go   |
| system                      |                                            |                |                      |
|                             | -deterrent systems                         |                | 6 hours              |
|                             | missible alarm signals. System design,     | alarm deteo    | ctors, Alarm system  |
|                             | n siren, Tilt sensor, Interior monitoring  | 1              |                      |
|                             | istic signaling devices                    |                | 6 hours              |
|                             | g devices applications, Horn, Fanfare horn | S              |                      |
|                             | pant-protection systems                    |                | 6 hours              |
|                             | eat-belt pretensioners, Front airbag, Sic  | le airbag, Co  | omponents, Rollover  |
| protection system           |                                            |                |                      |
| Module:5 Powe               | er-window drives                           |                | 6 hours              |
|                             | otors, Power-window control, Power sunro   | of drives      |                      |
|                             | fort and safety functions in the           |                | 6 hours              |
|                             | enger compartment                          |                |                      |
|                             | ustment, Electrical steering-column adjus  | tment, Multi p |                      |
| Module:7 Drive              | er-assistance systems                      |                | 7 hours              |
| Critical driving            | situations, Causes of accidents and        | possible a     | action. Applications |
|                             | a safety functions, Sensors for all round  |                |                      |
| fusion.                     |                                            | Steet only V   | control data         |
|                             | emporary Issues                            |                | 2 hours              |
|                             |                                            | 1              |                      |
|                             | Total Lecture hours:                       |                | 45 hours             |
|                             |                                            |                |                      |
| Taxt Book(a)                |                                            |                |                      |
| Text Book(s)                | landbook – BOSCH – 9th Edition -2015       |                |                      |
| Reference Book              |                                            |                |                      |
| IVELETELLCE DOOK            | 3                                          |                |                      |

| 1.                                                                                                 | Bosch, "Safety, Comfort & Convenience Systems" 7th Edition - 2016 |        |      |            |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------|------|------------|--|--|--|--|--|
| Mode of Evaluation: Continuous Assessment Test, Digital Assignment, Quiz and Final Assessment Test |                                                                   |        |      |            |  |  |  |  |  |
|                                                                                                    | Recommended by Board of Studies 28-07-2022                        |        |      |            |  |  |  |  |  |
| Арр                                                                                                | proved by Academic Council                                        | No. 67 | Date | 08-08-2022 |  |  |  |  |  |

| Course Code                                                          | Course Title                                                               | L               | Т        | Ρ       | С     |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------|----------|---------|-------|--|
| MAME616L                                                             | Automotive IoT                                                             | 3               | 0        | 0       | 3     |  |
| Pre-requisite                                                        | NIL                                                                        | -               | -        | versi   | on    |  |
|                                                                      |                                                                            |                 | 1.       |         |       |  |
| Course Objectiv                                                      | /es                                                                        | I               |          |         |       |  |
|                                                                      | ned at making the students to                                              |                 |          |         |       |  |
| 1. Acquire th                                                        | e required Automotive fundamentals for IoT S                               | vstem           | Desi     | qn      |       |  |
| 2. Get an exposure about the IoT applications in automotive systems. |                                                                            |                 |          |         |       |  |
|                                                                      | lesign skills in automotive IoT Systems.                                   | 5               |          |         |       |  |
| •                                                                    | <u> </u>                                                                   |                 |          |         |       |  |
| Course Outcom                                                        | les                                                                        |                 |          |         |       |  |
| At the end of the                                                    | course, the students will be able to                                       |                 |          |         |       |  |
| 1. Understar                                                         | nd the required fundamentals for Automotive le                             | oT and          | d Con    | npreh   | end   |  |
| the applic                                                           | ations of Networked Vehicles using IoT                                     |                 |          |         |       |  |
|                                                                      | e IoT Safety Management in Automotive                                      |                 |          |         |       |  |
|                                                                      | e Efficiency management using IoT.                                         |                 |          |         |       |  |
|                                                                      | the Automotive Cyber Security with IoT Syste                               |                 |          |         |       |  |
|                                                                      | e need and importance of Smart Vehicles and                                |                 |          | l Cars  |       |  |
| 6. Design lo                                                         | T based solutions for real time automotive app                             | olicatio        | ns.      |         |       |  |
|                                                                      |                                                                            |                 |          |         |       |  |
|                                                                      | nents of Automotive IoT (AloT)                                             |                 |          | ours    |       |  |
|                                                                      | f Automotive Onboard Diagnostics, Automot                                  |                 |          |         |       |  |
|                                                                      | vigation and control, Electronic toll collection                           |                 |          | a pari  | ang   |  |
|                                                                      | payment systems, Smart Transportation, Sma                                 | rt Gria         |          |         |       |  |
|                                                                      | vorked Vehicles using IoT                                                  | troffic         |          | ours    |       |  |
| Venicle collision                                                    | avoidance, Lane change algorithm, Optimal                                  | uranno<br>a lot | CON:     | lioi us | sing  |  |
|                                                                      | ns in IoT, Green traffic management usin<br>nicle to internet connectivity | y 101           | . Intu a | a ven   | licie |  |
| 1                                                                    | Safety Management in Automotive                                            |                 | 6 h      | ours    |       |  |
|                                                                      | Ionitoring using IoT, Immobilizers and Veh                                 |                 |          |         | me    |  |
|                                                                      | stics using IoT, Vehicle tracking, Integrated in                           |                 |          |         |       |  |
|                                                                      | ig systems using IoT.                                                      | IUtain          | ment     | Sysie   | 1115, |  |
|                                                                      | iency management using loT                                                 |                 | 5 h      | ours    |       |  |
|                                                                      | icro hybrids, mild hybrids, Self-driving and AD $i$                        |                 |          |         | ivor  |  |
|                                                                      | ces, Automated fuel injection mechanisms, Au                               |                 |          |         |       |  |
| using IoT.                                                           |                                                                            | avano.          |          | .011101 | 100   |  |
| <u> </u>                                                             | based Navigation                                                           |                 | 8 h      | ours    |       |  |
|                                                                      | on - Sharing, Forwarding, optimal paths,                                   | Online          |          |         | and   |  |
|                                                                      | olving LTE to 5G, Research Challenges and                                  |                 |          |         |       |  |
|                                                                      | re network): Network slicing, C-RAN, NFV, S                                |                 |          |         |       |  |
|                                                                      | ular Vehicle-2-Everything (C-V2X).                                         |                 |          |         |       |  |
|                                                                      | omotive Cyber Security                                                     |                 | 8 h      | ours    |       |  |
|                                                                      | notive systems, CMAP - CAN bus mapper, S                                   | ecurit          |          |         | ligh  |  |
|                                                                      | landated legislation and Non mandated co                                   |                 |          |         |       |  |
|                                                                      | ehicle tracking and recovery, Attack vectors -                             |                 |          |         |       |  |
| exfiltration, Virtua                                                 |                                                                            |                 |          |         |       |  |
| Module:7 Sma                                                         | rt Vehicles and Connected Cars Training                                    |                 | 4 h      | ours    |       |  |
|                                                                      | /2V Communication, single vehicle application                              | ns, Co          | nnec     | ted ca  | rs -  |  |
| Opportunities, ris                                                   | ks and turmoil. Policies and Standards                                     |                 |          |         |       |  |

| Module:   | Contemporary Issues                                                              | 2 hours           |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|-------------------|--|--|--|--|
|           |                                                                                  |                   |  |  |  |  |
|           | Total Lecture hours:                                                             | 45 hours          |  |  |  |  |
| Text Boo  | k(s)                                                                             |                   |  |  |  |  |
| 1.   O. V | 1. O. Vermesan, Digitizing the Industry: Internet of things connecting Physical, |                   |  |  |  |  |
| Digit     | I and Virtual Worlds, Jan 2016, River Publishers, The N                          | letherlands       |  |  |  |  |
| 2. Tim    | Schule, Beate Müller, Gereon Meyer, Advanced I                                   | Microsystems for  |  |  |  |  |
| Auto      | notive Applications: Smart Systems for Green and A                               | utomated Driving, |  |  |  |  |
| 2016      | Springer Publishers, USA.                                                        | -                 |  |  |  |  |
| Referen   | e Books                                                                          |                   |  |  |  |  |
| 1. 0. 1   | ermesan Internet of Things - Converging Techno                                   | logies for Smart  |  |  |  |  |
|           | onments and Integrated Ecosystems, 2015, River                                   |                   |  |  |  |  |
|           | erlands.                                                                         |                   |  |  |  |  |
| 2. Dani   | el Minouli, Building the Internet of Things with IPv4 and                        | d IPv6, Oct 2015, |  |  |  |  |
| 1 1       | Wiley, USA                                                                       |                   |  |  |  |  |
| 3. Erik   | Dahlman, Johan Skold, and Stefan Parkvall, 5G NR: The                            | e Next Generation |  |  |  |  |
| Wire      | ess Access Technology, 2018, Academic Press, Elsevie                             | er.               |  |  |  |  |
|           | o Wolf, Secure In-Vehicle Communications, 2012, Sprin                            |                   |  |  |  |  |
|           | nternet of Things and Connected Cars, Business White p                           |                   |  |  |  |  |
|           | Evaluation: Continuous Assessment Test, Digital Assig                            |                   |  |  |  |  |
|           | essment Test                                                                     | <u> </u>          |  |  |  |  |
|           | ended by Board of Studies 07-06-2023                                             |                   |  |  |  |  |
|           | by Academic Council No. 70 Date 24-06-2                                          | 2023              |  |  |  |  |
|           |                                                                                  | 020               |  |  |  |  |

| Course Code                                                             | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Т                | Ρ       | С      |       |  |  |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|--------|-------|--|--|
| MAME617L                                                                | Course Title<br>Augmented and Virtual Reality for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                | 0       | 0      | 3     |  |  |
|                                                                         | Automotive Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |         |        |       |  |  |
| Pre-requisite                                                           | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Syllabus version |         |        |       |  |  |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 1.0     | )      |       |  |  |
| Course Objectiv                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |         |        |       |  |  |
| The course is aimed at making the students to                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |         |        |       |  |  |
| 1. Understand the concepts of Computer Graphics, VR systems and Virtual |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |         |        |       |  |  |
| Environment.                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |         |        |       |  |  |
|                                                                         | nd the concepts of Augmented Reality.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |         |        |       |  |  |
| 3. Apply Aug                                                            | mented and Virtual Reality for automotive appl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | icatior          | IS.     |        |       |  |  |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |         |        |       |  |  |
| Course Outcom                                                           | course, the students will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |         |        |       |  |  |
|                                                                         | end the basics of computer graphics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |         |        |       |  |  |
|                                                                         | and the geometric modelling and Geometric Tra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsforr           | natio   | าร     |       |  |  |
| 3. Comprehe                                                             | end VR systems, VR Hardware, Virtual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fnvir            | onme    | ent a  | and   |  |  |
| Augmente                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 011110  |        |       |  |  |
|                                                                         | d Develop a Prototype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |         |        |       |  |  |
|                                                                         | Product for automotive applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |         |        |       |  |  |
| 6. To apply                                                             | augmented and virtual reality to solve challe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | enging           | prob    | lems   | s in  |  |  |
| automotiv                                                               | e industry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |         |        |       |  |  |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |         |        |       |  |  |
|                                                                         | metric Modelling and Geometric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | 6 ho    | urs    |       |  |  |
|                                                                         | sformations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | 20 6    |        |       |  |  |
|                                                                         | Iling: Introduction, from 2D to 3D, 3D space cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |         |        |       |  |  |
|                                                                         | Geometrical Transformations: Introduction, Fra<br>ormations, Instances, Picking, Flying, Scaling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |        |       |  |  |
| detection.                                                              | ormations, instances, Ficking, Flying, Scaling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , uie            | VE, (   | JUIIIS | SIOLI |  |  |
|                                                                         | al Reality and Computer Graphics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 7 ho    | urs    |       |  |  |
| Virtual Reality ar                                                      | d Virtual Environment: Introduction, Computer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | araphi           |         |        | ime   |  |  |
|                                                                         | cs, Flight Simulation, Virtual environment requi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |        |       |  |  |
|                                                                         | istorical development of VR, Scientific Landr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |         |        |       |  |  |
| Graphics: Introdu                                                       | action, The Virtual world space, positioning the v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /irtual          | obsei   | rver,  | the   |  |  |
|                                                                         | ection, human vision, stereo perspective proje                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |         |        |       |  |  |
|                                                                         | Simple 3D modelling, Illumination models,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |         |        |       |  |  |
|                                                                         | ms, Radiosity, Hidden Surface Removal, Real                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ism -S           | Stereo  | ograp  | blic  |  |  |
| image.                                                                  | watering and Handware                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 1 6 0   |        |       |  |  |
|                                                                         | systems and Hardware<br>em: Introduction, Virtual environment, Compute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 4 ho    |        |       |  |  |
|                                                                         | el of interaction, VR Systems. VR Hardware: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |         |        |       |  |  |
|                                                                         | coupled displays, Acoustic hardware, Integrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |         |        | 1301  |  |  |
|                                                                         | al Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | 7 ho    |        |       |  |  |
|                                                                         | rtual Environment: Introduction, The dynamics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of nur           |         |        | ear   |  |  |
|                                                                         | interpolation, the animation of objects, line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |         |        |       |  |  |
|                                                                         | e & object inbetweening, free from deformation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |         |        |       |  |  |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |         |        |       |  |  |
| Physical Simulat                                                        | tion: Introduction, Objects falling in a gravitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | onal f           | ield, l | Rotat  | ting  |  |  |
|                                                                         | cion: Introduction, Objects falling in a gravitation of the gravitatio |                  |         |        |       |  |  |

| Мо                                                                     | dule:5                                                                                                                                                                                            | Augmented Reality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                      | 6 hours                                                                                                                                                                                                       |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                        |                                                                                                                                                                                                   | technology and features of au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ugmented reality, diffe                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                               |
|                                                                        |                                                                                                                                                                                                   | hallenges with AR, AR syster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                               |
|                                                                        |                                                                                                                                                                                                   | isualization techniques for aug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                               |
|                                                                        |                                                                                                                                                                                                   | ments, evaluating AR systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                      | ionig interactivity in                                                                                                                                                                                        |
|                                                                        |                                                                                                                                                                                                   | Design and Development of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      | 6 hours                                                                                                                                                                                                       |
|                                                                        |                                                                                                                                                                                                   | Design Process: Development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                               |
|                                                                        |                                                                                                                                                                                                   | collaborative environment creati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                               |
|                                                                        |                                                                                                                                                                                                   | ne process - Modifying concepts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                               |
|                                                                        |                                                                                                                                                                                                   | nds on resources associated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                               |
|                                                                        |                                                                                                                                                                                                   | n of idea and Validation of a ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                               |
|                                                                        |                                                                                                                                                                                                   | Product Development, Manu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      | 7 hours                                                                                                                                                                                                       |
|                                                                        | uule. <i>1</i>                                                                                                                                                                                    | Training                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lacturing and                                                                                                                                                                                                                                                                                                        | 7 11001 5                                                                                                                                                                                                     |
|                                                                        | and Dr                                                                                                                                                                                            | oduct Development: Repairing e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ovicting models and c                                                                                                                                                                                                                                                                                                | losigning now onos                                                                                                                                                                                            |
|                                                                        | Anu Fit                                                                                                                                                                                           | d remote assistance in real-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | time AD based with                                                                                                                                                                                                                                                                                                   | sublication of now                                                                                                                                                                                            |
|                                                                        |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                               |
|                                                                        |                                                                                                                                                                                                   | s fit into existing vehicle design<br>embly line: reconfiguration and c                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                               |
|                                                                        |                                                                                                                                                                                                   | based retrofitting - Creation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                               |
|                                                                        |                                                                                                                                                                                                   | s and engineers, VR and Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                               |
| trai                                                                   | earcher:                                                                                                                                                                                          | ivery methods. Simulation ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ilai Hailiiliy. Eliicielii<br>sod training Loorni                                                                                                                                                                                                                                                                    | and cost-enective                                                                                                                                                                                             |
|                                                                        |                                                                                                                                                                                                   | ivery methods - Simulation-ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | iseu italilling - Lealli                                                                                                                                                                                                                                                                                             | ng outcomes while                                                                                                                                                                                             |
|                                                                        |                                                                                                                                                                                                   | k and training costs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                      | 2 hours                                                                                                                                                                                                       |
|                                                                        | aule:8                                                                                                                                                                                            | Contemporary Issues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                      | 2 hours                                                                                                                                                                                                       |
|                                                                        |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                               |
|                                                                        |                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total Lecture hours:                                                                                                                                                                                                                                                                                                 | 45 hours                                                                                                                                                                                                      |
|                                                                        |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total Lecture hours:                                                                                                                                                                                                                                                                                                 | 45 hours                                                                                                                                                                                                      |
|                                                                        | xt Book                                                                                                                                                                                           | (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                               |
| <b>Te</b> 2<br>1.                                                      | Ella Ha                                                                                                                                                                                           | ( <b>s)</b><br>assanien, Deepak Gupta, Ashi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ish Khanna, Adam S                                                                                                                                                                                                                                                                                                   | Slowik, "Virtual and                                                                                                                                                                                          |
|                                                                        | Ella Ha<br>Augme                                                                                                                                                                                  | ( <b>s)</b><br>assanien, Deepak Gupta, Ashi<br>nted Reality for Automobi                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ish Khanna, Adam S<br>ile Industry: Innova                                                                                                                                                                                                                                                                           | Slowik, "Virtual and                                                                                                                                                                                          |
| 1.                                                                     | Ella Ha<br>Augme<br>Applica                                                                                                                                                                       | <b>(s)</b><br>assanien, Deepak Gupta, Ashi<br>nted Reality for Automobi<br>itions", Springer International P                                                                                                                                                                                                                                                                                                                                                                                                                    | ish Khanna, Adam S<br>ile Industry: Innova<br>Publishing, 2022                                                                                                                                                                                                                                                       | Slowik, "Virtual and ation Vision and                                                                                                                                                                         |
| 1.<br>2.                                                               | Ella Ha<br>Augme<br>Applica<br>John V                                                                                                                                                             | <b>(s)</b><br>assanien, Deepak Gupta, Ashi<br>nted Reality for Automobi<br>itions", Springer International P<br>ince, "Virtual Reality Systems ",                                                                                                                                                                                                                                                                                                                                                                               | ish Khanna, Adam S<br>ile Industry: Innova<br>Publishing, 2022                                                                                                                                                                                                                                                       | Slowik, "Virtual and ation Vision and                                                                                                                                                                         |
| 1.<br>2.                                                               | Ella Ha<br>Augme<br>Applica<br>John V<br>ference                                                                                                                                                  | (s)<br>assanien, Deepak Gupta, Ashi<br>nted Reality for Automobi<br>itions", Springer International P<br>ince, "Virtual Reality Systems ",<br><b>Books</b>                                                                                                                                                                                                                                                                                                                                                                      | ish Khanna, Adam S<br>ile Industry: Innova<br>Publishing, 2022<br>, Pearson Education /                                                                                                                                                                                                                              | Slowik, "Virtual and<br>ation Vision and<br>Asia, 2007.                                                                                                                                                       |
| 1.<br>2.                                                               | Ella Ha<br>Augme<br>Applica<br>John V<br>ference<br>Alan B                                                                                                                                        | (s)<br>assanien, Deepak Gupta, Ash<br>nted Reality for Automobi<br>itions", Springer International P<br>ince, "Virtual Reality Systems ",<br><b>Books</b><br>Craig, "Understanding Augmer                                                                                                                                                                                                                                                                                                                                       | ish Khanna, Adam S<br>ile Industry: Innova<br>Publishing, 2022<br>, Pearson Education /                                                                                                                                                                                                                              | Slowik, "Virtual and<br>ation Vision and<br>Asia, 2007.                                                                                                                                                       |
| 1.<br>2.<br><b>Re</b><br>1.                                            | Ella Ha<br>Augme<br>Applica<br>John V<br>ference<br>Alan B<br>Morgai                                                                                                                              | (s)<br>assanien, Deepak Gupta, Ash<br>nted Reality for Automobi<br>itions", Springer International P<br>ince, "Virtual Reality Systems ",<br><b>Books</b><br>Craig, "Understanding Augmer<br>n Kaufmann, 2013.                                                                                                                                                                                                                                                                                                                  | ish Khanna, Adam S<br>ile Industry: Innova<br>Publishing, 2022<br>, Pearson Education A<br>nted Reality, Concept                                                                                                                                                                                                     | Glowik, "Virtual and ation Vision and Asia, 2007.                                                                                                                                                             |
| 1.<br>2.<br><b>Re</b><br>1.<br>2.                                      | Ella Ha<br>Augme<br>Applica<br>John V<br>ference<br>Alan B<br>Morga<br>Adams                                                                                                                      | (s)<br>assanien, Deepak Gupta, Ashi<br>nted Reality for Automobi<br>itions", Springer International P<br>ince, "Virtual Reality Systems ",<br><b>Books</b><br>Craig, "Understanding Augmer<br>n Kaufmann, 2013.<br>, "Visualizations of Virtual Reali                                                                                                                                                                                                                                                                           | iish Khanna, Adam S<br>ile Industry: Innova<br>Publishing, 2022<br>7, Pearson Education A<br>nted Reality, Concept<br>ity", Tata McGraw Hill                                                                                                                                                                         | Slowik, "Virtual and<br>ation Vision and<br>Asia, 2007.<br>s and Applications",<br>, 2000.                                                                                                                    |
| 1.<br>2.<br><b>Re</b><br>1.                                            | Ella Ha<br>Augme<br>John V<br>ference<br>Alan B<br>Morgan<br>Adams<br>Grigore                                                                                                                     | (s)<br>assanien, Deepak Gupta, Ashi<br>nted Reality for Automobi<br>itions", Springer International P<br>ince, "Virtual Reality Systems ",<br><b>Books</b><br>Craig, "Understanding Augmer<br>Kaufmann, 2013.<br>, "Visualizations of Virtual Reali<br>e C. Burdea, Philippe Coiffet, '                                                                                                                                                                                                                                         | iish Khanna, Adam S<br>ile Industry: Innova<br>Publishing, 2022<br>7, Pearson Education A<br>nted Reality, Concept<br>ity", Tata McGraw Hill                                                                                                                                                                         | Slowik, "Virtual and<br>ation Vision and<br>Asia, 2007.<br>s and Applications",<br>, 2000.                                                                                                                    |
| 1.<br>2.<br><b>Re</b><br>1.<br>2.<br>3.                                | Ella Ha<br>Augme<br>Applica<br>John V<br>ference<br>Alan B<br>Morgar<br>Adams<br>Grigore<br>Scienc                                                                                                | (s)<br>assanien, Deepak Gupta, Ashi<br>nted Reality for Automobi<br>itions", Springer International P<br>ince, "Virtual Reality Systems ",<br><b>Books</b><br>Craig, "Understanding Augmer<br>n Kaufmann, 2013.<br>, "Visualizations of Virtual Reali<br>e C. Burdea, Philippe Coiffet, "<br>e, 2nd Edition, 2016.                                                                                                                                                                                                              | ish Khanna, Adam S<br>ile Industry: Innova<br>Publishing, 2022<br>, Pearson Education A<br>nted Reality, Concept<br>ity", Tata McGraw Hill<br>"Virtual Reality Techr                                                                                                                                                 | Glowik, "Virtual and<br>ation Vision and<br>Asia, 2007.<br>s and Applications",<br>, 2000.<br>nology", Wiley Inter                                                                                            |
| 1.<br>2.<br><b>Re</b><br>1.<br>2.                                      | Ella Ha<br>Augme<br>Applica<br>John V<br>ference<br>Alan B<br>Morgar<br>Adams<br>Grigore<br>Scienc<br>William                                                                                     | (s)<br>assanien, Deepak Gupta, Ashi<br>nted Reality for Automobi<br>itions", Springer International P<br>ince, "Virtual Reality Systems ",<br><b>Books</b><br>Craig, "Understanding Augmer<br>n Kaufmann, 2013.<br>, "Visualizations of Virtual Reali<br>e C. Burdea, Philippe Coiffet, '<br>e, 2nd Edition, 2016.<br>n R. Sherman, Alan B. Craig, "                                                                                                                                                                            | ish Khanna, Adam S<br>ile Industry: Innova<br>Publishing, 2022<br>, Pearson Education A<br>nted Reality, Concept<br>ity", Tata McGraw Hill<br>"Virtual Reality Techr                                                                                                                                                 | Glowik, "Virtual and<br>ation Vision and<br>Asia, 2007.<br>s and Applications",<br>, 2000.<br>nology", Wiley Inter                                                                                            |
| 1.<br>2.<br><b>Re</b><br>1.<br>2.<br>3.<br>4.                          | Ella Ha<br>Augme<br>Applica<br>John V<br>ference<br>Alan B<br>Morgan<br>Adams<br>Grigore<br>Scienc<br>William<br>Applica                                                                          | (s)<br>assanien, Deepak Gupta, Ashi<br>nted Reality for Automobi<br>itions", Springer International P<br>ince, "Virtual Reality Systems ",<br>Books<br>Craig, "Understanding Augmer<br>n Kaufmann, 2013.<br>, "Visualizations of Virtual Reali<br>e C. Burdea, Philippe Coiffet, "<br>e, 2nd Edition, 2016.<br>R. Sherman, Alan B. Craig, "<br>ition and Design", Morgan Kauf                                                                                                                                                   | ish Khanna, Adam S<br>ile Industry: Innova<br>Publishing, 2022<br>7, Pearson Education A<br>nted Reality, Concept<br>ity", Tata McGraw Hill<br>"Virtual Reality Techr<br>"Understanding Virtua<br>fmann, 2008.                                                                                                       | Slowik, "Virtual and<br>ation Vision and<br>Asia, 2007.<br>s and Applications",<br>, 2000.<br>nology", Wiley Inter<br>I Reality: Interface,                                                                   |
| 1.<br>2.<br><b>Re</b><br>1.<br>2.<br>3.                                | Ella Ha<br>Augme<br>Applica<br>John V<br>ference<br>Alan B<br>Morgan<br>Adams<br>Grigore<br>Scienc<br>William<br>Applica<br>Auksta                                                                | (s)<br>assanien, Deepak Gupta, Ashi<br>nted Reality for Automobi<br>itions", Springer International P<br>ince, "Virtual Reality Systems ",<br><b>Books</b><br>Craig, "Understanding Augmer<br>n Kaufmann, 2013.<br>, "Visualizations of Virtual Reali<br>e C. Burdea, Philippe Coiffet, "<br>e, 2nd Edition, 2016.<br>R. Sherman, Alan B. Craig, "<br>ition and Design", Morgan Kauf<br>kalnis S. Practical augmented                                                                                                           | ish Khanna, Adam S<br>ile Industry: Innova<br>Publishing, 2022<br>7, Pearson Education A<br>nted Reality, Concept<br>ity", Tata McGraw Hill<br>"Virtual Reality Techr<br>"Understanding Virtua<br>fmann, 2008.<br>d reality: "A guide to                                                                             | Slowik, "Virtual and<br>ation Vision and<br>Asia, 2007.<br>s and Applications",<br>, 2000.<br>hology", Wiley Inter<br>I Reality: Interface,<br>o the technologies,                                            |
| 1.<br>2.<br><b>Re</b><br>1.<br>2.<br>3.<br>4.                          | Ella Ha<br>Augme<br>Applica<br>John V<br>ference<br>Alan B<br>Morgan<br>Adams<br>Grigore<br>Scienc<br>William<br>Applica<br>Auksta                                                                | (s)<br>assanien, Deepak Gupta, Ashi<br>nted Reality for Automobi<br>itions", Springer International P<br>ince, "Virtual Reality Systems ",<br>Books<br>Craig, "Understanding Augmer<br>n Kaufmann, 2013.<br>, "Visualizations of Virtual Reali<br>e C. Burdea, Philippe Coiffet, "<br>e, 2nd Edition, 2016.<br>R. Sherman, Alan B. Craig, "<br>ition and Design", Morgan Kauf                                                                                                                                                   | ish Khanna, Adam S<br>ile Industry: Innova<br>Publishing, 2022<br>7, Pearson Education A<br>nted Reality, Concept<br>ity", Tata McGraw Hill<br>"Virtual Reality Techr<br>"Understanding Virtua<br>fmann, 2008.<br>d reality: "A guide to                                                                             | Slowik, "Virtual and<br>ation Vision and<br>Asia, 2007.<br>s and Applications",<br>, 2000.<br>hology", Wiley Inter<br>I Reality: Interface,<br>o the technologies,                                            |
| 1.<br>2.<br><b>Re</b><br>1.<br>2.<br>3.<br>4.                          | Ella Ha<br>Augme<br>Applica<br>John V<br>ference<br>Alan B<br>Morgan<br>Adams<br>Grigore<br>Scienc<br>William<br>Applica<br>Auksta                                                                | (s)<br>assanien, Deepak Gupta, Ashi<br>nted Reality for Automobi<br>itions", Springer International P<br>ince, "Virtual Reality Systems ",<br><b>Books</b><br>Craig, "Understanding Augmer<br>n Kaufmann, 2013.<br>, "Visualizations of Virtual Reali<br>e C. Burdea, Philippe Coiffet, "<br>e, 2nd Edition, 2016.<br>R. Sherman, Alan B. Craig, "<br>ition and Design", Morgan Kauf<br>kalnis S. Practical augmented                                                                                                           | ish Khanna, Adam S<br>ile Industry: Innova<br>Publishing, 2022<br>7, Pearson Education A<br>nted Reality, Concept<br>ity", Tata McGraw Hill<br>"Virtual Reality Techr<br>"Understanding Virtua<br>fmann, 2008.<br>d reality: "A guide to                                                                             | Slowik, "Virtual and<br>ation Vision and<br>Asia, 2007.<br>s and Applications",<br>, 2000.<br>hology", Wiley Inter<br>I Reality: Interface,<br>o the technologies,                                            |
| 1.<br>2.<br><b>Re</b><br>1.<br>2.<br>3.<br>4.<br>5.                    | Ella Ha<br>Augme<br>Applica<br>John V<br>ference<br>Alan B<br>Morgar<br>Adams<br>Grigore<br>Scienc<br>William<br>Applica<br>Auksta<br>applica<br>2016.                                            | (s)<br>assanien, Deepak Gupta, Ashi<br>nted Reality for Automobi<br>itions", Springer International P<br>ince, "Virtual Reality Systems ",<br><b>Books</b><br>Craig, "Understanding Augmer<br>n Kaufmann, 2013.<br>, "Visualizations of Virtual Reali<br>e C. Burdea, Philippe Coiffet, "<br>e, 2nd Edition, 2016.<br>R. Sherman, Alan B. Craig, "<br>ition and Design", Morgan Kauf<br>kalnis S. Practical augmented                                                                                                           | ish Khanna, Adam S<br>ile Industry: Innova<br>Publishing, 2022<br>7, Pearson Education A<br>nted Reality, Concepta<br>ity", Tata McGraw Hill<br>"Virtual Reality Techr<br>"Understanding Virtua<br>fmann, 2008.<br>d reality: "A guide to<br>R and VR". Addison-W                                                    | Glowik, "Virtual and<br>ation Vision and<br>Asia, 2007.<br>5 and Applications",<br>, 2000.<br>hology", Wiley Inter<br>I Reality: Interface,<br>o the technologies,<br>esley Professional;                     |
| 1.<br>2.<br><b>Re</b><br>1.<br>3.<br>4.<br>5.<br>Mo                    | Ella Ha<br>Augme<br>Applica<br>John V<br>ference<br>Alan B<br>Morgan<br>Adams<br>Grigore<br>Scienc<br>William<br>Applica<br>Auksta<br>applica<br>2016.<br>de of E                                 | (s)<br>assanien, Deepak Gupta, Ashi<br>nted Reality for Automobi<br>itions", Springer International P<br>ince, "Virtual Reality Systems ",<br><b>Books</b><br>Craig, "Understanding Augmer<br>n Kaufmann, 2013.<br>, "Visualizations of Virtual Reali<br>e C. Burdea, Philippe Coiffet, '<br>e, 2nd Edition, 2016.<br>R. Sherman, Alan B. Craig, "<br>ition and Design", Morgan Kauf<br>kalnis S. Practical augmented<br>tions, and human factors for AR                                                                        | ish Khanna, Adam S<br>ile Industry: Innova<br>Publishing, 2022<br>7, Pearson Education A<br>nted Reality, Concepta<br>ity", Tata McGraw Hill<br>"Virtual Reality Techr<br>"Understanding Virtua<br>fmann, 2008.<br>d reality: "A guide to<br>R and VR". Addison-W                                                    | Glowik, "Virtual and<br>ation Vision and<br>Asia, 2007.<br>5 and Applications",<br>, 2000.<br>hology", Wiley Inter<br>I Reality: Interface,<br>o the technologies,<br>esley Professional;                     |
| 1.<br>2.<br><b>Re</b><br>1.<br>3.<br>4.<br>5.<br>Mo<br>Fin             | Ella Ha<br>Augme<br>Applica<br>John V<br>ference<br>Alan B<br>Morgat<br>Adams<br>Grigore<br>Scienc<br>William<br>Applica<br>Auksta<br>applica<br>2016.<br>de of Et<br>al Asses                    | (s)<br>assanien, Deepak Gupta, Ashi<br>nted Reality for Automobi<br>intions", Springer International P<br>ince, "Virtual Reality Systems ",<br><b>Books</b><br>Craig, "Understanding Augmer<br>n Kaufmann, 2013.<br>, "Visualizations of Virtual Reali<br>e C. Burdea, Philippe Coiffet, "<br>e, 2nd Edition, 2016.<br>R. Sherman, Alan B. Craig, "<br>ition and Design", Morgan Kauf<br>kalnis S. Practical augmented<br>tions, and human factors for AR<br>valuation: Continuous Assessmert Test                              | ish Khanna, Adam S<br>ile Industry: Innova<br>Publishing, 2022<br>7, Pearson Education A<br>nted Reality, Concepta<br>ity", Tata McGraw Hill<br>"Virtual Reality Techr<br>"Understanding Virtua<br>fmann, 2008.<br>d reality: "A guide to<br>R and VR". Addison-W                                                    | Glowik, "Virtual and<br>ation Vision and<br>Asia, 2007.<br>5 and Applications",<br>, 2000.<br>hology", Wiley Inter<br>I Reality: Interface,<br>o the technologies,<br>esley Professional;                     |
| 1.<br>2.<br><b>Re</b><br>1.<br>2.<br>3.<br>4.<br>5.<br>Mo<br>Fin<br>Re | Ella Ha<br>Augme<br>Applica<br>John V<br>ference<br>Alan B<br>Morgar<br>Adams<br>Grigore<br>Scienc<br>Scienc<br>William<br>Applica<br>Auksta<br>applica<br>2016.<br>de of E<br>al Asses<br>commer | (s)<br>assanien, Deepak Gupta, Ashi<br>nted Reality for Automobi<br>itions", Springer International P<br>ince, "Virtual Reality Systems ",<br>Books<br>Craig, "Understanding Augmer<br>n Kaufmann, 2013.<br>, "Visualizations of Virtual Reali<br>e C. Burdea, Philippe Coiffet, "<br>e, 2nd Edition, 2016.<br>R. Sherman, Alan B. Craig, "<br>ition and Design", Morgan Kauf<br>kalnis S. Practical augmented<br>tions, and human factors for AF<br>valuation: Continuous Assessm<br>sment Test<br>ded by Board of Studies 07- | ish Khanna, Adam S<br>ile Industry: Innova<br>Publishing, 2022<br>7, Pearson Education A<br>nted Reality, Concept<br>ity", Tata McGraw Hill<br>"Virtual Reality Techr<br>"Virtual Reality Techr<br>"Understanding Virtua<br>fmann, 2008.<br>d reality: "A guide to<br>R and VR". Addison-W<br>nent Test, Digital Ass | Glowik, "Virtual and<br>ation Vision and<br>Asia, 2007.<br>S and Applications",<br>, 2000.<br>nology", Wiley Inter<br>I Reality: Interface,<br>the technologies,<br>esley Professional;<br>signment, Quiz and |

| Course Code                                                                                                                                                                                                                                                                              | Course Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L                                                                                         | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Р                                                                                                                                                   | С                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| MAME618L                                                                                                                                                                                                                                                                                 | Soft Computing Techniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                   | 3                                                                                 |
| Pre-requisite                                                                                                                                                                                                                                                                            | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Svll                                                                                      | abus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | versi                                                                                                                                               | on                                                                                |
|                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                     |                                                                                   |
| Course Objectiv                                                                                                                                                                                                                                                                          | /es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                   |                                                                                   |
|                                                                                                                                                                                                                                                                                          | ned at making the students to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                   |
|                                                                                                                                                                                                                                                                                          | nding about the fundamentals of machine learnir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ng, ne                                                                                    | euralr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | networ                                                                                                                                              | ks,                                                                               |
|                                                                                                                                                                                                                                                                                          | on and Deep Learning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                   |
| 2. Enabling                                                                                                                                                                                                                                                                              | the students to acquire knowledge about of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lata                                                                                      | selec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ction a                                                                                                                                             | and                                                                               |
| classificat                                                                                                                                                                                                                                                                              | ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                   |
| <ol><li>Apply soft</li></ol>                                                                                                                                                                                                                                                             | computing techniques to solve practical proble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ms.                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                   |
|                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                   |
| Course Outcom                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                   |
|                                                                                                                                                                                                                                                                                          | course, the students will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                   |
|                                                                                                                                                                                                                                                                                          | end the categorization of machine learning algor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ithms                                                                                     | s and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | conce                                                                                                                                               | pts                                                                               |
|                                                                                                                                                                                                                                                                                          | programming.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                   |
|                                                                                                                                                                                                                                                                                          | with artificial neural network terminologies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                   |
|                                                                                                                                                                                                                                                                                          | nd advanced algorithms for artificial neural netw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                   |
| •                                                                                                                                                                                                                                                                                        | with the working mechanisms of evolutionary al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                         | nms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                     |                                                                                   |
|                                                                                                                                                                                                                                                                                          | etic algorithms to solve soft computing problem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d ima                                                                                                                                               |                                                                                   |
|                                                                                                                                                                                                                                                                                          | nd advanced algorithms for object dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                     | <u> </u>                                                                          |
|                                                                                                                                                                                                                                                                                          | tion and comprehend advanced neural ne<br>processing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LWOIR                                                                                     | \$ 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | i nau                                                                                                                                               | וסוג                                                                              |
| language                                                                                                                                                                                                                                                                                 | processing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                   |
| Module:1 Lear                                                                                                                                                                                                                                                                            | ning Problems and Python programming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hours                                                                                                                                               |                                                                                   |
|                                                                                                                                                                                                                                                                                          | cepts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | noui s                                                                                                                                              |                                                                                   |
|                                                                                                                                                                                                                                                                                          | ches to learning problems (such as Supervised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I. Se                                                                                     | mi-su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pervis                                                                                                                                              | od                                                                                |
|                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                     | CU. I                                                                             |
| and Unsupervise                                                                                                                                                                                                                                                                          | d), Python: Data structures (Lists, Tuples, Dicti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onar                                                                                      | y, Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :s), Str                                                                                                                                            |                                                                                   |
|                                                                                                                                                                                                                                                                                          | d), Python: Data structures (Lists, Tuples, Dicti<br>nditional statements, Functions, Objects and cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s), Str                                                                                                                                             |                                                                                   |
| manipulation, Co                                                                                                                                                                                                                                                                         | d), Python: Data structures (Lists, Tuples, Dicti<br>inditional statements, Functions, Objects and cl<br>icial Neural Network - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           | S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s), Str.<br>hours                                                                                                                                   | ing                                                                               |
| manipulation, Co                                                                                                                                                                                                                                                                         | nditional statements, Functions, Objects and cl<br>icial Neural Network - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | asse                                                                                      | s.<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hours                                                                                                                                               | ing                                                                               |
| manipulation, Co<br>Module:2 Artif<br>Biological inspira                                                                                                                                                                                                                                 | nditional statements, Functions, Objects and cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | asse                                                                                      | s.<br><b>4</b><br>neir pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>hours</b><br>roperti                                                                                                                             | ing<br>es,                                                                        |
| manipulation, Co<br>Module:2 Artif<br>Biological inspira<br>Forward propaga                                                                                                                                                                                                              | nditional statements, Functions, Objects and cl<br>icial Neural Network - I<br>tion and historical context, Activation functions a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | asse<br>and thulloch                                                                      | s.<br><b>4</b><br>neir pr<br>n-Pitts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>hours</b><br>roperti<br>s Neur                                                                                                                   | ing<br>es,<br>on,                                                                 |
| manipulation, Co<br>Module:2 Artif<br>Biological inspira<br>Forward propaga<br>Perceptron, Tra                                                                                                                                                                                           | nditional statements, Functions, Objects and cl<br>icial Neural Network - I<br>tion and historical context, Activation functions a<br>ation and the role of weights and biases, McCu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | asse<br>and thulloch                                                                      | s.<br><b>4</b><br>neir pr<br>n-Pitts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>hours</b><br>roperti<br>s Neur                                                                                                                   | ing<br>es,<br>on,                                                                 |
| manipulation, CoModule:2ArtifBiological inspirationForward propagaPerceptron, Tranetworks, ApplicModule:3Artif                                                                                                                                                                           | nditional statements, Functions, Objects and cl<br>icial Neural Network - I<br>tion and historical context, Activation functions a<br>ation and the role of weights and biases, McCu<br>ining a single-layer neural network, Limitation<br>ations of single-layer neural networks.<br>icial Neural Network – II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | asse<br>and th<br>ulloch                                                                  | s.<br>4<br>neir pr<br>n-Pitts<br>of sir<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hours<br>roperti<br>s Neur<br>ngle-la<br>hours                                                                                                      | ing<br>es,<br>on,<br>yer                                                          |
| manipulation, CoModule:2ArtifBiological inspiraForward propagaPerceptron, Tranetworks, ApplicModule:3ArtifIntroduction to W                                                                                                                                                              | nditional statements, Functions, Objects and cl<br>icial Neural Network - I<br>tion and historical context, Activation functions a<br>ation and the role of weights and biases, McCu<br>ining a single-layer neural network, Limitation<br>ations of single-layer neural networks.<br>icial Neural Network – II<br>ultilayer Perceptron (MLP), Backpropagation a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | asse                                                                                      | s.<br>4<br>neir pr<br>n-Pitts<br>of sir<br>4<br>hm fc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hours<br>roperti<br>s Neur<br>ngle-la<br>hours<br>hours                                                                                             | ing<br>es,<br>on,<br>yer<br>ing                                                   |
| Manipulation, CoModule:2ArtifBiological inspirationForward propagaPerceptron, Tranetworks, ApplicModule:3ArtifIntroduction to NMLPs, Stochasti                                                                                                                                           | inditional statements, Functions, Objects and cl<br>icial Neural Network - I<br>tion and historical context, Activation functions a<br>ation and the role of weights and biases, McCu<br>ining a single-layer neural network, Limitation<br>ations of single-layer neural networks.<br>icial Neural Network – II<br>ultilayer Perceptron (MLP), Backpropagation a<br>c Gradient Descent algorithm and weight optim                                                                                                                                                                                                                                                                                                                                                                                                                                     | asse                                                                                      | s.<br>4<br>neir pr<br>n-Pitts<br>of sir<br>4<br>hm fc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hours<br>roperti<br>s Neur<br>ngle-la<br>hours<br>hours                                                                                             | ing<br>es,<br>on,<br>yer<br>ing                                                   |
| manipulation, CoModule:2ArtifBiological inspirationForward propagaPerceptron, Tranetworks, ApplicModule:3ArtifIntroduction to MMLPs, StochastiHyperparameter                                                                                                                             | nditional statements, Functions, Objects and cl<br>icial Neural Network - I<br>tion and historical context, Activation functions a<br>ation and the role of weights and biases, McCu<br>ining a single-layer neural network, Limitation<br>ations of single-layer neural networks.<br>icial Neural Network – II<br>fultilayer Perceptron (MLP), Backpropagation a<br>c Gradient Descent algorithm and weight optim<br>tuning in MLPs, Applications of MLP.                                                                                                                                                                                                                                                                                                                                                                                             | asse                                                                                      | s.<br>4<br>neir pi<br>n-Pitts<br>of sir<br>4<br>hm fc<br>on teo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hours<br>roperti<br>S Neur<br>ngle-la<br>hours<br>hours<br>or train<br>chniqu                                                                       | ing<br>es,<br>on,<br>yer<br>ing<br>es,                                            |
| manipulation, CcModule:2ArtifBiological inspiraForward propagaPerceptron, Tranetworks, ApplicModule:3ArtifIntroduction to MMLPs, StochastiHyperparaweterModule:4Opti                                                                                                                     | inditional statements, Functions, Objects and cl<br>icial Neural Network - I<br>tion and historical context, Activation functions a<br>ation and the role of weights and biases, McCu<br>ining a single-layer neural network, Limitation<br>ations of single-layer neural networks.<br>icial Neural Network – II<br>ultilayer Perceptron (MLP), Backpropagation a<br>c Gradient Descent algorithm and weight optim<br>tuning in MLPs, Applications of MLP.<br>mization in Soft Computing-I                                                                                                                                                                                                                                                                                                                                                             | asse<br>and th<br>alloch<br>ons<br>lgorit<br>nizatio                                      | s.<br><u>4</u><br>heir pr<br>h-Pitts<br>of sir<br><u>4</u><br>hm fo<br>on teo<br><u>9</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | hours<br>roperti<br>s Neur<br>ngle-la<br>hours<br>or train<br>chniqu                                                                                | ing<br>es,<br>on,<br>yer<br>ing<br>es,                                            |
| Manipulation, CoModule:2ArtifBiological inspiratForward propagaPerceptron, Tranetworks, ApplicModule:3ArtifIntroduction to NMLPs, StochastiHyperparameterModule:4OptiOverview of opti                                                                                                    | inditional statements, Functions, Objects and cl<br>icial Neural Network - I<br>tion and historical context, Activation functions a<br>ation and the role of weights and biases, McCu<br>ining a single-layer neural network, Limitation<br>ations of single-layer neural networks.<br>icial Neural Network – II<br>ultilayer Perceptron (MLP), Backpropagation a<br>c Gradient Descent algorithm and weight optim<br>tuning in MLPs, Applications of MLP.<br>mization in Soft Computing-I<br>otimization in soft computing, Basic Evolut                                                                                                                                                                                                                                                                                                              | asse<br>and th<br>alloch<br>ons<br>Igorit<br>izatio                                       | s.<br>4<br>heir pr<br>h-Pitts<br>of sir<br>4<br>hm fc<br>on teo<br>9<br>ry Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hours<br>roperti<br>s Neur<br>ngle-la<br>br train<br>chniqu<br>hours<br>rocess                                                                      | ing<br>es,<br>on,<br>yer<br>ing<br>es,<br>es,                                     |
| Manipulation, CoModule:2ArtifBiological inspiratForward propagaPerceptron, Tranetworks, ApplicModule:3ArtifIntroduction to NMLPs, StochastiHyperparameterModule:4OptiOverview of opEvolutionary System                                                                                   | icial Neural Network - I<br>tion and historical context, Activation functions a<br>ation and the role of weights and biases, McCu<br>ining a single-layer neural network, Limitatio<br>ations of single-layer neural networks.<br>icial Neural Network – II<br>ultilayer Perceptron (MLP), Backpropagation a<br>c Gradient Descent algorithm and weight optim<br>tuning in MLPs, Applications of MLP.<br>mization in Soft Computing, Basic Evolut<br>stems as Problem Solvers, Canonical Evoluti                                                                                                                                                                                                                                                                                                                                                       | asse<br>and th<br>alloch<br>ons<br>lgorit<br>nizatio                                      | s.<br>4<br>heir pr<br>h-Pitts<br>of sir<br>4<br>hm fc<br>on teo<br>9<br>ry Pr<br>y Alg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hours<br>roperti<br>s Neur<br>ngle-la<br>hours<br>or train<br>chniqu<br>hours<br>occess<br>orithm                                                   | ing<br>es,<br>on,<br>yer<br>ing<br>es,<br>es,<br>s -                              |
| manipulation, CoModule:2ArtifBiological inspiratForward propagaPerceptron, Tranetworks, ApplicModule:3ArtifIntroduction to MMLPs, StochastiHyperparameterModule:4OptiOverview of opEvolutionary Systematical                                                                             | inditional statements, Functions, Objects and cl<br>icial Neural Network - I<br>tion and historical context, Activation functions a<br>ation and the role of weights and biases, McCu<br>ining a single-layer neural network, Limitation<br>ations of single-layer neural networks.<br>icial Neural Network – II<br>ultilayer Perceptron (MLP), Backpropagation a<br>c Gradient Descent algorithm and weight optim<br>tuning in MLPs, Applications of MLP.<br>mization in Soft Computing, Basic Evolut<br>stems as Problem Solvers, Canonical Evoluti<br>gramming, Evolution Strategies, A Unified Vie                                                                                                                                                                                                                                                 | asse<br>and th<br>alloch<br>ons<br>lgorit<br>nizatio                                      | s.<br>4<br>heir pro-<br>h-Pitts<br>f sir<br>4<br>hm for<br>con teo<br>9<br>ry Pr<br>y Alg<br>f Sirr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | hours<br>roperti<br>s Neur<br>ngle-la<br>hours<br>or train<br>chniqu<br>hours<br>rocess<br>orithm<br>nple E                                         | ing<br>es,<br>on,<br>yer<br>ing<br>es,<br>es,<br>s -<br>As,                       |
| manipulation, CoModule:2ArtifBiological inspiratForward propagaPerceptron, Transtnetworks, ApplicModule:3ArtifIntroduction to NMLPs, StochastiHyperparameterModule:4OptiOverview of opEvolutionary SystemPopulation Size.                                                                | inditional statements, Functions, Objects and cl<br>icial Neural Network - I<br>tion and historical context, Activation functions a<br>ation and the role of weights and biases, McCu<br>ining a single-layer neural network, Limitation<br>ations of single-layer neural networks.<br>icial Neural Network – II<br>ultilayer Perceptron (MLP), Backpropagation a<br>c Gradient Descent algorithm and weight optim<br>tuning in MLPs, Applications of MLP.<br>mization in Soft Computing, Basic Evolution<br>stems as Problem Solvers, Canonical Evolution<br>gramming, Evolution Strategies, A Unified Vie<br>Applications of Optimization in Soft Computing                                                                                                                                                                                          | asse<br>and th<br>alloch<br>ons<br>lgorit<br>nizatio                                      | s.<br>4<br>heir pro-<br>h-Pitts<br>f sir<br>4<br>hm for<br>con teo<br>9<br>ry Pr<br>y Alg<br>f Sirr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | hours<br>roperti<br>s Neur<br>ngle-la<br>hours<br>or train<br>chniqu<br>hours<br>rocess<br>orithm<br>nple E                                         | ing<br>es,<br>on,<br>yer<br>ing<br>es,<br>es,<br>s -<br>As,                       |
| Manipulation, CoModule:2ArtifBiological inspiratForward propagaPerceptron, Tranetworks, ApplicModule:3ArtifIntroduction to MMLPs, StochastiHyperparameterModule:4OptiOverview of opEvolutionary SystemPopulation Size.and dimensional                                                    | inditional statements, Functions, Objects and cl<br>icial Neural Network - I<br>tion and historical context, Activation functions a<br>ation and the role of weights and biases, McCu<br>ining a single-layer neural network, Limitation<br>ations of single-layer neural networks.<br>icial Neural Network – II<br>ultilayer Perceptron (MLP), Backpropagation a<br>c Gradient Descent algorithm and weight optim<br>tuning in MLPs, Applications of MLP.<br>mization in Soft Computing-I<br>otimization in soft computing, Basic Evolut<br>stems as Problem Solvers, Canonical Evolution<br>gramming, Evolution Strategies, A Unified Via<br>Applications of Optimization in Soft Computing<br>ty reduction, Data clustering and classification                                                                                                      | asse<br>and th<br>ulloch<br>ons<br>lgorit<br>nizatio                                      | s.<br>4<br>heir pro-<br>heir pro-<br>bits<br>f sir<br>9<br>f Sirrent<br>ature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hours<br>roperti<br>s Neur<br>ngle-la<br>hours<br>or train<br>chniqu<br>hours<br>orocess<br>orithm<br>nple E<br>select                              | ing<br>es,<br>on,<br>yer<br>es,<br>es,<br>s -<br>As,<br>ion                       |
| manipulation, CoModule:2ArtifBiological inspiratForward propagaPerceptron, Tranetworks, ApplicModule:3ArtifIntroduction to MMLPs, StochastiHyperparameterModule:4OptiOverview of opEvolutionary SystemEvolutionary Propulation Size.and dimensionalModule:5Opti                          | inditional statements, Functions, Objects and cl<br>icial Neural Network - I<br>tion and historical context, Activation functions a<br>ation and the role of weights and biases, McCu<br>ining a single-layer neural network, Limitation<br>ations of single-layer neural networks.<br>icial Neural Network – II<br>fultilayer Perceptron (MLP), Backpropagation a<br>c Gradient Descent algorithm and weight optim<br>tuning in MLPs, Applications of MLP.<br>mization in Soft Computing, Basic Evolut<br>stems as Problem Solvers, Canonical Evolution<br>gramming, Evolution Strategies, A Unified Via<br>Applications of Optimization in Soft Computing<br>ty reduction, Data clustering and classification<br>mization in Soft Computing-II                                                                                                       | asse<br>and th<br>alloch<br>ons<br>lgorit<br>ionar<br>ew o<br>g: Fea                      | s.<br>4<br>heir pro-<br>h-Pitts<br>f sir<br>4<br>hm for<br>con teo<br>9<br>ry Pr<br>y Alg<br>f Sim<br>ature<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hours<br>roperti<br>s Neur<br>ngle-la<br>hours<br>or train<br>chniqu<br>hours<br>ocess<br>orithm<br>ple E<br>select<br>hours                        | ing<br>es,<br>on,<br>yer<br>ing<br>es,<br>es,<br>s -<br>As,<br>ion                |
| manipulation, CoModule:2ArtifBiological inspiratForward propagaPerceptron, Tranetworks, ApplicModule:3ArtifIntroduction to MMLPs, StochastiHyperparameterModule:4OptiOverview of opEvolutionary SystemationEvolutionary SystemationPopulation Size.and dimensionalModule:5Opti           | inditional statements, Functions, Objects and cl<br>icial Neural Network - I<br>tion and historical context, Activation functions a<br>ation and the role of weights and biases, McCu<br>ining a single-layer neural network, Limitation<br>ations of single-layer neural networks.<br>icial Neural Network – II<br>ultilayer Perceptron (MLP), Backpropagation a<br>c Gradient Descent algorithm and weight optim<br>tuning in MLPs, Applications of MLP.<br>mization in Soft Computing, Basic Evoluti<br>stems as Problem Solvers, Canonical Evoluti<br>gramming, Evolution Strategies, A Unified Via<br>Applications of Optimization in Soft Computing<br>ity reduction, Data clustering and classification<br>mization in Soft Computing-II<br>enetic algorithms, Biological Background, Trad                                                      | asse<br>and th<br>alloch<br>ons<br>lgorit<br>izatio<br>cionar<br>ew o<br>g: Fea<br>j: Fea | s.<br>4<br>heir pro-<br>heir pro-<br>heir pro-<br>4<br>hm for<br>5<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hours<br>roperti<br>s Neur<br>ngle-la<br>hours<br>or train<br>chniqu<br>hours<br>orithm<br>ple E<br>select<br>hours<br>timizat                      | ing<br>es,<br>on,<br>yer<br>ing<br>es,<br>es,<br>s -<br>As,<br>ion<br>ion         |
| manipulation, CoModule:2ArtifBiological inspiratForward propagaPerceptron, Transtnetworks, ApplicModule:3ArtifIntroduction to NMLPs, StochastiHyperparameterModule:4OptiOverview of opEvolutionary Propulation Size.and dimensionalModule:5Opti                                          | inditional statements, Functions, Objects and cl<br>icial Neural Network - I<br>tion and historical context, Activation functions a<br>ation and the role of weights and biases, McCu<br>ining a single-layer neural network, Limitation<br>ations of single-layer neural networks.<br>icial Neural Network – II<br>ultilayer Perceptron (MLP), Backpropagation a<br>c Gradient Descent algorithm and weight optim<br>tuning in MLPs, Applications of MLP.<br>mization in Soft Computing, Basic Evolution<br>stems as Problem Solvers, Canonical Evolution<br>gramming, Evolution Strategies, A Unified Vie<br>Applications of Optimization in Soft Computing<br>ity reduction, Data clustering and classification<br>mization in Soft Computing-II<br>enetic algorithms, Biological Background, Trad<br>niques, Genetic Algorithm and Search Space, C | asse<br>and th<br>alloch<br>ons<br>lgorit<br>izatio<br>cionar<br>ew o<br>g: Fea<br>itiona | s.<br>4<br>heir pro-<br>heir pro-<br>heir pro-<br>f sirrer<br>9<br>7 Pro-<br>9<br>7 Pro-<br>9<br>7 Pro-<br>9<br>7 Pro-<br>9<br>7 Pro-<br>9<br>7 Pro-<br>9<br>7 Algorither<br>1 Sirrer<br>9<br>7 Algorither<br>1 Sirrer<br>9<br>7 Algorither<br>1 Sirrer<br>1 Sirrer | hours<br>roperti<br>s Neur<br>ngle-la<br>hours<br>or train<br>chniqu<br>hours<br>orithm<br>nple E<br>select<br>select<br>hours<br>timizat<br>n Gene | ing<br>es,<br>on,<br>yer<br>ing<br>es,<br>es,<br>s -<br>As,<br>ion<br>ion<br>etic |
| Manipulation, CoModule:2ArtifBiological inspiratForward propagaPerceptron, Tranetworks, ApplicModule:3ArtifIntroduction to NMLPs, StochastiHyperparameterModule:4OptiOverviewoptiOverviewoptiPopulation Size,and dimensionalModule:5OptiIntroduction to Gand Search TechAlgorithm, Stopp | inditional statements, Functions, Objects and cl<br>icial Neural Network - I<br>tion and historical context, Activation functions a<br>ation and the role of weights and biases, McCu<br>ining a single-layer neural network, Limitation<br>ations of single-layer neural networks.<br>icial Neural Network – II<br>ultilayer Perceptron (MLP), Backpropagation a<br>c Gradient Descent algorithm and weight optim<br>tuning in MLPs, Applications of MLP.<br>mization in Soft Computing, Basic Evoluti<br>stems as Problem Solvers, Canonical Evoluti<br>gramming, Evolution Strategies, A Unified Via<br>Applications of Optimization in Soft Computing<br>ity reduction, Data clustering and classification<br>mization in Soft Computing-II<br>enetic algorithms, Biological Background, Trad                                                      | asse<br>and th<br>alloch<br>ons<br>lgorit<br>izatio<br>cionar<br>ew o<br>g: Fea<br>itiona | s.<br>4<br>heir pro-<br>heir pro-<br>heir pro-<br>f sirrer<br>9<br>7 Pro-<br>9<br>7 Pro-<br>9<br>7 Pro-<br>9<br>7 Pro-<br>9<br>7 Pro-<br>9<br>7 Pro-<br>9<br>7 Algorither<br>1 Sirrer<br>9<br>7 Algorither<br>1 Sirrer<br>9<br>7 Algorither<br>1 Sirrer<br>1 Sirrer | hours<br>roperti<br>s Neur<br>ngle-la<br>hours<br>or train<br>chniqu<br>hours<br>orithm<br>nple E<br>select<br>select<br>hours<br>timizat<br>n Gene | ing<br>es,<br>on,<br>yer<br>ing<br>es,<br>es,<br>s -<br>As,<br>ion<br>ion<br>etic |

| Module:6 Deep Learning: Object Detection and Segmentation                                                             |                    |
|-----------------------------------------------------------------------------------------------------------------------|--------------------|
| Background of Object Detection, R-CNN, Fast R-CNN, Faster R-C                                                         | NN, YOLO, SSD,     |
| RetinaNet; Segmentation: FCN, SegNet, U-Net, Mask-RCNN,                                                               | and Application:   |
| Object detection for Self driving cars using Python/ Simulink.                                                        |                    |
| Module:7 Deep Learning: Natural Language Processing                                                                   | 7 hours            |
| N-gram Language Models, Part Of Speech Tagging and Sequence                                                           | Labeling, LSTM     |
| and Recurrent Neural Networks, Semantic Analysis, Information                                                         | ation Extraction,  |
| Machine Translation, Application: Speech Recognizer.                                                                  |                    |
| Module:8 Contemporary Issues                                                                                          | 2 hours            |
|                                                                                                                       | 45.1               |
| Total Lecture hours                                                                                                   | : 45 hours         |
| Text Books                                                                                                            |                    |
| 1. Machine Learning Algorithms and Applications, Mohss                                                                |                    |
| Muhammad Badruddin Khan, Eihab Bashier Mohammed Bas                                                                   | nier, CRC Press,   |
| 2017.                                                                                                                 |                    |
| 2. Deep Learning, Ian Goodfellow, YoshuaBengio and Aaron Cou                                                          | rville, MIT Press, |
| ISBN: 9780262035613, 2016.<br>3. Hands-On Machine Learning With Scikit-Learn, Keras, A                                | red Taraar Flaur   |
| 3. Hands-On Machine Learning With Scikit-Learn, Keras, A Concepts, Tools, And Techniques To Build Intelligent Systems |                    |
| O'Reilly Media, Inc., ISBN: 9781492032649, 2019                                                                       | , Aurellen Geron,  |
| 4. Principles of Soft Computing, S.N. Sivanandam, S.N. De                                                             | ena Wiley (3rd     |
| edition), ISBN: 9788126577132, 2018                                                                                   | cpa, wilcy (ord    |
| Reference Books                                                                                                       |                    |
| 1. Mathematics for Machine Learning. Marc Peter Deisenroth,                                                           | A. Aldo Faisal,    |
| Cheng Soon Ong. Cambridge University Press. ISBN: 97811                                                               |                    |
| 2. Artificial Intelligence, Machine Learning, and Deep Le                                                             |                    |
| Campesato. Mercury Learning & Information.2020. ISBN: 978                                                             |                    |
| 3. Natural Language Processing with PyTorch, Delip Rao,                                                               | 3rian McMahan,     |
| O'Reilly Media, Inc. ISBN: 9781491978238, 2019                                                                        |                    |
| Mode of Evaluation: Continuous Assessment Test, Digital Assign                                                        | nment, Quiz and    |
| Final Assessment Test                                                                                                 |                    |
| Recommended by Board of Studies 07-06-2023                                                                            |                    |
| Approved by Academic Council No. 70 Date 24-06-20                                                                     | )23                |

| Course Code       | Course Title                                |                       | L   1               | P      | С     |
|-------------------|---------------------------------------------|-----------------------|---------------------|--------|-------|
| MEDS501L          | Embedded System Desi                        | gn                    | 3 (                 | 0      | 3     |
| Pre-requisite     | NIL                                         |                       | /llabus             | vers   | ion   |
| ·                 |                                             |                       | 1.                  |        |       |
| Course Objectiv   | es                                          |                       |                     | -      |       |
| The course aimed  |                                             |                       |                     |        |       |
|                   | inderstand comprehensively the technolog    | aies and techniqu     | les und             | erlvin | a in  |
|                   | n embedded solution to a wearable, mobile   |                       |                     |        | 9     |
|                   | ML diagrams and advanced Modelling sch      |                       |                     | ases.  | _     |
|                   | d the building process of embedded syste    |                       |                     |        | -     |
| 01 01.001010      |                                             |                       |                     |        |       |
| Course Outcome    | <u>-</u>                                    |                       |                     |        |       |
| The students will |                                             |                       |                     |        |       |
|                   | embedded system and compare with gene       | eral purpose syst     | em.                 |        |       |
|                   | e the methods adapted for the development   |                       |                     | syste  | -m    |
|                   | uced to RTOS and related mechanisms.        | it of a typical offic | Joadoa              | 0,010  |       |
|                   | pes of processors and memory architectur    | 'e                    |                     |        |       |
|                   | te the features of components and networ    |                       | systems             | \$     |       |
|                   | real-time working prototypes of different   |                       |                     |        | cale  |
| •                 | d Systems.                                  | ernan eeale an        |                     |        | oulo  |
|                   | d the various concepts in Multi-Tasking     |                       |                     |        |       |
|                   |                                             |                       |                     |        |       |
| Module:1 Intro    | duction to Embedded System                  |                       |                     | 5 hc   | ours  |
|                   | m processor, hardware unit, software emb    | edded into a svs      | tem. Ex             |        |       |
|                   | stem, Embedded Design life cycle, Layers    |                       |                     | ampi   | 0 01  |
|                   | edded System Design Methodologies           |                       |                     | 5 hc   | ours  |
|                   | em modelling [FSM, SysML, MARTE], UN        | II as Design too      | L UMI               |        |       |
|                   | lysis and Use case Modelling, Design Exa    |                       | , OME               | nota   |       |
|                   | ling Process For Embedded Systems           |                       |                     | 4 hc   | ours  |
|                   | Compiling, Cross Compiling, Linking, Locat  | ing Compiler Dr       | iver Liu            |        |       |
|                   | ots and scatter loading, Loading on the tar |                       |                     |        | Παρ   |
|                   | em design using general purpose             | jet, Embedded i       |                     | 7 hc   | ours  |
|                   | essor                                       |                       |                     |        | , and |
| Microcontroller a |                                             | Memory Strate         | aic sel             | ection | n of  |
|                   | nemory, Memory Devices and their Cha        |                       |                     |        |       |
|                   | techniques, DMA.                            |                       |                     | loiy   | ana   |
|                   | ponent Interfacing & Networks               |                       |                     | 9 hc   | ours  |
|                   | ng, I/O Device Interfacing, Interrupt Con   | trollers Networks     | s for E             |        |       |
|                   | CI,PCI Express, UART, SPI, I2C, CAN, V      |                       |                     |        |       |
|                   | WPAN, Evolution of Internet of things (Io   | • •                   | 0110 2              | 10.010 |       |
| Module:6 Oper     |                                             | • /•                  |                     | 7 hc   | ours  |
|                   | perating Systems, Basic Features & Fur      | nctions of an Op      | erating             |        |       |
|                   | atures [polled loop system, interrupt driv  |                       |                     |        |       |
|                   | and its states, Process/Task Control Block, |                       |                     |        |       |
| Module:7 Multi    |                                             |                       |                     | 6 hc   |       |
|                   | ng , Scheduling and various Sched           | uling algorithms      | Inte                |        |       |
|                   | Shared Memory, Mail Box, Message Que        |                       |                     | •      |       |
|                   | tex), Dead Lock, Priority Inversion (bot    |                       |                     |        |       |
|                   | Priority Inheritance Protocol               |                       | unu <del>c</del> u) | ,      | onty  |
| <u> </u>          | emporary Issues                             |                       |                     | 2 hc   | lire  |
|                   |                                             |                       |                     | 2 110  | -ui 3 |
|                   |                                             |                       |                     |        |       |
|                   | Total Locture hours:                        |                       |                     | 15 ha  | lire  |
|                   | Total Lecture hours:                        |                       |                     | 45 hc  | ours  |

| Tex | xt Book(s)                                                                                                                                                  |             |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
| 1.  | Raj Kamal, "Embedded systems Architecture, Programming and Design", Tata McGraw-Hill, 2016.                                                                 |             |  |  |  |  |
| 2.  | Wayne Wolf "Computers as components: Principles of Embedded Computing System Design", The Morgan Kaufmann Series in Computer Architecture and Design, 2013. |             |  |  |  |  |
| Ref | ference Books                                                                                                                                               |             |  |  |  |  |
| 1.  | Lyla B. Das," Embedded Systems an Integrated Approach", Pearson Education, 2013.                                                                            |             |  |  |  |  |
| 2.  | Shibu K V," Introduction to Embedded Systems", McGraw Hill Education(India) Private Limited, 2014                                                           |             |  |  |  |  |
| 3.  | Sriram V Iyer, Pankaj Gupta " Embedded Real Time Systems Programming<br>Tata McGraw- Hill, 2012                                                             | <b>;</b> ", |  |  |  |  |
| 4.  | Steve Heath, "Embedded Systems Design", EDN Series, 2013.                                                                                                   |             |  |  |  |  |
| Мо  | de of Evaluation: Continuous Assessment, Digital Assignment, Quiz and Final                                                                                 |             |  |  |  |  |
| Ass | sessment Test                                                                                                                                               |             |  |  |  |  |
| Ree | commended by Board of Studies 28-07-2022                                                                                                                    |             |  |  |  |  |
| Арр | proved by Academic Council No. 67 Date 08-08-2022                                                                                                           |             |  |  |  |  |
|     |                                                                                                                                                             |             |  |  |  |  |

| Course Code      | Course Title                                                                           | L      | Т      | Р       | С     |
|------------------|----------------------------------------------------------------------------------------|--------|--------|---------|-------|
| MEDS601L         | Electromagnetic Interference and                                                       | 3      | 0      | 0       | 3     |
|                  | Čompatibility                                                                          |        |        |         |       |
| Pre-requisite    | NIL                                                                                    | Syl    | labus  | s vers  | ion   |
| •                |                                                                                        |        |        | .0      |       |
| Course Objecti   | ves                                                                                    |        |        |         |       |
| The course is ai | med at:                                                                                |        |        |         |       |
| 1. Imparting     | knowledge about EMI environment                                                        |        |        |         |       |
|                  | EMI coupling principles, EMI control technique                                         | es and | l desi | gn of   |       |
| PCBs for         |                                                                                        |        |        |         |       |
| 3. Giving ex     | posure to EMI Standards, Regulations and Me                                            | easure | ment   | S       |       |
|                  |                                                                                        |        |        |         |       |
| Course Outcon    |                                                                                        |        |        |         |       |
|                  | e course, the student will be able to                                                  |        |        |         |       |
| 1. Understa      | nd terminologies of EMI and EMC                                                        |        |        |         |       |
|                  | and understand various EMI coupling mechanis                                           | sms    |        |         |       |
|                  | us EMI Test and Measurement methods                                                    |        |        |         |       |
|                  | various techniques needed to suppress EMI different EMC regulations followed worldwide |        |        |         |       |
|                  | design an Electromagnetic Compatible system                                            | 5      |        |         |       |
|                  | and comprehend different techniques neede                                              |        | Siana  | l Intoc | iritv |
|                  | y to understand various models for EMI/EMC                                             |        | Signa  | i inteç | jiity |
|                  |                                                                                        |        |        |         |       |
| Module:1 EM      | I Environment                                                                          |        | 4 h    | ours    |       |
| EMI-EMC Defir    | nitions and units of Parameters, Sources of I                                          | ΞMI, c |        |         | and   |
| radiated EMI, T  |                                                                                        |        |        |         |       |
| Module:2 EM      | I Coupling Mechanisms                                                                  |        | 6 ho   | ours    |       |
|                  | idiated and Transient Coupling, Common                                                 |        |        |         |       |
|                  | ated Common Mode and Ground Loop                                                       |        |        |         |       |
|                  | e Coupling, Near Field Cable to Cable Couplir                                          | ıg, Po | wer N  | lains a | and   |
| Power Supply C   |                                                                                        |        |        |         |       |
|                  | I Test and Measurements                                                                |        |        | ours    |       |
|                  | on / Standards / Limits: Units of specification                                        |        |        |         |       |
| -                | ds. EMI Test Instruments / Systems, EMI                                                |        |        |         |       |
| Chamber, Op      |                                                                                        |        |        |         |       |
|                  | rs/Couplers. EMI Measurement Methods: Milita                                           | ary le | est Me | ethod a | and   |
|                  | libration Procedures, Modeling interferences                                           |        | 7 10   |         |       |
|                  | I Control Techniques                                                                   |        |        | ours    | ont   |
|                  | ering, Grounding, Bonding, Isolation Tran                                              |        |        |         |       |
|                  | Cable Routing, Signal Control, Compon-<br>trostatic discharge protection schemes       | ent s  | selec  |         | unu   |
|                  | MC Standards and Regulations                                                           |        | 5 h    | ours    |       |
|                  | tentional standardizing organizations- FCC, (                                          |        |        |         | DD.   |
|                  | FCC CE and RE standards, CISPR, CE and RE                                              |        |        |         |       |
|                  | SAE Automotive EMC standard, Frequency as                                              |        |        |         |       |
| conversation.    |                                                                                        | 5      |        | 1 - 1   | -     |
|                  | stem Design for EMC                                                                    |        | 8 ho   | ours    |       |
| · · ·            | ross Talk, Impedance Control, Power Distr                                              | ibutio | n De   | coupli  |       |
|                  | rboard Designs and Propagation Delay Pe                                                |        |        |         |       |

| System Enclosures, Power line filter placement, Interconnection and Number of Printed Circuit Boards, PCB and subsystem decoupling |                                                            |             |           |           |                       |  |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------|-----------|-----------|-----------------------|--|
|                                                                                                                                    | Signal Integrity and EMI/                                  |             |           | <u>'9</u> | 5 hours               |  |
|                                                                                                                                    | erminations on line wave for                               |             |           |           | for Signal Integrity, |  |
| Effects of line discontinuities, Statistical EMI/EMC models.                                                                       |                                                            |             |           |           |                       |  |
| Module:                                                                                                                            | Contemporary Issues                                        |             |           |           | 2 hours               |  |
| Guest Le                                                                                                                           | ctures from Industry and, Res                              | earch an    | d Develo  | pment     | Organizations         |  |
|                                                                                                                                    |                                                            | Total L     | ecture l  | nours:    | 30 hours              |  |
| Text Boo                                                                                                                           | k(s)                                                       |             |           |           |                       |  |
|                                                                                                                                    | on R. Paul,Introductionton., Wiley & Sons, New Jerse       |             | nagneti   | ccompa    | tibility,2010, 2      |  |
| Reference                                                                                                                          | e Books                                                    |             |           |           |                       |  |
|                                                                                                                                    | W.ott, Electromagnetic Con<br>and Sons, NewJersey.         | npatibility | Engine    | ering,    | 2011, 1sted. John     |  |
| 2. Patrie                                                                                                                          | k G. André and Kenneth V<br>Ict Designers 2014, 1st ed., S |             |           |           |                       |  |
| Mode of                                                                                                                            | valuation: Continuous Asses                                | sment, D    | igital As | signmer   | nt, Quiz and Final    |  |
| Assessm                                                                                                                            |                                                            |             | -         | 2         |                       |  |
| Recomm                                                                                                                             | ended by Board of Studies                                  | 07-06-20    | 23        |           |                       |  |
| Approved                                                                                                                           | by Academic Council                                        | No. 70      | Date      | 24-06-    | 2023                  |  |

|                                                                                                                                                                | Course Title                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L                                             | Т                                                                   | Ρ                                                                                             | С                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------|
| MEDS616L                                                                                                                                                       | Machine Leaning and Deep Learning                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                             | 0                                                                   | 0                                                                                             | 3                         |
| Pre-requisite                                                                                                                                                  | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sylla                                         | abus                                                                |                                                                                               | on                        |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               | 1.0                                                                 | )                                                                                             |                           |
| Course Objectiv                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                                                                     |                                                                                               |                           |
| The course is air                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                                                                     |                                                                                               |                           |
|                                                                                                                                                                | nding about the fundamentals of machine le                                                                                                                                                                                                                                                                                                                                                                                                                   | arning                                        | g and                                                               | neu                                                                                           | Iral                      |
| networks                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                                                                     |                                                                                               |                           |
|                                                                                                                                                                | he students to acquire knowledge about patterr                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                                                                     |                                                                                               |                           |
|                                                                                                                                                                | the students to apply deep learning algorithms                                                                                                                                                                                                                                                                                                                                                                                                               | for so                                        | oiving                                                              | real                                                                                          | iire                      |
| problems                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                                                                     |                                                                                               |                           |
| Course Outcom                                                                                                                                                  | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                     |                                                                                               |                           |
|                                                                                                                                                                | course the student will be able to                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                     |                                                                                               |                           |
|                                                                                                                                                                | end the categorization of machine learning algor                                                                                                                                                                                                                                                                                                                                                                                                             | rithms                                        |                                                                     |                                                                                               |                           |
|                                                                                                                                                                | id the types of neural network architectures, act                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |                                                                     | tions                                                                                         |                           |
|                                                                                                                                                                | with the pattern association using neural networ                                                                                                                                                                                                                                                                                                                                                                                                             |                                               | mane                                                                |                                                                                               |                           |
|                                                                                                                                                                | arious terminologies related with pattern recogn                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |                                                                     |                                                                                               |                           |
|                                                                                                                                                                | erent feature selection and classification technic                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                     |                                                                                               |                           |
|                                                                                                                                                                | nd the architectures of convolutional neur                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                                                     |                                                                                               | nd                        |
| •                                                                                                                                                              | end advanced neural network architectures                                                                                                                                                                                                                                                                                                                                                                                                                    | s suc                                         | ch as                                                               | s RN                                                                                          | IN,                       |
| Autoenco                                                                                                                                                       | ders, and GANs.                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                                                                     |                                                                                               |                           |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                                                                     |                                                                                               |                           |
| Module:1   Lear                                                                                                                                                | ning Problems and Algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               | <u>4 hc</u>                                                         |                                                                                               |                           |
|                                                                                                                                                                | ims of learning problems, Supervised, Ser                                                                                                                                                                                                                                                                                                                                                                                                                    | mi-sup                                        | pervis                                                              | ed a                                                                                          | nd                        |
| Unsupervised al Module:2 Neu                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               | 8 hc                                                                |                                                                                               |                           |
|                                                                                                                                                                | een Biological and Artificial Neural Networks - T                                                                                                                                                                                                                                                                                                                                                                                                            | vnical                                        |                                                                     |                                                                                               | ro                        |
|                                                                                                                                                                | ion Functions, Multi-layer neural network, Linear                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |                                                                     |                                                                                               |                           |
|                                                                                                                                                                | Adaline, Standard Back propagation                                                                                                                                                                                                                                                                                                                                                                                                                           | oopu                                          |                                                                     | .y, 110                                                                                       | .00                       |
| Module:3 Neu                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               | 8 hc                                                                | ours                                                                                          |                           |
|                                                                                                                                                                | ms for Pattern Association - Hebb rule and                                                                                                                                                                                                                                                                                                                                                                                                                   | Delta                                         | rule,                                                               | Hete                                                                                          | ero                       |
|                                                                                                                                                                | associative, Kohonen Self Organising Maps, E                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               |                                                                     |                                                                                               |                           |
|                                                                                                                                                                | Vector Quantization, Gradient descent, Bo                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                             |                                                                     |                                                                                               |                           |
| iviaps, Learning                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                                                                     |                                                                                               |                           |
| Learning                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                                                                     |                                                                                               |                           |
| Learning<br>Module:4 Mac                                                                                                                                       | hine Learning: Terminologies                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               | 7 ho                                                                |                                                                                               |                           |
| Learning<br>Module:4 Mac<br>Classifying Sam                                                                                                                    | ples: The confusion matrix, Accuracy, Precision,                                                                                                                                                                                                                                                                                                                                                                                                             |                                               | all, F1                                                             | - Sco                                                                                         |                           |
| Learning<br>Module:4 Mac<br>Classifying Sam<br>the curse of dim                                                                                                | ples: The confusion matrix, Accuracy, Precision,<br>ensionality, training, testing, validation, cross va                                                                                                                                                                                                                                                                                                                                                     | lidatic                                       | all, F1<br>on, ov                                                   | - Sco                                                                                         |                           |
| Learning<br>Module:4 Mac<br>Classifying Sam<br>the curse of dim-<br>under-fitting the                                                                          | ples: The confusion matrix, Accuracy, Precision,<br>ensionality, training, testing, validation, cross va<br>data, early stopping, regularization, bias and va                                                                                                                                                                                                                                                                                                | lidatic                                       | all, F1<br>on, ove<br>e                                             | - Sco<br>erfitti                                                                              |                           |
| Learning<br>Module:4 Mac<br>Classifying Sam<br>the curse of dim<br>under-fitting the<br>Module:5 Mac                                                           | ples: The confusion matrix, Accuracy, Precision,<br>ensionality, training, testing, validation, cross va<br>data, early stopping, regularization, bias and va<br>hine Learning: Feature Selection and                                                                                                                                                                                                                                                        | lidatic                                       | all, F1<br>on, ov                                                   | - Sco<br>erfitti                                                                              |                           |
| LearningModule:4MacClassifying Samthe curse of dimeunder-fitting theModule:5MacClassifying Classifying the                                                     | ples: The confusion matrix, Accuracy, Precision,<br>ensionality, training, testing, validation, cross va<br>data, early stopping, regularization, bias and va<br>hine Learning: Feature Selection and<br>sification                                                                                                                                                                                                                                          | lidatic<br>riance                             | all, F1<br>on, ove<br>e<br><b>7 hc</b>                              | - Sco<br>erfittii<br>ours                                                                     | ng,                       |
| Learning<br>Module:4 Mac<br>Classifying Sam<br>the curse of dim-<br>under-fitting the<br>Module:5 Mac<br>Class<br>Feature Selection                            | ples: The confusion matrix, Accuracy, Precision,<br>ensionality, training, testing, validation, cross va<br>data, early stopping, regularization, bias and var<br>hine Learning: Feature Selection and<br>sification<br>n, normalization, dimensionality reduction, Clas                                                                                                                                                                                     | lidatic<br>riance                             | all, F1<br>on, ov<br>e<br><b>7 hc</b><br>5: KNN                     | - Sco<br>erfittii<br><b>ours</b><br>N, SV                                                     | ng,<br>ïM,                |
| Learning<br>Module:4 Mac<br>Classifying Sam<br>the curse of dimension<br>under-fitting the<br>Module:5 Mac<br>Class<br>Feature Selection<br>Decision trees,    | ples: The confusion matrix, Accuracy, Precision,<br>ensionality, training, testing, validation, cross va<br>data, early stopping, regularization, bias and va<br>hine Learning: Feature Selection and<br>sification                                                                                                                                                                                                                                          | lidatic<br>riance                             | all, F1<br>on, ov<br>e<br><b>7 hc</b><br>5: KNN                     | - Sco<br>erfittii<br><b>ours</b><br>N, SV                                                     | ng,<br>ïM,                |
| LearningModule:4MacClassifying Samthe curse of dimeunder-fittingModule:5Module:5Feature SelectionDecision trees,clustering.                                    | ples: The confusion matrix, Accuracy, Precision,<br>ensionality, training, testing, validation, cross va<br>data, early stopping, regularization, bias and var<br>hine Learning: Feature Selection and<br>sification<br>n, normalization, dimensionality reduction, Clas<br>Naïve Bayes, Binary classification, multi c                                                                                                                                      | lidatic<br>riance                             | all, F1<br>on, ove<br><b>7 hc</b><br>s: KNN<br>classi               | - Sco<br>erfittii<br><b>ours</b><br>N, SV<br>ficatio                                          | ng,<br>ïM,                |
| LearningModule:4MacClassifying Samthe curse of dimensionunder-fitting theModule:5MacClassFeature SelectionDecision trees,clustering.Module:6Con                | ples: The confusion matrix, Accuracy, Precision,<br>ensionality, training, testing, validation, cross va<br>data, early stopping, regularization, bias and var<br>hine Learning: Feature Selection and<br>sification<br>n, normalization, dimensionality reduction, Clas<br>Naïve Bayes, Binary classification, multi c<br>volutional Neural Networks                                                                                                        | lidatic<br>riance<br>ssifiers<br>lass         | all, F1<br>on, ov<br><b>7 hc</b><br>s: KNN<br>classi<br><b>5 hc</b> | - Sco<br>erfitti<br>ours<br>N, SV<br>ficatio                                                  | 'ng,<br>ïM,<br>on,        |
| LearningModule:4MacClassifying Samthe curse of dimensionunder-fitting theModule:5MacClassFeature SelectionDecision trees,clustering.Module:6ConFeed forward ne | ples: The confusion matrix, Accuracy, Precision,<br>ensionality, training, testing, validation, cross va<br>data, early stopping, regularization, bias and val<br>hine Learning: Feature Selection and<br>sification<br>n, normalization, dimensionality reduction, Clas<br>Naïve Bayes, Binary classification, multi c<br>volutional Neural Networks<br>tworks, Activation functions, backpropagation i                                                     | lidatic<br>riance<br>sifiers<br>lass<br>n CNI | all, F1<br>on, ove<br>7 hc<br>s: KNN<br>classi<br>5 hc<br>N, opt    | - Sco<br>erfitti<br>ours<br>N, SV<br>fication<br>fication<br>fication<br>fication<br>fication | ng,<br>′M,<br>on,<br>ers, |
| LearningModule:4MacClassifying Samthe curse of dimensionunder-fitting theModule:5MacClassFeature SelectionDecision trees,clustering.Module:6ConFeed forward ne | ples: The confusion matrix, Accuracy, Precision,<br>ensionality, training, testing, validation, cross va<br>data, early stopping, regularization, bias and val<br>hine Learning: Feature Selection and<br>sification<br>n, normalization, dimensionality reduction, Clas<br>Naïve Bayes, Binary classification, multi c<br>volutional Neural Networks<br>tworks, Activation functions, backpropagation in<br>tion, convolution layers, pooling layers, fully | lidatic<br>riance<br>sifiers<br>lass<br>n CNI | all, F1<br>on, ove<br>7 hc<br>s: KNN<br>classi<br>5 hc<br>N, opt    | - Sco<br>erfitti<br>ours<br>N, SV<br>fication<br>fication<br>fication<br>fication<br>fication | ng,<br>′M,<br>on,<br>ers, |

| Мо  | dule:7                                                                      | RNNs, Auto encoders an               | d GANs               |            |            | 4 hours          |
|-----|-----------------------------------------------------------------------------|--------------------------------------|----------------------|------------|------------|------------------|
| Sta | ate, Stru                                                                   | cture of RNN Cell, LSTM ar           | nd GRU, <sup>−</sup> | Time dist  | ributed la | yers, Generating |
|     | Text, Auto encoders: Convolutional Auto encoders, De-noising auto encoders, |                                      |                      |            |            |                  |
|     | Variational auto encoders, GANs: The discriminator, generator, DCGANs       |                                      |                      |            |            |                  |
| Мо  | dule:8                                                                      | Contemporary Issues                  |                      |            |            | 2 hours          |
| Gu  | est Lect                                                                    | ures from Industry and, Res          | earch and            | d Develo   | pment Org  | ganizations      |
|     |                                                                             |                                      | Tota                 | I Lecture  | e hours:   | 45 hours         |
| Tex | kt Book                                                                     | (s)                                  |                      |            |            |                  |
| 1.  | J. S. R                                                                     | . Jang, C. T. Sun, E. Mizu           | tani, Neu            | ro Fuzz    | y and Sc   | oft Computing -  |
|     | A Com                                                                       | putational Approach to L             | earning a            | and Mac    | chine Inte | elligence, 2012, |
|     | PHI le                                                                      | arning                               | -                    |            |            | -                |
| 2.  | Deep                                                                        | Learning, Ian Good fellow,           | Yoshua               | Bengio a   | and Aaror  | n Courville, MIT |
|     | Press,                                                                      | ISBN: 9780262035613, 20 <sup>-</sup> | 16.                  |            |            |                  |
| Ref | ference                                                                     | Books                                |                      |            |            |                  |
| 1.  | The E                                                                       | lements of Statistical Lear          | ning. Trev           | vor Hast   | ie, Rober  | t Tibshirani and |
|     | Jerom                                                                       | e Friedman. Second Edition           | . 2009.              |            |            |                  |
| 2.  | Unders                                                                      | standing Machine Learning            | . ShaiSha            | ilev-Shw   | artz and   | Shai Ben-David.  |
|     | Cambr                                                                       | idge University Press. 2017          |                      |            |            |                  |
| Mo  | de of E\                                                                    | aluation: Continuous Asses           | sment, Di            | igital Ass | signment,  | Quiz and Final   |
| Ass | sessmer                                                                     | nt Test                              |                      | -          | •          |                  |
| Ree | commer                                                                      | ided by Board of Studies             | 07-06-20             | )23        |            |                  |
| Ар  | proved b                                                                    | y Academic Council                   | No. 70               | Date       | 24-06-20   | )23              |