

SCHOOL OF ELECTRONICS ENGINEERING

M. Tech Sensor System Technology

Curriculum (2018-2019 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international, industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

To be a leader by imparting in-depth knowledge in Electronics Engineering, nurturing engineers, technologists and researchers of highest competence, who would engage in sustainable development to cater the global needs of industry and society.

MISSION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

- Create and maintain an environment to excel in teaching, learning and applied research in the fields of electronics, communication engineering and allied disciplines which pioneer for sustainable growth.
- Equip our students with necessary knowledge and skills which enable them to be lifelong learners to solve practical problems and to improve the quality of human life.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems
- 2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry
- 3. Graduates will function in their profession with social awareness and responsibility
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country
- 5. Graduates will be successful in pursuing higher studies in engineering or management
- 6. Graduates will pursue career paths in teaching or research

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment

PO_03: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information

PO_04: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice

PO_05: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems

PO_06: Having adaptive thinking and adaptability in relation to environmental context and sustainable development

PO_07: Having a clear understanding of professional and ethical responsibility

PO_08: Having a good cognitive load management skills related to project management and finance

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (Sensor System Technology) programme, graduates will be able to

- PSO1 Analyze advanced engineering problems in the fields of sensors, data acquisition and controls.
- PSO2 Apply advanced techniques and tools of sensing systems to solve multi-disciplinary challenges in industry and society.
- PSO3: To exhibit independent, and collaborative research with strategic planning, while demonstrating the professional and ethical responsibilities of the engineering profession.

CREDIT STRUCTURE

Category-wise Credit distribution

Category	Credits
University core (UC)	27
Programme core (PC)	19
Programme elective (PE)	18
University elective (UE)	06
Total credits	70

DETAILED CURRICULUM

University Core - 27

S. No	Course Code	Course Title	L	Т	Р	J	С
1	MAT6001	Advanced Statistical Methods	2	0	2	0	3
2	ENG5001	Fundamentals of Communication Skills	0	0	2	0	2
	ENG5001 and	Technical English I and	{0	0	2	0	
3	ENG5002 or	Technical English II (or)	0	0	2	0}	2
	GER5001	Deutsch fuer Anfaeger	2	0	0	0	
4	STS5001 &	Soft Skills	0	0	0	0	2
4	STS5002						
5	SET5001	SET Project-I	0	0	0	0	2
6	SET5002	SET Project-II	0	0	0	0	2
7	ECE6099	Master's Thesis	0	0	0	0	16

Programme Core - 19

S. No	Course Code	Course Title	L	Т	Р	J	С
1	ECE5001	Principles of Sensors	3	0	2	0	4
2	ECE5002	Data Acquisition and Hardware Interfaces	3	0	2	0	4
3	ECE5003	Control Systems	1	0	4	4	4
4	ECE6001	Wireless Sensor Networks and IoT	2	0	0	4	3
5	ECE6002	Microcontrollers and Embedded Sensors	2	0	2	4	4

Programme Electives - 18

S.No	Course Code	Course Title	L	Т	Р	J	С
1	ECE5004	Software for Embedded Systems	2	0	2	0	3
2	ECE5006	Flexible and Wearable Sensors	3	0	0	0	3
3	ECE5007	Nanomaterials and Sensors	2	0	0	4	3
4	ECE5008	Micro and Nano Fluidics	2	0	0	4	3
5	ECE6003	Micro Systems & Hybrid Technology	2	0	2	0	3
6	ECE6004	RF and Microwave Sensors	3	0	0	0	3
7	ECE6005	Chemical Sensors		0	2	0	3
8	ECE6006	Automotive Sensors	2	0	2	0	3
9	ECE6007	Biomedical sensors	2	0	2	0	3
10	ECE6008	Biosensors	2	0	0	4	3
11	ECE6009	Environmental Sensors	2	0	0	4	3
12	ECE6029	Integrated Wave Optics	3	0	0	0	3
13	ECE6030	Signal Processing and Data Analytics	2	0	2	0	3
14	CSE5009	Soft Computing	3	0	0	0	3
15	MEE5050	Product Design, Management Techniques and Entrepreneurship	3	0	0	4	4

Course code Course title L T P) J	С
ECE5001		PRINCIPLES OF SENSOR	S	3	0	2	0	4
Pre-requisi	te	Nil		Sy	'lla	bus	vers	ion
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						v. 1	1.1	
Course Obj	jectives							
I. To p	1. To provide in depth knowledge in physical principles applied in sensing, measurement and a comprehensive understanding on how measurement systems are designed calibrated							
chara	characterised, and analysed.							
2. To in	ntroduce	the students to sources and detectors of various	Optical sensing m	echa	ani	sms	and	
provi	provide in-depth understanding of the principle of measurement, and theory of instruments and							
sensors for measuring velocity and acceleration								
3. To g	ive a fui	idamental knowledge on the basic laws and phen	iomena on which	oper	ati	on o	f sens	or
4. To ir	npart a i	reasonable level of competence in the design, cor	struction, and exe	ecuti	ion	of		
mech	nanical r	neasurements strain, force, torque and pressure				01		
Expected C	Course	Outcome:						
1. Use	concepts	in common methods for converting a physical p	arameter into an e	elect	rica	al qu	antity	r
2. Choo	ose an aj	oppropriate sensor comparing different standards a	and guidelines to i	nake	e se	ensit	ive	
3. Desi	gn and c	levelop sensors using optical methods with desire	ed properties					
4. Eval	uate per	formance characteristics of different types of sen	sors					
5. Loca	te differ	ent type of sensors used in real life applications a	and paraphrase the	eir ir	npo	ortar	nce	
6. Crea	te analy	tical design and development solutions for sensor	rs.					
Modulo-1	Sonco	r fundamentals and characteristics					1 ho	ling
Sensor Clas	sificatio	on Performance and Types Error Analysis c	haracteristics				4 110	uis
Sensor Clus	Sincun	, remonitance and rypes, Error rinarysis e	naracteristics					
Module 2	Ontic	al Sources and Detectors					6 ho	urs
Electronic	and O	ntical properties of semiconductor as sens	ors LED Sem	icor	ndu	ictor	· lase	rs
Fiber optic	c senso	rs, Thermal detectors, Photo multipliers,	photoconductive	de	tec	tors	. Pho	oto
diodes, Av	alanche	photodiodes, CCDs.					,	
		-						
Module:3	Intens	sity Polarization and Interferometric					6 ho	urs
T	Senso	rs		r · 1	1		F 1	
Intensity s	ensor,	Microbending concept, Interferometers, Ma	ach Zehnder, N	lich re	els	on,	Fabr	у-
Felot allu S	Sagnac,	Flase sensor. Flase detection, Foralization	mannanning noe.	18.				
Module:4	Strair	. Force. Torque and Pressure sensors					6 ho	urs
Strain gage	es. strai	n gage beam force sensor, piezoelectric force	e sensor, load c	ell.	tor	ane	sens	or.
Piezo-resis	tive and	l capacitive pressure sensor, optoelectronic p	pressure sensors,	vac	cuu	m se	ensor	s.
	pressure enserts repressure consort, oprovide a one pressure consorts, racadan consorts.							
Module:5	Positi	on, Direction, Displacement and Level	7 hours					
	senso	rs						
Potentiomet	ric and	capacitive sensors, Inductive and magnetic	sensor, LVDT, 1	RVI	DT	, ed	dy	
current, tran	sverse	inductive, Hall effect, magneto resistive, ma	gneto strictive s	enso	ors	. Fil	ber op	otic
liquid level	sensing	, Fabry Perot sensor, ultrasonic sensor, capac	citive liquid leve	sei sei	nsc	or.		
Modular	Valaa	ity and Appalaration concorre					6 4 -	11100
wiouule:0	v eloc	ity and Acceleration sensors					v 110	urs

Electromagnetic velocity sensor, Doppler with sound, light, Accelerometer characteristics, capacitive, piezo-resistive, piezoelectric accelerometer, thermal accelerometer, rotor, monolithic and optical gyroscopes.

Module:7 Flow, Temperature and Acoustic sensors

8 hours

2 hours

Flow sensors: pressure gradient technique, thermal transport, ultrasonic, electromagnetic and Laser anemometer. microflow sensor, coriolis mass flow and drag flow sensor. Temperature sensors- thermoresistive, thermoelectric, semiconductor and optical. Piezoelectric temperature sensor. Acoustic sensors- microphones-resistive, capacitive, piezoelectric, fiber optic, solid state - electrect microphone.

Module:8 Contemporary issues:

			Total Lecture hours:	45 hours						
Tex	Text Book(s)									
1	Jacob F	olications", 2015, 3 rd								
	edition	, Springer, Ne	w York.							
2.	Jon. S.	Wilson, "Sens	or Technology Hand Book", 2011, 1 ^s	^t edition, Elsev	ier, Netherland.					
Ref	erence l	Books								
1.	Gerd K	eiser,"Optical	Fiber Communications", 2012, 4 th ed	ition, McGraw	-Hill Science, Delhi.					
2.	John G	B Webster, "M	easurement, Instrumentation and sen	sor Handbook	", 2014, 2 nd edition,					
	CRC P	ress, Florida.								
3.	Eric U	dd and W.B.	Spillman, "Fiber optic sensors: An	n introduction	for engineers and					
	scientis	sts", 2013, 2 nd	edition, Wiley, New Jersey.		-					
4.	Bahaa	E. A. Saleh a	nd Malvin Carl Teich, "Fundamenta	ls of photonics	", 2012, 1 st edition,					
	John W	liley, New Yo	rk.							
Mo	de of Ev	aluation: CAT	/ Assignment / Quiz / FAT / Project /	/ Seminar						
T •			• • • • • • •							
List	t of Cha	llenging Expe	eriments (Indicative)							
1.	Strain,	Force, pressur	e, and torque measurement		8 hours					
		1.	Strain measurement with Bridge Circuit	t						
		11.	Beam force sensor using Strain Gauge I	Bridge						
		111.	Beam deflection sensing with Strain Ga	uge Bridge						
		1V.	Diaphragm pressure sensor using Strain	Gauge Bridge						
		V.	Shear strain and angle of shift measure	ment of hollow						
			shaft							
	After co	ompleting the 1	" set of characteristics. Design a weighin	ig machine havir	ng a					
	range of	f 0-5 Kg with a	sensitivity of 5 mg. What modification	he/she has to de	o to					
	change	the upper range	to 100 Kg with a sensitivity of 100 mg.							
2	Develo	n a displaceme	ent measurement system with the follo	owing sensors.	4 hours					
	20,010	i.	Inductive transducer (LVDT)	string sensors.	1 110 01 5					
		ii.	Hall effect sensor							
3.	After s	studying the	characteristics of temperature sens	ors listed belo	ow, 6 hours					
	develop	p a temperatur	e measurement system for a particular	r application us	ing					
	the suit	table sensor.	2 1							
		i.	Thermocouple principles							
		ii.	Thermistor and linearization of NTC Th	nermistor						
		iii.	Resistance Temperature Detector							

	iv. Semiconduc	ctor Ten	nperature sensor	r			
	v. Current out	put abso	olute temperatur	re sensor			
4.	Develop a sensor system for transducer	force	measurement	t using	piezoelectric	4 hours	
5.	e is not ments carried of concept.	8 hours					
			Г	Fotal Lab	oratory Hours	30 hours	
Mo	Mode of assessment:						
Recommended by Board of Studies 21-08-2017							
Approved by Academic Council			47 I	Date	5-10-2017		

Course code	L	Т	P	J	C			
ECE5002	DATA ACQUISITION AND HARDWARE	3	0	2	0	4		
	INTERFACES							
Pre-requisite	Nil	Sy	llab	$\frac{us v}{1}$	ersi	on		
Course Objective				1.1				
Lourse Objectives	1 To introduce the students with basics of computer interfaci							
1. 10 Illifout	ion d	lu ata	io F)IOV isiti	on			
signal processing, transmission and analysis.								
2. To teach the students the applicability of various A/D and D/A boards.								
3. To acquain the students with various data acquisition methods and Interface Standards								
data logger	s and PC buses.							
4. To acquain	t the students with Virtual instrumentation for testing, con-	rol, ar	ıd de	esign	ing	of		
sensor syste	ems using LabView.							
Expected Course	Outcome:							
I. Understand	the basics of various bus topology and computer interfaci	ng .	• ,•		1			
2. Comprehen	isively analyse signal conditioning, signal conversion, data	acqui	S1t10	n, ar	nd			
3 Utilize Δ/D	-55111 converter in various applications							
4 Acquainted	with various data acquisition methods and Interface Stand	ards a	nd F	C bi	ises			
5. Integrate ar	ad program various distributed and stand-alone Loggers.	uius u		000				
6. Explore by	experimenting Virtual instrumentation for testing, control	and d	esig	ning	of			
sensor syste	ems using LabView.							
Module:1 Fund	amentals of Data Acquisition			4	hou	ars		
Essentials of comp	uter interfacing –configuration and structure –interface sys	tems-	Inter	face	bus	•		
M LL 2 D				0	1. 1.			
Niodule:2 Desig	gn of Signal Conditioning Circuit	. +	mitt	9	not	ars		
$\frac{1}{1000}$ Signal amplifiers, a distributed $\frac{1}{1000}$ - bi	analog inters, digital and pulse train conditioning, two-wir gh speed digital transmitter noise reduction and isolation	etrans	mu	er, a	na			
	gir speed digital transmitter, noise reduction and isolation							
Module:3 A/D h	ooards			7	' hoi	urs		
	ition bounds percentation optime and the second sec			1£0				
Plug-in data acquis	sition boards- parameter setting- programmable gain array	- men	hory	burr	er- t	JUS		
interrace. Sampling	g strategies for multi-channel analog inputs- speed vs thro	ignpu						
	•			_				
Module:4 D/A t	boards	1.0	1	7	<u>ho</u>	ars		
D/A boards-parameter setting - memory buffer- timing circuitry-output amplifier buffer- bus								
interface, Digital I/O boards. Counter-timer I/O boards-waveform generation-measuring pulse width and frequency								
width and frequency.								
Module:5 Inter	face Standards and PC buses			5	ho	urs		
RS232, RS422, RS	5485, GPIB, USB, Firewire; Backplane buses - PCI. PCI	Expre	ess, l	PXI.	PX	I —		
Express, VME, VX	XI; Ethernet –TCP/IP protocols.	I	,	,				

Mo	dule:6	Distributed and Stand-alone Loggers			4 hours		
Pro	grammir	ng and logging data using PCMCIA cards- stand-a	alone operation	n- direc	et and remote		
connection to host PC - power management circuitry- Host software- data loggers Vs internal							
sys	tems						
			1				
Mo	dule:7	Virtual Instrumentation			7 hours		
Vir	tual insti	rument and traditional instrument, Hardware and so	oftware for vir	tual ins	strumentation,		
Vir	tual inst	rumentation for test, control, and design, Graphi	cal system de	sign, C	Graphical and		
text	tual prog	ramming.					
Ма	d.l.o	Contomporentizguage			2 h anna		
IVIO	aule:8	Contemporary issues:			2 nours		
		Total Lecture hours.	45 hours				
		Total Lecture nours.	4 5 Hours				
То	zt Rook(g)					
1	Ramon	Pallas-Areny and John G Webster Sensors and S	Signal Condition	ning	$2012 \ 2^{nd} ed$		
1	Wilev I	India Pvt. Ltd.		Jiiing,	2012, 2 cu.,		
2.	John P	ark and Steve Mackay, Practical Data acquisition	for Instrume	itation	and Control.		
	2011, 1	st ed., Newness publishers, Oxford, UK.					
Ref	ference I	Books					
1.	Mauriz	io Di Paolo Emilio, Data Acquisition systems- from	n fundamental	s to Ap	plied Design,		
	2013, 1	st ed., Springer, New York.		_			
2.	Robert	H King, Introduction to Data Acquisition with Lab	VIEW, 2012, 2	nd ed., 1	McGraw Hill,		
	New Y	ork.					
Mo	de of Ev	aluation: CAT / Assignment / Quiz / FAT / Project /	/ Seminar				
Lis	t of Cha	llenging Experiments (Indicative)					
1.	Design	of differential amplifier and instrumentation amplif	ier:	4	4 hours		
	Build a	a sensor bridge circuit using Multisim, having 1	$k\Omega$ elements	and			
	sensitiv	ity of 10mV/V with 5V excitation circuit.					
	At full	scale, sensors in the bridge exhibit 1% change in	resistance val	ue.			
	Design	the following amplifier circuits so that the full sc	cale output of	he			
	amplifi	er is 5V.					
	1) Singl	e op amp differential amplifier.					
	11) Thre	e op amp instrumentation amplifier.	11				
2	Simula	the the above circuits to measure the voltage at its ful	n scale.		1		
2.	Design	or signal conditioning circuit for KID:	onvort 0° C to	on ^ا	nours		
	C into	a KTD based temperature measurement circuit to c $0.5V$ Error should not exceed $\pm 1.°C$. The error		oU the			
	followi	$\mathbf{U} = \mathbf{J}\mathbf{v}$. Effor should not exceed ± 1 U. The grad specifications: RRTD at 0° C is 1000 and temps	ven KID nas	uic			
	of resis	tance a is $0.004 \Omega/$ °C. Build the circuit in Multisim	and simulate it	лю			
3	Buildin	g temperature measurement system using NI Flyis.		Δ	hours		
5.	Design	a thermocouple based temperature measurement ci	rcuit to conver	t 0 '	110015		
	C to 50	$^{\circ}$ C into 0- 5V. If the temperature exceeds 60 $^{\circ}$ C	then a LED al	arm			
	should	glow. Build the circuit using NI ELVIS board. Tes	st the performa	nce			
	of the c	ircuit.	r				
4.	Design	of cold junction compensation while using a thermo-	ocouple:	4	hours		
	A K ty	be thermocouple is to be used in the measurement s	ystem which n	nust			

5.	5. Programming with LabVIEW: Signal acquisition and generation: Create a simple VI that simulates an analog signal and plots it on a waveform graph. The VI will give user control of the frequency and amplitude of this wave. Configure the following DAQ cards: i) NI ELVIS, ii) myDAQ and iii) cDAQ to generate the signal simulated by the simple VI. Also configure the DAQ cards to acquire the generated signal and display it on waveform graph.					
6.	6. Measuring strain, temperature, pressure (various physical parameters) using LabVIEW:					
7.	 7. Design of LabVIEW system using Hall effect sensor: a) Using NI ELVIS tools study the properties of Hall-effect sensor. b) Build a simple gauss-meter and a position measurement system using a linear Hall-effect sensor. Plot the Hall voltage versus distance using the data measured. b) Using NI ELVIS tools study the properties of LDR. b) Build a simple LED light intensity controller, i.e switching on and off LED lights using LDR as a sensor. When there is light available the LED should be off but at night it should be on. c) LabVIEW interface for ultrasonic based distance measurement. 					
			Total Lab	oratory Hours	30 hours	
Mo	de of assessment: Continuous Asses	sment and FAT				
Recommended by Board of Studies 21-08-2017						
App	proved by Academic Council	No. 47	Date	05-10-2017		

Course code Course title L T P J								
ECE5003	CONTROL SYSTEMS	1 0 4 4 4						
Pre-requisite	Nil	Syllabus version						
		1.0						
Course Objectives	5:							
1. Introduce the	he students to the techniques for solving complex c	ontrol problems and expose						
them to the	them to the analysis of system response for standard test inputs and understanding its							
behavior.								
2. Impart the design knowledge of compensators for adjusting the system performance using time domain analysis methods and to varify the system stability using time and forgunary								
time domain analysis methods and to verify the system stability using time and frequency								
aomain ana	students to develop the three term controllers (P	ID) based on the sustemar						
5. Expose the	be discrete control algorithms and the development	of suitable digital controller						
for correcti	we action	of suitable digital controller						
4 Expose the	importance of PLC in automatic control action in th	e real time applications						
	importance of The in automatic control action in th	e reur time appreations.						
Expected Course	Outcome:							
1. Realize the	need of control system and its recent developments	s. Able to model the system						
and simulat	e the model.	2						
2. Analyze the	e behavior of the first and second order systems in	time domain and frequency						
domain.								
3. Analyze the	e system stability based on time domain, frequency of	lomain and root locus						
techniques.								
4. Design suit	table compensators for the real world systems bas	sed on the customer						
requiremen	ts.							
5. Indentify th	ne need for incorporating the three term controlle	r based on the customized						
requiremen	t of the control action							
6. Analyze the	e systems behavior in digital domain and develop c	ligital control algorithm for						
The correcti	ve action.	world problems						
7. Competence	y in utilizing the PLCs in control actions for the real	world problems.						
Module:1 Intro	duction to Control System	1 hour						
Control system co	nfiguration – open loop closed loop analysis and	1 design objectives: design						
process LabVIEW	and MATLAB/Simulink for control system design	and simulation						
	and WATEAD/Shindhink for control system design							
Module: 2 Time	Domain Analysis and Design	2 hours						
First order Second	order control system response for step, ramp and it	nnulse inputs characteristic						
equation -Poles and	d Zeroes concept- stability and Routh criterion	npuise inputs. enaracteristic						
equation roles and								
Module:3 Root	Module:3 Root Locus Techniques 2 hours							
Review of root loc	us construction – Lead/ Lag compensator design usi	ng root locus.						
		8						
Module:4 Frequ	iency Response Techniques	2 hours						
Bode plots and stal	bility- gain and phase margins- Lead/ Lag compensa	tor design using Bode						
plots.								
Module:5 Three	e-Term Controllers	2 hours						
P, PI, PD, PID Co	ontroller- Basic control action - Effects of Derivativ	e, Integral control actions-						

Design of P, PI, PID controllers - Tunable PID Controllers - Ziegler - Nichols M	Methods for
Controller Tuning.	

Module:6 Introduction to Digital Control System	2 hours
Discrete Time systems, Sampling, time response of discrete of	lata system, characteristics -Jury's
stability test. Pulse transfer function, Digital PID controller	

Module:7Programmable Logic Controller3 hoursEvolution of PLC – Sequential and Programmable controllers – Architecture – Programming of
PLC – Relay logic and Ladder logic – Functional blocks – Communication Networks for PLC.

Module:8 Contemporary issues:

	Total Lecture hours:	15 hours	
Text Book(s)		
		4	

- 1 Katsuhiko Ogata, "Modern Control Engineering", 2010, 5th ed., Prentice Hall, New Jersey USA.
- 2. M. Gopal "Modern Control System Theory", 2014, 2nd ed. New Age International, New Delhi, India.

Reference Books

- 1. M. Gopal,"Digital control and state variable methods", 2012, 4th ed., Tata McGraw Hill, USA.
- Webb & Reis, "Programmable Logic Controller Principles and Applications", 2012, 5th ed., PHI, New Delhi, India.
 L. L. Nagrath and M. Canal. "Control Systems Engineering", 2017. 6th Ed. New Appl.
- 3. I. J. Nagrath and M. Gopal, "Control Systems Engineering", 2017, 6th Ed., New Age International (p) Limited. New Delhi, India.

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

List of Challenging Experiments (Indicative)

115	tor Chanenging Experiments (indicative)	
1.	Create an application using LabVIEW control design and simulation module	4 hours
	and the control and simulation loop in order to simulate the Mass-Spring	
	system. The input force increases from 0 to 8N at $t = 1s$. The parameter	
	values are M = 2 kg, K= 16 N/m, and B = 4 N.s/m. Simulate the above	
	response using MATLAB SIMULINK.	
2.	Create a SIMULINK model with a first order system (G(s), with gain, $K = 1$,	4 hours
	and time constant, $T = 0.1$ sec. Input to the system is $u(t)$ and the output is	
	v(t). Simulate a square wave input with unit amplitude and frequency of 0.3	
	Hz. The sample time is 0.001 sec. For the closed loop unity feedback	
	system, view the reference position $xr(t)$, input $u(t)$, and actual position, $x(t)$,	
	through a scope. x(t) is the output from the integrator that follows by the	
	G(s). Experiment with different values of Kp and observe how the system	
	response changes.	
3.	a) Using MATLAB, obtain the unit-ramp response of the closed-loop	4 hours
	control system whose closed-loop transfer function is given as:	
	$\frac{C(s)}{1-s} = \frac{(s+10)}{1-s-1-s-1}$ Also, obtain the response of this system when the input is	
	$R(s) = s^{3} + 6s^{2} + 9s + 10$ siven by $r(t) = s^{-0.5t}$	
	given by: $I(t) = e^{-t}$.	
	b) Using MATLAB, obtain the unit-step response, unit-ramp response, and	

2 hours

-		
	unit impulse response of the system defined as $\frac{C(s)}{R(s)} = \frac{10}{s^2 + 2s + 10}$. Where R(s)	
	and C(s) are Laplace transform of the input r (t) and output c(t) respectively	
4.	a) The design of a turning control for a tracked vehicle, the open loop	4 hours
	transfer function of power train and vehicle is $\frac{C(s)}{R(s)} = \frac{R}{s(s+5)(s+3)}$. The	
	controller $Gc(s) = \frac{s+a}{s+1}$ is used for the closed loop unity feedback control.	
	The parameters K and a affect the performance of the system including its	
	stability. Determine under what conditions(i.e values of a and k) closed loop	
	system is internally stable. In Matlab plot a Vs K (for K>0) that divides the regions of stability and instability and indicate which is the stable region	
	b) Given a plant described by the transfer function $Gp(s) = \frac{k}{k}$	
	b) Given a plant described by the transfer function $Op(s) = \frac{1}{s(s+5)(s+3)}$, a	
	shows the following properties: Peak over shoot 16% and Rise time 0.6s.	
5.	Consider an open-loop system which has a transfer function of (s) $(s+7)$	4 hours
	$=\frac{1}{s(s+5)(s+15)(s+20)}$ Design a proportional controller using Root locus to give	
	a closed loop unit step response of 5% overshoot with 1 sec rise time.	
6	a) A unity feedback system has the following transfer function $G(s)$	6 hours
0.	$\frac{1}{1}$ Design a lead compensator using Root locus method where the	0 110 01 0
	s(s+4)(s+6) being in a reduced by a factor of 2 while maintaining the pack	
	overshoot at 30%	
	b) A unity feedback system has the following transfer function $G(s)$	
	$\overline{(s+1)(s+2)(s+10)}$ Using Root locus method, design a lag compensator to	
	improve the steady state error by a factor of 10 if the system is operating	
	with a damping ratio of 0.174	
7.	A unity feedback system has open loop transfer function $G(s) \xrightarrow{4}$ It is	6 hours
	desired that dominant closed loop poles provide damping ratio=0.5 and have	
	an un-damped natural frequency=4rad/sec. Velocity error constant is	
	required to be greater than 4. a) Verify that only gain adjustment cannot	
	to meet the objectives, c) Using GUI determine the peak overshoot and	
	settling time of the lead-compensated system.	
	A unity feedback system has open loop transfer function G(s)	4 hours
	$\frac{0.76}{0.00147s^2 + 0.01455s + 1}$. Simulate its step response. Using a PD or PI controller,	
	get the settling time to less than 0.5 sec (approx. 0.1 sec) while keeping the 0.05 lessen them 100 . Lustify your design in the respect	
	%OS lesser man 10%. Justify your design in the report.	4 hours
	a)A unity recuback system has open loop transfer function $O(s) \frac{1}{s(s+4)}$ Design a lead companyator using Pode Plot Method such that the value its	i nouis
	error constant Ky = 20 sec ⁻¹ . Phase Margin PM = 50° . Gain Margin GM >	
	10.	
	a) Interface the DC motor add on board with NI ELVIS. Build a VI to apply	6 hours
	a step input (voltage) to the motor and record the response (angular velocity	

ω). Identify the transfer function of the motor $G(s) = \frac{K}{ts+1}$, where K is the	
steady state gain (rad/V-s) and τ is the time constant in s. Run the model simulation in parallel with the actual system to allow for model tuning and validation.	
b) Design a PI controller for the DC motor according to the desired specifications. Calculate the expected peak time tp and percent overshoot PO given the following design specifications: $\xi = 0.75$ and $\omega = 16$ rad/sec. Calculate the proportional and integral control gains kp and ki , respectively, according to the design specifications. Build a VI to implement the PI controller for the DC motor speed control.	
c) Build a VI to implement a PD controller for the DC motor position control. Design the proportional and derivative control gains Kp and KD to meet the following specifications: $\xi = 0.6$ and $\omega = 25$ rad/sec.	
a) Interface the HVAC add-on board with NI ELVIS. Build a VI to apply on-off voltage to the open loop HVAC system and record the temperature response of the system. Identify the transfer function of the system using the response: $G(s) = \frac{\kappa v}{s}$ where Kv is the slope of the open loop system response.	6 hours
b) Design an on-off control or relay feedback to switch on the heater when the temperature is lower than the desired value (50°C), and to switched off the heater when the temperature is higher than the desired value. To avoid rapid switching introduce a hysteresis (0.25°C) in the relay switch. Build a VI to implement the on-off control.	
c) Build a VI to implement PI controller for the closed loop temperature control in HVAC system to meet the following specifications: $\xi = 0.5$ and $\omega=0.125$ rad/sec.	
Interface the Rotary pendulum add-on board with NI ELVIS. Build a VI to run the DC motor connected to the pendulum arm in open loop and measure the DC motor voltage and the corresponding pendulum arm and link angles to derive the state space model. Based on this model design a controller to balance the pendulum in its upright position using Linear Quadratic Regulator (LQR) optimization technique.	4 hours
a) Interface the Vertical Take Off and Landing add-on board with NI ELVIS. Derive from first principles the equation of motion to obtain the transfer function representing the current to position. Build a VI to apply a current to the propeller actuator (DC fan) to lift the arm. Identify the current required to bring the VTOL to a horizontal position. Build a VI to apply step current to the propeller and record the oscillating response of VTOL and measure the natural frequency.	4 hours
b) Design a PID controller for VTOL to meet the required specifications: peak time 1.25s and peak overshoot of 20%. Implement the controller using	

	LabVIEW.				
			Total Lab	oratory Hours	30 hours
Mo	de of assessment: Continuous Asses	ssment and FAT			
Recommended by Board of Studies 21-08-2017					
Арр	proved by Academic Council	No. 47	Date	05-10-2017	

Course code L T P J C					C	
ECE6001	WIRELESS SENSOR NETWORKS	WIRELESS SENSOR NETWORKS AND IoT			4	3
Prerequisite:	ECE5001 Principles of Sensors		Syllab	us v	ersi	on
				1.0		
Course Objectives	:					
1. To identify	and expose the students to the central element	nts in the design	of com	mun	icati	ion
protocols fo	or the WSNs.					
2. To dissem	inate the design knowledge in analyzin	g the specific	require	emer	nts	for
applications	s in WSNs regarding energy supply, mem	ory, processing,	, and tr	ansr	niss	ion
capacity	and the second sec					
3. To get the	perception of mobile ad noc networks, de	esign, implement	itation 1	ISSUE	es, e	ina
solutions da	ased on different algorithms and protocols in	or power manag	ement,	sens	or a	ala
	query processing.	oworks used to	o rooliz	o di	unor	nio
4. 10 associa Wireless se	ne, natuwale platforms and softwale fram	leworks used to	o realiz	e u	ynai	me
vv 1101085 80	lisoi network					
Expected Course (Outcome					
1. Assess the	applicability and limitations of communicati	on protocols for	r a real	time	W	SN
application.	approaching and miniations of communication	ion protocolo io	i u ioui	unne		511
2. Confirms t	he behavior of mobile ad hoc networks (M	ANETs) and co	orrelates	the		
infrastructu	re-based networks					
3. Proactive in	understating the routing protocols function	and their implica	ations of	n dat	a	
transmissio	n delay and bandwidth	1				
4. Able to est	tablish networks with an attempt to reduce	issue of broad	lcast an	d fl	oodi	ing
techniques.	-					U
5. Contribute	appropriate algorithms to improve existing	or to develop no	ew wire	less	sen	sor
network app	plications.					
6. Familiarize	the protocol, design requirements, suitable a	algorithms, and	the state	e-of-	the-	art
cloud platfo	orm to meet the industrial requirement.					
7. On a profo	und level to implement hardware & softwar	re for wireless s	sensor n	etwo	orks	in
day to day l	ife					
Madulat Natur	and for ambaddad systems				ha	
DC222 DC495 CD	Drk for embedded systems			4	no	urs
K5252, K5465, 5P	I, I2C, CAN, LIN, FLEARAT.					
Module 2 Embe	dded wireless communication			Δ	ho	urs
Bluetooth Zigbee	Wifi UWB				nu	ui 5
Didetootii, Zigoee,						
Module:3 Wirel	ess sensor network (WSN)			4	ho	urs
Characteristic and	challenges. WSN vs Adhoc Networks. Sense	or node architect	ure. Phy	vsica	l la	ver
and transceiver de	esign considerations in WSNs, Energy usa	ge profile, Choi	ce of n	nodu	lati	on
scheme, Dynamic modulation scaling, Antenna considerations.						
Module:4WSN (Medium access control)5 hours						urs
Fundamentals of M	AC protocols - Low duty cycle protocols	and wakeup cor	ncepts,	Con	tenti	ion
Based protocols, S	chedule-based protocols - SMAC - BMAC	, Traffic-adapti	ve med	ium	acc	ess
protocol (TRAMA)), The IEEE 802.15.4 MAC protocol.					

Mo	dule:5 Sensor Network Architecture		5 hours		
Data Dissemination, Flooding and Gossiping-Data gathering Sensor Network Scenari					
Opt	timization Goals and Figures of Merit, Design Principles for	or WSNs- Gate	way Concepts, Need		
for	gateway, WSN and Internet Communication, WSN Tunneli	ng	5 1 /		
		0			
Мо	dule:6 IP based WSN		4 hours		
Cir	cuit switching packet switching concept of IPV4 IPV6 6	LOWPAN and	IP. IP based WSN.		
6LC	OWPAN based WSN. IOT				
Mo	dule:7 Tiny OS		2 hours		
Tin	v OS for WSN and IOT M2M communication Alliovn net	work			
1 111		work			
Мо	dule:8 Contemporary issues:		2 hours		
IVIO	duit.8 Contemporary issues.		2 11001 5		
		20 1			
	Total Lecture nours:	30 nours			
Tex	xt Book(s)				
1	Holger Karl, Andreas Willig, "Protocols and Architectur	es for Wireles	s Sensor Networks"		
	2011, 1 st ed., John Wiley & Sons, New Jersey.				
2.	Jun Zheng, Abbas Jamalipour, "Wireless Sensor Netwo 2014, 1 st ed., Wiley-IEEE Press, USA.	orks: A Netwo	orking Perspective",		
Ref	ference Books				
1.	Waltenegus W. Dargie, Christian Poellabauer, "Fundamer	ntals of Wirele	ss Sensor Networks:		
	Theory and Practice", 2014, 1 st ed., John Wiley & Sons, No	ew Jersev.			
2	Ian F. Akvildiz, Mehmet Can Vuran, "Wireless Sensor N	etworks" 2011	1 st ed. John Wiley		
	& Sons. New Jersev.	, 2011	, 1 °°°, °°°, °°°, °°°,		
3	Zach Shelby Carsten Bormann "6LoWPAN: The Wirel	less Embedded	Internet", 2009, 1 st		
	ed., John Wiley & Sons, New Jersey.		,,,		
Mo	de of Evaluation: CAT / Assignment / Ouiz / FAT / Project	/ Seminar			
1110					
Lis	t of Challenging Experiments (Indicative)				
1.	1. Smart door locks offer sophisticated "access control" fea	atures to any ho	ome		
	or business. Proximity sensors like Bluetooth and NFC ca	n enable a doo	or to		
	unlock whenever an authorized user's smartphone appro	baches. Users	can		
	also remotely lock and unlock the door, or share access w	ith any numbe	r of		
	others, using mobile apps. Keeping the above design para	meters implen	nent		
	a Smart locks for apartment's security using IoT principle.	Ĩ			
2.	2. The refrigerator is the most frequently used domiciliary	/kitchen electr	ical		
	appliance all over the world for food storage. Im	plement a Sr	nart		
	refrigeration module designed to convert any existing normal refrigerator				
	into a smart and low-cost machine using sensors Smart refrigerator				
	compares the status of the food for e g weight quanti	ty etc. The or	nart		
	refrigerator must also able be remotely controlled and not	fies the user of	out		
	scarce products via wifi module (internet) on user'	mobile and	roid		
	scale products via will module (internet) on users	dy indication			
	application. Add functionality which includes the ice fead	by malcation,			
2	power saving, smen detection, overweignling etc.	the meduation	. of		
3.	5. water has become a scarce resource and is crucial to	the production	1 01		
	100d. Therefore, design and implement a wireless sensor n	letwork to man	age		

	and conserve this vital resource. F development of three sensor nodes display and store the status of the web server.	Part of the system s to monitor soil r water content and	includes t noisture. A also to be	he design and an interface to uploaded to a	
4.	4. Design and provide necessary dissemination, feedback module network programming module ar different sensor nodes.	modules and ser , data logging and time synchron	vice, such and collec ization ser	as command ction module, vice between	
5.	 5. WSN has a variety of services based on sensor network architecture. Common issues such as network bandwidth reduction, collision occurrence and performance deterioration due to the broadcasting of message in large- scale networks have become main challenges. To overcome these issues implement routing algorithm based on data-centric routing and address- based routing schemes, by which the query messages are delivered to the target area by using address-based routing scheme, then, the broadcast scheme 				
	30 hours				
Mo	Mode of assessment: Continuous Assessment and FAT				
Rec	commended by Board of Studies	21-08-2017			
App	proved by Academic Council	No. 47	Date	05-10-2017	

Course code	Course title	L	Τ	Р	J	C	
ECE6002	MICROCONTROLLERS AND EMBEDDED SENSORS	2	0	2	4	4	
Pre-requisite	Nil	Sy	lla	bus v	ersi	on	
				1.0			
Course Object	ves:						
1. Introduc	e low power microcontrollers and to develop the skill set of pro-	grar	nm	ing lo	W		
power se	ensing applications.			•			
2. Impart t	he knowledge of various peripheral related to sensing and comm	uni	cati	ion us	sing		
wired or	wireless means.						
3. Upgrade	the students by introducing them Advanced ARM Cortex micro	ocor	itro	llers			
4. Develop	the skill set of students capture various kinds of sensor and pres	sent	the	e outp	ut ir	1	
J2ME ap	oplications						
Expected Cour	se Outcome:						
1. Design a	and develop embedded programs for low power microcontrolle	ers f	or s	senso	r		
applicati	ons.						
2. Develop	ARM basic and advanced programs.						
3. Interface	e and deploy analog sensors						
4. Interface	e digital sensors						
5. Interface	e Bio medical sensors and develop logging systems						
6. Develop	communication system with sensor units						
7. Present	the data to real world using displays and actuators						
Module:1 1e	xas MSP430				• ho i	urs	
Architecture of	the MSP430, Memory, Addressing modes, Reflections on the C	CPU	1ns	struct	ion s	set.	
Clock system,	Exceptions: Interrupts and resets. Functions and subroutin	es,	M1	xing	Ca	and	
assembly langu	lage, Interrupts, Interrupt service routines, Issues associated wi	th 1	ntei	rrupts	, L0	W-	
power modes o	i operation.						
Module ? A	RM Cortex MX microcontroller			-	ho	ire	
APM Cortex M	[4: Assembly language basics. Thumb 2 Technology. APM Inst	ruc	tion	n cot	Cor	tov	
MA architecture	advantages peripherals instruction set floating point one	rati	000	Δd	vanc	red	
Cortex MX Mic	rocontroller core architecture on-chip wi-fi	au	ons	, лu	vanc	Cu	
Module:3 A	nalog sensors interfacing			4	ho	urs	
Analog sensor	for Temperature, pressure, moisture, accelerometers, inclinon	nete	rs.	gyros	scop	es.	
flex, color, light	, Principle of data acquisition, programming ADC and sensor in	terf	ace	8,	···r	-~,	
Module:4 D	igital Sensors interfacing			4	ho	urs	
Digital sensor	for Temperature pressure moisture accelerometers inclinon	iete	rc	avro	scon	65	
flex color light Programming Timers frequency counters DWM generation demodulation							
Module:5 Multi channel signal acquisition and logging 4 hours							
Multichannel	ADC, sample rate generation, data logging, interfacing SD ca	urd,	mu	ilti cl	nann	el	
data logging:	bio medical signal acquisition, real time, clock, reading writ	ıng	GF	'S &	GS	M	
controller							

Mo	dule:6 Communication modules	2 hours
Per	ipheral programming SPI, I2C, UART, Zigbee controller.	
Mo	dule:7 Output devices	2 hours
GP.	IO, LCD display, graphical display, relays.	
Мо	dula ? Contamporary issues:	2 hours
IVIO	dule:8 Contemporary issues.	2 110015
	Total Lecture hours: 30 hours	
Tex	xt Book(s)	
1.	John H. Davies, "MSP430 Microcontroller Basics", 2011, 2 nd ed., Newne	s publishing, New
	York.	
2.	Jacob Fraden, "Hand Book of Modern Sensors: physics, Designs and App	lications", 2014, 4 th
	ed., Springer, New York.	
Rei	ference Books	2011 1 st 1 IEC 4
1.	Sergey Y. Yurish, "Digital Sensors and Sensor Systems: Practical Design" publishing New York	$, 2011, 1^{\circ}$ ed., IFSA
2	Jonathan W Valvano, "Introduction to ARM Cortex –M3 Microcontrol	llers", 2012, 5 th ed.,
_	Create Space publishing, New York.	
3	Muhammad Ali Mazidi, Shujen Chen, Sarmad Naimi, Sepehr Naimi, "T	I ARM Peripherals
	Programming and Interfacing: Using C Language", 2015, 2 nd ed., Mazi	di and Naimi
	publishing, New York.	
Mo	de of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar	
Lis	t of Challenging Experiments (Indicative)	
1.	Analog Sensor interface with microcontroller	4 hours
	 Sub Task 1: Port programming of MSP430 microcontrollers 	
	 Sub Task 2: Analog to Digital Conversion using MSP430 	
	microcontroller	
2	• Sub Task 3: LCD display of characters and numbers.	/ h anns
2.	Sub Task 1: Timer programming of MSP430 microcontroller	4 nours
	 Sub Task 7: PWM generation demodulation 	
	 Sub Task 2: Frequency counting 	
3.	Low powerWireless transmission using Zigbee	4 hours
	• Sub Task 1 : Interfacing Zigbee controller with MSP 430	
	microcontroller using SPI/UART.	
	• Sub Task 2: Programming sleep and wake up mode of MSP 430.	
4.	Ottline Data loggers	4 hours
	 Sub Task 1: Sampling and recording medical signals (ARM). Sub Task 2: ID configuration of concorrected 	
	 Sub Task 2: IP configuration of remote ID for conding and receiving 	
	• Sub Task 5. configuration of remote in for sending and receiving data to and from sensor node	
5	Analog Sensor interface with microcontroller	4 hours
5.	• Sub Task 1: Port programming of MSP430 microcontrollers	- nouis
	• Sub Task 2: Analog to Digital Conversion using MSP430	

 microcontroller Sub Task 3: LCD display of characters and numbers. 						
	Total Laboratory Hours					30 hours
Mode of assessment: Continuous Assessment and FAT						
Recommended by Board of Studies 21-08-2017						
Ap	proved	by Academic Council	No. 47	Date	05-10-2017	

Course code	Course title		L T P J C
CSE5009	SOFT COMPUTING		3 0 0 0 3
Prerequisite:	Nil		Syllabus version
			1.0
Course Objectives	S:		
1. To introduc	the fundamental theory and concepts of o	computational in	telligence methods
and provide	e a comprehensive foundation to artificial ne	ural networks, ne	euro-modeling, and
their applic	ations to pattern recognition.		
2. To explore	the learning paradigms of supervised and un	supervised neura	l networks.
3. To provide	a comprehensive knowledge on fuzzy logi	c inference, and	its applications in
solving engli	the students to the concents of biological	w inspired meth	adalagias such as
4. 10 expose	volutionary computing paradigm (genetic	algorithm) and	its application to
genetics, e	n problems	algorithin) and	its application to
optimizatio	n problems.		
Expected Course	Outcome:		
1 Understand	the differences between networks for superv	vised and unsupe	rvised learning
2. Conceptual	ize and parameterize various problems to	be solved through	gh basic soft
computing	techniques		
3. Develop an	d train neural networks for classification, sto	rage, regression	and clustering.
4. Comprehen	d the fuzzy logic and the concept of fuzzine	ss involved in v	arious systems and
fuzzy set th	eory.		·
5. Understand	the concepts of fuzzy sets, knowledge repr	esentation using	fuzzy rules,
approximat	e reasoning, fuzzy inference systems, and fu	zzy logic	
6. Describe th	e flow of a genetic algorithm and identif	y its elements a	and design genetic
algorithms	for single and multiple objective optimizatio	n	
Module 1 Artifi	cial Naural Natworks		5 hours
Soft computing vs	hard computing types and applications of s	oft computing te	chniques Artificial
neural networks an	d their biological motivation – Terminology	v = Models of ne	-uron -Topology -
characteristics of a	artificial neural networks – types of activation	tion functions-le	earning methods –
error correction lea	rning – Hebbian learning. Linear separabilit	v and XOR prob	lem
		, unu mont proc	
Module:2 Super	vised Learning Networks		6 hours
Discrete and conti	nuous Perceptron, adaline, multilayer Perce	otron, Back Prop	bagation algorithm,
limitations and imp	provements		0 0 1
Module:3 Assoc	iative Memory Networks		6 hours
Autoassociation, he	eteroassociation, recall and cross talk-Linear	auto associator -	- Bi-directional
associative memory	y – Hopfield neural network		
			_
Module:4 Unsu	pervised Learning Networks		6 hours
Neural Nets based	l on competition-Max net – Mexican Hat	– Hamming ne	et - Kohonen Self
organizing Feature	e Map – Counter propagation – Learning	g Vector Quant	ization Adaptive
Resonance Theory			
Module:5 Fuzzy	V Sets and Fuzzy Relations		5 hours

Introduction –classical sets and fuzzy sets –classical relations and fuzzy relations –membership functions –fuzzy to crisp conversion, Fuzzy numbers, vectors, and extension principle

Module:6 Fuzzy Logic System

Fuzzy Logic, Fuzzy knowledge and rule based system, fuzzy decision making –fuzzy logic modeling and control.

Module:7 Genetic Algorithm

Basic concepts, encoding, fitness function, reproduction, Genetic modeling: Inheritance operator, cross over, inversion & deletion, mutation operator, Bitwise operator, Generational Cycle, Convergence of GA, Applications & advances in GA, Differences & similarities between GA & other traditional method

Module:8	Contemporary issues:	2 hours
----------	----------------------	---------

		Total Lecture he	ours:	45 hours		
t Book(s)					
S, Raja	sekaran and G.A. Vijayala	kshmi Pai, "Neur	al Net	works, Fuzzy	Logic & Genetic	
Algorit	hms, Synthesis & application	ons", 2017, 2 nd ed.	, PHI P	ublication, Ne	ew Delhi, India.	
Lauren	Fausett, "Fundamentals	of Neural Netw	orks-A	architectures,	algorithms and	
applica	tions", 2010, 1 st ed., Pearso	n Education Inc.,U	JSA.	,	C	
erence l	Books					
Bishop	, C. , M., Pattern Recognitio	n and Machine Le	arning,	Springer, 201	1	
S.N. Si	vanandam and S.N. Deepa	, "Principles of S	oft Co	mputing", 201	11, 2 nd ed., Wiley	
Publica	tions, United kingdom.	-			-	
Rich E	and Knight K, "Artificial Ir	telligence", 2011	2^{nd} ed	., TMH, New	Delhi,	
de of Ev	aluation: CAT / Assignmen	t / Quiz / FAT / P	oject /	Seminar		
			-			
commend	led by Board of Studies	28.01.2017				
proved b	y Academic Council	No. 47	Date	05-10-20	17	
	t Book(S, Raja Algorit Lauren applica erence I Bishop S.N. Si Publica Rich E de of Ev ommendo	t Book(s) S, Rajasekaran and G.A. Vijayala Algorithms, Synthesis & application Lauren Fausett, "Fundamentals applications", 2010, 1 st ed., Pearson Ference Books Bishop, C. ,M., Pattern Recognition S.N. Sivanandam and S.N. Deepa Publications, United kingdom. Rich E and Knight K, "Artificial Ir de of Evaluation: CAT / Assignmen ommended by Board of Studies proved by Academic Council	Total Lecture ho t Book(s) S, Rajasekaran and G.A. Vijayalakshmi Pai, "Neur Algorithms, Synthesis & applications", 2017, 2 nd ed. Lauren Fausett, "Fundamentals of Neural Netw applications", 2010, 1 st ed., Pearson Education Inc.,U erence Books Bishop, C. ,M., Pattern Recognition and Machine Le S.N. Sivanandam and S.N. Deepa, "Principles of S Publications, United kingdom. Rich E and Knight K, "Artificial Intelligence", 2011, de of Evaluation: CAT / Assignment / Quiz / FAT / Pr ommended by Board of Studies 28.01.2017 proved by Academic Council No. 47	Total Lecture hours: Algorithms, Synthesis & applications", 2017, 2 nd ed., PHI P Lauren Fausett, "Fundamentals of Neural Networks-A applications", 2010, 1 st ed., Pearson Education Inc.,USA. Ference Books Bishop, C. ,M., Pattern Recognition and Machine Learning, S.N. Sivanandam and S.N. Deepa, "Principles of Soft Cor Publications, United kingdom. Rich E and Knight K, "Artificial Intelligence", 2011, 2 nd ed de of Evaluation: CAT / Assignment / Quiz / FAT / Project / ommended by Board of Studies 28.01.2017 proved by Academic Council No. 47	Total Lecture hours:45 hoursAlgorithms, Synthesis & applications", 2017, 2 nd ed., PHI Publication, Networks, Synthesis & applications", 2017, 2 nd ed., PHI Publication, Networks-Architectures, applications", 2010, 1 st ed., Pearson Education Inc.,USA.Bishop, C. ,M., Pattern Recognition and Machine Learning, Springer, 201S.N. Sivanandam and S.N. Deepa, "Principles of Soft Computing", 202Publications, United kingdom.Rich E and Knight K, "Artificial Intelligence", 2011, 2 nd ed., TMH, Newde of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminarommended by Board of Studies28.01.2017proved by Academic CouncilNo. 47Date05-10-20	

6 hours

8 hours

	Course title		L	T	P	J	С
Course code ECE5004	SOFTWARE FOR EMBEDDED SY	VSTEMS	2	0	2	0	3
Pre-requisite	Nil		2 S	vllat	Dus v	versi	ion
1 1 1 1 1 1 1)			1.1
Course Objectives	:						
1. To introduc	e and train the students in various software u	seful for embed	ded	syst	ems		
2. To impart b	asic understanding of embedded C program	ming for 8 bit m	nicro	o coi	ntrol	ler a	ind
to apply fur	ction pointers and data structures						
3. To introduc	e and train the students in fundamental pytho the shill set of students in IOME applications	on programming					
4. To develop	students to appreciate Embedded OS and ir	torprocess com	2011	icot	ion		
5. To make un	e Contiki OS for sensor devices	tterprocess com	nui	licati	IOII		
0. 10 Introduce							
Expected Course	Outcome:						
1. Program mi	crocontroller for port interface, timer and int	errupt using eml	bed	edd	С		
programmi	ng.						
2. Design data	structures and linked list for sensor applicat	ions					
3. Understand	the software development tools like compile	r libraries make	file	e ma	cros		
assemblers.					m		
4. Program py	thon for fundamental functionalities, graphic	s and signal pro	cess	sing.	То		
understand	RIOS and inter-process communication						
5. Introduction	1 to Contiki tiny OS for sensor applications						
Module:1 Embe	dded Programming				4	ho	urs
C and Assembly.	Programming Style, Declarations and Ex	pressions. Arra	VS.	Oua	alifie	ers a	and
Reading Numbers	Decision and Control Statements, Prog	ramming Proce	ess.	Mo	ore (Cont	trol
Statements, Variab	le Scope and Functions, C Pre-processor,	Advanced Types	s, Ś	impl	le Po	ointe	ers,
Debugging and Op	timization, In-line Assembly	V 1	,	1			
Module:2 C Pro	gramming Tool chain in Linux				4	ho	urs
C preprocessor, St	ages of Compilation, Introduction to GCC,	Debugging with	h G	DB,	The	Ma	ıke
utility, GNU Confi	gure and Build System, GNU Binary utilitie	s, Profiling, usir	ng g	prof	, Me	emoi	ſY
Leak Detection wit	n valgrind - Introduction to GNU C Library						
Module:3 Addir	a Structure to 'C' Code				6	ho	ure
Object oriented pro	ogramming with C Header files for Project	and Port Exam	nlea	M	- etin	σR	eal
time constraints C	reating hardware delays Need for timeout m	echanism Crea	tino		n tin	ie na neor	uts
Creating hardware	timeouts Creating embedded operating sys	stem Basis of a	sir	nnle	eml	hedd	led
OS. Introduction to	sEOS. Using Timer 0 and Timer 1. Portabil	itv issue.	. 511	npre	UIII	Jeac	ieu
Module:4 Time-	Driven Multi-State Architecture and				6	6 ho	urs
Hard	ware						
Multi-State system	s and function sequences: Implementing mu	lti-state (Timed)) sys	stem	. Us	ing	the
Serial Interface: R	S232, The Basic RS-232 Protocol, Asynchr	onous data tran	smi	ssio	n an	d ba	ud
rates, Flow contro	l, Software architecture, Using on-chip UA	ART for RS-232	2 cc	omm	unic	atio	n -
Memory requireme	nts, the serial menu architecture, Examples.	Case study: Intru	ıdeı	r alaı	rm s	yste	m.

Mo	dule:5	Embedded Java				2 hours
Intro	oductior	to Embedded Java and J	2ME, Smart Card	basics, J	Java card tech	nology overview,
Java	a card o	objects, Java card applets,	working with AP	DUs, W	eb Technolog	gy for Embedded
Syst	tems.					
Mo	dule:6	Contiki OS				2 hours
Mot	te types,	Broadcast, unicast, mesh, s	hell, cooja simulate	or.		
Mo	dule:7	Scripting Python				4 hours
Data	a structu	ares, control flow, function	ns, input, output,	scipy, a	rray and matr	ix manipulations,
plot	ting, filt	ering, transforms			-	_
Mo	dule:8	Contemporary issues:				2 hours
			Total Lecture ho	urs: 30) hours	
Tex	t Book(s)				
1	Mark I	utz "Programming Python"	²⁰¹⁰ 4 th Edition	O'Reill	v Media Inc	USA
2	Michae	I Pont "Embedded C" 20	$\frac{11}{11}$ 1 st Edition Do	<u>, O Rein</u> rling Kir	nderslev (India)
2. Ref	erence]	Rooks		ining itti	idensicy (maid).
1	Neil M	athew Richard stones "B	aginning Linux Pr	arammi	ing" 2012 Ath	Edition Wrox
1.	Wilev	Publishing		ogrammi	ing 2012, 4ii	Edition, wrox –
2	Christo	nher Hallinan "Embedded	Linux Primer Δ	Practical	Real-World	Approach" 2011
2	2^{nd} Edi	tion Pearson Education Ind	linux Timer. A	Tactica		Approach , 2011,
3	Stepher	n Kochan "Programming in	C^{**} 2015 4^{th} Edit	ion Sam	s Publishing	
Mo	de of Ev	aluation: CAT / Assignmen	$\frac{1}{1} = \frac{1}{2} = \frac{1}$	niect / Se	eminar	
11100				Sjeet / St	liiiiai	
List	t of Cha	llenging Experiments (Ind	licative)			
1.	Develo	p an embedded software to	o interface a senso	or giving	analog outpu	t 6 hours
	with th	e microcontroller unit and	transmit the sens	or value	e to a persona	1
	comput	ter using serial port.				
2.	Port 1	Raspbian in the raspbe	erry Pi board	and tes	st the Linux	6 hours
	functio	nalities.(gcc, shell program	, file system the I	Delay ge	eneration using	5
	Timer					
3.	Design	and develop a python pro	gram to interface t	the Rasp	berry pi board	l 6 hours
	with a s	sensor giving analog output.	Programming Inte	errupts		
4.	Design	and implement basic e	xercises to deplo	by the	inter process	6 hours
	commu	inication in a OS.				
5.	Design	and develop a software ba	used system to upl	ink the s	sensor value in	n 6 hours
	cloud					
				<u>Total La</u>	boratory Hour	s 30 hours
Mo	de of ass	sessment: Continuous Asses	sment and FAT			
Rec	ommen	ded by Board of Studies	21-08-2017			
App	proved b	y Academic Council	No. 47	Date	05-10-2017	

	Course title		LI	P	J	C	
ECE5006	FLEXIBLE AND WEARABLE SE	NSORS	$\frac{3}{3}$	0	0	3	
Prerequisite:	ECE5001-Principles of Sensors		Sylla	bus v	versi	on	
Course Objection				1.1			
Course Objective	S:			:41	- 4	- 1 -	
1. To provide	the overview of flexible electronics technol	ogy and the iss	ues w	ith m	ateri	ais	
2 To expose	the students for the metarials selection and	nottoming mot	hada	for th	in fi	1	
2. To expose	2. To expose the students for the materials selection and patterning methods for thin mini- electronics development						
3 To describ	To describe the process involved in transforming the flexible electronics from foils to						
textiles and	also the challenges opportunities and the fut	ure of wearable	devic	10111 . 26	lons	10	
4 To expose	the students to the design challenges of weat	able sensors em	nlove	d for	sens	ino	
the physic	al and biological parameters and the proce	ss involved in	the c	onver	sion	of	
conducting	and semiconducting fibers to smart textiles	ss mvorved m	the e		51011	01	
Expected Course	Outcome:						
1. Realize the	technology developments in the flexible elect	tronics technolo	gy.				
2. Ability to i	dentify the suitable materials and its processir	g for the develo	pmen	t of th	in fi	lm	
electronics		-	-				
3. Ability to c	esign the pattern and develop with suitable pa	tterning method	ls.				
4. Realize the	process involved in the transformation of electronic e	ctronics from fo	ils to t	extile	s		
5. Acquire the	e design knowledge for developing wearable	sensors for phy	sical a	nd ch	iemi	cal	
parameters							
6. Gain the c	ompetency in transferring the conducting an	d semiconduction	ng fib	ers to	sma	art	
textiles							
Module:1 Over	view of flexible electronics technology			4	5 հու	urs	
History of flexible	alactropics Materials for flavible electron	Module:1 Overview of flexible electronics technology 5 hours History of flexible electronics Materials for flexible electronics degrees of flexibility					
History of flexible electronics - Materials for flexible electronics: degrees of flexibility,							
substrates, backpla	ne electronics, front plane technologies, enca	ics: degrees of psulation - Fabr	flexit	olility, n tech	nolc	ogy	
substrates, backpla for flexible electro	ne electronics - Waternals for nextble electron ne electronics, front plane technologies, enca nics - Fabrication on sheets by batch processi	ics: degrees of psulation - Fabr ng, fabrication	flexit ication	olility, n tech b by I	nolc Roll-	ogy to-	
substrates, backpla for flexible electro Roll processing - A	ne electronics - Waterials for flexible electron ne electronics, front plane technologies, enca nics - Fabrication on sheets by batch processi additive printing.	ics: degrees of psulation - Fabr ng, fabrication	flexib ication	blility, n tech b by I	nolc Roll-	ogy to-	
substrates, backpla for flexible electro Roll processing - A	ne electronics - Waterials for flexible electron ne electronics, front plane technologies, enca nics - Fabrication on sheets by batch processi additive printing.	ics: degrees of psulation - Fabr ng, fabrication o	flexib ication on we	blility, n tech b by F	nolc Roll-	ogy to-	
substrates, backpla for flexible electro Roll processing - A Module:2 Amo	rephous and nano-crystalline silicon	ics: degrees of psulation - Fabr ng, fabrication	flexit ication on we	n tech b by F	nolc Roll- 7 hou	ogy to- urs	
substrates, backpla for flexible electro Roll processing - A Module:2 Amo mate	rephous and nano-crystalline silicon rials and Thin film transistors	ics: degrees of psulation - Fabr ng, fabrication of	flexib ication on wel	olility, n tech b by I	nolc Roll- 7 hou	ogy to- urs	
substrates, backpla for flexible electro Roll processing - A Module:2 Amo mate Fundamental issu	rephous and nano-crystalline silicon rials and Thin film transistors es for low temperature processing - low temperature dielectric	ics: degrees of psulation - Fabr ng, fabrication of mperature amor	flexit ication on wel	and	nolo Roll- 7 hou 1 nar	ogy to- urs no-	
substrates, backpla for flexible electro Roll processing - A Module:2 Amo mate Fundamental issu crystalline silico temperature silico	rephous and nano-crystalline silicon rials and Thin film transistors es for low temperature processing - low tem n - characteristics of low temperature dielectrin n nitride and silicon oxide characteristics -	ics: degrees of psulation - Fabr ng, fabrication mperature amor ic thin film dep	flexit ication on wel	blility, n tech b by H anc anc n - lov	nolc Roll- 7 hou 1 nar	ogy to- urs no-	
substrates, backpla for flexible electro Roll processing - A Module:2 Amo mate Fundamental issu crystalline silico temperature silico	rphous and nano-crystalline silicon rials and Thin film transistors es for low temperature processing - low tem n - characteristics of low temperature dielectrin n nitride and silicon oxide characteristics - e performance - Contacts for the device - Dev	ics: degrees of psulation - Fabr ng, fabrication mperature amor ic thin film dep Device structure	flexit ication on wel phous osition ures a	ance ance and and m	nolc Roll- 7 hou 1 nar v ateri	ogy to- urs no- als	
substrates, backpla for flexible electro Roll processing - A Module:2 Amo mate Fundamental issu crystalline silico temperature silico processing - Devic	rephous and nano-crystalline silicon rials and Thin film transistors es for low temperature processing - low tem n - characteristics of low temperature dielectrin n nitride and silicon oxide characteristics - e performance - Contacts for the device - Dev	ics: degrees of psulation - Fabr ng, fabrication mperature amor to thin film dep Device structu ice stability.	flexit ication on wel phous osition ures a	and n low	7 hor ateri	ogy to- urs no- als	
substrates, backpla for flexible electro Roll processing - A Module:2 Amo mate Fundamental issu crystalline silico temperature silico processing - Devic	rphous and nano-crystalline silicon rials and Thin film transistors es for low temperature processing - low tem n - characteristics of low temperature dielectrin n nitride and silicon oxide characteristics - e performance - Contacts for the device - Dev	ics: degrees of psulation - Fabr ng, fabrication of mperature amor ic thin film dep Device structu ice stability.	flexit ication on wel phous osition ures a	anc anc n - lov	7 hor ateri	ogy to- urs no- als	
substrates, backpla for flexible electro Roll processing - A Module:2 Amo mate Fundamental issu crystalline silico temperature silico processing - Devic Module:3 Mate flexit	rials and Novel patterning methods for ne rials and Novel patterning methods for patterning of the device - Dev rials and Novel patterning methods for le electronics	ics: degrees of psulation - Fabr ng, fabrication mperature amor ic thin film dep Device structu ice stability.	flexit ication on wel phous osition ures a	ance and and and and and	nolc Roll- 7 hou 1 nar v ateri 7 hou	ogy to- urs no- als urs	
substrates, backplafor flexible electroRoll processing - AModule:2AmorModule:2AmorFundamental issucrystallinesilicotemperaturesilicoprocessing - DeviceModule:3MateflexitMaterials consider	rphous and nano-crystalline silicon rials and Thin film transistors es for low temperature processing - low tem n - characteristics of low temperature dielectrin n nitride and silicon oxide characteristics - e performance - Contacts for the device - Dev rials and Novel patterning methods for le electronics ations for flexible electronics: Overview, In	ics: degrees of psulation - Fabr ng, fabrication of mperature amor ic thin film dep Device structu ice stability.	flexition ication on well phous osition ures a	ance ance ance and m	nolc Roll- 7 hou l nar v ateri 7 hou nd	ogy to- urs no- als urs	
substrates, backpla for flexible electro Roll processing - A Module:2 Amo mate Fundamental issu crystalline silico temperature silico processing - Devic Module:3 Mate flexit Materials consider dielectrics, organic	rephous and nano-crystalline silicon rials and Thin film transistors es for low temperature processing - low tem n - characteristics of low temperature dielectrin n nitride and silicon oxide characteristics - e performance - Contacts for the device - Dev rials and Novel patterning methods for le electronics ations for flexible electronics: Overview, In e semiconductors and dielectrics, conductors -	ics: degrees of psulation - Fabr ng, fabrication of mperature amor ic thin film dep Device structu ice stability.	flexition ication on well phous osition ures a onduct g opti	and and and and mors at ons fo	nolc Roll- 7 hou 1 nar v ateri 7 hou nd or	ogy to- urs no- als urs	
substrates, backpla for flexible electro Roll processing - A Module:2 Amo mate Fundamental issu crystalline silico temperature silico processing - Device Module:3 Mate flexit Materials consider dielectrics, organic device fabrication	rephous and nano-crystalline silicon rials and Thin film transistors es for low temperature processing - low tem n - characteristics of low temperature dielectrin n nitride and silicon oxide characteristics - e performance - Contacts for the device - Dev rials and Novel patterning methods for le electronics ations for flexible electronics: Overview, In e semiconductors and dielectrics, conductors - Overview, control of feature sizes of jet pr	ics: degrees of psulation - Fabr ng, fabrication of mperature amor ic thin film dep Device structu- ice stability. organics semico Print processin inted liquids, je	flexit ication on well phous osition ures a onduct g opti t prin	ance ance ance and m ors at ons fetting f	7 hou ateri 7 hou 7 hou 7 hou 7 hou 7 hou 7 hou 7 hou	bgy to- urs no- als urs tch	
substrates, backpla for flexible electro Roll processing - A Module:2 Amo mate Fundamental issu crystalline silico temperature silico processing - Devic Module:3 Mate flexit Materials consider dielectrics, organic device fabrication mask patterning, n	rephous and nano-crystalline silicon rials and Thin film transistors es for low temperature processing - low temperature dielectrin n nitride and silicon oxide characteristics - e performance - Contacts for the device - Dev rials and Novel patterning methods for le electronics ations for flexible electronics: Overview, In esemiconductors and dielectrics, conductors - Overview, control of feature sizes of jet pr methods for minimizing feature size, printing a	ics: degrees of psulation - Fabr ng, fabrication of mperature amor ic thin film dep Device structu ice stability. organics semico Print processin inted liquids, je ctive materials.	flexition ication on well phous osition ures a onduct g opti t prin	ance ance and m ors at ons fet	nolc Roll- 7 hou 1 nan v ateri nd or f hou	ogy to- urs no- als urs tch	
substrates, backpla for flexible electro Roll processing - A Module:2 Amo mate Fundamental issu crystalline silico temperature silico processing - Device Module:3 Mate flexit Materials consider dielectrics, organic device fabrication mask patterning, n	rephous and nano-crystalline silicon rials and Thin film transistors es for low temperature processing - low temperature dielectric n nitride and silicon oxide characteristics - e performance - Contacts for the device - Dev rials and Novel patterning methods for le electronics ations for flexible electronics: Overview, In esemiconductors and dielectrics, conductors - Overview, control of feature sizes of jet pr methods for minimizing feature size, printing a	ics: degrees of psulation - Fabr ng, fabrication of mperature amor ic thin film dep Device structu- ice stability. organics semico Print processin inted liquids, je ctive materials.	flexit ication on well phous osition ures a onduct g opti t prin	and n - low nd m ors at ons fe	nolc Roll- 7 hou 1 nar v aateri 7 hou nd Dr or et	bgy to- urs no- als urs tch	
substrates, backpla for flexible electro Roll processing - A Module:2 Amore Muse mate Fundamental issu crystalline silico temperature silico processing - Device Module:3 Mate Materials consider dielectrics, organice device fabrication mask patterning, n Module:4 Flexite	rphous and nano-crystalline silicon rials and Thin film transistors es for low temperature processing - low tem n - characteristics of low temperature dielectrin n nitride and silicon oxide characteristics - e performance - Contacts for the device - Dev rials and Novel patterning methods for le electronics ations for flexible electronics: Overview, In esemiconductors and dielectrics, conductors - Overview, control of feature sizes of jet pr tethods for minimizing feature size, printing a	ics: degrees of psulation - Fabr ng, fabrication of mperature amor ic thin film dep Device structu- ice stability. organics semico Print processing inted liquids, je ctive materials.	flexition ication on well phous osition ures a onduct g opti t prin	and n live b by F and n - lov nd m ors at ons fe ting f	nolc Roll- 7 hou 1 nar v ateri nd or f hou nd or et	bgy to- urs no- als urs tch	
substrates, backpla for flexible electro Roll processing - A Module:2 Amo mate Fundamental issu crystalline silico temperature silico processing - Devic Module:3 Mate flexit Materials consider dielectrics, organic device fabrication mask patterning, n Module:4 Flexi Introduction -Thin	rephous and nano-crystalline silicon rials and Thin film transistors es for low temperature processing - low temperature dielectric n nitride and silicon oxide characteristics - e performance - Contacts for the device - Dev rials and Novel patterning methods for le electronics ations for flexible electronics: Overview, In esemiconductors and dielectrics, conductors - Overview, control of feature sizes of jet pr methods for minimizing feature size, printing a ble electronics from foils to textiles film transistors: Materials and Technolog	ics: degrees of psulation - Fabr ng, fabrication of mperature amor ic thin film dep Device structu- ice stability. organics semico Print processin inted liquids, je ctive materials.	flexition ication on well phous osition ures a onduct g opti t prin	and and and and and and and and and and	nolc Roll- 7 hou 1 nar v ateri 7 hou ateri 7 hou nd or or ef 5 hou ducto	bgy to- urs no- als urs tch urs ors	

smart textiles - Improvements and limitations.						
Mo	dule:5	Wearable haptics			6 hours	
Wo Cha Cat	orld of we allenges regories o	earables - Attributes of wear and opportunities - Future of wearable haptic and tactil	rables - Textiles a of wearables - Ne e display.	nd clothing ed for we	g: The meta wearable - arable haptic devices -	
Mo	dule:6	Wearable Bio, Chemical	and Inertial sen	sors	6 hours	
Intr -W mo pra	oductior earable i tion sens ctice and	-Systems design - Challeng nertial sensors - obtained pasors - Practical considerati future scope	es in chemical and arameters from in ons for wearable	d biochem ertial sens inertial se	ical sensing - Application areas ors - Applications for wearable ensor - Application in clinical	
Мо	dulo.7	Knittad alastronis taxtila	9		6 hours	
Fro	m fibora	to taxtila sansors. Interlac	od notwork Toxt	ila concorr	o nours	
mo app	nitoring lications	- Biomechanical sensing - I . FBG sensor in Intelligent	Noninvasive swea Clothing and Bion	t monitori	ng by textile sensors and other	
Mo	dule:8	Contemporary issues:			2 hours	
			Total Lecture ho	ours:	45 hours	
Tex	xt Book(s)	Total Lecture ho	ours:	45 hours	
Te 1.	xt Book (Michae	s) I J. McGrath, Cliodhna Ni	Total Lecture ho Scanaill, Dawn N	ours:	45 hours	
Te 1.	xt Book (Michae Wellne Williar	s) I J. McGrath, Cliodhna Ni ss and Environmental Appli	Total Lecture ho Scanaill, Dawn N ications", 201, 1 st	ours:	45 hours nsor Technologies: Healthcare, Apress Media LLC, New York.	
Te 1. 2.	xt Book (Michae Wellne Willian Edition	s) I J. McGrath, Cliodhna Ni ss and Environmental Appli n S. Wong, Alberto Salleo, Springer, New York,	Total Lecture ho Scanaill, Dawn N ications", 201, 1 st Flexible Electron	ours: lafus, "Ser Edition , A ics: Mater	45 hours nsor Technologies: Healthcare, Apress Media LLC, New York. ials and Applications, 2011, 1 st	
Te 1. 2. Re	xt Book (Michae Wellne Willian Edition	s) I J. McGrath, Cliodhna Ni ss and Environmental Appli n S. Wong, Alberto Salleo, , Springer, New York. Books	Total Lecture ho Scanaill, Dawn N ications", 201, 1 st Flexible Electron	ours: lafus, "Ser Edition , A ics: Mater	45 hours nsor Technologies: Healthcare, Apress Media LLC, New York. ials and Applications, 2011, 1 st	
Te 1. 2. Re 1.	xt Book (Michae Wellne Willian Edition ference l Edwarc and Ap	s) I J. McGrath, Cliodhna Ni ss and Environmental Appli n S. Wong, Alberto Salleo, , Springer, New York. Books I Sazonov, Michael R. New plications", 2014, 1 st Editio	Total Lecture ho Scanaill, Dawn N ications", 201, 1 st Flexible Electron man, "Wearable S n, Academic Press	ensors: Fu	45 hours nsor Technologies: Healthcare, Apress Media LLC, New York. ials and Applications, 2011, 1 st indamentals, Implementation lige.	
Te 2 1. 2. Ref 1. 2	xt Book (Michae Wellne Edition ference I Edward and Ap Kate H	s) I J. McGrath, Cliodhna Ni ss and Environmental Appli n S. Wong, Alberto Salleo, , Springer, New York. Books I Sazonov, Michael R. New plications", 2014, 1 st Editio artman, "Make: Wearable ive garments" 2014, 1 st Ed	Total Lecture ho Scanaill, Dawn N ications", 201, 1 st Flexible Electron man, "Wearable S n, Academic Press e Electronics: Do ition Marker Med	ensors: Fuesting, Participation (Constraint)	45 hours nsor Technologies: Healthcare, Apress Media LLC, New York. ials and Applications, 2011, 1 st indamentals, Implementation ge. totype, and wear your own lands	
Tex 1. 2. Ref 1. 2 3	xt Book(Michae Wellne Edition ference I Edwarc and Ap Kate H interact Guozhe Edition	s) I J. McGrath, Cliodhna Ni ss and Environmental Appli n S. Wong, Alberto Salleo, , Springer, New York. Books I Sazonov, Michael R. New plications", 2014, 1 st Edition artman, "Make: Wearable ive garments", 2014, 1 st Ed ive garments", 2014, 1 st Ed world Scientific Publishir	Total Lecture ho Scanaill, Dawn N ications", 201, 1 st Flexible Electron man, "Wearable S n, Academic Press e Electronics: Do ition, Marker Med exible Electronics og Co, Singapore.	afus, "Sen Edition , A ics: Mater ensors: Fu c, Cambrid esign, pro ia, Nether : From M	45 hours nsor Technologies: Healthcare, Apress Media LLC, New York. ials and Applications, 2011, 1 st undamentals, Implementation lge. totype, and wear your own lands. laterials to Devices", 2015, 1 st	
Tex 1. 2. Ref 1. 2 3 4	xt Book(Michae Wellne Willian Edition ference I Edward and Ap Kate H interact Guozhe Edition Yugang From F Techno	s) I J. McGrath, Cliodhna Ni ss and Environmental Appli n S. Wong, Alberto Salleo, , Springer, New York. Books I Sazonov, Michael R. New plications", 2014, 1 st Editio artman, "Make: Wearable ive garments", 2014, 1 st Editio ive garments", 2014, 1 st Editio plications Fan, "Fle , World Scientific Publishing g Sun, John A. Rogers, "Ser Photovoltaics and Electronic logies)", 2011, 1 st Edition, "	Total Lecture ho Scanaill, Dawn N ications", 201, 1 st Flexible Electron man, "Wearable S n, Academic Press e Electronics: Do ition, Marker Med exible Electronics ng Co, Singapore. niconductor Nano cs to Sensors and William Andrew,	Jafus, "Ser Edition , A ics: Mater ensors: Fu c, Cambrid esign, pro ia, Nether : From M materials Energy St New York	45 hours hsor Technologies: Healthcare, Apress Media LLC, New York. ials and Applications, 2011, 1 st indamentals, Implementation ge. totype, and wear your own lands. for Flexible Technologies: torage (Micro and Nano	
Tex 1. 2. Ref 1. 2 3 4 Mo	xt Book(Michae Wellne Willian Edition ference I Edward and Ap Kate H interact Guozhe Edition Yugang From F Techno de of Ev	s) I J. McGrath, Cliodhna Ni ss and Environmental Appli n S. Wong, Alberto Salleo, , Springer, New York. Books I Sazonov, Michael R. New plications", 2014, 1 st Edition artman, "Make: Wearable ive garments", 2014, 1 st Edition ive garments", 2014, 1 st Edition world Scientific Publishing g Sun, John A. Rogers, "Ser Photovoltaics and Electronic logies)", 2011, 1 st Edition, " aluation: CAT / Assignmen	Total Lecture ho Scanaill, Dawn N ications", 201, 1 st Flexible Electron man, "Wearable S n, Academic Press e Electronics: Do ition, Marker Med exible Electronics ng Co, Singapore. niconductor Nano cs to Sensors and William Andrew, t / Quiz / FAT / Pr	Jafus, "Ser Edition , A ics: Mater ensors: Fu c, Cambrid esign, pro ia, Nether : From M materials Energy St New York roject / Ser	45 hours nsor Technologies: Healthcare, Apress Media LLC, New York. ials and Applications, 2011, 1 st indamentals, Implementation ge. totype, and wear your own lands. for Flexible Technologies: torage (Micro and Nano minar	
Tex 1. 2. Ref 1. 2 3 4 Mo Ref	xt Book(Michae Wellne Willian Edition ference I Edward and Ap Kate H interact Guozhe Edition Yuganş From F Technod de of Ev	s) I J. McGrath, Cliodhna Ni ss and Environmental Appli n S. Wong, Alberto Salleo, , Springer, New York. Books I Sazonov, Michael R. New plications", 2014, 1 st Editio artman, "Make: Wearable ive garments", 2014, 1 st Edition artman, "Make: Wearable ive garments", 2014, 1 st Edition (supplications), 2014, 1 st Edition artman, "Make: Wearable ive garments", 2014, 1 st Edition (supplications), 2011, 1 st Edition, " aluation: CAT / Assignmen led by Board of Studies	Total Lecture ho Scanaill, Dawn N ications", 201, 1 st Flexible Electron man, "Wearable S n, Academic Press e Electronics: Do ition, Marker Med exible Electronics ng Co, Singapore. niconductor Nano cs to Sensors and William Andrew, t / Quiz / FAT / Pr 21-08-2017	Jafus, "Ser Edition , A ics: Mater ensors: Fu consors:	45 hours asor Technologies: Healthcare, Apress Media LLC, New York. ials and Applications, 2011, 1 st andamentals, Implementation lge. totype, and wear your own lands. for Flexible Technologies: torage (Micro and Nano minar	

Course code	Course title		L	Т	P	J	С
ECE5007	NANOMATERIALS AND SENSO	DRS	3	0	0	0	3
Prerequisite:	Nil		Sy	llab	ous v	ersi	on
					1.0		
Course Objective	5:						
1. To provide	an insight of nanomaterials and its synthesis a	and to expose	the	stuc	dents	to	the
different m	ethods being used for nanomaterials characteriz	zation.					
2. To educate	the students about the process involved in t	the fabrication	ı of	sei	nsors	usi	ing
metallic na	noparticles and nanowires and the need for us	sing special m	ater	ials	like	CN	Ts
for sensor o	levelopment.						
3. To impart	the knowledge of developing sensors using di	ifferent nano s	struc	ctur	es of	me	etal
oxides and	make the students to understand the developme	ents in the nar	nopo	olyn	ners	and	its
role in sens	ors.						
4. To provide	an insight of quantum dots and its potential app	plication in sen	sor	dev	velop	mer	ıt.
Expected Course	Outcome:						
1. Will acquir	e an insight of nanomaterials and its synthesis.						
2. Able to vis	alize the different methods being used for nano	omaterials char	ract	eriz	ation	l.	
3. Understand	the process involved in the fabrication of sense	sors using met	allio	c na	nopa	artic	les
and nanow	res.						
4. Able to dev	velop sensors using different nano structures of	metal oxides f	for 1	mak	ing i	t m	ore
specific.							
5. Will acquir	e an insight of the developments in the nanopoly	ymers and its	role	in s	senso	ors.	
6. Gain the c	ompetency of understanding the quantum dots	s and its poten	ntial	ap	plica	tion	in
sensor deve	elopment.(FAT)						
Madula 1 Intra	duction to ponotochnology				6	ho	1100
Definition of none	tachnology main fastures of nano materials	types of paper	truc		$\frac{\mathbf{U}}{\mathbf{u}}$	ווי <u>סוו</u> 1 ח	
and 2D struc	tures) synthesis of nano-materials	s and nai	no-c	com	es (U nosit	D, 1	D,
chemical/physical/	electrical/optical properties of nano-materials a	nd composites	10- C	20111	posn		-
enemieai/pirysicai/	electrical optical properties of hand materials a	nd composites	•				
Module:2 Char	acterization of nanomaterials				6	ho	urs
Methods for chara	cterizing the nano-materials: Atomic Force Mic	croscopy (AFN	M).	Sca	nnin	g	
Electron Microsco	pv (SEM). Transmission Electron Microscopy	(TEM) and sr	becti	rosc	copy	-	
spectrometry based	l surface analysis techniques.	, , , , , , , , , , , , , , , , , , ,			r J		
	v 1						
Module:3 Meta	nanoparticle and Nanowire based				7	' hoi	urs
Senso	brs						
Definition of nand	particle - features of nanoparticles - production	on of nanopa	rticl	es l	oy pl	nysi	cal
approach and chem	nical approaches- Definition of nanowires - fea	atures of nanov	wire	es - 1	fabri	cati	on
of individual nano	wire by top-down approaches and bottom -up at	pproaches - fal	bric	atio	n of		
nanowire arrays (f	uidic channel, blown bubble film, contact printi	ing, spray coat	ting	, etc	:.).		
Module:4 Carb	on Nanotubes-based Sensors				6	hou	urs
Definition of carb	on nanotube- features of carbon nanotubes - s	synthesis of c	arbo	on r	nanot	ube	s -
fabrication and we	orking principles of sensors based on individua	al carbon nand	otub	e -	fabr	icati	on
and working princi	ples of sensors based on random array of carbon	n nanotubes.					

Module:5	Sensors Based on Nanost Oxide	ructures of Meta	l		6 hours
Synthesis of (0D, 1D, at oxide gas set	of metal oxide structures by nd 2D) - defect chemistry of ensors - Porous metal - Oxid	dry and wet method f the metal oxide le structures for im	nods - T sensors proved :	Ypes of met s -sensing m sensing appl	tal oxide gas sensors nechanism of metal - ications.
-			•	• • • •	
Module:6	Sensors Based on Nanost	ructures of Polyn	ners		6 hours
Working principle of sensors based on polymeric nanostructures - sensing mechanism and applications of nanomaterial - Nano polymer based chemiresistors and field effect transistors of semi/conductive polymers.					
Modulo.7	Sangara hagad an Quanti	um dota			6 hours
Module:/	Sensors based on Quant		6	. 1.	0 nours
Definition microscopic contrast age	of quantum dot - fabrica c photoluminescence measu ents in bioimaging - Applica	tion techniques rements - applicati tion of quantum de	of quan ions of q ots as bio	itum dots - luantum dots osensors.	s as multimodal
Modular	Contomporary issues				2 hours
wiouule:o	Contemporary issues.				2 110015
		Total Lecture ho	ours: 4	5 hours	
Text Book	(s)		ł		
1. Dieter 2014, 2	Vollath, "Nanomaterials: A 2 nd Edition, Wiley, New Jers	n Introduction to sey.	Synthes	is, Propertie	s and Applications",
2. Guozh Applic	ong Cao, "Nanostructu ations",2011, 2 nd Edition, In	rres & Nanor nperial College Pre	naterials ess, Lon	: Synthes don.	is, Properties &
Reference	Books	1 0	,		
1. Martin Edition	Pumera, "Nanomaterials f	for Electrochemic	al Sensi	ing and Bic	osensing", 2014, 1 st
2 Michae Chemi	el A. Carpenter, Sanjay Ma cal Sensors 2013 1 st Editio	athur, Andrei Kol n Springer New Y	makov, York	Metal Oxid	le Nanomaterials for
3 Wonbo	ong Choi, Jo-won Lee, "G	raphene: Synthesi	s and A	pplications	(Nanomaterials and
their A	pplications)", 2011, 1 st Edit	ion, CRC Press, Fl	orida.		
Mode of Ev	valuation: CAT / Assignmen	t / Quiz / FAT / Pr	oject / S	eminar	
Mode of as	sessment: Continuous Asses	sment and FAT			
Recommen	ded by Board of Studies	21-08-2017			
Approved b	y Academic Council	No. 47	Date	05-10-20	017

Г

Course code))	Course title		LI	[P	J	C
ECE5008		MICRO AND NANO FLUIDI	ICS	$\frac{2}{0}$		4	3
Prerequisite	2:	NII		Sylla	abus y	vers	$\frac{100}{10}$
Course Obj	octivos	•					1.0
1 Intro	duce a	• nd discuss the fundamental physics of mic	ro and nano sca	le flu	ide ar	d th	eir
1. Indot	odvnan	nics	to and hand sea	ic iiu	ius ai	iu ii	icn
2. Com	prehen	d techniques of miniaturization, methods an	d tools to create	micro	ofluid	ic	
archi	tecture	s and discuss various existing microfluidic d	evices.				
3. Discu	uss and	d identify the usage of microfluidics in v	arious lab-on-cl	nip and	d bio	react	tor
appli	cations	5					
4. Inves	stigate	and compare microfabrication techniques to	design vasculat	ure ar	nd 3D	mic	ro-
chan	nels.						
Expected Co	ourse (Jutcome:	1 1	C1 · 1	1	<u>.1 ·</u>	
I. Ident	ify and	understand the fundamental physics of micro	o and nano scale	e fluid	s and	then	r
miarc	ouynan	architectures	on, methods and	toois	to cre	ate	
2 Reco	onise a	a dimeterized the working principle of various	existing microf	luidic	devic	es	
3. Descr	ribe va	rious microfluidic lab-on-chip applications.	existing interor	luiuie	uevie	05.	
4. Acqu	aint w	ith various bioreactor based microchips					
5. Inves	stigate	and compare various microfabrication techni	ques to design v	ascula	ture a	nd 3	3D
micro	o chani	hels with existing techniques.					
6. Incor	porate	simulation and microfluidic device fabrication	on knowledge fo	or deve	elopin	g	
vario	us mic	rofluidic devices.					
Madula 1	Fund	montola for Miorogoolo and Nonogoolo	5 hours				
wiodule:1	Flow	amentais for Microscale and Nanoscale	5 nours				
Fluids and n	onflui	ds, properties of fluids, classification of fluid	ds, Newtonian a	nd No	n Nev	vton	ian
fluids, pressu	ure dri	ven flow, reynolds number, Electrokinetic	phenomena, Ele	ectric	double	e lay	yer,
debye length	n, coup	ling species transport and fluid mechanics,	, Micro channel	Resis	stance	, Sh	ear
stress, capill	ary flo	w, flow through porous media, Diffusion,	surface tension,	conta	ct ang	gle a	ind
wetting.							
Modulo 2	Hydr	dynamics	1 hours				
Introduction	to sur	ruynamus face surface charge surface energy. There	nodynamics of s	urface	s Fh	uide	in
Electrical fie	lds T	he Navier Strokes equation Boundary and Ir	itial conditions	nrohle	ems	ilus	
	103, 1	ne ruvier brokes equation, Doundary and n			<u>, 1115,</u>		
Module:3	Fabri	cation methods and techniques	4 hours				
Patterning,	Photo	lithography, Micromachining, Micromol	ding, Soft lit	hogra	ohy,	PDI	MS
properties, F	abricat	ion of microfludics channels.	<u> </u>	0 1			
Module:4	Micro	fluidic Devices	3 hours				
Droplet Mic	crofluic	ls, Active Flow control, Microvalves, E	lectrically actua	ated 1	nicro	valve	es,
Micromixers	s, Com	binational Mixers, Elastomeric Micromixers					
Module:5	Micro	fluidics Lab on Chip	3 hours				

Microfluidic for Flow cytometry, cell sorting, cell trapping, Cell culture in microenvironment.							
Module:6	Bioreactors on Microchi	ps		4 ho	ours		
Enzyme ass	ay and inhibition, Chemi	cal synthesis in a	micro	reacte	ors, Sequ	entia	al reaction and
Parallel read	ction in micro reactors, cher	nical separation, li	quid c	chron	natograph	у	
Module:7	3D Vascular Network for	r Engineered tissu	ies	5 ho	ours		
Fabrication	Microfabrication of vascu	ulature, Materials	for 3	DΜ	licrofluidi	c va	sculature, Laser
Micro-mach	nined 3D channels, Introdu	ction to Comsol M	Iultip	hysic	es, Mather	natic	al Modeling of
Microchann	els in Microfludics Model b	ouilder.					
				1			
Module:8	Contemporary issues:						2 hours
		Total Lecture ho	urs:	30 I	hours		
Text Book	(s)						
1. Cleme	ent Kleinstreuer, "Micro	ofluidics and I	Nanof	luidi	cs: The	ory	and Selected
Appli	cations",2013, 1 st ed., John	Wiley & Sons, New	<i>w</i> Jers	ey.			
2. Shaury	a Prakash, JunghoonYee	om, "Nanofluidic	s ar	nd I	Microfluic	lics:	Systems and
Applic	$\frac{1}{2}$ ations", 2014, 1 st ed., William	m Andrew; Norwic	ch, Ne	ew Yo	ork.		
Reference	Books		1.0		<u> </u>	. 1 T	71 1
I. Albert	Folch, "Introduction to Biol	$\frac{\text{MEMS}^{"}, 2012, 1^{\text{st}}}{2012, 1^{\text{st}}}$	ed., C	RC I	Press, Uni	ted K	Lingdom.
2 Patric	k Tabeling, "Introduction t	to Microfluidics",	2011	, Re	print ed.,	Ox	ford University
Press,	Great Britain.		<u> </u>				
3 Xiuju	n James Li, Yu Zhou, "Mi	crofluidic Devices	tor E	310m	edical Ap	plica	1000 1000
ed., v	vood head Publishing, Cam	bridge.		<u>01</u> · 1·	*****		1
4 Terrer	ice Conlisk. A, "Essentials	s of Micro- and	Nanot	tluidi	cs: With	App	blications to the
Biolog	gical and Chemical Sciences	$\frac{1}{5}$, 2012, 1° ed., C		ridge	Universit	y Pre	ess, New York.
Mode of Ev	aluation: CAT / Assignmen	t / Quiz / FAT / Pr	oject /	/ Sen	nınar		
M 1 C							
Mode of ass	sessment: Continuous Asses	sment and FAT					
Kecommen	aed by Board of Studies	21-08-2017			05 10 20	17	
Approved b	y Academic Council	No. 47	Date		05-10-20	17	

Course codeCourse titleL						C
ECE6003	MICROSYSTEMS AND HYBRID TECHNOLOGY	2	0	2	0	3
Prerequisite	ECE5001 Principles of Sensors	Sy	llab	us v	ersi	on
	•			1.1		
Course Objective	es:					
1. To introduc	e the fundamental concepts of MEMS based sensors and actuator	s.				
2. To acquain	t the students with various materials and material properties for M	crosy	stem	n desi	ignir	ıg.
5. To provide students to	design simulation and analysis software	ues ai	ia ex	pose	e the	
4. Enhancing	the basics of thick film and hybrid technologies for sensor develor	ment				
0						
Expected Course	e Outcome:					
1. Identify and	d understand the fundamental concepts and background of MEMS	and	Micr	osys	tems	
2. Familiar wi	ith the basics of various sensors and actuators.					
3. The student	is were acquainted with various materials for Microsystem designi and compare the scaling effects in miniaturizing devices	ng.				
5. Recognize	and interpret various micromachining techniques and design, and	lysis	and	appli	catio	ons
of various l	MEMS devices micromachining tools and techniques	•				
6. Acquainted	I with thick film and hybrid technologies for sensor development.					
7. Incorporate	e simulation and micro-fabrication knowledge for developing vario	us M	EMS	dev	ices.	
Module:1 Intr	oduction to MEMS and Microsystems			3	b ho	urs
MEMS and Mic	rosystems, Miniaturization, Benefits of Microsystems, T	ypica	1 M	EM	S a	nd
Microsystems pro	ducts, Evolution of Micro fabrication and Applications.					
Module:2 Intr	oduction to Sensors and Actuators			3	8 ho	urs
Various domains	and classification of transducers: electrostatic, piezoelectr	ic, th	erm	al. S	ensi	ing
principles: electro	static, resistive, chemical etc. SAW devices. Micro actuato	rs, D	esig	n of	IVI10	cro
acceleronieters, E	ingineering science for wherosystem design and rabileation.					
Module:3 Mat	erials for Microsystems			4	ho	urs
Silicon, Silicon	compounds, Silicon Piezo resistors, Gallium Arsenide, Q	uartz	, Pi	ezoe	lecti	ric
materials, Polyme	rs, Shape Memory Alloys, ferroelectric and rheological mate	rials.				
Module:4 Scal	ing Effects in Microsystems			4	ho	urs
Introduction to S	caling, Scaling laws, Scaling in Geometry, Scaling in Rig	gid b	ody	dyn	ami	cs,
Scaling in Electro	magnetic, Electrostatic, magnetic, optical and Thermal doma	ins. :	scali	ng 1	n Fli	uid
meenames.						
Module:5 Mic	romachining Technologies			4	ho	urs
Overview of sili	icon processes techniques, Photolithography, Ion Impla	ntati	on,	Diff	usic	on,
Chemical Vapor I	Deposition, Physical vapor Deposition, Epitaxy, Etching, Bu	ılk m	icro	mac	hini	ng,
Surface Microma	chining, LIGA and other techniques.					
Module:6 ME	VIS and micro systems applications	MC.	F 4	4	ho	urs
Details of applica	ation in actual systems, introduction to KF- MEMS, MOE	við,	utu	e ol	sm	iart

structures and MEMS leading to NEMS. Packaging, test and calibration of MEMS.					
M					
	odule:7	Hybrid Technology		2 hours	
In	ICK-IIIM	and hybrid technology in sensor production	i. Basic mat	erials, components,	
mai	nuracturi	ng Screen manufacturing, Screen printing, Paramo	eters, Compari	ISON: INICK- VS. ININ-	
	i technol	ogy Structure dimensions, Assembly and packaging	g Surface mou	nt technology (SMT)	
Act	live and p	bassive devices (SIMD), Connection technologies, Pa	ackaging.		
Mo	dule:8	Contemporary issues:		2 hours	
		* *			
				-	
		Total Lecture hours:	30 hours		
Tex	kt Book(s)			
1.	G.K.Ar systems	anthasuresh, K J Vinoy, S Gopalakrishnan, KN B s", 2012, 1 st ed., Wiley, New York.	hatt, V K Aatı	e," Micro and smart	
2.	Tai-Rai	n Hsu, "MEMS & Microsystem, Design and Manuf	acture", 2017,	1 st ed., McGraw Hill	
	India, N	New Delhi.			
Ref	ference I	Books			
1.	Mahali	ck NP, "MEMS", 2017, 1 st ed., Tata McGraw Hill, 1	New Delhi		
2	Wolfga	ng Menz, Jürgen Mohr, Oliver Paul, "Microsystem	Technology",	2011, 2 nd ed., Wiley,	
	New Y	ork.		11 12 1 1	
3	Banks I	H.T. Smith R.C. and Wang Y.Smart, 'Material Stru	ctures – Mode	eling, Estimation and	
1	Massoc	d Tabib Arar 'Microactuators Electrical Magn	otic Thormal (Ontical Machanical	
4	Chemic	cal and Smart structures' 2014 1 st ed Kluwer Acad	lemic publishe	rs New York	
Mo	de of Ev	aluation: CAT / Assignment / Ouiz / FAT / Project /	Seminar		
.					
	t of Cha	llenging Experiments (Indicative)		1 5 1	
1.	Design	and Simulation of MEMS Capacitance based Accel	erometer:	15 hours	
	In this	topic, you need to design a capacitive acceleromet	ter that has a f	full-	
	scale N	Measurement range of \pm 10 g. The accelerometer	may be desig	ned	
	using a	closed loop or an open-loop. You need to have reas	sonable over ra	inge	
	protecti	on in your device.			
	Specifi	cation:			
	Measur	rement range: ± 10g			
	Output	capacitance: at least tens of fF level			
	Device	simulation results (must take into account parasitic	capacitance of		
	your de	sign):			
	(a) Stat	ic analyses:			
	G	ap vs. acceleration			
	C	apacitance (or differential capacitance) vs. accelerat	ion		
	(i	dentify sensitivity [F/g])			
	(b) Dyr	namic analyses:			
	Y	our device's response on vibration.			
2.	Piezor	esistive barometric pressure sensor:		15 hours	
	In this	topic, you need to design a piezoresistive pressure s	sensor that has	the	
	measur	ement range of 0 - 1.1 bar. You need to have a reas	onable over ra	nge	

	protection in your device.					
	Specification:					
	Measurement range: 0 -1.1 bar.					
	Device simulation results:					
	(i) Strain in the piezoresistor vs. pressure					
	(ii) Resistance vs. pressure					
	(iii) Voltage output vs. pressure for Wheatstone bridge circuit output.					
	Circuit integration issues:					
Temperature compensation circuit design						
				oratory Hours	30 hours	
Mode of assessment: Continuous Assessment and FAT						
Recommended by Board of Studies 28.01.2017						
Ap	proved by Academic Council	No. 47	Date	05-10-2017		

Course code	Course title		L	T P	J	С		
ECE6004	RF AND MICROWAVE SENS	ORS	3	0 0	0	3		
Prerequisite:	ECE5001-Principles of Sensors		Syl	labus	versi	on		
A	* 		v	1.	0			
Course Objectives	5:							
1. To introduc	te the students with different RF and Microw	ave sensors,	4		. 1			
2. 10 familiar	The antenna design with a good understand	ing of their para	amet	ers ar	nd			
3 To introduc	s. e comprehensive knowledge of wearable and	enna						
4. To explore	and understand basics of RFID technology.	ienna.						
1								
Expected Course	Outcome:							
1. Select a pro	per antenna design to be used in the RF spec	tral region						
2. Model spec	2. Model specific radiation pattern and evaluate them in different domains							
3. Correlate tr	5. Correlate the principle behind different radar systems and determine various applications based on the radar systems							
4 Apply the h	A Apply the basic knowledge in the measurement of RE radiation							
5. Gain knowl	ledge about the RFID technology.							
	6 6,							
Module:1RF Sensors6 hours						urs		
Microwave Antenn	na-Introduction, types of Antenna, fundame	ental parameters	of	anteni	nas,			
radiation mechanis	m, Fresnel and Fraunhofer regions. Antenn	a for communic	ation	and	Anter	ına		
for sensing, radiom	leter and radar							
Module:2 Anter	nna for personal area communication.				5 ho	urs		
Concepts of Printe	ed Antennas, Broadband Microstrip Patch	Antennas, Anter	nnas	for V	Veara	ble		
Devices, Design R	Requirements, Modeling and Characterization	on of Wearable	Ante	ennas,	WB	AN		
Radio Channel Cha	aracterization and Effect of Wearable Antenr	nas, Domains of	Oper	ation,	Sour	ces		
on the Human Bod	y, Compact Wearable Antenna for different	applications.						
Module 3 Rada	P				5 ho	urc		
Introduction to RA	ADAR RADAR range equation MTI and	nulse Donnler I		AR	5 no	ui s ing		
RADAR, SAR pul	se RADAR, CW RADAR	puise Doppier I			ITUCK	¹¹ 5		
	· · · · · · · · · · · · · · · · · · ·							
Module:4 Appli	cations of Radar				6 ho	urs		
Automotive, remo	te sensing, agriculture, medicine, detection	of buried obje	cts,]	NDT,	defe	nse		
factors affecting the	factors affecting the performance of RADAR, RADAR transmitters, Receivers,							
Module:5 Radio	ometers				6 ho	urs		
Radiative transfer	theory, SMMR, Types of radiometers -	and Bolometers	. Ar	oplicat	tions	in		
automotive, agricul	lture, medicine, weather forecasting		·, ••	rieu				
Module:6 Micro	owave power Sensors		<u> </u>		6 ho	urs		
Diode Sensors: Dio	ode detector principles, dynamic range avera	ge power sensor	s, sig	nal w	avefo	rm		
Thermocouple son	isurement uncertainty of diode sensors. In	ennocoupie Sen	sors:	Princ	rpies	OI		

Mo	dule:7	RFID Sensors				8 hours			
Intr	oductior	n, Components of RFID sys	tems, hardware an	d soft	ware compone	ents, RFID standards,			
RFI	D applie	cations.							
Mo	Module:8Contemporary issues:2 hours								
	Total Lecture hours: 45 hours								
Tex	t Book(s)							
1.	Finken	zeuer Klaus, "RFID Handbo	ook", 2011, 3 rd edi	tion, J	ohn Wiley and	l Sons, New Jersey.			
2.	Consta	ntine A. Balanis, "Antenn	a Theory Analysi	s and	Design", 20	16, 4 th edition, John			
	Wiley and Sons, New Jersey.								
Reference Books									
1.	1. B. Hoffman - Wellenhof, H.Lichtenegger and J.Collins, "GPS: Theory and Practice ", 5 th								
	edition, Springer, New York, 2012.								
2	2 Lillesand & Kiefer, "Remote Sensing and Image Interpretation", 2011, 6 th edition, John								
Wiley and Sons, New Jersey.									
Mo	Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar								
Rec	ommen	ded by Board of Studies	28.01.2017						
App	proved b	y Academic Council	No. 47	Date	05-10-20	017			

ſ

Course code	Course title	L	Τ	P	J	С	
ECE6005	CHEMICAL SENSORS	2	0	2	0	3	
Prerequisite:	ECE5001-Principles of Sensors	Sv	llab	ous v	ersi	on	
				1.1			
Course Objectives							
 To extend engineering principles to electrochemical sensor development with a clear understating of oxidation and reduction of an electrolytic cell. To propound the conception of ion selective and enzyme stabilized electrodes for the 							
3. To be experience as a set of the set of t	dient in applying specific interaction methods in the recognit metal oxide based sensors.	ion	of ic	on se	lect	ive	
4. Ability to sensitive se	 Ability to analyze the modes of vibration and develop the suitable mass and thermal sensitive sensors. 						
Expected Course	Outcome						
1. Realize the cell. Apply 2. Be familiar be applied i 3. Ability to d 4. Gain knowl 5. Able to disc environmen 6. Capable of and apply the construction of the const	 Realize the need for half-cell and to analyze potential developed in any electrochemical cell. Apply the same for ion selective measurement Be familiar with a wide range of chemical sensing methods and material characteristics to be applied in biosensors . Ability to design gas sensors for commercial and industrial applications. Gain knowledge of nanomaterials for biological and medical applications Able to discuss, develop and apply mass/thermal sensors design for social and environmental problems Capable of critically analyzing Biosensing and transduction problems in the thrust areas and apply the knowledge 						
Thermodynamics, Cells, Electrode – Product, Ion Produ	, Enthalpy, Entropy, Gibbs free Energy, Law of Mass Actio Electrolyte Interface, Fluid Electrolytes, Dissociation of Sa ct, pH Value, Ionic Conductivity, Ionic Mobility, Phase Diag	on, si ult, S gram	imp Solu is.	le Ga bilit <u>y</u>	alva: y	nic	
Module ? Trans	sduction Principles			Δ	ho	nre	
Module.2 Transduction Finitepies 4 nours Transduction Elements- Electrochemical Transducers-Introduction Potentiometry and Ion-Selective Electrodes: The Nernst Equation Voltametry and amperometry, conductivity, FET, Modified Electrodes, Thin-Film Electrodes and Screen-Printed electrodes, photometric sensors							
Module:3 Chem	ical Sensing Elements			4	ho	urs	
Ionic recognition, molecular recognition-chemical recognition agent, spectroscopic recognition, biological recognition agents. Immobilization of biological components, performance factors of Urea Biosensors, Amino Acid Biosensors, Glucose Biosensors and Uric Acid, factors affecting the performance of sensors.							
Module:4 Poten	tiometric and Amperometric Sensors			4	ho	urs	
Potentiometric- Io linked, Iodine selec	n selective electrodes- pH linked, Ammonia linked, CO2 linctive, amperometric -bio sensors and gas sensors,	nked	, Si	lver	sulf	ide	

					4.3
Mo	dule:5	Conductometric Sensors	<u> </u>	4	hours
Coi	nductom	etric-chemirsistor-biosensor based chemiresisto	r-semiconducting	g oxide	sensor,
CH.	EMFET	s, ISFETs, FET based Biosensors.			
Mo	dule:6	Mass and Thermal Sensors		4	4 hours
Piez	oelectric	effect- gas sensor applications, Biosensor applications-	Quartz crystal m	crobalance,	surface
acou	istic wav	es, plate mode oscillators, resonant cantilevers, enzyma	atic mass sensor,	Glucose the	rmistor,
cata	lytic gas	sensor, pellistors, enzyme thermistor			
					4.5
NIO	dule:/	Photometric Chemical Sensors		4	+ nours
Visi	ible abs	orption spectroscopy- pH, CO_2 , ammonia, example or CO_2 , ammonia, example of CO_2 , ammonia, example of CO_2 , ammonia, example of CO_2 , and CO_2 , ammonia, example of CO_2 , ammonia, example of CO_2 , and CO	mples in bioser	isors, fluo	rescent
reag	gents, flu	orophore and chromophores based fiberoptic biose	nsors:-enzyme b	ased non-m	ediated
fibe	roptic bi	osensors – chromophores and flurophore detection,	, bioluminescenc	e and chem	1-
lum	inescent	ce based fiber-optic sensors.			
Mo	dule:8	Contemporary issues:		2	2 hours
		Total Lecture hours:	30 hours		
Tex	t Book(s)			
1.	Janata,	Jiri,"Principles of Chemical sensors", 2014, 2 nd edit	ion, Springer, Ne	w York.	
Ref	erence l	Books			
1.	Brian F	Eggins, "Chemical Sensors and Biosensors", (Part	of AnTS Series)	, 2010, 1 st e	edition.
	John W	iley Sons Ltd, New York.	,	, ,	,
2	Peter C	Grundler, "Chemical Sensors: Introduction for Sc	ientists and Eng	ineers", 20)11, 1 st
	edition.	Springer, New York.	c		,
3	R.G.Ja	ckson, "Novel Sensors and Sensing", 2012, 1 st	edition, Philade	phia Instit	ute of
	Physics	Э.	,	1	
Mo	de of Ev	aluation: CAT / Assignment / Quiz / FAT / Project /	/ Seminar		
List	t of Cha	llenging Experiments (Indicative)			
1.	Develo	p a suitable electrochemical cell which can distin	guish normal an	d 6 hours	
	contam	inated water samples. Cyclic voltammetry technique	ue can be used a	s	
	the det	ection method. Develop the electronic circuitry an	d display to		
	indicate	e the type of water.			
2	Interdig	gitated Electrodes (IDT) are required for effective	chemical sensin	g 6 hours	
	applica	tion. Using copper as the electrode material, develo	p IDT finger typ	e	
	electro				
3	After a	nalysing the advantages and drawbacks of various n	nethods used for	6 hours	
depositing the oxide materials on planar rigid substrates, deposit zirconium					
	oxide o				
	suitable	e deposition method.			
4	Among	the various types of conductometric sensors, identi	fy a suitable	6 hours	
	sensor	which can measure the humidity and develop asenso	or system which		
	can me	asure the relative humidity in the range of 40 to 60 p	percent.		
5.	Develo	p a potentiostat circuit for a chemoresistive sensor	which can be use	d 6 hours	
	for gas	sensing application. The nominal resistance of the s	sensor will be 10	0	

	to 130 ohms and the expected change in resistance will +/-5%. Develop the				
	electronic circuit which can convert the change in resistance in to a voltage				
	signal/current signal.				
	Total Laboratory Hours				
Mo	Mode of assessment: Continuous Assessment and FAT				
Recommended by Board of Studies 28.01.2017					
Approved by Academic Council		No. 47	Date	05-10-2010	

ECE6006 AUTOMOTIVE SENSORS 2 0 2 0 3 Prerequisite: ECE5001-Principles of Sensors Syllabus version 1.1 Course Objectives: 1.1 1.1 Course Systems 2.0 0 3 2. Discuss the basics of various Power train sensors and associated systems for proper vehicle dynamics and stability in automotive systems. 1.1 3. Comprehend various sensors for vehicle body management and discuss various sensors and technologies for passenger convenience, safety and security systems. 4. 4. Acquaint various communication standards and protocols followed within the automotive systems. 5. Expected Course Outcome: 1.1 1. Identify and understand the basic automotive parts and the requirement of sensors and their integration in different automotive systems 2.0 2. Discus and identify the basics of various Power train sensors 3. Comprehend and analyse various systems like ABS, ESP, TCS, etc for understanding vehicle dynamics and stability. 4. Comprehend and analyse various sensors for vehicle body management, convenience & security systems. 1.1 5. Identify various technologies developed for passenger convenience. Air Bag deployment and Seat Belt Tensioner System, etc with the students 6. 6. Recognize various communication standards and protocols followed within the automotive syste					
Prerequisite: ECE5001-Principles of Sensors Syllabus version 1.1 Course Objectives: 1.1 2. Discuss the basics of various Power train sensors and associated systems for proper vehicle dynamics and stability in automotive systems. 3. Comprehend various sensors for vehicle body management and discuss various sensors and technologies for passenger convenience, safety and security systems. 3. Comprehend various communication standards and protocols followed within the automotive systems. 4. Acquaint various communication standards and protocols followed within the automotive systems. 9. Discus and identify the basic of various Power train sensors 3. Comprehend and analyse various systems 5. 1. Identify and understand the basic automotive parts and the requirement of sensors and their integration in different automotive systems 5. 2. Discus and identify the basics of various Power train sensors 3. Comprehend and analyse various systems like ABS, ESP, TCS, etc for understanding vehicle dynamics and stability. 4. Comprehend the various sensors for vehicle body management, convenience & security systems. 5. Identify various technologies developed for passenger convenience, Air Bag deployment and Seat Belt Tensioner System, etc with the students 6. Recognize various communication standards and protocols followed within the automotive systems. 4 hours Module:1 Introduction to Automotive Engineering, Automotive Management systems and need for electronics in Automot					
Course Objectives: 1.1 Course Objectives: 1.1 Acquaint with the basic automotive parts and the need for sensor integration in different automotive systems 2. Discuss the basics of various Power train sensors and associated systems for proper vehicle dynamics and stability in automotive systems. 3. Comprehend various sensors for vehicle body management and discuss various sensors and technologies for passenger convenience, safety and security systems. 4. Acquaint various communication standards and protocols followed within the automotive systems. 7. Identify and understand the basic automotive parts and the requirement of sensors and their integration in different automotive systems like ABS, ESP, TCS, etc for understanding vehicle dynamics and stability. 9. Discus and identify the basics of various Power train sensors 3. Comprehend and analyse various systems like ABS, ESP, TCS, etc for understanding vehicle dynamics and stability. 4. Comprehend the various sensors for vehicle body management, convenience & security systems. 5. Identify various technologies developed for passenger convenience, Air Bag deployment and Seat Belt Tensioner System, etc with the students 6. Recognize various communication standards and protocols followed within the automotive systems. 9 9 9 Natumotive Management systems 9 Recognize various communication standards and protocols followed within the automotive systems. 9					
Course Objectives: 1. Acquaint with the basic automotive parts and the need for sensor integration in different automotive systems 2. Discuss the basics of various Power train sensors and associated systems for proper vehicle dynamics and stability in automotive systems. 3. Comprehend various sensors for vehicle body management and discuss various sensors and technologies for passenger convenience, safety and security systems. 4. Acquaint various communication standards and protocols followed within the automotive systems. Expected Course Outcome: 1. Identify and understand the basic automotive parts and the requirement of sensors and their integration in different automotive systems 2. Discus and identify the basics of various Power train sensors 3. Comprehend analyse various systems like ABS, ESP, TCS, etc for understanding vehicle dynamics and stability. 4. Comprehend the various sensors for vehicle body management, convenience & security systems. 5. Identify various technologies developed for passenger convenience, Air Bag deployment and Seat Belt Tensioner System, et with the students 6. Recognize various communication standards and protocols followed within the automotive systems. 7. Module:1 Introduction to Automotive Engineering, Automotive Management systems 8. Recognize various communication standards and protocols followed within the automotive systems. 9. Ower-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Sys					
 Acquaint with the basic automotive parts and the need for sensor integration in different automotive systems Discuss the basics of various Power train sensors and associated systems for proper vehicle dynamics and stability in automotive systems. Comprehend various sensors for vehicle body management and discuss various sensors and technologies for passenger convenience, safety and security systems. Acquaint various communication standards and protocols followed within the automotive systems. Acquaint various communication standards and protocols followed within the automotive systems. Identify and understand the basic automotive parts and the requirement of sensors and their integration in different automotive systems Discus and identify the basics of various Power train sensors Comprehend and analyse various systems like ABS, ESP, TCS, etc for understanding vehicle dynamics and stability. Comprehend the various sensors for vehicle body management, convenience & security systems. Identify various communication standards and protocols followed within the automotive systems Identify various communication standards and protocols followed within the automotive systems. Identify various communication standards and protocols followed within the automotive systems. Identify unousted communication standards and protocols followed within the automotive systems. Module:1 Introduction to Automotive Engineering, Automotive Management systems Power-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors A hours A sensors, ex					
automotive systems 2. Discuss the basics of various Power train sensors and associated systems for proper vehicle dynamics and stability in automotive systems. 3. Comprehend various sensors for vehicle body management and discuss various sensors and technologies for passenger convenience, safety and security systems. 4. Acquaint various communication standards and protocols followed within the automotive systems. Expected Course Outcome: 1. Identify and understand the basic automotive parts and the requirement of sensors and their integration in different automotive systems 2. Discus and identify the basics of various Power train sensors 3. Comprehend and analyse various systems like ABS, ESP, TCS, etc for understanding vehicle dynamics and stability. 4. Comprehend the various sensors for vehicle body management, convenience & security systems. 5. Identify various technologies developed for passenger convenience, Air Bag deployment and Seat Belt Tensioner System, etc with the students 6. Recognize various communication standards and protocols followed within the automotive systems. Module:1 Introduction to Automotive Engineering, Automotive Management systems Power-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors <					
 2. Discuss the basics of various Power train sensors and associated systems for proper vehicle dynamics and stability in automotive systems. 3. Comprehend various sensors for vehicle body management and discuss various sensors and technologies for passenger convenience, safety and security systems. 4. Acquaint various communication standards and protocols followed within the automotive systems. Expected Course Outcome: Identify and understand the basic automotive parts and the requirement of sensors and their integration in different automotive systems Discus and identify the basics of various Power train sensors Comprehend and analyse various systems like ABS, ESP, TCS, etc for understanding vehicle dynamics and stability. Comprehend the various sensors for vehicle body management, convenience & security systems. Identify various technologies developed for passenger convenience, Air Bag deployment and Seat Belt Tensioner System, etc with the students Recognize various communication standards and protocols followed within the automotive systems. Module:1 Introduction to Automotive Engineering, <u>Automotive Management systems</u> Power-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors A hours A sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor. 					
 dynamics and stability in automotive systems. Comprehend various sensors for vehicle body management and discuss various sensors and technologies for passenger convenience, safety and security systems. Acquaint various communication standards and protocols followed within the automotive systems. Expected Course Outcome: Identify and understand the basic automotive parts and the requirement of sensors and their integration in different automotive systems Discus and identify the basics of various Power train sensors Comprehend and analyse various systems like ABS, ESP, TCS, etc for understanding vehicle dynamics and stability. Comprehend the various sensors for vehicle body management, convenience & security systems. Identify various technologies developed for passenger convenience, Air Bag deployment and Seat Belt Tensioner System, etc with the students Recognize various communication standards and protocols followed within the automotive systems. Module:1 Introduction to Automotive Engineering, <u>Automotive Management systems</u> Power-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors A hours A sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.					
 Comprehend various sensors for vehicle body management and discuss various sensors and technologies for passenger convenience, safety and security systems. Acquaint various communication standards and protocols followed within the automotive systems. Expected Course Outcome: Identify and understand the basic automotive parts and the requirement of sensors and their integration in different automotive systems Discus and identify the basics of various Power train sensors Comprehend and analyse various systems like ABS, ESP, TCS, etc for understanding vehicle dynamics and stability. Comprehend the various sensors for vehicle body management, convenience & security systems. Identify various technologies developed for passenger convenience, Air Bag deployment and Seat Belt Tensioner System, etc with the students Recognize various communication standards and protocols followed within the automotive systems. Module:1 Introduction to Automotive Engineering, Automotive Management systems Power-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors ANX sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.					
 and technologies for passenger convenience, safety and security systems. Acquaint various communication standards and protocols followed within the automotive systems. Expected Course Outcome: Identify and understand the basic automotive parts and the requirement of sensors and their integration in different automotive systems Discus and identify the basics of various Power train sensors Comprehend and analyse various systems like ABS, ESP, TCS, etc for understanding vehicle dynamics and stability. Comprehend the various sensors for vehicle body management, convenience & security systems. Identify various technologies developed for passenger convenience, Air Bag deployment and Seat Belt Tensioner System, etc with the students Recognize various communication standards and protocols followed within the automotive systems. Module:1 Introduction to Automotive Engineering, Automotive Management systems Power-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor. 					
 4. Acquaint various communication standards and protocols followed within the automotive systems. Expected Course Outcome: Identify and understand the basic automotive parts and the requirement of sensors and their integration in different automotive systems Discus and identify the basics of various Power train sensors Comprehend and analyse various systems like ABS, ESP, TCS, etc for understanding vehicle dynamics and stability. Comprehend the various sensors for vehicle body management, convenience & security systems. Identify various technologies developed for passenger convenience, Air Bag deployment and Seat Belt Tensioner System, etc with the students Recognize various communication standards and protocols followed within the automotive systems. Module:1 Introduction to Automotive Engineering, Automotive Management systems Power-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors A sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.					
systems. Expected Course Outcome: 1. Identify and understand the basic automotive parts and the requirement of sensors and their integration in different automotive systems 2. Discus and identify the basics of various Power train sensors 3. Comprehend and analyse various systems like ABS, ESP, TCS, etc for understanding vehicle dynamics and stability. 4. Comprehend the various sensors for vehicle body management, convenience & security systems. 5. Identify various technologies developed for passenger convenience, Air Bag deployment and Seat Belt Tensioner System, etc with the students 6. Recognize various communication standards and protocols followed within the automotive systems. Module:1 Introduction to Automotive Engineering, Automotive Management systems Power-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors 4 hours hours hours for sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.					
Expected Course Outcome: 1. Identify and understand the basic automotive parts and the requirement of sensors and their integration in different automotive systems 2. Discus and identify the basics of various Power train sensors 3. Comprehend and analyse various systems like ABS, ESP, TCS, etc for understanding vehicle dynamics and stability. 4. Comprehend the various sensors for vehicle body management, convenience & security systems. 5. Identify various technologies developed for passenger convenience, Air Bag deployment and Seat Belt Tensioner System, etc with the students 6. Recognize various communication standards and protocols followed within the automotive systems. Module:1 Introduction to Automotive Engineering, Automotive Management systems Power-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors 4 hours λ λ sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.					
Expected Course Outcome: 1. Identify and understand the basic automotive parts and the requirement of sensors and their integration in different automotive systems 2. Discus and identify the basics of various Power train sensors 3. Comprehend and analyse various systems like ABS, ESP, TCS, etc for understanding vehicle dynamics and stability. 4. Comprehend the various sensors for vehicle body management, convenience & security systems. 5. Identify various technologies developed for passenger convenience, Air Bag deployment and Seat Belt Tensioner System, etc with the students 6. Recognize various communication standards and protocols followed within the automotive systems. Module:1 Introduction to Automotive Engineering, Automotive Management systems Power-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors 4 hours hours λ sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.					
 Identify and understand the basic automotive parts and the requirement of sensors and their integration in different automotive systems Discus and identify the basics of various Power train sensors Comprehend and analyse various systems like ABS, ESP, TCS, etc for understanding vehicle dynamics and stability. Comprehend the various sensors for vehicle body management, convenience & security systems. Identify various technologies developed for passenger convenience, Air Bag deployment and Seat Belt Tensioner System, etc with the students Recognize various communication standards and protocols followed within the automotive systems. 					
1. Discus and identify the basics of various Power train sensors 3. Comprehend and analyse various systems like ABS, ESP, TCS, etc for understanding vehicle dynamics and stability. 4. Comprehend the various sensors for vehicle body management, convenience & security systems. 5. Identify various technologies developed for passenger convenience, Air Bag deployment and Seat Belt Tensioner System, etc with the students 6. Recognize various communication standards and protocols followed within the automotive systems. Module:1 Introduction to Automotive Engineering, Automotive Management systems Power-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors 4 hours hours λ sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.					
 2. Comprehend and analyse various systems like ABS, ESP, TCS, etc for understanding vehicle dynamics and stability. 4. Comprehend the various sensors for vehicle body management, convenience & security systems. 5. Identify various technologies developed for passenger convenience, Air Bag deployment and Seat Belt Tensioner System, etc with the students 6. Recognize various communication standards and protocols followed within the automotive systems. Module:1 Introduction to Automotive Engineering, Automotive Management systems Power-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors A hours A sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor. 					
dynamics and stability. 4. Comprehend the various sensors for vehicle body management, convenience & security systems. 5. Identify various technologies developed for passenger convenience, Air Bag deployment and Seat Belt Tensioner System, etc with the students 6. Recognize various communication standards and protocols followed within the automotive systems. Module:1 Introduction to Automotive Engineering, Automotive Management systems Power-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors 4 hours λ sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.					
 4. Comprehend the various sensors for vehicle body management, convenience & security systems. 5. Identify various technologies developed for passenger convenience, Air Bag deployment and Seat Belt Tensioner System, etc with the students 6. Recognize various communication standards and protocols followed within the automotive systems. Module:1 Introduction to Automotive Engineering, Automotive Management systems Power-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automotiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors 4 hours λ sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.					
 5. Identify various technologies developed for passenger convenience, Air Bag deployment and Seat Belt Tensioner System, etc with the students 6. Recognize various communication standards and protocols followed within the automotive systems. Module:1 Introduction to Automotive Engineering, Automotive Management systems Power-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automotives, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors A hours A sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.					
Belt Tensioner System, etc with the students 6. Recognize various communication standards and protocols followed within the automotive systems. Module:1 Introduction to Automotive Engineering, Automotive Management systems Power-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors 4 hours λ sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.					
6. Recognize various communication standards and protocols followed within the automotive systems. Module:1 Introduction to Automotive Engineering, Automotive Management systems 4 hours Power-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors 4 hours λ sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.					
Module:1 Introduction to Automotive Engineering, Automotive Management systems 4 hours Power-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors 4 hours λ sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.					
Module:1 Introduction to Automotive Engineering, Automotive Management systems 4 hours Power-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors 4 hours λ sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.					
Module:1Introduction to Automotive Engineering, Automotive Management systems4 hoursPower-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends.4 hoursModule:2Power train Sensors4 hoursλ sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.4					
Module:1Introduction to Automotive Engineering, Automotive Management systems4 hoursPower-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends.4 hoursModule:2Power train Sensors4 hoursλ sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.4					
Automotive Management systems Power-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors 4 hours λ sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.					
Power-train, Combustion Engines, Transmission, Differential Gear, Braking Systems, Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors 4 hours λ sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.					
Introduction to Modern Automotive Systems and need for electronics in Automobiles, Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors 4 hours λ sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.					
Application areas of electronics in the automobiles, Possibilities and challenges in the automotive industry, Enabling technologies and Industry trends. Module:2 Power train Sensors 4 hours λ sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.					
Module:2 Power train Sensors 4 hours λ sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.					
Module:2Power train Sensors4 hours λ sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.4 hours					
Module:2Power train Sensors4 hours λ sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.4 hours					
λ sensors, exhaust temperature sensor, NOx sensor, PM sensor, fuel quality sensor, level sensor, torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.					
torque sensor, speed sensor, mass flow sensor, manifold pressure sensor.					
Module:3 Sensors for Chassis management 4 hours					
Wheel speed sensors/direction sensors, steering position sensor (multi turn), acceleration sensor					
(inertia measurement), brake pneumatic pressure sensor, ABS sensor, electronic stability sensor.					
Modulová Comercia for anticle hoder and de la comercia de la comer					
Viouule:4 Sensors for venicle body management, 0 nours					
Sensors for automotive venicle convenience					
and security systems					
Gas sensors (CO ₂) Temperature/humidity sensor air hag sensor key less entering sensor radar					

parking guide systems, anti-lock braking system, future safety technologies, Vehicle diagnostics and health monitoring, Safety and Reliability, Traction Control, Vehicle dynamics control, Accelerators and tilt sensors for sensing skidding and anti-collision, Anti-collision techniques using ultrasonic Doppler sensors.

Module:5 | Air Bag and Seat Belt Pre tensioner Systems 3 hours Principal Sensor Functions, Distributed Front Air Bag sensing systems, Single-Point Sensing systems, Side-Impact Sensing, and Future Occupant Protection systems.

Module:6 | Passenger Convenience Systems 3 hours Electromechanical Seat, Seat Belt Height, Steering Wheel, and Mirror Adjustments, Central Locking Systems, Tire Pressure Control Systems, Electromechanical Window Drives.

Module:7 | Modern Trends and Technical Solutions 4 hours Enabling Connectivity by Networking:-In vehicle communication standards (CAN & LIN), Telematic solutions, Portable or embedded connectivity- Endorsing Dependability in Drive-bywire systems:- Terminology and concepts, Why by-wire, FLEXRAY, Requirements on cost and dependability, Drive-by-wire case studies- prototype development-future of In vehicle communication.

Module:8	Contemporary issues:	2 hours

Total Lecture hours:	30 hours

Text Book(s)

- Automotive Electrics, Automotive Electronics: Systems & Components, 2014, 5th Edition, 1. BOSCH.
- John Turner, Automotive Sensors, 2010, 1st Edition, Momentum Press, New York. 2

Reference Books

- Automotive Sensors Handbook, 8th Edition, 2011, BOSCH. 1.
- Jiri Marek, Hans-Peter Trah, Yasutoshi Suzuki, Iwao Yokomori, Sensors for Automotive 2 Technology, 2010, 4th Edition, Wiley, New York.
- Ernest O. Doebelin, "Measurement Systems Application and Design", 2017, 6th Edition, 3 McGraw-Hill, New Delhi.

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

List of Challenging Experiments (Indicative)

Tire Pressure Monitoring Systems uses a wireless radio frequency signal to 1. 6 hours communicate the tire pressure from sensors inside the wheel to a receiver centrally located in the vehicle. The sensors are powered by batteries that eventually wear out, so the amplitude of the transmitted signal is minimized in order to conserve power. Unfortunately, this has resulted in unreliable communication and it is not uncommon to lose communication with the sensors resulting in a false low-pressure indication. Develop a better way of sending RF signals from the wheels to the vehicle to conserve power and improve communication. 2 After studying the characteristics of various types of thermal sensors, 6 hours develop a suitable system which can measure the automotive engine temperature in a non-contact method with an accuracy of $\pm -0.5^{\circ}$ C.

3	Anti-collision system is preferred	for all the automo	tive syster	ns to improve	6 hours	
	the passenger safety. Using the I	Joppier effect as		ion principie,		
	develop an anti-collision system us	sing ultrasonic trai	isceivers.			
4	In certain situations, airbag trigg	ering in the autor	notive sys	tems must be	6 hours	
	prevented when deployment wou	uld be injurious	to one of	the vehicle's		
occupants (for instance, if a child is sitting in the seat next to the driver, or a						
child's safety seat is fitted). Develop an intelligent occupant classification						
system which can classify based on distance between hip bones, occupied						
surface, profile structure and dynamic response.						
5.	5. Develop an intelligent inertial navigation system using motion sensors 6 hours					
	(accelerometers), rotation sensors (gyroscopes), and magnetic sensors					
	(magnetometers), to continuously calculate the position, orientation, and					
	velocity (direction and speed of movement) of an automotive system.					
Total Laboratory Hours					30 hours	
Mo	Mode of assessment: Continuous Assessment and FAT					
Rec	commended by Board of Studies	28.01.2017				
App	proved by Academic Council	No. 47	Date	05-10-2017		

Course codeCourse titleLTPJC								
ECE6007	2	0 2	0	3				
ECE6007BIOMEDICAL SENSORS20202Prerequisite:ECE5001-Principles of SensorsSyllabus version								
Course Objectives	•		1.1					
1 Introduce th	: a students to different types of electrodes used in his potenti	al rac	ordin	T				
2 To facilitate	the students in recognizing electrode configuration and issue	ai iec ies re	lated y	s vith	the			
electrode re	lative motions.	.05 10	iutou					
3. To expose needed to b	3. To expose the students to perceive the need for bio amplifiers and their characteristics needed to be design for various bandwidth and frequency response.							
4. Review the several inst	cardiac, respiratory and muscular physiological systems. Surprise used to acquire signals from living systems.	udy t	he des	signs	of			
5. To proclain	the conception in detection of chemical and biomolecules.							
6. Students w analysis.	ill be expedient in applying specific radiology methods	in dia	agnost	ics a	and			
7. The student	s also understand the theory behind the sound and tissue interapeutic application.	ractic	on, and	l able	e to			
Expected Course	Outcome:							
1. Realize the	need for reusable electrodes and understands the method of i	mple	menta	tion.				
2. Will be far	niliar with electrode placements for various biopotential re	cordi	ng as	per	the			
voltage rang	ge.							
3. Capable of with noises	3. Capable of understanding the design principles of bio-amplifiers and drawback related with noises.							
4. Gain knowl using appro	edge for implementing different types of physiological parameters priate sensors.	neter	measu	ırem	ent			
5. Able to dis	ccuss, develop and apply site specific chemical sensors d for typical issues	esign	and i	mag	ing			
a. To d	isseminate the design knowledge in analyzing in-vivo ailments							
Module:1 Biopo	tential Electrodes	1 /	1 1	<u>3 ho</u>	urs			
Origin of bio pote	ntial and its propagation. Electrode-electrolyte interface, e	lectro)de-sk	1n				
alectrodes Types of	potential, impedance, polarization effects of electrode $-n$	onpol	arizac	ole Dircu	ita			
Recording problem	s - measurement with two electrodes	equiv		Incu	115.			
Module:2 EEG,	EMG & ECG			3 ho	urs			
Bio signal characte	ristics – frequency and amplitude ranges. ECG – Einthoven	s tria	ngle, s	stand	ard			
12 lead system. E	EG – 10-20 electrode system, unipolar, bipolar and aver	age	mode.	EM	G–			
unipolar and bipol	ar mode. EEG- procedure, signal artefacts, signal analysis	, evo	ked po	otent	ial,			
EMG- procedure an	nd signal analysis, Nerve conduction study							
Module:3 Bio A	mplifiers			<u>3 ho</u>	urs			
Need for bio-amp ECG amplifier. E isolated DC ampli	lifier - single ended bio-amplifier, differential bio-amplifier and pass filtering, isolation amplifiers – transformer and fier and AC carrier amplifier. Chopper amplifier. Power line	 rig optication inter 	ht leg al isol ferenc	driv atior e	en 1 -			
	- •• •							

Mo	dule:4	Physical Sensors in Biomedicine		8 hours			
Ten	nperatur	e measurement: core temperature,-surface tem	perature- inv	asive. Blood flow			
mea	asuremer	nt: skin blood- hot film anemometer- Doppler som	ography- elect	tromagnetic sensor -			
blo	od press	sure measurement: noninvasive- hemodynamic i	nvasive. Spire	ometry- sensors for			
pres	ssure pul	lses and movement- ocular pressure sensor- acoust	ic sensors in h	nearing aid, in blood			
flov	v measu	rement, sensors for bio-magnetism, tactile senso	ors for artificia	al limbs, sensors in			
oph	thalmos	copy, artificial retina.					
Mo	dule:5	Sensors for Chemical Quantities in		3 hours			
		Biomedicine					
Blo	od gas a	and pH sensor, electrochemical sensor, transcutar	neous, optical	fiber sensor, mass			
spe	ctromete	r, optical oximetry, pulseoximetry, earoximetry.					
Mo	dule:6	Detectors in Radiology		4 hours			
X r	ay imagi	ing with sensors, detectors in nuclear radiology, m	agnetic field s	ensors for imaging,			
mag	gnetic re	sonance imaging.					
Mo	dule:7	Sound in Medicine		4 hours			
Inte	eraction (of Ultrasound with matter; Cavitations, Reflection,	Transmission-	Scanning systems –			
Art	efacts- U	Iltrasound- Doppler-Double Doppler shift-Clinical A	Applications				
Mo	dule:8	Contemporary issues:		2 hours			
		Total Lecture hours:	30 hours				
Тех	t Book(s)					
1	IGW	Tehster I G Webster "Medical Instrumentation: At	onlication and	Design" John Wiley			
1.	& Sons	Inc. New York, 4 th Edition, 2015	phounton and	Design , John Whey			
Ref	erence l	Sooks					
1	Khandr	wr R S "Handbook of Biomedical Instrumentation	n" Tata McGr	aw-Hill New Delhi			
1.	3 rd edit	ion 2014					
2	John F	nderle Joseph Bronzino, "Introduction to Biomedi	cal Engineerin	a" Academic Press			
2	3 rd Edit	ion 2011		g, Academic Press,			
3	Myer H	Kutz "Biomedical Engineering and Design Ha	undbook Volu	ıme 1. Volume I.			
5	Biomed	lical Engineering Fundamentals" McGraw Hill Pub	lisher USA 2	nd Edition 2009			
Mo	de of Fv	aluation: CAT / Assignment / Ouiz / FAT / Project	Seminar	Edition 2009.			
Lis	t of Cha	llenging Experiments (Indicative)	Semina				
1	Pulse o	wimetry can be a useful aid in decision-making	vervone's ovv	gen 6 hours			
1.	saturati	on fluctuates due to changing activities and health	condition Des	gen 0 nours			
	a circu	it to determine oxygen range and record each m	easurement in	the			
	activity	$1 \log \Lambda \text{ SpO2}$ of greater than 95% is generally	considered to	he			
	normal	If $SnO2$ of 92% or less (at sea level) indicate the	condition using	t an			
	alarm	Use two led source and two detectors to measure	the saturation	s all			
		in the test subject	and saturation				
2	The even	arall sim of this avariant is to build and test	on ECC omn ¹²	fier 6 hours			
2	and stu	dy its noise interference problem. The signals she	an ECO ampli Juld be display	and Uniouis			
	anu siu	and processed. Modify the instrumentation ampli-	fier to implor	yeu,			
	DC off	and processed. Would use instrumentation ampli-	common m	ode			
	DC offset cancellation and driven-right leg circuit to reduce common-mode						

	voltage due to interference and a Also, include a low-pass filter that	high voltage. amplifier.					
3	Impedance plethysmography is a volumes in the body, based on the body surface. Determine the cha volume which in turn changes the the volume conductor. Measure at system.	anging tissue pedance at the e to the flow ced current in using a DAQ	6 hours				
4	4 Strain gauge plethysmography were used prospectively to study the hemodynamic changes. Design a strain gauges based plethysmograph in which the strain gauges should be designed so that the active portion of the gauge is the same as the circumference of the limb or digit being measured This allows the plethysmograph to relate resistance change to volume change. The size for limb strain gauges should be 1-3 cm less that the circumference of the limb so they will stretch slightly. Digits strain gauge should be 0.5 cm less than the circumference of the digit. Analyze the						
5.	Design a method to analysis liqui measurement technique(Laser/Ultr velocity using LabView	-contact dynamic flow	6 hours				
			Total Lab	oratory Hours	30 hours		
Mo	de of assessment: Continuous Asses	ssment and FAT					
Rec	Recommended by Board of Studies 28.01.2017						
Ap	proved by Academic Council	No. 47	Date	05-10-2017			

Course code	Course title	L	Τ	P	J	C			
ECE6008	BIO SENSORS	2	0	0	4	3			
Prerequisite:	ECE5001-Principles of Sensors	S	yllal	ous v	ersi	on			
				1.0					
Course Objectives		1	. 1			6			
I. To introdu	ice the students to recently developed and advance	d	tech	nıqu	es	tor			
immobilization of biomolecules.									
2. To perform a measurement technique, estimate the uncertainty due to non-specific binding,									
and express methods to minimize the issues.									
3. To proclam	3. To proclaim the conception of ion selective and enzyme stabilized glass electrodes for the								
4 Students wi	4 Students will be expedient in applying specific interaction methods in the labeled and non								
4. Students will be expedient in apprying specific interaction methods in the labeled and non- labeled molecular recognition									
Expected Course	Outcome:								
1. Will be far	niliar with electrode placements for various biopotential re	cor	ding	g as j	ber 1	the			
voltage rang	ge.		-	-	-				
2. Capable of	understanding the design principles of bio-amplifiers and	l dr	rawt	ack	relat	ted			
with noises									
3. Gain knowl	edge for implementing different types of physiological parar	net	er m	easu	reme	ent			
using appro	priate sensors.								
4. Able to dis	scuss, develop and apply site specific chemical sensors de	esig	gn a	nd 11	nagi	ng			
techniques	for typical issues								
J. TO dissemina	are the design knowledge in analyzing in-vivo anments								
Module:1 Intro	luction to sensor and transducers			2	hou	urs			
Enzyme electrodes	, Immobilization methods, entrapments of biomolecules,	se	ensir	ng el	eme	nt			
design consideration	ns								
Module:2 Chara	acteristics of Biosensors			4	hou	urs			
Electrochemical, o	ptical, potentiometric, piezoelectric, voltametric, galvanom	letri	ic C	HEN	1FE'	Γs,			
ISFETS, FET based	1 Biosensors								
Modulo.2 Ame	romotric Biosonsor			/	har	IFC			
Amperometric en	zyme electrodes: substrate and enzyme activity. Dete	oti	on	H mode		nd			
transduction metho	d mediated and modified electrodes commercially available	bi	osen	sor		la			
	d, inculated and modified electrodes, commerciarly available		USCI	501.					
Module:4 Poten	tiometric Biosensor			4	ho	urs			
pH glass and jor	selective electrodes, solid state and redox electrodes		Jas	elect	rode	es.			
commercially avail	able biosensors	, 2	>***		2000	,			
Module:5 Optic	Module:5Optical Biosensor4 hours								
Fiber optic biosen	sor, Fluorophore and chromophore based biosensor, Bio	lurr	nines	scenc	e a	nd			
chemiluminescence	e based biosensors								
Module:6 Immu	inosensors			4	hou	urs			
Non labled and la	bled immunosensors, Microbial Biosensors: electrochemica	al, j	phot	omic	robi	ial,			

Microbial thermistor. Application of microbial biosensors in glucose, ammonia, acetic acid, alcohol, BOD, methane sensing								
Mo	dule:7	Hybrid Biosensor, In Viv Commercial Biosensor	vo Biosensor and		6 hours			
Hył Glu	orid bios	sensor, O_2 , CO_2 , blood ga	s, pH sensing, en ant and environme	vironmer ental Bio	ntal monito sensor	ring, Glucose, hCG,		
010	itumato, (cancer detection, and point						
Mo	Module:8Contemporary issues:2 hours							
				•				
			Total Lecture ho	ours: 3) hours			
Tex	kt Book(s)						
1.	Brian H	R Eggins, Chemical sensor	s and Biosensors,	2010, 1	st edition, J	ohn Wiley sons Ltd,		
	New Y	ork.						
Ref	erence l	Books						
1.	Loic J	Blum and Coulet, "Bioser	nsor: Principle an	d applica	ations", 201	10, 2 nd edition, CRC		
	Press, F	Florida.	_					
2	Janata,	Jiri,"Principles of Chemica	l sensors", 2014, 2	nd edition	n, Springer,	New York.		
3	Florine	l-Gabriel Banica "Chemica	l Sensors and Bios	sensors:]	Fundamenta	als and Applications"		
	2012, 1	st edition, Wiley-Blackwell	, New Jersey.					
Mo	de of Ev	aluation: CAT / Assignmen	t / Quiz / FAT / Pi	oject / S	eminar			
Rec	commend	led by Board of Studies	28.01.2017					
App	proved b	y Academic Council	No. 47	Date	05-10-20)17		

Course cod	e	Course title	L	4	ΓΡ	J	C
ECE60	09	ENVIRONMENTAL SENSORS	2		0 0	4	3
Prerequisit	e:	ECE5001-Principles of Sensors	S	yll	abus	versi	ion
					1.0	1	
Course Obj	jectives						
1. To ii	mprove	the understanding of the students about the sources of poll	utio	n ir	n air, v	vater	•
and	soil and	I the impact of these sources on the environment and health	and	l to	devel	op th	ne
skill	s requir	red to combat the pollution in three environmental compart	nent	ts a	ir, wa	ter ai	nd
soil							
2. To p	orovide	an understanding of water quality parameters, their propert	ies a	ind	the		
meas	measurement techniques and impart knowledge on the various chemical pollutants in						
wate	er, their	properties and the measuring techniques.	1 0				
3. To p	provide	an overview on basic environmental engineering in the fiel	d of	wa	ter an	d wa	iste
wate	er treatn	nent.		c	• 11		
4. 10 p	provide	students with a scientific and technical background in sour	ces c) a	ir poli	utan	ts,
desid	proper	ties and measurement techniques and improve the skills of	stua	lent	.s m		
uesiş	gning se	ensors for exhaust gas treatment.					
Expected C	'ourse (Outcome					
1 Gain	under	standing of the basic concepts of radiation air pollution and	l its	effe	ects of	<u> </u>	
hum	an and	ecosystem health	. 105	UII			
2. List	the mai	in sources of pollutants in water, air and soil and their effect	ts or	a hi	uman 1	healt	h.
welf	are and	the environment					,
3. Criti	cally a	nalyse the environmental sensors, and suggest improvemen	ts to	the	eir des	ign a	and
func	tionalit	y.				-	
4. Disc	uss sev	eral types of water pollution, air pollution problems and th	e che	emi	stry a	nd	
phys	sics affe	ecting them.					
5. Eval	uate pr	ocess design criteria for different water treatment technolog	çies				
6. Deve	elop an	d create analytical designing of novel prototype models for	var	iou	S		
envi	ronmen	ital parameter sensing systems.					
Module 1	Basic	s of Radiation and its Measurement 4 hours					
Introduction	n- Hun	an Toxicology Ecotoxicology Water and air pollution	SOI	urco	es Ba	sics	of
Radiation:	decav	nucleus nuclear reaction statistics and interaction wi	h m	natt	er R	adiat	ion
Protection:	sources	doses, contamination, protection, shields, Sensors; gas co	unte	ers.	ion cl	amh	ber.
proportional	l and	GM-counter, Scintillators, Semiconductors, Spectral n	ethc)ds	of a	nalv	sis:
absorption s	pectros	copy, Beer's law.	. 20				
· · ·	-	••					
Module:2	Measu	urement techniques for water quality 4 hours					
Quality of	water:	Standards of raw & treated water, sources of water &	heir	na	tural	quali	ity,
effects of wa	ater qu	ality. Water quality parameters: Thermal conductivity, det	ctor	:s, (Opacit	у	
monitors, pl	H analy	sers & their application, conductivity analyzers & their app	licat	tior	1.		
Module:3	Meas	urement techniques for chemical 4 hours					
Introduct:	pollut	ants		1		ter	
Introduction	n-Meas	urement techniques for chemical pollutants - chloride - su	pnic	ies	- nitra	ttes a	and
nitrites - phosphates - fluoride - phenolic compounds. Water treatment: Requirement of water							

	treatment facilities, process design, Sensors for soil and ground water pollution.						
Module:4	Waste water treatment			4 hours			
Automati measurem of waste v	e waste water sampling, op ent techniques, Instrumentat vater treatment plants.	timum waste wate ion set up for was	er sam te wate	pling locatio er treatment p	ns, and waste water plant, Latest methods		
Module:5	Air pollution & Its sourc	es		4 hours			
Air pollu	ion: its effect on environme	nt. its classification	n. mete	eorological fa	ctors responsible for		
pollution, method of sampling and measurement, air pollution from thermal power plant, their characteristics and control.							
Modulo:6	Magguramant tachniqua	for air quality		1 hours			
Monguron	ant techniques for particula	to mottor in oir	nooifi		Ilutanta analysis and		
Measurement techniques for particulate matter in air. Specific gaseous pollutants analysis and control- Measurement of oxides of sulphur, oxides of nitrogen unburnt hydrocarbons, carbon-monoxide, dust mist and fog.							
Modulor	Songorg in oxhoust gog tr	actmont		1 hours			
Frains of	Sensors in exhaust gas th	eatment		4 nours	te Erhoust sonsons		
and Engi Exhaust s Sensors, C	ne control, Emission test c ensors for OBD, Control Se Dxygen Sensors.	ycles, On-board nsors: Hydro-Carb	diagno oon Sei	se (OBD): 1 nsors, NOx-S	Diagnose Strategies, Sensors, Temperature		
Module:8	Contemporary issues:				2 hours		
	- -						
		Total Lecture ho	urs:	30 hours			
Text Boo	κ (s)			50 110013			
Text Boo 1. Karl 2 nd E	ا (s) 3. Schnelle, Jr., Charles A. B dition, CRC Press, New Yorl	rown, "Air Pollutio	on Con	trol technolo	gy Handbook", 2015,		
Text Boo1.Karl 2 nd E2Nath Pollu	Image: constraint of the state of the s	rown, "Air Pollutio «. nental Technology: on, Prentice Hall Ir	on Con Water India, N	trol technolo Supply, Wa ew Delhi.	gy Handbook", 2015, ste Management, and		
Text Boo1.Karl2 nd E2NathPolluReference	Image: constraint of the second state of the second sta	rown, "Air Pollutio «. hental Technology: hon, Prentice Hall Ir	on Con Water Idia, N	trol technolo Supply, Wa ew Delhi.	gy Handbook", 2015, ste Management, and		
Text Boo1.Karl 2 nd E2Nath PolluReference1.Jame 1 st Ec	Image: constraint of the state in the s	rown, "Air Pollutio a. Iental Technology: Ion, Prentice Hall Ir Insing: Analytical T	On Con Water Idia, N Fechnic	trol technolo Supply, Wa ew Delhi. ques for Earth	gy Handbook", 2015, ste Management, and n Observation", 2012,		
Text Boo1.Karl 2 nd E2Nath PolluReference1.Jame 1 st Ec2M. C Monitian	I x(s) B. Schnelle, Jr., Charles A. B dition, CRC Press, New Yorl unson Jerry, "Basic Environmention Control", 2014, 6 th Edition c Books s K. Lein, "Environmental Se ition, Springer, New York. ampbell, "Sensor Systems for toring", 2011, 1 st Edition, Springer	rown, "Air Pollutio c. nental Technology: on, Prentice Hall Ir nsing: Analytical 7 • Environmental M ringer, New York.	on Con Water Idia, N Fechnic	trol technolo Supply, Wa ew Delhi. ques for Earth ng: Volume 7	gy Handbook", 2015, ste Management, and n Observation", 2012, Fwo: Environmental		
Text Boo1.Karl 2 nd E2Nath PolluReference1.Jame 1 st Ec2M. C Moni	Image: constraint of the systems for the systems fo	rown, "Air Pollution c. mental Technology: on, Prentice Hall Ir nsing: Analytical T r Environmental M ringer, New York.	on Con Waten India, N Fechnic	trol technolo Supply, Wa ew Delhi. ques for Earth ng: Volume	gy Handbook", 2015, ste Management, and n Observation", 2012, Fwo: Environmental		
Text Bool1.Karl 2^{nd} E2Nathan PolluReference1.Jame 1^{st} Ec2M. C MonitMode of H	Image: Construct of the second state of the second stat	rown, "Air Pollutio c. nental Technology: on, Prentice Hall Ir nsing: Analytical T Environmental M ringer, New York.	on Con Water ndia, N Fechnic onitori	trol technolo Supply, Wa ew Delhi. ques for Earth ng: Volume T Seminar	gy Handbook", 2015, ste Management, and n Observation", 2012, Fwo: Environmental		
Text Bool1.Karl 2 nd E2Nath PolluReference1.Jame 1 st Ec2M. C MoniMode of I Recommender	Image: constraint of the second systems of the second systems for the second systems for the top the second systems for the top the second systems for the second systems for the second systems for the second systems for the top the second systems for the second systems for the second systems for the top the second systems for the second systems for the top the t	rown, "Air Pollutio c. nental Technology: on, Prentice Hall Ir nsing: Analytical T Environmental M tinger, New York. t / Quiz / FAT / Pr 28.01.2017	on Con Waten adia, N Fechnic onitori	trol technolo Supply, Wa ew Delhi. ques for Earth ng: Volume S Seminar	gy Handbook", 2015, ste Management, and n Observation", 2012, Fwo: Environmental		

Course code	Course title		L	T	P	J	C	
ECE6029	INTEGRATED WAVE OPTICS	Ĺ	3	0		0	3	
Prerequisite:	ECE5001-Principles of Sensors	_	Syl	lla	bus	vers	ion	
Course Objective							1.0	
1 To introduce	b:	. +h			dan	atond	lina	
1. 10 Introduc	require field	; un	len	un	der	stand	ing	
2 To predict i	towing field.	hor	ł du		ha	inton	oity	
2. To predict	to	Jeu	i uu		.110 1	men	Sity	
3 To estimate	the symmetry charge distribution ontical parameters of	۰ را	vari	ior	is n	onlir	lear	
crystals an	d its application in optical switching	/1	vari	100	15 11	omm	icai	
4 To analyses	4. To analyses and decide the process flow conditions and steps involved for different							
polymers w	ith appropriate optical characteristic for polymer wayeguid	es				C		
F								
Expected Course	Outcome:							
1. Attainment	of basic idea in integrated optical waveguides and optical	dev	vice	es e	emp	loyed	d in	
all optical r	ietworks.				1	5		
2. Will be conv	versance in nonlinearities introduced by high power and compete	ent	eno	ug	h to	mitig	gate	
the drawbac	ks.			Ū			-	
3. Entrust the	characteristics of a suitable materials for the integrated	l d	levi	ce	in	a gi	ven	
application								
4. Identify an	d apply the knowledge in designing all optical networks	dev	vice	2S	mor	e		
effectively	in optical communication.							
5. Comprehen	d the fabrication process involved in designing substrate b	ase	ed o	opt	ical	devi	ces	
with variou	s doping materials				c			
6. Will be awa	are of different polymers and their chemical, optical charact	eri	stic	:s t	to fo	ormu	late	
miniaturize	a optical devices.							
Module 1 Theor	ry of Ontical Waveguides					5 ho	nirs	
Wave theory of or	ptical waveguides formation of guided modes. Slah wav	em	uide	<u> </u>	Rec	tang	ular	
waveguide Radiat	ion fields from waveguide. Effective index method Marca	atil	i's r	ne.	tho	d Be	eam	
propagation metho	d.		151		inov	а, вс	,uiii	
propugation metalo								
Module:2 Theor	rv of Coupled modes					6 ho	ours	
Coupled mode the	ory, co-directional coupler, coupling coefficient. Loss in	opt	ical	l v	vave	eguid	es.	
couplers using plan	har waveguides. Two mode coupler-symmetrical, asymmetric	ica	ıl tv	vpe	s. fi	ber-s	slab	
coupler, multimode	e coupler, grating assisted mode coupler.		5	1	,			
1 /								
Module:3 Nonli	nearity in waveguides					7 ho	ours	
Nonlinear optics,	Intensity induced refractive index. Optical susceptibility.	Or	otica	al	Ker	r eff	ect.	
Simulated Raman	effect, Simulated Brillouin, EDFA, Second Harmonic ger	ner	atic	on,	Fo	ur w	ave	
mixing.	mixing.							
Module:4 Optic	Module:4Optical Modulators6 hours							
Phase modulator,	intensity modulator, Electro-optic effects, single wavegu	ide	m	od	ulat	or, d	lual	
channel waveguide	modulator, Acousto-optic modulator, Raman-Nath modu	lato	or, I	Br	agg	type		
modulator, Switchi	ng characteristics of Modulators.							

Mo	dule:5	Materials properties for	Modulators			6 hours		
LiN	IbO3 - S	toichiometry, Mechanical,	Electrical & Pyroe	lectrica	l, Thermal ar	nd Optical properties,		
Ta ₂	O_5 , Si ₃ N	N4 waveguides, LiNbO3 Mo	dulator - Mach-ze	nder typ	pe modulator.			
Mo	dule:6	Fabrication of SOI wave	guide			6 hours		
Silic dop	con on I ed SOI y	nsulator waveguides, Silico waveguide and applications	on photonics, SOI	wavegu	iide fabricatio	on, Thallium, Indium		
Mo	dule:7	Polymer based waveguid	le			7 hours		
Poly	Polymer based waveguide, materials, properties, fabrication process of polymer based waveguide,							
Poly	ymer ba	sed optical components - P	assive, Active pol	ymer de	evices, Ring	Resonator, structure,		
theo	ory, Filte	er using Ring Resonator.						
Mo	dule:8	Contemporary issues:				2 hours		
						1		
			Total Lecture he	ours:	30 hours			
	4 D 1 (
1 ex	t BOOK(S)	le of Ortherl We		" 2010 2 ⁿ			
1.	Raisun Press I	ari Okamolo, Fundamenta	als of Optical wa	veguide	es , 2010, 2	Edition, Academic		
Ref	erence l	Books						
1	Xinge	un Colin Tong "Advanced	Materials for In	teorateo	d Ontical Wa	aveguides" 2014 1 st		
1.	Editio	n Springer Nature, Switzerl	and.	ie graiet	i opticui iri	100gulues , 2011, 1		
2	Le Ng	guyen Binh, "Guided W	ave Photonics:	Fundan	nentals and	Applications with		
	MATI	LAB", 2016, 1 st Edition, CR	C Press, New Yor	·k.				
3	Rober	t Hunsperger, "Integrated C	Pptics: Theory and	Techno	ology," 2010,	6 th edition, Springer		
	Verlag	g, New York.						
4	Domin	ik G. Rabus, "Integrated H	Ring Resonators:	The C	ompendium"	, 2010, 1^{st} Edition,		
	Springe	er Verlag, Berlin.						
					~ .			
Mod	de of Ev	aluation: CAT / Assignmen	t / Quiz / FAT / P	roject /	Seminar			
Rec	ommend	ted by Board of Studies	28.01.2017			17		
App	proved b	y Academic Council	No. 47	Date	05-10-20	017		

Course code	Course title		L	ГР	J	С	
ECE6030	SIGNAL PROCESSING AND DATA A	2 () 2	0	3		
Prerequisite:	ECE5002-Data Acquisition and Hardwa	re Interfaces	Sylla	abus v	ersi	on	
				1.1			
Course Objective	s:						
1. To introdu	ce the concepts of <i>discrete</i> time signal pro	cessing and the	chara	acteriz	atio	n	
of <i>random</i>	signals.		-				
2. To present	the basic theory of modeling the signals a	and the methods	s of e	stimat	ing t	the	
unknowns	using prediction filters						
3. To provide	a comprehensive understanding on applying	FFT, DCT, and	wavel	let			
techniques for extracting the signal features.							
4. To provide	an overview of analysing big data using inte	lligent technique	es and	an in-	dept	'n	
introductio	n to two main areas of <i>Machine Learning</i> : su	pervised and uns	superv	/ised.			
Expected Course	Outcome:						
1 Apply FFT	DCT wavelet techniques for extracting the feature	res from the big da	nta				
2. Develop alg	orithms that can be used to analyses the real-wor	Id univariate and i	multiv	ariate ti	ime		
series data.							
3. Design an a	pproach to leverage data using the steps in the ma	achine learning pro	ocess				
4. Understand	and apply both supervised and unsupervised clas	sification methods	s to det	tect and	1		
characterize	patterns in real-world data.		1	:			
5. Estimate the	the methods of visualization and analysis of hig	ARMA models and	a pred	iction I	mers	5.	
0. Onderstand	the methods of visualization and analysis of org	lata.					
Module:1 Discr	ete Random Signal Processing			4	hoi	urs	
Random Processes	s. Ensemble Average, Gaussian Process.	Multi variate G	ausss	ian Pı	oces	ss.	
Stationary process	, Autocorrelation, Auto Covariance, Ergodic	city, White noise	, Pow	ver Spe	ectru	m,	
Filtering of Rando	m Process	•					
Module:2 Signa	l Modeling			4	l hou	urs	
ARMA, AR, MA	Models. Wiener filter, Linear prediction, Kal	man Filter.					
		Γ					
Module:3 Featu	ire extraction			4	hou	urs	
FFT, Power spectr	um, DCT, filter banks, Wavelet, Wavelet Pa	ckets, Cepstrum					
Modulo:4 Time	corrige analyzing				l hai	ING	
Docio opolygia Ur	series analysis	ima cariac analy		en ata	tion		
time series	invariate time series analysis, Multivariate t	inte series anary	sis, n	on sta	tiona	ary	
time series.							
Module:5 Redu	ction of dimensionality			4	l hoi	irs	
Bayesian decision	Linear discrimination Principal Compo	l nent analysis S	VD	Inden	ende	nt	
Component Analys	sis.	ient unarysis, s	, <i>n</i> D,	macp	ciiuc	int	
Module:6 Mach	ine learning			4	l hou	urs	
Supervised learnin	g, generative algorithms, Support Vector m	achines, Unsupe	ervise	d learr	ning.	Κ	
means clustering, I	Neural network (SOM, ART), Expectation m	aximization.			6,		
	· •						
					har	ire	

Intr ana	oductior lysis, lin	Big data analytics, visu ear and logistic regression,	alization and dat decision tree.	a exp	loration, basi	c and	d intermediate
Mo	dule:8	Contemporary issues:					2 hours
		¥ V					
			Total Lecture ho	ours:	30 hours		
Tex	kt Book(s)					
1.	J. G. I algorith	Proakis, DG. Manolakis and applications", 2012	and D. Sharma, 2, 4 th ed., Person ed	"Digit lucatio	tal signal pro n, USA	ocessi	ing principles,
2	Sophoc	les J. Orfanidis, "Inroducti	on to signal Proce	ssing"	$2010, 2^{nd}$ ed.	, Prei	ntice Hall, New
	Delhi I	ndia.					
Ref	ference l	Books					and and
1.	Oppend	iem V. A.V and Schaffer	R. W, "Discrete- t	ime si	gnal Processir	1g", 2	2014, 3 rd ed.,
2	Thomas A Bunkler "Data Analytics: Models and Algorithms for Intelligent Data						
2	Analys	is", 2016, 2 nd ed., Springer	Verlag, UK	ilu Al	goritiniis 101	me	ingent Data
3	Kevin	P. Murphy, "Machine Lea	rning: A Probabil	istic F	Perspective" 20	012,	1 st ed., MIT
	Press, U	JSA					
Mo	de of Ev	aluation: CAT / Assignmen	t / Quiz / FAT / Pr	oject /	Seminar		
Lis	t of Cha	llenging Experiments (Inc	licative)				
1.	Design	and implementation of Wie	ener filter and Kalr	nan fil	ter.		6 hours
2	Design (speech	and implementation of filte a, audio).	er banks and wavel	ets for	random proce	ess	6 hours
3	Design Single	and implementation of Prin Value Decomposition (SVI	ncipal Component . D).	Analy	sis (PCA) and		6 hours
4	Design recogni	an expert system for simple tion, face recognition).	e application (spee	ch reco	ognition, speal	ker	6 hours
5.	Consid analytic	er a real time data available c system to determine the av	in college campus verage, trend and p	and d	evelop a data		6 hours
		•	1	Total	Laboratory Ho	ours	30 hours
Mo	de of ass	essment: Continuous Asses	ssment and FAT				
Rec	commend	led by Board of Studies	28.01.2017				
Ap	proved b	v Academic Council	No. 47	Date	05-10-20	17	

1

Course cod	le	Course title	L	Τ	Р	JC					
MEE5050		Product Design, Management Techniques and Entrepreneurship	3	0	0	4 4					
Prerequis	site:	Nil	Sylla	bus	vei	rsion					
						1.0					
Course Ob	jectives										
Introduced t	to new j	product design concepts									
Exposed to	the con	cept of economic feasibility before the product design									
Study the m	anagen	ient of skills required for setting up small business									
Expected C	Course	Outcome:									
1. Design the new product with concept development process											
2. Ana	lyze the	e manufacturing cost of new product									
3. Stud	ly the eq	conomic feasibility of product development projects									
4. App	ly the n	nanagement techniques for small businesses									
5. Dev	elop the	e skills and characteristics for successful entrepreneur									
6. Eval	6. Evaluate the project of new businesses										
Modulo 1	Madadad Davier										
Concept ger	rotion	Droduct Architecture Inductrial Design Process Manage	/ mont o	f In	duo	trial					
design Proce	eration	- Flouuce Alchitectule - Industrial Design Flocess - Manage	et speci	п ш fica	tion	ulai					
design 110cc		Assessing the quarty of industrial Design - Establishing the produ	ict speer	nca	uon	•					
Module:2	Prod	luct Development	8	ho	urs						
Criteria for s	selection	n of product – Product development process - Design for Manufa	icture -	Esti	mat	e the					
manufacturi	ing cost	- Reduce the support cost – Prototyping									
	0										
Module:3	Produ	ict Economic Feasibility	6	ho	urs						
Elements of	f Econo	omic analysis									
	T										
Module:4	Mana	agement Techniques	7	ho	urs						
Technology	Manag	gement – Scientific Management- Development of Manager	nent -P	rinc	cipl	es of					
Managemen	t - Funct	tions of management – planning - organization									
Madulas	Entr	annon aurial Compotance	7	ha							
Monogomon	t by ob	vigetive SWOT englysic Enterprise Descurse planning and sur	/	no	urs						
Wanagemen	t by ot	jective - 5 w O1 analysis - Enterprise Resource plaining and sup	prycha								
Module:6	Entre	nreneurshin as a career	3	ho	irs						
Personality	Charac	teristics of a successful Entrepreneur- Knowledge and ski	ll requi	red	fo	r an					
Entrepreneu	ir.	of a successful Endepreneur Throwledge and ski			101						
L											
Module:7	Mana	agement of Small Business	5	ho	urs						
Pre feasibilit	y study	Ownership-budgeting - project profile preparation - Feasibility	Report	orep	arat	ion-					
Evaluation C	Criteria (• • • • • •		•							
Module:8	Cont	temporary issues:	2	ho	urs						

 # Mode: Flipped Class Room , [Lecture to be video taped], Use of physical and computer models to lecture, and Min of 2 lecture. Project : Student need to prepare a report on the product design and product economic feasibility and market potentiality. 									
			Total Lecture ho	ours:	45 hours				
Text Book(s)									
1.	1. Karal, T.Ulrich, Steven.D.Eppinger,-Product Design and Developmentl, McGraw- Hill, 2008.								
Ref	erence l	Books							
1.	H.Koo	ontz and Cyril O Donnell, -E	essentials of manag	gement	I, McGraw Hil	ll, 2010.			
2	Robert	D.Hisrich, Michael P Peters	s, -Entrepreneurshi	p∥ Mc0	Graw Hill, 200	9			
3	Stephe	en R.Rosenthal, -Effective Pa	roduct Design and	Develo	opment: How	to cut lead time and			
	increas	e customer satisfaction , Mc	Graw-Hill Profess	sional					
Mo	de of Ev	aluation: CAT / Assignmen	t / Quiz / FAT / Pr	oject /	Seminar				
Rec	commend	led by Board of Studies	28.01.2017						
Ap	proved b	y Academic Council	No. 47	Date	05-10-20	17			

Γ