

SCHOOL OF ELECTRONICS ENGINEERING

M. Tech Communication Engineering

(M.Tech MCE)

Curriculum (2018-2019 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

To be a leader by imparting in-depth knowledge in Electronics Engineering, nurturing engineers, technologists and researchers of highest competence, who would engage in sustainable development to cater the global needs of industry and society.

MISSION STATEMENT OF THE SCHOOL OF ELECTRONICS ENGINEERING

- Create and maintain an environment to excel in teaching, learning and applied research in the fields of electronics, communication engineering and allied disciplines which pioneer for sustainable growth.
- Equip our students with necessary knowledge and skills which enable them to be lifelong learners to solve practical problems and to improve the quality of human life.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems

2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry

3. Graduates will function in their profession with social awareness and responsibility

4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country

5. Graduates will be successful in pursuing higher studies in engineering or management

6. Graduates will pursue career paths in teaching or research

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_02: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment

PO_03: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information

PO_04: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice

PO_05: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems

PO_06: Having adaptive thinking and adaptability in relation to environmental context and sustainable development

PO_07: Having a clear understanding of professional and ethical responsibility

PO_08: Having a good cognitive load management skills related to project management and finance

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (Communication Engineering) programme, graduates will be able to

- PSO1: Apply advanced concepts of Communication Engineering to design and develop more efficient next generation communication systems.
- PSO2: Use modern technologies in both hardware, software to solve real-world multidisciplinary problems
- PSO3: Independently carry out research on diverse communication strategies to address practical problems and present a substantial technical report.

CREDIT STRUCTURE

Category-wise Credit distribution

Category	Credits
University core (UC)	27
Programme core (PC)	19
Programme elective (PE)	18
University elective (UE)	06
Bridge course (BC)	-
Total credits	70

DETAILED CURRICULUM

University Core

S. No	Course Code	Course title	L	Т	Р	J	C
1	MAT 5006	Mathematics for Communication Engineering	3	0	0	0	3
2	ENG5001	Fundamentals of Communication Skills	0	0	2	0	1
	ENG5002	Professional and Communication Skills	0	0	2	0	1
		(OR)					
	GER 5001	Deutsch fuer Anfaenger	2	0	0	0	2
3	STS5001	Soft Skills					2
	STS5002	Soft Skills	-	-	-	-	2
4	SET5001	SET Projects					4
	SET5002	SET Projects	-	-	-	-	4
5	ECE 6099	Master's Thesis	-	-	-	-	16
	Total Credits	1	1	1	1	1	27

M. Tech Communication Engineering

Programme Core

S. No.	Course Code	Course title	L	Т	Р	J	С
1.	ECE 5005	Advances in Wireless Networks	2	0	2	4	4
2.	ECE 5010	Advanced Digital Communication	2	0	2	4	4

3.	ECE 5011	Advanced Digital Signal Processing	2	0	2	4	4
4.	ECE 5012	Advanced Antenna Engineering	3	0	2	0	4
5.	ECE 5013	Fiber Optic Communication and Networks	2	0	2	0	3
			Total Cr	edits	1		19

Programme Elective

S. No.	Course Code	Course title	L	Т	Р	J	С
D. 110.	Course Code		Ľ	1	1	3	C
1.	ECE 6010	High Performance Communication Networks	3	0	0	0	3
2.	ECE 6011	Mobile Adhoc Networks	3	0	0	0	3
3.	ECE 6012	Modern Wireless Communication Systems	3	0	0	4	4
4.	ECE 6013	Modeling of Wireless Communication Systems	3	0	2	0	4
5.	ECE 6014	Modern Satellite Communication	3	0	0	0	3
6.	ECE 6015	Coding for MIMO Communication	3	0	0	0	3
7.	ECE 6016	Advanced Wireless Sensor Networks		0	2	0	3
8.	ECE 6017	RF and Microwave Circuit Design	2	0	2	4	4
9.	ECE 6018	Microwave Integrated Circuits	3	0	0	0	3
10.	ECE 6019	Image processing and Feature Extraction	3	0	2	0	4
11.	ECE 6020	Multirate Systems	2	0	0	4	3
12.	ECE 6021	Adaptive Signal Processing	2	0	0	4	3
13.	ECE 6022	Optical Broadband Access Networks	2	0	0	4	3
14.	ECE 6023	RF MEMS	3	0	0	0	3
15.	CSE 6051	Information and Network Security	3	0	0	0	3

Communication	strong foundation in Mathematics in students ne		0 0 yllabus v	0
Course Objectives 1. To build the s Communication	strong foundation in Mathematics in students ne			
1. To build the s Communication	strong foundation in Mathematics in students ne	eded f	1	1.
1. To build the s Communication	strong foundation in Mathematics in students ne	eded f		
Communication	•	eded f	1 0	
	n Engineering		or the fi	ield o
2. To provide the	6 6			
	e mathematics fundamentals necessary to formula	ite, solv	ve and a	ınalys
1 0	eering problems.			
11 .	ning by the contextual knowledge to engineering pra	ictice.		
4. To work as tear	ns on multi-disciplinary projects.			
	0-4			
Expected Course	ourse, the students are expected to			
	ix theory in Communication Engineering problems.			
11.	adients, derivatives and its applications			
Ũ	onstrained optimization for approximate solutions.			
	al modelling and analysis of Communication System	าร		
	covian process and distinguish the utility of queuing		s	
	to that process and assungation the durity of quoting	1110 401		
Module:1 Basic	Matrix Concepts		6 hours	
	and matrix representations, Determinants. Vector			and
	s and inner-products, The Cauchy-Schwarz			
	rs, weighted inner products, Expectation as an in	-	-	Iilber
and Banach spaces	, orthogonal subspaces, null space, column space	e, row	space.	
Projection matrices				
	x Factorizations and applications		9 hours	
	on-Methods of Crout and Cholesky factorization, u	•		
	n, Eigen values, Eigen vectors, EVD, whitening, I		inverses	and
the SVD, numeric	ally sensitive problems, Rank-reducing approxim	ations.		
Module:3 Some	Special Matrices and their Applications		4 hours	
Circulant matric	Special Matrices and their Applications es, Toeplitz matrices. Kronecker Products			ions
of Kronecker produ	· 1	- 50110	applicat	10115
of Rionecker prode				
Module:4 Deriva	atives and gradients		4 hours	
	tors and scalars, products of matrices, powers			
	derivatives of complex vectors and matrices, fi		,	IS
Modifications for	1		J	
Modifications for				
	v of Constrained optimization		5 hours	
			5 hours constrain	nts:
Module:5 Theory	efinitions of constrained optimization, e			nts:

(Demnaths be University under section 3 of UOC Act, 1956)	
Module:6 Probability and random processes	7 hours
Random vectors, transformations, joint moments, joint ch	
correlation, covariance matrices - properties. Vector Gauss	
Circular complex Gaussian, various transformations, Gau	ussian random vectors,
Rayleigh, Rician, Nagakami distributions, probability o	of error upper
bounds for M-ary modulations.	
Module:7 Markov Chains Queuing theory	8 hours
Markov Process, Markov chains, Birth-Death process- Char	
models -Kendall's notation - Transient and Steady States	
equations related to Poisson Queue systems – Single serv	er and Multiple Server
Poisson queue Models with Finite and Infinite capacity.	
Module:8 Contemporary issues: Expert Lecture	2 hours
Applications of Constrained optimization and Queuing Theory	2 II0u15
Applications of Constrained optimization and Queuing Theory	
Total Lecture hour	s: 45 hours
Text Book(s)	5. 4 5 nours
1 Todd.K. Moon and Wynne Stirling, Mathematical methods an	d algorithms for signal
processing, 2000, Prentice Hall, 2000. New York.	d argoritanns for signar
2 John G. Proakis, Masoud Salehi, Digital Communicati	ons. 2008. 5 th edition.
McGrawHill.	ono, 2000, e co ntion,
3 T.Veerarajan, Probability, Statistics and Random Proce	esses, 2009, 3 rd edition
McGrawHill.	
Reference Books	
1. Gilbert Strang, Introduction to Linear Algebra, 2009, 4 th edition	on, Wellesley-Cambridge
press.	
2. E. Larsson, P. Stoica, Space time block coding for wireless con	mmunications, 2003,
Cambridge University press.	
3. P.P. Vaidyanadhan, Multirate systems and filter banks, 1993, I	Pearson India.
Dimitris G. Manolakis, Vinay K. Ingle, Stephen M. Kogon, St	atistical and adaptive
signal processing: Spectral estimation, signal modelling, ad	aptive filtering and
array processing, 2005, Artech House.	
4. Athanasios Papoulis, S Pillai, Probability, Random Variab	oles and Stochastic
Processes, 2014 (reprint), 4 th Edition, McGraw-Hill.	
5. Kishor S. Trivedi, Probability and Statistics with Reliability, (Queuing, and Computer
Science Applications, 2016, 2 nd Edition, John-Wiley & Sons.	
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Se	minar
Recommended by Board of Studies 09-03-2016	

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar						
Recommended by Board of Studies	09-03-2016					
Approved by Academic Council						

	(Demand to be University under saction 3 of UOC Aut, 1956)		, <u> </u>		
Course Code	Course Title	L		P J	C
ENG5001	Fundamentals of Communication Skills	0	-	2 0	1
Pre-requisite	Not cleared EPT (English Proficiency Test)	Syl	labus	vers	
					1.0
Course Objective	s:				
	ers learn basic communication skills - Listening, Speaking,		g and	Writ	ing
	apply effective communication in social and academic con-				
3. To make studen	ts comprehend complex English language through listening	g and rea	ading		
Expected Course					
	ening and comprehending skills of the learners				
	g skills to express their thoughts freely and fluently				
•	for effective reading				
U U	al correct sentences in general and academic writing				
5. Develop technic	al writing skills like writing instructions, transcoding etc.,				
I					
Module:1 Lister		8	3 hou	rs	
Understanding Con					
Listening to Speec					
Listening for Spec					
Module:2 Speak		4	hou	rs	
Exchanging Inform					
	ies, Events and Quantity				
Module:3 Read			6 hou	rs	
Identifying Inform	ation				
Inferring Meaning					
Interpreting text					
	ng: Sentence	8	8 hou	rs	
Basic Sentence Str	ucture				
Connectives					
Transformation of					
Synthesis of Sente					
	ng: Discourse	4	hou	rs	
Instructions					
Paragraph					
Transcoding					
			0.1		
	Total Lecture hours:	3	0 hou	rs	
Text Book(s)		E- 20		τ	
1. Redston, Ch	, , , , , , , , , , , , , , , , , , ,	Face2fa	ice l	Jppe	r
	Student's Book, 2013, Cambridge University Press.				
Reference Books		1.D		1	
	Stepping Stones: A guided approach to writing sentences	and Par	agrap	ons	
	on), 2012, Library of Congress.				
	nitcomb & Leslie E Whitcomb, Effective Interpersonal and		NT	т	
	on Skills for Engineers, 2013, John Wiley & Sons, Inc., Ho				-
3. ArunPatil, H	enk Eijkman &Ena Bhattacharya, New Media Comn	nunicatio	on Sl	CIIIS	tor

	Engineers and IT Professionals,2012, IC							
4.	Judi Brownell, Listening: Attitudes, Principles and Skills, 2016, 5 th Edition, Routledge:USA John Langan, Ten Steps to Improving College Reading Skills, 2014, 6 th Edition, Townsend							
5.	John Langan, Ten Steps to Improving College Reading Skills, 2014, 6 th Edition, Townsend							
	Press:USA							
6.	Redston, Chris, Theresa Clementson, and Gillie Cunningham. Face2face Upper Intermediate							
	Teacher's Book. 2013, Cambridge Unive	ersity Press.						
	Authors, book title, year of publication,							
	de of Evaluation: CAT / Assignment / Qu		Project / Se	eminar				
	t of Challenging Experiments (Indicativ							
1.	Familiarizing students to adjectives three				2 hours			
	all letters of the English alphabet and as	0	to add an a	djective that				
	starts with the first letter of their name							
2.	Making students identify their peer who		Clarity an	d Volume	4 hours			
	during presentation and respond using S							
3.	Using Picture as a tool to enhance learn				2 hours			
4.	Using Music and Songs as tools to enh	-		the target	2 hours			
	language / Activities through VIT Com							
5.	Making students upload their Self- intro				4 hours			
6.	Brainstorming idiomatic expressions an	d making tl	nem use th	ose in to their	4 hours			
	writings and day to day conversation							
7.	Making students Narrate events by add				4 hours			
	add flavor to their language / Activities							
8	Identifying the root cause of stage fear	in learners a	and provid	ing remedies	4 hours			
	to make their presentation better							
9	Identifying common Spelling & Senten	ce errors in	Letter Wr	iting and other	2 hours			
	day to day conversations							
10.	Discussing FAQ's in interviews with an			0	2 hours			
	better insight in to interviews / Activitie	es through V		•				
			Total P	ractical Hours	30 hours			
	de of evaluation: Online Quizzes, Present	ation, Role	play, Grou	p Discussions, A	ssignments,			
	ni Project							
	5	7-2017	<u>.</u>					
App	proved by Academic Council No.	46	Date	24-8-2017				

Course Code	•	Course Title		L T P J C
ENG5002		Professional and Communication Skills		0 0 2 0 1
Pre-requisite	e e	ENG5001	Sy	llabus versio
				1.
Course Obje	ctives	:		
		ts to develop effective Language and Communication Skills	S	
		ents' Personal and Professional skills		
3. To equip th	ne stuc	lents to create an active digital footprint		
E				
Expected Co				
-	-	ersonal communication skills		
		m solving and negotiation skills and mechanics of writing research reports		
		public speaking and presentation skills		
		red skills and excel in a professional environment		
5. Apply the	acqui	red skins and excer in a professional environment		
Module:1	Pers	onal Interaction		2 hours
		f- one's career goals		
Activity: SW		-		
J		<u>,</u>		
Module:2	Inter	rpersonal Interaction		2 hours
Interpersonal	Comr	nunication with the team leader and colleagues at the workp	place	
Activity: Role	e Play	s/Mime/Skit		
Module:3	C.	al Interaction		2 hours
		a, Social Networking, gender challenges		2 nours
		LinkedIn profile, blogs		
Activity. Clea	ating I	Linkedin prome, blogs		
Module:4	Résu	ımé Writing		4 hours
		irement and key skills	1	induis
		n Electronic Résumé		
Module:5		rview Skills		4 hours
Placement/Jo	b Inter	rview, Group Discussions		
Activity: Mod	ck Inte	erview and mock group discussion		
	r		1	
Module:6	-	ort Writing		4 hours
00		hanics of Writing		
Activity: Wri	ting a	Report		
Module:7	Stud	y Skills: Note making		2hours
Summarizing		· · ·		2110UI 5
U		Executive Summary, Synopsis		
reuvity. AUS	naci,	Executive Summary, Synopsis		

		Semand to be University under section (Fut COC. And, 1994)		
Module:8	Interpreting skills				2 hours
1	in tables and graphs				
Activity: Tra	nscoding				
Module:9	Presentation Skills				4 hours
Oral Presenta	ation using Digital Tools				
Activity: Ora	l presentation on the given	n topic using appro	opriate nor	n-verbal cues	
Module:10	Problem Solving Skills				4 hours
	ving & Conflict Resolution				
Activity: Cas	e Analysis of a Challengin	-			
		r	Fotal Lect	ure hours:	30 hours
Text Book(s					
	agar Nitin and Mamta Bh	-		glish For Eng	gineers And
	ssionals, 2010, Dorling Ki	ndersley (India) P	vt. Ltd.		
Reference B					
	Cirkman and Christopher T		iting: Impi	oving Scient	tific, Technical and
	ess Communication, 2015	Ũ			
	a Bairaktarova and Michel		e Ways of	Knowing in	Engineering, 2017,
	ger International Publishir				
	ord A Whitcomb & Lo				
	nunication Skills for Eng	gineers, 2013, Jol	hn Wiley	& Sons, In	c., Hoboken: New
Jerse					
	Patil, Henk Eijkman & H	•			nication Skills for
	eers and IT Professionals,				
	luation: CAT / Assignmen		roject / Se	minar	
	lenging Experiments (Inc	•			
	Analysis – Focus special	ly on describing t	wo strengtl	ns and two	2 hours
weakne					
	lays/Mime/Skit Workpla				4 hours
3. Use of	Social Media – Create a L	inkedIn Profile an	d also wri	te a page or	2 hours
two on	areas of interest				
1	e an Electronic Résumé an	d upload the same	in vimeo		2 hours
-	discussion on latest topics				4 hours
	Writing – Real-time repor				2 hours
7 Writing	g an Abstract, Executive S	ummary on short	scientific c	or research	4 hours
articles					
8 Transc	oding – Interpret the given	graph, chart or di	agram		2 hours
9 Oral pr	esentation on the given to	oic using appropri	ate non-ve	rbal cues	4 hours
10 Problem	n Solving Case Analysi				4 hours
	•			oratory Hou	rs 30 hours
Mode of eval	luation: : Online Quizzes,	Presentation, Role	e play, Gro	up Discussic	ons, Assignments,
Mini Project				-	-
0	ed by Board of Studies	22-07-2017			
	Academic Council	No. 47	Date	05-10-2017	7
•• V					

Course Code	Course Title	L T P J C
GER5001	Deutsch für Anfänger	2 0 0 0 2
Pre-requisite	NIL	Syllabus version
		v.1
Course Objectives		
The course gives st	udents the necessary background to:	
1. Enable to re	ead and communicate in German in their day to day life	
2. Become ind	lustry-ready	
3. Make them	understand the usage of grammar in the German Language.	
Expected Course		
The students will b	e able to	
1. Create the b	basics of German language in their day to day life.	
2. Understand	the conjugation of different forms of regular/irregular verbs.	
3. Understand	the rule to identify the gender of the Nouns and apply article	s appropriately.
	German language skill in writing corresponding letters, E-Mai	
	alent of translating passages from English-German and vice v	versa and To frame
simple dialo	ogues based on given situations.	
-		
Module:1		3 hours
0 0	sungsformen, Landeskunde, Alphabet, Personalpronomen,	Verb Konjugation,
	fragen, Aussagesätze, Nomen – Singular und Plural	
Lernziel:		
Elementares Versta	ändnis von Deutsch, Genus- Artikelwörter	
Module:2		3 hours
	erben (regelmässig /unregelmässig) die Monate, die Wochent	
	n, Artikel, Zahlen (Hundert bis eine Million), Ja-/Nein- Frage	e, Imperativ mit
Sie		
Lernziel :		
Satze schreiben, ub	er Hobbys erzählen, über Berufe sprechen usw.	
Module:3		1 hours
	Nagation Kasus AklausatituundDatiu (hastimmtan unh	4 hours
-	n, Negation, Kasus- AkkusatitvundDativ (bestimmter, unb Modelverhen Adjektive Ubrzeit Pröpositionen Mahlze	-
Getränke	Modalverben, Adjektive, Uhrzeit, Präpositionen, Mahlzer	iten, Lebensmitter,
Lernziel :		
	rben, Verwendung von Artikel, über Länder und Sprachen s	prechen jiber eine
Wohnung beschreil		precificit, uber eine
Module:4		6 hours
	Peutsch – Englisch / Englisch – Deutsch)	U HUUI S
Lernziel :		
Grammatik – Wort	schatz – Übung	
Module:5		5 hours
	indmap machen,Korrespondenz- Briefe, Postkarten, E-Mail	

Lernziel :	
Wortschatzbildung und aktiver Sprach gebrauch	
Module:6 .	3 hours
Aufsätze :	
Meine Universität, Das Essen, mein Freund oder meine Freundin, meine Far	nilie, ein Fest in
Deutschland usw	
Module:7	4 hours
Dialoge:	
a) Gespräche mit Familienmitgliedern, Am Bahnhof,	
b) Gespräche beim Einkaufen ; in einem Supermarkt ; in einer Buchhan	idlung;
c) in einem Hotel - an der Rezeption ;ein Termin beim Arzt.	
Treffen im Cafe	
Module:8	2 hours
Guest Lectures/Native Speakers / Feinheiten der deutschen Sprache, Basi	isinformation über die
deutschsprachigen Länder	
Total Lecture hou	irs: 30 hours
Text Book(s)	
1. Studio d A1 Deutsch als Fremdsprache, Hermann Funk, Chris Demme : 2012	stina Kuhn, Silke
Reference Books	
1 Netzwerk Deutsch als Fremdsprache A1, Stefanie Dengler, Paul Rusch,	Helen Schmtiz, Tanja
Sieber, 2013	
2 Lagune ,Hartmut Aufderstrasse, Jutta Müller, Thomas Storz, 2012.	
3 Deutsche SprachlehrefürAUsländer, Heinz Griesbach, Dora Schulz, 201	11
4 ThemenAktuell 1, HartmurtAufderstrasse, Heiko Bock, MechthildGerd	es, Jutta Müller und
Helmut Müller, 2010	
www.goethe.de	
wirtschaftsdeutsch.de	
hueber.de	
klett-sprachen.de	
www.deutschtraning.org	
Mode of Evaluation: CAT / Assignment / Quiz / Seminar / FAT	
Recommended by Board of Studies 04-03-2016	
Approved by Academic Council41Date17-06-2	2016

Course Cal-	(Deemed to be University under vertices 3 of UOC Aut, 1956)	
Course Code	Course Title	L T P J C 3 0 0 0 1
STS 5001	Essentials of Business Etiquette and problem solving None	
Pre-requisite	None	Syllabus version
Course Objective	s•	
*	the students' logical thinking skills	
-	e strategies of solving quantitative ability problems	
	he verbal ability of the students	
	e critical thinking and innovative skills	
Expected Course		
	udents to use relevant aptitude and appropriate language to ex	press themselves
	nicate the message to the target audience clearly	1 1 1 1 1 1 .
	ts will be able to be proficient in solving quantitative aptitude	and verbal ability
questions c	of various examinations effortlessly	
Module:1 Busin	ness Etiquette: Social and Cultural Etiquette and Writing	9 hours
	pany Blogs and Internal Communications and Planning	> nours
	Writing press release and meeting notes	
	Customs, Language, Tradition, Building a blog, Developing br	and message,
FAQs', Assessing	Competition, Open and objective Communication, Two way of	lialogue,
	audience, Identifying, Gathering Information, Analysis, Dete	
	ck, Types of planning, Write a short, catchy headline, Get to t	
summarize your su	ubject in the first paragraph., Body – Make it relevant to your	audience,
Module:2 Stud	a skills Time monogement skills	3 hours
	y skills – Time management skills crastination, Scheduling, Multitasking, Monitoring, working	
adhering to deadli		under pressure and
uunoning to uouun		
Module:3 Prese	entation skills – Preparing presentation and Organizing	7 hours
	rials and Maintaining and preparing visual aids and	
	ng with questions	
1 1 1	PowerPoint presentation, Outlining the content, Passing the I	
•	roduction, body and conclusion, Use of Font, Use of	•
	ortance and types of visual aids, Animation to captivate your a	-
	but the ground rules, Dealing with interruptions, Staying	in control of the
questions, nation	g difficult questions	
Module:4 Quar	ntitative Ability -L1 – Number properties and Averages	11 hours
~	Progressions and Percentages and Ratios	11 Hours
	rs, Factorials, Remainder Theorem, Unit digit position, To	ens digit position,
	ted Average, Arithmetic Progression, Geometric Progr	• •
Progression, Incre	ase & Decrease or successive increase, Types of ratios and pro-	oportions
- -		
	oning Ability-L1 – Analytical Reasoning	8 hours
0	(Linear and circular & Cross Variable Relationship), Blood F	elations .
\mathbf{O} and \mathbf{C} is the second seco	grouping, Puzzle test, Selection Decision table	celutions,

Mod	dule:6	Verbal Ability-L1 – Vocabulary Building	7 hours
Syı	nonyms	& Antonyms, One-word substitutes, Word Pairs, Spellings, Idioms, So	entence
cor	npletior	n, Analogies	
		Total Lecture hours:	45 hours
Ref	erence]	Books	
1.	Kerry I	Patterson, Joseph Grenny, Ron McMillan, Al Switzler, Crucial Conver	sations: Tools
	for Tal	king When Stakes are High, 2001, McGraw-Hill Contemporary, Banga	alore.
2.	Dale C	Carnegie, How to Win Friends and Influence People, 1936, New `	York. Gallery
	Books		
3.	Scott P	eck. M, Road Less Travelled. 1978, New York City.	
4.	FACE,	Aptipedia Aptitude Encyclopedia, 2016. Delhi. Wiley publications	
5.	ETHN	US, Aptimithra, 2013, McGraw-Hill Education Pvt. Ltd, Bangalore.	
Wel	bsites:		
1.	www.c	halkstreet.com	
2.	www.s	killsyouneed.com	
3.	www.n	nindtools.com	
4.		hebalance.com	
5.	www.e	guru.000	
Mod		valuation: FAT, Assignments, Projects, Case studies, Role plays, 3 As	sessments with
		EAT (Computer Based Test)	

~ ~	(Demmed to be University under section 3 of UOC Aut, 1956)	1	<u>г – т</u>		
Course Code	Course Title	L	_	ΡJ	С
STS5002	Preparing for Industry	3	-	0 0	
Pre-requisite	None	Sylla	bus	vers	ion
			1		
Course Objectiv	ves:				
1. To challenge	e students to explore their problem-solving skills				
2. To develop	essential skills to tackle advance quantitative and verbal ability	questi	ons		
3. To have wor	rking knowledge of communicating in English				
Expected Cours	e Outcome:				
1. Enabling stu	idents to simplify, evaluate, analyze and use functions and expre	ession	s to	simu	late
real situation	ns to be industry ready.				
	s will be able to interact confidently and use decision making me				
3. The students	s will be able to be proficient in solving quantitative aptitude and	d verb	al a	oility	
questions of	various examinations effortlessly				
Module:1	Interview skills – Types of interview and Techniques to		3 ha	ours	
	face remote interviews and Mock Interview				
Structured and un	nstructured interview orientation, Closed questions and hypothe	tical q	uest	ions,	
Interviewers' per	rspective, Questions to ask/not ask during an interview, Video in	ntervie	w.		
Recorded feedba	ck, Phone interview preparation, Tips to customize preparation	for pe	rson	al	
interview, Practic	ce rounds	-			
Module:2	Resume skills – Resume Template and Use of power verbs and Types of resume and Customizing resume		2 ho	ours	
Structure of a st	andard resume, Content, color, font, Introduction to Power ve	rbs ar	nd V	Vrite	up.
	of resume, Frequent mistakes in customizing resume, Layour				
	y's requirement, Digitizing career portfolio				8
uniferent company	y sted anomeni, 2 igrazing cureer portions				
Module:3	Emotional Intelligence - L1 – Transactional Analysis and	1	2 h	ours	
	Brain storming and Psychometric Analysis and Rebus	_			
	Puzzles/Problem Solving				
Introduction, C	ontracting, ego states, Life positions, Individual Brain	storm	ing,	Gr	oup
Brainstorming, S	Stepladder Technique, Brain writing, Crawford's Slip writing a	approa	ich,	Reve	erse
brainstorming,	Star bursting, Charlette procedure, Round robin brainstorn	ming,	Sk	ill T	'est,
Personality Test,	More than one answer, Unique ways	-			
Module:4	Quantitative Ability-L3 – Permutation-Combinations	1	4 h	ours	
	and Probability and Geometry and mensuration and				
	Trigonometry and Logarithms and Functions and				
	Quadratic Equations and Set Theory				
Counting, Grou	ping, Linear Arrangement, Circular Arrangements, Condit	ional	Pro	babil	ity,
Independent and	Dependent Events, Properties of Polygon, 2D & 3D Figures,	Area	& \	⁷ olun	nes,
Unights and dist		р			sof
neights and dist	ances, Simple trigonometric functions, Introduction to logarith	ms, B	asic	rules	5 01
-	ances, Simple trigonometric functions, Introduction to logarith oduction to functions, Basic rules of functions, Underst				
logarithms, Intr		anding	g Ç	Juadr	
logarithms, Intr	oduction to functions, Basic rules of functions, Underst	anding	g Ç	Juadr	

Module:5	Reasoning ability-L3 – Logical reasoning and Data	7 hours
	Analysis and Interpretation	
	rry logic, Sequential output tracing, Crypto arithmetic, Data Suff lvanced, Interpretation tables, pie charts & bar chats	iciency, Data
Module:6	Verbal Ability-L3 – Comprehension and Logic	7 hours
Reading compre-	hension, Para Jumbles, Critical Reasoning (a) Premise and Conc	lusion, (b)
Assumption & In	nference, (c) Strengthening & Weakening an Argument	
	Total Lecture hours:	45 hours
References		
1. Michael	Farra and JIST Editors, Quick Resume & Cover Letter Book: Wi	rite and Use an
Effective	Resume in Just One Day, 2011. Saint Paul, Minnesota. Jist Wor	ks
2. Daniel Fl	age Ph.D, The Art of Questioning: An Introduction to Critical T	hinking, (2003),
London.	Pearson	
3. FACE, A	ptipedia Aptitude Encyclopedia, 2016, Wiley publications, Delh	i.
Mode of Evalua	tion: FAT, Assignments, Projects, Case studies, Role plays, 3 A	ssessments with

Term End FAT (Computer Based Test)

Course Code		Course Title	1			L	T	ΡJ	С
SET5001	SCIENCE, EN	GINEERING AN PROJECT-1		NOLOGY					2
Pre-requisite					Syl	labu	is V	Versi	on
									1.10
Course Objectives									
	opportunity to involv	e in research relate	ed to science	ce / enginee	ring				
	e research culture								
 To enhance 	the rational and inno	vative thinking cap	pabilities						
Expected Course (
1	nis course, the studen								
• 1	blems that have relev		ndustrial n	eeds					
	pendent thinking and	•							
3. Demonstrate	e the application of re	elevant science / er	ngineering	principles					
Modalities / Requi		-							
	r group projects can l								
	terature survey in the								
	/Engineering princip								
-	ant and well-defined		-		-	ified	d ol	ojecti	ve
	of scientific report in			giarism che	ck)				
Student Assessmer	nt : Periodical review	s, oral/poster pres	entation						
Recommended by H	Board of Studies	17-08-2017							
Approved by Acade	emic Council	No. 47	Date	05-10-201	7				

Cours	e Code		Course Title	e		L	Γ	P	J	С
SET5(002	SCIENCE, EN	GINEERING AN PROJECT-		INOLOGY	Y				2
Pre-re	equisite					Sylla	ous	Ve	rsio	m
]	1.1(
Cours	e Objectives	•								
1.	To provide	opportunity to invol	ve in research rela	ted to scie	ence / engine	ering				
2.	To inculcat	e research culture								
3.	To enhance	the rational and inn	ovative thinking c	apabilities	8					
Expec	ted Course (Dutcome:								
On cor	mpletion of th	nis course, the studen	t should be able to):						
1.	Identify pro	blems that have rele	vance to societal /	industria	l needs					
2.	Exhibit ind	ependent thinking an	nd analysis skills							
3.	Demonstrat	te the application of	relevant science /	engineerir	ng principles					
Moda	lities / Requi									
1.	Individual	or group projects can	n be taken up							
2.		iterature survey in th								
3.	Use Scienc	e/Engineering princi	ples to solve ident	ified issue	es					
4.		ant and well-defined				e specit	ied	obj	ect	ive
5.	Submission	of scientific report i	in a specified form	hat (after p	lagiarism ch	eck)		Ū		
Stude	nt Assessmer	nt : Periodical review	vs, oral/poster pres	entation						
Recom	nmended by E	Board of Studies	17-08-2017							
	ved by Acade		No. 47	Date	05-10-201	-				

Course Code	Course Title		Т	P	J	С
ECE6099	Masters Thesis	0	0	0	0	16
Pre-requisite	As per the academic regulations	Syllabus versio		sion		
		1.0				

Course Objectives:

To provide sufficient hands-on learning experience related to the design, development and analysis of suitable product / process so as to enhance the technical skill sets in the chosen field.

Expected Course Outcome:

At the end of the course the student will be able to

- 1. Formulate specific problem statements for ill-defined real life problems with reasonable assumptions and constraints.
- 2. Perform literature search and / or patent search in the area of interest.
- 3. Conduct experiments / Design and Analysis / solution iterations and document the results.
- 4. Perform error analysis / benchmarking / costing
- 5. Synthesise the results and arrive at scientific conclusions / products / solution
- 6. Document the results in the form of technical report / presentation

Contents

Capstone Project may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities.

Project should be for two semesters based on the completion of required number of credits as per the academic regulations.

Should be individual project.

In case of group projects, the individual project report of each student should specify the individual's contribution to the group project.

Carried out inside or outside the university, in any relevant industry or research institution.

Publications in the peer reviewed journals / International Conferences will be an added advantage

Mode of Evaluation: Periodic reviews, Presentation, Final oral viva, Poster submission						
Recommended by Board of Studies	10-06-2015					
Approved by Academic Council	No. 37	Date	16-06-2015			

Programme Core

Course Code	Course Title	L	Τ	P	J	С
ECE5005	Advances in Wireless Networks	2	0	2	4	4
Pre-requisite	Nil	Syllabus version			ersion	
		1				

Course Objectives:

1. To teach the basics of wireless networks and its services from 1G to 5G.

- 2. To acquaint with 3GPP based wireless IP networks and its architecture.
- 3. To teach the operation of LTE network, IMS architecture, inter networking concepts, addressing and registration process in wireless networks.
- 4. To teach the significance of mobility management in next generation network and its QoS challenges.

Course Outcomes:

- 1. Understand the different types of wireless standards and its services.
- 2. Comprehend the principles of 3GPP Packet Data Network Architecture, Packet Data Protocol (PDP) and accessing IP network through PS domain.
- 3. Comprehend the architecture of LTE network, protocol architecture and inter working with other RATs.
- 4. Comprehend the architecture of IP Multimedia Subsystem (IMS) and addressing procedure of IMS.
- 5. Analyze the mobility management IP based 3GPP and LTE networks.
- 6. Examine the QoS in Wireless IP networks.
- 7. Evaluate the performance of routing protocol, handover procedure and throughput of different network (3G and 4G Network) using Qualnet and NetSim tools.
- 8. Design and analyze the system parameters and QoS of next generation network using 3GPP and IEEE standards.

Basic issues in mobility management, Location management, Mobility management in IP networks,

MIPv4 regional registration, SIP-based mobility management, Cellular IP, HAWAII, Mobility management in 3GPP packet networks, Packet Mobility Management (PMM), Context- paging initiated by Packet-Switched Core Network

Module:6 | Mobility Management in LTE Networks 2 hours Intra-LTE mobility, Inter-RAT mobility, Mobility over X2 interface

Module:7 | Quality of Service 3 hours QoS challenges in wireless IP Networks, QoS in 3GPP, QoS architecture, Management and classes, QoS attributes, Management of End-to-End IP QoS, EPS bearers and QoS in LTE networks.

Mod	dule:8 Contemporary issues:		2 hours
	Total Lecture hou	irs.	30 hours
		13.	50 11001 5
	t Book(s)		
1.	Jyh-Cheng Chen, Tao Zhang, IP-Based Next-Generation With Architectures, and Protocols, 2012, 2 nd Edition, John Wiley & Sons,		
2.	StefaniaSesia, IssamToufik, Matthew Baker, LTE – The UMTS I		
2.	Theory to Practice, 2011, 2 nd Edition, John Wiley & Sons, New Jerse		
Refe	erence Books		
1.	Ayman ElNashar, Mohamed El-saidny, Mahmoud Sherif, I	Desig	n, Deployment and
	Performance of 4G-LTE Networks: A Practical Approach, 2014,		
	Sons, New Jersey.		•
2.	Jonathan Rodriguez, Fundamentals of 5G Mobile Networks,	2015	5, 1 st Edition, Wiley
3.	Publications, United States. Savo Glisic, Advanced Wireless Networks: 5G Technology,	2016	1 st Edition Wilow
5.	Publications, United States.	2010	, i Edition, whey
4.	http://www.cse.wustl.edu/~jain/cse574-14/index.html		
	de of Evaluation: Internal Assessment (CAT, Quizzes, Digital Assign	ment	s) & Final
	essment Test (FAT)	ment	
	t of Challenging Experiments (Indicative)		
1.	Implement any two scheduling methods in LTE networks for	vario	ous 3 hours
	traffics and scenarios. Also, propose an improved scheduling from a		
	of those scheduling methods.	•	
2.	Develop UMTS architecture to route packet data from the user equ	iipme	ent 3 hours
	to the IP network and evaluate the network performance in te	erms	of
	throughput, delay and jitter.		
3.	Design an UMTS network to perform handoff between UE in a	UM	TS 3 hours
	network within a single SGSN and between two SGSNs		
4.	Evaluate the performance of the following routing protocols for 1	ow a	and 3 hours
	high speed wireless networks:		
	(a) Bordercast Resolution Protocol (BRP)		
	(b) Location Aided Routing (LAR) Protocol		
~	(c) Zone Routing Protocol (ZRP)		
5.	Design a 3G network to route data between same PLMN but between	een tv	wo 3 hours
(different SGSN nodes and two different PLMN UMTS network		21
6.	Design an UMTS network to study the routing effects of OSPF ve	er. 2	on 3 hours

	core network components (HLR,	GGSN and SGSN)				
7.	Design a HSDPA network and	s of	3 hours			
	throughput, delay and jitter.					
8.	Design a WiMAX network to eva	luate the performa	nce of mobility mo	dels,	3 hours	
	namely, file based mobility and ra	andom way point m	nobility.			
9.	To analyse the performance	(Energy Consum	ption and Delay) of	3 hours	
	discontinuous reception in LTE n	etworks (3GPP TS	36) for VoIP traffic	c.		
10.	To analyse the performance (thro	oughput, delay, jitt	er and packet loss	rate)	3 hours	
	of LTE network under Type I and	Type II relay.				
		ours	30 hours			
Mode of evaluation : Continuous Assessment & Final Assessment Test (FAT)						
Reco	Recommended by Board of Studies 13-12-2015					
App	roved by Academic Council	No. 40	Date	18-03-2	016	
<u> </u>						

Course Code	Course Title	L	Т	P J	(
ECE5010	Advanced Digital Communication	2	0	2 4	4
Pre-requisite	Nil	Sy	llabu	s vers	sior
_		-			1.(
Course Objectives:	·				
1. To introduce the	concept of digital base-band data transmission through a bar	nd lim	ited c	hanne	el.
2. To familiarize the	e student with concept of binary and M-ary band-pass modu	lation	scher	nes.	
3. To introduce the	advanced channel coding techniques to minimize the probab	oility c	of erro	or.	
4. To acquaint with	the emerging trends in digital communication field.				
Course Outcomes:					
	ilter for detection of digital signals in the presence of white	Gauss	ian n	oise.	
0	ns to overcome ISI in band-limited channels.				
0 1	on circuits to overcome the effect of channel distortion.		C A .		
	lity of error for binary digital modulation schemes in the pro-	esence	OI A	WGN	•
	we modulation schemes to M-ary modulation for symbols. LDPC codes to overcome the effect of noise in the channel				
	and Simulink to experiment and experience the above		al m	odula	tior
concepts.	and simulink to experiment and experience the above	uign		ouula	101
-	EEE standards research papers, replicate and extend those re	1.			
		SHITS			
	standards research papers, repreate and extend those re	esults.			
Module:1IntroDetection of knownsignals with unknow	duction to Detection and Estimation Theory signals in noise, Correlation receiver, Matched filter re n phase in noise. Minimum mean square error estimator, M	ceiver Iaximu	ım a j	ectior poster	
Module:1 Intro Detection of known signals with unknow	duction to Detection and Estimation Theory signals in noise, Correlation receiver, Matched filter re	ceiver Iaximu	, Det im a	ectior poster	
Module:1 Intro Detection of known signals with unknow estimator, Maximum	duction to Detection and Estimation Theory signals in noise, Correlation receiver, Matched filter re n phase in noise. Minimum mean square error estimator, M likelihood estimation, Cramer Rao bound (CRB) for param	ceiver Iaximu	, Det im a j timat	ectior poster ion.	
Module:1IntroDetection of knownsignals with unknowestimator, MaximumModule:2Base	duction to Detection and Estimation Theory signals in noise, Correlation receiver, Matched filter re n phase in noise. Minimum mean square error estimator, M likelihood estimation, Cramer Rao bound (CRB) for param band Transmission Techniques	ceiver Iaximu eter es	, Det im a timat	ectior poster ion.	ior
Module:1IntroDetection of knownsignals with unknowestimator, MaximumModule:2BaseDigital transmission	duction to Detection and Estimation Theory signals in noise, Correlation receiver, Matched filter re n phase in noise. Minimum mean square error estimator, M likelihood estimation, Cramer Rao bound (CRB) for param band Transmission Techniques through band limited channels, Power spectrum of digitall	ceiver laximu eter es	, Det um a j timat 3 ho ulate	ection poster ion. ours d sign	ior
Module:1IntroDetection of knownsignals with unknowestimator, MaximumModule:2BaseDigital transmissionSignal design for bar	duction to Detection and Estimation Theory signals in noise, Correlation receiver, Matched filter re n phase in noise. Minimum mean square error estimator, M likelihood estimation, Cramer Rao bound (CRB) for param band Transmission Techniques through band limited channels, Power spectrum of digitall ad limited channels, Band limited signal design for zero ISI	ceiver laximu eter es	, Det um a j timat 3 ho ulate	ection poster ion. ours d sign	ior
Module:1IntroDetection of knownsignals with unknowestimator, MaximumModule:2BaseDigital transmissionSignal design for bar	duction to Detection and Estimation Theory signals in noise, Correlation receiver, Matched filter re n phase in noise. Minimum mean square error estimator, M likelihood estimation, Cramer Rao bound (CRB) for param band Transmission Techniques through band limited channels, Power spectrum of digitall ad limited channels, Band limited signal design for zero ISI	ceiver laximu eter es	, Det um a j timat 3 ho ulate	ection poster ion. ours d sign	als
Module:1IntroDetection of knownsignals with unknowestimator, MaximumModule:2BaseDigital transmissionSignal design for bardesign for controlled	duction to Detection and Estimation Theory signals in noise, Correlation receiver, Matched filter re n phase in noise. Minimum mean square error estimator, M likelihood estimation, Cramer Rao bound (CRB) for param band Transmission Techniques through band limited channels, Power spectrum of digitall ad limited channels, Band limited signal design for zero ISI	ceiver laximu eter es	, Det um a j timat 3 ho ulate	ectior poster ion. Durs d sign ted sig	iori
Module:1IntroDetection of knownsignals with unknowestimator, MaximumModule:2BaseDigital transmissionSignal design for bardesign for controlledModule:3Base	duction to Detection and Estimation Theory signals in noise, Correlation receiver, Matched filter re n phase in noise. Minimum mean square error estimator, M likelihood estimation, Cramer Rao bound (CRB) for param band Transmission Techniques through band limited channels, Power spectrum of digitall id limited channels, Band limited signal design for zero ISI ISI.	ceiver Iaximu eter es y mod , Band	, Det um a timat 3 ho ulate limit 3 ho	ectior poster ion. ours d sign ted sign ted sign ted sign	ior aals gna
Module:1IntroDetection of knownsignals with unknowestimator, MaximumModule:2BaseDigital transmissionSignal design for bardesign for controlledModule:3BaseProbability of error	duction to Detection and Estimation Theory signals in noise, Correlation receiver, Matched filter re n phase in noise. Minimum mean square error estimator, M likelihood estimation, Cramer Rao bound (CRB) for param band Transmission Techniques through band limited channels, Power spectrum of digitall id limited channels, Band limited signal design for zero ISI ISI.	ceiver laximu eter es y mod , Band	, Det im a timat 3 ho ulated limit 3 ho zation	ectior poster ion. ours d sign ted sign ted sign n, Lir	ior aals gna
Module:1IntroDetection of knownsignals with unknowestimator, MaximumModule:2BaseDigital transmissionSignal design for bardesign for controlledModule:3BaseProbability of errorEqualizers, Adaptive	duction to Detection and Estimation Theory signals in noise, Correlation receiver, Matched filter re n phase in noise. Minimum mean square error estimator, M likelihood estimation, Cramer Rao bound (CRB) for param band Transmission Techniques through band limited channels, Power spectrum of digitall ad limited channels, Band limited signal design for zero ISI ISI. band Reception Techniques in detection of digital PAM, Eye pattern, Channel equalizers, Decision feedback equalizers, Fractionally space	ceiver laximu eter es y mod , Band	, Det im a timat 3 ho ulate limit 3 ho zation alize	ectior poster ion. Durs d sign ted sign ted sign n, Lir rs.	ior aals gna
Module:1IntroDetection of knownsignals with unknowestimator, MaximumModule:2BaseDigital transmissionSignal design for bardesign for controlledModule:3BaseProbability of errorEqualizers, AdaptiveModule:4Binat	duction to Detection and Estimation Theory signals in noise, Correlation receiver, Matched filter re n phase in noise. Minimum mean square error estimator, M likelihood estimation, Cramer Rao bound (CRB) for param band Transmission Techniques through band limited channels, Power spectrum of digitall id limited channels, Band limited signal design for zero ISI ISI. band Reception Techniques in detection of digital PAM, Eye pattern, Channel equalizers, Decision feedback equalizers, Fractionally spac	ceiver laximu eter es y mod , Band equali ed equ	, Det im a timat 3 ho ulated limit 3 ho zation alized 5 ho	ectior poster ion. ours d sign ted sign ted sign n, Lin rs. ours	rior aals gna
Module:1IntroDetection of knownsignals with unknowestimator, MaximumModule:2BaseDigital transmissionSignal design for bardesign for controlledModule:3BaseProbability of errorEqualizers, AdaptiveModule:4Binar	duction to Detection and Estimation Theory signals in noise, Correlation receiver, Matched filter re n phase in noise. Minimum mean square error estimator, M likelihood estimation, Cramer Rao bound (CRB) for param band Transmission Techniques through band limited channels, Power spectrum of digitall id limited channels, Band limited signal design for zero ISI ISI. band Reception Techniques in detection of digital PAM, Eye pattern, Channel equalizers, Decision feedback equalizers, Fractionally spac ry Bandpass Modulation Schemes chemes, Coherent and non-coherent detection of binary r	ceiver laximu eter es y mod , Band equali ed equ	, Det im a timat 3 ho ulate limit 3 ho zation alize	ectior poster ion. ours d sign ted sign ted sign n, Lin rs. ours scher	rior aals gna near
Module:1IntroDetection of knownsignals with unknowestimator, MaximumModule:2BaseDigital transmissionSignal design for bardesign for controlledModule:3BaseProbability of errorEqualizers, AdaptiveModule:4BinarBinary modulation sPerformance analysis	duction to Detection and Estimation Theory signals in noise, Correlation receiver, Matched filter re n phase in noise. Minimum mean square error estimator, M likelihood estimation, Cramer Rao bound (CRB) for param band Transmission Techniques through band limited channels, Power spectrum of digitall ad limited channels, Band limited signal design for zero ISI ISI. band Reception Techniques in detection of digital PAM, Eye pattern, Channel equalizers, Decision feedback equalizers, Fractionally spac ry Bandpass Modulation Schemes chemes, Coherent and non-coherent detection of binary r s of binary modulation schemes under AWGN channel, Mi	ceiver laximu eter es y mod , Band equali ed equ	, Det im a timat 3 ho ulate limit 3 ho zation alize	ectior poster ion. ours d sign ted sign ted sign n, Lin rs. ours scher	rior aals gna near
Module:1IntroDetection of knownsignals with unknowestimator, MaximumModule:2BaseDigital transmissionSignal design for bardesign for controlledModule:3BaseProbability of errorEqualizers, AdaptiveModule:4BinarBinary modulation sPerformance analysis	duction to Detection and Estimation Theory signals in noise, Correlation receiver, Matched filter re n phase in noise. Minimum mean square error estimator, M likelihood estimation, Cramer Rao bound (CRB) for param band Transmission Techniques through band limited channels, Power spectrum of digitall id limited channels, Band limited signal design for zero ISI ISI. band Reception Techniques in detection of digital PAM, Eye pattern, Channel equalizers, Decision feedback equalizers, Fractionally spac ry Bandpass Modulation Schemes chemes, Coherent and non-coherent detection of binary r	ceiver laximu eter es y mod , Band equali ed equ	, Det im a timat 3 ho ulate limit 3 ho zation alize	ectior poster ion. ours d sign ted sign ted sign n, Lin rs. ours scher	rior aals gna nea
Module:1IntroDetection of knownsignals with unknowestimator, MaximumModule:2BaseDigital transmissionSignal design for bardesign for controlledModule:3BaseProbability of errorEqualizers, AdaptiveModule:4BinarBinary modulation sPerformance analysis	duction to Detection and Estimation Theory signals in noise, Correlation receiver, Matched filter re n phase in noise. Minimum mean square error estimator, M likelihood estimation, Cramer Rao bound (CRB) for param band Transmission Techniques through band limited channels, Power spectrum of digitall ad limited channels, Band limited signal design for zero ISI ISI. band Reception Techniques in detection of digital PAM, Eye pattern, Channel equalizers, Decision feedback equalizers, Fractionally spac ry Bandpass Modulation Schemes chemes, Coherent and non-coherent detection of binary r s of binary modulation schemes under AWGN channel, Mi	ceiver laximu eter es y mod , Band equali ed equ	, Det im a timat 3 ho ulate limit 3 ho zation alize	ectior poster ion. ours d sign ted sign ted sign n, Lin rs. ours scher	rior aals gna near
Module:1IntroDetection of knownsignals with unknowestimator, MaximumModule:2BaseDigital transmissionSignal design for controlledModule:3BaseProbability of errorEqualizers, AdaptiveModule:4BinarBinary modulation sPerformance analysis(MSK), Gaussian Mi	duction to Detection and Estimation Theory signals in noise, Correlation receiver, Matched filter re n phase in noise. Minimum mean square error estimator, M likelihood estimation, Cramer Rao bound (CRB) for param band Transmission Techniques through band limited channels, Power spectrum of digitall ad limited channels, Band limited signal design for zero ISI ISI. band Reception Techniques in detection of digital PAM, Eye pattern, Channel equalizers, Decision feedback equalizers, Fractionally spac ry Bandpass Modulation Schemes chemes, Coherent and non-coherent detection of binary r s of binary modulation schemes under AWGN channel, Mi	ceiver laximu eter es y mod , Band equali ed equ	, Det im a timat 3 ho ulate limit 3 ho zation alize	ectior poster ion. ours d sign ted sign ted sign ted sign ted sign ft Key	rior aals gna nea
Module:1IntroDetection of knownsignals with unknowestimator, MaximumModule:2BaseDigital transmissionSignal design for bardesign for controlledModule:3BaseProbability of errorEqualizers, AdaptiveModule:4BinatBinary modulation sPerformance analysis(MSK), Gaussian MiModule:5M-arM-ary Phase Shift	duction to Detection and Estimation Theory signals in noise, Correlation receiver, Matched filter re n phase in noise. Minimum mean square error estimator, M likelihood estimation, Cramer Rao bound (CRB) for param band Transmission Techniques through band limited channels, Power spectrum of digitall ad limited channels, Band limited signal design for zero ISI. ISI. band Reception Techniques in detection of digital PAM, Eye pattern, Channel equalizers, Decision feedback equalizers, Fractionally space ry Bandpass Modulation Schemes chemes, Coherent and non-coherent detection of binary resof binary modulation schemes under AWGN channel, Minimum Shift Keying (GMSK).	ceiver laximu eter es y mod , Band equali ed equ nodula nimun	, Det im a itimat 3 ho ulated limit 3 ho zation alized 5 ho equen	ectior poster ion. ours d sign ted sign ted sign ted sign n, Lin rs. ours scher ft Key ours ncy S	rior als gna nea nes vinį

detection of M-ary orthogonal signals, Carrier and timing recovery, Synchronization, Applications.

Module:6 Trellis and Turbo Codes

Convolutional codes, Viterbi Decoder for convolutional codes, Set partitioning, Trellis codes, Turbo encoders, Turbo decoders, MAP decoder and Max-Log-Map decoder, Irregular and Asymmetric turbo codes.

Module:7 LDPC Codes

Regular LDPC codes, Gallager construction of LDPC codes, Gallager based decoding algorithm for LDPC codes and its analysis, LDPC threshold, Irregular LDPC codes.

Modu	ule:8 Contemporary issues:	2 hours
	Total lecture hours:	30 hours
Text	Book(s)	001100115
1.	Simon S. Haykin, Michael Moher, Communication Systems, 2012, 5 th Edi	tion. Wiley. India.
2.	Shu Lin, Daniel J. Costello, Error Control Coding, 2011, 2 nd Edition, Pear	son Education. UK.
	rence Books	
1.	Marvin K. Simon, Sami M. Hinedi, William C. Lindsey, Digital Commun	ication Techniques:
	Signal Design and Detection, 2015, 1 st Edition, Pearson Education, India.	1
2.	Richard J. Tervo, Practical Signals Theory with MATLAB Applications Wiley, India.	s, 2013, 1 st Edition,
3.	http://nptel.ac.in/courses/117101051/	
	e of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignments) (FAT)	& Final Assessment
List o	of Challenging Experiments (Indicative)	
1.	Simple digital communication system: Simulate a simple communicate system which transmits a text message from the source to the destination Also, observe signals at different points of this communication system.	
2.	Line Coding: Write a code which uses the below mentioned line code techniques to generate the baseband signal for the given text message. All transmit the generated base band signal through AWGN channel. Analy the effect of channel noise on the reconstructed signal. (a) Unipolar (b) Polar (c) Bipolar (d) Differential coding (Mark and Space)	so,
3.	Bandpass Modulation: Write a code which uses below mentioned band p modulation techniques to generate the modulated signal for the given t message. Transmit the modulated signal through AWGN channel. Detect transmitted message using the suitable rules. Plot the necessary graphs. (a) BASK (b) BPSK (c) BFSK (d) DPSK	ext
4.	(a) DistributionProbability of error analysis(a) Consider a bit sequence of length 10,000. Modulate it with BPS	6 hours SK,

4 hours

4 hours

	(Demonstrate by University nucler action 3 of UGC Act, 1956)				
	 BASK, BFSK. Transmit the signal through AWGN channel. Vary the SNR. Compare the theoretical and simulated probability of error. (b) Consider a bit sequence of length 10,000. Modulate it with BPSK, QPSK and 8-PSK. Transmit the signal through AWGN channel. Vary the SNR. Compare the theoretical and simulated probability of error. (c) Consider a bit sequence of length 10,000. Modulate it with 16-QAM and 64-QAM. Transmit the signal through AWGN channel. Vary the SNR. Compare the theoretical and simulated probability of error. (d) Consider a bit sequence of length 10,000. Modulate it with MSK. Transmit the signal through AWGN channel. Vary the signal through AWGN channel. Vary the signal through a bit sequence of length 10,000. Modulate it with MSK. 				
5.	Channel coding	6 hours			
	 (a) Write a code to build the (3, 1, 3) repetition encoder. Map the encoder output to BPSK symbols. Transmit the symbols through AWGN channel. Investigate the error correction capability of the (3, 1, 3) repetition code by comparing its BER performance with and without using error correction code. (b) Write a code to compare the BER performance and error correction capability of (3, 1, 3) and (5, 1, 5) repetition codes. Assume BPSK modulation and AWGN channel. Also, compare the simulated results with the theoretical results. (c) Write a code to compare the performance of hard decision and soft decision Viterbi decoding algorithms. Assume BPSK modulation and AWGN channel. (d) Write a code to perform Trellis coded modulation for M-QAM and M-PSK systems using Ungerboeck set partitioning principle. 				
6.	Digital Modulation using Simulink: Build the transceiver chain for the following modulation schemes with Simulink. Observe signals at different points of communication system. (a) M-PAM (b) M-PSK (c) M-QAM	6 hours			
	Total laboratory hours	30 hours			
Mod	Mode of evaluation: Continuous Assessment & Final Assessment Test (FAT)				
	mmended by Board of Studies 13-12-2015				
Appr	roved by Academic CouncilNo. 40Date18-0	3-2016			

Course Code	Course Title	L	Т	Ρ	J	С	
ECE5011 Advanced Digital Signal Processing		2	0	2	4	4	
Pre-requisite Nil				is v	ers	ion	
						1.0	
Course Objectives	5:						
1. To build adva	anced concepts in digital signal processing applicable f	for pr	oces	ssin	g	and	
analyzing random process.							
2. To familiarize with Signal Modelling and development of recursion techniques.							
3. To design optimal filters using IIR and FIR filtering techniques.							
4. To acquaint the	e students with contemporary use and build DSP systems for	real ti	me	pro	ble	ms.	

Course Outcomes:

- 1. Interpret the random processes in terms of stationarity, statistical independence and correlation.
- 2. Evaluate the theoretical and practical aspects of signal modelling based on computer algorithms.
- 3. Apply the mathematical concepts to design effective lattice system for random signal processing.
- 4. Design and implement the optimum filters using Weiner and Kalman techniques.
- 5. Extend the concepts of adaptive algorithms to non- stationary signals.
- 6. Apply different algorithms for computation of power spectral density for the random signals.
- 7. Solve the real time signal processing problems either with application of programming skills/ hardware kit.
- 8. Design and implement advanced signal processing systems using the imbibed enhanced signal processing concepts

Module:1 Introduction

Discrete-Time Signal Processing: Discrete-Time Signals, Discrete-Time Systems, Time-Domain Descriptions of LSI Filters, Discrete-Time Fourier Transform, and z-Transform, Special Classes of Filters, Filter Flow graphs, The DFT and FFT. Linear and Circular convolution.

Module:2 Discrete Time Random Processes 5 hours Random Variables: Definitions, Ensemble Averages, Jointly Distributed Random Variables, Joint Moments, Independent, Uncorrelated and Orthogonal Random Variables, Linear Mean Square Estimation, Gaussian Random Variables Parameter Estimation: Bias and Consistency. Random Processes: Review, auto-covariance and autocorrelation Matrices, Ergodicity, White Noise, Power Spectrum, Filtering Random Processes, Spectral Factorization. Special Types of Random Processes: Autoregressive Moving Average Processes, Autoregressive

Processes, Moving Average Processes, Harmonic Processes.

Module:3 | Signal Modelling

Introduction, The Least Squares (Direct) Method, The Pade Approximation, Prony's Method-Pole-Zero Modeling, Shank's Method. Stochastic Models: Autoregressive Moving Average Models, Autoregressive Models, Moving Average Models

Module:4 | The Levinson – Durbin Recursion

The Levinson-Durbin Recursion: Development of the Recursion, The Lattice Filter, Properties

4 hours

3 hours

5 hours

Module:	5 Optimal filters	4 hours
	Wiener Filter: Filtering, Linear Prediction, Noise Cancellation, Latti	
	Wiener Filter.	
	Wiener Filter: Non-causal IIR Wiener Filter, The Causal IIR W	Viener Filter. Causal
	Filtering, Causal Linear Prediction, Wiener Deconvolution.	,
	,	
Module:	6 Introduction Adaptive Filters	3 hours
Discrete	Kalman Filter, steepest descent algorithm, LMS, RLS	
Module:	7 Spectrum Estimation	4 hours
	ametric Methods Periodogram, The Modified Periodogram, Bartle	ett's Method, Welch's
	Blackman-Tukey Approach: Periodogram Smoothing, Perform	
	ic Methods- Autoregressive Spectrum Estimation, Moving	
	on, Autoregressive Moving Average Spectrum Estimation.	0 1
Module:	8 Contemporary issues:	2 hours
	r r r r r r r r r r	
	Total lecture hours:	30 hours
Text Boo	nk(s)	
	a, Sanjit Kumar, Yong hong Kuo, Digital signal processing: a comp	outer-based approach.
	3, 4 th Edition, McGraw-Hill, New York.	, , , , , , , , , , , , , , , , , , ,
	nson H. Hayes, Statistical digital signal processing and modeling	g. 2012. 1 st Edition.
	ey, India.	6, ,
	ce Books	
	ard G. Lyons, Understanding digital signal processing, 2011,	3 rd Edition. Pearson
	cation, India.	,
	://freevideolectures.com/Course/3042/Advanced-Digital-Signal-Proc	essing
	evaluation: Internal Assessment (CAT, Quizzes, Digital Assignment	
	ent Test (FAT)	,
	Challenging Experiments (Indicative)	
	time experiments using TMS6713 Processor	10 hours
(a)		
	codec with sampling rate of 96 KHz and display of the signal	as a
	graph in CC-Studio in a time window of 256 samples.	
(b)	Interfacing a function generator with TMS 6713 Processor three	ough
	codec with sampling rate of 96 KHz and display of the magni	tude
	spectrum of signal as a graph in CC-Studio for a time window of	256
	samples by applying FFT for the samples.	
(c)	FIR-filtering (low/high/bandpass) of an audio input obtained three	ough
	microphone interface and output the result in the loud speaker.	
(d)	IIR-filtering (low/high/bandpass) of an audio input obtained three	ough
	microphone interface and output the result in the loud speaker.	
2. Sim	ulation Experiments using Matlab	20 hours
(a)	Decimation and Interpolation of Band limited speech signal	and
	frequency domain analysis.	
(b)	Generation of various Random Processes MA, AR, ARMA.	
(c)	Implementation of FIR and IIR Wiener Filter for separating the des	sired

signal corrupted by AWGN a	and MSE calcu	ulation.			
(d) Implementation of digital Ka	lman filter.				
(e) ECHO Cancellation.					
(f) Power spectrum estimation p	(f) Power spectrum estimation parametric method.				
(g) Power spectrum estimation non parametric method.					
(h) Implementation of Adaptive	filter using LN	MS recursiv	e algorithm.		
		Total la	aboratory hours	30 hours	
Recommended by Board of Studies					
Approved by Academic Council	No. 40	Date	18-03-2016		

Course Code	Course Title	т	Т	P	т	C
ECE5012	Advanced Antenna Engineering	L 3	1 0	r 2	J 0	
Pre-requisite	Nil	_	u llab		v	4 ion
r re-requisite		Зy	пар	us v		<u>1.1</u>
Course Objectives						1.1
V	essential knowledge of the antenna parameters and measurem	onto				
1	ana array using synthesize techniques.	lents	5.			
	ingle element microstrip antenna and array with feeder netwo	rl				
	e types of high impedance surface antennas for various applic		na			
4. 10 millouuce in	e types of high hipedance surface antennas for various appro	ano	115.			
Course Outcomes	•					
	radiation mechanism of antenna and to solve the numerical p	orob	lem	s rel	ated	l to
antenna parame						
-	erpret non uniform excitation coefficients using array synthe	esis	tech	niq	ues	for
minimum side l				1		
3. Design and ana	lyze rectangular and circular microstrip antenna with power of	livid	ler n	etw	ork	
4. Understand the	importance of defected ground structures and metamaterial s	urfa	ces	and	des	ign
high impedance	e surfaces.					
1	ennas for wireless communication and radar applications.					
-	e working of antenna for Software defined and cognitive radi	0.				
7. Acquire knowle	edge on different computational techniques.					
	na Fundamentals			our		
	ism, antennas used in various applications and selection					
	ng anechoic chamber - Radiation pattern, Radiation Inter	isity	, Po	owe	r ga	aın,
Directivity, impeda	nce, Radiation efficiency, Polarization					
Module:2 Anten	and Arreau Switching		81	our		
	- Woodward-Lawson Sampling - Schelkunoff Method- Dol	nh_				ff -
Taylor Line Source		ipn-	I UIK	JUYS	cne	11 -
Tuylor Ellie Source						
Module:3 Micro	ostrip Antennas		6 h	our	S	
	cs, feeding methods, Methods of analysis – Transmission line	e mo				vitv
	Rectangular patch, Circular patch – Microstrip antenna array a					•
<u> </u>						
Module:4 Anten	na Design Techniques		6 h	our	S	
Antenna Design u	sing Artificial Impedance Surface Metamaterial- Electroma	igne	tic 1	Band	1 G	ap-
Defective Ground S	Structure - High Impedance Surface	0				
	na Applications –I			our		
	for wireless personal communication, mobile communication	n- A	nter	na	desi	gn
	IIMO diversity systems - medical therapy					
Module:6 Anten	nna Applications- II		6 h	our	S	
	ana Applications- II are Defined Radio – Cognitive Radio- Electronic Warfare- Gr	roun				ng
		roun				ng

Mo	dule:7	Computational Electromagnetic for Antennas	4 hours			
		oments (MoM), Finite element method (FEM), Finite difference tir	ne domain method			
(FD	DTD)					
		~				
Mo	dule:8	Contemporary issues:	2 hours			
			45 1			
m		Total lecture hours:	45 hours			
	t Book(s		T 1'			
1.		lanis, Antenna Theory: Analysis and Design, 2016, 4 th edition, Wile	ey, India			
2.		lanis, Modern Antenna Handbook, 2012, 1 st Edition, Wiley, India				
	erence B		· · · · · · · ·			
1.		utzman and G.A. Thiele, Antenna Theory and design, 2012, 3 rd Edit				
2. 3.		aus, Antennas and Wave propagation, 2012, 4 th Edition, McGraw H Kumar, Saurabh Shukla, Wave Propagation and Antenna Engi				
э.		PHI, India	neering, 2010, 1			
4.		tenna-theory.com				
		luation: Internal Assessment (CAT, Quizzes, Digital Assignments)	& Final			
		Test (FAT)	œ i illui			
		lenging Experiments (Indicative)				
1.		the impedance of planar and non-planar antennas (Horn, micro strip	o, 4 hours			
	-	c dish etc.)	,			
2.	Design a	and perform the electromagnetic simulation of dipole and monopole	4 hours			
	antenna	for wireless communication system.				
3.		erization of non-planar and planar Ultra-Wideband antenna and	4 hours			
		the electromagnetic simulation.				
4.	-	and perform the electromagnetic simulation of planar inverted F	F- 5 hours			
		and calculate the SAR performance for mobile hand held devices.				
5.	-	and development of micro strip patch antenna for WLAN an	d 4 hours			
-		th applications.				
6.		array design using Matlab	5 hours			
		aylor series method				
_		ourier Transform method				
7.		ement of antenna radiation pattern and characterization of	of 4 hours			
	polarization properties of antenna					
Ма	do of or	Total laboratory hour	rs 30 hours			
		Iuation: Continuous Assessment & Final Assessment Test (FAT)ed by Board of Studies28-02-2016				
			0.2017			
App	noved by	Academic Council No. 47 Date 05-1	0-2017			

(Demmet to be University nuclei metrics 3 of UOC Aut, 1956)						
Course Code	Course Title	L	Τ	P	J	С
ECE5013	Fiber Optic Communication and Networks	2	0	2	0	3
Pre-requisite	Nil	Syl	lab	us ve	ers	ion
						1.0
Course Objective	s:					
1. To acquaint th networks.	e basic concepts of active and passive devices and its applica	ition	in	fiber	. oł	ptic
	the different types of optical amplifiers SOA, EDFA and R ciple and its applications.	A w	vith	resp	ect	t to
3. To familiarize	the theory of non-linearity and optics of anisotropic mec tes like SRS, SBS, SPM, XPM, FWM and Solitons.	lia a	and	abo	ut	the
	modulators like Electro optic and Acousto optic modulator	rs us	sed	in c	opti	ical
Course Outcomes	5:					
2. Understand ho	ve, passive devices and optical amplifiers in optical networks. w nonlinear effects like SRS, SBS, SPM, XPM, FWM and Sc communications.	olitor	ns ca	an bo	e u	sed
1	fference between modulators like Electro optic and Acousto	opt	ic n	nodu	ılat	tors
 Analyze the re Determine Por networks, WD Understand the 	ceiver sensitivity and receiver noise, BER and eye pattern. wer and Rise time budgets and understand the different top M technology, CDMA and SCM. e SONET and Fiber to the home networks. we and evaluate fiber optical communication links	olog	gies	of c	opti	ical
Madalari Nata		<u>т </u>		1		
	vork Elements	<u> </u>		hou		
active and passive	nic device technology: Couplers, isolators, circulators, multiple optical switches, optical cross connects, wavelength selectivity rters, filters: dielectric, AWG and fiber Bragg grating (FBG)	ve c	ross	con	nne	cts,
	cal Amplifiers		2	hou	rs	
SOA, EDFA, Ram	an amplifier					
	inear Effects			hou		
mixing and para refraction. Raylei	I theory of nonlinearities, optics of anisotropic media, harm metric effects, two-photon absorption, saturated absorption gh, Brillouin and Raman scattering, self-focusing and self- ation, four-wave mixing, solitons.	on a	and	non	nlin	near

Module:4 Optical Modulators

Electro-optic effect and acousto optic effects, EO and AO modulators.

Module:5 Detection and receiver design

Receiver sensitivity, bit error rate, eye pattern, minimum received power, quantum limit of photo detection. Receiver design: Front end, linear channel, decision circuit, integrated receivers. Noise

2 hours

4 hours

	Contraction 3 of UOC Act, 1956)			
in detection circuit: shot noise, thermal noise, concept of carrier to noise analysis.				
Module:6	Network Architectures, Topologies and Multi-Channel	6 hours		
	Systems			
The end to	end transmission path, loss and dispersion budgets in network designin	g, optical signal		
	onstraints, design of star, bus, mesh and ring topologies, multiplexit	0		
	mes: TWDM/MA, sub carriers, CDMA, capacity allocation for dedica	ted connections,		
demand as	igned connections.			
		- 1		
	Optical Networks	6 hours		
1	etworks architecture, SONET/SDH optical network, WDM op			
	-routed optical network, routing algorithms, network monitoring ar			
	curity management, routing protocols, intelligent optical network (ION ivers for next-generation optical networks.), FDDI, FTTH,		
ousiness ui	ivers for next-generation optical networks.			
Module:8	Contemporary issues	2 hours		
mouule.o	contemporary issues	2 110015		
	Total lecture hours:	30 hours		
Text Book				
	Keiser, Optical Fiber Communications, 2013, 5 th Edition, McGraw-Hill,	India.		
	c, M., Djordjevic. I. B., Advanced Optical Communication Systems			
	1 st Edition, Artech House, London.			
Reference	Books			
1. R. R.	maswami, K.N. Sivarajan, Morgan Kaufmann, Optical Networ	ks A practical		
	ctive, 2013, 2 nd Edition, Pearson Education, India.			
	grawal, Fiber Optic Communication Systems, 2012, 4th Edition, Wiley,			
	va Ram Murthy, Mohan Gurusamy, WDM optical networks conce	epts design and		
	hms, 2015, 1 st Edition, Pearson Education, India.			
	Agrawal, Nonlinear Fiber Optics, 2012, 5 th Edition, Academic Press, US			
	A Senior, Optical Fiber Communication – principle and practices, 20	114, 3 rd Edition,		
PHI, I		a VI D Cristana		
6. Ivan k	Caminov, Tingye Li, Alan E.Wilner, Optical Fiber Telecommunication etworks, 2013, 6 th Edition, Academic Press, India.	s vi b Systems		
	gogotraining.com/training/courses/20/fiber-optic-communications/			
	valuation: Internal Assessment (CAT, Quizzes, Digital Assignments) &	Final		
	t Test (FAT)	2 I IIIdi		
List of Cha	allenging Experiments (Indicative)			
	non-linear effects – Four-wave mixing, Stimulated Brillouin Scattering	4 hours		
	wavelength division multiplexing with RAMAN amplifier	3 hours		
	etwork Topology with OADM	3 hours		
	over fiber	4 hours		
	pace optical communication link	4 hours		
	Fiber optic link	4 hours		
	budgeting of an optical fiber link	4 hours		
8. Rise ti	me budgeting of an optical fiber link	4 hours		
	Total laboratory hours	30 hours		

Mode of evaluation: Continuous Assessment & Final Assessment Test (FAT)						
Recommended by Board of Studies	ecommended by Board of Studies 13-12-2015					
Approved by Academic Council	No. 40	Date	18-03-2016			

Programme Electives

Course Code	Course Title	L	Т	P	J	С
ECE6010	High Performance Communication Networks	3	0	0	0	3
Pre-requisite	Nil	Syl	lab	ous v	vers	ior
-						1.1
Course Objecti	/es:					
2. To understan functioning of	e with OSI, TCP/IP reference model and various high speed ne ad the protocols as well as design and performance issues a of LANs and WLANs. e Quality of Service protocols and their importance in	associ	iate			
performance				8		
Course Outcom	es:					
	ain the functions of the OSI, TCP/IP reference models.					
	nd analyze the performance of various high speed networks.					
	importance of various congestion and traffic management techning networks	chniq	ues	s rel	atec	l to
1	nd analyze the performance of link level protocols.					
	behavior of TCP and UDP protocols over WLAN.					
6. Understand t	he performance of queuing models and issues related to QoS pr	rotoco	ols.			
Module:1 Net	work Services and Layered Architectures		8 I	hou	rs	
mechanisms, Op Network bottlen	en data network model, OSI, TCP, UDP and IP Models, Net ecks.	work	aro	chite	ectu	res
Module:2 Hig	h Speed Networks		81	hou	rs	
Packet switching DWDM, OBS, O	g networks, Frame relay networks, ATM, High speed LAN, DPS.	Ethe	erne	et, V	VLA	١N
Module:3 Con	ngestion and Traffic Management		61	hou	rs	
Congestion con	rol in data networks, Effects of congestion, Traffic manag	emen	it, (Con	gest	io
control in packet						
	switching networks					
Module:4 Lin	switching networks k level Flow, Error and Traffic Control		71	hou	rs	
	k level Flow, Error and Traffic Control	nce, 7				an
	k level Flow, Error and Traffic Control and error control, Link control mechanisms, ARQ performan	nce, T				and
Need for flow a congestion contr	k level Flow, Error and Traffic Control and error control, Link control mechanisms, ARQ performan	nce, T	ГСł		OW -	an
Need for flow a congestion contr Module:5 UD	k level Flow, Error and Traffic Control and error control, Link control mechanisms, ARQ performant ol. P-TCP/IP Protocol Stack over WLAN Network		ГСІ 6 І	P flo	ow rs	
Need for flow a congestion contred of the congestion contred of the congestion contred of the congestion of the congesti	k level Flow, Error and Traffic Control and error control, Link control mechanisms, ARQ performant ol.		ГСІ 6 І	P flo	ow rs	
Need for flow a congestion contred of the congestion contred of the congestion co	k level Flow, Error and Traffic Control and error control, Link control mechanisms, ARQ performaned. P-TCP/IP Protocol Stack over WLAN Network over WLAN, Effect of access based on RTS/CTS, Behav		ГСІ <u>6 1</u> of	P flo	rs P c	

Dif	ferentiate	ed services.					
Мо	dule:7	Quality of Service Proto	cols		4 hours		
Pro	tocol for	QoS support, Resource r	eservation: RSVI	P, MPLS, Real Time	Transport Protocol,		
Sel	f-Config	uring techniques, Multichar	nnel protocols.				
Module:8 Contemporary issues 2 hours							
			,	Total lecture hours:	45 hours		
Tex	t Book(s)					
1.	Willian	n Stallings, High-speed Net	works and Intern	ets, 2012, 2 nd Edition,	Pearson Education,		
		Kingdom.					
2.		Varland, Pravin Varaiya,	-		etworks, 2011, 2 nd		
		, Harcourt and Morgan Kau	Iffman Publishers	, London.			
Ref	ference I						
1.		racia, Widjaja, Communica	ation Networks, 2	011, 1 st Edition, McG	raw Hill, New York,		
	USA.						
2.		Prasad, Luis Munoz, WL	ANs and WPANs	s Towards 4G Wireles	s, 2013, 1 st Edition,		
		House, London.					
3.	http://w	ww.2.ensc.sfu.ca\~ljilja\en	<u>sc835\fall03\</u>				
		evaluation: Internal Asse	ssment (CAT, C	Quizzes, Digital Ass	ignments) & Final		
Ass	sessment	Test (FAT)					
Rec	commend	led by Board of Studies	28-02-2016				
App	proved by	y Academic Council	No. 47	Date	05-10-2017		

Course Code Course Title		L	Т	P	J	C
ECE6011 Mobile Adhoc Networks		3	0	0	0	3
Pre-requisite Nil		Sy	llab	ous	vers	sion
						1.1

Course Objectives:

- 1. To acquaint the fundamental of adhoc wireless networks and cellular networks.
- 2. To design contention-based MAC protocols and routing protocols for adhoc networks.
- 3. To recognize the QoS frameworks, network security issues, energy management and paraphrase the mobile adhoc network towards WSN, VANET, WPAN.

Course Outcomes:

- 1. Comprehend and analyze the deployment consideration and issues in adhoc network.
- 2. Classify the contention-based MAC protocols based on reservation and scheduling mechanism.
- 3. Compute the routing table for unicast routing protocols.
- 4. Comprehend and analyze the multicast routing protocols.
- 5. Recognize the quality of service solutions, security issue and energy management in adhoc networks.
- 6. Comprehend and analyze the architecture and data processing of wireless sensor network.

Module:1 Introduction

Introduction to Cellular and Ad hoc wireless networks, Applications of ad hoc networks, Issues in ad hoc wireless networks, Medium access scheme, Routing, Multicasting, Transport layer protocols, Pricing scheme, Quality of Service provisioning, Self-organization, Security, Address and security discovery, Energy management, Scalability, Deployment considerations, Ad hoc wireless Internet

Module:2 MAC Protocols

Issues in designing a MAC Protocol for ad hoc wireless networks, design goals of a MAC Protocol for Ad Hoc Wireless Networks, Classification of MAC Protocols, Contention based Protocols with Reservation mechanism, Contention Based MAC Protocols with Scheduling Mechanisms, Other MAC protocols

Module:3 Routing Protocols

Design issues and classification, Table-driven, On-demand and Hybrid routing protocols, Routing protocols with efficient flooding mechanisms, Hierarchical and Power-aware routing protocol

Module:4 | Multicast Routing Protocols

Design issues and operation, Architecture reference model, Classification, Tree-based and Meshbased protocols, Energy-Efficient multicasting, Multicasting with Quality of Service guarantee, Application dependent multicast routing

Module:5 Quality of Service and Security Issues

Issues and challenges in providing QoS, Classification of QoS solutions, MAC layer solutions, Network layer solutions, QoS frameworks, Network security issues

Module:6 Energy Management

Need, Classification of battery management schemes, Transmission power management schemes,

8 hours

8 hours

8 hours

6 hours

4 hours

4 hours

Sys	tem pow	ver management schemes.			
Mo	dule:7	Wireless Sensor Networl	ks		5 hours
Wi	reless Se	ensor Networks: Architect	ure, Data dissem	ination, Data gatheri	ing, MAC Protocols,
Loc	ation dis	scovery, Quality of a senso	r network, Issues	and current trends in	MANETS, VANETS,
WS	N, 6LoV	VPAN			
Mo	dule:8	Contemporary issues			2 hours
				Total lecture hours:	45 hours
	kt Book(
1.		Ram Murthy, B. S. Mano		ss Networks: Archite	ectures and Protocols,
	2012, 1	st Edition, Prentice Hall, Ne	ew Jersey.		
Ref	erence l	Books			
1.		oh, AdHoc Mobile Wire	less Networks: P	rotocols and System	is, 2011, 1^{st} Edition,
	Prentic	e Hall, New Jersey.			
2.		mad Ilyas, The Handbook	of AdHoc Wirele	ss Networks, 2012, 1 ^s	st Edition, CRC press,
	Florida				
3.		Etoh, Next Generation N	Mobile Systems 3	G and Beyond, 201	1, 1 st Edition, Wiley
		tions, New Jersey.			
4.		lisic, Advanced Wireless	Communications 4	4G Technologies, 20	13, 1 st Edition, Wiley
		tions, New Jersey.			
5.	http://w	ww.ece.rochester.edu/cour	ses/ECE586/index	<u>k.htm</u>	
Mo	de of	evaluation: Internal Asse	essment (CAT,	Quizzes, Digital As	signments) & Final
		Test (FAT)			- /
Rec	commend	led by Board of Studies	28-02-2016		
Ap	proved b	y Academic Council	No. 47	Date	05-10-2017

	(Demmed to be Unoversity under section 3 of UOC Act, 1956)					
Course Code	Course Title	L	Τ	P	J	С
ECE6012	Modern Wireless Communication Systems	3	0	0	4	4
Pre-requisite	Nil	S	yllal	bus y	vers	ion
						1.0
Course Objective	es:					
1. To introduce	the fundamentals and limitations of wireless cha	nnel	s ir	npos	ed	on
communicatio	n systems.					
2. To understar	d the principles and importance of spread spectrum	m a	nd	mult	icar	rier
	n in the context of wireless communication.					
	e role of diversity and MIMO techniques in combating the	effe	ct of	fadi	ng a	and
maximizing th						
4. To cognize the	e most recent trends in the broad area of wireless communic	ation				
~ ~ ~						
Course Outcome						
	ffect of large scale fading on signal transmission					
	nd model the wireless channel in terms of small scale fading	- 1				
-	plement diversity coding techniques to overcome the effect		-			лл
	eory of probability and random processes in the design	01 02	iseda	ind	CDI	νIΑ
system 5. Design the tra	nsmitter and receiver blocks of OFDM for better transmissi	on th	roug	h m	ultin	oth
channel	Instituter and receiver blocks of Or Divi for better transmissi	on ui	Toug	11 111	ոսբ	atti
	olve specific problems in advanced technologies like mass	sive l	MIM	0.1	- TetN	Net.
-	ve communication and standards like LTE, LTE-A etc.			,	1001	,
	l multiplexing schemes and low-complexity receivers to n	naxim	nize	the s	spec	tral
efficiency					1	
Module:1 Larg	ge-Scale Path Loss		6 h	our	5	
	M signals in wireless channel, Reflection, Diffraction and s					
	el, Two ray ground reflection model, Log-distance path los					
	oor propagation models, Longley-Rice model, Okumura	mode	el, F	Iata	mo	del,
COST-231, Link	power budget analysis.					
	Il-Scale Fading and Multipath			our		•
	obile multipath channels, Types of small scale fading, l	kayle	igh	and	R1C	an
distributions, Jake	es Doppler spectrum.					
Modula.2 D:	raity Tachniquag		5 1.	our		
	rsity Techniques ep fading, Probability of error analysis under fading char	nol				ity
	Frequency diversity, Spatial diversity techniques, Analysis					•
antenna system, D		515 UI	DL	AN U	111	uIII
untenna system, L						
Module:4 Spre	ad Spectrum Techniques		6 h	our		
	pread spectrum, Orthogonal spreading codes, Benefits of	sprea				ing
	degradation, Universal frequency reuse, Multipath diversity					
	ysis of CDMA downlink with multiple users, Performance					
	iple users, Asynchronous CDMA, Near far problem, Po					
-	ization, Introduction to MC-CDMA.			,		

	01
Turner (° 1' C' 4 1	8 hours
	1
s with localized and interleaved scr	lemes.
TF and I TF-A	5 hours
	0
	I Jan Jan B
	9 hours
	ptimal MIMO power
	ork, Cognitive radio
lay networks.	
	2 hours
	2 110018
Total lecture hours:	45 hours
of Modern Wireless Communication	ons Systems, 2015, 1 st
lia.	
Modern Wireless Communication	s, 2011, 1^{st} Edition
/	
	agignmanta) & Final
illent (CAI, Quizzes, Digital A	ssignments) & rina
fading channel model	
6	rofile. Write a code to
nnel.	
Power (dB))
0	
-9.1 -7	
-9.1 -7 -12	
	of Modern Wireless Communication dia. Modern Wireless Communication ment (CAT, Quizzes, Digital A fading channel model rehicular: a channel power delay pr neasure the channel capacity. Connel. Power (dB)

- 3. Probability of error analysis for higher order modulation schemes under fading channel
- 4. Inter Carrier Interference (ICI) mitigation in OFDM system
- 5. Study and analysis of peak to average power ratio (PAPR) reduction schemes in OFDM system
- 6. Study and analysis of peak to average power ratio (PAPR) using SC-FDMA
- 7. Channel estimation schemes for OFDM system
- 8. Study and analysis of beamforming schemes for MIMO system
- 9. Study and analysis of diversity schemes for MIMO system
- 10. Implementation of SFBC-OFDM
- 11. Implementation of antenna selection schemes for MIMO system
- 12. Study and analysis of channel estimation schemes for MIMO system
- 13. Design of filters for filter bank multicarrier system
- 14. Estimation of angle of arrivals in MIMO system
- 15. Implementation of small cell placement schemes for dense network
- 16. Implementation of path selection algorithms for multi-hop relay networks
- 17. Implementation of Maximum likelihood true parameter estimator for wireless sensor networks
- 18. Implementation spectrum sensing algorithms for cognitive radio
- 19. Implementation of spectrum handoff algorithms for cognitive radio
- 20. Study and analysis of CFO estimation algorithms for OFDM systems

Mode of evaluation: Review I, II and III.						
Recommended by Board of Studies	13-12-2015					
Approved by Academic Council	No. 40	Date	18-03-2016			

	(Demand to be University under auction 3 of UOC Act, 1956)					
Course Code	Course Title	L	Т	P	J	С
ECE6013	Modeling of Wireless Communication Systems	3	0	2	0	4
Pre-requisite	Nil	S	yllat	ous v	vers	ion
						1.1
Course Objective	s:					
1. To understand	the necessity of modeling and simulation approach.					
-	introduction to different error sources, impairments and pe					
	he type and appropriate model of wireless fading channe	l base	d on	the	syst	em
-	the property of the wireless medium.	_				
4. To understand	different queuing models for communication and network	ing ap	plica	tion	s.	
Course Outcome:		•				
	on approach to evaluate the performance of a communicat					
	ry of random processes in modelling the wireless community					•
	it error rate using Monte Carlo simulations and validate	the si	muia	uon	s us	mg
bounds and app 4. Evaluate the p	erformance of communication system in terms of perform	nonco	mati	ice	lika	hit
-	ge probability etc.	nance	meu	105	IIKC	υπ
	ath fading channels that are used in the performance	anals	isis d	of w	virel	655
	GSM, WCDMA, LTE, Wi-Fi, WiMAX etc.	unury	515	<i>J</i> I V	1101	055
	g models to design cellular network with given quality of	servic	e con	strai	nts	
	l as conduct experiments, analyze and interpret the res					alid
	r wireless communication using MATLAB tool.		1			
	¥					
Module:1 Intro	duction to simulation approach			4 h	ours	5
	ach, Advantages and limitations, Methods of performa	nce e	valua	tion	, Er	ror
sources in simulati	on, Role of simulation in communication systems.					
	amentals of Random Variables and Random Process	es foi	•	6 h	ours	5
	lation	1.0			1	1
	ndom variables (continuous and discrete), Univariate a					
	f random variables, Moments, Central moments, Ch g function, Stationarity, Wide sense stationary, Ergodic					· ·
-	sity, Cross correlation, Sampling of stationary random pro	•		COID	51ati	on,
Tower spectral der	isity, cross conclution, sampling of stationary faildoin pro	100350	3.			
Module:3 Boun	ds and approximations			3 h	ours	
	uality, Chernoff bound, Union bound, Central limit th	neorer	n. A			
computation of ex	· · · · · · · · · · · · · · · · · · ·	100101	,	PP10		ute
Module:4 Mont	e Carlo simulations			6 h	ours	5
	nte Carlo Simulation, Random number generation, Ge	enerati	ng i			
	s, Generation of correlated random sequences, Testing		-	-		
generators.						
	m Modeling				ours	
	formation sources, Source coding, Channel coding, E					
Multiplexing, Mul	tiple access, Band pass modulation, Detection, Equalization	on, Ca	rrier	and	tim	ing

recovery for BPSK and QPSK, Performance analysis of communication system under noisy channel conditions.

Module:6 Channel Modeling

Large scale fading models, Small scale fading models, Types of fading, Parameters characterizing fading, Rayleigh fading, Jakes model, Clarke's model, Path loss models for LTE and Wi-Max networks, Performance analysis of communication systems under fading channel, Performance analysis of communication systems with MIMO.

Module:7 Queuing Modeling

Markovian models, Basic queuing models, M/G/1 queuing system, Pollaczek-Khinchine formula, Network of queues, Fundamentals of teletraffic theory, blocked call cleared system, blocked call delayed system, Queuing theory for teletraffic modeling.

Module:8 Contemporary issues

2 hours

8 hours

8 hours

Total lecture hours:45 hours

Text Book(s)

- 1. William H. Tranter, K. Sam Shanmugan, T. S Rappaport, Kurt L. Kosbar, Principles of Communication System Simulation with Wireless Applications, 2011, 1st Edition, Prentice Hall Press, USA.
- 2. M. N. Sadiku, S. M. Musa, Performance Analysis of Computer Networks, 2013, 1st Edition, Springer, Switzerland.

Reference Books

- 1. John G. Proakis, Masoud Salehi, Gerhard Bauch, Contemporary Communication Systems using MATLAB, 2013, 3rd Edition, Nelson Engineering, Canada.
- 2. <u>http://web.stanford.edu/class/ee359/lectures.html</u>
- 3. <u>http://www.cse.wustl.edu/~jain/cse567-15/index.html</u>

Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignments) & Final Assessment Test (FAT)

List of Challenging Experiments (Indicative)

List of Chunchging Experiments (Indeut/C)						
1.	Computation of Probability Mass (Density) Function (PMF or PDF)	2 hours				
	Generate 1000 sample points of real numbers uniformly distributed between					
	'0' and '1'.					
	(a) Let X be Random Variable (RV) taking values '0' &'1'. X=0					
	corresponds to the sample points whose values are less than 0.5. X=1					
	corresponds to the sample points whose values are between 0.5 and 1.					
	Draw the probability mass function of the RV, X.					
	(b) Repeat part (i) for RV 'Y' taking values 0, 1&2.					
	0: sample values between 0 & $1/3$					
	1: sample values between $1/3 \& 2/3$					
	2: sample values between $2/3 \& 1$.					
2.	Computation of PDF and Cumulative Distribution Function (CDF)	2 hours				
	(a) Draw the graph for the binomial density function for $N=6$ and $p=0.4$.					
	Also, compute and show it by graph, the binomial CDF.					
	(b) The pdf of the Gaussian RV is given as $f_X(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}, -\infty < x < \infty$.					

(Demonthy under action 3 of UOC Act, 1956)	
Draw $f_x(x) - 3 < x < 3$ for 'x' in steps of 0.05. Develop and draw the	
CDF of the above function. B. Generation of Histogram of Uniform RV	2 hours
 (a) Generate 1000 sample points of real numbers uniformly distributed between 0 & 1. Compute the Histogram of the above sample points (Take 10 uniform steps between 0 & 1). Redraw the histogram when the sample points are increased to 2000. Also observe it when the steps are increased from 10 to 20. Compare your results with built in Matlab function. 	
 (b) Generate 1000 samples of a uniform RV taking values between 0 & 2π. Generate the new RV,. Plot the pdf of Y. Compare this with the theoretical result. 	
 Generation of Histogram of Gaussian RV (a) Redo the steps given in 3 (i) with Matlab function 'rand' replaced by 'randn'. 	4 hours
(b) Write a Matlab script to compute the mean, mean square, variance and standard deviation for the RVs given in the tasks 4 & 5 and display them on the command prompt. Compare your results with the built in functions.	
 5. Transformation of Uniform pdf to exponential and Rayleigh pdfs (a) Generate 1000 sample points of uniform pdf. Use appropriate transformation to convert uniform pdf to (i). exponential pdf (ii). Rayleigh pdf 	4 hours
 (iii). Draw their corresponding pdf curves. (b) Generate 1000 samples of a 'Gaussian' random variable X. Use the transformation Y=X². Draw the pdf of Y and compare it with theoretical results. (a) Consider the following: 	
 (c) Consider the following: (i). Generate 1000 samples for two independent Gaussian random variables, X and Y with μ=0 and σ² =1. Generate new random 	
variables, $Z = \sqrt{X^2 + Y^2}$ and $\theta = Tan^{-1}\left(\frac{Y}{X}\right)$. Draw their pdfs and compare with the theoretical results.	
(ii). Now add a constant value of 5 to the samples of R.V., X and solve the above problem again.	
 Baseband Transmission and Reception schemes: (a) Spectral analysis of various line coding techniques (b) Implementation of matched filter receiver (c) Pulse shaping with Raised cosine and square root raised cosine filters (d) Implementation of LMS adaptive equalizer for ISI mitigation 	6 hours
 Band-pass Transmission and Reception schemes: (a) BER, capacity and outage analysis of different modulation schemes (theoretical and simulated) (b) Maximum likelihood detector design for higher order modulation schemes 	4 hours
B. Error correction coding:	3 hours

	(b) Time diversity with repetition	n codes				
	(c) Turbo encoder design					
9.	Multiple Access schemes:				3 hours	
	(a) OFDMA Transceiver chain					
	(b) SC-FDMA Transceiver chair	1				
		Т	otal laboratory h	ours	30 hours	
Mo	de of evaluation: Mode of evaluation	on: Continuous Ass	essment & Final	Assess	sment Test	
(FA	(FAT)					
Rec	Recommended by Board of Studies 28-02-2016					
App	Approved by Academic Council No. 47 Date 05-1					

Course Code	Course Title	L	Τ	P	J	С
ECE6014	Modern Satellite Communication	3	0	0	0	3
Pre-requisite	Nil	Sy	llab	us	vers	ion
						1.0
Course Objectiv	es:					
1. To exemplify	in depth knowledge of Satellite communication system.					
2. To have a de	ailed understanding of the critical RF parameters in satellite	transc	eive	er ai	nd tl	neir
effects on per	formance.					
3. To have a d	etailed understanding of the fundamental theory and con	cepts	of t	the	Glo	bal
Positioning a	nd inertial navigation System.	-				
						-

Course Outcomes:

- 1. Design the orbital and functional metrics of satellite communication systems.
- 2. Design the link budget for satellite services and analyze various parameters of transmitted and received signals through satellite.
- 3. Analyze user position using GPS pseudo-range data and error sources for GPS position calculations.
- 4. Analyze strap down inertial navigation systems including coordinate frames, attitude representation, and mechanization in various coordinate frame.
- 5. Develop a location based service using external data sources and services, web mapping and aspects of mobile technology.
- 6. Analyze the estimation techniques for integration of remote sensing sensors in an optimal navigation system.

Module:1 | Introduction to Satellite Communication

Overview of satellite communications, Types of satellites, Kepler's three laws of planetary motion, Orbital elements, Look angle determination, Orbital pert

Module:2 | Launch and Satellite Systems

Launch vehicles, Launching techniques, Orbital effects in satellite communication systems performance, Satellite subsystems, Satellite constellations

Module:3 Global Navigation Satellite System

7 hours Global Navigation Satellite Systems, Basic concepts of GPS, Space segment, Control segment, user segment, GPS constellation, GPS measurement characteristics, Selective availability, Anti spoofing (AS). Applications of satellite and GPS for 3D position, Velocity, determination as function of time, Regional navigation systems

Module:4 | Inertial Navigation

Introduction to Inertial Navigation, Inertial sensors, Navigation coordinates, System implementations, System, Level error models, introduction to Differential GPS, LADGPS, WADGPS, WAAS, GEO Uplink Subsystem (GUS), Clock steering algorithms, GEO orbit determination

M.TECH (MCE)

7 hours

6 hours

7 hours

Module:5 Location Applications Distress and safety, Cospas, Sarsat, Inmarsat distress system, Location-based service Module:6 Sensors, Remote Sensing Systems and Techniques Overview of sensors, Optical sensors: cameras, Non-Optical sensor, Image prointerpretation, System characteristics. Introduction to remote sensing systems, Commercial imaging, Digital glow Meteorology, Meteosat, Land observation, Landsat, Remote sensing data Module:7 Broadcast Systems Introduction, Satellite radio systems, XM satellite radio inc., Sirius satellite radio Direct multimedia broadcast, MBCO and TU multimedia, European initiatives, D (DTH) television, Implementation issues, DTH Services, representative DTH Symultimedia broadcasts, US Global Broadcast Service (GBS), Business TV(BTV Specialized services, Email, Video conferencing, Internet. Module:8 Contemporary issues Image: Text Book(s) Image: Text Book(s) 1. Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews, Global Position Inertial Navigation, and Integration, 2011, 1st Edition, John Wiley & Sons, New 2. 2. T. Pratt, C.W. Boastian, Jeremy Allnutt, Satellite Communications: 2013, 2 ^m Wiley & Sons, New Jersey. 8. Image: Principles and Tree Edition, John Wiley & Sons, New Jersey. 2. D. Roddy, Satellite Communications: 2011, 1 th Edition, McGraw Hill, New Yo 3. W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Enginee Edition, Pearson Education, Uni	
Module:6 Sensors, Remote Sensing Systems and Techniques Overview of sensors, Optical sensors: cameras, Non-Optical sensor, Image prointerpretation, System characteristics. Introduction to remote sensing systems, Commercial imaging, Digital glo Meteorology, Meteosat, Land observation, Landsat, Remote sensing data Module:7 Broadcast Systems Introduction, Satellite radio systems, XM satellite radio inc., Sirius satellite radio Direct multimedia broadcast, MBCO and TU multimedia, European initiatives, D (DTH) television, Implementation issues, DTH Services, representative DTH Symultimedia broadcasts, US Global Broadcast Service (GBS), Business TV(BTV Specialized services, Email, Video conferencing, Internet. Module:8 Contemporary issues Image: Text Book(s) Image: Text Book(s) 1. Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews, Global Posititi Inertial Navigation, and Integration, 2011, 1 st Edition, John Wiley & Sons, New Jersey. Reference Books Image: Text Book (s) 1. Madhavendra Richaria, Mobile Satellite Communications: Principles and Treedition, John Wiley & Sons, New Jersey. 2. D. Roddy, Satellite Communications, 2011, 4 th Edition, McGraw Hill, New Yo 3. W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Enginee Edition, Pearson Education, United Kingdom. 4. Tri T. Ha, Digital Satellite Communications, 2011, 2 nd Edition, McGraw Hill, 15 5.<	2 hours
Overview of sensors, Optical sensors: cameras, Non-Optical sensor, Image prointerpretation, System characteristics. Introduction to remote sensing systems, Commercial imaging, Digital glo Meteorology, Meteosat, Land observation, Landsat, Remote sensing data Module:7 Broadcast Systems Introduction, Satellite radio systems, XM satellite radio inc., Sirius satellite radio Direct multimedia broadcast, MBCO and TU multimedia, European initiatives, D (DTH) television, Implementation issues, DTH Services, representative DTH Symultimedia broadcasts, US Global Broadcast Service (GBS), Business TV(BTV Specialized services, Email, Video conferencing, Internet. Module:8 Contemporary issues I Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews, Global Positic Inertial Navigation, and Integration, 2011, 1 st Edition, John Wiley & Sons, New 2. T. Pratt, C.W. Boastian, Jeremy Allnutt, Satellite Communication, 2013, 2 ^m Wiley & Sons, New Jersey. Reference Books 1. Madhavendra Richaria, Mobile Satellite Communications: Principles and Tree Edition, John Wiley & Sons, New Jersey. 2. D. Roddy, Satellite Communications, 2011, 4 th Edition, McGraw Hill, New Yo 3. W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Enginee Edition, Pearson Education, United Kingdom. 4. Tri T. Ha, Digital Satellite Communications, 2011, 2 nd Edition, McGraw Hill, New Yo	vice, Problems
Overview of sensors, Optical sensors: cameras, Non-Optical sensor, Image prointerpretation, System characteristics. Introduction to remote sensing systems, Commercial imaging, Digital glo Meteorology, Meteosat, Land observation, Landsat, Remote sensing data Module:7 Broadcast Systems Introduction, Satellite radio systems, XM satellite radio inc., Sirius satellite radio Direct multimedia broadcast, MBCO and TU multimedia, European initiatives, D (DTH) television, Implementation issues, DTH Services, representative DTH Symultimedia broadcasts, US Global Broadcast Service (GBS), Business TV(BTV Specialized services, Email, Video conferencing, Internet. Module:8 Contemporary issues Image Provide Services, Comparison of the provide service (GBS), Business TV(BTV Specialized services, Email, Video conferencing, Internet. Module:8 Contemporary issues Image Provide Service (GBS), Business TV(BTV Specialized services, Email, Video conferencing, Internet. Module:8 Contemporary issues I Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews, Global Positic Inertial Navigation, and Integration, 2011, 1 st Edition, John Wiley & Sons, New Jersey. 2. T. Pratt, C.W. Boastian, Jeremy Allnutt, Satellite Communication, 2013, 2 ^m Wiley & Sons, New Jersey. 3. Madhavendra Richaria, Mobile Satellite Communications: Principles and	1
interpretation, System characteristics. Introduction to remote sensing systems, Commercial imaging, Digital glo Meteorology, Meteosat, Land observation, Landsat, Remote sensing data Module:7 Broadcast Systems Introduction, Satellite radio systems, XM satellite radio inc., Sirius satellite radio Direct multimedia broadcast, MBCO and TU multimedia, European initiatives, D (DTH) television, Implementation issues, DTH Services, representative DTH Sy- multimedia broadcasts, US Global Broadcast Service (GBS), Business TV(BTV Specialized services, Email, Video conferencing, Internet. Module:8 Contemporary issues Text Book(s) 1. Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews, Global Positic Inertial Navigation, and Integration, 2011, 1 st Edition, John Wiley & Sons, New 2. T. Pratt, C.W. Boastian, Jeremy Allnutt, Satellite Communication, 2013, 2 ^m Wiley & Sons, New Jersey. Reference Books 1. Madhavendra Richaria, Mobile Satellite Communications: Principles and Tra Edition, John Wiley & Sons, New Jersey. 2. D. Roddy, Satellite Communications, 2011, 4 th Edition, McGraw Hill, New Yo 3. W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Enginee Edition, Pearson Education, United Kingdom. 4. Tri T. Ha, Digital Satellite Communications, 2011, 2 nd Edition, McGraw Hill, N 5. http://www.satcom.co.uk/ Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT)	8 hours
Introduction to remote sensing systems, Commercial imaging, Digital gloc Meteorology, Meteosat, Land observation, Landsat, Remote sensing data Module:7 Broadcast Systems Introduction, Satellite radio systems, XM satellite radio inc., Sirius satellite radio Direct multimedia broadcast, MBCO and TU multimedia, European initiatives, D (DTH) television, Implementation issues, DTH Services, representative DTH Sysmultimedia broadcasts, US Global Broadcast Service (GBS), Business TV(BTV Specialized services, Email, Video conferencing, Internet. Module:8 Contemporary issues Module:8 Contemporary issues I Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews, Global Position Inertial Navigation, and Integration, 2011, 1 st Edition, John Wiley & Sons, New 2. T. Pratt, C.W. Boastian, Jeremy Allnutt, Satellite Communication, 2013, 2 ^m Wiley & Sons, New Jersey. Reference Books 1. Madhavendra Richaria, Mobile Satellite Communications: Principles and Tree Edition, John Wiley & Sons, New Jersey. D. Roddy, Satellite Communications, 2011, 4 th Edition, McGraw Hill, New Yo 3. W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Enginee Edition, Pearson Education, United Kingdom. 4. 4. Tri T. Ha, Digital Satellite Communications, 2011, 2 nd Edition, McGr	processing, Image
Meteorology, Meteosat, Land observation, Landsat, Remote sensing data Module:7 Broadcast Systems Introduction, Satellite radio systems, XM satellite radio inc., Sirius satellite radio Direct multimedia broadcast, MBCO and TU multimedia, European initiatives, D (DTH) television, Implementation issues, DTH Services, representative DTH Sysmultimedia broadcasts, US Global Broadcast Service (GBS), Business TV(BTV Specialized services, Email, Video conferencing, Internet. Module:8 Contemporary issues Image: Text Book(s) Image: Total lecture hours: Text Book(s) Image: Total lecture hours: Image: Text Book(s) Image: The text Book(s) Image: Text Book(s) Image: Text Book(s) Image: Text Book(s) Image: Text Book(s) Image: Text Book(s)	
Module:7 Broadcast Systems Introduction, Satellite radio systems, XM satellite radio inc., Sirius satellite radio Direct multimedia broadcast, MBCO and TU multimedia, European initiatives, D (DTH) television, Implementation issues, DTH Services, representative DTH Symultimedia broadcasts, US Global Broadcast Service (GBS), Business TV(BTV Specialized services, Email, Video conferencing, Internet. Module:8 Contemporary issues Image: Text Book(s) Total lecture hours: Text Book(s) Total lecture hours: Image: Text Book(s) Total lecture hours: Image: Module:8 Contemporary issues Image: Text Book(s) Total lecture hours: Image: Text C.W. Boastian, Jeremy Allnutt, Satellite Communication, 2013, 2 ^{mage} Wiley & Sons, New Jersey. Image: Text Book Total lecture Books Image: Text Book Total Richaria, Mobile Satellite Communications: Principles and Trace Edition, John Wiley & Sons, New Jersey. Image: Decode Books Total Richaria, Mobile Satellite Communication Systems Engineee Edition, Pearson Education, United Kingdom.	globe, GeoEye,
Introduction, Satellite radio systems, XM satellite radio inc., Sirius satellite radio Direct multimedia broadcast, MBCO and TU multimedia, European initiatives, D (DTH) television, Implementation issues, DTH Services, representative DTH Symultimedia broadcasts, US Global Broadcast Service (GBS), Business TV(BTV Specialized services, Email, Video conferencing, Internet. Module:8 Contemporary issues Module:8 Contemporary issues Text Book(s) Total lecture hours: Text Book(s) Total lecture hours: I. Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews, Global Position Inertial Navigation, and Integration, 2011, 1 st Edition, John Wiley & Sons, New 20. T. Pratt, C.W. Boastian, Jeremy Allnutt, Satellite Communication, 2013, 2 ^{ma} Wiley & Sons, New Jersey. Reference Books 1. Madhavendra Richaria, Mobile Satellite Communications: Principles and Trace Edition, John Wiley & Sons, New Jersey. 2. D. Roddy, Satellite Communications, 2011, 4 th Edition, McGraw Hill, New Yor 3. W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Engineee Edition, Pearson Education, United Kingdom. 4. Tri T. Ha, Digital Satellite Communications, 2011, 2 nd Edition, McGraw Hill, New Yor 5. http://www.satcom.co.uk/ Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT)	
Introduction, Satellite radio systems, XM satellite radio inc., Sirius satellite radio Direct multimedia broadcast, MBCO and TU multimedia, European initiatives, D (DTH) television, Implementation issues, DTH Services, representative DTH Symultimedia broadcasts, US Global Broadcast Service (GBS), Business TV(BTV Specialized services, Email, Video conferencing, Internet. Module:8 Contemporary issues Module:8 Contemporary issues Text Book(s) Total lecture hours: Text Book(s) Total lecture hours: I. Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews, Global Position Inertial Navigation, and Integration, 2011, 1 st Edition, John Wiley & Sons, New 20. T. Pratt, C.W. Boastian, Jeremy Allnutt, Satellite Communication, 2013, 2 ^{ma} Wiley & Sons, New Jersey. Reference Books 1. Madhavendra Richaria, Mobile Satellite Communications: Principles and Trace Edition, John Wiley & Sons, New Jersey. 2. D. Roddy, Satellite Communications, 2011, 4 th Edition, McGraw Hill, New Yor 3. W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Engineee Edition, Pearson Education, United Kingdom. 4. Tri T. Ha, Digital Satellite Communications, 2011, 2 nd Edition, McGraw Hill, New Yor 5. http://www.satcom.co.uk/ Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT)	
 Direct multimedia broadcast, MBCO and TU multimedia, European initiatives, D (DTH) television, Implementation issues, DTH Services, representative DTH Symultimedia broadcasts, US Global Broadcast Service (GBS), Business TV(BTV) Specialized services, Email, Video conferencing, Internet. Module:8 Contemporary issues Total lecture hours: Text Book(s) I Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews, Global Position Inertial Navigation, and Integration, 2011, 1st Edition, John Wiley & Sons, New Viley & Sons, New Jersey. T. Pratt, C.W. Boastian, Jeremy Allnutt, Satellite Communication, 2013, 2nd Wiley & Sons, New Jersey. Madhavendra Richaria, Mobile Satellite Communications: Principles and Tree Edition, John Wiley & Sons, New Jersey. D. Roddy, Satellite Communications, 2011, 4th Edition, McGraw Hill, New Yo WL. Pritchard, H.G Suyderhoud, Satellite Communication Systems Enginee Edition, Pearson Education, United Kingdom. Tri T. Ha, Digital Satellite Communications, 2011, 2nd Edition, McGraw Hill, New Yo http://www.satcom.co.uk/ Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT) 	6 hours
 (DTH) television, Implementation issues, DTH Services, representative DTH Symultimedia broadcasts, US Global Broadcast Service (GBS), Business TV(BTV Specialized services, Email, Video conferencing, Internet. Module:8 Contemporary issues Text Book(s) 1. Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews, Global Position Inertial Navigation, and Integration, 2011, 1st Edition, John Wiley & Sons, New Jersey. 2. T. Pratt, C.W. Boastian, Jeremy Allnutt, Satellite Communication, 2013, 2nd Wiley & Sons, New Jersey. Reference Books 1. Madhavendra Richaria, Mobile Satellite Communications: Principles and Tree Edition, John Wiley & Sons, New Jersey. 2. D. Roddy, Satellite Communications, 2011, 4th Edition, McGraw Hill, New Yor 3. W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Enginee Edition, Pearson Education, United Kingdom. 4. Tri T. Ha, Digital Satellite Communications, 2011, 2nd Edition, McGraw Hill, New Sons, New Jersey. Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT) 	lio, World space,
multimedia broadcasts, US Global Broadcast Service (GBS), Business TV(BTV Specialized services, Email, Video conferencing, Internet. Module:8 Contemporary issues Total lecture hours: Total lecture hours: Text Book(s) Total lecture hours: I Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews, Global Position Inertial Navigation, and Integration, 2011, 1 st Edition, John Wiley & Sons, New 2. T. Pratt, C.W. Boastian, Jeremy Allnutt, Satellite Communication, 2013, 2 nd Wiley & Sons, New Jersey. Reference Books I. Madhavendra Richaria, Mobile Satellite Communications: Principles and Tra Edition, John Wiley & Sons, New Jersey. 2. D. Roddy, Satellite Communications, 2011, 4 th Edition, McGraw Hill, New Yo 3. W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Enginee Edition, Pearson Education, United Kingdom. 4. Tri T. Ha, Digital Satellite Communications, 2011, 2 nd Edition, McGraw Hill, N 5. http://www.satcom.co.uk/ Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT)	
Specialized services, Email, Video conferencing, Internet. Module:8 Contemporary issues Total lecture hours: Total lecture hours: Text Book(s) Total lecture hours: I Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews, Global Position Inertial Navigation, and Integration, 2011, 1 st Edition, John Wiley & Sons, New 2. T. Pratt, C.W. Boastian, Jeremy Allnutt, Satellite Communication, 2013, 2 nd Wiley & Sons, New Jersey. Reference Books Image: Sons, New Jersey. 2. D. Roddy, Satellite Communications, 2011, 4 th Edition, McGraw Hill, New Yoo 3. W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Enginee Edition, Pearson Education, United Kingdom. 4. Tri T. Ha, Digital Satellite Communications, 2011, 2 nd Edition, McGraw Hill, N 5. http://www.satcom.co.uk/ Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT)	
Module:8 Contemporary issues Text Book(s) Total lecture hours: 1. Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews, Global Position Inertial Navigation, and Integration, 2011, 1 st Edition, John Wiley & Sons, New 2. 2. T. Pratt, C.W. Boastian, Jeremy Allnutt, Satellite Communication, 2013, 2 nd Wiley & Sons, New Jersey. Reference Books 1. Madhavendra Richaria, Mobile Satellite Communications: Principles and Trace Edition, John Wiley & Sons, New Jersey. 2. D. Roddy, Satellite Communications, 2011, 4 th Edition, McGraw Hill, New Yo 3. W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Engineer Edition, Pearson Education, United Kingdom. 4. Tri T. Ha, Digital Satellite Communications, 2011, 2 nd Edition, McGraw Hill, New Yo 5. http://www.satcom.co.uk/ Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT)	TV), GRAMSAT,
Text Book(s) 1. Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews, Global Position Inertial Navigation, and Integration, 2011, 1 st Edition, John Wiley & Sons, New Versey. 2. T. Pratt, C.W. Boastian, Jeremy Allnutt, Satellite Communication, 2013, 2 nd Wiley & Sons, New Jersey. 8. Reference Books 1. Madhavendra Richaria, Mobile Satellite Communications: Principles and Transferitor, John Wiley & Sons, New Jersey. 2. D. Roddy, Satellite Communications, 2011, 4 th Edition, McGraw Hill, New Yoo 3. W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Engineer Edition, Pearson Education, United Kingdom. 4. Tri T. Ha, Digital Satellite Communications, 2011, 2 nd Edition, McGraw Hill, New Yoo 5. http://www.satcom.co.uk/ Moder of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT)	
Text Book(s) 1. Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews, Global Position Inertial Navigation, and Integration, 2011, 1 st Edition, John Wiley & Sons, New 2013, 2 nd 2. T. Pratt, C.W. Boastian, Jeremy Allnutt, Satellite Communication, 2013, 2 nd Wiley & Sons, New Jersey. Reference Books 1. Madhavendra Richaria, Mobile Satellite Communications: Principles and Transferitor, John Wiley & Sons, New Jersey. 2. D. Roddy, Satellite Communications, 2011, 4 th Edition, McGraw Hill, New Yoo 3. W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Engineer Edition, Pearson Education, United Kingdom. 4. Tri T. Ha, Digital Satellite Communications, 2011, 2 nd Edition, McGraw Hill, New Yoo 5. http://www.satcom.co.uk/ Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT)	•
 Text Book(s) 1. Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews, Global Position Inertial Navigation, and Integration, 2011, 1st Edition, John Wiley & Sons, New 2. T. Pratt, C.W. Boastian, Jeremy Allnutt, Satellite Communication, 2013, 2nd Wiley & Sons, New Jersey. Reference Books 1. Madhavendra Richaria, Mobile Satellite Communications: Principles and Tree Edition, John Wiley & Sons, New Jersey. 2. D. Roddy, Satellite Communications, 2011, 4th Edition, McGraw Hill, New Yoo 3. W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Enginee Edition, Pearson Education, United Kingdom. 4. Tri T. Ha, Digital Satellite Communications, 2011, 2nd Edition, McGraw Hill, New Yoo 5. http://www.satcom.co.uk/ Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT) 	2 hours
 Text Book(s) 1. Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews, Global Position Inertial Navigation, and Integration, 2011, 1st Edition, John Wiley & Sons, New 2. T. Pratt, C.W. Boastian, Jeremy Allnutt, Satellite Communication, 2013, 2nd Wiley & Sons, New Jersey. Reference Books 1. Madhavendra Richaria, Mobile Satellite Communications: Principles and Tree Edition, John Wiley & Sons, New Jersey. 2. D. Roddy, Satellite Communications, 2011, 4th Edition, McGraw Hill, New Yoo 3. W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Enginee Edition, Pearson Education, United Kingdom. 4. Tri T. Ha, Digital Satellite Communications, 2011, 2nd Edition, McGraw Hill, N 5. http://www.satcom.co.uk/ Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT) 	
 Mohinder S. Grewal, Lawrence R. Weill, Angus P. Andrews, Global Position Inertial Navigation, and Integration, 2011, 1st Edition, John Wiley & Sons, New 2013, 2nd Wiley & Sons, New Jersey. Reference Books Madhavendra Richaria, Mobile Satellite Communications: Principles and Transference Books Madhavendra Richaria, Mobile Satellite Communications: Principles and Transference Books D. Roddy, Satellite Communications, 2011, 4th Edition, McGraw Hill, New You W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Enginee Edition, Pearson Education, United Kingdom. Tri T. Ha, Digital Satellite Communications, 2011, 2nd Edition, McGraw Hill, N http://www.satcom.co.uk/ Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT) 	45 hours
 Inertial Navigation, and Integration, 2011, 1st Edition, John Wiley & Sons, New T. Pratt, C.W. Boastian, Jeremy Allnutt, Satellite Communication, 2013, 2nd Wiley & Sons, New Jersey. Reference Books Madhavendra Richaria, Mobile Satellite Communications: Principles and Tree Edition, John Wiley & Sons, New Jersey. D. Roddy, Satellite Communications, 2011, 4th Edition, McGraw Hill, New Yoo W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Enginee Edition, Pearson Education, United Kingdom. Tri T. Ha, Digital Satellite Communications, 2011, 2nd Edition, McGraw Hill, N Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT)	
 T. Pratt, C.W. Boastian, Jeremy Allnutt, Satellite Communication, 2013, 2nd Wiley & Sons, New Jersey. Reference Books Madhavendra Richaria, Mobile Satellite Communications: Principles and Tree Edition, John Wiley & Sons, New Jersey. D. Roddy, Satellite Communications, 2011, 4th Edition, McGraw Hill, New Yoo W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Enginee Edition, Pearson Education, United Kingdom. Tri T. Ha, Digital Satellite Communications, 2011, 2nd Edition, McGraw Hill, New Yoo <u>http://www.satcom.co.uk/</u> Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT) 	
Wiley & Sons, New Jersey. Reference Books 1. Madhavendra Richaria, Mobile Satellite Communications: Principles and Trae Edition, John Wiley & Sons, New Jersey. 2. D. Roddy, Satellite Communications, 2011, 4 th Edition, McGraw Hill, New Yo 3. W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Enginee Edition, Pearson Education, United Kingdom. 4. Tri T. Ha, Digital Satellite Communications, 2011, 2 nd Edition, McGraw Hill, N 5. http://www.satcom.co.uk/ Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT)	
Reference Books 1. Madhavendra Richaria, Mobile Satellite Communications: Principles and Tra Edition, John Wiley & Sons, New Jersey. 2. D. Roddy, Satellite Communications, 2011, 4 th Edition, McGraw Hill, New Yo 3. W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Enginee Edition, Pearson Education, United Kingdom. 4. Tri T. Ha, Digital Satellite Communications, 2011, 2 nd Edition, McGraw Hill, New Yo 5. http://www.satcom.co.uk/ Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT)	2 nd Edition, John
 Madhavendra Richaria, Mobile Satellite Communications: Principles and Tra Edition, John Wiley & Sons, New Jersey. D. Roddy, Satellite Communications, 2011, 4th Edition, McGraw Hill, New Yo W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Enginee Edition, Pearson Education, United Kingdom. Tri T. Ha, Digital Satellite Communications, 2011, 2nd Edition, McGraw Hill, N <u>http://www.satcom.co.uk/</u> Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT) 	
 Edition, John Wiley & Sons, New Jersey. 2. D. Roddy, Satellite Communications, 2011, 4th Edition, McGraw Hill, New Yo 3. W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Enginee Edition, Pearson Education, United Kingdom. 4. Tri T. Ha, Digital Satellite Communications, 2011, 2nd Edition, McGraw Hill, N 5. <u>http://www.satcom.co.uk/</u> Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT) 	
 Edition, John Wiley & Sons, New Jersey. 2. D. Roddy, Satellite Communications, 2011, 4th Edition, McGraw Hill, New Yo 3. W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Enginee Edition, Pearson Education, United Kingdom. 4. Tri T. Ha, Digital Satellite Communications, 2011, 2nd Edition, McGraw Hill, N 5. <u>http://www.satcom.co.uk/</u> Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT) 	Trends, 2014, 2 nd
 W.L. Pritchard, H.G Suyderhoud, Satellite Communication Systems Enginee Edition, Pearson Education, United Kingdom. Tri T. Ha, Digital Satellite Communications, 2011, 2nd Edition, McGraw Hill, No. <u>http://www.satcom.co.uk/</u> Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT) 	
Edition, Pearson Education, United Kingdom. 4. Tri T. Ha, Digital Satellite Communications, 2011, 2 nd Edition, McGraw Hill, N 5. <u>http://www.satcom.co.uk/</u> Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT)	
Edition, Pearson Education, United Kingdom. 4. Tri T. Ha, Digital Satellite Communications, 2011, 2 nd Edition, McGraw Hill, N 5. <u>http://www.satcom.co.uk/</u> Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT)	eering, 2011, 2 nd
5. <u>http://www.satcom.co.uk/</u> Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT)	
5. <u>http://www.satcom.co.uk/</u> Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignm Assessment Test (FAT)	l, New York.
Assessment Test (FAT)	
Assessment Test (FAT)	ments) & Final
Recommended by Board of Studies 13-12-2015	
Approved by Academic Council No. 40 Date 18-	
Recommended by Board of Studies 13-12-2015	

Course Code	Course Title	ΙΤΟ
Course Code ECE6015	Course Title Coding for MIMO Communication	L T P J C 3 0 0 0 3
Pre-requisite	Nil	Syllabus version
110-10quisite		
Course Objective	<u> </u>	1.1
· · · · · · · · · · · · · · · · · · ·	the importance of MIMO for next generation networks.	
	e role of different diversity formats and spatial multiple	xing in combating the
	g and maximizing transmission capacity.	
	introduction to advanced MIMO concepts like multi-	user MIMO. massive
_	I-MIMO for next generation communication.	,
Course Outcome		
	nd model the MIMO wireless channel	
•	plement diversity coding techniques to overcome the effect	6
0 1	l power allocation algorithms to maximize the system capa	acity
	erent forms of diversity to improve the error performance	
	mplexity, linear and non-linear receivers	:
6. Evaluate the p	erformance of concatenated codes for MIMO communicat	1011
Module:1 Intro	duction to MIMO and Wireless Channel	6 hours
	i antenna systems, Array gain, Diversity gain, Data pipes	
	MIMO system model.	, opular manipicking
vinciess chamier,		
Module:2 Dive	sity Techniques	6 hours
Diversity, Types,	Selection diversity, Scanning diversity, Maximum ratio c	combining, Equal gair
combining, Calcul	ation of SNR.	
	city of MIMO Channel	6 hours
	bacity, Channel unknown to the transmitter, Channel kno	
channels.	inciple, Capacity when channel is known to the tran	sinitier, Deterministic
channels.		
Module:4 Spac	e Time Block Coding	6 hours
	e Time Block Coding with two antennas: Alamouti scheme, STBC for rea	6 hours l signal constellation
Transmit diversity	e Time Block Coding with two antennas: Alamouti scheme, STBC for real signal constellation, Decoding of STBC-OSTBC, Capaci	l signal constellation
Transmit diversity	with two antennas: Alamouti scheme, STBC for rea	l signal constellation
Transmit diversity STBC for complex	with two antennas: Alamouti scheme, STBC for rea	l signal constellation
Transmit diversity STBC for complex Module:5 Spac	with two antennas: Alamouti scheme, STBC for read signal constellation, Decoding of STBC-OSTBC, Capaci	l signal constellation ity of OSTBC. 7 hours
Transmit diversity STBC for complex Module:5 Space Space Time Code probability of slo	with two antennas: Alamouti scheme, STBC for rea a signal constellation, Decoding of STBC-OSTBC, Capaci e Time Trellis Codes d system, Design of space time trellis coded on slow w fading channel, Design of space time trellis codes on	l signal constellation ity of OSTBC. 7 hours fading channel, Error
Transmit diversity STBC for complex Module:5 Space Space Time Code probability of slo	with two antennas: Alamouti scheme, STBC for real signal constellation, Decoding of STBC-OSTBC, Capaci e Time Trellis Codes d system, Design of space time trellis coded on slow	l signal constellation ity of OSTBC. 7 hours fading channel, Erro
Transmit diversity STBC for complex Module:5 Space Space Time Code probability of slo Error probability of	with two antennas: Alamouti scheme, STBC for rea signal constellation, Decoding of STBC-OSTBC, Capaci e Time Trellis Codes d system, Design of space time trellis coded on slow w fading channel, Design of space time trellis codes on f fast fading channels, Comparison of STBC and STTC.	l signal constellation ity of OSTBC. 7 hours fading channel, Erro fast fading channels
Transmit diversity STBC for complex Module:5 Space Space Time Code probability of slov Error probability of Module:6 Laye	with two antennas: Alamouti scheme, STBC for rea a signal constellation, Decoding of STBC-OSTBC, Capaci e Time Trellis Codes d system, Design of space time trellis coded on slow w fading channel, Design of space time trellis codes on f fast fading channels, Comparison of STBC and STTC. red Space Time Codes	l signal constellation ity of OSTBC. 7 hours fading channel, Erro fast fading channels 6 hours
Transmit diversity STBC for complex Module:5 Space Space Time Code probability of slov Error probability of Module:6 Laye LST transmitters:	with two antennas: Alamouti scheme, STBC for rea a signal constellation, Decoding of STBC-OSTBC, Capaci e Time Trellis Codes d system, Design of space time trellis coded on slow w fading channel, Design of space time trellis codes on f fast fading channels, Comparison of STBC and STTC. red Space Time Codes Types of encoding, Horizontal encoding, Vertical encodin	l signal constellation ity of OSTBC. 7 hours fading channel, Erro fast fading channels 6 hours ag, Diagonal encoding
TransmitdiversitySTBC for complexModule:5SpaceSpaceTimeCodeprobabilityofslovErrorErrorprobabilityModule:6LayeLSTtransmitters:LayeredSpace-Ti	with two antennas: Alamouti scheme, STBC for rea a signal constellation, Decoding of STBC-OSTBC, Capaci e Time Trellis Codes d system, Design of space time trellis coded on slow w fading channel, Design of space time trellis codes on f fast fading channels, Comparison of STBC and STTC. red Space Time Codes	I signal constellation ity of OSTBC. 7 hours fading channel, Erro fast fading channels 6 hours g, Diagonal encoding ST, VLST and DLST

Mo	dule:7	Concatenated Codes and	l Iterative Decodi	ing	6 hours
Dev	velopme	nt of concatenated codes, C	Concatenated code	s for AWGN and	MIMO channels, Turbo
cod	led modu	lation for MIMO channels,	Concatenated spa	ace-time block cod	ling.
Mo	dule:8	Contemporary issues:			2 hours
			Tot	al lecture hours:	45 hours
Tey	<mark>xt Book(</mark>	s)			
1.	Aditya	K. Jagannatham, Principle	s of Modern Wire	eless Communicat	ions Systems, 2015, 1 st
	Edition	, McGraw-Hill Education,	India.		
Ref	ference l	Books			
1.		Gershman, N. D. Sidiropo		Processing for M	IMO Communications,
		st Edition, Wiley, NJ, USA			
2.		lraj, R. Nabar, D Gore, Int		e-Time Wireless	Communications, 2013,
		ion, Cambridge University			
3.		M. Duman, Ali Ghrayed,			ion Systems, 2012, 1 st
		, John Wiley & Sons, West			
4.		ptel.ac.in/syllabus/syllabus			
		evaluation: Internal Asse	essment (CAT, Q	Quizzes, Digital	Assignments) & Final
		Test (FAT)	1		
		led by Board of Studies	28-02-2016		
Ap	proved b	y Academic Council	No. 47	Date	05-10-2017

Course Code		Course Title	L	Τ	P	J	С
ECE6016		Advanced Wireless Sensor Networks	2	0	2	0	3
Pre-requisite		Nil		Sylla	bus y	vers	ion
Course Objec			a			1 \	
		e in physical, MAC and routing layers of WSN (Wireless	Sens	or Ne	etwo	rks)	
 To learn W To analyze 							
5. TO analyze	e the per	formance of WSN					
Course Outco	mes:						
		chitectures of WSNs.					
2. Design Ph	ysical a	nd MAC Layers.					
		ayer in WSN.					
		ering in WSN.					
5. Interpret V							
		on process in WSN.					
7. Understan	d and w	rite code for Operating Systems in WSN.					
Module:1	Arabi	tectures of WSNs		2	houi	•6	
		ling technologies for Wireless Sensor Networks, Sing	nla Na				110
U		s, Energy consumption of sensor node, Sensor networks, sing			arcin		ле,
11dl d wale con	ponent						
	1		Ciluit	05			
	•				houi	:s	
Module:2	Physic	cal and MAC Layers nsceiver design considerations in WSNs, MAC Protocols		5			ıle-
Module:2 Physical layer based protoco	Physic and tra	cal and MAC Layers nsceiver design considerations in WSNs, MAC Protocols lom Access-based protocols, Sensor-MAC: Periodic lister	for V	5 VSNs sleep	s: Sc ope	hedu ratio	ons
Module:2 Physical layer based protoco Schedule sele	Physic and tra ls, Rand ction ar	cal and MAC Layers nsceiver design considerations in WSNs, MAC Protocols lom Access-based protocols, Sensor-MAC: Periodic lister ad coordination, Schedule synchronization, Adaptive list	for V	5 VSNs sleep	s: Sc ope	hedu ratio	ons,
Module:2 Physical layer based protoco Schedule sele	Physic and tra ls, Rand ction ar	cal and MAC Layers nsceiver design considerations in WSNs, MAC Protocols lom Access-based protocols, Sensor-MAC: Periodic lister	for V	5 VSNs sleep	s: Sc ope	hedu ratio	ons,
Module:2 Physical layer based protoco Schedule sele and data excha	Physic and tra s, Rand ction ar ange, M	cal and MAC Layers nsceiver design considerations in WSNs, MAC Protocols lom Access-based protocols, Sensor-MAC: Periodic lister ad coordination, Schedule synchronization, Adaptive list essage passing.	for V	5 VSNs sleep g, Ac	s: Sc ope cess	hedu ratio con	ons,
Module:2 Physical layer based protoco Schedule sele and data excha Module:3	Physic and tra s, Rand ction ar ange, M Netwo	cal and MAC Layers nsceiver design considerations in WSNs, MAC Protocols lom Access-based protocols, Sensor-MAC: Periodic lister ad coordination, Schedule synchronization, Adaptive list essage passing. ork layer in WSN	for V	5 VSNs sleep g, Ac	s: Sc ope	hedu ratio con	ons,
Module:2 Physical layer based protoco Schedule sele and data excha Module:3	Physic and tra s, Rand ction ar ange, M Netwo	cal and MAC Layers nsceiver design considerations in WSNs, MAC Protocols lom Access-based protocols, Sensor-MAC: Periodic lister ad coordination, Schedule synchronization, Adaptive list essage passing.	for V	5 VSNs sleep g, Ac	s: Sc ope cess	hedu ratio con	ons,
Module:2 Physical layer based protoco Schedule sele and data excha Module:3 Challenges for	Physic and tra s, Rand ction ar ange, M Netwo routing	cal and MAC Layers nsceiver design considerations in WSNs, MAC Protocols lom Access-based protocols, Sensor-MAC: Periodic lister ad coordination, Schedule synchronization, Adaptive list essage passing. ork layer in WSN g, Data centric and flat architecture	for V	5 VSNs sleep s, Ac	s: Sc ope cess hour	hedu ratio con	ons,
Module:2 Physical layer based protoco Schedule sele and data excha Module:3 Challenges for Module:4	Physic and tra s, Rand ction ar ange, M Netwo routing	cal and MAC Layers nsceiver design considerations in WSNs, MAC Protocols lom Access-based protocols, Sensor-MAC: Periodic lister ad coordination, Schedule synchronization, Adaptive list essage passing. ork layer in WSN g, Data centric and flat architecture ering in WSN	for V	5 VSNs sleep s, Ac	s: Sc ope cess	hedu ratio con	ons,
Module:2 Physical layer based protoco Schedule sele and data excha Module:3 Challenges for Module:4	Physic and tra s, Rand ction ar ange, M Netwo routing	cal and MAC Layers nsceiver design considerations in WSNs, MAC Protocols lom Access-based protocols, Sensor-MAC: Periodic lister ad coordination, Schedule synchronization, Adaptive list essage passing. ork layer in WSN g, Data centric and flat architecture	for V	5 VSNs sleep s, Ac	s: Sc ope cess hour	hedu ratio con	ons,
Module:2 Physical layer based protoco Schedule sele and data excha Module:3 Challenges for Module:4 Hierarchical p	Physic and tra s, Rand ction ar ange, M Netwo routing Cluste rotocols	cal and MAC Layers nsceiver design considerations in WSNs, MAC Protocols lom Access-based protocols, Sensor-MAC: Periodic lister ad coordination, Schedule synchronization, Adaptive list essage passing. ork layer in WSN g, Data centric and flat architecture ering in WSN s, Geographical routing, QoS based protocols	for V	5 VSNs sleep , Ac 4	s: Sc ope cess hour	hedu ratio con ss	ons,
Module:2 Physical layer based protoco Schedule sele and data excha Module:3 Challenges for Module:4 Hierarchical p Module:5	Physic and tra ls, Rand ction ar ange, M Netwo routing Clusto rotocols	cal and MAC Layers nsceiver design considerations in WSNs, MAC Protocols lom Access-based protocols, Sensor-MAC: Periodic lister ad coordination, Schedule synchronization, Adaptive list essage passing. ork layer in WSN g, Data centric and flat architecture ering in WSN s, Geographical routing, QoS based protocols Standards	for V	5 VSNs sleep , Ac 4	s: Sc ope cess hour	hedu ratio con ss	ons,
Module:2 Physical layer based protoco Schedule sele and data excha Module:3 Challenges for Module:4 Hierarchical p Module:5	Physic and tra ls, Rand ction ar ange, M Netwo routing Clusto rotocols	cal and MAC Layers nsceiver design considerations in WSNs, MAC Protocols lom Access-based protocols, Sensor-MAC: Periodic lister ad coordination, Schedule synchronization, Adaptive list essage passing. ork layer in WSN g, Data centric and flat architecture ering in WSN s, Geographical routing, QoS based protocols	for V	5 VSNs sleep , Ac 4	s: Sc ope cess hour	hedu ratio con ss	ons,
Module:2 Physical layer based protoco Schedule sele and data excha Module:3 Challenges for Module:4 Hierarchical p Module:5 802.15.4 - PH	Physic and tra s, Rand ction ar inge, M Netwo routing Clusto rotocols WSN Y and N	cal and MAC Layers nsceiver design considerations in WSNs, MAC Protocols lom Access-based protocols, Sensor-MAC: Periodic lister ad coordination, Schedule synchronization, Adaptive list essage passing. ork layer in WSN g, Data centric and flat architecture ering in WSN s, Geographical routing, QoS based protocols Standards MAC, Zigbee, 6LoWPAN	for V	5 VSNs sleep , Ac 4 4 4	s: Sc ope cess hour hour	heduratic con rs rs	ons,
Module:2 Physical layer based protoco Schedule sele- and data excha Module:3 Challenges for Module:4 Hierarchical p Module:5 802.15.4 - PH Module:6	Physic and tra and tra s, Rand ction ar ange, M Netwo routing Clusto rotocols WSN Y and N Local	cal and MAC Layers nsceiver design considerations in WSNs, MAC Protocols lom Access-based protocols, Sensor-MAC: Periodic lister ad coordination, Schedule synchronization, Adaptive list essage passing. ork layer in WSN g, Data centric and flat architecture ering in WSN s, Geographical routing, QoS based protocols Standards	a for V n and cening	5 VSNs sleep , Ac 4 4 4 4	s: Sc ope cess hour hour hour	heduratic con rs rs	ons, trol
Module:2 Physical layer based protoco Schedule sele- and data excha Module:3 Challenges for Module:4 Hierarchical p Module:5 802.15.4 - PH Module:6	Physic and tra and tra s, Rand ction ar ange, M Netwo routing Clusto rotocols WSN Y and N Local	cal and MAC Layers nsceiver design considerations in WSNs, MAC Protocols lom Access-based protocols, Sensor-MAC: Periodic lister ad coordination, Schedule synchronization, Adaptive list essage passing. ork layer in WSN g, Data centric and flat architecture ering in WSN s, Geographical routing, QoS based protocols Standards MAC, Zigbee, 6LoWPAN ization in WSN	a for V n and cening	5 VSNs sleep , Ac 4 4 4 4	s: Sc ope cess hour hour hour	heduratic con rs rs	ons, trol
Module:2 Physical layer based protoco Schedule sele- and data excha Module:3 Challenges for Module:4 Hierarchical p Module:5 802.15.4 - PH Module:6	Physic and tra ls, Rand ction ar ange, M Netwo routing Clusto rotocols WSN Y and N Local localiza	cal and MAC Layers nsceiver design considerations in WSNs, MAC Protocols lom Access-based protocols, Sensor-MAC: Periodic lister ad coordination, Schedule synchronization, Adaptive list essage passing. ork layer in WSN g, Data centric and flat architecture ering in WSN s, Geographical routing, QoS based protocols Standards MAC, Zigbee, 6LoWPAN ization in WSN	a for V n and cening	5 VSNs sleep , Ac 4 4 4 4 4 4 2 4	s: Sc ope cess hour hour hour	heduration con rs rs rs rs rs rs rs tion	ons, trol
Module:2 Physical layer based protoco Schedule sele and data excha Module:3 Challenges for Module:4 Hierarchical p Module:5 802.15.4 - PH Module:6 Challenges in Module:7	Physic and tra and tra s, Rand ction ar ange, M Netwo routing Clusto rotocols WSN Y and N Local localiza	cal and MAC Layers nsceiver design considerations in WSNs, MAC Protocols lom Access-based protocols, Sensor-MAC: Periodic lister ad coordination, Schedule synchronization, Adaptive list essage passing. ork layer in WSN g, Data centric and flat architecture ering in WSN s, Geographical routing, QoS based protocols Standards MAC, Zigbee, 6LoWPAN tion, Ranging techniques, Range-based localization, Rang	a for V n and tening	5 VSNs sleep , Ac 4 4 4 4 4 4 2 4	s: Sc ope cess hour hour hour aliza	heduration con rs rs rs rs rs rs rs tion	ons, trol
Module:2 Physical layer based protoco Schedule sele and data excha Module:3 Challenges for Module:4 Hierarchical p Module:5 802.15.4 - PH Module:6 Challenges in Module:7	Physic and tra ls, Rand ction ar inge, M Netwo routing Clusto rotocols WSN Y and N Local localiza	cal and MAC Layers nsceiver design considerations in WSNs, MAC Protocols lom Access-based protocols, Sensor-MAC: Periodic lister ad coordination, Schedule synchronization, Adaptive list essage passing. ork layer in WSN g, Data centric and flat architecture ering in WSN s, Geographical routing, QoS based protocols Standards IAC, Zigbee, 6LoWPAN ization in WSN tion, Ranging techniques, Range-based localization, Rang ating Systems in WSN	a for V n and tening	5 VSNs sleep , Ac 4 4 4 4 4 4 2 4 2 4 2 4	s: Sc ope cess hour hour hour aliza	heduratic con rs rs rs rs rs tion rs	ons, trol

		7	Fotal lecture hours:	30 hours
Text	Book(s)			•
1.	Holger Karl, Andreas Wiilig, Protoco 2011, 1 st Edition, John Wiley & Sons, I		nitectures for Wirel	ess Sensor Networks,
2.	Kazem Sohraby, Daniel Minoli, Tai Protocols, and Applications, 2012, 1 st E	eb Znati, W		
Refe	rence Books	,		<u>y</u>
1.	Ian F. Akyildiz, Mehmet Can Vuran, Wiley & Sons, New Jersey.	, Wireless S	ensor Networks, 20	011, 1 st Edition, John
2.	Anna Hac, Wireless Sensor Network Jersey.	Designs, 20	13, 1 st Edition, Johr	n Wiley & Sons, New
3.	http://ebooks.cambridge.org/ebook.jsf?	hid-CB097	81139030960	
	e of evaluation: Internal Assessment (CA			c) & Final Accessment
	(FAT)	1, Quizzes,	Digital Assignment	s) & Filia Assessment
<u>1.</u>	of Challenging Experiments (Indicative		a of a WCN	2 h a una
	Design of wireless sensor node and the	-		2 hours
2.	Design of WSN for transmission an more sensors.			
3.	Understand the role of a transcei transmission range and antenna powe sensor node.		•	
4.	Design of range based localization tech	hniques.		3 hours
5.	Design and demonstrate the role of determining the power consumption of	of duty cyc	· • • • • • • • • • • • • • • • • • • •	in 3 hours
6.	Analyze the effect of variable sensing the power consumption of a sensor no	rates and da		on 3 hours
7.	Performance analysis of CSMA/ protocol.		l, Un-slotted) MA	C 3 hours
8.	Investigate the use of various re Humidity, light intensity, rain gauge acquisition from a sensor.		· •	
9.	Design and analyze WSN algorithm Also, evaluate static clustering technic and throughput.		-	
10.	Design and demonstrate the role of C sink data transmissions. Design and an routing techniques prescribed for V routing- Location based routing: GF based routing–Directed diffusion, R tables)	nalyze the po VSN archite , GAF, GE	erformance of any tw ecture (Energy awa AR, GPSR, Attribu	vo ire ite
		T	otal laboratory hou	rs 30 hours
Mod	e of evaluation: Continuous Assessment			
		-12-2015	/	
		p. 40	Date	18-03-2016

ECE6017	Course Title	L T P J C
ECE0017	RF and Microwave Circuit Design	2 0 2 4 4
Pre-requisite	Nil	Syllabus version
		1.0
Course Object	tives:	
	e essential knowledge of high frequency parameters.	
	rize the student with concept of high frequency network analysis a	and design.
	e ability to design microwave passive and active networks.	
4. To get acq	uitted with emerging trends in microwave IC design concepts.	
<u> </u>		
Course Outco		
	e active & passive microwave devices & components used in Mic ation systems.	rowave
	icrowave networks with S-parameters.	
•	wer dividers and low pass filters.	
01	e multi- port RF networks, RF transistor amplifiers and stability.	
•	Aicrowave signals and design microwave amplifiers.	
	d the concepts of Microwave Resonators, Oscillators and Mixers.	
	mplement applications of microwave circuits through soft-wa	
platforms.		
8. Able to un	derstand the IEEE standards, research papers, replicate and extend	d those results.
	Iicrowave Fundamentals	4 hours
	equencies (IEEE Standards), Smith Chart: Basic impedance &	
	VSWR, Reflection coefficient, design of impedance matching cir	rcuits using lumped
elements and o	listributed elements.	
Module:2 N	ficrowave Network Analysis	4 hours
	ameters, S-matrix and properties, S-matrix analysis of two port no	
	ut reflection coefficients and Signal flow graph. Scattering parar	
	d 4-port devices.	
	*	
Module:3 N	ficrowave Low Pass Filter Design	3 hours
	lter design (Butterworth and Chebyshev) - Insertion loss	method: Richard's
Low Pass Fi		
Low Pass Fi	n, Kuroda's identities, Stepped impedance low pass filter.	
Low Pass Fi	n, Kuroda's identifies, Stepped impedance low pass filter.	
Low Pass Fi Transformatio		4 hours
Low Pass Fi Transformatio	n, Kuroda's identifies, Stepped impedance low pass filter. ficrowave Transistors and Stability s of microwave transistors, various types of two port power	
Low Pass Fi Transformatio Module:4 M Characteristics	ficrowave Transistors and Stability	
Low Pass Fi Transformatio Module:4 M Characteristics	ficrowave Transistors and Stability of microwave transistors, various types of two port power	
Low Pass Fi Transformatio Module:4 M Characteristics unconditional Module:5 M	ficrowave Transistors and Stability s of microwave transistors, various types of two port powe stability of an amplifier, stability circles. ficrowave Amplifier Design	er gains, tests for 5 hours
Low Pass Fi Transformatio Module:4 M Characteristics unconditional Module:5 M Single stage a	ficrowave Transistors and Stability s of microwave transistors, various types of two port powe stability of an amplifier, stability circles. ficrowave Amplifier Design mplifier design for maximum gain and specific gain, design of lo	er gains, tests for 5 hours
Low Pass Fi Transformatio Module:4 M Characteristics unconditional Module:5 M Single stage a	ficrowave Transistors and Stability s of microwave transistors, various types of two port powe stability of an amplifier, stability circles. ficrowave Amplifier Design	er gains, tests for 5 hours

	(Demmit to be Unoversity under action 3 of UGC Act, 1956)	
Module:6	Microwave Resonators	3 hours
Transmissio	on line resonators, Waveguide resonators and Dielectric resonators	
Module:7	Microwave Oscillators and Mixers	5 hours
Oscillators:	Condition for oscillations in a one port network oscillator and	two port network
oscillators a	and oscillator phase noise.	
	racteristics of mixer, image frequency, single ended diode mixer,	single ended FET
mixer.		-
Module:8	Contemporary issues	2 hours
	Total lecture hours:	30 hours
Text Book		
	Pozar, Microwave engineering, 2012, 4 th Edition, John Wiley, India.	
2. G. Go	nzalez, Microwave Transistor Amplifiers Analysis and Design, 2	2012 2nd Edition
		2012, 2 Edition,
	e Hall, India	
Reference		
	dd Ludwig, Pavel Bretchko, RF Circuit Design: Theory and Appl	lications, 2014 , 1°
	n, Prentice Hall, India.	
	vww.microwaves101.com/	<u> </u>
	evaluation: Internal Assessment (CAT, Quizzes, Digital Assig	gnments) & Final
	Test (FAT)	
	Illenging Experiments (Indicative)	
	is and Design Equal and Unequal Wilkiason Power division usin	g 4 hours
	magnetic Simulation for L and S- Band Applications.	
	pment of Wideband Phase Shifter for L and S band Applications.	3 hours
0	and Development of Microwave Filters.	5 hours
× /	ow Pass Filter	
	and Pass Filter	
(c) H	ligh Pass Filter	
0	and Development of Microwave Coupler.	5 hours
. ,	Branch line Coupler (90° hybrid coupler)	
	at Race Coupler (180° hybrid coupler)	
	and Development of Microwave Resonators.	5 hours
(a) H	Ialf wavelength	
(b) (Quarter Wavelength	
6. Design	and Perform the Electromagnetic Simulation of High Pass Filte	er 4 hours
0	Steeped impedance and Richard Transform Method.	
0	and Analysis of Narrow band Microwave Amplifier for L and	S 4 hours
0	pplications using Specific Gain and Maximum Gain Method.	
2 4114 0	Total Laboratory Hour	rs 30 hours
Mode of ex	aluation: Continuous Assessment & Final Assessment Test (FAT).	50 110015
Typical Pr		
	gn & EM simulation of Wilkinson 2-way power divider	
	gn & EM simulation of Wilkinson 4-way power divider.	
\mathbf{J} . Desi	gn & EM simulation of branch line coupler.	

- 4. Design & EM simulation of rat race coupler.
- 5. Design & EM simulation of quarter wave length microstrip resonators.
- 6. Design & EM simulation of half wave length microstrip resonators.
- 7. Design & EM simulation of high pass filter using insertion loss method.
- 8. Design and analysis of miniaturization techniques for power dividers.
- 9. Design and analysis of miniaturization techniques for low pass filters.

Mode of evaluation: Review I, II and III.

Recommended by Board of Studies	13-12-2015		
Approved by Academic Council	No. 40	Date	18-03-2016

	(Demmet to be University under section 3 of UOC Act, 1950)	r	, ,			1
Course Code	Course Title	L	Τ	P	J	C
ECE6018	Microwave Integrated Circuits	3	0	0	0	3
Pre-requisite	Nil	S	ylla	bus	vers	
						1.1
Course Objectives						
	ential knowledge of various planar microstrip circuits.					
U	analyse various types of microwave planar circuits.					
3. To acquaint the	fabrication techniques and tolerances for MIC circuits.					
Course Outcomes	•					
	• he importance of various microstrip lines and the los	ses	due	to	vari	ous
microstrip disc	1					
-	design of lumped elements for microwave circuits.					
	lyze various microstrip resonators.					
4. Design and ana	lyze microstrip power dividers and couplers.					
5. Design and ana	lyze band pass filters.					
6. Appreciate and	evaluate the performance of various fabrication techniques	for p	olana	ur ci	rcuit	s.
	r Transmissions Lines			hou		
	of MICs and their technology, types of planar transmission	on lir	les, 1	intro	oduc	tion
to coupled microsti	ip lines, slot lines and co-planar waveguides.					
Module:2 Micro	ostrip Lines		61	hou	20	
	tion in microstrip lines, design equations of microstrip	line				istic
1 1 0	H relation), losses in microstrip lines, discontinuities in mic					istic
			<u>-p</u>			
Module:3 Lum	ed elements for MICs		61	hou	rs	
	o components: Design of microstrip and chip inductors,	capa	citor	s, r	esist	ors
Quasi lumped mic	crostrip elements: Open and short circuited stubs (quart	ter w	vave	leng	th,	half
wavelength)						
	ostrip Resonators			hou		
and applications, P	ors: Quarter & Half wave length resonators, Ring resonato	rs: ty	pes,	adv	vanta	iges
and applications, P	atch resolutors.					
Module:5 Micro	ostrip Power Dividers		71	nou	rc	
	de analysis of equal & unequal Wilkinson Power Divider.	Eve				ode
	line coupler and 180° hybrid coupler, Coupled line coup					
Ring coupler and it						
6 1						
Module:6 Band	pass Filter Design		6 I	hou	rs	
Band Pass Filter: I	nsertion loss method, Conversion from low pass to band j	pass,	Des	ign	of b	and
pass filter using lui	nped elements, distributed elements, impedance inverters, c	oupl	ed li	nes.		
	& MMIC Fabrication Technologies	1		hou		<u></u>
Hybrid MICs, Con	figuration, Dielectric substances, thick and thin film techno	logy	, LT	CC,	HT	UC,
During to d Class 14 D	rd technology (PCB), Fabrication process of MMIC.					

Modu	ule:8	Contemporary issues			2 hours
			Г	Cotal lecture hours:	45 hours
Text	Book(s)			
1. I	D. M. F	Pozar, Microwave engineerin	ng, 2012, 4 th Edit	tion, John Wiley, Ind	dia.
		Maloratsky, RF & Microw		Circuits: Passive co	omponents and control
Ċ	devices	, 2012, 1 st Edition, Elsevier	Inc., India.		
Refer	rence I	Books			
1. <i>A</i>	Ali A I	Behagi, RF and Microwave	Circuit Design:	Updated and Revis	sed with 100 Keysight
((Ads) V	Vorkspaces, 2017, 1 st Editio	n, Techno Search	n, India.	
2. J	Jia She	ng Hong, M. J. Lancaster, N	licrostrip Filters	for RF/Microwave	Applications, 2012, 2 nd
H	Edition	, Wiley-Blackwell, India.			
3. <u>h</u>	nttp://w	ww.microwaves101.com/			
Mode	e of e	evaluation: Internal Asses	ssment (CAT, 0	Quizzes, Digital A	Assignments) & Final
Asses	ssment	Test (FAT)			
Reco	mmenc	led by Board of Studies	28-02-2016		
Appro	oved b	y Academic Council	No. 47	Date	05-10-2017

Course Code	(Demand to be Upprendly under section 3 of UOC Act, 1956) Course Title	r mr	D	т	С
Course Code ECE6019		L T 3 0	P 2	J O	<u> </u>
Pre-requisite		yllabu		•	-
110 requisite		ynaba	5 10	1 51	1.1
Course Objectives	5:				
0	nprehensive understanding of digital image fundamentals.				
	principles of image enhancement and filtering techniques in spat	tial and	l fre	que	ency
domain.					
	ne core aspects of image segmentation and imbibe their utiliza	tion fo	or re	al-t	ime
applications.					
4. To provide kno	wledge on the feature extraction from images and classification	1			
Course Outcomes	:				
1. Explore the bas	sic elements of digital image processing.				
-	nage sampling, DFT and apprehend the rational of image transf	orms.			
Ŭ	en images to enhance them in spatial and frequency domains.				
	neoretical and practical aspects of segmentation for dealing w	vith co	mpu	iteri	ized
analysis.					
•	features, identify and classify them.	n			
	ta usability for compaction aiding representation and description re range of methods available for compression.	1.			
7. Comprehend th	e range of methods available for compression.				
	· · · · · · · · · · · · · · · · · · ·				
	duction to Image Processing		hou		la
Fundamental steps Image Transform:	in DIP – Image Sampling and Quantization - Basic relationship Two dimensional Fourier Transform- Discrete cosine tra	betwe	en j	oixe	
Fundamental steps Image Transform: resolution analysis	in DIP – Image Sampling and Quantization - Basic relationship Two dimensional Fourier Transform- Discrete cosine tra – Haar Transform- Discrete Wavelet Transform.	betweensform	een j n —	oixe Mi	
Fundamental steps Image Transform: resolution analysis Module:2 Image	in DIP – Image Sampling and Quantization - Basic relationship Two dimensional Fourier Transform- Discrete cosine tra – Haar Transform- Discrete Wavelet Transform. e Enhancement	between betwee	een j n —	pixe Mu	ulti-
Fundamental steps Image Transform: resolution analysis Module:2 Imag Spatial Domain: B	in DIP – Image Sampling and Quantization - Basic relationship Two dimensional Fourier Transform- Discrete cosine tra – Haar Transform- Discrete Wavelet Transform. e Enhancement Basic Gray level Transformations – Histogram Processing – S	between betwee	een j n —	pixe Mu	ulti-
Fundamental steps Image Transform: resolution analysis Module:2 Image Spatial Domain: B filters- Sharpening	in DIP – Image Sampling and Quantization - Basic relationship Two dimensional Fourier Transform- Discrete cosine tra – Haar Transform- Discrete Wavelet Transform. E Enhancement Basic Gray level Transformations – Histogram Processing – S spatial filters.	betweensform 81 Smooth	een j n – houn	oixe Mi rs spa	ulti-
Fundamental steps Image Transform: resolution analysis Module:2 Imag Spatial Domain: B filters- Sharpening Frequency Domain	 in DIP – Image Sampling and Quantization - Basic relationship Two dimensional Fourier Transform- Discrete cosine tra – Haar Transform- Discrete Wavelet Transform. e Enhancement Basic Gray level Transformations – Histogram Processing – S spatial filters. n: Smoothing frequency domain filters- Sharpening frequence 	betweensform 81 Smooth	een j n – houn	oixe Mi rs spa	ulti-
Fundamental steps Image Transform: resolution analysis Module:2 Image Spatial Domain: B filters- Sharpening	 in DIP – Image Sampling and Quantization - Basic relationship Two dimensional Fourier Transform- Discrete cosine tra – Haar Transform- Discrete Wavelet Transform. e Enhancement Basic Gray level Transformations – Histogram Processing – S spatial filters. n: Smoothing frequency domain filters- Sharpening frequence 	betweensform 81 Smooth	een j n – houn	oixe Mi rs spa	ulti-
Fundamental steps Image Transform: resolution analysis Module:2 Image Spatial Domain: B filters- Sharpening Frequency Domain Homomorphic filte Module:3 Image	in DIP – Image Sampling and Quantization - Basic relationship Two dimensional Fourier Transform- Discrete cosine tra – Haar Transform- Discrete Wavelet Transform. e Enhancement Basic Gray level Transformations – Histogram Processing – S spatial filters. n: Smoothing frequency domain filters- Sharpening frequence ering.	betwo nsform 81 Smooth y dom 81	houn houn hing hain	rs filt	ulti- atial ers-
Fundamental steps Image Transform: resolution analysis Module:2 Image Spatial Domain: B filters- Sharpening Frequency Domain Homomorphic filte Module:3 Image Image segmentation	in DIP – Image Sampling and Quantization - Basic relationship Two dimensional Fourier Transform- Discrete cosine tra – Haar Transform- Discrete Wavelet Transform. e Enhancement Basic Gray level Transformations – Histogram Processing – S spatial filters. n: Smoothing frequency domain filters- Sharpening frequence ering.	betwo nsform 81 Smooth y dom 81	houn houn hing hain	rs filt	ulti- atial ers-
Fundamental steps Image Transform: resolution analysis Module:2 Image Spatial Domain: B filters- Sharpening Frequency Domain Homomorphic filte Module:3 Image Image segmentation Clustering- Morphe	in DIP – Image Sampling and Quantization - Basic relationship Two dimensional Fourier Transform- Discrete cosine tra – Haar Transform- Discrete Wavelet Transform. e Enhancement Basic Gray level Transformations – Histogram Processing – S spatial filters. n: Smoothing frequency domain filters- Sharpening frequence ering. e Segmentation on Techniques- Points, Edge and Corner detector - Region ological techniques	betweensform 81 Smooth y dom 81 based	houn houn hing hain	rs filt	ulti- atial
Fundamental steps Image Transform: resolution analysis Module:2 Image Spatial Domain: B filters- Sharpening Frequency Domain Homomorphic filter Module:3 Image Image segmentation Clustering- Morphe Module:4 Feature	in DIP – Image Sampling and Quantization - Basic relationship Two dimensional Fourier Transform- Discrete cosine tra – Haar Transform- Discrete Wavelet Transform. e Enhancement Basic Gray level Transformations – Histogram Processing – S spatial filters. n: Smoothing frequency domain filters- Sharpening frequence ering. e Segmentation on Techniques- Points, Edge and Corner detector - Region ological techniques re extraction Techniques	betweensform 81 Smooth y dom 81 based 81	een j n – houn ning aain apj	rs filt rs filt	ulti- atial ers-
Fundamental steps Image Transform: resolution analysis Module:2 Image Spatial Domain: B filters- Sharpening Frequency Domain: B Homomorphic filter Module:3 Image Image segmentation Clustering- Morphic Module:4 Features	in DIP – Image Sampling and Quantization - Basic relationship Two dimensional Fourier Transform- Discrete cosine tra – Haar Transform- Discrete Wavelet Transform. e Enhancement Basic Gray level Transformations – Histogram Processing – S spatial filters. n: Smoothing frequency domain filters- Sharpening frequence ering. e Segmentation on Techniques- Points, Edge and Corner detector - Region ological techniques	betweensform 81 Smooth y dom 81 based 81	een j n – houn ning aain apj	rs filt rs filt	ulti- atial ers-
Fundamental steps Image Transform: resolution analysis Module:2 Imag Spatial Domain: B filters- Sharpening Frequency Domain Homomorphic filte Module:3 Imag Image segmentatio Clustering- Morph Module:4 Features - Hough transform	in DIP – Image Sampling and Quantization - Basic relationship Two dimensional Fourier Transform- Discrete cosine tra – Haar Transform- Discrete Wavelet Transform. E Enhancement Basic Gray level Transformations – Histogram Processing – S spatial filters. An: Smoothing frequency domain filters- Sharpening frequence ering. E Segmentation on Techniques- Points, Edge and Corner detector - Region ological techniques Fre extraction Techniques - Moment based features - Boundary and Region descriptors, T – Canny edge detector - Principal Components.	betweensform 81 Smooth y dom 81 based 81 Fexture	een j houn houn ing aain noun apj houn e des	rs filt rs filt	ulti- atial ers-
Fundamental steps Image Transform: resolution analysis Module:2 Image Spatial Domain: B filters- Sharpening Frequency Domain: B Homomorphic filter Module:3 Image Image segmentation Clustering- Morphe Module:4 Features - Hough transform Module:5 Object	in DIP – Image Sampling and Quantization - Basic relationship Two dimensional Fourier Transform- Discrete cosine tra – Haar Transform- Discrete Wavelet Transform. E Enhancement Basic Gray level Transformations – Histogram Processing – S spatial filters. n: Smoothing frequency domain filters- Sharpening frequence ering. E Segmentation on Techniques- Points, Edge and Corner detector - Region ological techniques Fre extraction Techniques - Moment based features - Boundary and Region descriptors, T – Canny edge detector - Principal Components.	betwo nsform 81 Smooth y dom 81 based 81 Fexture 51	een j houn houn houn houn houn houn app houn app houn app houn app	rs filt rs oroa rs scri	ulti- atial ers- ach- ptor
Fundamental steps Image Transform: resolution analysis Module:2 Image Spatial Domain: B filters- Sharpening Frequency Domain: B Homomorphic filter Module:3 Image Image segmentation Clustering- Morphe Module:4 Features - Hough transform Module:5 Object	in DIP – Image Sampling and Quantization - Basic relationship Two dimensional Fourier Transform- Discrete cosine tra – Haar Transform- Discrete Wavelet Transform. e Enhancement Basic Gray level Transformations – Histogram Processing – S spatial filters. a: Smoothing frequency domain filters- Sharpening frequence ering. e Segmentation on Techniques- Points, Edge and Corner detector - Region ological techniques e extraction Techniques - Moment based features - Boundary and Region descriptors, T – Canny edge detector - Principal Components. et Detection and Recognition Diject Recognition- Template matching - Neural network app	betwo nsform 81 Smooth y dom 81 based 81 Fexture 51	een j houn houn houn houn houn houn app houn app houn app houn app	rs filt rs oroa rs scri	ulti- atial ers- ach- ptor
Fundamental steps Image Transform: resolution analysis Module:2 Image Spatial Domain: B filters- Sharpening Frequency Domain: B Homomorphic filter Module:3 Image Image segmentation Clustering- Morphe Module:4 Features - Hough transform Module:5 Object Approaches to Ot Recognition- Struct	in DIP – Image Sampling and Quantization - Basic relationship Two dimensional Fourier Transform- Discrete cosine tra – Haar Transform- Discrete Wavelet Transform. e Enhancement Basic Gray level Transformations – Histogram Processing – S spatial filters. a: Smoothing frequency domain filters- Sharpening frequence ering. e Segmentation on Techniques- Points, Edge and Corner detector - Region ological techniques e extraction Techniques - Moment based features - Boundary and Region descriptors, T – Canny edge detector - Principal Components. et Detection and Recognition Diject Recognition- Template matching - Neural network app	betweensform	een j houn houn houn houn houn houn app houn app houn app houn app	rs spa filt rs oroa scri Ob	ulti- atial ers- ach- ptor

H.2			
	264 standards		
	Todule:7 Video processing		4 hours
Ba	ack ground subtraction – Motion detection – Motion estimation - Video	segmentatio	n
		1	
Mo	Contemporary issues		2 hours
	Total Lecture ho	ours:	45 hours
Te	ext Book(s)		
1.	Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, 2 Education, New Delhi, India.	2013, 3 rd Ed	ition, Pearson
2.	Anil. K. Jain, Fundamentals of Digital Image Processing, 2012, 7 Delhi, India.	th Edition, 1	Prentice Hall,
3.	Mark Nixon, Alberto Aguado, Feature Extraction & Image proce Elsevier academic Press, Oxford, UK.	ssing, 2012	, 2 nd Edition,
4.	Al Bovik, Handbook of Image and Video processing, 2013, 2 nd ed Press, Burlington, USA.	lition, Elsev	ier Academic
Re	eference Books		
1.		hn Wiley	& Sons New
	Jersey, USA.		
2.	Verlog, London, UK.		
3.	A. Murat Tekalp, Digital Video Processing, 2015, 2 nd Edition, Prentic		
4.		Image Pro	anging using
	MATLAB, 2014, 2 nd Edition, Pearson Education, New Delhi, India.	-	cessing using
		-	cessing using
	www.iprg.co.in		
Mo	www.iprg.co.in ode of evaluation: Internal Assessment (CAT, Quizzes, Digital	Assignmen	
Mo As	www.iprg.co.in fode of evaluation: Internal Assessment (CAT, Quizzes, Digital ssessment Test (FAT)	Assignmen	
Mo As: Lis	www.iprg.co.in fode of evaluation: Internal Assessment (CAT, Quizzes, Digital ssessment Test (FAT) ist of Challenging Experiments (Indicative)	Assignme	nts) & Fina
M o As: Lis 1.	www.iprg.co.in fode of evaluation: Internal Assessment (CAT, Quizzes, Digital ssessment Test (FAT) ist of Challenging Experiments (Indicative)	Assignmen	nts) & Fina 1 hours
Mo Ass Lis 1. 2.	www.iprg.co.in fode of evaluation: Internal Assessment (CAT, Quizzes, Digital ssessment Test (FAT) ist of Challenging Experiments (Indicative) Basic array operations on image Interpolation and Decimation by factor of 2 of given image	Assignmer	nts) & Fina
Mo Ass Lis 1. 2.	www.iprg.co.in ode of evaluation: Internal Assessment (CAT, Quizzes, Digital ssessment Test (FAT) Stor Challenging Experiments (Indicative) Basic array operations on image Interpolation and Decimation by factor of 2 of given image Gray level and Bitplane slicing	Assignmen	nts) & Fina 1 hours
Mo Ass Lis 1. 2. 3.	www.iprg.co.in fode of evaluation: Internal Assessment (CAT, Quizzes, Digital ssessment Test (FAT) ist of Challenging Experiments (Indicative) Basic array operations on image Interpolation and Decimation by factor of 2 of given image	Assignmen	nts) & Final 1 hours 1 hours
Mo Ass Lis 1. 2. 3. 4.	www.iprg.co.in ode of evaluation: Internal Assessment (CAT, Quizzes, Digital ssessment Test (FAT) Stor Challenging Experiments (Indicative) Basic array operations on image Interpolation and Decimation by factor of 2 of given image Gray level and Bitplane slicing	Assignmen	nts) & Fina <u>1 hours</u> <u>1 hours</u> <u>2 hours</u>
Mc Ass Lis 1. 2. 3. 4. 5.	www.iprg.co.in ode of evaluation: Internal Assessment (CAT, Quizzes, Digital ssessment Test (FAT) Store Of Challenging Experiments (Indicative) Ist of Challenging Experiments (Indicative) Store Store Basic array operations on image Interpolation and Decimation by factor of 2 of given image Gray level and Bitplane slicing Contrast stretching – Thresholding	Assignme	nts) & Fina 1 hours 1 hours 2 hours 2 hours
Mc Ass 1. 2. 3. 4. 5. 6.	www.iprg.co.in ode of evaluation: Internal Assessment (CAT, Quizzes, Digital ssessment Test (FAT) Store Of Challenging Experiments (Indicative) st of Challenging Experiments (Indicative) Basic array operations on image Interpolation and Decimation by factor of 2 of given image Gray level and Bitplane slicing Contrast stretching – Thresholding Basic Gray level transformations Perform histogram equalization for the given image	Assignmen	nts) & Fina 1 hours 1 hours 2 hours 2 hours 2 hours 2 hours
Mc Ass 1. 2. 3. 4. 5. 6.	www.iprg.co.in ode of evaluation: Internal Assessment (CAT, Quizzes, Digital ssessment Test (FAT) Store Of Challenging Experiments (Indicative) st of Challenging Experiments (Indicative) Basic array operations on image Interpolation and Decimation by factor of 2 of given image Gray level and Bitplane slicing Contrast stretching – Thresholding Basic Gray level transformations Perform histogram equalization for the given image	Assignme	nts) & Fina 1 hours 1 hours 2 hours 2 hours 2 hours 2 hours 2 hours
Mc Ass 1. 2. 3. 4. 5. 6.	www.iprg.co.in ode of evaluation: Internal Assessment (CAT, Quizzes, Digital ssessment Test (FAT)	Assignmen	nts) & Fina 1 hours 1 hours 2 hours 2 hours 2 hours 2 hours
Mc Ass 1. 2. 3. 4. 5. 6.	www.iprg.co.in ode of evaluation: Internal Assessment (CAT, Quizzes, Digital ssessment Test (FAT)	Assignmen	nts) & Fina 1 hours 1 hours 2 hours 2 hours 2 hours 2 hours 2 hours
Mc Ass Lis 1. 2. 3. 4. 5. 6. 7.	www.iprg.co.in ode of evaluation: Internal Assessment (CAT, Quizzes, Digital ssessment Test (FAT)	Assignmer	nts) & Fina 1 hours 1 hours 2 hours 2 hours 2 hours 2 hours 2 hours
Mc Ass Lis 1. 2. 3. 4. 5. 6. 7.	www.iprg.co.in ode of evaluation: Internal Assessment (CAT, Quizzes, Digital ssessment Test (FAT)	Assignmen	nts) & Fina 1 hours 1 hours 2 hours 2 hours 2 hours 2 hours 2 hours
Mc Ass Lis 1. 2. 3. 4. 5. 6. 7.	www.iprg.co.in ode of evaluation: Internal Assessment (CAT, Quizzes, Digital ssessment Test (FAT)	Assignmen	nts) & Fina 1 hours 1 hours 2 hours 2 hours 2 hours 2 hours 4 hours
Mc Ass 1. 2. 3. 4. 5. 6. 7. 8.	www.iprg.co.in ode of evaluation: Internal Assessment (CAT, Quizzes, Digital ssessment Test (FAT) ist of Challenging Experiments (Indicative) Interpolation and Decimation by factor of 2 of given image Interpolation and Decimation by factor of 2 of given image Gray level and Bitplane slicing Contrast stretching – Thresholding Basic Gray level transformations Perform histogram equalization for the given image Spatial Domain Filtering (a) Low Pass Filtering (b) Order Statistics Filtering (c) High Pass Filtering Transform domain (a) Obtain Fourier Spectrum using DFT (b) Obtain Discrete Cosine Transform and its Spectrum (a) (b) (b)	Assignmer	nts) & Fina 1 hours 1 hours 2 hours 2 hours 2 hours 2 hours 4 hours
Mc Ass 1. 2. 3. 4. 5. 6. 7. 8.	www.iprg.co.in ode of evaluation: Internal Assessment (CAT, Quizzes, Digital ssessment Test (FAT) ist of Challenging Experiments (Indicative) Interpolation and Decimation by factor of 2 of given image Basic array operations on image Interpolation and Decimation by factor of 2 of given image Gray level and Bitplane slicing Contrast stretching – Thresholding Basic Gray level transformations Perform histogram equalization for the given image Spatial Domain Filtering (a) Low Pass Filtering (b) Order Statistics Filtering (c) High Pass Filtering Transform domain (a) Obtain Fourier Spectrum using DFT (b) Obtain Discrete Cosine Transform and its Spectrum Frequency Domain Filtering	Assignmer	nts) & Fina 1 hours 1 hours 2 hours 2 hours 2 hours 2 hours 4 hours 4 hours
As: Lis 1.	www.iprg.co.in ode of evaluation: Internal Assessment (CAT, Quizzes, Digital ssessment Test (FAT) ist of Challenging Experiments (Indicative) Interpolation and Decimation by factor of 2 of given image Interpolation and Decimation by factor of 2 of given image Gray level and Bitplane slicing Contrast stretching – Thresholding Basic Gray level transformations Perform histogram equalization for the given image Spatial Domain Filtering (a) Low Pass Filtering (b) Order Statistics Filtering (c) High Pass Filtering Transform domain (a) Obtain Fourier Spectrum using DFT (b) Obtain Discrete Cosine Transform and its Spectrum (a) (b) (b)	Assignmen	nts) & Final 1 hours 1 hours 2 hours 2 hours 2 hours 2 hours 4 hours

				1
11.	Morphological Operations			3 hours
12.	Perform feature extraction stud domain Technique	ies and compress	ion using frequency	2 hours
13.	Perform feature extraction stud domain Technique	lies and compre	ssion using wavelet	2 hours
		Το	tal laboratory hours	30 hours
Mod	le of evaluation: Continuous Asses	sment & Final As	sessment Test (FAT).	
Reco	ommended by Board of Studies	28-02-2016		
App	roved by Academic Council	No. 47	Date	05-10-2017

Course Co	de	Course Title	L	Т	Р	J	C
ECE60		Multirate Systems	2	0	0	4	3
Pre-requ		Nil	S	Sylla	bus v	versi	on
				-			1.0
Course Ob	jective	5:					
		e concepts of multirate signal processing.					
		e the applications of multirate signal processing for commu					
		the fundamental framework of wavelets in multira	te s	igna	l pr	oces	sing
perspec							
4. To acqu	aint the	e recent trends and technologies in multirate systems.					
Course Ou	tcome:						
1. Design	decima	tor and interpolator in both time and frequency domain.					
2. Design	multira	te filter banks with subsequent error analysis					
3. Design	Perfect	Reconstruction (PR) filters employing analysis and synthe	esis s	chen	ne		
		lize linear-phase PR Finite Impulse Response Filters using	latti	ice st	ructu	ıres	
5. Design	and imp	plement cosine modulated PR systems					
•	•	nthesize different wavelet basis in Time-frequency space					
7. To desi	gn and	realize systems using the imbibed multirate signal processi	ng c	once	pts		
Module:1	Eurod	amontals of Multinata Systems		1	hou	140	
		amentals of Multirate Systems operations, interconnection of building blocks, poly-	nhaa				ion
multistage					pres	Cinta	.1011,
Module:2	Multi	rate Filter Banks		6	hou	rs	
Maximally	decima	ted filter banks: Errors created in the QMF bank, alias-fre	e QN	AF s	ysten	n, po	ower
	QMF b	anks. Poly-phase representation, Perfect reconstruction sy	sten	ns, al	ias-f	ree f	ilter
banks							
Module:3	Para-	unitary Perfect Reconstruction Filter Banks		4	hou	rs	
		natrices, filter bank properties induced by paraunitary, two	o cha				tary
		FIR Para-unitary QMF banks.					
M - J1 - 4	T	- DL D			1		
Module:4		r Phase Perfect Reconstruction QMF Banks ons, lattice structures for linear phase FIR PR QMF bank	s fo		hou		s of
		R QMF lattice.	5, 10	ninai	syn	uiesi	5 01
inical plias		R Qivil' lattice.					
Module:5	Cosin	e Modulated Filter Banks		3	hou	rs	
-		and its design, efficient poly-phase structures, propertie	es of	f cos	ine 1	natri	ices,
cosine mod	ulated p	perfect reconstruction systems.					
Module:6	Wave	let Transform		4	hou	rs	
Short-time		er transform, Wavelet transform, discrete-time Ort	honc				ets,
		rthonormal wavelets.					-
Module:7		cations of multi-rate systems.			hou		•. •
Sub band	coding,	Trans-multiplexer, Conventional Digital Down Conver	ters.	Alı	asıng	g Dig	gıtal

Down Converters. Timing Recovery in a Digital Demodulator. Modem Carrier Recovery. Digitally Controlled Sampled Data Delay. Recursive All-pass Filter Delay Lines. Sigma-delta Decimating Filter. FM Receiver and Demodulator.

Module:8 Contemporary issues	2 hours
Total lecture hours:	30 hours
Text Book(s)	50 110415
1. P. P. Vaidyanathan, Multirate Systems and Filter Banks, 2012,	1 st Edition. Pearson
Education, New Delhi, India.	,
Reference Books	
1. Fredric J Harris, Multirate Signal Processing for Communication Sys	tems, 2012, 1 st Edition.
Pearson Education, New Delhi, India.	
2. Gilbert Strang, Truong Nguyen, Wavelets and Filter Banks, 2012,	1 st Edition, Wellesley-
Cambridge Press, Wellesley, USA.	
3. N. J. Fliege, Multirate Digital Signal Processing, 2012, 1st Edition, Jo	hn Wiley & Sons, New
Jersey, USA.	
4. https://www.ece.umd.edu/class/enee630.F2012/slides/part-1_sec1_2_h	andoutPreLec.pdf
Mode of Evaluation: Internal Assessment (CAT, Quizzes, Digital	Assignments) & Final
Assessment Test (FAT)	
Typical Projects:	
1. Adaptive speed control of speech without changing the pitch.	
2. Filter design using optimization approach.	
3. Sub band coding of speech.	
4. Speech compression using discrete wavelet transform.	
5. Medical signal analysis using filter bank	
6. Design and analysis of Trans-multiplexer.	
7. DCT analysis and synthesis system.	
8. LPC analysis and synthesis of speech.	
9. Study of Curvelets	
 Multirate systems for software defined radio. Design on dimplementation of seased a integration comb filter. 	
11. Design and implementation of cascade integrator comb filter	multinoto filtono and
12. Design of optimized DSP systems for audio processing using oversampling.	muturate inters and
13. Extrapolation Techniques.	
 Extrapolation Techniques. Broadband multirate systems for wireless multi user communication. 	
15. Computer aided design of linear phase QMF filter bank.	
Node of evaluation: Review 1, 11 and 111	
Mode of evaluation: Review I, II and III.Recommended by Board of Studies13-12-2015	

Course Code	(Deemed to be University and er action 3 of UOC Aut, 1956) Course Title	L	Γ	P	J	С
ECE6021	Adaptive Signal Processing			r 0	<u>ј</u>	$\frac{\mathbf{c}}{3}$
Pre-requisite	Nil	Sylla	-	-	-	_
r re-requisite		Syna	inne	ver		<u>n</u> 1.0
Course Objectives	C10				_	1.0
	ochastic processes and models in LTI systems.					
	the LMS algorithm for iteratively estimating the Wiener filte	r wai	ahte			
	prediction filter formulation and applications	1 wei	gints.			
	attice filter architecture from the Levinson-Durbin algorithm	h				
4. 10 denve die L	attee inter areinteeture from the Levinson-Durom argorithm	1.				
Course Outcomes	:					
	onse of LTI system to stochastic processes.					
1	nd derive the Wiener filter for signals with known properties					
-	he Lattice filter implementation of the prediction filter.					
	nvergence Properties of steepest descent.					
	gorithm to the lattice structure to improve convergence times					
11.7	Least Squares algorithms in signal processing.					
	th Unsupervised Adaptive filters applications.					
6						
Module:1 Adap	tive Systems and Signal Analysis		4 ha	ours	5	
	in unknown environments: System identification and	Line	ar p	redi	ctic)n·
Stochastic Process	es-Responses of LTI system to stochastic processes		-			
	· · · · ·					
	Aean Square Error (MSE) Performance Criteria		4 ho	ours	5	
Module:2 The N	• • • • • • • • • • • • • • • • • • •	MSE			-	`he
Module:2 The M Introduction to Me	Aean Square Error (MSE) Performance Criteria				-	`he
Module:2 The M Introduction to Me Normal Equations-	Mean Square Error (MSE) Performance Criteria an Square Error (MSE) and MSE Surface-Properties of the Geometrical Properties of the Error Surfaces - Wiener filter		E Sur	face	e: T	`he
Module:2The MIntroduction to MeNormal Equations-Module:3Linea	Mean Square Error (MSE) Performance Criteria can Square Error (MSE) and MSE Surface-Properties of the Geometrical Properties of the Error Surfaces - Wiener filter or Prediction and the Lattice Structure	•	E Sur 4 ho	face	e: T	
Module:2The MIntroduction to MeNormal Equations-Module:3LineaLevinson Durbin's	Mean Square Error (MSE) Performance Criteria an Square Error (MSE) and MSE Surface-Properties of the Geometrical Properties of the Error Surfaces - Wiener filter	•	E Sur 4 ho	face	e: T	
Module:2The MIntroduction to MeNormal Equations-Module:3LineaLevinson Durbin's	Mean Square Error (MSE) Performance Criteria can Square Error (MSE) and MSE Surface-Properties of the Geometrical Properties of the Error Surfaces - Wiener filter or Prediction and the Lattice Structure	•	E Sur 4 ho	face	e: T	
Module:2The MIntroduction to MeNormal Equations-Module:3LineaLevinson Durbin'slattice structures.	Mean Square Error (MSE) Performance Criteria ean Square Error (MSE) and MSE Surface-Properties of the Geometrical Properties of the Error Surfaces - Wiener filter or Prediction and the Lattice Structure Algorithm - Lattice Derivation-Forward and backward performance	•	E Sur 4 ho	face	e: T	
Module:2The MIntroduction to MeNormal Equations-Module:3LineaLevinson Durbin'slattice structures.Module:4The M	Mean Square Error (MSE) Performance Criteria ean Square Error (MSE) and MSE Surface-Properties of the Geometrical Properties of the Error Surfaces - Wiener filter ar Prediction and the Lattice Structure Algorithm - Lattice Derivation-Forward and backward p Method of Steepest Descent	predic	E Sur 4 ho etion-	face	e: T apti	ive
Module:2The MIntroduction to MeNormal Equations-Module:3LineaLevinson Durbin'slattice structures.Module:4The MIterative Solution of	Mean Square Error (MSE) Performance Criteria can Square Error (MSE) and MSE Surface-Properties of the Geometrical Properties of the Error Surfaces - Wiener filter r Prediction and the Lattice Structure Algorithm - Lattice Derivation-Forward and backward p Method of Steepest Descent of the Normal Equations- Weight Vector Solutions –Convertioner	predic	E Sur 4 ho etion-	face	e: T apti	ive
Module:2The MIntroduction to MeNormal Equations-Module:3LineaLevinson Durbin'slattice structures.Module:4The MIterative Solution of	Mean Square Error (MSE) Performance Criteria ean Square Error (MSE) and MSE Surface-Properties of the Geometrical Properties of the Error Surfaces - Wiener filter ar Prediction and the Lattice Structure Algorithm - Lattice Derivation-Forward and backward p Method of Steepest Descent	predic	E Sur 4 ho etion-	face	e: T apti	ive
Module:2The NIntroduction to MeNormal Equations-Module:3LineaLevinson Durbin'slattice structures.Module:4The NIterative Solution ofSteepest Descent -	Mean Square Error (MSE) Performance Criteria can Square Error (MSE) and MSE Surface-Properties of the Geometrical Properties of the Error Surfaces - Wiener filter ar Prediction and the Lattice Structure Algorithm - Lattice Derivation-Forward and backward p Method of Steepest Descent of the Normal Equations- Weight Vector Solutions –Conver Mean Square Error Propagation	predic	E Sur 4 hc ction- 4 hc e Pro	face	e: T	ive
Module:2The MIntroduction to MeNormal Equations-Module:3LineaLevinson Durbin'slattice structures.Module:4The MIterative Solution ofSteepest Descent -Module:5The I	Mean Square Error (MSE) Performance Criteria an Square Error (MSE) and MSE Surface-Properties of the Geometrical Properties of the Error Surfaces - Wiener filter ar Prediction and the Lattice Structure Algorithm - Lattice Derivation-Forward and backward p Method of Steepest Descent of the Normal Equations- Weight Vector Solutions –Conver Mean Square Error Propagation	predic	E Sur 4 hc etion- 4 hc e Pro 4 hc	face ours ours ours	apti s	ive
Module:2The MIntroduction to MeNormal Equations-Module:3LineaLevinson Durbin'slattice structures.Module:4The MIterative Solution of Steepest Descent -Module:5The IEffects of Unknow	Mean Square Error (MSE) Performance Criteria ean Square Error (MSE) and MSE Surface-Properties of the Geometrical Properties of the Error Surfaces - Wiener filter er Prediction and the Lattice Structure Algorithm - Lattice Derivation-Forward and backward p Method of Steepest Descent of the Normal Equations- Weight Vector Solutions –Conver Mean Square Error Propagation Least Mean Squares (LMS) Algorithm wn Signal Statistics- Derivation of the LMS Algorithm- Convert	gence Conve	E Sur 4 hc extion- 4 hc e Pro 4 hc ergen	face ours ours ours	apti s	o
Module:2The MIntroduction to MeNormal Equations-Module:3LineaLevinson Durbin'slattice structures.Module:4The MIterative Solution of Steepest Descent -Module:5The IEffects of Unknow	Mean Square Error (MSE) Performance Criteria an Square Error (MSE) and MSE Surface-Properties of the Geometrical Properties of the Error Surfaces - Wiener filter ar Prediction and the Lattice Structure Algorithm - Lattice Derivation-Forward and backward p Method of Steepest Descent of the Normal Equations- Weight Vector Solutions –Conver Mean Square Error Propagation	gence Conve	E Sur 4 hc extion- 4 hc e Pro 4 hc ergen	face ours ours ours	apti s	o
Module:2 The M Introduction to Me Normal Equations- Module:3 Linea Levinson Durbin's lattice structures. Module:4 The M Iterative Solution of Steepest Descent - Module:5 The I Effects of Unknow LMS Algorithm - I	Mean Square Error (MSE) Performance Criteria an Square Error (MSE) and MSE Surface-Properties of the Geometrical Properties of the Error Surfaces - Wiener filter ar Prediction and the Lattice Structure Algorithm - Lattice Derivation-Forward and backward p Method of Steepest Descent of the Normal Equations- Weight Vector Solutions –Conver Mean Square Error Propagation Least Mean Squares (LMS) Algorithm wn Signal Statistics- Derivation of the LMS Algorithm- C LMS Mean Square Error Propagation-Normalized LMS Algorithm	gence Conve	E Sur 4 hc ction- 4 hc e Pro 4 hc ergen n	face	s: T apti s ties s of t	ive
Module:2The MIntroduction to MeNormal Equations-Module:3LineaLevinson Durbin'slattice structures.Module:4The MIterative Solution of Steepest Descent -Module:5The IEffects of Unknow LMS Algorithm - IModule:6Recum	Mean Square Error (MSE) Performance Criteria an Square Error (MSE) and MSE Surface-Properties of the Geometrical Properties of the Error Surfaces - Wiener filter ar Prediction and the Lattice Structure Algorithm - Lattice Derivation-Forward and backward p Method of Steepest Descent of the Normal Equations- Weight Vector Solutions –Conver Mean Square Error Propagation Least Mean Squares (LMS) Algorithm wn Signal Statistics- Derivation of the LMS Algorithm-C LMS Mean Square Error Propagation-Normalized LMS Alg	genco Conve	E Sur 4 hc ction- 4 hc e Pro 4 hc ergen n 4 hc	ours ours ours ours ours ce o	s: T s apti s ties s of t	ot
Module:2The MIntroduction to MeNormal Equations-Module:3LineaLevinson Durbin'slattice structures.Module:4The MIterative Solution of Steepest Descent -Module:5The IEffects of UnknowLMS Algorithm - IModule:6Recursive	Mean Square Error (MSE) Performance Criteria can Square Error (MSE) and MSE Surface-Properties of the Geometrical Properties of the Error Surfaces - Wiener filter or Prediction and the Lattice Structure Algorithm - Lattice Derivation-Forward and backward p Method of Steepest Descent of the Normal Equations- Weight Vector Solutions –Conver Mean Square Error Propagation Least Mean Squares (LMS) Algorithm wn Signal Statistics- Derivation of the LMS Algorithm-C LMS Mean Square Error Propagation-Normalized LMS Alg rsive Least Squares Signal Processing squares (RLS) Adaptive Algorithms-Performance of	genco Conve	E Sur 4 hc ction- 4 hc e Pro 4 hc ergen n	ours ours ours ours ours ce o	s: T s apti s ties s of t	ot
Module:2The MIntroduction to MeNormal Equations-Module:3LineaLevinson Durbin'slattice structures.Module:4The MIterative Solution ofSteepest Descent -Module:5The IEffects of UnknowLMS Algorithm - IModule:6Recursive	Mean Square Error (MSE) Performance Criteria an Square Error (MSE) and MSE Surface-Properties of the Geometrical Properties of the Error Surfaces - Wiener filter ar Prediction and the Lattice Structure Algorithm - Lattice Derivation-Forward and backward p Method of Steepest Descent of the Normal Equations- Weight Vector Solutions –Conver Mean Square Error Propagation Least Mean Squares (LMS) Algorithm wn Signal Statistics- Derivation of the LMS Algorithm-C LMS Mean Square Error Propagation-Normalized LMS Alg	genco Conve	E Sur 4 hc ction- 4 hc e Pro 4 hc ergen n 4 hc	ours ours ours ours ours ce o	s: T s apti s ties s of t	of
Module:2The NIntroduction to MeNormal Equations-Module:3LineaLevinson Durbin'slattice structures.Module:4The NIterative Solution of Steepest Descent -Module:5The IEffects of UnknowLMS Algorithm - IModule:6RecunRecursive Least Algorithms-Conve	Mean Square Error (MSE) Performance Criteria can Square Error (MSE) and MSE Surface-Properties of the Geometrical Properties of the Error Surfaces - Wiener filter or Prediction and the Lattice Structure Algorithm - Lattice Derivation-Forward and backward p Method of Steepest Descent of the Normal Equations- Weight Vector Solutions –Conver Mean Square Error Propagation Least Mean Squares (LMS) Algorithm wn Signal Statistics- Derivation of the LMS Algorithm-C LMS Mean Square Error Propagation-Normalized LMS Alg rsive Least Squares Signal Processing squares (RLS) Adaptive Algorithms-Performance of	genco Conve	E Sur 4 hc ction- 4 hc e Pro 4 hc ergen n 4 hc	ours ours ours ours ce o ours	s: T sapti s ties of t s ptiv	of

Mod	lule:8	Contemporary Issues			2 hours
				Total lecture hours	s: 30 hours
Text	t Book(5)			
1.	Bernard	Widrow, Samuel D. Stear	ns, Adaptive si	gnal processing, 201	2, 1 st Edition, Pearson
		on, New Delhi, India.			
2.	Simon	Haykin, Adaptive Filter Th	neory, 2012, 4 ^t	^h Edition, Pearson E	Education, New Delhi,
	India.				
	erence I				
		Treichler, C. Richard Johns			nd Design of Adaptive
		2012, 1 st Edition, John Wile			nd
		z Farhang, Boroujeny, Ada		neory and Application	ons, 2013, 2 nd Edition,
		iley & Sons, New Jersey, U			
		s G. Manolakis, Vinay K. I			
		ing, 2014, 1 st Edition, The N			India.
		ww.cs.tut.fi/~tabus/course/A			
		Evaluation: Internal Asses	sment (CAT,	Quizzes, Digital A	Assignments) & Final
		Test (FAT)			
<u>1 yp</u> 1.	ical Pro	e noise control using adaptiv	va filtara		
1. 2.		tive cancellation of power li			
2. 3.		tive I/Q mismatch compensa			
<i>4</i> .		tive histogram equalization			
5.	-	t tracking using Kalman filt	ering		
6.	-	tive DPCM	8		
7.	-	acoustic source separation	using Nonlinea	r Adaptive Techniqu	es
8.		tive channel equalization	U	1 1	
9.	Empe	rical mode decomposition.			
10	. Adap	tive speaker Tracking.			
11	. Fetus	heart beat detection.			
12		channel equalization.			
13	1	tive Interacting Multiple Mo	1		
14	0	cation of wavelet with adapti	U		
		tive system for physical mod		al signals.	
		aluation: Review I, II and II			
		led by Board of Studies	13-12-2015	1	
App	roved b	y Academic Council	No. 40	Date	18-03-2016

Course Code	Course Title	L	Τ	P	J	С
ECE6022	Optical Broadband Access Networks	2	0	0	4	3
Pre-requisite	Nil	Syl	labu	s vei	rsioi	1
						1.
Course Objective	25:					
1. To provide a d	leep insight on enabling technologies for access networks.					
	broadband access networks.					
3. To familiarize	the concept of network topology and access techniques.					
4. To introduce l	ong reach optical access and metro networks and WiMAX.					
Course Outcome						
	ious enabling technologies for broadband access networks.					
	s multiple access schemes for broadband wireless technolog	gy.				
	optical network topologies.					
	ious enabling broad band wireless technologies.					
	concepts of long reach and metro optical network.					
	reless access networks and Wi-MAX.					
7. Deploy and tes	t real-time implementation of optical broadband access netw	vorks	5.			
Module 1 Intro	oduction and Enabling Technologies		4	how	re	
The anatomy of an access network up	oduction and Enabling Technologies n access network, the evaluation path typical access network sing ADSL2,VDSL2 Technology, fiber to the home/build	ing (road FTT	H/B)	l cop) acc	ces
The anatomy of an access network us network, point to division multiples	n access network, the evaluation path typical access networl	ing () FT	road FTT TH,	band H/B) wav	l cop) acc veler	es gt
The anatomy of an access network us network, point to division multiples access network	n access network, the evaluation path typical access network sing ADSL2,VDSL2 Technology, fiber to the home/build point Ethernet FTTH, passive optical network (PON) sing (WDM) PON FTTH, hybrid fiber coax running DOCS	ing () FT	road FTT TH, protoc	band H/B) wav col, v	l cop acc veler wire	es gt
The anatomy of an access network up network, point to division multiplex access network	n access network, the evaluation path typical access network sing ADSL2,VDSL2 Technology, fiber to the home/build o point Ethernet FTTH, passive optical network (PON) ing (WDM) PON FTTH, hybrid fiber coax running DOCS	ing () FT SIS p	road FTT FTT TH, rotoc	band H/B) wav col, v	l cop acc veler wire	les
The anatomy of an access network us network, point to division multiplex access network Module:2 Enal Fiber in the access basic optical acce	n access network, the evaluation path typical access network sing ADSL2,VDSL2 Technology, fiber to the home/build point Ethernet FTTH, passive optical network (PON) sing (WDM) PON FTTH, hybrid fiber coax running DOCS	ing () FT SIS p	road FTT TH, rotoc 3	band H/B) wav col, v hour	l cop acc veler wire rs e ho	
The anatomy of an access network us network, point to division multiplex access network Module:2 Enal Fiber in the access basic optical access division access	n access network, the evaluation path typical access network sing ADSL2,VDSL2 Technology, fiber to the home/build o point Ethernet FTTH, passive optical network (PON) ting (WDM) PON FTTH, hybrid fiber coax running DOCS Ding Techniques For Broad Band Access Networks as network: Fiber-DSL, hybrid fiber –coax, fiber –wireles as network components: Optical fiber, optical power splitte	ing () FT SIS p	road FTT FTT, TH, rotoc 3 ber to	band H/B) wav col, v hour	rs	
The anatomy of an access network, point to division multiplex access network Module:2 Enal Fiber in the access basic optical acce devices Module:3 Netw	n access network, the evaluation path typical access network sing ADSL2,VDSL2 Technology, fiber to the home/build o point Ethernet FTTH, passive optical network (PON) ting (WDM) PON FTTH, hybrid fiber coax running DOCS optiming Techniques For Broad Band Access Networks as network: Fiber-DSL, hybrid fiber –coax, fiber –wireles	ing () FT SIS p ss, fil	road FTT FTT TH, rotoc 3 ber to velen 4	band H/B) wav col, v hour o the ngth	rs rout	igt les me
The anatomy of an access network up network, point to division multiplex access network Module:2 Enal Fiber in the access basic optical acce devices Module:3 Netw	n access network, the evaluation path typical access network sing ADSL2,VDSL2 Technology, fiber to the home/build o point Ethernet FTTH, passive optical network (PON) sing (WDM) PON FTTH, hybrid fiber coax running DOCS obling Techniques For Broad Band Access Networks as network: Fiber-DSL, hybrid fiber –coax, fiber –wireles as network components: Optical fiber, optical power splitte optical fiber, optical power splitte pologies: Point to point, point to multipoint, cost aspective.	ing () FT SIS p ss, fil er, wa ects.	road FTT FTT TH, rotoc 3 ber to velen Velen Mul	band H/B) wav col, v hour bo the ngth hour tiple	l cop) acc veler wire rs e ho rout	metin
The anatomy of an access network up network, point to division multiplex access network Module:2 Enal Fiber in the access basic optical access Module:3 Netw FTTH network to techniques for a	n access network, the evaluation path typical access network sing ADSL2,VDSL2 Technology, fiber to the home/build o point Ethernet FTTH, passive optical network (PON) ting (WDM) PON FTTH, hybrid fiber coax running DOCS obling Techniques For Broad Band Access Networks as network: Fiber-DSL, hybrid fiber –coax, fiber –wireles as network components: Optical fiber, optical power splitte opologies: Point to point, point to multipoint, cost aspe PON: Time division multiple access, subcarrier multiple	ing () FT SIS p ss, fil er, wa ects.	road FTT FTT TH, rotoc 3 ber to veler veler 4 Mul ess, c	band H/B) wav col, v houn b the ngth houn tiple	l cop) acc veler wire rs e ho rout rs acc al c	metin
The anatomy of an access network up network, point to division multiplex access network Module:2 Enal Fiber in the access basic optical acce devices Module:3 Netw FTTH network to techniques for a division multiple division multiple	n access network, the evaluation path typical access network sing ADSL2,VDSL2 Technology, fiber to the home/build o point Ethernet FTTH, passive optical network (PON) sing (WDM) PON FTTH, hybrid fiber coax running DOCS obling Techniques For Broad Band Access Networks as network: Fiber-DSL, hybrid fiber –coax, fiber –wireles as network components: Optical fiber, optical power splitte optical fiber, optical power splitte pologies: Point to point, point to multipoint, cost aspective.	ing () FT SIS p ss, fil er, wa ects.	road FTT FTT TH, rotoc 3 ber to veler veler 4 Mul ess, c	band H/B) wav col, v houn b the ngth houn tiple	l cop) acc veler wire rs e ho rout rs acc al c	metin
The anatomy of an access network up network, point to division multiplex access network Module:2 Enal Fiber in the access basic optical access Module:3 Netw FTTH network to techniques for a division multiple communication	n access network, the evaluation path typical access network sing ADSL2,VDSL2 Technology, fiber to the home/build o point Ethernet FTTH, passive optical network (PON) ting (WDM) PON FTTH, hybrid fiber coax running DOCS Dling Techniques For Broad Band Access Networks as network: Fiber-DSL, hybrid fiber –coax, fiber –wireles as network components: Optical fiber, optical power splitte Vork Topology & Access Techniques pologies: Point to point, point to multipoint, cost aspe PON: Time division multiple access, subcarrier multiple access, wavelength division multiple access. Radio over fit	ing () FT SIS p ss, fil er, wa ects.	and FTT FTT, TH, rotoc 3 ber to welen 4 Mul ess, c free s	band H/B) wav col, v hour bothe hour tiple pace	l cop) accordente veler veler vire rs e ho rout accordente accordent	metin
The anatomy of an access network up network, point to division multiplex access network Module:2 Enal Fiber in the access basic optical acce Module:3 Netw FTTH network to techniques for a division multiple communication Module:4 Module:4 Enal	n access network, the evaluation path typical access networks sing ADSL2,VDSL2 Technology, fiber to the home/build o point Ethernet FTTH, passive optical network (PON) ting (WDM) PON FTTH, hybrid fiber coax running DOCS obling Techniques For Broad Band Access Networks as network: Fiber-DSL, hybrid fiber –coax, fiber –wireles as network components: Optical fiber, optical power splitte opologies: Point to point, point to multipoint, cost aspe pologies: Point to point, point to multipoint, cost aspe PON: Time division multiple access, subcarrier multiple access, wavelength division multiple access. Radio over fit	ing () FT SIS p ss, fil er, wa ects. acce per, f	road FTT FTT TH, rotoc 3 ber to veler 4 Mul ess, c ree s 5	band H/B) waw col, v hour b the ngth hour pace	l cop o accordente wire rs e ho rout accordente accorde	metin cess od
The anatomy of an access network, point to division multiplex access network Module:2 Enal Fiber in the access basic optical acce devices Netw Module:3 Netw FTTH network to techniques for a division multiple communication Module:4 Module:4 Enal Module:5 Netw	n access network, the evaluation path typical access network sing ADSL2,VDSL2 Technology, fiber to the home/build o point Ethernet FTTH, passive optical network (PON) ting (WDM) PON FTTH, hybrid fiber coax running DOCS obling Techniques For Broad Band Access Networks as network: Fiber-DSL, hybrid fiber –coax, fiber –wireles as network components: Optical fiber, optical power splitte pologies: Point to point, point to multipoint, cost asper pologies: Point to point, point to multipoint, cost asper pologies, wavelength division multiple access, subcarrier multiple access, wavelength division multiple access. Radio over file pologies for Broadband Wireless Technologies of limited power, phase shift keying modulation, copgonal frequency division multiplexing (OFDM). Codim	ing () FT SIS p ss, fil er, wa ects. acce per, f	and b FTT TH, rotoc 3 ber to velen 4 Mull ess, c free s 5 rature chnic	band H/B) wav col, v houn bo the ngth houn tiple pace houn an uues:	i cop o accordente veler wire rs e ho rout al c opt s nplit Bl	ica ud
The anatomy of an access network us network, point to division multiplex access network Module:2 Enal Fiber in the access basic optical acce devices Module:3 Netw FTTH network to techniques for a division multiple communication Module:4 Enal Modulation: Use modulation, ortho	n access network, the evaluation path typical access network sing ADSL2,VDSL2 Technology, fiber to the home/build o point Ethernet FTTH, passive optical network (PON) ting (WDM) PON FTTH, hybrid fiber coax running DOCS obling Techniques For Broad Band Access Networks ss network: Fiber-DSL, hybrid fiber –coax, fiber –wireles ss network components: Optical fiber, optical power splitte vork Topology & Access Techniques opologies: Point to point, point to multipoint, cost aspe PON: Time division multiple access, subcarrier multiple access, wavelength division multiple access. Radio over fit of limited power, phase shift keying modulation, co ogonal frequency division multiplexing (OFDM). Codin on codes, turbo coding (TC), space time coding, coded m	ing () FT SIS p ss, fil er, wa ects. acce ber, f	road FTT TH, rotoc 3 ber to velen 4 Mull ess, c ree s 5 rature chnic ation	band H/B) waw col, v houn b the ngth houn tiple pace houn an uues: tech	rs accord accord reler wire rs accord al c accord al c accord al c accord al c accord al c b accord al c accord al c accord accord reler rs accord accord reler rs accord accord reler rs accord accord reler rs accord accord rout	ica ud oc
The anatomy of an access network us network, point to division multiplex access network Module:2 Enal Fiber in the access basic optical access devices Module:3 Network to techniques for a division multiple communication Module:4 Enal Modulation: Use modulation, ortho Codes, convolution	n access network, the evaluation path typical access network sing ADSL2,VDSL2 Technology, fiber to the home/build o point Ethernet FTTH, passive optical network (PON) ting (WDM) PON FTTH, hybrid fiber coax running DOCS obling Techniques For Broad Band Access Networks as network: Fiber-DSL, hybrid fiber –coax, fiber –wireles as network components: Optical fiber, optical power splitte optical power splitte optical fiber, optical power splitte pologies: Point to point, point to multipoint, cost aspe PON: Time division multiple access, subcarrier multiple access, wavelength division multiple access. Radio over fit of limited power, phase shift keying modulation, co ogonal frequency division multiplexing (OFDM). Codin on codes, turbo coding (TC), space time coding, coded m ion and coding (AMC). Multiple access techniques: Freque	ing () FT SIS p SIS p ss, fil or, wa ects. acce ber, f quadr	road FTT TH, rotoc 3 ber to veler 4 Multers, of ess, of 5 ature chnic ature divisition	hound h(H/B) wavestart hound the hound hou	rs accord reler wire rs e ho rout rout rs accord al c opt rs mplit Bl miqu mult	me tin cess dica dica ue ipl
The anatomy of an access network us network, point to division multiplex access network Module:2 Enal Fiber in the access basic optical access devices Module:3 Netw FTTH network to techniques for a division multiple communication Module:4 Enal Modulation: Use modulation, ortho Codes, convolutio Adaptive modulat access, time divis	n access network, the evaluation path typical access network sing ADSL2,VDSL2 Technology, fiber to the home/build o point Ethernet FTTH, passive optical network (PON) ting (WDM) PON FTTH, hybrid fiber coax running DOCS obling Techniques For Broad Band Access Networks ss network: Fiber-DSL, hybrid fiber –coax, fiber –wireles ss network components: Optical fiber, optical power splitte vork Topology & Access Techniques opologies: Point to point, point to multipoint, cost aspe PON: Time division multiple access, subcarrier multiple access, wavelength division multiple access. Radio over fit of limited power, phase shift keying modulation, co ogonal frequency division multiplexing (OFDM). Codin on codes, turbo coding (TC), space time coding, coded m	ing () FT SIS p SIS p ss, fil or, wa ects. acce ber, f quadr	road FTT TH, rotoc 3 ber to velen 4 Mult ess, c ree s 5 ature chnic ation divisition	hound h(H/B) wavestart hound the hound hou	rs accord reler wire rs e ho rout rout rs accord al c opt rs mplit Bl miqu mult	metin metin metin metin metin metin metin metin metin metin metin metin metin metin metin

Mo	dule:5 Long Reach Optical Access Networks	4 hours
	earch challenges: Signal power compensation, optical source, burst mo	
	ource allocation. Demonstration of LR, PON-PLANET super PON,	
assi	gnment.	
		Ι
	dule:6 Optical Access and Metro Networks	3 hours
	oduction, optical regional access network, Stanford university access ne	
-	g integrated network, OBS access metro networks. STARGATE- archite	cture, discovery and
reg	stration, dynamic bandwidth allocation and application.	
Mo	dule:7 Optical –Wireless Access Networks and WiMAX	5 hours
	F: Introduction, basic technologies, RoF application areas, networking cor	
	gration of EPON and WiMAX: Introduction, integrated architecture for	
	ign and operation issues. Introduction to WiMAX, point to point,	multipoint WiMAX
netv	works, WiMAX mesh mode, mobility in WiMAX networks	
Mo	dule:8 Contemporary Issues	2 hours
	Total lecture hours:	30 hours
Tex	t Book(s)	001100110
1.	Abdallah Shami, Martin Maeir, Chadi Assi, Broadband Access Netwo	ork Technologies and
	Deployment (Optical Networks), 2014, 1 st Edition, Springer, India.	C
Ref	erence Books	
1.	Leonid G. Kasovsky, Ning Cheng, Wei-tao Shaw, Shingwa V OpticalAccess Networks, 2012, 1 st Edition, Wiley-Blackwell, India.	Wong, Broad Band
2.	Ivan Kaminov, Tingye Li, Alan E. Wilner, Optical Fiber Telecommunicand Networks, 2013, 6 th Edition, Academic Press, India.	cations VI B Systems
3.	http://www.cisco.com/c/en/us/solutions/collateral/service-provider/service	ce-provider
	strategy/white_paper_c11-690395.html	
	de of evaluation: Internal Assessment (CAT, Quizzes, Digital Assessment Test (FAT)	ssignments) & Final
	bical Projects:	
<u> </u>		ve optical networks
2.		1
3.		
	physical security	
4.	1	-
5.	5	
6.		n in long-reach PONs
7. 8.	e	
0. 9.		
). EPON authorize discovery process scheduling algorithm and Schedulin	ng
1		-0
12		
	3. Hybrid WDM/TDM routing	

- 14. Performance Evaluation Of Hybrid OFDM/CDMA For wireless network.
- 15. Implementation of Turbo encoder and decoder
- 16. Comparison of Cable Modem and DSL technologies
- 17. Performance evaluation of Wi MAX and Wi Fi Networks
- 18. Optical Time Division Multiplexing and De multiplexing Techniques
- 19. Design and performance evaluation of radio over fiber system incorporating different modulation techniques
- 20. Dense wavelength division multiplexing
- 21. Free space optical communication through atmospheric turbulence channels

Mode of evaluation:	Review I, II and III.
---------------------	-----------------------

Recommended by Board of Studies	13-12-2015		
Approved by Academic Council	No. 40	Date	18-03-2016

Course Code	Course Title	L	Т	Р	J	С
ECE6023	RF MEMS	3	0	0	0	3
Pre-requisite	Nil	Syl	labu	s vei	sior	n
						1.0
Course Objective						
	sential knowledge of various planar microstrip circuits.					
•	analyze various types of RF MEMS filters and resonator.					
3. To acquaint the	e design of MEMS based circuits.					
<u> </u>						
Course Outcome:						
-	he importance of micro machines and various transducers.					
	a fabrication techniques for MEMS circuits. nciples of various MEMS devices.					
-	1					
U	lyze RF MEMS resonators.					
	lyze RF MEMS filters. MEMS based circuits.					
6. Understand the						
Module:1 Evolu	ition of Microsystems		2]	hour	:s	
	o systems, concept of micro machines/ micro syst	ems.		aling		ws,
nanomachines.		,		U	,	,
Module:2 Intro	duction to Sensors, Actuators and Mathematical		21	hour	'S	
Mode						
	and classification of transducers: electrostatic, piezoelec	tric,	therr	nal	sens	sing
principles: electros	tatic, resistive, chemical etc. SAW devices.					
M. J. J. 2 C	- D-U-Misse Mashining		5 1			
	nce Bulk Micro Machining	~~~~~		nour		for
	on processes techniques, micro machining techniques and AEMS, recent advances in MEMS fabrication.	spec	iai pi	loces	ses	TOP
withis, polymer w	AEWIS, recent advances in MEWIS fabrication.					
Module:4 RF M	IEMS Devices		11	hou	rs	
	ements and models – RF/Microwave substrate properties	Mi				d –
	s – capacitors, inductors, varactors, MEM switch – shur					
	IEM switch approaches, push-pull series switch, folde					
	witch, MEMS modeling – mechanical modeling, electroma					υ
1		0				
Module:5 MEM	IS Resonators		41	ıour	'S	
Transmission line	planar resonators, cavity resonators, micromechanical r	eson	ators	, filı	m b	ulk
acoustics wave res	onators.					
	IEMS filters and Oscillators			nour		
A Ka-Band millim	neter-wave Micro machined tunable filter, A High-Q 8 MI	Hz N	1EM	Res	onat	tors
filter, RF MEMS	Oscillators - fundamentals, A14GHz MEM Oscillator	, A	Ka-E	Band	Mi	icro
machined cavity or	scillator.					
machined cavity of						
·						
Module:7 RF M	IEMS Based Circuit Design ndamentals, X-Band RF MEMS phase shifter for phased ar			hou		

s MEMS Circuit D	Total Lecture hours:	2 hours 45 hours
MEMS Circuit D	Total Lecture hours:	45 hours
MEMS Circuit D	Total Lecture hours:	45 hours
MEMS Circuit D		
MEMS Circuit D		
	esign for Wireless Com	munications, 2012, 1 st
•	e	icrowave Engineering
oridge University	Press, India.	
oy, K.A. Jose, I	RF MEMS and their A	pplications, 2012, 1 st
India.		
AS Theory, Desi	ign & Technology, 201	3, 1 st Edition, Wiley
Assessment (CA'	T, Quizzes, Digital A	ssignments) & Final
	-	
s 13-12-2015	5	
No. 40	Date	18-03-2016
	RF MEMS(The bridge University loy, K.A. Jose, 1 India. AS Theory, Dest Assessment (CA	AS Theory, Design & Technology, 201 Assessment (CAT, Quizzes, Digital A 13-12-2015

Course Code	(Demmet to be University under action 3 of UGC Aut, 1956)	т	Т	р	
Course Code	Course Title		T	P	J C
CSE6051	Information And Network Security	3	0	0	0 3
Pre-requisite	Nil	Syl	labu	s ve	rsion
					1.1
Course Objectives					
	the basic concepts in security mechanism, classical and tra	aditio	onal	Enci	yption
techniques.					
	significance of public key mechanism, message authen	ticati	ion a	and	digital
signature in cry					
3. To acquaint the	e different types of network security and its significance.				
Course Outcomes					
1	nd analyze OSI Security Architecture and Symmetric Key E	• •			
	ne various mathematic techniques in cryptography includ	ing	numl	ber	heory,
	odulo operator and Discrete Logarithm.			~	
	ciphers, Data Encryption Standard (DES), Advanced E	incry	ption	n St	andard
· · · ·	lic key cryptography.				1
•	e-Hellman key exchange, ElGamal Cryptosystem ir	n as	ymn	netri	e key
•••••	nd authentication schemes.				
	different types of network security protocols and its standar	as.			
6. Know the varia	bus network security mechanisms.				
Madulat Intra	Justice		(1		
	duction - OSI Security architecture – Security attacks – Security m	aaba		<u>iour</u>	
	rity – Information security management lifecycle –Clas				
Substitution – Tran		sica	1 10	ciiii	ques -
Substitution – Trai	sposition				
Module:2 Math	ematics of Cryptography		81	iour	°C
	inite Fields, Fermat's and Euler's Theorems - Euler's To	tient	-		
•	r Theorem, Discrete Logarithms, Elliptic and Hyper elliptic				
	Theorem, Discrete Logarithins, Emptie and Hyper emptie	curv	C 1 11		ette.
Module:3 Secre	t Key Cryptography		8 ł	iour	·s
	l Data Encryption Standard (DES): Double DES – Trip	le T			
Encryption Standar			LD.	Λu	vanceu
Eneryption Standa					
Module:4 Publi	c Key Cryptography		8 ł	iour	'S
	ic Key Cryptography - RSA – Elliptic Curve Cryptograp	hv ()			
	Management: Diffie-Hellman key exchange - Elgam				
	nctions: SHA and MD5 - Message Authentication Codes: H			.005	
Module:5 Netwo	ork Security Protocols and Standards		5 ł	iour	S
-	ecurity: PGP, S/MIME, HTTPS and SET. Security in trans	port			
* *	etwork Layer: IPsec, Internet Key Exchange (IKE) and VPN	-	1		
Module:6 Netwo	ork Periphery Security		4 ł	iour	'S
	ning, filtering and blocking – Virus filtering – Content	filte			
Wireless LAN: WI		inc		~	Pulli

Mo	odule:7 Cyber Crimes, Hackers and Forensics		4 hours					
•	ber Crimes and Laws – Hackers – Dealing with the rise tide of alysis.	Cyber Crim	es – Forensics					
Mo	odule:8 Contemporary issues:		2 hours					
	Total Lecture	hours:	45 hours					
Tey	xt Book(s)							
1.	William Stallings, Cryptography and Network security: Principles and Practice, 2014, 5 th Edition, Pearson Education, Noida, India.							
2.	Joseph Migga Kizza, Computer Network Security, 2012, 1 st Edition, Springer Science & Business Media, New York, USA.							
Ref	ference Books							
1.	Christof Paar, Jan Pelzl, Understanding Cryptography – A Practitioners, 2014, 1 st Edition, Springer Science & Business Med							
2.	Behrouz A. Forouzan, Debdeep Mukhopadhyay, Cryptography & Network Security, 2013, 3 rd Edition, The McGraw Hill Education, New Delhi, India.							
3.	Charlie Kaufman, Radia Perlman, Mike Speciner, Network Security: Private Communication in a public World, 2016, 2 nd Edition, Pearson Education, Noida, India.							
4.	http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-857-network-and- computer-security-spring-2014/							
	ode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assessment Test (FAT)	signments) & I	Final					
	commended by Board of Studies 13-12-2015							
	proved by Academic Council No. 40 Date	18-03-2016						