

SCHOOL OF ELECTRICAL ENGINEERING

B. Tech Electrical and Electronics Engineering

(B.Tech EEE)

Curriculum (2021-2022 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF ELECTRICAL ENGINEERING

To be a leader for academic excellence in the field of electrical, instrumentation and control engineering imparting high quality education and research leading to global competence for the societal and industrial developments.

MISSION STATEMENT OF THE SCHOOL OF ELECTRICAL ENGINEERING

M1: Impart high quality education and interdisciplinary research by providing conducive teaching learning environment and team spirit resulting in innovation and product development.

M2: Enhance the core competency of the students to cater to the needs of the industries and society by providing solutions in the field of electrical, electronics, instrumentation, and automation engineering.

M3: Develop interpersonal skills, leadership quality and societal responsibility through ethical value-added education.

B. Tech Electrical and Electronics Engineering

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) The school of Electrical Engineering has established and sustained a welldefined set of educational objectives and preferred program outcomes. Educational objectives of the program satisfy to the requirements of the stakeholders such as students, parents, employers, alumni, faculty etc. The Program Educational Objectives (PEOs) are as follows.

PEO-1: Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems in electrical engineering and allied disciplines.

PEO-2: Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.

PEO-3: Graduates will function in their profession with social awareness and responsibility.

PEO-4: Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.

PEO-5: Graduates will be successful in pursuing higher studies leading to careers in engineering, management, teaching, and research.

B. Tech Electrical and Electronics Engineering

PROGRAMME OUTCOMES (POs)

POs are statements that describe what students are expected to know and be able to do upon graduating from the program. These relate to the skills, knowledge, analytical ability attitude and behaviour that students acquire through the program.

NBA has defined the following twelve POs for an engineering graduate. These are in line with the Graduate Attributes as defined by the Washington Accord:

PO_01: Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO_02: Problem Analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.

PO_03: Design / Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO_04: Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions for complex problems:

• that cannot be solved by straightforward application of knowledge, theories and techniques applicable to the engineering discipline as against problems given at the end of chapters in a typical text book that can be solved using simple engineering theories and techniques

• that may not have a unique solution. For example, a design problem can be solved in many ways and lead to multiple possible solutions

• that require consideration of appropriate constraints / requirements not explicitly given in the problem statement such as cost, power requirement, durability, product life, etc.

• which need to be defined (modelled) within appropriate mathematical framework

• that often require use of modern computational concepts and tools, for example, in the design of an antenna or a DSP filter.

PO_05: Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO_06: The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO_07: Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO_08: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO_09: Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO_10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO_11: Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO_12: Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

B. Tech Electrical and Electronics Engineering

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of B. Tech. (Electrical and Electronics Engineering) programme, graduates will be able to

- PSO1: Analyze and design electrical and electronics systems for societal and industrial needs.
- PSO2: Design power systems network, power electronic circuits, electric drives and develop control strategies by considering economic and environmental constraints.
- PSO3: Apply and implement intelligent systems using modern tools for electrical engineering applications.

	CREDIT INFO						
S.no	Catagory	Credit					
1	Foundation Core	51					
2	Foundation Core - Non Graded	2					
3	Discipline-linked Engineering Sciences	10					
4	Discipline Core	51					
5	Discipline Elective	15					
6	Projects and Internship	9					
7	Open Elective	15					
8	Non-graded Core Requirement	11					
	Total Credits	151					

		Foundation C	Core					
sl.no	Course Code	Course Title	Course Type	Version	L	т	Ρ	Credit
1	BCHY101L	Engineering Chemistry	Theory Only	1.0	3	0	0	3.0
2	BCHY101P	Engineering Chemistry Lab	Lab Only	1.0	0	0	2	1.0
3	BCSE101E	Computer Programming: Python	Embedded Theory and Lab	1.0	1	0	4	3.0
4	BCSE103E	Computer Programming: Java	Embedded Theory and Lab	1.0	1	0	4	3.0
5	BECE101L	Basic Electronics	Theory Only	1.0	2	0	0	2.0
6	BECE101P	Basic Electronics Lab	Lab Only	1.0	0	0	2	1.0
7	BEEE101L	Basic Electrical Engineering	Theory Only	1.0	2	0	0	2.0
8	BEEE101P	Basic Electrical Engineering Lab	Lab Only	1.0	0	0	2	1.0
9	BENG101L	Technical English Communication	Theory Only	1.0	2	0	0	2.0
10	BENG101P	Technical English Communication Lab	Lab Only	1.0	0	0	2	1.0
11	BENG201P	Technical Report Writing	Lab Only	1.0	0	0	2	1.0
12	BFLE200L	Foreign Language	Theory Only	1.0	2	0	0	2.0
13	BHSM200L	HSM Elective	Theory Only	1.0	3	0	0	3.0
14	BMAT101L	Calculus	Theory Only	1.0	3	0	0	3.0
15	BMAT101P	Calculus Lab	Lab Only	1.0	0	0	2	1.0
16	BMAT102L	Differential Equations and Transforms	Theory Only	1.0	3	1	0	4.0
17	BMAT201L	Complex Variables and Linear Algebra	Theory Only	1.0	3	1	0	4.0
18	BMAT202L	Probability and Statistics	Theory Only	1.0	3	0	0	3.0
19	BMAT202P	Probability and Statistics Lab	Lab Only	1.0	0	0	2	1.0
20	BPHY101L	Engineering Physics	Theory Only	1.0	3	0	0	3.0
21	BPHY101P	Engineering Physics Lab	Lab Only	1.0	0	0	2	1.0
22	BSTS101P	Quantitative Skills Practice I	Soft Skill	1.0	0	0	3	1.5
23	BSTS102P	Quantitative Skills Practice II	Soft Skill	1.0	0	0	3	1.5

Proceedings of the 63rd Academic Council [23.09.2021]

			ltem 63/8 - A	nnexure	- 5			
24	BSTS201P	Qualitative Skills Practice I	Soft Skill	1.0	0	0	3	1.5
25	BSTS202P	Qualitative Skills Practice II	Soft Skill	1.0	0	0	3	1.5

	Foundation Core - Non Graded											
sl.no	Course Code	Course Title	Course Type	Version	L	т	Р	Credit				
1	BENG101N	Effective English Communication	Lab Only	1.0	0	0	4	2.0				

Di										
sl.no	Course Code	Course Title	Course Type	Ver	L	т	Р	J	с	Pre req.
1	BEEE201L	Electronic Materials	Theory Only	1.0	3	0	0	0	3.0	-
2	BEEE202L	Electromagnetic Theory	Theory Only	1.0	2	1	0	0	3.0	-
3	BEEE203L	Circuit Theory	Theory Only	1.0	3	1	0	0	4.0	Basic Electrical Engineering

sl.no	Course Code	Discipline Core Course Title	Course Type	Ver	L	т	Р	с	Pre req
1	BEEE204L	Signals and Systems	Theory Only	1.0	2	1	0	3.0	Differential Equations and Transforms
2	BEEE205L	Electronic Devices and Circuits	Theory Only	1.0	2	0	0	2.0	Basic Electronics
3	BEEE205P	Electronic Devices and Circuits Lab	Lab Only	1.0	0	0	2	1.0	Basic Electronics
4	BEEE206L	Digital Electronics	Theory Only	1.0	3	0	0	3.0	Basic Electronics
5	BEEE206P	Digital Electronics Lab	Lab Only	1.0	0	0	2	1.0	Basic Electronics
6	BEEE207L	Electrical Machines	Theory Only	1.0	3	0	0	3.0	Basic Electrical Engineering, Electromagnetic theory
	BEEE207P	Electrical Machines Lab	Lab Only	1.0	0	0	2	1.0	Basic Electrical Engineering, Electromagnetic theory
8	BEEE208L	Analog Electronics	Theory Only	1.0	3	0	0	3.0	Electronic Devices and Circuits
	BEEE208P	Analog Electronics Lab	Lab Only	1.0	0	0	2	1.0	Electronic Devices and Circuits
10	BEEE301L	Power Electronics	Theory Only	1.0	3	0	0	3.0	Electronic Devices and Circuits, Circuit Theory
11	BEEE302L	Digital Signal Processing	Theory Only	1.0	3	0	0	3.0	Signals and Systems
12	BEEE302P	Digital Signal Processing Lab	Lab Only	1.0	0	0	2	1.0	Signals and Systems
13	BEEE303L	Control Systems	Theory Only	1.0	3	0	0	3.0	Basic Electrical Engineering, Differential Equations and Transforms
14	BEEE303P	Control Systems Lab	Lab Only	1.0	0	0	2	1.0	Basic Electrical Engineering, Differential Equations and Transforms
15	BEEE304L	Power Systems Engineering	Theory Only	1.0	3	1	0	4.0	Circuit Theory
16	BEEE305L	Measurements and Instrumentation	Theory Only	1.0	2	0	0	2.0	Circuit Theory
17	BEEE305P	Measurements and Instrumentation Lab	Lab Only	1.0	0	0	2	1.0	Circuit Theory
18	BEEE306L	Power Systems Analysis	Theory Only	1.0	3	0	0	3.0	Power Systems Engineering
19	BEEE306P	Power Systems Analysis Lab	Lab Only	1.0	0	0	2	1.0	Power Systems Engineering
20	BEEE307L	Electric Drives	Theory Only	1.0	3	0	0	3.0	Electrical Machines, Power Electronics
21	BEEE307P	Power Electronics and Drives Lab	Lab Only	1.0	0	0	2	1.0	Electrical Machines, Power Electronics

Proceedings of the 63rd Academic Council [23.09.2021]

			Item 63/8 - Annexure - 5									
22	BEEE308L	Communication Systems	Theory Only	1.0	3	0	0	3.0	Signals and Systems,			
									Analog Electronics			
23	BEEE309L	Microprocessors and Microcontrollers	Theory Only	1.0	3	0	0	3.0	Digital Electronics			
24	BEEE309P	Microprocessors and Microcontrollers Lab	Lab Only	1.0	0	0	2	1.0	Digital Electronics			

		Disc	ipline Elective						
No	Course Code	Course Title	Course Type	Ver	L	т	Ρ	С	Pre req
1	BEEE001L	Machine Learning	Theory Only	1.0	3	0	0	3.0	Probability and Statistics
2	BEEE002L	Artificial Intelligence	Theory Only	1.0	3	0	0	3.0	Probability and Statistics
3	BEEE003L	Electrical Machine Design	Theory Only	1.0	2	1	0	3.0	Electrical Machines
4	BEEE004E	VLSI Design	Embedded Theory and Lab	1.0	2	0	2	3.0	Digital Electronics
5	BEEE005L	Engineering Optimization	Theory Only	1.0	2	1	0	3.0	-
6	BEEE006L	Embedded Systems Design	Theory Only	1.0	3	0	0	3.0	Microprocessor and Microcontroller
7	BEEE007L	Digital Image Processing	Theory Only	1.0	3	0	0	3.0	Digital Signal Processing
8	BEEE008L	Bio-Medical Instrumentation	Theory Only	1.0	3	0	0	3.0	-
9	BEEE009L	Design of Electrical Installations	Theory Only	1.0	3	0	0	3.0	Electrical Machines
10	BEEE010E	Power Systems Protection and Switchgear	Embedded Theory and Lab	1.0	2	0	2	3.0	Power Systems Analysis
11	BEEE011L	Power Systems Operation and Control		1.0	3	0	0	3.0	Power System Engineering
12	BEEE012L	Restructured Power Systems	Theory Only	1.0	3	0	0	3.0	Power System Engineering
13	BEEE013L	High Voltage Engineering	Theory Only	1.0	3	0	0	3.0	Power System Engineering
14	BEEE014L	Renewable Energy Systems	Theory Only	1.0	3	0	0	3.0	Power Electronics, Power System Engineering
15	BEEE015L	FACTS and HVDC	Theory Only	1.0	3	0	0	3.0	Power Electronics, Power System Engineering
16	BEEE016L	Power Quality	Theory Only	1.0	3	0	0	3.0	Power Systems Analysis
17	BEEE017L	Reliability Engineering	Theory Only	1.0	3	0	0	3.0	Probability and Statistics
18	BEEE018L	Robotics and Control	Theory Only	1.0	3	0	0	3.0	Control Systems
19	BEEE391J	Technical Answers to Real Problems Project	Project	1.0	0	0	0	3.0	
20	BEEE392J	Design Project	Project	1.0	0	0	0	3.0	
21	BEEE393J	Laboratory Project	Project	1.0	0	0	0	3.0	
22	BEEE394J	Product Development Project	Project	1.0	0	0	0	3.0	
23	BEEE395J	Computer Project	Project	1.0	0	0	0	3.0	
24	BEEE396J	Reading Course	Project	1.0	0	0	0	3.0	
25	BEEE397J	Special Project	Project	1.0	0	0	0	3.0	
26	BEEE398J	Simulation Project	Project	1.0	0	0	0	3.0	

		Projects and Internship						
sl.no	Course Code	Course Title	Course Type	Ver	L	т	Р	Credit
1	BEEE399J	Summer Industrial Internship	Project	1.0	0	0	0	1.0
2	BEEE497J	Project - I	Project	1.0	0	0	0	3.0
3	BEEE498J	Project - II / Internship	Project	1.0	0	0	0	5.0
4	BEEE499J	One Semester Internship	Project	1.0	0	0	0	14.0

	Non-graded Core Requirement												
sl.no	Course Code	Course Title	Course Type	Ver	L	т	Ρ	Credit					
1	BCHY102N	Environmental Sciences	Project	1.0	0	0	0	2.0					
2	BEEE101N	Introduction to Engineering	Project	1.0	0	0	0	1.0					
3	BEXC100N	Extracurricular Activities	Project	1.0	0	0	0	2.0					
4	BHUM101N	Ethics and Values	Online Course	1.0	0	0	0	2.0					
5	BSSC101N	Essence of Traditional Knowledge	Project	1.0	0	0	0	2.0					
6	BSSC102N	Indian Constitution	Project	1.0	0	0	0	2.0					

BCHY101L	Engineering Chemistry	L	т	р	С
		3	0	0	3
Pre-requisite	NIL Syl	labı	ıs \	/ersi	on
			1.0		
 disciplines of To provide a To empowe addressing To integrate individuals of To offer opp higher learn To understand chemistry. Analyze the Apply chem Appreciate Design ne techniques. 	tudents to have fundamental understanding of the basic concept of chemistry. Avenues for learning advanced concepts from school to univers r students with emerging concepts in applied chemistry to be un societal needs analytical and computational ability with experimental skills to competent in basic science and its by-product of its application ortunities to create pathways for self-reliant in terms of knowled inq nes : d the fundamental concepts in organic, inorganic, physical, e principles of applied chemistry in solving the societal issues. hical concepts for the advancement of materials. the fundamental principles of spectroscopy and the related app w materials, energy conversion devices and new protect	ity sefu crea dge and	and I and tior	d alyti as.	ical
	emical thermodynamics and kinetics dynamics - entropy change (selected processes) - spontaneity				
reaction and Gi energy barrier -	bbs free energy - heat transfer; Kinetics - Concept of activati Arrhenius equation- effect of catalysts (homo and heterogeneo elis-Menten Mechanism).	on e	ene	rgy	and
Module:2 Met	al complexes and organometallics		(6 ho	ours
stability, structu	lexes - structure, bonding and application; Organometallics - re and applications of metal carbonyls, ferrocene and Grig y (haemoqlobin, chlorophyll- structure and property).				
	anic intermediates and reaction transformations	1	(6 ho	ours
Organic interme Aromatics (aron transformations	ediates - stability and structure of carbocations, carbanions naticity) and heterocycles (3, 4, 5, 6 membered and fused sys for making useful drugs for specific disease targets (two e elimination, substitution and cross coupling reactions).	tem	s);	Orga	anic
Module:4 Ene		Ι	(6 ho	urs
electrode-electro cells: H2"O ₂ and	and electrolytic cells - electrode materials with examples (ser olyte interface- chemistry of Li ion secondary batteries, superc d solid oxide fuel cell (SOFC); Solar cells - photovoltaic cell (si mical cells and dye-sensitized cells.	apa	cito	ors; I	Fuel
Module:5 Fun	ctional materials			7 ho	ours
Polymers - thern BAKELITE); Co devices specific down and bottor Module:6 Specific	AB ₂ . ABO ₃ type (specific examples); Composites - types a mosetting and thermoplastic polymers - synthesis and applica nducting polymers- polyacetylene and effect of doping - cherr to OLEDs; Nano materials - introduction, bulk <i>vs</i> nano (quant n-up approaches for synthesis, and properties of nano Au.	ntion nistr tum	y of dot	EFL f dis s), to 5 ho	ON, play op- ours
applications of L	concepts in spectroscopic and instrumental techniques; JV-Visible and XRD techniques (numericals); Overview of vario R, NMR, SEM and TEM.		-		
Module:7 Inde	ustrial applications			7 ho	ours

Water purification methods - zeolites, ion-exchange resins and reverse osmosis; Fuels and combustion -LCV, HCV, Bomb calorimeter (numericals), anti-knocking agents); Protective coatings for corrosion control: cathodic and anodic protection - PVD technique; Chemical sensors for environmental monitoring - gas sensors; Overview of computational methodologies: energy minimization and conformational analysis.

Module:8 Contemporary topics	
--------------------------------	--

2 hours

Guest lectures from Industry and, Research and Development Orqanizations

Total Lecture hours: 45 hours

I

Text	tbook		
1.		e, LeMay Bruce E. Bursten, Catherine Murphy, Patrick fus, Chemistry: The Central Science, 2017, 14th edition,	
Refe	erence Books		
1.	Peter Vollhardt, Neil Schore, C WH Freeman, London	Organic Chemistry: Structure and Function, 2018, 8th ed.	
2.	Atkins' Physical Chemistry: International, 2018, Eleventh edition, Oxford University Press; UK		
3.	Colin Banwell, Elaine Mccash, Fundamentals for Molecular Spectroscopy, 4th Edition, McGraw Hill, US		
4.	Solid State Chemistry and its Applications, Anthony R. West. 2014, 2nd edition, Wiley, UK.		
5.	•	/erlinden, Wilfried van Sark, Alexandre Freundlich, m fundamentals to Applications, 2017, Wiley publishers,	
6.	UK. Lawrence S. Brown and Thomas Holme, Chemistry for engineering students, 2018, 4t ^h edition - <i>Open access version</i>		
Mode of Evaluation: CAT, Written assignment, Quiz and FAT			
Rec	ommended by Board of	28.06.2021	
Stuc	dies		
Арр	roved by Academic Council	No.63 I Date I 23.09.2021	

BCHY101P		Engineering Ch	omistry Lob		IL IT Ip	IC
BCHTIVIP		Engineering Ch				
	NIL					
Pre-requisite					Syllabus vers	sion
Course Obje	octivo				1.0	
•						(
the topics.	oretical knowledge	gained in the the	ory course a	ind get nand	s-on experience	e or
Course Out	come :					
At the end of	the course the stud	lent will be able to	0			
	rstand the importar			e on analvs	is of metal ions	bv
	is of experiments.			· · · · , ·		.,
	ractical experience	on synthesis and	d characteriz	ation of the	organic molecu	les
	anomaterials in the				-	
	their knowledge		mic functi	ons, kinetic	s and molecula	ar
	etries through the ex	periments.				
Indicative E						
	odynamics functions					
	Determination of reaction rate, order and molecularity of ethylacetate hydrolysis					
	Colorimetric estimation of Ni ² + using conventional and smart phone digital-imaging					
method	-					
	ory scale preparatio		ug intermedi	ate - para ai	minophenol for th	he
	is for acetaminophe					
•	sium-sea water ad	ctivated cell -	Effect of s	salt concer	ntration on volt	age
Qenera						
	s of iron in an alloy					
	ation of tin oxide by					
	pendent colour vari					
9. Determination of hardness of water sample by complexometric titration before and						
after ion-exchanQe process 10. Computational Optimization of molecular Qeometry usinQ AvoQadro software						
10. Compu			otal Laborat			
Mode of cas	essment: Mode of a					
		ssessment: Con	unuous asse	essment/FA	Tr Urai	
examination Recommend	and others ed by Board of Stud	ies 2s.06.20	721			
	Academic Council	I No. 63		23.09.20	021	
Approved by		1 110.03	Dale	1 23.09.20	021	

BCSE101E	Computer Programming: Python	ILITIPIC
		11 10 4 3
Pre-requisite	NIL	Syllabus version
		l 1.0
Course Objectiv		
2. To inculcate the	posure to basic problem-solving techniques using component of logical thinking abilities and propose novel solur ugh programming language constructs.	
Course Outcom	e	
 Classify varia and demonst Choose app 	bus algorithmic approaches, categorize the appropriate trate various control constructs. ropriate programming paradigms, interpret and handle ution through reusable modules; idealize the importa	e data using files to
Module:1 Intro	oduction to Problem Solving	1 hour
	g: Definition and Steps, Problem Analysis Chart, Devel	
Flowchart and P		
	non Programming Fundamentals	2 hours
- Reserved Wor	ython - Interactive and Script Mode - Indentation - Co ds - Data Types - Operators and their precedence - Ex orting from Packages.	omments - Variables pressions - Built-in
Module:3 Cor	ntrol Structures	2 hours
while loop, for statements.	and Branching: if, if-else, nested if, multi-way if-elif st loop - else clauses in loops, nested loops - break	, continue and pass
Module:4 Coll	ections	3 hours
Tuples: Create, I	cess, Slicing, Negative indices, List methods, List comp ndexing and slicing, Operations on tuples - Dictionary: Operations on dictionaries - Sets: Creation and operation	Create, add, and
	ngs and Regular Expressions	2 hours
Strings: Compare Matching, Search and repla		egular Expressions:
	nctions and Files	3 hours
Functions - Pa	arameters and Arguments: Positional arguments, k	Keyword arguments,
	ues - Local and Global scope of variables - Fund ocursive Functions - Lambda Function. Files: Create,	
	se - tell and seek methods.	
	dules and Packages	2 hours
Built-in modules	 User-Defined modules - Overview of Numpy and Pan 	idas packages.
 Toxt Book(a)	Total Lecture	hours: 15 hours
	s, Python Crash Course: A Hands-On, Project-Base q, 2nd Edition, No starch Press, 2019	d Introduction to
1. Martic C Bro 2018.	wn, Python: The Complete Reference, 4th Edition, McG	
	ttag, Introduction to computation and programming ut to understanding data. 2nd Edition, MIT Press, 2016.	using python: with

Мо	de of Evaluation: No separate evaluation for theory component.			
Ind	icative Experiments			
1.	Problem Analysis Chart, Flowchart and Pseudocode Practices.			
2.	Sequential Constructs using Python Operators, Expressions.			
3.	Branching (if, if-else, nested if, multi-way if-elif statements) and Looping (for, while, nested			
	loopinq, break, continue, else in loops).			
4.	List, Tuples, Dictionaries & Sets.			
5.	Strinqs, Reqular Expressions.			
6.	Functions, Lambda, Recursive Functions and Files.			
7.	Modules and Packages (NumPy and Pandas)			
	Total Laboratory Hours 60 hours			
Tex	kt Book(s)			
1.	Mariano Anaya, Clean Code in Python: Develop maintainable and efficient code, 2 nd			
	Edition, Packt Publishing Limited, 2021.			
Ref	Reference Books			
1.	1. Harsh Bhasin, Python for beginners, 1 st Edition, New Age International (P) Ltd., 2019,			
	Mode of assessment: Continuous assessments and FAT			
Recommended by Board of Studies 03.07.2021				
Арр	proved by Academic Council No. 63 Date 23.09.20)21		

BCSE103E	Computer Programming : Java		
			11 10 4 3
Pre-requisite	NIL		Syllabus version
			l 1.0
Course Objectives			
	e the core language features of Java and under	stand tl	ne fundamentals of
	ented programming in Java.	lama	
2. To develop	the ability of usinq Java to solve real world prob	nems.	
Course Outcome:			
	ourse, students should be able to:		
	basic programming constructs; realize the		-
	Programming in Java; apply inheritance an	nd inte	rface concepts for
•	code reusability.		
	exception handling mechanism; process dat res in the collection framework for solving real		
	Basics		2 hours
	eatures of Java Language - JVM - Bytecode		
5	g constructs - data types - variables - Jav	•	•
operators.	g constructs - data types - variables - dat	a nam	
	ping Constructs and Arrays		2 hours
Control and loop	ing constructs - Arrays - one dimensional	and mu	ulti-dimensional -
enhanced for loop	- Strings - Wrapper classes.		
Module:3 Clas	ses and Objects		2 hours
	Is - Access and non-access specifiers - Declar		
	riables - array of objects - constructors and de	structo	rs - usage of "this"
and "static" keywor Module:4 Inhe		-	2 hours
	ritance and Polymorphism use of "super" - final keyword - Polymorphic	l	3 hours
	ct class - Interfaces.	nism -	Overloading and
	kages and Exception Handling		2 hours
	ng and Accessing - Sub packages.		
	g - Types of Exception - Control Flow in Except	ions - L	Jse of try, catch,
	ws in Exception Handling - User defined excep	tions.	
Module:6 10 St			2 hours
	- FileInputStream & FileOutputStream -		
	 DataOutputStream - BufferedInputStream & Serialization and Deserialization. 	Buffer	edOutputStream -
	ction Framework		2 hours
	d methods - Collection framework: List and Ma	ז	2 110410
		5.	
	- / - /		"hours
	Total Lecture hours:		15 hours
Text Book(s)			
1. Y. Daniel Liang, "Introduction to Java programming" - comprehensive version-11th Edition, Pearson publisher, 2017.			
Reference Books	n publisher, 2017.		
	t , The Complete Reference -Java, Tata McGra	w-Hill n	uhlisher 10 ¹ n
Edition, 2017.		w-rim p	
	n,"Biq Java", 4th edition, John Wiley & Sons pu	blisher,	5 ¹ n edition, 2015
	ny, "Programming with Java", Tata McGraw-Hil		
3 E.Balagurusar	ny, Programming with Java , rata NicGraw-Hi	ւ բստոջլ	iers, on euliion,

Mode of Evaluation: No separate	evaluation for theory component.	

1.	Programs using sequential and branching structures.		
2.	Experiment the use of looping, arrays and strings.		
3.	Demonstrate basic Object-Oriented programming elements.		
4.	Experiment the use of inheritance, polymorphism and abstract classes.		
5.	Designing packages and demonstrate exception handling.		
6.	Demonstrate the use of 10 streams, file handling and serialization.		
7.	Program to discover application of collections.		
	Total Laboratory Hours 60 hours		
Text Book(s)			
1.	Marc Loy, Patrick Niemeyer and Daniel Leuck, Learning Java, O'Reilly Media, Inc.,		

5th Edition, 2020. **Reference Books**

1. Dhruti Shah, 100+ Solutions in Java: A Hands-On Introduction to Programming in

Java, BPB Publications, 1st Edition, 2020. Mode of assessment: Continuous assessments and FAT

Recommended by Board of Studie	es 03.07.2021

Approved by Academic Council	No. 63	Date	23.09.2021

BECE101L		IT Ip IC	
		/ IO IO 2	
Pre-requisite	Nil I Syllab	ous version	
		1.0	
Course Objective			
	the students to the basic concepts of electronic components	, sources,	
	ind instrumentation.		
	culcated knowledge for developing simple circuits using various	selectronic	
components and	he students with the basic concepts of number systems and digit	tal logic	
	concepts associated with multiple sensors and their sensing me		
Course Outcome			
Students will be a			
	he basic electronic components, sources, and measuring equipn	nent	
	I the characteristics of diodes, transistors and their applications	lon	
•	analyse the amplifiers and oscillators		
	mplement simple digital circuits		
	performance metrics of the measurement systems.		
	the basic concept of various sensors and their sensinQ mechani	sms.	
	ronic Components, Sources, and Measuring Equipment	3 hours	
	tronics - Impact of Electronics in Industry and Society - Famili		
	sitors, Inductors - Colour Coding - types and specifications,		
	ponents - Relay and Contactors - Regulated Power supply	/, Function	
Generator - Multi			
Module:2 Junc		4 hours	
	rinsic semiconductors - doping - PN Junctions, Formation of		
	n of diode, Barrier Potential, I - V Characteristics, Rectifiers, Ze cs, Zener diode as Voltage regulator.	er aloae -	
Module:3 Trans		5 hours	
Bipolar Junction Transistor (BJT) - Device structure and physical operation, Concept of CB, CE and CC Configuration, Transistor as a Switch, - Metal-Oxide Field Effect Transistor			
	evice Structure, mode of operation and Characteristics,		
configurations (C			
	lifiers and Oscillators	4 hours	
	lifier (CE configuration), MOSFET as an amplifier (CS cor	figuration)	
	ot, Oscillators - Barkhaunsen's criteria for sustained oscillation,		
Shift Oscillator, L	, , , , , , , , , , , , , , , , , , , ,		
Module:5 Digit	al Logics	4 hours	
Number systems	conversion of bases, Boolean algebra, Logic Gates, Concept of	universal	
gate, Simplificatio	on and implementation of Boolean functions.		
Module:6 Princ	siples of Measurement and Analysis	3 hours	
Units and stand	dards, Errors, Functional Elements of a Measurement S	ystem and	
	lications and Classification of Instruments, Types of measured		
	persion, Sample deviation and sample mean, Calibration and sta		
	ors and Transducers	5 hours	
	entals and characteristics - General concepts and termine		
measurement systems, Sensors and transducers - Classification of sensors, Static and			
dynamic characteristics. Principle of Resistive Sensors, Capacitive Sensors, Inductive			
Sensors, Magnetic sensors, Optical sensor, Self-generating Sensors			
	emporary issues	2 hours	
Guest lectures fro	m Industry and, Research and Development Orqanisations		
	Total Lecture hours:	30 hours	
	I OTAL LACTURA DOURS		

Tex	kt Book(s)		
1.	A. P. Malvina, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill.		
2	Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and		
	Measurement Techniques", 2016, First Edition, Pearson Education, Naida, India.		
Re	ference Books		
1.	David A Bell, Electronic Devices and Circuits, Oxford Press, 5 ¹ Edition, 2008		
2	Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory,		
	Prentice Hall of India, 11th Edition, 2017		
3	D. Patranabis - Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003		
4	A.K. Sawhney, Puneet Sawhney, A Course In Electrical and Electronic Measurements,		
	and Instrumentation, Dhanpat Rai & Co., 2015		
Мо	Mode of Evaluation: Internal Assessment (CAT, Quizzes, Diaital Assianments) & FAT		
Red	Recommended by Board of Studies os.01.2021		
Aod	Aooroved by Academic Council No. 63 Date 23.09.2021		

BECE101P	Basic Electrol ics Lab	ILITIPIC				
		lo lo 2]]				
Pre-requisite	Nil	Syllabus version				
0		1.0				
Course Objec						
	various characteristics of diodes and transistors	h tablaa				
	nd the concept of digital logic functions and verify the trut performance metrics of measurement systems and chara					
sensors						
Course Outco	ne					
Students will b	e able to					
	various characteristics and applications of diodes and tran	nsistors				
2. Design logic	circuits using logic gates and verify their truth tables physical parameters using different transducers					
J. WEASULE LIK	Indicative Experiments					
1 Identify, r	nark the terminal and find the value of a particular compo	nent from the aiven				
	lectronic components, Study of electronic measurement					
DSO, fun	ction generator)					
2 V-I Chara	cteristics of PN Junction diodes and Zener diodes					
3 Half Wav	and Full Wave Rectifier circuits					
4 Zener Dic	Zener Diode as a voltage regulator					
5 Characte	Characteristics of BJT in Common Emitter Configuration					
6 Characte	Characteristics of MOSFET in Common Source Configuration					
7 Frequenc	y response of BJT single stage amplifier					
8 Study of t	ne signal generation using RC Phase Shift Oscillator					
9 Study of I	ogic gates and implementation of Boolean Functions					
10 Strain ga	ige sensors for measurement of normal strain.					
11 Displace	ment measurement using LVDT and LOR.					
12 Temperat	ure measurement using RTD, Thermistor and Thermocou	ple.				
	Total Laboratory Hours 30 hours					
Text Book(s)						
	A. P. Malvina, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill.					
	Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Naida, India.					
Reference Books						
	Bolysted and Louis Nashelsky, Electronic Devices	and Circuit Theory,				
Prentice	Prentice Hall of India, 11th Edition, 2017					
	D. Patranabis - Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003					
	sment: Continuous assessment/ FAT/ Oral examination a	and others				
	by Board of Studies os.07.2021	4				
Approved by A	cademic Council I No. 63 I Date I 23.09.202	1				

BEEE10)1L	Basic Electrical Engineering	ILI	TIPIC
				0 0 2
Pre-requis	ite	NIL	Syllabus	s version
			1	.0
Course Ob	ojective	S		
		sights into relevant concepts and principles in electrical e		
		understand and comprehend laws, rules and theor	ems to	compute
		s of electric circuits		occuring
inst	rument	-	es anu n	leasuning
Course Ou				
		this course, the students will be able to		
		DC and AC circuit parameters using various laws and the		
		e parameters of magnetically coupled circuits and compa al machines	are variou	us types
		nd the measurement techniques of electrical parameters		
		d the concept of electric supply system and comprehend e	ssential	
		afety requirements		
Module:1	I DC C	ircuits		6 hours
		ments and sources; Ohms law, Kirchhoff's laws; Se		
		uit elements; Source transformation; Node voltage anal	ysis; Me	sh current
analysis; N Module:2		m power transfer theorem		C h avera
				6 hours
		es and currents, RMS, average, form factor, peak factor and parallel circuits; Power and power factor; Balar		
systems	Selles	and parallel circuits, Fower and power lactor, bala		e pliase
	Magr	netic Circuits		4 hours
		nduction: Self and mutual; Magnetically coupled circ	uits; Ser	ies and
parallel ma	gnetic	circuits; Dot convention		
		rical Machines		5 hours
		tion, construction and applications of DC machines, trans		induction
		ous generators, stepper motor, Brushless DC (BLOC) m	iotor	41
		rical Measurements	l I	4 hours
		ction and operation of moving coil and moving iron instru tent in single phase and three phase systems	ments, P	ower and
		trical Supply Systems & Safety		3 hours
		trical power generation, transmission and distribution	systems	
		Earthing; Protective devices	5,5101110	, .
		temporary Issues		2 hours
Guest lectu	ures fro	m Industry and, Research and Development Organization	ns	
		Total Lecture hou	rs: I	30 hours
Text Book	. ,		040 10	1141
Pearso	on Edu		019, the	eaition,
Reference				
Educat	tion	I J Nagrath, Basic Electric Engineering, 2019, 4 ¹ Neditic		
2. John E Publica		ectrical Circuit Theory and Technology, 2013, 5 th edit	ion, Rou	tledge
3. S. Sali	ivahnar	n, R Rengaraj, G R Venkatakrishnan, Basic Electrical, E t Engineering, 2018, McGraw Hill Education	lectronic	s and
		, F.C. Widdis, Electrical Measurements and Measurir	ng Instru	ments,
			<u> </u>	,

I 2011, Reem Publications						
5. I V K Mehta and Rohit Mehta, Principles of Power System, 2005, S. Chand						
Mode of Evaluation: CAT, Written Assignment, Quiz, FAT						
Recommended by Board of Studies 1 03.07.2021						
Approved by Academic Council	I No. 63	I Date	I 23.09.2021			

BEEE101P	Basic ectrical Engineering Lab	ILITIPIC		
		lo lo 2		
Pre-requisite	NIL	Syllabus version		
		1.0		
Course Objective	es la			
1. Understar implemen	nding the concepts of electrical engineering fo tation of electrical systems	r development and		
	owledge and skill in wiring and its standards			
	comprehend and identify appropriate measuring de-	vices for an electric		
circuit				
Course Outcome				
	this course, the students will be able to			
	nd, analyze and validate the electric circuit parameters			
	d develop electrical systems for domestic and commer			
	kills for interpretation of measurement during experiment			
Indicative Exper	ls to use modern engineering tools for electrical system	r layout planning		
	of Kirchhoff's voltage law			
	of Kirchhoff's current law			
	of maximum power transfer theorem			
	steady state response of RLC circuits			
	it for a single lamp and a fan with regulator			
	it for Godown with two-way switch			
	single phase transformer/DC motor			
	nt of power in a single phase AC Load			
	nt of power and energy consumed by a given three pha	ase AC load		
	thing and measurement of earth pit resistance			
	tion of residential electrical wiring			
	yout for a residential/commercial/industrial application	using CAD software		
	Total Laboratory H			
Text Book(s)				
()	nbley, Electrical Engineering: Principles & Applications, 2 Ication	019, ?1 n edition,		
Mode of assessment: CAT, FAT, Oral examination				
	y Board of Studies 03.07.2021			
Approved by Aca	demic Council I No. 63 I Date I 23.09.20	021		

BENG101L	Technical English Communication	ILITIPIC
D		
Pre-requisite	NIL	Syllabus version
Course Objective	25:	1 1.0
	p LSRW skills for effective communication in profession	onal situations
2. To enhand	ce knowledge of grammar and vocabulary for meaning	ful communication
3. To unders	tand information from diverse texts for effective techni	cal communication
Course Outcome	S:	
	mar and vocabulary appropriately while writing and sp	eaking
5	concepts of communication skills in formal and inform	0
	ate effective reading and listening skills to synthesize	
inferences		
	rly and significantly in academic and general contexts	
Module:1 Intro	oduction to Communication	4 hours
	ss - Types of communication: Intra-personal, Interpers	
	ommunication / Cross-cultural Communication - Comm	
	good communication - Principles of Effective C	4 hours
	- Modal Verbs - Concord (SVA) - Conditionals - Error	
	ten Correspondence	4 hours
	etters - Resume Writing - Statement of Purpose	
	iness Correspondence	4 hours
	Calling for Quotation, Complaint & Sales Letter - Mer	no - Minutes of
	ing products and processes	
Module:5 Prof		4 hours
• •	Summarizing - Executive Summary - Structure and Typ	es of Proposal -
Recommendation	s n Building & Leadership Skills	4 hours
	dership - Team Leadership Model - Negotiation Skills -	
Management	dersnip - Tearn Leadersnip Moder - Negotiation Skills -	Connict
Module:7 Rese	earch Writing	4 hours
Interpreting and A	analysing a research article - Approaches to Review P	aper Writing -
	earch article - Referencinq	
Module:8 Gue	st Lecture from Industry and R&D organizations	2 hours
Contemporary Iss	ues	
	Total Lecture I	hours: 30 hours
Text Book(s)		
1. Raman, Meer and Practice.	nakshi & Sangeeta Sharma. (2015). <i>Technical Comm</i> (3 rd Edition). India: Oxford University Press.	unication: Principles
Reference Book		
4 th Edition. In	y & Chandra .V. (2010). <i>Communication for Business</i> dia: Pearson Longman.	
Enqineers. In	ay & Pushpalatha. (2018). <i>English Language and Com</i> Idia: Oxford University Press.	
Education.	a. (2020). English Language Skills for Engineers. India	
McGraw Hill		
5. Mishra, Sunit Pearson Edu	ha & Muralikrishna,C. (2014). <i>Communication Skills fo</i> cation.	or Engineers. India:

6. Watkins, P. (2018). Teaching and Developing Reading Skills: Cambridge Handb	ooks for
Lan ua e teachers. India: Cambrid e Universit Press.	

Mode of Evaluation: CAT/ Assi nment /Quiz/ FAT/ Group Discussion					
Recommended b Board of Studies 28.06.2021					
Approved by Academic Council	No. 63	Date	23.09.2021		

BEN	IG101P	Technical English Communication Lab	ILITIPIC				
_	•••	N111					
Pre-	requisite	NIL	Syllabus version				
Сон	rse Objectiv	PS.	1.0				
	•	iate grammatical structures in professional communicati	on				
	2. To improve English communication skills for better employability						
		aninqful communication skills in writinq and public speal	kinq				
Cou	rse Outcome	9S:					
		ofessional rhetoric and articulate ideas effectively					
		ial on technology and deliver eloquent presentations and productive skills in real life situations and develop	workplage				
	munication	e and productive skills in real life situations and develop	workplace				
	cative Exper	iments					
1.	-	& Vocabulary					
	Error Detec						
	Activity: -V						
2.	-	o Narratives					
		of eminent personalities & Ted Talks stening Comprehension / Summarising					
3.	Video Resi						
-	SWOT Ana	lysis & digital resume techniques					
	Activity: Pr	eparing a digital resume for mock interview					
4.		Process Description					
	Describing and Sequencing Activity: Demonstration of product and process						
5.	Mock Meet	-					
		eetings and meeting etiquette onduct of meetings and drafting minutes of the meet	ing				
6.	-	search article					
		nd Technical articles riting Literature review					
7.	Analytical						
	Case Studie Activity: G	es on Communication, Team Building and Leadership roup Discussion					
8.	Presentatio						
	Preparing Conference/Seminar paper Activity: Individual/ Group presentations						
9.	Intensive L	-					
	Scientific documentaries Activity: Note taking and Summarising						
10.	Interview S						
	Interview questions and techniques Activity: Mock Interviews						
		Total Laboratory Hours	s 30 hours				
		nent: Continuous Assessment/ FAT/ Written Assignmer	nts/ Quiz/ Oral				
		Group Activity.					
кес		y Board of Studies 2s.06.2021 demic Council No. 63 Date 23.09.202					

BENG	102P	Technical Report Writing		
Pre-re	quisite	Technical English Communication	Syllabus version	
Cours	e Objectiv		1.0	
		ecific writing skills for preparing technical reports		
	• ·		rmation	
		y, evaluate, analyse general and complex technical info	malion	
3. 108	acquire prot	iciency in writing and presenting reports		
Couro	- Outeem			
	e Outcome		etulo	
		sentences using appropriate grammar, vocabulary and	Style	
-		prmation and concepts in preparing reports		
3. Der	nonstrate tr	e ability to write and present reports on diverse topics		
	··	1		
	tive Experi			
		Grammar, Vocabulary and Editing		
		enses - Adjectives and Adverbs - Jargon vs Technes - Mechanics of Editing: Punctuation and Proof Read		
	Activity: Wo		ing	
		nd Analyses		
		Technical Details from Newspapers - Magazines - Arti	cles and e-content	
		iting introduction and literature review		
		ation of Information		
		to Converge Objective-Oriented data in Diverse Technic	cal Reports	
	Activity: Preparing Questionnaire			
	Data Visual			
	Interpreting Data - Graphs - Tables - Charts - Imagery - Infographics Activity: Transcoding			
	Introduction to Reports Meaning - Definition - Purpose - Characteristics and Types of Reports			
		prksheets on Types of reports	0113	
	Structure o			
		- Acknowledgement - AbstracUSummary- Introduct	ion - Materials and	
N	lethods- Re	sults- Discussion - Conclusion - Suggestions/Recon	nmendations	
		entifying the structure of report		
	Report Writ			
		ion - Draft an Outline and Organize Information		
		afting reports		
	Supplement	ary lexts ndex– Glossary– References– Bibliography - Notes		
		ganizing supplementary texts		
		inal Reports		
		ontent - Style - Layout and Referencing		
	Activity: Examining clarity and coherence in final reports			
	resentatio			
	0	echnical Reports		
A	Activity: Pla	anning, creating and digital presentation of reports	1	
		Total Laboratory Ho		
		ment: Continuous Assessment/FAT/Assignments/Q	uiz/Presentations/	
Oral e	xamination	Board of Studies 28.06.2021		
			4	
Aooro\	ed by Acac	lemic Council No. 63 Date 23.09.202	1	

important engineering math 2. To introduce important to Calculus and Vector Calcu 3. Enhance to use technolo experiment, interpret result Course Outcomes At the end of the course the 1. Apply single variable differentiation problems invo 3. Evaluate partial derivative optimization problems invo 3. Evaluate multiple integra 4. Use special functions to 5. Understand gradient, dire Divergence theorems. Module:1 Single Variable Differentiation- Extrema of Increasing and decreasing Minima-Concavity. Integra solids of revolution. Module:2 Multivariable of Functions of two variables and its properties. Module:3 Application Taylor's expansion for two Lagrange's multiplier metho	and relevant background necessary to understand hematics courses offered for Engineers and Scient opics of applied mathematics, namely Single and M lus etc. ogy to model the physical situations into mathemati ts, and verify conclusions. e student should be able to: erentiation and integration to solve applied probler axima and minima of functions res, limits, total differentials, Jacobians, Taylor seri- living several variables with or without constraints als in Cartesian, Polar, Cylindrical and Spherical co evaluate various types of integrals. ectional derivatives, divergence, curl, Green's, Sto e Calculus on an Interval Rolle's Theorem and the Mean functionsFirst derivative test-Second derivative t tion-Average function value - Area between curve	ntists. Iultivariable cal problems, cal problems, ns in es and ordinates. kes and Gauss 8 hours value theorem- est-Maxima and es - Volumes of 5 hours
Course Objectives 1. To provide the requisite a important engineering math 2. To introduce important to Calculus and Vector Calcu 3. Enhance to use technoloc experiment, interpret result Course Outcomes At the end of the course the 1. Apply single variable differengineering and find the m 2. Evaluate partial derivative optimization problems invo 3. Evaluate multiple integrat 4. Use special functions to 5. Understand gradient, dim Differentiation- Extrema of Increasing and decreasing Minima-Concavity. Integration Solids of revolution. Module:2 + Multivariable of Functions of two variables and its properties. Module:3 + Application Taylor's expansion for two Lagrange's multiplier method	and relevant background necessary to understand hematics courses offered for Engineers and Scient opics of applied mathematics, namely Single and M lus etc. ogy to model the physical situations into mathemati ts, and verify conclusions. e student should be able to: erentiation and integration to solve applied probler axima and minima of functions res, limits, total differentials, Jacobians, Taylor seri- living several variables with or without constraints als in Cartesian, Polar, Cylindrical and Spherical co evaluate various types of integrals. ectional derivatives, divergence, curl, Green's, Sto e Calculus on an Interval Rolle's Theorem and the Mean functionsFirst derivative test-Second derivative t tion-Average function value - Area between curve	1.0 the other ntists. fultivariable cal problems, ns in es and ordinates. kes and Gauss 8 hours value theorem- est-Maxima and es - Volumes of 5 hours
Course Objectives 1. To provide the requisite a important engineering math 2. To introduce important to Calculus and Vector Calcu 3. Enhance to use technolo experiment, interpret result Course Outcomes At the end of the course the 1. Apply single variable diffe engineering and find the m 2. Evaluate partial derivativ optimization problems invo 3. Evaluate multiple integra 4. Use special functions to 5. Understand gradient, dire Divergence theorems. Module:1 Single Variable Differentiation- Extrema o Increasing and decreasing Minima-Concavity. Integra solids of revolution. Module:2 Multivariable Functions of two variables and its properties. Module:3 Application Taylor's expansion for two Lagrange's multiple integra	hematics courses offered for Engineers and Scien opics of applied mathematics, namely Single and M lus etc. ogy to model the physical situations into mathemati is, and verify conclusions. e student should be able to: erentiation and integration to solve applied problem axima and minima of functions res, limits, total differentials, Jacobians, Taylor seri- living several variables with or without constraints als in Cartesian, Polar, Cylindrical and Spherical co evaluate various types of integrals. ectional derivatives, divergence, curl, Green's, Sto e Calculus on an Interval Rolle's Theorem and the Mean functionsFirst derivative test-Second derivative t tion-Average function value - Area between curve	the other tists. Aultivariable cal problems, ans in es and ordinates. kes and Gauss 8 hours value theorem- est-Maxima and es - Volumes of 5 hours
 To provide the requisite a important engineering math To introduce important to Calculus and Vector Calcu Enhance to use technologe experiment, interpret result Course Outcomes At the end of the course the 1. Apply single variable difference in and find the m Evaluate partial derivative optimization problems invo Evaluate multiple integra Use special functions to 5. Understand gradient, dim Divergence theorems. Module:1 Single Variable of Increasing and decreasing Minima-Concavity. Integra solids of revolution. Module:2 Multivariable of Functions of two variables and its properties. Module:3 Application Taylor's expansion for two Lagrange's multiple integra 	hematics courses offered for Engineers and Scien opics of applied mathematics, namely Single and M lus etc. ogy to model the physical situations into mathemati is, and verify conclusions. e student should be able to: erentiation and integration to solve applied problem axima and minima of functions res, limits, total differentials, Jacobians, Taylor seri- living several variables with or without constraints als in Cartesian, Polar, Cylindrical and Spherical co evaluate various types of integrals. ectional derivatives, divergence, curl, Green's, Sto e Calculus on an Interval Rolle's Theorem and the Mean functionsFirst derivative test-Second derivative t tion-Average function value - Area between curve	ntists. Iultivariable cal problems, cal problems, ns in es and ordinates. kes and Gauss 8 hours value theorem- est-Maxima and es - Volumes of 5 hours
 important engineering math 2. To introduce important to Calculus and Vector Calcu 3. Enhance to use technoloc experiment, interpret result Course Outcomes At the end of the course the 1. Apply single variable difference engineering and find the m 2. Evaluate partial derivative optimization problems invo 3. Evaluate multiple integra 4. Use special functions to 6 5. Understand gradient, dire Divergence theorems. Module:1 I Single Variable Differentiation- Extrema of Increasing and decreasing Minima-Concavity. Integra solids of revolution. Module:2 I Multivariable of Functions of two variables and its properties. Module:3 I Application Taylor's expansion for two Lagrange's multiple integra 	hematics courses offered for Engineers and Scien opics of applied mathematics, namely Single and M lus etc. ogy to model the physical situations into mathemati is, and verify conclusions. e student should be able to: erentiation and integration to solve applied problem axima and minima of functions res, limits, total differentials, Jacobians, Taylor seri- living several variables with or without constraints als in Cartesian, Polar, Cylindrical and Spherical co evaluate various types of integrals. ectional derivatives, divergence, curl, Green's, Sto e Calculus on an Interval Rolle's Theorem and the Mean functionsFirst derivative test-Second derivative t tion-Average function value - Area between curve	ntists. Iultivariable cal problems, cal problems, ns in es and ordinates. kes and Gauss 8 hours value theorem- est-Maxima and es - Volumes of 5 hours
 To introduce important to Calculus and Vector Calcu 3. Enhance to use technolo experiment, interpret result Course Outcomes At the end of the course the 1. Apply single variable differengineering and find the m Evaluate partial derivative optimization problems invo Evaluate multiple integra Use special functions to 5. Understand gradient, dire Divergence theorems. Module:1 Single Variable Differentiation- Extrema of Increasing and decreasing Minima-Concavity. Integra solids of revolution. Module:2 Multivariable of Functions of two variables and its properties. Module:3 Application Taylor's expansion for two Lagrange's multiplier method 	ppics of applied mathematics, namely Single and M lus etc. by to model the physical situations into mathemati its, and verify conclusions. e student should be able to: erentiation and integration to solve applied problem axima and minima of functions res, limits, total differentials, Jacobians, Taylor seri- living several variables with or without constraints als in Cartesian, Polar, Cylindrical and Spherical co evaluate various types of integrals. ectional derivatives, divergence, curl, Green's, Sto e Calculus on an Interval Rolle's Theorem and the Mean functionsFirst derivative test-Second derivative t tion-Average function value - Area between curve	Iultivariable cal problems, cal problems, ns in es and ordinates. kes and Gauss kes and Gauss value theorem- est-Maxima and es - Volumes of 5 hours
Calculus and Vector Calcu 3. Enhance to use technolo experiment, interpret result Course Outcomes At the end of the course the 1. Apply single variable difference engineering and find the m 2. Evaluate partial derivative optimization problems invo 3. Evaluate multiple integra 4. Use special functions to 5. Understand gradient, dire Divergence theorems. Module:1 Single Variable Differentiation- Extrema of Increasing and decreasing Minima-Concavity. Integra solids of revolution. Module:2 Multivariable of Functions of two variables and its properties. Module:3 Application Taylor's expansion for two Lagrange's multiplier method	lus etc. bgy to model the physical situations into mathemati ts, and verify conclusions. e student should be able to: erentiation and integration to solve applied probler axima and minima of functions /es, limits, total differentials, Jacobians, Taylor seri- living several variables with or without constraints als in Cartesian, Polar, Cylindrical and Spherical co evaluate various types of integrals. ectional derivatives, divergence, curl, Green's, Sto e Calculus on an Interval Rolle's Theorem and the Mean functionsFirst derivative test-Second derivative t tion-Average function value - Area between curve	cal problems, ns in es and ordinates. kes and Gauss Maxima and est-Maxima and es - Volumes of 5 hours
 3. Enhance to use technologexperiment, interpret result Course Outcomes At the end of the course the figure of the course of the course	begy to model the physical situations into mathemati ts, and verify conclusions. e student should be able to: erentiation and integration to solve applied probler axima and minima of functions res, limits, total differentials, Jacobians, Taylor seri- living several variables with or without constraints als in Cartesian, Polar, Cylindrical and Spherical co evaluate various types of integrals. ectional derivatives, divergence, curl, Green's, Sto e Calculus on an Interval Rolle's Theorem and the Mean functionsFirst derivative test-Second derivative t tion-Average function value - Area between curve	ns in es and ordinates. kes and Gauss 8 hours value theorem- est-Maxima and es - Volumes of 5 hours
experiment, interpret result Course Outcomes At the end of the course the 1. Apply single variable differences and find the model 2. Evaluate partial derivative optimization problems invo 3. Evaluate multiple integra 4. Use special functions to 5. Understand gradient, direction Divergence theorems. Module:1 Single Variable Differentiation- Extrema of Increasing and decreasing Minima-Concavity. Integra solids of revolution. Module:2 Multivariable Functions of two variables and its properties. Module:3 Application Taylor's expansion for two Lagrange's multiplier method Module:4 Multiple integral	ts, and verify conclusions. e student should be able to: erentiation and integration to solve applied problem axima and minima of functions res, limits, total differentials, Jacobians, Taylor seri- living several variables with or without constraints als in Cartesian, Polar, Cylindrical and Spherical co evaluate various types of integrals. ectional derivatives, divergence, curl, Green's, Sto e Calculus on an Interval Rolle's Theorem and the Mean functionsFirst derivative test-Second derivative t tion-Average function value - Area between curve	ns in es and ordinates. kes and Gauss 8 hours value theorem- est-Maxima and es - Volumes of 5 hours
Course Outcomes At the end of the course the 1. Apply single variable differ engineering and find the m 2. Evaluate partial derivative optimization problems invo 3. Evaluate multiple integra 4. Use special functions to 5. Understand gradient, dire Divergence theorems. Module:1 Single Variable Differentiation- Extrema of Increasing and decreasing Minima-Concavity. Integra solids of revolution. Module:2 Multivariable of Functions of two variables and its properties. Module:3 Application Taylor's expansion for two Lagrange's multiplier metho	e student should be able to: erentiation and integration to solve applied probler axima and minima of functions res, limits, total differentials, Jacobians, Taylor seri- living several variables with or without constraints ils in Cartesian, Polar, Cylindrical and Spherical co evaluate various types of integrals. ectional derivatives, divergence, curl, Green's, Sto e Calculus on an Interval Rolle's Theorem and the Mean functionsFirst derivative test-Second derivative t tion-Average function value - Area between curve	es and ordinates. kes and Gauss 8 hours value theorem- est-Maxima and s - Volumes of 5 hours
At the end of the course the 1. Apply single variable differengineering and find the m 2. Evaluate partial derivative optimization problems invo 3. Evaluate multiple integra 4. Use special functions to 5. Understand gradient, direction Divergence theorems. Module:1 Single Variable Differentiation- Extrema of Increasing and decreasing Minima-Concavity. Integra solids of revolution. Module:2 Multivariable of Functions of two variables and its properties. Module:3 Application Taylor's expansion for two Lagrange's multiplier method Module:4 Multiple integra	erentiation and integration to solve applied problem axima and minima of functions ves, limits, total differentials, Jacobians, Taylor seri- living several variables with or without constraints als in Cartesian, Polar, Cylindrical and Spherical co- evaluate various types of integrals. ectional derivatives, divergence, curl, Green's, Sto e Calculus on an Interval Rolle's Theorem and the Mean functionsFirst derivative test-Second derivative t tion-Average function value - Area between curve	es and ordinates. kes and Gauss 8 hours value theorem- est-Maxima and s - Volumes of 5 hours
 Apply single variable differengineering and find the m Evaluate partial derivative optimization problems invo Evaluate multiple integration and functions to m Evaluate multiple integration and gradient, directions of the special functions to m Understand gradient, direction and gradient, directions of the special function and the special function and the special function and the special function. Module:1 - Single Variable of Functions of two variables and its properties. Module:3 - Application Taylor's expansion for two Lagrange's multiplier method 	erentiation and integration to solve applied problem axima and minima of functions ves, limits, total differentials, Jacobians, Taylor seri- living several variables with or without constraints als in Cartesian, Polar, Cylindrical and Spherical co- evaluate various types of integrals. ectional derivatives, divergence, curl, Green's, Sto e Calculus on an Interval Rolle's Theorem and the Mean functionsFirst derivative test-Second derivative t tion-Average function value - Area between curve	es and ordinates. kes and Gauss 8 hours value theorem- est-Maxima and s - Volumes of 5 hours
engineering and find the m 2. Evaluate partial derivativ optimization problems invo 3. Evaluate multiple integra 4. Use special functions to 5. Understand gradient, dir Divergence theorems. Module:1 : Single Variable Differentiation- Extrema of Increasing and decreasing Minima-Concavity. Integra solids of revolution. Module:2 : Multivariable of Functions of two variables and its properties. Module:3 : Application Taylor's expansion for two Lagrange's multiplier method	axima and minima of functions ves, limits, total differentials, Jacobians, Taylor seri- living several variables with or without constraints als in Cartesian, Polar, Cylindrical and Spherical co- evaluate various types of integrals. ectional derivatives, divergence, curl, Green's, Sto <u>e Calculus</u> on an Interval Rolle's Theorem and the Mean functionsFirst derivative test-Second derivative t tion-Average function value - Area between curve	es and ordinates. kes and Gauss 8 hours value theorem- est-Maxima and s - Volumes of 5 hours
 Evaluate partial derivative optimization problems involution of the second structure of t	res, limits, total differentials, Jacobians, Taylor seri- living several variables with or without constraints als in Cartesian, Polar, Cylindrical and Spherical co- evaluate various types of integrals. ectional derivatives, divergence, curl, Green's, Sto <u>e Calculus</u> on an Interval Rolle's Theorem and the Mean functionsFirst derivative test-Second derivative t tion-Average function value - Area between curve	ordinates. kes and Gauss 8 hours value theorem- est-Maxima and es - Volumes of 5 hours
optimization problems invo 3. Evaluate multiple integra 4. Use special functions to 5. Understand gradient, dir Divergence theorems. Module:1 Single Variable Differentiation- Extrema of Increasing and decreasing Minima-Concavity. Integra solids of revolution. Module:2 Multivariable Functions of two variables and its properties. Module:3 Application Taylor's expansion for two Lagrange's multiplier method Module:4 Multiple integra	Iving several variables with or without constraints als in Cartesian, Polar, Cylindrical and Spherical co evaluate various types of integrals. ectional derivatives, divergence, curl, Green's, Sto e Calculus on an Interval Rolle's Theorem and the Mean functionsFirst derivative test-Second derivative t tion-Average function value - Area between curve	ordinates. kes and Gauss 8 hours value theorem- est-Maxima and es - Volumes of 5 hours
3. Evaluate multiple integra 4. Use special functions to 5. Understand gradient, dir Divergence theorems. Module:1 Single Variable Differentiation- Extrema of Increasing and decreasing Minima-Concavity. Integra solids of revolution. Module:2 Multivariable Functions of two variables and its properties. Module:3 Application Taylor's expansion for two Lagrange's multiplier method Module:4 Multiple integra	als in Cartesian, Polar, Cylindrical and Spherical co evaluate various types of integrals. ectional derivatives, divergence, curl, Green's, Sto e Calculus on an Interval Rolle's Theorem and the Mean functionsFirst derivative test-Second derivative t tion-Average function value - Area between curve	kes and Gauss 8 hours value theorem- est-Maxima and est-Volumes of 5 hours
4. Use special functions to 5. Understand gradient, dir Divergence theorems. Module:1 I Single Variable Differentiation- Extrema of Increasing and decreasing Minima-Concavity. Integra solids of revolution. Module:2 I Multivariable Functions of two variables and its properties. Module:3 I Application Taylor's expansion for two Lagrange's multiplier method Module:4 I Multiple integra	evaluate various types of integrals. ectional derivatives, divergence, curl, Green's, Sto e Calculus on an Interval Rolle's Theorem and the Mean functionsFirst derivative test-Second derivative t tion-Average function value - Area between curve	kes and Gauss 8 hours value theorem- est-Maxima and est-Volumes of 5 hours
5. Understand gradient, dir Divergence theorems. Module:1 I Single Variable Differentiation- Extrema of Increasing and decreasing Minima-Concavity. Integra solids of revolution. Module:2 I Multivariable of Functions of two variables and its properties. Module:3 I Application Taylor's expansion for two Lagrange's multiplier method Module:4 I Multiple integra	ectional derivatives, divergence, curl, Green's, Sto e Calculus on an Interval Rolle's Theorem and the Mean functionsFirst derivative test-Second derivative t tion-Average function value - Area between curve	8 hours value theorem- est-Maxima and es - Volumes of 5 hours
Module:1 I Single Variable Differentiation- Extrema of Increasing and decreasing Minima-Concavity. Integra solids of revolution. Module:2 I Multivariable of Functions of two variables and its properties. Module:3 I Application Taylor's expansion for two Lagrange's multiplier method Module:4 I Multiple integration	on an Interval Rolle's Theorem and the Mean functionsFirst derivative test-Second derivative t tion-Average function value - Area between curve	value theorem- est-Maxima and es - Volumes of 5 hours
Differentiation- Extrema o Increasing and decreasing Minima-Concavity. Integra solids of revolution. Module:2 Multivariable o Functions of two variables and its properties. Module:3 Application Taylor's expansion for two Lagrange's multiplier metho Module:4 Multiple integration	on an Interval Rolle's Theorem and the Mean functionsFirst derivative test-Second derivative t tion-Average function value - Area between curve	value theorem- est-Maxima and es - Volumes of 5 hours
Increasing and decreasing Minima-Concavity. Integra solids of revolution. Module:2 Multivariable Functions of two variables and its properties. Module:3 Application Taylor's expansion for two Lagrange's multiplier metho Module:4 Multiple integration	functionsFirst derivative test-Second derivative t tion-Average function value - Area between curve	est-Maxima and s - Volumes of 5 hours
Minima-Concavity. Integra solids of revolution. Module:2 Multivariable (Functions of two variables and its properties. Module:3 Application Taylor's expansion for two Lagrange's multiplier metho Module:4 Multiple integration	tion-Average function value - Area between curve	es - Volumes of 5 hours
solids of revolution. Module:2 Multivariable of Functions of two variables and its properties. Module:3 Application Taylor's expansion for two Lagrange's multiplier methor Module:4 Multiple integration	-	5 hours
Module:2 Multivariable (Functions of two variables and its properties. Module:3 Application Taylor's expansion for two Lagrange's multiplier metho Module:4 Multiple integ	Calculus	-
Functions of two variables and its properties. Module:3 • Application Taylor's expansion for two Lagrange's multiplier metho Module:4 • Multiple integ	Calculus	
and its properties. Module:3 Application Taylor's expansion for two Lagrange's multiplier metho Module:4 Multiple integration	limite and continuity nortical derivatives, total differ	
Module:3 Application Taylor's expansion for two Lagrange's multiplier metho Module:4 Multiple integ	-limits and continuity-partial derivatives -total differ	ential-Jacobian
Taylor's expansion for two Laqrange's multiplier metho Module:4 I Multiple integ	of Multivariable Calculus	5 hours
Lagrange's multiplier metho Module:4 I Multiple integ	variables-maxima and minima-constrained maxim	-
Evaluation of double integr	grals	8 hours
L valuation of double integr	als-change of order of integration-change of varial	bles between
	inates - evaluation of triple integrals-change of vari	ables between
Cartesian and cylindrical a	•	
Module:5 Special Func		6 hours
	s-interrelation between beta and gamma function	
	amma and beta functions. Dirichlet's integral -E	rror functions
complementary error functi Module:6 I Vector Different	ions.	E hours
		5 hours
	ed functions - gradient, tangent plane-direction ar and vector potentials. Statement of vector i	
problems.	a and vector potentials. Statement of vector i	dentities-simple
Module:7 Vector Integr	ation	6 hours
	ntegrals - Statement of Green's, Stoke's and Gauss	
theorems -verification and	evaluation of vector integrals using them.	Suvergence
Module:8 / Contemporary		2 hours
	y and, Research and Development Organizations	
	Total Lecture hours:	45 hours
Text Book		
Pearson	.Weir and J. Hass, Thomas Calculus, 2014, 1	3th edition.

Reference Books					
1.	Erwin KreysziQ, Advanced EnQineerinQ Mathematics, 2015, 10th Edition, Wiley India				
2.	B.S. Grewal, Higher Engineering Mathematics, 2020, 44th Edition, Khanna Publishers				
3.	John Bird, Higher Engineering Mathematics, 2017, 6th Edition, Elsevier Limited.				
4.	James Stewart, Calculus: Early Transcendental, 2017, 8th edition, Cengage Learning.				
5.	K.A.Stroud and Dexter J. Booth, Engineering Mathematics, 2013, 7th Edition, Palgrave				
	Macmillan.				
Mo	Mode of Evaluation: CAT, AssiQnment, Quiz and FAT				
Red	Recommended by Board of Studies 24.06.2021				
App	Approved by Academic Council No. 63 Date 23.09.2021				

BM	AT101P	Calculus Lab	ILITIPIC			
			lo lo l 2 11			
Pre-	-requisite	NIL	Syllabus version			
			l 1.0			
Cou	Irse Objective	25				
1. T	o familiarize v	vith the basic syntax, semantics and library functions of I	MATLAB which			
		ot only in calculus but also many courses in engineering	g and sciences			
		athematical functions and its related properties.				
		gle and multiple integrals and understand it graphically.				
	Irse Outcome					
At th	ne end of the o	course the student should be able to:				
		IATLAB code for challenging problems in engineering				
	• •	plays, interpret and illustrate elementary mathematical f	unctions and			
	cedures.					
	cative Exper					
1.		to MATLAB through matrices and general Syntax				
2.	•	visualizing curves and surfaces in MATLAB - Symbolic	computations			
_		using MATLAB				
3.	Evaluating Extremum of a single variable function					
4.		ng integration as Area under the curve				
5.	Evaluation of Volume by Integrals (Solids of Revolution)					
6.	Evaluating maxima and minima of functions of two variables					
7.		grange multiplier optimization method				
8.		/olume under surfaces				
9.	•	riple integrals				
10.		radient, curl and divergence				
11.		ne integrals in vectors				
12.	Applying Gr	een's theorem to real world problems				
-		Total Laboratory Hour	s i 30 hours			
-	Text Book					
1.		nn, Daniel T. Valentine, Essential MATLAB for Engineer	s and			
	Scientists, Academic Press, 7th edition, 2019.					
_	Reference Books					
1.	Amos Gilat, MATLAB: An Introduction with Applications, Wiley, 6/e, 2016.					
2	Maritn Brokate, Pammy Manchanda, Abul Hasan Siddiqi, Calculus for Scientists and Engineers, Springer, 2019					
Mor	Mode of assessment: DA and FAT					
		y Board of Studies 24.06.2021				
		demic Council I No. 63 Date 23.09.202	21			

BMAT102L	Differential Equations and Transforms	IL IT IP IC
	·	1 3 1 1 10 14
Pre-requisite	BMAT101L, BMAT101P	Syllabus version
		1.0
Course Objectiv		
	t the knowledge of Laplace transform, an important trans	form techniques for
-	s which requires knowledge of integration.	
	ng the elementary notions of Fourier series, this is vital ir	n practical harmonic
analysis.		
•	the skills in solving initial and boundary value problems.	
	e knowledge and application of difference equations and systems that are inherent in natural and physical process	
		503.
Course Outcom		
-	course the student should be able to:	
	ution for second and higher order differential equation artial differential equations.	is, formation and
• •	and basic concepts of Laplace Transforms and solve pro	blome with poriodia
	, step functions, impulse functions and convolution.	bients with periodic
	he tools of Fourier series and Fourier transforms.	
	e techniques of solving differential equations and	partial differential
equation		•
5. Know the	Z-transform and its application in population dynamics	and digital signal
processir	ıg.	
Module:1 Ord	inary Differential Equations (ODE)	6 hours
Second order no	on- homogenous differential equations with constant coe	fficients- Differential
	variable coefficients- method of undetermined coe	
•	rameters-Solving Damped forced oscillations and L(
problems.		CR circuit theory
	al Differential Fountions (DDF)	
Module:2 Part	ial Differential Eauations (PDE)	5 hours
Module:2 Part Formation of pa	rtial differential equations - Singular integrals - Solution	5 hours ns of standard types
Module:2 Part Formation of pa of first order part		5 hours ns of standard types
Module:2 Part Formation of pa of first order part of variables	rtial differential equations - Singular integrals - Solution tial differential equations - Lagrange's linear equation-Me	5 hours ns of standard types ethod of separation
Module:2 Part Formation of pa of first order part of variables Module:3 Lap	rtial differential equations - Singular integrals - Solution tial differential equations - Lagrange's linear equation-Me lace Transform	5 hours ns of standard types ethod of separation 7 hours
Module:2 Part Formation of part of first order part of variables Module:3 Lap Definition- Proper	rtial differential equations - Singular integrals - Solution tial differential equations - Lagrange's linear equation-Me lace Transform erties of Laplace transform-Laplace transform of standard	5 hours ns of standard types ethod of separation 7 hours functions - Laplace
Module:2 Part Formation of part of first order part of variables Module:3 Lap Definition- Propertransform of per	rtial differential equations - Singular integrals - Solution tial differential equations - Lagrange's linear equation-Me lace Transform	5 hours ns of standard types ethod of separation 7 hours functions - Laplace
Module:2 Part Formation of part of first order part of variables Module:3 Lap Definition- Propertransform of pertransform of pertransform.	rtial differential equations - Singular integrals - Solution tial differential equations - Lagrange's linear equation-Me ace Transform erties of Laplace transform-Laplace transform of standard eriodic functions-Unit step function-Impulse function.	5 hoursns of standard typesethod of separation7 hoursfunctions - Laplace
Module:2 Part Formation of part of first order part of variables Module:3 Lap Definition- Propertransform of part transform-Partia Module:4 So	rtial differential equations - Singular integrals - Solution tial differential equations - Lagrange's linear equation-Me enties of Laplace transform-Laplace transform of standard eriodic functions-Unit step function-Impulse function. I fractions method and by Convolution theorem	5 hoursns of standard typesethod of separation7 hoursfunctions - LaplaceInverseLaplace7 hours
Module:2 Part Formation of part of first order part of variables Module:3 Lap Definition- Propertiansform of pertransform of pertransform-Partian Module:4 So Solution of ODE - Solving Non-ho	rtial differential equations - Singular integrals - Solution tial differential equations - Lagrange's linear equation-Me ace Transform erties of Laplace transform-Laplace transform of standard eriodic functions-Unit step function-Impulse function. I fractions method and by Convolution theorem Interference transform I fractions method and by Convolution theorem Interference transform s - Non-homogeneous terms involving Heaviside function to comogeneous system using Laplace transform - solution to the	5 hours ns of standard types ethod of separation 7 hours functions - Laplace Inverse Laplace 7 hours n, Impulse function
Module:2 Part Formation of part of first order part of variables Module:3 Lap Definition- Propertiansform of pertransform-Partia Module:4 So Solution of ODE - Solving Non-ho Laplace transform	rtial differential equations - Singular integrals - Solution tial differential equations - Lagrange's linear equation-Me erties of Laplace transform-Laplace transform of standard eriodic functions-Unit step function-Impulse function. I fractions method and by Convolution theorem I tractions method and by Convolution theorem Interference transform s - Non-homogeneous terms involving Heaviside function omogeneous system using Laplace transform - solution to m.	5 hours ns of standard types ethod of separation 7 hours functions - Laplace Inverse Laplace 7 hours hourse Laplace Finst order PDE by
Module:2 I Part Formation of part of first order part of variables Module:3 I Lap Definition- Propertransform of pertransform of pertransform-Partia Module:4 I So Solution of ODE - Solving Non-hot Laplace transfor Module:5 I Fou	rtial differential equations - Singular integrals - Solution tial differential equations - Lagrange's linear equation-Me eriodic functions-Unit step function-Impulse function. I fractions method and by Convolution theorem Iution to ODE and PDE by Laplace transform s - Non-homogeneous terms involving Heaviside function bomogeneous system using Laplace transform - solution to m. Irier Series	5 hours ns of standard types ethod of separation 7 hours functions - Laplace Inverse Laplace 7 hours n, Impulse function p First order PDE by 6 hours
Module:2 Part Formation of part of first order part of variables Module:3 Lap Definition- Propertiansform-Partia Module:4 So Solution of ODE - Solving Non-hot Laplace transfor Module:5 Fou Fourier series -	rtial differential equations - Singular integrals - Solution tial differential equations - Lagrange's linear equation-Me ace Transform erties of Laplace transform-Laplace transform of standard eriodic functions-Unit step function-Impulse function. I fractions method and by Convolution theorem Interference and PDE by Laplace transform s - Non-homogeneous terms involving Heaviside function omogeneous system using Laplace transform - solution to m. Interference Series Euler's formulae- Dirichlet's conditions - Change of in	5 hours ns of standard types ethod of separation 7 hours functions - Laplace Inverse Laplace 7 hours n, Impulse function p First order PDE by 6 hours
Module:2 Part Formation of part of first order part of variables Module:3 Lap Definition- Propertransform-Partia Module:4 So Solution of ODE - Solving Non-hot Laplace transfor Module:5 Fou Fourier series - series - RMS variables	rtial differential equations - Singular integrals - Solution tial differential equations - Lagrange's linear equation-Me ace Transform erties of Laplace transform-Laplace transform of standard eriodic functions-Unit step function-Impulse function. I fractions method and by Convolution theorem Interference function theorem Interference function theorem function s - Non-homogeneous terms involving Heaviside function omogeneous system using Laplace transform - solution to m. Interference formulae - Dirichlet's conditions - Change of in fulue - Parseval's identity.	5 hours ns of standard types ethod of separation Image: Inverse Laplace Inverse Laplace 7 hours Inverse Laplace 7 hours Inverse Laplace 6 hours 6 hours 1 6 hours
Module:2 I Part Formation of part of first order part of variables Module:3 I Lap Definition- Propertransform of part transform-Partia Module:4 I So Solution of ODE - Solving Non-ho Laplace transfor Module:5 I Fou Fourier series - series - RMS va Module:6 I Fou	rtial differential equations - Singular integrals - Solution tial differential equations - Lagrange's linear equation-Me enties of Laplace transform-Laplace transform of standard eriodic functions-Unit step function-Impulse function. I fractions method and by Convolution theorem Interference functions by Laplace transform s - Non-homogeneous terms involving Heaviside function mogeneous system using Laplace transform - solution to m. Inter Series Euler's formulae- Dirichlet's conditions - Change of in lue - Parseval's identity. Inter Transform	5 hours ns of standard types ethod of separation I 7 hours functions - Laplace Inverse Laplace Inverse Laplace 7 hours n, Impulse function p First order PDE by 6 hours hterval - Half range 6 hours
Module:2 Part Formation of part of first order part of variables Module:3 Lap Definition- Propertiansform of part transform-Partia Module:4 So Solution of ODE - Solving Non-ho Laplace transfor Module:5 Fou Fourier series - series - RMS va Module:6 Fou Complex Fourie	rtial differential equations - Singular integrals - Solution tial differential equations - Lagrange's linear equation-Me enties of Laplace transform-Laplace transform of standard eriodic functions-Unit step function-Impulse function. I fractions method and by Convolution theorem Interior to ODE and PDE by Laplace transform s - Non-homogeneous terms involving Heaviside function mogeneous system using Laplace transform - solution to m. Inter Series Euler's formulae- Dirichlet's conditions - Change of in lue - Parseval's identity. Inter Transform r transform - properties - Relation between Fourier and La	5 hours ns of standard types ethod of separation I 7 hours functions - Laplace Inverse Laplace Inverse Laplace 7 hours n, Impulse function p First order PDE by 6 hours nterval - Half range 6 hours aplace Transforms-
Module:2 I Part Formation of part of first order part of variables Module:3 I Lap Definition- Propertransform of part transform-Partia Module:4 I So Solution of ODE - Solving Non-ho Laplace transfor Module:5 I Fou Fourier series - series - RMS var Module:6 I Fou Complex Fourie	rtial differential equations - Singular integrals - Solution tial differential equations - Lagrange's linear equation-Me eriodic functions-Unit step function-Impulse function. I fractions method and by Convolution theorem Internet of DDE and PDE by Laplace transform s - Non-homogeneous terms involving Heaviside function omogeneous system using Laplace transform - solution to m. Irier Series Euler's formulae- Dirichlet's conditions - Change of in lue - Parseval's identity. Irier Transform r transform - properties - Relation between Fourier and La cosine transforms - Parseval's identity- Convolution Th	5 hours ns of standard types ethod of separation I 7 hours functions - Laplace Inverse Laplace Inverse Laplace 7 hours n, Impulse function p First order PDE by 6 hours nterval - Half range 6 hours aplace Transforms-
Module:2 Part Formation of part of first order part of variables Module:3 Lap Definition- Propertiansform-Partia Module:4 So Solution of ODE - Solving Non-hot Laplace transfor Module:5 Fou Fourier series - series - RMS va Module:6 Fou Complex Fourie Fourier sine and applications to s Module:7 Z-T	rtial differential equations - Singular integrals - Solution tial differential equations - Lagrange's linear equation-Me eriodic functions-Unit step function-Impulse function. I fractions method and by Convolution theorem Interference functions - Unit step function theorem Interference function theorem Interference function function for the standard s - Non-homogeneous terms involving Heaviside function for the system using Laplace transform - solution to me function for the standard step functions - Change of in- fulue - Parseval's identity. Interference for transform r transform - properties - Relation between Fourier and La cosine transforms - Parseval's identity- Convolution Th olve PDE.	5 hours ns of standard types ethod of separation I 7 hours functions - Laplace Inverse Laplace Inverse Laplace 7 hours n, Impulse function p First order PDE by 6 hours aplace Transforms- eorem and simple 6 hours

Module:	8 Contemporary Issues		2 hours
		Total Lecture hours: Total Tutorial hours:	45 hours 15 hours
Text Bo	ok(s)		
	rwin Kreyszig, Advanced Engineer ndia.	ing Mathematics, 2015, 10th Editi	on, John Wiley
	S.S. Grewal, Higher Engineering Publishers.	Mathematics, 2020, 44th Ed	ition, Khanna
Referen	ce Books		
Р	lichael D. Greenberg, Advanced Pearson Education, Indian edition.		
	First Course in Differential Equa 018, 11th Edition, Cengage Publis		s, Dennis Zill,
Mode of	Evaluation: CAT, written assignme	nt, Quiz, FAT	
Recomm	ended by Board of Studies	24-06-2021	
Annrove	d by Academic Council	No. 64 Date 16-12-2021	

BMAT201L	Complex Variables and Linear	-
Pre-requisite	BMAT102L	I 3 I I IO I4 Syllabus version
Tre-requisite		
Course Objective	25	
important engineers 2. To preser important and the sc		nely Complex variables to the ted treatment of another most Linear Algebra to the engineers
	e students with a framework of the concep out many complex problems.	ots that will help them to analyse
Course Outcome	S	
At the end of the c	course the student should be able to	
 Find the i analytic fu Evaluate r Use the po 	analytic functions and find complex potenti mage of straight lines by elementary tra nctions in power series. eal integrals using techniques of contour in ower of inner product and norm for analysis ces and transformations for solving enginee	ansformations and to express tegration.
and Harmonic f	 Analytic functions and Cauchy - Riem unctions; Construction of Harmonic cor alytic functions to fluid-flow and electric field 	njugate and analytic functions;
Module:2 Confe	ormal and Bilinear transformations	7 hours
	ng - Elementary transformations; Translat ential and Square transformations (w = 6 s of the regions bounded by stra	z^{2} , z^{2} ; Bilinear transformation;
Module:3 Com	plex Integration	7 hours
Residues; Integra theorem- Cauchy Indented contour		Statements of Cauchy-Goursat rem-Evaluation of real integrals-
Module:4 Vecto	•	6 hours
bases; Dimension nullity.	ubspace; linear combination - span - lineans; Finite dimensional vector space. Row	and column spaces; Rank and
	r Transformations	6 hours
	itions - Basic properties; Invertible linear tr /ector space of linear transformations; Cha	
Module:6 Inner	Product Spaces	5 hours
Dot products and inner products; Gr	inner products; Lengths and angles of ver am - Schmidt - Orthogonalization.	ctors; Matrix representations of
	ces and System of Equations	5 hours
	Eigen vectors; Properties of Eigenvalue n; System of linear equations; Gaussian	
Module:8 Con	temporary issues:	2 hours

		Lecture hours: Tutorial hours :	45 hours 15 hours
Text E	Book(s)		
	G. Dennis Zill, Patrick D. Shan applications, 2013, 3rd Edition, Jo	nes and Bartlett P	ublishers Series in Mathematics.
2.	Jin Ho Kwak, Sungpyo Hong, Line	ar Algebra, 2004,	Second edition, Springer.
Refer	ence Books		
1.	Erwin Kreyszig, Advanced Engin Wiley & Sons (Wiley student Editior		cs, 2015, 10 ¹ n Edition, John
2.	Michael, D. Greenberg, Advance Pearson Education.	ed Engineering M	Athematics, 2006, 2 nd Edition,
3.	Bernard Kolman, David, R. Hill, Int 2011, 9th Edition Pearson Educat		Algebra - An applied first course,
4. Gilbert Strang, Introduction to Linear Algebra, 2015, 5th Edition, Cengage Learning			
5.	B.S. Grewal, Higher Engineerin Publishers.	ig Mathematics	, 2020, 44th Edition, Khanna
Mode	of Evaluation: Digital Assignments(Solutions by using	soft skill), Quiz, Continuous
Asses	ssments, Final Assessment Test.		
Recon	nmended by Board of Studies	l 24-06-2021	
Approved by Academic Council I No. 64 Date 16-12-2021			

BMAT202L	Probability and Statistics	IL IT IP IC
DIIIATZUZE		3 IO IO 3
Pre-requisite	BMAT101L, BMAT101P	Syllabus version
		1.0
descriptive 2. To analyze 3. To apply	s : students with a framework that will help them cho methods in various data analysis situations. distributions and relationship of real-time data. estimation and testing methods to make infere for decision making.	
Course Outcome	:	
At the end of the co	ourse the student should be able to:	
techniques. 2. Understand distribution 3. Apply stati interpreting 4. Make appl experiment	and interpret descriptive statistics using nume d the basic concepts of random variables and for analyzing data specific to an experiment. istical methods like correlation, regression ar gexperimental data. ropriate decisions using statistical inference tha cal research. cal methodology and tools in reliability engineering p	find an appropriate nalysis in analyzing, t is the central to
Madulad Interal	hadian to Otatistics	6 houro
	uction to Statistics	6 hours
	ta analysis; Measures of central tendency; Mea ss-Kurtosis (Concepts only).	sure of Dispersion,
Module:2 Rando	om variables	8 hours
probability distribu	 Probability mass function, distribution and d ition and Joint density functions; Marginal, Condit Mathematical expectation and its properties- n. 	tional distribution and
Module:3 Correl	lation and Regression	4 hours
Correlation and R regression.	egression - Rank Correlation; Partial and Multiple	e correlation; Multiple
Module:4 Proba	bility Distributions	7 hours
	ion; Poisson distributions; Normal distribution; C oution; Weibull distribution.	Samma distribution;
Module:5 Hypot	hesis Testing-I	4 hours
	esis -Types of errors - Critical region, Procedure for ets- Z test for Single Proportion- Difference of P ns.	testing of hypothesis-
Module:6 Hypot	hesis Testing-II	9 hours
•	s- Student's t-test, F-test- chi-square test- goodness gn of Experiments - Analysis of variance - One way RD-RBD- LSD.	•
Module:7 Reliab	ility	5 hours

Reliability - Maintainability-Preventive and repair maintenance- Availability.
Module:8 Contemporary Issues 2 hours
Total lecture hours: 45 hours
Text Book:
1. R. E. Walpole, R. H. Myers, S. L. Mayers, K. Ye, Probability and Statistics for
engineers and scientists, 2012, 9 th Edition, Pearson Education.
Reference Books
1. Douglas C. Montgomery, George C. Runger, Applied Statistics and Probability for
Engineers, 2016, 6 th Edition, John Wiley & Sons.
2. E. Balagurusamy, Reliability Engineering, 2017, Tata McGraw Hill, Tenth reprint.
3. J. L. Devore, Probability and Statistics, 2012, 8th Edition, Brooks/Cole, Cengage
Learning.
4. R. A. Johnson, Miller Freund's, Probability and Statistics for Engineers, 2011, 8th
edition, Prentice Hall India.
5. Bilal M. Ayyub, Richard H. Mccuen, Probability, Statistics and Reliability for
Engineers and Scientists, 2011, 3 rd edition, CRC press.
Mode of Evaluation: Digital Assignments, Continuous Assessment Tests, Quiz, Final
Assessment Test.
Recommended by Board of Studies 24-06-2021
Approved by Academic Council No. 64 Date 16-12-2021

BMAT202	2	Probability and Statistics Lab	L IT IP IC
			0 10 1 2 1 1
Pre-requis	ite	BMAT101L, BMAT101P	Syllabus versior 1.0
Course O	hiective	le.	1.0
	-	the students for having experimental knowledge of	basic concepts of
sta	tistics u	ising R programming.	
		the relationship of real-time data and decision makin	ng through testing
		ising R. students capable to do experimental research using s	statistics in various
		iq problems.	
	1		
Course O			
At the end	of the c	course the student should be able to:	
1 De	monstra	ate R programming for statistical data.	
		appropriate analysis of statistical methods through exper	rimental technique:
	nģ R.		•
<u> </u>			
Indicative	Experii	ments	
1. Introc	duction:	Understanding Data types; importing/exporting data	
2. Com	puting \$	Summary Statistics /plotting and visualizing data usin	ng
		nd Graphical Representations	
		rrelation and simple linear regression model to real	Total
		nputing and interpreting the coefficient of determination Itiple linear regression model to real dataset; computin	
		ting the multiple coefficients of determination	hours: 30
5. Fittin	q the pr	obability distributions: Binomial distribution	
		ibution, Poisson distribution	
time	problem		
	ng of hy problem	vpothesis for two sample means and proportion from readers	al
		t-test for independent and dependent samples	
	ying Ch al datas	i-square test for goodness of fit test and Contingency tes et	st
		ANOVA for real dataset for Completely randomized	ed
Text Book	n, Rano	domized Block desiqn, Latin square Desiqn	
	tistical	analysis with R by Joseph Schmuller, John wiley an	od .
		New Jersey 2017.	
Reference			•
		of R: A First course in Programming and Statistics, by ⁻ ollock, 2016.	Tilman M Davies,
2. R f	or Data	Science, by Hadley Wickham and Garrett Grolemund	d, O' Reilly Media
Inc	., 2017.		
		ent: Continuous assessment, FAT/ Oral examination and	d others
		Poard of Studies 24-06-2021	004
Approved	by Acac	demic Council No. 64 Date 16-12-20	121

Course Code	Course Title			P C
BPHY101L	Engineering Physics		3 0	0 3
Pre-requisite	NIL		Syllabus v	ersion
•			1.0	
Course Objectiv	/es			
	e dual nature of radiation and matter.			
	nrödinger's equation to solve finite and infin	ite potential pro	blems and a	vlqq
	as at the nanoscale.			11.7
	and the Maxwell's equations for electror	nagnetic wave	es and appl	ly the
	semiconductors for engineering application	•		-
•				
Course Outcom	e			
At the end of the	course the student will be able to			
1. Comprehen	d the phenomenon of waves and electroma	agnetic waves.		
	the principles of quantum mechanics.			
	um mechanical ideas to subatomic domain			
	he fundamental principles of a laser and its			
5. Design a typ	pical optical fiber communication system us	ing optoelectro	nic devices.	
Madula 4		r		
	oduction to waves			hours
	ng - Wave equation on a string (derivation)			
	waves at a boundary (Qualitative)	- Standing	waves and	their
eigenfrequencies		Γ	7	houro
	tromagnetic waves	anatan din ar af a		hours
	gence - gradient and curl - Qualitative und			
	ell Equations (Qualitative) - Displacement			
	space - Plane electromagnetic waves in free nents of quantum mechanics	e space - neitz		hours
	um Mechanics: Idea of Quantization (Plane	k and Einstair		
	e Broglie hypothesis Davisson-Germer			
	pretation - Heisenberg uncertainty principl			
	and time independent).	e comounge	on mare equ	allon
	lications of quantum mechanics		5	hours
	d eigenfunction of particle confined in one	e dimensional		
	Quantum confinement and nanostructures			
scanning tunneli				
Module:5 Las	ers		6	hours
Laser character	istics - spatial and temporal coherence	- Einstein coe	efficients an	d their
	pulation inversion - two, three and four lev			
threshold gain o	oefficient - Components of a laser - He-N	le, Nd:YAG an	nd CO2 lase	rs and
their engineering				
Module:6 Pro	pagation of EM waves in optical fibers		6	hours
	optical fiber communication system - lig			
	le - Numerical aperture - V-parameter - 7	~ .		ion -
	nodal and intramodal. Application of fiber in	<u>medicine - En</u>		_
	oelectronic devices			hours
	semiconductors - direct and indirect band	gap – Sources	: LED and I	laser
,	ectors: PN and PIN.	r		h
wodule:8 Con	temporary issues		2	hours
I				hours
	Total Lecture hours:		45	hours

Text	tbook(s)			
1.	H. D. Young and R. A. Freedman, U	Iniversity Ph	ysics with	n Modern Physics, 2020, 15 th
	Edition, Pearson, USA.			
2.	D. K. Mynbaev and Lowell L. Schein	ner, Fiber Op	tic Comn	nunication Technology, 2011,
	1 st Edition, Pearson, USA			
Refe	erence Books			
1.	H. J. Pain, The Physics of vibration	s and wave	s, 2013, (6 th Edition, Wiley Publications,
	India.			
2.	R. A. Serway, J. W. Jewett, Jr, Phys			Engineers with Modern
	Physics, 2019, 10 th Edition, Cengag			
3.	K. Krane, Modern Physics, 2020, 4 th			
4.	M.N.O. Sadiku, Principles of Elect	romagnetics	, 2015, 6	6 th Edition, Oxford University
	Press, India.		<u> </u>	
5.	W. Silfvast, Laser Fundamentals, 20)12, 2 ¹⁴ Editi	on, Camb	bridge University Press, India.
		<u></u>		
Mod	le of Evaluation: Written assignment,	Quiz, CAT a	nd FAI	
Rec	ommended by Board of Studies	26-06-2021		
	roved by Academic Council	No. 63	Date	23-09-2021
	,			1

BPHY101P	Engineering Physics Lab	IL IT IP I C
		0021
Pre-requisite	12 th or equivalent	Syllabus version
		1.0
Course Objectiv	es	
To apply theoreti	cal knowledge gained in the theory course and get har	nds-on experience of
the topics.		
Course Outcom	3	
	course the student will be able to	
	end the dual nature of radiation and matter by means	•
	ls-on experience on the topics of quantum mecl	nanical ideas in the
laboratory	v. power lasers in optics and optical fiber related experir	nonto
Indicative Exper		nems.
-	the dependence of fundamental frequency with the	longth and toncion of
	string using sonometer.	length and tension of
	the characteristics of EM waves using Hertz experin	nent
	the wavelength of laser source (He-Ne laser and dic	
	s) using diffraction grating	
	trate the wave nature of electron by diffraction through	graphite sheet
	e the Planck's constant using electroluminescence pro	
6. To numeric	ally demonstrate the discrete energy levels and the w	avefunctions using
Schrodinge	r equation (e.Q., particle in a box problem can be giver	n as an assiqnment)
7. To determir qiven)	he the refractive index of a prism using spectrometer (a	angle of prism will be
	he the efficiency of a solar cell	
	he the acceptance angle and numerical aperture of an	-
10. To demons	trate the phase velocity and qroup velocity (simulation)	
	Total Laboratory H	
	nent: Continuous assessment/ FAT/ Oral examination	
	y Board of Studies 26.06.2021	
Approved by Aca	demic Council No. 63 Date 23.09.2	.021

BSTS101P	Quantitative Skills Practice I		;
		0 0 3 1	1.s
Pre-requisite	Nil	Syllabus versio	n
		1.0	
Course Objective	es:		
	ce the logical reasoning skills of the students and help t	them improve	
•	olving abilities		
	e skills required to solve quantitative aptitude problems		
<u>3.</u> To boost 1	he verbal ability of the students for academic and profe	essional purposes	
Course Outcome	PS:		
1. Exhibit so	und knowledge to solve problems of Quantitative Aptitu	ude	
	ate ability to solve problems of Logical Reasoning		
	e ability to tackle questions of Verbal Ability		
Module:1 Logi	cal Reasoning	5 hou	ırs
U 1	egorization questions	·	
Puzzle type class Cryptarithmetic	involving students grouping words into right group ord	lers of logical sense	;
	arrangements and Blood relations	6 hou	ırs
	ent - Circular Arrangement - Multi-dimensional Arrangem		
Relations			
	o and Proportion	6 hou	ırs
Ratio - Proportio	n - Variation - Simple equations - Problems on Ages -	- Mixtures and	
alliqations			
	entages, Simple and Compound Interest	6 hou	
	Fractions and Decimals - Percentage Increase / Decrea		st
	rest - Relation Between Simple and Compound Interes		
Module:5 Num		6 hou	irs
	Power cycle - Remainder cycle - Factors, Multiples - ential grammar for Placement	HCF and LCM	IFO
I		7 1100	115
 Prepositio 			
-	s and Adverbs		
• Tense	1.77		
 Speech a 			
	d Phrasal Verbs		
	ns, Gerunds and Infinitives		
	nd Indefinite Articles		
	of Articles		
Prepositio			
 Compound Interrogation 	d Prepositions and Prepositional Phrases		
	ling Comprehension for Placement	3 hou	ırs
	is - Comprehension strategies - Practice exercises		
	abulary for Placement	6 hou	irs
	stions related to Synonyms -Antonyms -Analogy - Con	fusing words -	
Spelling correctn		~	
	Total Lecture h	nours: 45 hou	ırs
Text Books)		-	
	8). Place Mentor 1 st (Ed.). Chennai: Oxford University		
	S. (2017). Quantitative Aptitude for Competitive Examin . Chand Publishing.	nations 3 ^{ru} (Ed.).	
	. Onana i ubiloning.		

3.	FACE. (2016). Aptipedia Aptitude Encyclopedia 1 st (Ed.). New Delhi: Wiley						
	Publications.						
4.	ETHNUS. (2016). Aptimithra, 1 st (Ed.) Banqalore: McGraw-Hill Education Pvt. Ltd.						
Re	Reference Books						
1.	Sharma Arun. (2016). Quantitative Aptitude, tn(Ed.). Naida: McGraw Hill Education Pvt.						
	Ltd.						
Мо	Mode of evaluation: CAT, Assessments and FAT (Computer Based Test)						
Re	Recommended by Board of Studies 28.06.2021						
Ар	Approved by Academic Council I No. 63 I Date I 23.09.2021						

BEEE204L	Signals and Systems		L	Т	Ρ	С
			2	1	0	3
Pre-requisite	BMAT102L	Syl			ersi	on
				1.0		
Course Objective						
	e mathematical representations of signals and systems.	o timo		mal	_	
	e limitations of discrete time representations of continuou lity to compute and analyze the solutions of continuou		-			ті
	e and frequency domains techniques.		u u	5010		_ ! !
system using time						
Course Outcome	25					
On completion of	this course, the students will be able to					
1. Perform signa	I transformations on continuous and discrete - time signa	als and	d sy	ster	ns.	
2. Apply convolution	tion integrals and convolution sums to obtain response o	f LTI s	syst	ems	S.	
3. Apply frequence	y domain techniques to obtain steady state response of	the co	ontii	านอเ	us a	nd
discrete time L	•					
•	late the limitations of discrete representations of continu	ious t	ime	sigr	nals	
using sampling						
5. Apply Laplace	and Z-Transform techniques to analyze LTI systems.					
Module:1 Fund	amentals of Signals			6	ho	urs
	of continuous and discrete-time signals; classifie	cation	0		signa	
	independent variables; operations on signals; Nyquist s				<u> </u>	
Module:2 Fund	amentals of Systems				ho	
Representation of	f continuous and discrete-time systems, static and dynar	nic, liı	nea	ran	d nc	n-
	t and time invariant, causal and non-causal, stable and					ole
	e systems; block diagram representation and interconne	ction	of s			
	vsis of LTI Systems				hou	
	stems; Impulse response of continuous and discrete		LTI	sys	stem	ns;
	systems using convolution integrals and convolution sum ier analysis of Continuous-time LTI Systems	1		7	ho	urs
	systems to continuous complex exponentials; Represent	tation	of c			
	l aperiodic signals using Fourier series and Fourier tra					
Frequency spectr	um analysis and response of LTI systems			•		
	ier analysis of Discrete-time LTI Systems				ho	
	systems to discrete complex exponentials; Representati					
	nd aperiodic signals using Fourier series and Fourier tra	Instor	m, p	prop	ertie	es;
	um analysis & response of LTI systems pling and Reconstruction of Signals			4	ho	Irs
	nstruction with interpolation, effects of aliasing in til	me a	nd			
domains		no u	i i a		laoi	loy
Module:7 Lapla	ace and Z-Transform Analysis			8	ho	urs
	n: region of convergence and characterization of LTI sy					
	e; Z-transform: region of convergence, power series exp	ansio	n ar	nd p	artia	al
1	n; Characterization of LTI systems			_ 2	ho	Ire
Module:8 Cont	emporary Issues			2		u15
	Total Lecture	hour	s:	45	ho	urs
Text Books						
	nhein, Alan S. Willsky and S. Hamid, Signals and Syste	ms. 2	016	, 2 ⁿ	d	
	son Education	,		,		

2.	Simon Haykin, Signals and Syster	ms, 2021, 2 nd Ec	dition, Joh	n Wiley	
Re	Reference Books				
1.	R. F. Ziemer, W. H. Tranter and	D. R. Fannin, S	Signals an	d Systems - Continuous and	
	Discrete, 2014, 4 th Edition, Prentice Hall				
2.	2. Luis F. Chaparro, Aydin Akan, Signals and Systems, 2018, 3 rd Edition, Academic Press				
3.	Edward Kamen, Bonnie S.Heck,			and Systems Using the Web	
	and MATLAB, 2014, 3 rd Edition, P	earson Education	on		
Мо	de of Evaluation: CAT, Assignment	t, Quiz, FAT			
	Recommended by Board of Studies 19-02-2022				
Ар	proved by Academic Council	No. 65	Date	17-03-2022	

BEEE205L	Electronic Devices and Ci	cuits		1	т	Р	С
DLLLZUJL		cuits		2	0	0	2
Pre-requisite	BECE101L, BECE101P		Syll		-	-	
					0.1		-
Course Objective	es	•					
	the semiconductor circuit components of						
	etailed study of discrete electronic circuits	with amplifiers	as a				
demonstration ve					-		
3. Define the sma	Il-signal model extraction and analysis of r	nodern electro		rcui	IS.		
Course Outcome							
	this course, the students will be able to:						
•	cuits for various applications.						
	esign BJT and MOSFET DC circuits and th	eir amplifier co	onfigu	ratio	ons.		
3. Interpret freque	ency response of amplifiers.		Ŭ				
4. Identify the imp	act of negative feedback in amplifier desig	jn.					
		Γ					
Module:1 Diod			<u>.</u>			ho	
	ctronics, real life applications, diode equ					ppe	
cuits.	rs with and without filters, regulated pov	ver supplies, fr	iuitipie	e u	oue	CII-	
Module:2 BJT	DC Analysis				4	ho	irs
	d characteristics, current gains, h-param	neters. load lir	ne. or	bera			
	ysis and biasing circuits.		, .				
Module:3 BJT	Amplifiers				5	ho	Jrs
Small signal and	alysis of BJT amplifiers, calculation of	gain, input i	mped	lanc	e,	outp	out
	BJT (common emitter, common collector	or and commo	n bas	se) a	amp	lifie	ſS,
emitter degenerat		1					
	FET DC Analysis	d Kara an an ar	•			ho	
DC analysis and I	re and characteristics, h-parameters, loa	id line, operat	ing p	oint	ana	aiys	is,
	FET Amplifiers				4	ho	irs
	/sis of MOSFET amplifiers, calculation of	nain. input imp	edano	ce a			
	MOSFET (common source, common dra						
source degenerat	•		0	,	•		
•	uency Response					ho	
	cy response, system transfer functions, t						
	cuit capacitors, high frequency response	of the MOSFE	:I, hi	gh-f	req	uen	су
response of BJT.	lback Amplifiers				1	ho	ire
	f feedback, negative feedback advantage	s and types: \/	/oltan	<u>م/C</u>			
	ck configurations, multistage amplifiers.	s and types. v	onay	0/0	unc	in e	
	emporary Issues				2	ho	urs
L	· · ·	I					
	Total Lecture hours:				30	ho	ırs
Text Book		1					_
	a, Kenneth C. Smith, Microelectronic Circo ion, Oxford University Press	uits - Theory a	nd Ap	oplic	atio	ns,	
Reference Books							
	lashelsky, Electronic Devices and Circ	uit Theory 2	017	11 th	° er	ditio	n.
Pearson			<i></i> ,	•••			-,
	n, Microelectronics-Circuit Analysis and De	əsign, 2016, 4 ^{tt}	^h editi	on,	McC	Grav	V
3 Hill	·	- ·					

B. Razavi, Fundamentals of Microelectronics, 2017, 2 nd edition, Wiley						
Mode of Evaluation: CAT, Assignment, C	Mode of Evaluation: CAT, Assignment, Quiz, FAT					
Recommended by Board of Studies	Recommended by Board of Studies 19-02-2022					
Approved by Academic Council	No. 65	Date	17-03-2022			

B	EEE205P	Electronic	c Devices and	Circuits	Lab		LTP				
 I							0	0	2	1	
Pre-	requisite	BECE101L, BECE1	01P			Syl	labı	IS V	ersi	on	
							1	.0			
	Irse Objective										
		he knowledge on the c									
2. E	xposure and s	skills to develop differe	ent types of am	plifiers us	ing BJT	and MO	DSF	ET.			
	—										
	Irse Outcome										
		aracteristics of diode a									
2. D	esign and ana	alyze the application o	TBJ1/MOSFE	l as an ar	nplifier.						
الد ما											
1.	cative Experi		iun ation diada								
1. 2.		characteristics of PN									
2. 3.		pper circuits for a des									
3. 4.		amper circuits for a de of logic gates using Pt									
4. 5.		transistor characterist			ofiguratio	000					
<u> </u>		DC operating voltage									
7.	Measure the	DC operating voltage	s and currents	for a MO	S transie	stor bia	<u>ha</u> a	circ	uit		
7. 8.	Design and	construct RC coupled	amplifier for a	desired a	ain		Scu		un		
9.		construct Common Co			airi						
10.		construct Common So									
11.		esponse of BJT ampli									
12.		ultistage amplifiers for									
· <u>_</u> .	Deelgirerm	anotago ampinoro ror	a accirca gain	Total Lab	oratory H	lours	30	nour	s		
Mod	le of assessm	ent: Continuous asses	ssment. FAT						-		
	t Book		, -								
		Kenneth C. Smith, Mi	croelectronic C	ircuits - T	heorv ar	id Appli	cati	ons.			
		Oxford University Pres					50.11				
		y Board of Studies	19-02-2022								
		demic Council	No. 65	Date	17-03-2	2033					

BEEE206L	Digital Electronics		LT	Ρ	С
			3 0	0	3
Pre-requisite	BECE101L, BECE101P	Syllab	ous ve	rsio	า
		L	1.0		
Course Objectiv					
	he Hardware Description Language (HDL) for digital cir te and realize the building blocks of digital systems.	cuits.			
	inational and sequential circuit for digital system applica	ations.			
Course Outcom	es				
	this course, the students will be able to				
	tal logic circuits and apply to solve real world application	∩s.			
	analyze digital circuits using Verilog HDL. mplement combinational circuits, sequential circuits an	d progr	amma	hla l	-no
ic devices.		u piogi	amma		Ug-
	synthesize complex digital modules and circuits for val				
5. Able to ident	ify and prevent various hazards and timing problems in	a digita	al desig	gn.	
Module:1 Digit	al Fundamentals and Circuits			5 ho	IIre
>	anonical and standard forms; Karnaugh Maps; Product	of Sur			
	s (SOP) simplification, Don't care conditions; Realize				
using NAND and	NOR gates				
	ware Description Language			5 ho	
	rilog operators; Levels of design description; Concur	rrency,	Gate	level	
	low modelling, Behavioural modelling; Test benches binational Circuits		-	7 ho	ure
	rcuits: Analysis and design procedures; Circuits for a	rithmet			
	; Decoders and encoders; Multiplexers and De-m				
	tude comparator; Design of seven segment display			-	
Module:4 Sequ				3 ho	
registers; Coun	is: Design of sequential modules; SR, D, T and J-K Lat ters; Basic state machine concepts; Mealy/Mo		lip-flop lodels,		hift tate
•	ters; Basic state machine concepts; Mealy/Mo te assignment, Circuit Implementation		ioueis,	3	late
	for Combinational and Sequential Circuits		4	4 ho	urs
HDL based de	sign: Blocking and non-blocking assignment sta	atomon	t Pro	red	ırəl
	ement; Combinational circuits using dataflow and st				
	s using behavioural modelling				,
Module:6 Asyr	nchronous Sequential Circuits		-	7 ho	urs
Analysis Procedu	ire; Stable and Unstable states, output specifications, S	State re	ductio	n, Ra	ace
	, Hazards; Essential Hazards, Design of Hazard free c	ircuits			
Module:7 Mem	ory and Programmable Logic Devices		-	7 ho	urs
Basic Memory S	tructures: ROM, PROM, EPROM, EEPROM, RAM;	Static a	and Dy	/nam	nic
	mable Logic Devices (PLD); Programmable L				
	Array Logic (PAL), Implementation of Combinational L	ogic u	sing P	LA a	and
	ammable Gate Array (FPGA)			2 ho	IIre
				- 110	ui 3
<u> </u>	Total Lecture h	ours.	4	5 ho	ure
		- J G I J I J	-70		

Tex	xt Books						
1	Floyd, Thomas L., Digital Fundament	tals, 2017, 11	I th Edition	, Pearson Education			
2	M Morris Mano, Michael D. Ciletti, HDL, VHDL, and system Verilog, 20	Digital desig 17, 6 th Editior	gn: with a n, Pearso	an introduction to the Verilog n Education			
Re	ference Books						
1	Roth, Charles, Lizy K. John, and Byeong Kil Lee, Digital systems design using Verilog,2017, 1 st Edition, Cengage India Private Limited						
2							
Мо	ode of Evaluation: CAT, Quiz, Assignm	ents, FAT					
Re	commended by Board of Studies	19-02-2022					
Ap	proved by Academic Council	No. 65	Date	17-03-2022			

В	EEE206P	Digit	al Electron	ics Lab			L	Т	Ρ	С
		.					0	0	2	1
Pre-	requisite	BECE101L, BECE101	IP			Sylla	abu	s ve	ersio	'n
								1.0		
	Irse Objectiv									
		s building blocks of digit								
2. C	Comprehend a	and execute the CAD to	ols to desig	n combina	ational and	seque	entia	al cir	cuits	3.
	Irse Outcome									
		this course, the student			(140)					
		nstruct various combina		is using ga	ates/MSI co	ompor	nent	s.		
		alyze sequential circuits ous combinational and		irouito uoi	na Varilaa I					
3. 11	npiement van		sequential c	incuits usi	ng veniog i		JUUE			
Indi	cative Exper	iments								
1		given Boolean expressi	ion and veri	iv usina lo	nic nates/L	Iniver	salo	nate	s	
2								-		
3	•	Design and verification of Half-Subtractor and Full-Subtractor using logic gates Design and implementation of code converters								
4	V	implementation of magr		arators us	sina loaic a	ates/I	Cs			
5		verification of given logi								
6		verification of latches		5						
7	Ų	logic operations using V	Verilog oper	ators						
8		verification of Half-adde			g Verilog st	ructu	ral n	node	eling	
9	Design and	verification of priority er	ncoder using	y Verilog b	ehavioural	mode	elling)		
10	Design and	verification of shift regis	ters using V	/erilog HD						
11	Design and	verification of 4-bit bina	ry up/down	counter w	ith load ena	able				
12	Design of ar	ithmetic circuits using V	erilog HDL							
				Total La	aboratory H	ours	30	hοι	ırs	
Mod	le of assessm	ent: Continuous assess	sment, FAT							
Tex	t Book									
1		ano, Michael D. Ciletti,					he \	/eri	log	
	HDL, VHDL	, and system Verilog, 20	017, 6 th Edit	ion, Pears	son Educat	ion				
_	<u> </u>		40.00.000	0						
		y Board of Studies	19-02-202		47.00.000	<u> </u>				
Арр	roved by Aca	demic Council	No. 65	Date	17-03-202	22				

BEEE207L	Electrical Machines			1	т	Р	С
				3	0	0	3
Pre-requisite	BEEE101L, BEEE101P, BEEE202L		Syll	abı	-	ersi	on
•					1.0		
Course Objective		·					
	e construction and working principle of ele		es.				
	d interpret the characteristics of electrical r						
3. Identify the suit	able electrical machines to meet the real ti	ime requireme	nts.				
Course Outcome							
	this course, the students will be able to:						
-	orce / torque expressions of singly and do	ubly excited el	ectro	me	cha	nica	I
-	ersion systems.						
0,	evaluate the performance characteristics	of rotating mad	chines	s an	d tra	ans	-
formers.		-					
-	equivalent circuit parameters of single-ph	ase transform	er and	d th	ree	pha	se
induction mo		ad control mail	thoda	for		m -	tor
4. Elucidate the and inductior	need for starters and the necessity of spe	eu control me	moas	IO	DC	mo	lor
	ppropriate electrical machines for practic	al application	s bas	sed	on	thei	r
characteristic			0 000		0		
-							
	iple of Electromechanical Energy				5	ho	urs
	ersion						
	; Lorentz's force law; Singly excited sys		excit	ed	syst	ems	S;
Module:2 DC N	nagnetic force / torque from energy and c	o-energy			10	ho	irs
	working principle: classification; Equiv	alent circuit:	Volta	ne			
	DC generator: EMF equation, armature i						
	acteristics; Power stage and efficier					Mot	
	Power stage and efficiency; Starting a		ntrol;	Ap	plic	atio	ns;
	d indirect methods; Swinburne's test, Hop	kinson's test				ha	
Module:3 Trans						ho	
	working principle; Classifications; Single p ad phasor diagram; Equivalent circuit;						
	el operation; Testing: load test, OC & SC to				iu v	/0116	ige
•	Saving of volume and weight of copper - e	•			com	par	ed
	transformers; Three-phase transforme						
connections; All d							
	chronous Machine					ho	
	iction motor: Construction, working princ						
	; field; Torque equation; Torque-slip ch				-		
	of starters; Speed control methods; Ir on motor: no load and blocked rotor tes	•			•		
	Single-phase induction motor: Double fie						
u 1	ase type, Shaded stator poles, Capacitor-	•	•	, -			
	hronous Machine				10	ho	urs
-	nerator (Alternator): Construction, working	•					-
	l distributed winding, full pitched coil wi	•		•			
	ayer and double layer winding; Induced						
	voltage regulation; Direct and indirect						
-	of alternators; Effects of change in ex tor: Types; Principle of operation; Metl						
	; Hunting and Damper windings; Application		y , \	. 0			and
		-					

Мо	odule:6	Contemporary Issues			2 hours
		Tot	al Lecture hou	urs:	45 hours
Te	xt Book	S			
1.		agrath and D. P. Kothari, Elec w Hill Education	ctric Machines	(Sigma S	Series), 2017, 5 th Edition,
2.		Egune Fitzgerald, Charles k 7 th Edition, McGraw Hill Educa		nen D L	Jmans, Electric machinery,
Re	ference	Books			
1.	Stephe Educat		hinery Fundam	ientals, 2	2012, 6 th Edition, McGraw Hill
2.	P. C. S	Sen, Principles of Electric Mac	chines and Pow	ver Elect	tronics, 2013, Wiley
3.	SK Bh	attacharya, Electrical Machine	es, 2017, 4 th Eo	dition, M	cGraw Hill Education
4.		Say, Problems and Solutions , CBS Publishers	in Electrical Ma	achines	& Transformers, 2017, 1 st e-
Мо	de of Ev	valuation: CAT, Assignment, C	Quiz, FAT		
Re	commer	nded by Board of Studies	19-02-2022		
Ap	proved b	y Academic Council	No. 65	Date	17-03-2022

							С			
Dro	roquisito	BEEE101L, BEEE10		21		SVII	0 0	0	2	1
Fre	requisite	DEEEIVIL, DEEEIV	UIP, DEEE20	2L		Syll		<u>s ve</u> 1.0	#SIC	חכ
Cou	Irse Objective	es								
		tand the basic require	ments for cond	ducting ex	periments	on e	lectr	ical	ma	-
	chines.									
	2. To gain kn	owledge and develop	skill on testing	the elect	rical mach	ines.				
Cou	Irse Outcome	es								
On	completion of	this course, the stude	nts will be able	to						
1. lo	lentify approp	riate method of testing	for different e	lectrical m	achines.					
2. D	esign and cor	nduct experiments on	electrical mach	ines, inte	rpret data	and a	analy	/se.		
Indi	cative Experi	ments								
1		ernal and external char	racteristics of [DC shunt	generator					
2	Comparison	of DC shunt Machine	performance	haracteri	stics usinc	u direc	rt ar	nd ir	dire	oct
2	testing meth		performance			Junco	Juan			,01
3	Determinatio	on of performance cha	racteristics of	DC series	motor					
4	Performance characteristics of DC compound motor under cumulative and differential mode									
5	Determinatio	on of efficiency and vo	ltage regulatio	n of single	-phase tra	ansfor	mer			
6		on of equivalent circuit lation of single-phase	-	nd predete	ermination	of ef	ficie	ncy	and	1
7	Load sharing	g of two identical trans	formers conne	ected in pa	rallel					
8	Load test on mode	three-phase squirrel	cage induction	machine	in generat	or an	d m	otor	,	
9	No-load and	blocked rotor test of t	hree-phase inc	duction mo	otor					
10	Speed control	ol and load test of thre	e-phase wour	nd rotor mo	otor					
11	Load test on	single-phase induction	on motor							
12	Predetermin methods	ation of voltage regula	ation in three-p	hase alter	nator by E	EMF a	and I	MM	_	
13	Synchroniza	tion of a three-phase	alternator to th	e busbar						
14	V and inverte	ed V curves of three-p	hase synchror	nous moto	r					
				otal Labo	ratory Ho	urs	30 I	nou	rs	
		ent: Continuous Asses / Board of Studies	ssment, FAT 19-02-2022							
	roved by Acad		No. 65	Date	17-03-20	22				

BEEE208L	Analog Electronics			L	Т	Ρ	С
				3	0	0	3
Pre-requisite	BEEE205L, BEEE205P		Syll			ersi	on
				1	.0		
Course Objective							
	t types of amplifiers and analyze their resp						
	e characteristics and applications of analo element analog circuits for real world applic						
5. Design and imp	bement analog circuits for real world applic	alions.					
Course Outcome	is a second s						
	this course, the students will be able to:						
•	ncepts of power amplifiers.						
	analyze the design aspects of differential a	mplifiers.					
	uency of oscillation for different oscillators.						
	rformance characteristics and applications						
5. Design ADCs, I	DACs and timer circuits for engineering ap	plications.					
						_	
Module:1 Powe		-				ho	
	Power transistors; Heat sinks; Classes		Class	5 A,	Ba	and	С
	Class AB Push-Pull complementary output	t stages				h a i	
	rential Amplifiers		! -		-	hou	
	fiers: Common mode gain, differential m al amplifier, differential amplifier with activ		code	and		lae	נ
	llators				6	ho	Ire
	ion for oscillation, Hartley and Colpitts osc	villatore Phase	o chift	- \//			
	ators, Clapp oscillator	maiors, rnase	5 51111	, vve	5111	unu	Je
	Amp Characteristics				7	ho	Irs
	of Operational amplifier: Input resistance	 Output resi 	istanc	e (
	ts, offset currents, offset voltage, commo						
	er, closed loop gain, differential amplifi						
	nt response, slew rate	,					,
Module:5 Op-A	mp Applications				6	ho	urs
Linear application	s of op-amp: Adder, Subtractor, Averaging	g amplifier, V t	o I co	onve	rter	', I to	ъV
	ntiator and Integrator; Nonlinear applicat						
	Precision half wave and full wave rectifie	rs, Peak dete	ector,	Wa	ve	forn	า
generators and A					_	1	
	og and Digital Converters	d dama sita. Da				ho	
	converter (ADC): Types of ADC, merits an						
0	ter (DAC): Characterization, Types of DA	•					•
principle and appl	nd hold circuits; Voltage-controlled oscillat	or; Phase lock	ed lo	op: (Ope	fau	ng
	rs and Regulators				6	ho	irs
	nostable and Astable modes of operation	· Voltage reg	ulato	rs' F			
	e regulators, Switching voltage regulators	i, voltago log	alatoi	0. 1	1/10	u u	
	emporary Issues				2	ho	urs
	1 7						
	Total Lecture hours:				45	ho	urs
<u> </u>							
Text Books							
	K.C. Smith, T.C. Carusone, and V. Gaud	det, Microelec	tronic	s C	ircu	iits,	
	on, Oxford university press						
2 James Fiore	, Operational Amplifiers & Linear Inter	grated Circuit	s: Th	neor	y a	and	
Application, 2	2021, 3 rd edition, Dissidents						

Re	ference Books			
1	Albert Malvino and David Bates, Ele	ctronic Princ	iples, 202	21, 9 th edition, McGraw Hill
	Education			
2	Huijsing, Johan, Operational amplifie	ers, 2016, 3 ^{ra}	Edition, S	Springer Netherlands
Мо	de of Evaluation: CAT, assignment, C	Quiz, FAT		
Ro	commended by Board of Studies	19-02-2022)	
			-	
Ap	proved by Academic Council	No. 65	Date	17-03-2022

B	EEE208P	Δ	nalog Electroni	cs I ab				Т	Р	С
	0						0	0	2	1
Pre-	requisite	BEEE205L, BEEE	E205P			Syl	labı	-	ersi	on
	•	,						.0		
Cou	rse Objective	S								
		exposure and skill					nd c	scil	lator	s.
2. D	esign and imp	lement the various	real-time applica	tions using	g analog	IC's.				
	rse Outcome									
		his course, the stud					:			
		ential amplifiers and			ieering a	applicat	lions	5 .		
		lyze application of plement timer circu		circuits.						
0. 0			1.5.							
Indi	cative Experi	ments								
1.		esponse of Differen	tial Amplifier							
2.		ase Shift Oscillator		quency						
3.	Design of Wien Bridge Oscillator for a desired frequency									
4.		rtley Oscillator for a								
5.	Measuremer	t of Op-amp charac	cteristics							
6.		construct: Inverting	and Non-invertin	g amplifiei	rs, Adde	r, Subt	racto	or,		
	Integrator, D									
7.		precision Half-wave								
8.		btain the frequency								
9.		chmitt trigger and (1				
10.		eform generators to		and sawt	ooth sigi	nai				
11. 12.		mplement the circu construct Astable ar		ultivibrata		SEE Tim	ore			
12.	Design and C	UNSTITUET ASTADIE AL		ulliviblato	i using c	55 111	1912			
				Total Labo	oratory F	lours	30	ากม	·c	
					oratory r	10013	501	loui	5	
Text	t Book									
-		Smith, T.C. Carusor	e, and V. Gaude	t, Microele	ectronics	S Circui	ts. 2	019	, 8 th	
editi	on, Oxford uni	versity press	,	,			- , -		, -	
Mod	le of assessme	ent: Continuous ass								
		Board of Studies								
Арр	roved by Acad	emic Council	No. 65	Date	17-03-2	2022				

BEEE30)1L	Power Electronics		L	Т	Р	С
				3	0	0	3
Pre-requis	ite	BEEE203L, BEEE205L, BEEE205P		Syllab		ersi	on
0					1.0		
Course Ob			nia daviana an	d thair	000	Incl	
		e operating characteristics of power electro formance of power converters operating un			COL	li Oi.	
		er converter along with suitable control tech			berat	tina	
conditions.		3	1	1		5	
Course Ou							
•		this course, the student will be able to					
		ropriate power semiconductor device along	with gate drive	and p	rote	ction	Í
		n converter configuration. Iformance of single-phase and three-phase		tore			
		e operating principle of hard and soft-switch			rs		
		rformance of DC-AC converter with various					
		operation of AC-AC converters and their pe		•			
	_					_	
Module:1		er Semiconductor Devices				ho	
		state V-I characteristics; Turn-ON and Turn					
		er MOSFET, IGBT and other; Design of g iks; Intelligent Power Modules (IPM); Wide-					
devices.	ieat si	iks, intelligent Power Modules (IPM), wide-	banu yap (SiC	anu G	an)	pow	er
0011000.							
Module:2	AC-D	C Controlled Converters			9) hoi	Jrs
Single pha	se hall	and fully controlled converters: Performan	ce analysis wi	th R a	nd F	RL lo	ad
		and discontinuous conduction modes, inve					
		r; Concepts of PWM and phase-angle contr					
		and fully controlled converter: Performation of the second	nce analysis,	narmo	onics	s, in	put
	or, Dua	i conveners.					
Module:3	DC-D	OC Converters			10) hoi	urs
Buck, Boo	st and	Buck-Boost DC-DC converters, design eq	uations, TRC	and C	CLC	con	trol
		uadrant operation; Cuk, forward and fly-bac					
		itching, zero-voltage switching (ZVS) and	zero-current	switchi	ng	(ZCS	3)
concepts; (Juasi-r	esonant converters.					
Module 4	DC-A	C Converters			10) hoi	urs
		ngle phase and three phase voltage source	e inverters (VS	il): ana			
		harmonic analysis; PWM control technic	· ·	,			
		al and space-vector, selective harmonic e					
		pt; diode clamped, capacitor clamped a	and cascaded	H-br	idge	ML	_ls;
Comparativ	ve feati	ures.					
Modulo:5	۵۲- ۸	C Converters			-	i hoi	Ire
		d three-phase AC voltage regulators: Circu	uit configuratio	ns na			
		c analysis; Cyclo-converters; Matrix convert		, pe	101	nall	00
Module:6	Cont	emporary Issues			2	ho	Jrs

		То	tal Lecture ho	ours:	45 hours
Tex	kt Book	S			
1.		nmad H. Rashid, Power Elec ion, Pearson Education	tronics: Devic	es, Circui	ts and Applications, 2017,
2.	Hart, D	Daniel W, Power electronics,	2011, Tata Mo	Graw-Hill	Education
Re	ference	Books			
1.		, Undeland and Robbins, , 2007, 3 rd edition, Wiley	Power Elect	ronics: C	converters, Applications and
2.	L. Uma	anand, Power Electronics: Es	ssentials and A	pplicatior	ns, 2009, Wiley
3.	Agrawa Educat	-	c Systems -	Theory	and Design, 2011, Pearson
4.	Muhan Press	nmad H. Rashid , SPICE fo	r Power Elect	ronics and	d Electric Power, 2012, CRC
Мо	de of Ev	valuation: CAT, Assignment,	Quiz, FAT		
Re	commer	nded by Board of Studies	19-02-2022		
Ap	proved b	y Academic Council	No. 65	Date	17-03-2022

DE	EE2021	Digital Signal Processing			T	Р	~
BEI	EE302L	Digital Signal Processing		L 3	Т 0	Р 0	<u>С</u> 3
Pre	-requisite	BEEE204L	Svl	labu	-	-	-
110	requisite		Oyi		.0	CI 31	
Со	urse Objective						
		near Time-Invariant systems and frequency response c	harac	teris	tics	of	
		ne systems.	narae			01	
		filters and FIR filters.					
	0	and digital signal processors for real world applications	and n	nulti-	rate	e sic	1-
	nal proces						,
	F						
Со	urse Outcome	95					
On	completion of	this course, the students will be able to					
		equency response characteristics and fast computation	techn	ique	s.		
		e structures of digital systems.		•			
	3. Design an	d implement IIR and FIR filters with real time constraints	5.				
		al world digital signal processors.					
	5. Explicate r	nulti-rate signal processing and design of adaptive filters	s.				
					-		
		vsis of Signals and Systems				ho	
	ssification; Z-t intization in dis	ransform: ROC, stability and causality analysis; Effec screte domain.	ts of	sam	plin	g a	nd
Mo	dule:2 Discr	ete Fourier Transform			8	hou	rs
DTI	T - frequenc	y domain sampling; DFT: properties, frequency analy	sis; F	Radix	(-2	FF1	Г
		ations; Realization of filter structures: Direct form					
par	allel and lattice	e structures.					-
Mo	dule:3 Desig	n of IIR Filters			8	ho	urs
Des	sign technique	s for analog low pass filter: Butterworth and Chebysh	nev a	ppro	xim	atio	ns,
		rmation, approximation of derivatives, Bilinear transfor	matio	n ar	nd ir	mpu	Ise
	ariant techniqu						
		n of FIR Filters				ho	
		: Phase and group delay, design characteristics of F					
		response, FIR filters using window functions: Rect	tangu	lar,	Har	nmi	ng,
		Blackman and Kaiser.					
		al Signal Processors				hou	
		effects, digital signal processor architectures: TMS32					
		ors: fixed point and floating point, MAC, pipelining,	addre	essir	ig r	nod	es,
		ation of DSP algorithms.			F	ha	
		-rate Digital Signal Processing				ho	
		nversion, decimation and interpolation, implementatio	n usi	ng p	oly	pna	se
	r structures. dule:7 Adap	tive Filters			1	hou	ire
		and Adaptive filters, applications.			-+	100	13
	<u>v</u>	emporary Issues			2	hou	irs
me							
		Total Lectu	ire ho	ours	:	45	
Тех	t Books						
1.		akis, D. G. Manolakis, Digital Signal Processing Princi	ples,	Algo	rith	ms	
	and Application	ons, 2016, 4 th edition, Pearson Education.		0			
2.		/.A.V and Schaffer R.W, Discrete - time Signal Proce	essind	g, 20	14,	3 rd	
	Edition, Pears		_ `				
Ref	erence Books	6					
1.	Lawrence R	Rabiner and Bernard Gold, Theory and Application	n of	Digit	al	Sigr	nal
			-				

	Processing, 2016, Pearson Educat	ion.		
2.	Emmanuel C. Ifeachor, Digital S edition, Prentice Hall.	ignal Proces	sing- A F	Practical Approach, 2011, 2 nd
3.	Steven W Smith, Digital Signal Pro Scientists, 2014, Newnes.	cessing: A P	ractical Gu	uide for Engineers and
4.	Sanjit K. Mitra, Digital Signal Proce	essing, 2013,	4 th edition	, Tata McGraw Hill.
Мо	de of Evaluation: CAT, Assignment,	Quiz, FAT		
Po	commended by Board of Studies	19-02-202	2	
LG.		No. 65	Date	17-03-2022

BEEE303L	Control Systems		LT	Ρ	С
			3 0	0	3
Pre-requisites	BEEE101L, BEEE101P, BMAT102L	Syl	abus v 1.0	ersi	on
Course Objective	28		1.0		
	fundamentals of physical systems modelling a	and control o	f linear	tim	e
invariant systems					
	tical control system design with realistic system				
3. Impart knowled	ge of state variable models and state feedback of	design.			
Course Outcome	<u></u>				
	f of this course, the student will be able to:				
-	nematical models of the physical systems.				
	stem performance in time and frequency domain	S.			
	stability of linear time invariant system in time an		lomains		
	nsators and controllers to meet the performance				
5. Perform state s	pace analysis and design state feedback control	•			
Madula 4 Consta	mo and their Depresentations			k c :	
	ems and their Representations	oon tronofor		hou	
	in control systems: open loop and closed le rical and electro-mechanical systems, electrical				
	n, signal flow graphs.	analogous s	ystems,	DIU	UN
•	Response Analysis		6	hou	urs
	gnals, time response of first and second orde	er systems, ti	me dor	nain	1
	eady state error, static error constants and syste	m type.			
	lity Analysis and Root Locus			hοι	
	and definition, characteristic equation, locatio		Routh H	urwi	tz
	us technique: construction, properties and applic	ations.		hou	
	Jency Response Analysis in specifications; Bode plot, Polar plot; Correla	ation botwoo			
	domain specifications.	alion between	i neque	ency	
	lity in Frequency Domain		5	hou	urs
	gain margin, phase margin; stability analysis	using freque	ncy res	pons	se
methods; Nyquist	stability criterion.	•	-	•	
	pensators and Controllers			hοι	
	sic compensators, cascade compensation in ti				
	c compensation, design of lag, lead, lag-lead s nd PID controllers in frequency domain.	series compe	nsators	usir	١g
Module:7 State			7	hοι	irs
	e variable and state model, solution of state e	equation stat			
transfer function			control		
	e placement control, observer design.	,			· , ,
Module:8 Cont	emporary Issues		2	hοι	Jrs
	Total Lecture hours:		45	hοι	Jrs
Text Books	I				
	ise, Control System Engineering, 2019, 8 th Editic				
2. Farid Galnara McGraw-Hill I	aghi, Benjamin C. Kuo, Automatic Control Sys Education	stem, 2017, 9	9 th Editi	on,	
Reference Books					
	dern Control Engineering, 2016, 5 th Edition, Pea				
2. R.C. Dorf & R	R.H. Bishop, Modern Control Systems, 2017, 13 tr	¹ Edition, Pea	rson		

Education M. Gopal, Control Systems- Principles and Design, 2016, 4 th Edition, Tata McGraw Hill							
	Ų		-				
 J. Nagrath and M. Gopal, Control System Engineering, 2018, 6th Edition, New Age International Publishers 							
de of Evaluation: CAT, Assignment,	Quiz, FAT						
Recommended by Board of Studies 19-02-2022							
Approved by Academic Council No. 65 Date 17-03-2022							
	M. Gopal, Control Systems- Princip J. Nagrath and M. Gopal, Contro International Publishers de of Evaluation: CAT, Assignment, commended by Board of Studies	M. Gopal, Control Systems- Principles and Desig J. Nagrath and M. Gopal, Control System Eng International Publishers de of Evaluation: CAT, Assignment, Quiz, FAT commended by Board of Studies 19-02-2022	M. Gopal, Control Systems- Principles and Design, 2016, J. Nagrath and M. Gopal, Control System Engineering International Publishers de of Evaluation: CAT, Assignment, Quiz, FAT commended by Board of Studies 19-02-2022				

BEE	E303P	Co	ontrol System	s Lab			L	Т	Р	С
							0	0	2	1
Pre-	requisites	BEEE101L, BEEE1	01P. BMAT102	2L		Svl	labı	JS V	ersi	ion
		- /	- , -			- 1		1.0		-
Cou	rse Objective	es								
1. De	evelop transfe	er function and state s	pace models o	f physical	systems.					
2. D	esign and imp	plement a PID controll	er/State feedba	ack contro	oller/ Lag/L	_ead/l	_ag-	lead	b	
com	pensators.									
-										
	rse Outcome									
		n of this course, the st								
		ck control for meeting								
		bility and response of and frequency dom				doro	voto	m 0		
J. F		le and frequency dom	all analyses of	IIISI anu	Second of	uers	ysie	1115.		
India	cative Experi	iments								
1.		tudy of block diagram	reduction tech	nique						
2.		on of time domain spe								
3.		t and second order ele		S						
4.		lysis of linear systems		-						
5.		er design using Bode								
6.		er design using root lo								
7.		or design in frequency								
8.	Analysis of c	controllability and obse	ervability prope	rties of a	system					
9.		sator design for linea			control app	olicati	on			
10.	Pole placem	ent controller design f	for inverted per	ndulum						
11.		r design for position c								
12.		ntrol design for ball ar								
13.		er design for magnetic								
14.		on of transfer function								
15.		of transfer function o					Mote	or		
16.	Controller re	alization from MATLA		U U			201			
Mod	o of accord	ent: Continuous asse		TOTAL LAD	oratory Ho	JUIS	30 I	IUUI	S	
	e of assessm Book	ent. Continuous asse	SSILIELIL, FAI							
		S. Nise, Control Syste	em Engineerin	a 2010	8 th Edition		n V	N/ilo	<u>v 8</u>	
	Sons	· · ·	C	y, 2019,		i, JUI	11 I V	viie	yα	
		y Board of Studies	19-02-2022							
Аррі	roved by Acad	demic Council	No. 65	Date	17-03-20)22				

BEEE304L	Power Systems Engineer	ring		LT	Ρ	С
				3 1	0	4
Pre-requisite	BEEE203L		Syll	abus v	/ersi	on
Course Objective				1.0		
Course Objective	es nd distinguish various power generation,	tronomionic	n and	dictrib	ution	
systems.	nd distinguish various power generation,	1121121112210	n anu	uistribi		1
	alyze the performance of the transmission	and distribut	ion svst	ems.		
	rious electricity tariffs and power factor co				ises.	
Course Outcome						
On completion of	the course, the students will be able to:					
1. Understand and	d comprehend the concept of various conv	entional pov	ver gen	eration		
systems						
	nalyze the transmission line parameters.					
distribution syster	al equivalent models and analyze the perfo	ormance of t	ransmis	sion &		
	alyze the number of string insulators and li	ne sag for ov	verhead	l lines.		
	us electricity tariff schemes and analyze po					
methods.	· · · · ·					
Madulad David	• Oceanotics				<u> </u>	
	er Generation ructure; Comparison between AC and DO				b ho	
	systems; Conventional power generation					
pumped storage s			i, nyaci	, muoic		
	smission Line Parameters			1() ho	urs
	parameters: Resistance, inductance and					
	e and double circuits, symmetrical and u					
	conductors; Method of GMD; Bundled capacitance; Skin and proximity effect					
circuits.	capacitance, Skin and proximity enect	s, interferer		i neigi	1001	ing
Module:3 Repr	esentation of Power System ponents			7	7 ho	urs
	esentation of balanced three-phase netwo	orks: One-lin	e diagr	am· Mr	ndeli	na
	components; Impedance and reactance					
Complex power.	····· ································			(,	,	,
	ormance of Transmission Line) ho	
	n, Transmission efficiency; Representatio					
0	lines; ABCD constants; Ferranti effect; Conportance; Surge impedance and surge in			•		0
· · · ·	through a transmission line.	inpedance io	aung,	runeu	pow	ei
	nanical Design of Overhead			10) ho	urs
	smission Lines					
	d conductors; Insulators: types of insula					0
	ial distribution over a string insulator,		•	•		•
	ig and tension: wind and ice loading eff					
	s; Comparison between overhead line an es and its construction.	na undergro	unu ca	Dies, t	ypes	
	ibution Systems & Substations			8	3 ho	urs
	em: Classification, section and size of	feeders, sc	hemes			
connections AC c	listributors; Substation design: Classificati	ion based or	n servic	e and	desi	gn,
	of bus bar arrangements, Key diagram					
substation, optima	al Substation location, earthing of substation	on, methods	or neuti	ai grou	indir	ıg.

Мо	dule:7	Tariff and Power Factor	Correction	1	7 hours			
Loa	ad curve	e; Tariff: Characteristics and	types; Powe	er facto	or: Causes of low power factor,			
pov	wer facto	or improvement and equipmer	nt, calculatior	n of por	wer factor capacitance rating.			
Мо	odule:8	Contemporary Issues			2 hours			
		Tota	al Lecture ho	ours:	60 hours			
Text Books								
1 D. P. Kothari, I. J. Nagrath, Power System Engineering, 2019, 3 rd edition, McGraw-								
	Hill Ed	ucation			-			
Re	ference	Books						
1	John J	. Grainger, William D. Stevens	son, Gary W.	Chang	g, Power System Analysis, 2016,			
		w-Hill Education						
2	CL Wa	dhwa, Electrical Power Syste	ms, 2017,7 th	Editior	n, New Age publication			
3			Electrical ins	tallatio	n Practice", 2014, 4 th Edition,			
	Blackw	ell Publishing Company						
Мо	de of Ev	aluation: CAT, Assignment, C	≀uiz, FAT					
D.			40.00.0000					
		ided by Board of Studies	19-02-2022					
Ар	proved b	y Academic Council	No. 65	Date	17-03-2022			

BEEE305L	Measurements and Instrumer	ntation	L	Τ	Ρ	С
			2	0	0	2
Pre-requisite	BEEE203L	Sy	/llab	us v	ersi	on
				1.0		
Course Objective	es					
	e operating principle of electrical and electi		nt sy	stem	IS.	
	measuring instruments for specific applica					
	acquisition systems for various engineerin	g applications wit	h vir	tual		
Instrumentation.						
0						
Course Outcome						
-	this course, the students will be able to		- (-)			_
	e constructional features of measurement	system and evalu	ate	ine e	errors	3
in the process.	for measurement of various electrical varia	ablac				
	s for measurement of various electric a variation of various electric circuit					
	pply various transducers for measurement					
	orking of digital instruments and develop a		tatio	n sv	sten	n
through LabVI					0.011	•
Module:1 Chara	acteristics of Measurements			4	hou	Jrs
Functional eleme	nts of an instrument; Static and dynamic	characteristics c	of ze	ro a	nd f	irst
	; Sources of error in measurement; Techr					
effect of instrume	nts; Statistical evaluation of measurement	data; Calibration	and	stan	dard	s.
	rical and Electronic Instruments				hοι	
	instruments; Working principle of po					
	er using PMMC and MI; Ohm meter; Pov		Qm	eter;	Sing	gle
	analog energy meter; Instrument transform	ners.				
Module:3 D.C b				-	hou	Jrs
	on bridges: Wheatstone bridge, Kelvin brid	ge, Kelvin double	brid	ge a	nd	
their merits and de Module:4 A.C I				2	hou	Iro
		. Duiders and th	-: N	-		
Demerits.	Anderson bridge, Schering Bridge, Wie	n Bridge and the	eir i	lerit	s ar	ıa
	sducers and Display devices			5	i hou	ire
	transducers; Selection of transducers; Re		0 00			
	oelectric and digital displacement transducers					
	nciple and specifications of Analog CRO, L		1 110		unp	
	al Instruments			5	i hou	ırs
•	nalog and digital techniques; Digital voltm	eter: Multimeters	: En			
	juency counters; Measurement of frequen			•••		
frequency range.	Automation in digital instruments. Automat	no polarity malout	011, 0	auto		
	Automation in digital instruments: Automatic zeroing, fully automatic digital instrur					

		Data acquisition			4 hours
inetr					oggers; Computer controlled
				ories: NI E	ELVIS; Interfacing sensors and
		LabVIEW; Applications of I	LabVIEW		
Mod	dule:8	Contemporary Topics			2 hours
			Total Lecture ho	ours:	30 hours
Text	t Books				
1.	Sawhne	ey, A. K., and Puneet	Sawhney. A co	ourse in	Electrical and Electronic
	Measur	ements and Instrumentatio	n, 19 th Edition, 201	6, Dhanp	at Rai & Company
			De La Cueva. Lab	VIEW gra	aphical programming, 2020,
		v-Hill Education			
	erence l				
					2013, Oxford University Press
			•		ectronic instrumentation and
		ement techniques, 2016, P			
		Doebelin, Dhanesh Manik,	•		
4.	E. W. G	Golding, F. C. Widdis, Elect	rical Measuremen	ts and Me	easuring Instruments, 2019, 6 th
	Edition,	Medtech			
5.	Kalsi, H	I. S. Electronic Instrumenta	tion, 3 rd edition, 20	18, Tata I	McGraw-Hill Education
Mod	le of Eva	aluation: CAT, Assignment,	Quiz, FAT		
Rec	ommen	ded by Board of Studies	19-02-2022		
		/ Academic Council	No. 65	Date	17-03-2022

BEE	E305P	Measurem	ents and Instru	mentatior	1 Lab		L	Ρ	С
						() 0	2	1
Pre-	requisite	BEEE203L				Sy	llabu	s ver	sion
							1.)	
	rse Objective								
		elopment of measu							
	rse Outcome	knowledge on han	aling instruments	s and mod	ern toois.				
		this course, the stu	dant will able to:						
		tion of electrical me		me					
		is electrical and phy							
		nt measurement sys							
	cative Experi	-							
1.		of single-phase Wat	tmeter and Energ	gy meter					
2.	Torque mea	surement using Stra	ain gauge						
3.	Design of inc	ductance measuren	nent bridge circu	it					
4.		pacitance measure							
5.		nt of resistance usir				ge			
6.		nt of temperature us							
7.		perations For loop a			V				
8.		g using Case struct	ures, Arrays and	I Clusters					
9.		g using Sub VI							
10.		I to read LVDT outp							
11.		t of virtual meter th			ig LabVIE	W			
12.	Develop a V	I to activate an alar	m for a pre-set v	alue					
				Totallah	orotoni		20		
Mad	o of accord	ent: Continuous as	Cocomont EAT	Total Lab	oratory F	iours	30	nours	5
	e of assessme t Book	ent. Continuous as	Sessment, FAT						
		nd Puncot Sowhoo		octrical on	d Electro	nio M	20011	omor	to
and	Instrumentatio	nd Puneet Sawhne on, 19 th Edition, 201	6, Dhanpat Rai	& Compan	iu Electro Iy		easur	emer	115
		/ Board of Studies	19-02-2022						
Арр	roved by Acad	demic Council	No. 65	Date	17-03-2	2022			

BEEE306L		Power Systems Analysis			T	Р	<u> </u>
DEEE300L	•	Power Systems Analysis		L 3	Т 0	<u>Р</u> 0	C 3
Pre-requis	ite	BEEE304L	S	yllab	-	-	-
I				<u> </u>	1.0		
Course Ob	-						
		the modelling of components for power system studie	s.				
		epts to design and construct the power system. elop protection schemes for the secured and reliable p		aria		orot	ion
J. Design a		elop protection schemes for the secured and reliable p	JOwei	gric		erai	UII.
Course Ou	utcome	95					
On comple	tion of	this course, the students will be able to:					
		network matrices and compute load flow solutions for p					
•	and an	alyze different types of faults to calculate the transient	rating	g of I	orot	ecti	วท
devices.	diffor	ent power system stability issues and apply appropriate		tion	mot	hod	^
		plement protection schemes for power system.	50iu	lion	net	nou	5.
		e working of a conventional SCADA and wide area mo	nitorir	na sv	/ste	m ir	na
power grid.							
						<u> </u>	
		er System Network Modelling		in ati		-	ours
		analysis in planning and operation of power system transient state; general aspects of power flow, sho					
		ance (Y_{BUS}) , sparse matrix and impedance (Z_{BUS}) mat					
		th off-nominal tap ratio; Phase shifting transformers.		•			
Module:2	Load	Flow Analysis				7 ho	ours
Problem c	definitio	n; Derivation of power flow equation; Bus classificati					
		n and fast decoupled methods; DC load flow; P lack bus power; transmission loss and line flows.	-V b	us a	adju	stm	ent;
Module:3	Symr	netrical Short Circuit Analysis				7 ho	ours
		circuit study; Approximations in modeling; St					
		t circuit analysis; Algorithm for short circuit studie	s; Fa	ault	calc	ulat	ions
using Z _{BUS.}							
Module:4	Unsy	mmetrical Short Circuit Analysis				6 ho	ours
Symmetrica	al com	ponent transformation; Positive, negative and zero sec	luenc	e im	ped	anc	es;
Unsymmet	rical Fa	aults; L-G, L-L and L-L-G fault analysis using sequence	e netv	vork	s.		
Module:5	Stabi	lity Analysis				6 ho	ours
Swing equ	ation ir	n state space form; Equal area criterion; Critical clea	ring a	angle	e ar	nd ti	me;
Voltage sta	ability a	nalysis.					
Module:6	Real-	time Monitoring and Control of Power Systems				6 ho	ours
Requireme	nts for	monitoring control and operation; Dynamics and	cont	rol t	ime	SC	ales:
Supervisor	y Cont	rol and Data Acquisition (SCADA) system; Concepts	s of s	sync	hrop	bhas	sors;
		pring Systems (WAMS); Phasor Measurement Units (F					ation
		hitoring Systems (WAMS) for real time control with SC		syste			
		er System Protection	Ļ				ours
		rotection concepts and relaying; Electromagnetic a differential protection; Distance protection; Relay coord			c re	lays	3;
Module:8		emporary Topics		л.		2 ha	ours
		Total Lecture hours:			4	5 ho	ours
	1						

Tex	kt Books							
1.	John J. Grainger, William D. Stevens	son, Jr, Gary	W Chang	g, Power System Analysis,				
	2016, Tata McGraw Hill Education	-						
2.	Hadi Saadat, Power System Analysi	s, 2015, Tata	a McGraw	Hill Education				
Reference Books								
1.	Ulf Hager, Christian Rehtanz, Nikolai Voropai, Monitoring Control and Protection of							
	Interconnected Power Systems, 2014, Springer							
2.	D. P. Kothari and I. J. Nagrath, Mod	ern Power Sy	ystem An	alysis, 4 th Edition, 2011, Tata				
	McGraw Hill Education							
Мо	de of Evaluation: CAT, Quiz, Assignm	ents, FAT						
Re	commended by Board of Studies	19-02-2022						
Ap	Approved by Academic Council No. 65 Date 17-03-2022							

BEE	E306P	P	ower Systems A	nalysis La	b		L	TF	o C
				-			0	0 2	2 1
Pre-	requisite	BEEE304L				Syl	labu	s ver	sion
							1	.0	
Cou	rse Objective)S							
		d apply the netw		lifferent po	wer systen	n con	npon	ents	for
		dynamic simulatio							
		ction scheme for							
		ent studies to ass	ess the stability of	of power sy	stem follow	/ing d	isturk	bance	es
from	the power gr	id.							
Cou	rse Outcome								
		this course, the s	tudents will be at	ole to					
	•	active power req			tem to one	rate v	vithin	nor	ninal
	age and powe						VICIIIII	non	mai
		ply load flow ana	lvsis to an electr	ical power	arid and int	erpret	t the	resul	ts.
3. C	alculate the ci	rcuit breaker ratir	ngs from the resu	ilts of short	circuit anal	lysis.			
			~			•			
Indi	cative Experi	ments							
1.		of transmission lir		r short, me	dium and lo	ng lin	es		
2.		ct on long transm							
3.		npensation requi		systems					
4.		on of Y_{BUS} and Z_{BUS}							
5.		alysis of power s	•						
6		alysis using DC I	oad flow model a	and calcula	tion of ATC	using	g rep	eated	b
	power flow								
7.	Symmetrical	short circuit anal	ysis						
8.	Unsymmetri	cal short circuit ar	nalysis						
9.		ability analysis of							
10.		cteristics of overc							
11	Differential p	rotection of trans	mission lines						
				Total La	boratory Ho	ours	30 h	ours	
		ent: Continuous a	assessment, FAT						
	t Book					_			
		ainger, William D. a McGraw Hill Edu		Gary W Ch	ang, Power	Syst	em A	nalys	sis,
Rec	ommended by		19-02-2022						
Stuc									
		demic Council	No. 65	Date	17-03-20	122			

BEEE307L Electric Drives L T P C 3 0	DEI			Electric Drives			T		<u> </u>
Pre-requisite BEEE207L, BEEE207P, BEEE301L Syllabus version Course Objectives 1.0 1. Understand the concepts and basic operation of electric drive system. 2. 2. Comprehend open loop and closed loop control operation of electric motor drives. 3. 3. Learn the concepts of vector control and sensor less control of AC motors. Course Outcomes On completion of this course, the student will be able to 1. 1. Comprehend the characteristics with control techniques. 3. 2. Analyze AC motors characteristics with control lechniques. 3. 3. Analyze AC motors with soft starting methods and braking methods. 4. 4. Understand the vector control and sensor less control concepts of AC Motors. 5. 5. Select the appropriate motor drive system for the required load dynamics. Module:1 Dynamics of Electric Drives 9 hours Phours Dynamics of Electric Drives 9 hours Factors governing speed and torque of DC motors, Controlled rectifiers-based speed control: single quadrant, two quadrant operation; Open loop and Closed loop Control. Module:3 Scalar Control of Induction Motor Drives <t< th=""><th>BEI</th><th>EE307L</th><th></th><th>Electric Drives</th><th></th><th>L 3</th><th>0</th><th>P 0</th><th>C 3</th></t<>	BEI	EE307L		Electric Drives		L 3	0	P 0	C 3
1. Understand the concepts and basic operation of electric drive system. 2. Comprehend open loop and closed loop control operation of electric motor drives. 3. Learn the concepts of vector control and sensor less control of AC motors. Course Outcomes On completion of this course, the student will be able to 1. Comprehend the characteristics of electric motor drives. 2. Analyze AC motors with soft starting methods and braking methods. 4. Understand the vector control and sensor less control concepts of AC Motors. 5. Select the appropriate motor drive system for the required load dynamics. Module:1 Dynamics of Electric Drives 9 hours Starting and Braking methods; Selection of Motor Power rating: Heating, Classes of Duty, Determination of motor power rating. 9 hours Factors governing speed and torque of DC motors, Controlled rectifiers-based speed control: single quadrant, two quadrant and four quadrant-controlled DC motor; Speed control: 9 hours Characteristics and equivalent circuit of poly-phase induction motor; Speed control techniques; Stator voltage control, variable frequency control; Soft starting methods, braking methods, oravine down, oravine, Stator Phasor Diagram, drg Modelling, decoupling of torque and flux; Field Oriented control; Direct Torque control; Sensorless control, estimation etchniques. Module:3 Scalar Control of Induction Motor Drives 9 hours Phasor Diagram, drg Modelling, decoupling of torque	Pre	-reauisit	e	BEEE207L. BEEE207P. BEEE301L	Svl	-	-	•	-
1. Understand the concepts and basic operation of electric drive system. 2. Comprehend open loop and closed loop control operation of electric motor drives. 3. Learn the concepts of vector control and sensor less control of AC motors. Course Outcomes On completion of this course, the student will be able to 1. Comprehend the characteristics of lectric motor drives. 2. Analyze DC motors characteristics with control techniques. 3. Analyze AC motors with soft starting methods and braking methods. 4. Understand the vector control and sensor less control concepts of AC Motors. 5. Select the appropriate motor drive system for the required load dynamics. Module:1 Dynamics of Electric Drives 9 hours Dynamics of Electric Drives: Types of loads, Multi quadrant operation, Moment of Inertia; Starting and Braking methods; Selection of Motor Power rating: Heating, Classes of Duty, Determination of motor power rating. Module:2 DC Motor Drives 9 hours Factors governing speed and torque of DC motors, Controlled rectifiers-based speed control: single quadrant, two quadrant operation; Open loop and Closed loop Control. Module:3 Scalar Control of Induction Motor Drives 10 hours Characteristics and equivalent circuit of poly-phase induction motor; Speed control techniques: Stator voltage control, variable frequency control; Soft starting methods, braking methods, overview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induct				,,	• • • •				•
Comprehend open loop and closed loop control operation of electric motor drives. Learn the concepts of vector control and sensor less control of AC motors. Course Outcomes On completion of this course, the student will be able to Comprehend the characteristics of electric motor drives. Analyze AC motors with soft starting methods and braking methods. Understand the vector control and sensor less control concepts of AC Motors. Select the appropriate motor drive system for the required load dynamics. Module:1 Dynamics of Electric Drives 9 hours Dynamics of Electric Drives: 7ypes of loads, Multi quadrant operation, Moment of Inertia; Starting and Braking methods; Selection of Motor Power rating: Heating, Classes of Duty, Determination of motor power rating. Module:2 DC Motor Drives 9 hours Factors governing speed and torque of DC motors, Controlled rectifiers-based speed control: single quadrant, two quadrant and four quadrant-controlled DC motor drive; Chopper fed speed control: four quadrant operation; Open loop and Closed loop Control. Module:3 Scalar Control of Induction Motor Drives 10 hours Characteristics and equivalent circuit of poly-phase induction motor; Speed control techniques: Stator voltage control, variable frequency control; Soft starting methods, braking methods; overview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induction motor drive. Module:3 Synchronous Motor Drives factor Control of Induction Motor Drives fux-oriented control; Burder Drives for Active; Control; Direct Torque control; Sensorless control; magnetizing-flux-oriented control; Direct Torque control; Sensorless control; switch reluctance motor control; Marginal angle control; Switch reluctance motor control; Marginal angle control; BLDC motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. Total Lecture hours: 45 hours Total K. Bose, Modern Pow	Со	urse Obj	ective	S					
3. Learn the concepts of vector control and sensor less control of AC motors. Course Outcomes On completion of this course, the student will be able to 1. Comprehend the characteristics of electric motor drives. 2. Analyze DC motors characteristics with control techniques. 3. Analyze AC motors with soft starting methods and braking methods. 4. Understand the vector control and sensor less control concepts of AC Motors. 5. Select the appropriate motor drive system for the required load dynamics. Module:1 Dynamics of Electric Drives 9 hours Dynamics of Electric Drives: Types of loads, Multi quadrant operation, Moment of Inertia; Stating and Braking methods; Selection of Motor Power rating: Heating, Classes of Duty, Determination of motor power rating. Petermination of motor power rating. 9 hours Factors governing speed and torque of DC motors, Controlled rectifiers-based speed control: single quadrant, two quadrant and four quadrant-controlled DC motor drive; Chopper fed speed control: four quadrant operation; Open loop and Closed loop Control. Module:3 Scalar Control of Induction Motor Drives 10 hours Characteristics and equivalent circuit of poly-phase induction motor; Speed control techniques: Stator voltage control, variable frequency control; Soft starting methods, braking methods, verview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induction motor drive. Module:4 Vector Control of In		1. Unde	erstan	d the concepts and basic operation of electric drive sys	stem.				
Course Outcomes On completion of this course, the student will be able to 1. Comprehend the characteristics of electric motor drives. 2. Analyze AC motors with soft starting methods and braking methods. 4. Understand the vector control and sensor less control concepts of AC Motors. 5. Select the appropriate motor drive system for the required load dynamics. Module:1 Dynamics of Electric Drives 9 hours Dynamics of Electric Drives: Types of loads, Multi quadrant operation, Moment of Inertia; Starting and Braking methods; Selection of Motor Power rating: Heating, Classes of Duty, Determination of motor power rating. Module:2 DC Motor Drives 9 hours Factors governing speed and torque of DC motors, Controlled rectifiers-based speed control: single quadrant, two quadrant and four quadrant-controlled DC motor drive; Chopper fed speed control: four quadrant operation; Open loop and Closed loop Control. Module:3 Scalar Control of Induction Motor Drives 10 hours Characteristics and equivalent circuit of poly-phase induction motor; Speed control: soft starting methods; braking methods; overview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induction motor drive. 9 hours Module:4 Vector Control of Induction Motor Drives 9 hours Phasor Diagram, dq Modelling, decoupling of torque and flux; Field Oriented control: stator flux-oriented control; Switch reluc							drive	es.	
On completion of this course, the student will be able to 1. Comprehend the characteristics of electric motor drives. 2. Analyze AC motors with soft starting methods and braking methods. 4. Understand the vector control and sensor less control concepts of AC Motors. 5. Select the appropriate motor drive system for the required load dynamics. Module:1 Dynamics of Electric Drives 9 hours Dynamics of Electric Drives: Types of loads, Multi quadrant operation, Moment of Inertia; Starting and Braking methods; Selection of Motor Power rating: Heating, Classes of Duty, Determination of motor power rating. Module:2 DC Motor Drives 9 hours Factors governing speed and torque of DC motors, Controlled rectifiers-based speed control: single quadrant, two quadrant and four quadrant-controlled DC motor drive; Chopper fed speed control: four quadrant operation; Open loop and Closed loop Control. Module:3 Scalar Control of Induction Motor Drives 10 hours Characteristics and equivalent circuit of poly-phase induction motor; Speed control techniques. 9 hours Phasor Diagram, dq Modelling, decoupling of torque and flux; Field Oriented control; stator flux-oriented control, rotor-flux-oriented control, magnetizing-flux-oriented control; Sensorless control; Self-Control Mode; Power factor control; Marginal angle control; Super control, Switch reluctance motor control. 9 hours Module:5 Synchronous M		3. Learr	n the c	concepts of vector control and sensor less control of A	C moto	ors.			
On completion of this course, the student will be able to 1. Comprehend the characteristics of electric motor drives. 2. Analyze AC motors with soft starting methods and braking methods. 4. Understand the vector control and sensor less control concepts of AC Motors. 5. Select the appropriate motor drive system for the required load dynamics. Module:1 Dynamics of Electric Drives 9 hours Dynamics of Electric Drives: Types of loads, Multi quadrant operation, Moment of Inertia; Starting and Braking methods; Selection of Motor Power rating: Heating, Classes of Duty, Determination of motor power rating. Module:2 DC Motor Drives 9 hours Factors governing speed and torque of DC motors, Controlled rectifiers-based speed control: single quadrant, two quadrant and four quadrant-controlled DC motor drive; Chopper fed speed control: four quadrant operation; Open loop and Closed loop Control. Module:3 Scalar Control of Induction Motor Drives 10 hours Characteristics and equivalent circuit of poly-phase induction motor; Speed control techniques. 9 hours Phasor Diagram, dq Modelling, decoupling of torque and flux; Field Oriented control; stator flux-oriented control, rotor-flux-oriented control, magnetizing-flux-oriented control; Sensorless control; Self-Control Mode; Power factor control; Marginal angle control; Super control, Switch reluctance motor control. 9 hours Module:5 Synchronous M	Cal			•					
1. Comprehend the characteristics of electric motor drives. 2. Analyze AC motors with soft starting methods and braking methods. 4. Understand the vector control and sensor less control concepts of AC Motors. 5. Select the appropriate motor drive system for the required load dynamics. Module:1 Dynamics of Electric Drives 9 hours Dynamics of Electric Drives: Types of loads, Multi quadrant operation, Moment of Inertia; Starting and Braking methods, selection of Motor Power rating: Heating, Classes of Duty, Determination of motor power rating. Module:2 DC Motor Drives 9 hours Factors governing speed and torque of DC motors, Controlled rectifiers-based speed control: single quadrant, two quadrant and four quadrant-controlled DC motor drive; Chopper fed speed control: four quadrant operation; Open loop and Closed loop Control. Module:3 Scalar Control of Induction Motor Drives 10 hours Characteristics and equivalent circuit of poly-phase induction motor; Speed control techniques: Stator voltage control, variable frequency control; Soft starting methods, braking methods; overview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induction motor drive. Module:4 Vector Control of Induction Motor Drives 9 hours Phasor Diagram, dg Modelling, decoupling of torque and flux; Field Oriented control; Direct Torque control; Sensorless control; Estimation techniques. 9 hours Module:5 Synchronous Motor Drives 6 hours <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
 Analyze DC motors characteristics with control techniques. Analyze AC motors with soft starting methods and braking methods. Understand the vector control and sensor less control concepts of AC Motors. Select the appropriate motor drive system for the required load dynamics. Module:1 Dynamics of Electric Drives 9 hours Dynamics of Electric Drives: Types of loads, Multi quadrant operation, Moment of Inertia; Starting and Braking methods; Selection of Motor Power rating: Heating, Classes of Duty, Determination of motor power rating. Module:2 DC Motor Drives 9 hours Factors governing speed and torque of DC motors, Controlled rectifiers-based speed control: single quadrant, two quadrant and four quadrant-controlled DC motor drive; Chopper fed speed control. four quadrant operation; Open loop and Closed loop Control. Module:3 Scalar Control of Induction Motor Drives 10 hours Characteristics and equivalent circuit of poly-phase induction motor; Speed control techniques: Stator voltage control, variable frequency control; Soft starting methods, braking methods, overview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induction motor drive. Module:4 Vector Control of Induction Motor Drives 9 hours Phasor Diagram, <i>dq</i> Modelling, decoupling of torque and flux; Field Oriented control; Direct Torque control; Sensorless control; Switch reluctance motor control. Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. Module:6 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Books 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2. Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice H	On	•							
 Analyze AC motors with soft starting methods and braking methods. Understand the vector control and sensor less control concepts of AC Motors. Select the appropriate motor drive system for the required load dynamics. Module:1 Dynamics of Electric Drives 9 hours Dynamics of Electric Drives: Types of loads, Multi quadrant operation, Moment of Inertia; Starting and Braking methods; Selection of Motor Power rating: Heating, Classes of Duty, Determination of motor power rating. Module:2 DC Motor Drives 9 hours Factors governing speed and torque of DC motors, Controlled rectifiers-based speed control: single quadrant, two quadrant and four quadrant-controlled DC motor drive; Chopper fed speed control: four quadrant operation; Open loop and Closed loop Control. Module:3 Scalar Control of Induction Motor Drives 10 hours Characteristics and equivalent circuit of poly-phase induction motor; Speed control techniques: Stator voltage control, variable frequency control; Soft starting methods, braking methods; overview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induction motor drive. Module:4 Vector Control of Induction Motor Drives 9 hours Phasor Diagram, <i>dq</i> Modelling, decoupling of torque and flux; Field Oriented control; Direct Torque control; Sensorless control; Estimation techniques. Module:5 Synchronous Motor Drives 6 hours Characteristics: Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. Module:6 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Books 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2. Binal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New	1		•						
 Understand the vector control and sensor less control concepts of AC Motors. Select the appropriate motor drive system for the required load dynamics. Module:1 Dynamics of Electric Drives 9 hours Dynamics of Electric Drives: Types of loads, Multi quadrant operation, Moment of Inertia; Starting and Braking methods; Selection of Motor Power rating: Heating, Classes of Duty, Determination of motor power rating. Module:2 DC Motor Drives 9 hours Factors governing speed and torque of DC motors, Controlled rectifiers-based speed control: four quadrant operation; Open loop and Closed loop Control. Module:3 Scalar Control of Induction Motor Drives 10 hours Characteristics and equivalent circuit of poly-phase induction motor; Speed control: techniques: Stator voltage control, variable frequency control; Soft starting methods, braking methods; overview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induction motor drive. Module:4 Vector Control of Induction Motor Drives 9 hours Phasor Diagram, dg Modelling, decoupling of torque and flux; Field Oriented control; Direct Torque control; Sensorless control; Estimation techniques. Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. Module:6 Contemporary Issues 2 hours Total Lecture hours: 45 hours Panurs Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New 					ods.				
Module:1 Dynamics of Electric Drives 9 hours Dynamics of Electric Drives: Types of loads, Multi quadrant operation, Moment of Inertia; Starting and Braking methods; Selection of Motor Power rating: Heating, Classes of Duty, Determination of motor power rating. Module:2 DC Motor Drives 9 hours Factors governing speed and torque of DC motors, Controlled rectifiers-based speed control: single quadrant, two quadrant and four quadrant-controlled DC motor drive; Chopper fed speed control: four quadrant operation; Open loop and Closed loop Control. Module:3 Scalar Control of Induction Motor Drives 10 hours Characteristics and equivalent circuit of poly-phase induction motor; Speed control techniques: Stator voltage control, variable frequency control; Soft starting methods, braking methods; overview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induction motor drive. Module:4 Vector Control of Induction Motor Drives 9 hours Phasor Diagram, dq Modelling, decoupling of torque and flux; Field Oriented control: stator flux-oriented control; rotor-flux-oriented control; magnetizing-flux-oriented control; Direct Torque control; Benzorless control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. 6 hours Module:6 Contemporary Issues 2 hours Total Lecture hours: 45 hours Nodule:6 Conterno Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Educ						/loto	rs.		
Dynamics of Electric Drives: Types of loads, Multi quadrant operation, Moment of Inertia; Starting and Braking methods; Selection of Motor Power rating: Heating, Classes of Duty, Determination of motor power rating. Module:2 DC Motor Drives 9 hours Factors governing speed and torque of DC motors, Controlled rectifiers-based speed control: single quadrant, two quadrant and four quadrant-controlled DC motor drive; Chopper fed speed control: four quadrant operation; Open loop and Closed loop Control. Module:3 Scalar Control of Induction Motor Drives 10 hours Characteristics and equivalent circuit of poly-phase induction motor; Speed control techniques: Stator voltage control, variable frequency control; Soft starting methods, braking methods; overview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induction motor drive. Module:4 Vector Control of Induction Motor Drives 9 hours Phasor Diagram, dq Modelling, decoupling of torque and flux; Field Oriented control; Direct Torque control; Sensorless control; Estimation techniques. 6 hours Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. 45 hours Module:6 Contemporary Issues 2 hours Total Lecture hours: 45 hours 1 R. Krishnan, Elect		5. Selec	ct the	appropriate motor drive system for the required load d	ynamio	S.			
Dynamics of Electric Drives: Types of loads, Multi quadrant operation, Moment of Inertia; Starting and Braking methods; Selection of Motor Power rating: Heating, Classes of Duty, Determination of motor power rating. Module:2 DC Motor Drives 9 hours Factors governing speed and torque of DC motors, Controlled rectifiers-based speed control: single quadrant, two quadrant and four quadrant-controlled DC motor drive; Chopper fed speed control: four quadrant operation; Open loop and Closed loop Control. Module:3 Scalar Control of Induction Motor Drives 10 hours Characteristics and equivalent circuit of poly-phase induction motor; Speed control techniques: Stator voltage control, variable frequency control; Soft starting methods, braking methods; overview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induction motor drive. Module:4 Vector Control of Induction Motor Drives 9 hours Phasor Diagram, dq Modelling, decoupling of torque and flux; Field Oriented control; Direct Torque control; Sensorless control; Estimation techniques. 6 hours Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. 45 hours Module:6 Contemporary Issues 2 hours Total Lecture hours: 45 hours 1 R. Krishnan, Elect	N/ -	dula 4	D \	mine of Electric Drives				k - 1	
Starting and Braking methods; Selection of Motor Power rating: Heating, Classes of Duty, Determination of motor power rating. Module:2 DC Motor Drives 9 hours Factors governing speed and torque of DC motors, Controlled rectifiers-based speed control: single quadrant, two quadrant and four quadrant-controlled DC motor drive; Chopper fed speed control: four quadrant operation; Open loop and Closed loop Control. Module:3 Scalar Control of Induction Motor Drives 10 hours Characteristics and equivalent circuit of poly-phase induction motor; Speed control techniques: Stator voltage control, variable frequency control; Soft starting methods, braking methods; overview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induction motor drive. Module:4 Vector Control of Induction Motor Drives 9 hours Phasor Diagram, dq Modelling, decoupling of torque and flux; Field Oriented control; Direct Torque control; Sensorless control; Estimation techniques. 9 hours Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. 45 hours Module:6 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Books 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education.						ont	-	-	
Determination of motor power rating. 9 hours Module:2 DC Motor Drives 9 hours Factors governing speed and torque of DC motors, Controlled rectifiers-based speed control: single quadrant, two quadrant and four quadrant-controlled DC motor drive; Chopper fed speed control: four quadrant operation; Open loop and Closed loop Control. Module:3 Scalar Control of Induction Motor Drives 10 hours Characteristics and equivalent circuit of poly-phase induction motor; Speed control techniques: Stator voltage control, variable frequency control; Soft starting methods, braking methods; overview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induction motor drive. Module:4 Vector Control of Induction Motor Drives 9 hours Phasor Diagram, dq Modelling, decoupling of torque and flux; Field Oriented control; Direct Torque control; Sensorless control; Estimation techniques. 6 hours Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. 2 hours Module:6 Contemporary Issues 2 hours Text Books 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2 Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Module:2 DC Motor Drives 9 hours Factors governing speed and torque of DC motors, Controlled rectifiers-based speed control: single quadrant, two quadrant and four quadrant-controlled DC motor drive; Chopper fed speed control: four quadrant operation; Open loop and Closed loop Control. Module:3 Scalar Control of Induction Motor Drives 10 hours Characteristics and equivalent circuit of poly-phase induction motor; Speed control techniques: Stator voltage control, variable frequency control; Soft starting methods, braking methods; overview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induction motor drive. Module:4 Vector Control of Induction Motor Drives 9 hours Phasor Diagram, dq Modelling, decoupling of torque and flux; Field Oriented control; Direct Torque control; Sensorless control; Estimation techniques. 6 hours Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. 45 hours Module:6 Contemporary Issues 2 hours Text Books 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2 Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New 1					<i>y</i> , 0185	503		uty,	
Factors governing speed and torque of DC motors, Controlled rectifiers-based speed control: single quadrant, two quadrant and four quadrant-controlled DC motor drive; Chopper fed speed control: four quadrant operation; Open loop and Closed loop Control. Module:3 Scalar Control of Induction Motor Drives 10 hours Characteristics and equivalent circuit of poly-phase induction motor; Speed control techniques: Stator voltage control, variable frequency control; Soft starting methods, braking methods; overview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induction motor drive. Module:4 Vector Control of Induction Motor Drives 9 hours Phasor Diagram, <i>dq</i> Modelling, decoupling of torque and flux; Field Oriented control: stator flux-oriented control; Estimation techniques. 9 hours Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. 2 hours Total Lecture hours: 45 hours Text Books 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2 Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New	200								
single quadrant, two quadrant and four quadrant-controlled DC motor drive; Chopper fed speed control: four quadrant operation; Open loop and Closed loop Control. Module:3 Scalar Control of Induction Motor Drives 10 hours Characteristics and equivalent circuit of poly-phase induction motor; Speed control techniques: Stator voltage control, variable frequency control; Soft starting methods, braking methods; overview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induction motor drive. Module:4 Vector Control of Induction Motor Drives 9 hours Phasor Diagram, dq Modelling, decoupling of torque and flux; Field Oriented control; Direct Torque control; Sensorless control; Estimation techniques. 9 hours Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control, Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. 2 hours Module:6 Contemporary Issues 2 hours Total Lecture hours: 45 hours 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2 2 Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New 3	Mo	dule:2	DC M	otor Drives			9	ho	urs
speed control: four quadrant operation; Open loop and Closed loop Control. Module:3 Scalar Control of Induction Motor Drives 10 hours Characteristics and equivalent circuit of poly-phase induction motor; Speed control techniques: Stator voltage control, variable frequency control; Soft starting methods, braking methods; overview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induction motor drive. Module:4 Vector Control of Induction Motor Drives 9 hours Phasor Diagram, dq Modelling, decoupling of torque and flux; Field Oriented control; Stator flux-oriented control, rotor-flux-oriented control, magnetizing-flux-oriented control; Direct Torque control; Sensorless control; Estimation techniques. Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. 2 hours Module:6 Contemporary Issues 2 hours Text Books 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2 Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New									
Module:3 Scalar Control of Induction Motor Drives 10 hours Characteristics and equivalent circuit of poly-phase induction motor; Speed control techniques: Stator voltage control, variable frequency control; Soft starting methods, braking methods; overview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induction motor drive. Module:4 Vector Control of Induction Motor Drives 9 hours Phasor Diagram, dq Modelling, decoupling of torque and flux; Field Oriented control: stator flux-oriented control, rotor-flux-oriented control, magnetizing-flux-oriented control; Direct Torque control; Sensorless control; Estimation techniques. Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. 2 hours Module:6 Contemporary Issues 2 hours Text Books 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2 Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New						; Cł	nopp	ber	fed
Characteristics and equivalent circuit of poly-phase induction motor; Speed control techniques: Stator voltage control, variable frequency control; Soft starting methods, braking methods; overview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induction motor drive. Module:4 Vector Control of Induction Motor Drives 9 hours Phasor Diagram, dq Modelling, decoupling of torque and flux; Field Oriented control: stator flux-oriented control, rotor-flux-oriented control, magnetizing-flux-oriented control; Direct Torque control; Sensorless control; Estimation techniques. 6 hours Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. 2 hours Module:6 Contemporary Issues 2 hours 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2 2 Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New 2	spe	ed contro	ol: fou	r quadrant operation; Open loop and Closed loop Cor	ntrol.				
Characteristics and equivalent circuit of poly-phase induction motor; Speed control techniques: Stator voltage control, variable frequency control; Soft starting methods, braking methods; overview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induction motor drive. Module:4 Vector Control of Induction Motor Drives 9 hours Phasor Diagram, dq Modelling, decoupling of torque and flux; Field Oriented control: stator flux-oriented control, rotor-flux-oriented control, magnetizing-flux-oriented control; Direct Torque control; Sensorless control; Estimation techniques. 6 hours Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. 2 hours Module:6 Contemporary Issues 2 hours 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2 2 Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New 2									
techniques: Stator voltage control, variable frequency control; Soft starting methods, braking methods; overview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induction motor drive. Module:4 Vector Control of Induction Motor Drives 9 hours Phasor Diagram, dq Modelling, decoupling of torque and flux; Field Oriented control: stator flux-oriented control, rotor-flux-oriented control, magnetizing-flux-oriented control; Direct Torque control; Sensorless control; Estimation techniques. Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. 2 hours Module:6 Contemporary Issues 2 hours Total Lecture hours: 45 hours 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2. 2. Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New	Mo	dule:3	Scala	r Control of Induction Motor Drives			10	ho	urs
methods; overview of single-phase drives; Kramer's drive, Scherbius drive, doubly fed induction motor drive. Module:4 Vector Control of Induction Motor Drives 9 hours Phasor Diagram, dq Modelling, decoupling of torque and flux; Field Oriented control: stator flux-oriented control, rotor-flux-oriented control, magnetizing-flux-oriented control; Direct Torque control; Sensorless control; Estimation techniques. 6 hours Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. 2 hours Module:6 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Books 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2. Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New									
induction motor drive. Module:4 Vector Control of Induction Motor Drives 9 hours Phasor Diagram, dq Modelling, decoupling of torque and flux; Field Oriented control: stator flux-oriented control, rotor-flux-oriented control, magnetizing-flux-oriented control; Direct Torque control; Sensorless control; Estimation techniques. 9 hours Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. 2 hours Module:6 Contemporary Issues 2 hours Total Lecture hours: 45 hours 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2. Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New									
Module:4 Vector Control of Induction Motor Drives 9 hours Phasor Diagram, dq Modelling, decoupling of torque and flux; Field Oriented control: stator flux-oriented control, rotor-flux-oriented control, magnetizing-flux-oriented control; Direct Torque control; Sensorless control; Estimation techniques. 9 hours Module:5 Synchronous Motor Drives 6 hours Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. 2 hours Module:6 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Books 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2. Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New				U	us driv	/e, (doul	oly	fed
Phasor Diagram, dq Modelling, decoupling of torque and flux; Field Oriented control: stator flux-oriented control, rotor-flux-oriented control, magnetizing-flux-oriented control; Direct Torque control; Sensorless control; Estimation techniques. Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. 2 hours Module:6 Contemporary Issues 2 hours Text Books 45 hours 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2 2 Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New	inal	uction mo	otor ar	IVe.					
Phasor Diagram, dq Modelling, decoupling of torque and flux; Field Oriented control: stator flux-oriented control, rotor-flux-oriented control, magnetizing-flux-oriented control; Direct Torque control; Sensorless control; Estimation techniques. Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. 2 hours Module:6 Contemporary Issues 2 hours Text Books 45 hours 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2 2 Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New					1			_	
flux-oriented control, rotor-flux-oriented control, magnetizing-flux-oriented control; Direct Torque control; Sensorless control; Estimation techniques. Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. 6 hours Module:6 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Books 1 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2. Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New									
Torque control; Sensorless control; Estimation techniques. Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. Marginal Module:6 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Books 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2. Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New									
Module:5 Synchronous Motor Drives 6 hours Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. Marginal Module:6 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Books 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2. Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New					ntea c	conti	OI;	Dire	ect
Characteristics; Separate Control Mode; Self-Control Mode; Power factor control; Marginal angle control; BLDC motor control; Switch reluctance motor control. Module:6 Contemporary Issues 2 hours Module:6 Contemporary Issues 45 hours Text Books 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2. Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New	101	que conti							
angle control; BLDC motor control; Switch reluctance motor control. Module:6 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Books 45 hours 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2. 2. Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New	Мо	dule:5	Sync	hronous Motor Drives			6	ho	urs
Module:6 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Books 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2. Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New	Cha	aracteristi	ics; S	eparate Control Mode; Self-Control Mode; Power fac	tor cor	ntrol	; Ma	argir	nal
Total Lecture hours: 45 hours Text Books 1 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2. Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New	ang	le contro	l; BLD	C motor control; Switch reluctance motor control.				•	
Total Lecture hours: 45 hours Text Books 1 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2. Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New									
Text Books 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2. Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New	Mo	dule:6	Conte	emporary Issues			2	ho	urs
Text Books 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2. Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New									
Text Books 1 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2 nd edition, Pearson Education. 2. Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New				Total Lecture hour	e.		45	ho	ire
 R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, 2015, 2nd edition, Pearson Education. Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New 	Τον	t Booke			J.		τJ	10	C 11
Pearson Education. 2. Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New				Electric Motor Drives: Modeling Analysis and Control	2015	2 nd	editi	on	
2. Bimal K. Bose, Modern Power Electronics and AC Drives, 2005, Prentice Hall, New	•				2010,	~	Jun	511,	
	2.				entice	Hall.	Ne	w	
				· · · · · · · · · · · · · · · · · · ·					
		-							

Re	Reference Books					
1	S. K. Pillai, A First Course on Electrical Drives, 2012, New Age International Publisher					
2	G. K. Dubey, Fundamentals of Electrical Drives, 2010, 2 nd edition, Narosa Publications					
3	3 Raja Singh, Energy Conservation Strategies for Asynchronous Machine Drives, 2021, LAP LAMBERT Academic Publishing					
Мо	Mode of Evaluation: CAT, Assignment, Quiz, FAT					
	commended by Board of Studies	19-02-2022				
Ар	proved by Academic Council	No. 65	Date	17-03-2022		

BEE	E307P	Power	Electronics and	d Drives Lab	2		L	Т	Ρ	С
							0	0	2	1
Pre	-requisite	BEEE207L, BEEE2	07P, BEEE301L			Sylla			ersi	on
							1	.0		
	Irse Objective									
		n power electronic c			operatin	g char	act	eris	tics.	
2. Ir	iter the control	I strategies of electr	ic drive systems.							
Col	Irse Outcome									
		the course, the stud	ont will be able t	0						
		able power electron			cations					
		with suitable control			outionio.					
		ontrol techniques for		action motor	drive sy	stem.				
		· ·								
Indi	cative Experi									
1.		Gate drive circuit for								
2.		e pulse logic, modes		rify the input	t and ou	tput w	ave	efori	ns o	of
		nase AC-DC control								
3.		e pulse logic, modes		rify the input	t and ou	tput wa	ave	torr	ns c)t
4.		ase AC-DC controlle se-width modulated		ost de de co	nvortor	oporat	ina	in		
4.		conduction mode (C			inventer	operat	ing	11.1		
5.		simulate/experiment		e PWM inve	rter					
6.		e pulse logic, modes				ent the	Th	ree-		
	phase inverte		·		1					
7.		e pulse logic, modes	s of operation and	d simulate/e	xperime	nt the	AC	-AC		
	voltage conti									
8.		e pulse logic, modes	s of operation and	d simulate/ex	xperime	nt the	AC	-AC		
0	frequency co		in the Speed on	ntrol of DC n	notor dri					
9. 10.		fundamental blocks e determination of D				ve				
11.		C motor drive								
12.	•	e determination of po	olv-phase induct	ion motor dri	ive unde	r dvna	mi		ad	
13.		ol of poly-phase ind								
14.	Speed contro	ol of wound rotor inc	duction motor us	ing static rot	or resist	ance/s	slip	pov	ver	
	recovery sch	neme		-			•	•		
15.	Soft starting	of poly-phase induc	tion motor using	VVFF and \	/VVF me	ethod				
16.	Vector contro	ol of induction moto	r drive							
17.		ntrol of synchronous								
18.	Self-controlle	ed synchronous mot	tor drive	.						
N 4		ante Operatione		Total Labora	atory Ho	urs 3	30 h	nou	rs	
		ent: Continuous ass	essment, FAI							
-	t Book				o diti a : •					
	 G. K. Dube Publication 	ey, Fundamentals of	Electrical Drives	s, 2010, 2 ⁻⁴ 6	eartion, l	varosa	ł			
Rec		Board of Studies	19-02-2022							
	roved by Acac		No. 65	Date 1	7-03-20	22				
<u>, יאה</u>					. 55 20					

	Communication Systems					<u>C</u>
Pre-requisite	BEEE204L, BEEE208L, BEEE208P	Sylla	-) 'sid	3 0n
Tre-requisite		Oyna	1.0		31	511
Course Objective						
	fundamentals of analog and digital communication sys	tems.				
	ne various communication systems and applications. Irce and channel coding theorems.					
5. Analysis of sou	ice and channel coding theorems.					
Course Outcome	28					
On the completio	n of this course, the students will be able to:					
	ne concept of modulation.					
	operties of random processes.					
	alyze transmitters and receivers for analog communicati	ion syst	ems			
	ntrast shift keying and pulse modulation techniques. the concepts of error correcting codes.					
Module:1 Basi	cs of Communication Systems			4 h	οι	irs
	systems: Importance, elements, block diagram and					
•• • •	y ranges; Bandwidth; Need for modulation; Noises	s in co	omm	unic	ati	or
systems.						
Module:2 Rand	dom Process and Spectral			5 h	οι	ırs
analy						
	and system representation; Random process, stationar	ity, pov	ver s	pec	tra	
density, Gaussiar	n process.					
Module:3 Amp	litude Modulation			9 h	οι	irs
	nd generation of analog modulation systems: AM, DSB,					
Frequency spect	nd generation of analog modulation systems: AM, DSB, rum; Power relation; Different types of modulators; A				Lo	w
Frequency spectillevel and	rum; Power relation; Different types of modulators; A	M tran	smitt	er:		
Frequency spectro level and High level modula	rum; Power relation; Different types of modulators; A ation, SSB transmitter; AM demodulators; Characteristic	M tran	smitt eceiv	er: ers;	TF	RF
Frequency spectro level and High level modula	rum; Power relation; Different types of modulators; A	M tran	smitt eceiv	er: ers;	TF	RF
Frequency spectro level and High level modula Receiver; Super I AVC, AFC, AGC.	rum; Power relation; Different types of modulators; A ation, SSB transmitter; AM demodulators; Characteristic neterodyne receiver; SSB receiver; Choice of IF and os	M tran	smitt eceiv	er: ers; uer	Tł ncie	RF es,
Frequency spectro level and High level modula Receiver; Super I AVC, AFC, AGC. Module:4 Angl	rum; Power relation; Different types of modulators; A ation, SSB transmitter; AM demodulators; Characteristic neterodyne receiver; SSB receiver; Choice of IF and os e Modulation	M tran	smitt eceiv r frec	er: ers; juer 8 h	TI ncie	RF es,
Frequency spectr level and High level modula Receiver; Super H AVC, AFC, AGC. Module:4 Angl Representation a	rum; Power relation; Different types of modulators; A ation, SSB transmitter; AM demodulators; Characteristic neterodyne receiver; SSB receiver; Choice of IF and os <u>e Modulation</u> nd generation of frequency (NBFM & WBFM) and pha	M tran	smitt eceiv r frec dulat	er: ers; juer 8 h ion;	TI ncie IOL P	RF es ire
Frequency spectrilevel and High level modula Receiver; Super H AVC, AFC, AGC. Module:4 Angl Representation a emphasis; De-em	rum; Power relation; Different types of modulators; A ation, SSB transmitter; AM demodulators; Characteristic neterodyne receiver; SSB receiver; Choice of IF and os e Modulation	M tran	smitt eceiv r frec dulat	er: ers; luer 8 h ion; an	TI ncie IOL P d F	RF es urs re- PN
Frequency spectrilevel and High level modula Receiver; Super H AVC, AFC, AGC. Module:4 Angl Representation a emphasis; De-em	rum; Power relation; Different types of modulators; A ation, SSB transmitter; AM demodulators; Characteristic neterodyne receiver; SSB receiver; Choice of IF and os e Modulation nd generation of frequency (NBFM & WBFM) and pha aphasis; Comparison of AM, FM and PM; Conversion of	M tran	smitt eceiv r frec dulat	er: ers; luer 8 h ion; an	TI ncie IOL P d F	RF es ire PM
Frequency spectr level and High level modula Receiver; Super H AVC, AFC, AGC. Module:4 Angl Representation a emphasis; De-em to FM; FM transport reception.	rum; Power relation; Different types of modulators; A ation, SSB transmitter; AM demodulators; Characteristic neterodyne receiver; SSB receiver; Choice of IF and os e Modulation nd generation of frequency (NBFM & WBFM) and pha ophasis; Comparison of AM, FM and PM; Conversion of nitters; FM detection techniques; FM super heterodyn	M tran	smitt eceiv r frec dulat	er: luer 8 h ion; an Dive	Ti ncie P d F ers	RF es re∙ ₽N sity
Frequency spectronic level and High level modula Receiver; Super H AVC, AFC, AGC. Module:4 Angl Representation a emphasis; De-emphasis;	rum; Power relation; Different types of modulators; A ation, SSB transmitter; AM demodulators; Characteristic neterodyne receiver; SSB receiver; Choice of IF and os e Modulation nd generation of frequency (NBFM & WBFM) and pha ophasis; Comparison of AM, FM and PM; Conversion o nitters; FM detection techniques; FM super heterodyn e / Digital modulation systems	M tran	smitt eceiv r frec dulat o PM iver;	er: ers; juer 8 h ion; and Dive	TI ncie P d F ers	RF es re- PM sity
Frequency spectron level and High level modula Receiver; Super H AVC, AFC, AGC. Module:4 Angl Representation a emphasis; De-emptor to FM; FM transport reception. Module:5 Puls	rum; Power relation; Different types of modulators; A ation, SSB transmitter; AM demodulators; Characteristic neterodyne receiver; SSB receiver; Choice of IF and os e Modulation nd generation of frequency (NBFM & WBFM) and pha ophasis; Comparison of AM, FM and PM; Conversion of nitters; FM detection techniques; FM super heterodyn e / Digital modulation systems ns: Pulse amplitude modulation, Pulse width modula	M tran	smitt eceiv r frec dulat o PM iver; Pulse	er: ers; juer 8 h ion; and Dive 9 h po	TI ncie P d F ers	RF es re- PM sity
Frequency spectrilevel and High level modula Receiver; Super H AVC, AFC, AGC. Module:4 Angl Representation a emphasis; De-em to FM; FM transmission reception. Module:5 Puls Pulse modulation modulation; Signa	rum; Power relation; Different types of modulators; A ation, SSB transmitter; AM demodulators; Characteristic neterodyne receiver; SSB receiver; Choice of IF and os e Modulation nd generation of frequency (NBFM & WBFM) and pha ophasis; Comparison of AM, FM and PM; Conversion o nitters; FM detection techniques; FM super heterodyn e / Digital modulation systems	M tran	smitt eceiv r frec dulat o PM iver; Pulse ulatic	er: ers; juer 8 h ion; and Dive 9 h po on; [TI ncie P d F ers nou Siti	RF es re PM sity urs or ta
Frequency spectrilevel and High level modula Receiver; Super H AVC, AFC, AGC. Module:4 Angl Representation a emphasis; De-em to FM; FM transmission reception. Module:5 Puls Pulse modulation modulation; Signa	rum; Power relation; Different types of modulators; A ation, SSB transmitter; AM demodulators; Characteristic neterodyne receiver; SSB receiver; Choice of IF and os e Modulation nd generation of frequency (NBFM & WBFM) and pha- phasis; Comparison of AM, FM and PM; Conversion of nitters; FM detection techniques; FM super heterodyn e / Digital modulation systems ns: Pulse amplitude modulation, Pulse width modula al to noise ratio of pulse modulation systems; Pulse cod	M tran	smitt eceiv r frec dulat o PM iver; Pulse ulatic	er: ers; juer 8 h ion; and Dive 9 h po on; [TI ncie P d F ers nou Siti	RF es re- PM sity urs or ta
Frequency spectro level and High level modula Receiver; Super H AVC, AFC, AGC. Module:4 Angl Representation a emphasis; De-em- to FM; FM transmin reception. Module:5 Puls Pulse modulation modulation; Signa Adaptive delta mo- analysis.	rum; Power relation; Different types of modulators; A ation, SSB transmitter; AM demodulators; Characteristic neterodyne receiver; SSB receiver; Choice of IF and os e Modulation nd generation of frequency (NBFM & WBFM) and pha- phasis; Comparison of AM, FM and PM; Conversion of nitters; FM detection techniques; FM super heterodyn e / Digital modulation systems ns: Pulse amplitude modulation, Pulse width modula at to noise ratio of pulse modulation systems; Pulse cod odulation; Shift keying techniques: ASK, FSK, PSK and	M tran	smitt eceiv r frec dulat o PM iver; Pulse ulatic	er: ers; juer 8 h ion; and Dive 9 h po on; [TI ncie P d F ers siti Del err	RF es, irs re- PM sity urs on ta, ror
Frequency spectron level and High level modula Receiver; Super H AVC, AFC, AGC. Module:4 Angl Representation a emphasis; De-em- to FM; FM transm reception. Module:5 Puls Pulse modulation modulation; Signa Adaptive delta mo- analysis. Module:6 Sour	rum; Power relation; Different types of modulators; A ation, SSB transmitter; AM demodulators; Characteristic neterodyne receiver; SSB receiver; Choice of IF and os e Modulation nd generation of frequency (NBFM & WBFM) and pha- phasis; Comparison of AM, FM and PM; Conversion of nitters; FM detection techniques; FM super heterodyn e / Digital modulation systems ns: Pulse amplitude modulation, Pulse width modula al to noise ratio of pulse modulation systems; Pulse cod odulation; Shift keying techniques: ASK, FSK, PSK and rce and Channel Coding	M tran	smitt eceiv r frec dulat o PM iver; Pulse ulatic ability	er: ers; juer 8 h ion; and Dive 9 h po po; (of 8 h	There	RF es, irs re- M sity irs on ta, ror
Frequency spectrlevel andHigh level modulaReceiver; Super HAVC, AFC, AGC.Module:4AnglRepresentation aemphasis; De-emto FM; FM transmreception.Module:5PulsPulse modulation; SignaAdaptive delta modulation; SignaAdaptive delta modulation; SignaModule:6SourConceptsof em	rum; Power relation; Different types of modulators; A ation, SSB transmitter; AM demodulators; Characteristic neterodyne receiver; SSB receiver; Choice of IF and os e Modulation nd generation of frequency (NBFM & WBFM) and pha- phasis; Comparison of AM, FM and PM; Conversion of nitters; FM detection techniques; FM super heterodyn e / Digital modulation systems ns: Pulse amplitude modulation, Pulse width modula at to noise ratio of pulse modulation systems; Pulse cod odulation; Shift keying techniques: ASK, FSK, PSK and	M tran	smitt eceiv r frec dulat o PM iver; Pulse ulatic ability man	er: uers; uer 8 h ion; and Dive 9 h po po pr; [v of 8 h cc	There are a contract of the co	RF es, re- PM sity urs on ta, ror urs
Frequency spectrlevel andHigh level modulaReceiver; Super HAVC, AFC, AGC.Module:4AnglRepresentation aemphasis; De-emto FM; FM transminreception.Module:5PulsPulse modulation; SignaAdaptive delta modulation; SignaAdaptive delta modulation; SignaModule:6SourConcepts of emMemoryless char	rum; Power relation; Different types of modulators; A ation, SSB transmitter; AM demodulators; Characteristic neterodyne receiver; SSB receiver; Choice of IF and os e Modulation nd generation of frequency (NBFM & WBFM) and pha- phasis; Comparison of AM, FM and PM; Conversion of nitters; FM detection techniques; FM super heterodyn e / Digital modulation systems ns: Pulse amplitude modulation, Pulse width modula al to noise ratio of pulse modulation systems; Pulse cod odulation; Shift keying techniques: ASK, FSK, PSK and ce and Channel Coding tropy and source-coding: source coding theorem	M tran	smitt eceiv r frec dulat o PM iver; Pulse ulatic ability man	er: uers; uer 8 h ion; and Dive 9 h po po pr; [v of 8 h cc	There are a contract of the co	RF es, re- PM sity urs on ta, ror urs
Frequency spectrlevel andHigh level modulaReceiver; Super HAVC, AFC, AGC.Module:4AnglRepresentation aemphasis; De-emto FM; FM transmissionmodule:5PulsPulse modulation; SignaAdaptive delta modulation; SignaAdaptive delta modulation; SignaAdaptive delta modulation; SignaModule:6SourConcepts of emMemoryless charcodes; Viterbi ded	rum; Power relation; Different types of modulators; A ation, SSB transmitter; AM demodulators; Characteristic neterodyne receiver; SSB receiver; Choice of IF and os e Modulation nd generation of frequency (NBFM & WBFM) and pha- phasis; Comparison of AM, FM and PM; Conversion of nitters; FM detection techniques; FM super heterodyn e / Digital modulation systems ns: Pulse amplitude modulation, Pulse width modula al to noise ratio of pulse modulation systems; Pulse cod odulation; Shift keying techniques: ASK, FSK, PSK and ree and Channel Coding htropy and source-coding: source coding theorem nnels: types, capacity; Linear block codes; Cyclic ca coding; Reed Solomon codes.	M tran	smitt eceiv r frec dulat o PM iver; Pulse ulatic ability man	er: uers; uer 8 h ion; and Dive 9 h po po pr; [v of 8 h cc	There are a contract of the co	RF es re- PM aity urs na
Frequency spectrlevel andHigh level modulaReceiver; Super HAVC, AFC, AGC.Module:4AnglRepresentation aemphasis; De-emto FM; FM transmissionmodule:5PulsPulse modulation; SignaAdaptive delta modulation; SignaAdaptive delta modulation; SignaAdaptive delta modulation; SignaModule:6SourConcepts of emMemoryless charcodes; Viterbi ded	rum; Power relation; Different types of modulators; A ation, SSB transmitter; AM demodulators; Characteristic neterodyne receiver; SSB receiver; Choice of IF and os e Modulation nd generation of frequency (NBFM & WBFM) and pha- phasis; Comparison of AM, FM and PM; Conversion of nitters; FM detection techniques; FM super heterodyn e / Digital modulation systems ns: Pulse amplitude modulation, Pulse width modula al to noise ratio of pulse modulation systems; Pulse cod odulation; Shift keying techniques: ASK, FSK, PSK and rce and Channel Coding tropy and source-coding: source coding theorem nnels: types, capacity; Linear block codes; Cyclic co	M tran	smitt eceiv r frec dulat o PM iver; Pulse ulatic ability man	er: uers; uer 8 h ion; and Dive 9 h po on; [9 h cc rolut	There are a contract of the co	RF es re- PM aity urs na
Frequency spectrlevel andHigh level modulaReceiver; Super HAVC, AFC, AGC.Module:4AnglRepresentation aemphasis; De-emto FM; FM transminreception.Module:5PulsPulse modulation; SignaAdaptive delta modulation; SignaAdaptive delta modulation; SignaAdaptive delta modulation; SignaModule:6SourConcepts of enMemoryless charcodes; Viterbi ded	rum; Power relation; Different types of modulators; A ation, SSB transmitter; AM demodulators; Characteristic neterodyne receiver; SSB receiver; Choice of IF and os e Modulation nd generation of frequency (NBFM & WBFM) and pha- phasis; Comparison of AM, FM and PM; Conversion of nitters; FM detection techniques; FM super heterodyn e / Digital modulation systems ns: Pulse amplitude modulation, Pulse width modula al to noise ratio of pulse modulation systems; Pulse cod odulation; Shift keying techniques: ASK, FSK, PSK and ree and Channel Coding htropy and source-coding: source coding theorem nnels: types, capacity; Linear block codes; Cyclic ca coding; Reed Solomon codes.	M tran	smitt eceiv r frec dulat o PM iver; Pulse ulatic ability man Conv	er: uers; uer 8 h ion; and Dive 9 h po on; [9 h cc rolut	TI ncie P d F ers siti Del odir tior	RF ire re ire ire ire ire ire ire

Text Books							
1.	1. B.P. Lathi, Zhi Ding, Modern Digital and Analog Communication Systems, 2017, 4 th						
	Edition, Oxford University Press						
2							
	2012, 2 nd Édition, Wiley India Pvi	t Ltd, New Delhi					
Ref	ference Books						
1.	Herbut Taub, Donald L. Schilling	g, Goutam Saha,	Principles	s of communication systems,			
	2017, 4 th Edition, McGraw Hill Ed	ducation, India					
2.	George Kennedy, Bernard Da			Electronic Communication			
	Systems, 2017, 6 th Edition, McG	raw Hill Educatio	n, India				
3.	John G Proakis, Masoud Salehi,	, Digital Commun	ications, 2	2018, 5 th Edition, McGraw Hill			
	Education, India						
Mo	de of Evaluation: CAT, Assignmer	nt, Quiz, FAT					
Bo	commended by Board of	19-02-2022					
	dies	19-02-2022					
	proved by Academic Council	No. 65	Date	17-03-2022			
Ah		110.00	Dale	17-05-2022			

BEEE309L	Microprocessors and Microco	ntrollers		Т	Р	С
DEEEJUJE			3	0	0	3
Pre-requisite	BEEE206L, BEEE206P	Sv	labı	-	ersi	on
•				1.0		
Course Objective	es					
2. Create an esso various types of in	hardware functionality of Intel 8051 and AF ential knowledge of the I/O ports, Timers, nterrupts. ne procedure and methods to interface a m	Counters, control	-			
Course Outcome	es la					
 Comprehend a Design and intervention Interpret the area 	chitecture of 8051 microcontroller and its in nd develop programs for various blocks of erface microcontroller based embedded sys chitecture of ARM Processor. ferent ARM instructions to solve real-time	8051. stems.	face	e var	ious	>
Madula 4 0 bit	Anghitagtung				b a i	
	Architecture				ho	
8051 Architecture function registers	hmetic, Registers, Buses, Microprocesson ; Program Status Register; Structure of Ra ; Pin configuration and ports structure of 80	andom-Access Me	mory			
	uction Set of 8051				ho	
	ructions; Arithmetic and Logical instructior					
HEX file generation	n; Programming 8051 using Assembly and program execution.	Embedded C; De	mon			
Module:3 ARM					ho	
	; Comparison between CISC and RIS I memory organization; Different modes of pipeline.					
	Cortex - M Architecture			6	ho	Jrs
Microcontroller Bu	Organization; Cortex M Registers; Cort us Architecture (AMBA); Nested vectored i				/anc	
	uction Set of ARM Processor		_		ho	
	ructions; Arithmetic and Logical instruction ; Load/Store instructions; Swap instructions; S					
	ral Purpose I/O, and Circuits			4	ho	ırs
	Input/Output (GPIO); Basic Concepts; Por ing; LED & Switch Interface.	t Circuitry; Periphe	eral A	/cce	ess l	n
	herals and Interfacing				ho	
conversion; Digita	Timer module; Pulse-width modulation (I-to-Analog conversion; Programming of p		alog		Ũ	
Module:8 Cont	emporary Issues				ho	
	Total Lecture hours:			45	hou	ırs
Text Books						
crocontrol Pearson E		embly and C, 201	8, 2	2 nd E	Editi	on,
sor, 2016,	rry D, Modern Assembly Language Progra 1 st Edition, Newnes, Elsevier	amming with the A	RM	Pro	ces-	
Reference Books	5					

- 1. Muhammed Ali Mazidi, Sarmad Naimi, Sepehr Naimi, Arm Cortex-M Assembly Programming for Embedded Programmers: Using Keil, 2020, 1st Edition, Pearson
- 2. Hohl, William, ARM assembly language: fundamentals and techniques, 2016, 2nd Edition, CRC Press
- 3. Saurabh Chandrakar, Nilesh Bhaskarrao Bahadure, Microcontrollers and Embedded System Design, 2019, 1st Edition, Dreamtech Press Mode of Evaluation: CAT, Programming Assignment, Quiz, FAT

Recommended by Board of Studies	19-02-2022		
Approved by Academic Council	No. 65	Date	17-03-2022

BEE	E309P	Micropro	cessors and	Microcontrolle	ers Lab			ГР	С
						() () 2	1
Pre-	requisite	BEEE206L, BEEE2	06P			Sylla		vers	sion
							1.	0	
	rse Objectives								
1. Fa	amiliarize and o	develop programs f	or 8051 and A	RM processor.					
2. E>	2. Excel and implement various interfacing techniques with processor and controller.								
	rse Outcomes								
1. De	evelop and der	nonstrate structure	d assembly pr	ograms using r	nicrocompute	er.			
2. Im	plement C lan	guage programmin	g for processo	or and controller					
3. De	esign nardware	e using microproces	ssor and micro	controller for re	eal-time appl	Ication	IS.		
India	cative Experin	nents							
1.		arithmetic expressi	ons usina 805	1 instructions					
2.		ata between differe							
3.	Introduction t	o ARM instructions	and perform a	arithmetic and lo	ogical tasks				
4.	Programming	ARM processor us	sing subroutine	es	•				
5.	Interworking	of ARM – THUMB of	codes						
6.		GPIO pins of ARM							
7.		f delay using timers							
8.		vitch, LED, and buz		x - M					
9.		splay devices with o	controllers						
10.		sors with controller							
11.		f wave forms using							
12.	Generation of	f PWM signals for N	NOSFET switc						
Taut	Deels			l otal Lai	poratory Hou	irs 3	u no	urs	
	Book			la-idi and Dr		Viala.			054
		Ali Mazidi, Janice							
		r and Embedded S	ystems: Using	assembly and	a C, 2018, 2	Edi	tion,	Pear	son
	Education								
Refe	erence Book								
		Ali Mazidi, Sarm	ad Naimi,	Sepehr Naim	i, Arm Co	ortex-N	ЛA	ssen	nbly
	Programming [•]	for Embedded Prog	grammers: Usi	ing Keil, 2020,	1 st Edition, P	Pearso	n Ec	ducat	ion
Mod	e of assessme	nt: Continuous ass	essment. FAT						
		Board of Studies	19-02-2022						
	oved by Acade		No. 65	Date	17-03-2022	2			
	•		1		1				

BEEE201L	Electronic Materials	ILITIPIC
Dro roguicito		3 0 0 3
Pre-requisite	NIL	Syllabus version
Course Objective	es	1.0
1. Familiariz materials.	e the relevant concepts, principles and character	
dielectric 3. Analyze a	nd and comprehend the various laws and mechanism and magnetic materials. and compare the unique properties, characteristics a in electronic devices.	
Course Outcom	25	
On completion of 1. Understar 2. Classify a materials. 3. Comprehe 4. Analyze tl	this course, the students will be able to: nd the fundamental physics of electronic materials. nd interpret various types of current carrying mechanis	teristics. ture of electric field.
Module:1 Phys	sics of Materials	6 hours
materials - meta directions and pla Module:2 Sem Classification of s	lids, concepts of Fermi level, energy bands in soli als, semiconductors and insulators; Potential barrie anes, crystal properties, defects and vacancies. iconductor Materials	er problems, crystal 10 hours e dependence, metal-
actions, diffusion Direct and indi	nction; Carrier concentration, carrier generation and re a and conduction equations, continuity equation; Org rect band gaps, optical absorption, Piezo-resistiv naterials: PN junction diodes, BJT, JFET, MOSFET.	ganic semiconductor;
Module:3 Mag	netic Materials	6 hours
Curie and Nee	magnetic materials, concept of ferromagnetism, satured el temperature; Temperature dependence of con , magnetic anisotropy, spin-orbit interaction; Supercon	nductivity materials;
	lectric Materials and Insulation	8 hours
permittivity on polarization, Clau under static and	insulating materials: Electrical and molecular propert temperature, pressure & humidity; Dipole mome usius-Mossotti equation, polarization mechanisms; Beh alternating fields; Frequency dependence; Complex s, bipolar relaxation and characteristics.	ent and electronic naviour of dielectrics
Module:5 Opti	cal Properties of Materials	8 hours
Light propagation index, complex r	n in a homogeneous medium, refractive index, group efractive index and light absorption; Light scattering, ence, phosphors, Light Emitting Diode (LED), Liquid C	p velocity and group attenuation in optical

Мо	dule:6 Semiconductor Nanomaterials 5 hours					
Fle	Flexible energy storage devices, flexible chemical sensors, flexible solar cells					
Мо	dule:7 Contemporary Issues 2 hours					
_	Total Lecture hours: 45 hours					
	xt Book(s)					
1.	S.O. Kasap, Principles of Electronic Materials and Devices, 2018, 4m Edition, McGraw Hill Education					
2.	Yugang Sung, John A Rogers, William Andrew, Semiconductor Nanomaterials for Flexible Technologies: From Photovoltaics and Electronics to Sensors and Energy Storage/ Harvesting Devices, 2010, 1 st Edition, Elsevier					
Re	ference Books					
1.	T.K. Basak, Electrical Engineering Materials, 2012, 1 st Edition, New Academic Science Limited					
2.	Rolf E. Hummel, Electronic Properties of Materials, 2001, 3ra Edition, Springer					
3.	3. C. S. Indulkar, S. Thiruvengadam, An Introduction to Electrical Engineering Materials,2011, 6 th Edition, S. Chand & Company					
Мо	de of Evaluation: CAT, Digital Assignments, Quiz and FAT					
Re	commended by Board of Studies 30-10-2021					
Aod	oroved by Academic Council No. 64 Date 16-12-2021					

BEEE202L	Electromag	netic The ry	ILITIPIC
	N 111		
Pre-requisite	NIL		Syllabus version
Course Objectives:			1 1.0
1. Familiarize v	with various coordinate syst ledge on the concepts of ele	-	
	and acolications of electro		
Course Outcomes:			
On the completion of	of this course the student w	ill be able to:	
electromagn 2. Apply conce 3. Apply princi fields.	d implement an appro netic field problem. pts of electrostatics for appl ples of magnetostatics for the concepts of electrodyn	ications related to elect computing paramete	ers related to magnetic
-	netic wave propagation. d and analyze the major ap	olications of electroma	gnetic waves.
Module:1 Vector	r Analysis		5 hours
coordinate system Differential element	s of electromagnetic fields; s: Cartesian, cylindrical ts in different coordinate s ce theorem; Stoke's theore	and spherical; Coo systems, Del-operator	rdinate transformation:
Module:2 Electro			7 hours
and surface charge conditions, Laplace	ctric field intensity, electric ge distributions; Continuit e, Poisson's equations ar Electrostatic energy, capac	y equation and reland solutions; Analytic	xation time; Boundary
Module:3 Magne	etostatic Fields		7 hours
moment; Forces du	nagnetic flux, Biot-Savart's ue to magnetic fields; Veo nductance calculations		
Module:4 Maxw Fields	ell's Equations and Time	Varying	10 hours
Faraday's law, Lenz in final forms, tim Applications of elec equations for free s	z's law; Maxwell's equation ne varying fields; Relation ctromagnetic conversion; P space, wave equations for g vector and theorem	n between field theo properties of conducto	bry and circuit theory; r and dielectrics; Wave
Module:5 Unifor	m Plane Waves		10 hours
waves, perpendicu region, current free	re propagation: Wave equ lar relation between E an dielectric; Reflection by ide normal incidence at anoth	d H; Electromagnetic al conductor: Normal i	waves in charge free ncidence, reflection and

Wave impedance and propagation constant, depth of penetration, surface impedance and surface resistance				
Module:6	Applications of Electromagnetics 4 hours			
	of electromagnetic propagation through transmission lines and rectangular Wireless power transfer; Electromagnetic interference, electromagnetic			
Module:7	Contemporary Issues 2 hours			
	Total Lecture hours: 45 hours			
Text Book(s				
	N. 0. Sadiku and S. V. Kulkarni, Principles of Electromagnetics, 2015, 5m Oxford University Press, New York			
Reference E	Jooks			
	ayt Jr, J A Buck &M Jaleel Akhtar, Engineering Electromagnetics, 2020, gm McGraw Hill Education			
	od Nahvi & Joseph A. Edminister, Schaum's Outline of Electromagnetics, 2018, n, McGraw Hill Education			
	Lonngren, Sava Savov, Randy J. Jost, Fundamental of Electromagnetic with 3, 2007, 2 nd Edition, Scitech Publishing Inc.			
4. J. Edmir	nister and Vishnu Priye, Electromagnetics, 2017, 2 nd Edition, Schaum's Series			
Mode of Eva	luation: CAT, Digital Assignments, Quiz and FAT			
Recommend	ed by Board of Studies I 30-10-2021			
Approved by	Academic Council No. 64 Date 16-12-2021			

BEEE203L	Circuit	Theory	IL IT IP IC
Day			
Pre-requisite	BEEE101L,BEEE101P		Syllabus version
Course Objectives			1 1.0
-	ne network topology, theorems	and the analysis of thre	e-phase unbalanced
systems.			
	he time domain system behaviou	ur using pole zero plot, re	sonant circuits and to
	ferent types of passive filters.	and of clastrical circuita	and two part natwork
parameters.	transient and steady state respo		and two port network
Course Outcomes			
	rse, student will be able to:		
	he network topology and to apply	y the network theorems t	o estimate the steady
	se for a given excitation.		
	e-phase unbalanced systems in s		
	luate transient response, steady	/ state response of RL, R	C and RLC circuits
and network		lanlaga tugu afauna. Eassui	
	vledge about the application of I he electrical network.	Laplace transform, Four	er series and Fourier
	port network parameters to simp	olify the network computation	tions.
	<u> </u>		
Module:1 Netwo	ork Topology		6 hours
	nch, tree link, incidence matrix, t	ie-set matrix and loop cu	rrents, cut-set matrix
and node pair poten			
	ork Theorems	<u> </u>	10 hours
	or AC circuits: Superposition, rec	iprocity, thevenin's, norto	on's, maximum power
transfer and millman Module:3 Three	-phase Systems		8 hours
	system; Unbalanced systems:	Delta-connected three-	
	cted loads; Analysis of unbala		
	/delta conversion method using		
Module:4 Analy	sis of Transient Response of C	Circuits	10 hours
	ransformation; Laplace transform		
	rks for AC and DC excitations;		
switching conditions	and their representations, evalu	uation of initial and final of	conditions in RL, RC
and PLC aircuite with	I AC and DC excitations		
and RLC circuits with		esponse	10 hours
Module:5 Netwo	ork Function and Frequency Re	•	10 hours
Module:5 Netwo	ork Function and Frequency Re oles and zeros diagram, time-do	omain response from pol	e-zero plot, poles and
Module:5 Netwo	ork Function and Frequency Re	omain response from pol	e-zero plot, poles and
Module:5 Network Transfer Function; F zeros of network fur and bandwidth	ork Function and Frequency Re oles and zeros diagram, time-do	omain response from pol ability; Series and paralle	e-zero plot, poles and el resonance: Q factor
Module:5 Netwo Transfer Function; F zeros of network fur and bandwidth Filters: Definitions, Low pass filter, hiqh	ork Function and Frequency Re oles and zeros diagram, time-do ctions and their significance; Sta classification and characteristics pass filter, band pass filter and b	omain response from pol ability; Series and paralle s of different filters; Desi and stop filter	e-zero plot, poles and el resonance: Q factor gn of passive filters:
Module:5NetworkTransfer Function; Fzeros of network funand bandwidthFilters: Definitions,Low pass filter, hiqhModule:6Fourier	ork Function and Frequency Re oles and zeros diagram, time-do ctions and their significance; Sta classification and characteristics pass filter, band pass filter and b er Analysis and Its Applications	omain response from pol ability; Series and paralle s of different filters; Desi and stop filter s	e-zero plot, poles and el resonance: Q factor gn of passive filters: 7 hours
Module:5I NetworkTransfer Function; Fzeros of network funand bandwidthFilters: Definitions,Low pass filter, highModule:6Trigonometric fourie	ork Function and Frequency Re oles and zeros diagram, time-do ctions and their significance; Sta classification and characteristics pass filter, band pass filter and b er Analysis and Its Applications r series for non-sinusoidal function	omain response from pol ability; Series and paralle s of different filters; Desi and stop filter s ons: Circuit analysis; Ave	e-zero plot, poles and el resonance: Q factor gn of passive filters: 7 hours rage power and RMS
Module:5I NetworkTransfer Function; Fzeros of network funand bandwidthFilters: Definitions,Low pass filter, highModule:6I FourieTrigonometric fourievalues using fourier	ork Function and Frequency Re oles and zeros diagram, time-do ctions and their significance; Sta classification and characteristics pass filter, band pass filter and b er Analysis and Its Applications	omain response from pol ability; Series and paralle s of different filters; Desi and stop filter s ons: Circuit analysis; Ave series; Fourier transforr	e-zero plot, poles and el resonance: Q factor gn of passive filters: 7 hours rage power and RMS
Module:5I NetworkTransfer Function; Fzeros of network funand bandwidthFilters: Definitions,Low pass filter, hiqhModule:6I FourieTrigonometric fourievalues using fourierperiodic and aperiod	ork Function and Frequency Re oles and zeros diagram, time-do ctions and their significance; Sta classification and characteristics pass filter, band pass filter and b er Analysis and Its Applications r series for non-sinusoidal function coefficients; Exponential fourier	omain response from pol ability; Series and paralle s of different filters; Desi and stop filter s ons: Circuit analysis; Ave series; Fourier transforr	e-zero plot, poles and el resonance: Q factor gn of passive filters: 7 hours rage power and RMS n for commonly used
Module:5NetworkTransfer Function; Fzeros of network furand bandwidthFilters: Definitions,Low pass filter, hiqhModule:6FourierTrigonometric fouriervalues using fourierperiodic and aperiodModule:7Two f	ork Function and Frequency Re oles and zeros diagram, time-do ctions and their significance; Sta classification and characteristics pass filter, band pass filter and b er Analysis and Its Applications r series for non-sinusoidal function coefficients; Exponential fourier ic functions; Circuit analysis in fre Port Networks	omain response from pol ability; Series and paralle s of different filters; Desi and stop filter s ons: Circuit analysis; Ave series; Fourier transforr equency domain	e-zero plot, poles and el resonance: Q factor gn of passive filters: 7 hours rage power and RMS
Module:5NetwoTransfer Function; Fzeros of network funand bandwidthFilters: Definitions,Low pass filter, hiqhModule:6FourieTrigonometric fourievalues using fourierperiodic and aperiodModule:7Two IOpen circuit imperiod	ork Function and Frequency Re oles and zeros diagram, time-do ctions and their significance; Sta classification and characteristics pass filter, band pass filter and b ar Analysis and Its Applications r series for non-sinusoidal function coefficients; Exponential fourier ic functions; Circuit analysis in fre Port Networks	omain response from pol ability; Series and paralle s of different filters; Desi and stop filter s ons: Circuit analysis; Ave series; Fourier transforr equency domain rcuit admittance parar	e-zero plot, poles and el resonance: Q factor gn of passive filters: 7 hours rage power and RMS n for commonly used 7 hours neters, transmission
Module:5NetworkTransfer Function; Fzeros of network funand bandwidthFilters: Definitions,Low pass filter, hiqhModule:6FourierTrigonometric fouriervalues using fourierperiodic and aperiodModule:7Two IOpen circuit imperparameters, hybrid pnetworks	ork Function and Frequency Re oles and zeros diagram, time-do ctions and their significance; Sta classification and characteristics pass filter, band pass filter and b er Analysis and Its Applications r series for non-sinusoidal function coefficients; Exponential fourier ic functions; Circuit analysis in fre Port Networks dance parameters, Short circ	omain response from pol ability; Series and paralle s of different filters; Desi and stop filter s ons: Circuit analysis; Ave series; Fourier transforr equency domain rcuit admittance parar	e-zero plot, poles and el resonance: Q factor gn of passive filters: 7 hours rage power and RMS n for commonly used 7 hours neters, transmission

٦

			Total Lecture h			60 hours	
Tex	xt Book(s)					00 110013	
1.	Graw Hill Education						
2.	2. Ravish. R. Sinah, Network Analysis & Synthesis, 2019, 2na Edition, Mc-Graw Education						
Ref	ference B	ooks					
1.	William Hayt, Jack Hemmerly, Jaime Phillips, Steven Durbin, Engineering Circuit Analysis, 2019, 9 th edition, Mc Graw Hill Education						
2.	M.E Van	Valkenbera, Network Anal	ysis, 2019, Revis	ed 3r ^v Editic	on, Pearson Publishe	rs	
3.	Abhijit C Dhanpat	hakrabarthi, Circuit Theor Rai &Co.	y (Analysis and	Synthesis)), 2018, 7mRevised	J Edition,	
4.	V.K.Me	nta, Rohit Mehta, Basic Ele	ectrical Engineeri	ng, 2017, S	6 Chand Publishers		
5.	Mahmoo	d Nahvi, Joseph Edminister	r, Electric Circuits	, 2018, ytn	Edition, McGraw Hill	Education	
Мо	de of Eval	uation: CAT, Diaital Assian	ments, Quiz and	FAT			
Re	commende	ed by Board of Studies	30-10-2021				
Ар	proved by	Academic Council	No. 64	Date	16-12-2021		

Г

Course Code			LT	P C	
BEEE210L	gn		2 1	0 3	
Pre-requisite	BEEE207L, BEEE207P	-	Syl	labus v	version
				1.0	
Course Objective					
 Impart kno 	wledge on designing of static and rotating	machines b	ased u	pon	
fundamen	tal theories				
2. Design of	transformers and rotating machines				
3. Design of	cooling system for heavy duty machines a	nd analyze t	he loss	es	
Course Outeems					
Course Outcome					
	the course, the student will be able to e the importance of magnetic, thermal and	electric load	linas		
	ne design procedure of rotating machines				
	ne model and analyze the static and rotatin				
•	he effect of dimensions of the different part	•		al mac	hines
	put and losses				
5. Examine t	he design of electrical machines according	to standard	IS		
Madulad Desi		r			
	gn aspects of Electrical machines				6 hours
	ctrical machine design; General design:				
	sures for rotating electrical machines; ng; Rating of machines; Types of duties				
temperature rise	ig, italing of machines, types of duties	and ratings	, incas	surenne	
	netic Circuits Design			(6 hours
-	calculations; calculation of total mmf: air g	ap mmf, Ne	t iron le	ength, n	nmf for
	parent flux densities; Types of iron losses				
	e, Armature Leakage, slot leakage; Magne	etic pull			
Module:3 Tran		<u> </u>			7 hours
	pe transformers; Single and three phase				
	pre area and weight of iron and copper; (
	are core; Choice of flux density; Design of ns; Design of tank and cooling tubes of tra		indow s	space r	actor;
Module:4 DC N				8	3 hours
	s: Main dimensions, Choice of Specific	Electric an	d Mag		
	ber of poles: choice of number of poles,				
	s; Design of field system; Design of shunt				
	d brushes; Design of Interpoles				
	ction Machines				3 hours
	etails of squirrel cage and slip ring				
	e of specific loadings; Stator Design; R			th of a	air gap;
-	ars and slots; Design of end rings; Losses	and Efficien	су		
	hronous Machines				3 hours
	; Choice of Electrical and Magnetic Loadin				
	circuit ratio; Shape of pole face; Design o		amper	winding	J;
	nding; Design of turbo alternators; Rotor d emporary Issues	esign			2 hours
	emporary issues	l			
	Total Lecture hours:			4!	5 hours
Text Books		<u> </u>			
	y, "Design of Electrical Machines", New A	ge Internatio	nal. 20	15	
	., <u> </u>	<u></u>	, 20	. 🗸	

2. A.K.Sawhney, "A Course in Electrical Machine Design", Dhanapat Rai and Sons, New Delhi, 2015

Reference Books

1.	S.K.Sen, "Principles of Electrical Machine Design with Computer Programmes", Oxford
	and IBH publishing Co.Pvt Ltd., New Delhi, 2011

2.	V.N.Mittle and A.Mittle, "Design of Electrical Machines", Standard Publications
	Distributors, NewDelhi, 2005

Mode of Evaluation: CAT, Quiz, Assignments, FAT

Recommended by Board of Studies	28.05.2022		
Approved by Academic Council	No. 66	Date	16-06-2022

Course Co	de	Course Title	L	Т	Ρ	С
BEEE211E		VLSI Design	2	0	2	3
Pre-requisi	ite	BEEE206L, BEEE206P	Sylla	bus	vers	sion
•				1.0)	
Course Ob	jectives	<u>,</u>				
1. Compr	ehend t	he digital VLSI concepts, circuit design and principles				
		e design concepts and architecture underlying modern comp				
		t knowledge on the methodologies and design techniques	s relate	ed to	o di	gital
integra	ted circ	uits				
Course Ou	toomoo					
		his course, the students will be able to logic circuits using CMOS logic				
		esign digital logic circuits for optimal delay and power				
		plement combinational logic circuits using different logic style	25			
		velop complex arithmetic circuit architectures for various real		appli	cati	ons
<u>J</u>						
Module:1		Design Methodology				ours
		ss: Architectural design, logical design, physical design; La	ayout	style	s: F	-ull
		om approaches				
Module:2		Devices			-	ours
		heory: nMOS, pMOS Enhancement Transistor; MOSFE				•
		MOS Device Design Equations; Second order effects; MOS am; Layout Design Rules	Irans	istor	Cir	CUIT
Module:3		t Characterization and Performance Estimation			6 h/	ours
		of CMOS Inverter; Switching Characteristics of CMOS Ir	nvertei			
		Delay model: Rise Time, Fall Time, Gate Delays; RC Dela				
		bation: Static, Dynamic, Short Circuit Power Dissipation	<i>y</i> 1000	0.0,	209	loai
		inational Logic Circuits		(6 ho	ours
Static CMO	S Desig	n, Complex Logic Gates; Ratioed Logic; Pass-Transistor Lo	gic; Tr	ansr	niss	sion
		nic CMOS Logic Design: Dynamic Logic Design Consideration	ations,	Spe	ed	and
		of Dynamic logic, Signal integrity issues				
Module:5		n of Arithmetic Circuits				ours
		; Array based multipliers; Tree based multipliers; Speed at	nd Are	ea tra	ade	-off;
Module:6		and Accumulator; FIR filter design			2 h/	ours
module.0	Conte				2 11	Jui 3
		Total Lecture hou	urs:	3	0 ho	ours
List of Cha	llengin	g Experiments (Indicative)				
1.	-	Adder/subtractor circuit design using different approaches to	o trade	e-off	dela	ay
		irea.				
		a and implementation of Course Course American distribution (al/-:	a cl \		
2.	Desig	n and implementation of Carry Save Array multiplier (unsigne	ed/sign	ed)		
2. 3.	Desig Desig	n and implementation of Wallace-tree multiplier	ed/sign	ed)		
2. 3. 4.	Desig Desig Desig	n and implementation of Wallace-tree multiplier n and implementation of Dadda-tree multiplier	ed/sign	ed)		
2. 3. 4. 5.	Desig Desig Desig Desig	n and implementation of Wallace-tree multiplier n and implementation of Dadda-tree multiplier n and implementation of Multiplier and Accumulator	ed/sign	ed)		
2. 3. 4. 5. 6.	Desig Desig Desig Desig Desig	n and implementation of Wallace-tree multiplier n and implementation of Dadda-tree multiplier n and implementation of Multiplier and Accumulator n and implementation of FIR filter	ed/sign	ed)		
2. 3. 4. 5. 6. 7.	Desig Desig Desig Desig Desig CMOS	n and implementation of Wallace-tree multiplier n and implementation of Dadda-tree multiplier n and implementation of Multiplier and Accumulator n and implementation of FIR filter S inverter switching characteristics using SPICE	ed/sign	ed)		
2. 3. 4. 5. 6. 7. 8.	Desig Desig Desig Desig CMOS CMOS	n and implementation of Wallace-tree multiplier n and implementation of Dadda-tree multiplier n and implementation of Multiplier and Accumulator n and implementation of FIR filter S inverter switching characteristics using SPICE S switch level implementation of Complex Boolean functions	ed/sign	ed)		
2. 3. 4. 5. 6. 7.	Desig Desig Desig Desig CMOS CMOS	n and implementation of Wallace-tree multiplier n and implementation of Dadda-tree multiplier n and implementation of Multiplier and Accumulator n and implementation of FIR filter S inverter switching characteristics using SPICE	ed/sign	ed)		

Text Books									
1.	Neil H.E.Weste, David Money I	Harris, "CMOS V	/LSI DES	IGN: a circuits and systems					
	perspective", 4 th edition, Pearson 2	2015		-					
2	Jan Rabaey, Anantha Chandrakasan, B.Nikolic, "Digital Integrated circuits: A design perspective", 2 nd Edition, Prentice Hall of India, 2016								
Ref	erence Books								
1.	Samir Palnitkar, "Verilog HDL", Pre	entice Hall, 2010							
2	Sung-Ma Kong, Yusuf Leblebici analysis and design", 4th edition, I								
Mod	Mode of Evaluation: CAT, Quiz, Assignments, FAT								
Rec	commended by Board of Studies	28.05.2022							
Арр	proved by Academic Council	No. 66	Date	16-06-2022					

Course Code	Course Title	LTPC
BEEE212L	Engineering Optimization	2 1 0 3
Pre-requisite	NIL	Syllabus version
		1.0
Course Objective		
1. Provide a	thorough knowledge of the most common optimization a	lgorithms.
2. Formulate	, dynamic programming and dynamic optimization pro	blems and solve
them.		
3. Formulate	and solve real-world optimization problems using	ng nature-inspired
algorithms		•
Course Outcome	:S	
On completion of	this course, the students will be able to	
1. Solve sing	le and multi-variable optimization problems without and v	with constraints
2. Apply grad	lient and gradient-free optimization techniques for engine	eering applications
3. Utilize dyn	amic and convex programming tools for optimization pro	blems
4. Develop o	ptimal neural network training approaches	
5. Apply natu	iral inspired algorithms for engineering optimization	
		76
	sical Optimization Basics	7 hours
	Single-variable optimization; Multivariable optimization	
	equality constraints; Lagrange multiplier method; K	
	eness of matrices by eigen values; Quadratic forms; Syl	lvester's criterion;
Convex programn	ning problem, convex optimization	
	Dimentional search methods	5 hours
	earch, Fibonacci search, bisection method, Newton's me	thod; Inexact line
search		
	ient based optimization	7 hours
	method, Method of steepest descent; Newton's Meth	nod; Levenberg-
Marquardt algorith	nm; Merits and demerits of these methods	
Module:4 Conj	ugate Direction Methods	7 hours
Conjugate direction	ons and conjugate gradient method, Fletcher-Reeves for	ormula; Global and
local convergence	e; Convergence analysis of all algorithms; Convergence	constant, rate of
convergence		
Module:5 Dyna	mic Optimization	6 hours
Dynamic program	ming. Dynamic optimization; Comparison with static op	timization. Sample
applications of	gradient-based methods in engineering; Applicat	tions of dynamic
programming, dyr	namic optimization, convex optimization	-
Module:6 Appli	cation of optimization methods to neural networks	5 hours
Neural networks:	Capabilities and limitations of single perceptron, mul	Itilayer perceptron,
Activation function	ns; Universal function approximation theorem; Training b	by gradient based
	methods; Back propagation	
Module:7 Grad	ient-free Optimization	6 hours
Limitations of g	gradient-based methods; Direct and indirect meth	nods; Evolutionary
	oduction to evolutionary methods; Swarm intelligence	methods; Nature
	n methods; Simulated annealing	
Module:8 Cont	emporary Issues	2 hours
	Total Lecture hours	: 45 hours
Text Book		
	ak, "Introduction to Optimization", John Wiley & Sons, Ind	c., 4 th edition. 2013
		,, _,
Reference Books		
	•	

1.	Ganguly, "Engineering Optimization, A Modern Approach", Universities Press, 2012							
2.	S S Rao, "Engineering Optimization, Theory and Practice", John Wiley & Sons, Inc., 5 th edition, 2019							
3.	E. Fletcher, "Practical Methods of Optimization", John Wiley & Sons, Inc., 2 nd edition, 2013							
4.	4. Jasbir Arora, "Introduction to Optimum Design", Elsevier, 4 th edition, 2016							
Mode of Evaluation: CAT, Assignment, Quiz, FAT								
Re	commended by Board of Studies	28.05.2022						
Ap	proved by Academic Council	No. 66	Date	16-06-2022				

Course code Course Title L T P C							
BEEE213L	Embedded Systems Design			3	0	0	3
Pre-requisite	BEEE309L, BEEE309P		Sy	labu	is v	ersi	on
					1.0		
Course Objectiv	es						
1. Understand t	he contemporary embedded systems and its desigr	cons	straint	ts			
	ware and software skills required for the role of emb				enc	inee	er
	ted systems for real world problems using low cost						
					-	-	
Course Outcom	es						
On completio	n of this course, the students will be able to						
1. Identify applic	cation specific microcontrollers						
	edded software using commercial integrated develo	pme	nt env	viron	mer	nts	
	e communication protocols to interface sensors and						
	mmercial tools to develop RTOS based application						
•	rnel for low cost embedded platforms						
	· ·						
							_
Module:1 Emb						ho	
	m components; Examples of embedded system; A	tribut	tes; C	hara	acte	istic	;s;
U	cal embedded system software operations						
	Cortex-M Architecture					ho	
	itecture, Registers; Memory; Operating modes; In						
	dressing modes; Exceptions and Interrupts; Con	merc	cial A	RM	Co	tex∙	M
microcontrollers							
Module:3 Emb	edded Software Development				8	ho	Jrs
	rogramming: Number systems, Data types, Dat					octio	ns,
	onsiveness; Interrupts; Finite State Machine					oftwa	
	ost and Target, Compiler, Assembler, Linker, and	l Loa	der;	Harc	lwai	e a	nd
	ing, In system programming						
	pherals and Interfacing					ho	
	eneration and measurements: Timers, PWM; Con						зg
0	ata acquisition: ADC, DAC, Measurement of voltag	e, cu	rrent,	and	роу	ver;	
Analog comparat							
	al Communication Protocols					ho	
	cation protocols: Synchronous Vs Asynchronous						
	, synchronization, I2C based accelerometer inte						
	ctrical considerations, message formats, message t	ypes	, trans	smis	sior	n an	d
	visualization using logic analysers						
	Time Operating System					ho	
	are architectures; Main memory management; Co						
	d Scheduling; Shared data and semaphores; Inte	errupt	rout	ines	in	RTC)S
	sign example using open source RTOS						
	edded Linux and Device Interfaces					ho	
	edded system; Kernel modules; System configura						
	between kernel space and user space; Role of d						
	odules; Char devices; System debugging and		filing	; Ap	oplic	atio	n
-	ing single board computers, IoT/ IIoT, Edge compu	ing					
Module:8 Con	temporary Issues				2	ho	Jrs
ı							
	Total Lecture hours:				45	ho	Jrs

Text Books						
		·				
1	Alexander G Dean, "Embedded Sy					
	Microcontrollers: A Practical Approa	<u>ch", ARM Ed</u>	ucation M	ledia, 2021		
2	Wim Vanderbauwhede and Jeremy	Singer, "Oper	ating Sys	tems Foundations with Linux		
	on the Raspberry Pi", ARM Educatio	n Media, 202	1			
Reference Books						
1.	Yifeng Zhu, "Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language and C", E-man Press LLC, 3 rd Edition, 2018					
2.	Jonathan W. Valvano, "Embedded M			s: Real Time Interfacing". 3 rd		
	Edition, Cengage Learning, 2010					
3	Raj Kamal, "Embedded Systems- Ar	chitecture, Pi	ogrammi	ng and Design", 3 rd Edition,		
	McGraw Hill Education India, 2017		-			
4	James K Peckol, "Embedded Syster	ns: A Conterr	porary D	esign Tool", 2 nd Edition,		
	Wiley, 2019		. ,	0		
Мо	de of Evaluation: CAT, Quiz, Assignm	ent, FAT				
De	commanded by Deard of Studios	20 05 2022				
	commended by Board of Studies	28.05.2022				
Ар	proved by Academic Council	No. 66	Date	16-06-2022		

Course Code	Course Title		L	Т	Ρ	С			
BEEE310L	5 5 5				3 0 0 3				
Pre-requisite	BEEE302L, BEEE302P	Sylla	abu		ersio	n			
				1.0					
Course Objectiv									
	nd digital image processing operations and algorithms								
	 Explore the spatial and frequency domain techniques Comprehend current trends and real time applications of digital image processing 								
3. Comprehe	end current trends and real time applications of digital in	nage	pro	ces	sing				
Course Outcome	25								
	this course, the students will be able to								
	hematical formulations for digital image processing								
	patial and frequency domain techniques								
	he performance of image restoration and segmentation	oper	ratio	ons					
	compression and morphological techniques	•							
5. Analyze c	olor image processing and applications								
	ge Digitization and Enhancement in spatial domain				ours				
	al perception, Image sensing and acquisition, simp								
	and Quantization; Relationship between pixels, Imagay level transformations, Histogram, Histogram equalized								
using arithmetic a	and logic operations; Smoothing spatial filters, Sharpeni	nd sr	ı, ⊏ı batia	al filt	ers	ient			
	ge Transforms and Enhancement in frequency dom				ours				
	n, Discrete Fourier Transform, Fast Fourier Transform		scre						
	mard Transform, Discrete Wavelet Transform, Karhune								
	ency domain filters, Sharpening frequency domain fil								
filtering									
	e Restoration				ours				
	on model, Noise models; Types of Image Restoration te								
	iltering, Constraint Lease Square filtering, Performance	Metr	rics						
	e Segmentation			-	ours	•			
	int, Line and Edge detection, Segmentation by region g nd merging, Hough transform, Region segmentation usi								
Watershed Trans		ng ci	นรแ	enng],				
Module:5 Imag				7 h	ours				
	mages, Classification of Image Compression Scheme	s. T	vpe						
	ing, Shannon-Fano coding, Huffman coding, Golom								
	incation Coding, Wavelet coding								
Module:6 Morp	phological operations			4	hou	ſS			
	osion, opening and closing, Hit-or- miss transform				entati	on:			
	tors, Shape descriptors, Regional descriptors, Texture	desci	ripto						
	ur Image Processing				4 hc	ours			
RGB, CMY and I	HSI Models, Gamma correction of Colour image, Chron	natici	ty d	iagra	am,				
	gmentation; Applications of Digital Image Processing: M	lachi	ne	VISIO	n,				
	on, Video Processing temporary Issues				2 hc	lire			
	comporary issues				2 110	, ui 3			
	Total Lecture	hour	s:	4	5 hc	ours			
Text Books									
1. R.C.Gonzale	z, R.E.Wood, "Digital Image Processing", Fourth E	ditio	n,	Pea	arsor	1			
Education, 20	018								
2. S.Jayaramar	2. S.Jayaraman, S.Esakkirajan, T Veerakumar, "Digital Image Processing", Tata								

McGraw Hill Education, 2nd Edition, 2020

	McGraw rin Education, 2 Educit, 2020											
Ref	Reference Books											
1.	Anil K. Jain, "Fundamentals of Digital Image Processing", Pearson Education, India, 2015											
2.	Scott E Umbaugh, "Digital Image Processing and Analysis: Human and Computer Vision Applications with CVIP tools", 3 rd Edition, CRC Press, Taylor and Francis, 2018											
Mo	de of Evaluation: CAT, Assignment, Quiz, FAT											

Recommended by Board of Studies	Recommended by Board of Studies 28.05.2022				
Approved by Academic Council	No. 66	Date	16-06-2022		

Course Code	Course Title		L	. T	Ρ	С
BEEE311L	Design of Electrical Installat	ions	3	0	0	3
Pre-requisite	BEEE207L, BEEE207P		Syllab	us v	ersio	on
			-	1.0		
Course Objectiv	/es					
1. Familiariz	te the relevant concepts and parameters for	design of elec	ctrical in	nstalla	ation	S
2. Design a	nd implement conductors, illumination system	m and earthin	g arran	geme	ent fo	or
installatio	ns		-	-		
Evaluate	the implementation of the various domestic a	and industrial	installa	tions		
Course Outcom	es					
On completion o	f this course, the students will be able to:					
	nd the generic concepts of design of electr	ic installation	with t	ne re	leva	nt
	s for implementation					
	e sizing of conductors and implement earthi	ng systems fo	or vario	us ele	ectric	cal
installatio						
	nd implement illumination system and layout	arrangement	for res	ident	ial a	nd
	installations					
	nd analyze various types distribution and sub					
5. Estimate	the implementation of various domestic and	industrial inst	allation	S		
Madulad Dea	ing Company in a and Company's for	1			<u> </u>	
	ign Sequencing and Concepts for allation			4	hοι	Jrs
		R Cadaay IC	2042		20	
	ess of Indian and International Standards 62305, IS 5216, IEC 60038, IEEE 998					
	Outline of installations, Isolation and Switchin					
	rt circuit current protection, Overcurrent ar					
Protective condu	•	iu overvoltage		,es, t	able	;5,
	ng of Conductors, Busbars and Cables			4	hou	irs
	s, Ampacity calculation, Derating factors, Ele	ectromechani	cal con			
	nort circuit requirements, Voltage drop, Co					
temperature, Siz			induote	n opt	Jiam	'9
	ign Aspects for Earthing Systems			5	hou	urs
	ples, Types of earthing systems, Step and	Touch potent	ial -Tol			
	ial, Role of Soil Resistivity in computing resi					
spacing calculati						
	ign of Illumination Systems			8	hou	Jrs
	od lighting scheme, Laws of illumination,	Photometry.	Types	of la	mps.	,
	ions, Design of illumination schemes for				•	
	ghting and flood lighting, LED lighting and ei					
Module:5 Des	ign of Substations			7	΄ hoι	Jrs
Types of Subst	ations, Types of Switching Schemes, Bu	usbar Config	uration	s, El	ectri	cal
Clearances, Sp	atial separation, Maintenance zoning, F	ormulation o	f basi	c lay	out	of
substation, Subs	station equipment and generic design cond	cepts (only m	ajor e	quipm	nent)),
	aying and Termination, Direct stroke lightnin	g protection n	nethods			
Module:6 Des	ign of Distribution System Installations			8	hοι	Jrs
	em voltage levels, Types of distribution s					
diagrams and ge	eneric layouts, Types of Poles, Class require					
0		- 1 T			C	or
	ss-arms, Pole depth, Pole pins, Pin spa					
stringing: AAAC	ASCR conductors, Choice & selection of					
stringing: AAAC, hardware fixing a	ASCR conductors, Choice & selection of arrangement with poles			st an	d di	SC,
stringing: AAAC hardware fixing a Module:7 Esti	ASCR conductors, Choice & selection of arrangement with poles mation and Costing of Domestic and			st an		SC,
stringing: AAAC, hardware fixing a Module:7 Esti Indu	ASCR conductors, Choice & selection of arrangement with poles	insulators: F	Pin, Po	st an	d di: ' hoı	sc, u rs

lavo	out Estir	nation as per schedule ra	te nattern: Indus	trial Insta	llations: Planning, designing
	•	•	•		ngs, Electrical circuit diagram,
					ate for Industrial loads; Over-
	•	nder-ground connections		,	
	dule:8	Contemporary Issues	•		2 hours
			Total Lecture h	ours:	45 hours
-	t Books				
1.		cal Installation Design Gu on, IET Press	ide- Calculation f	or Electri	cians and Designers", 2018,
2.		ina & S.K. Bhattacharya, New Age International P		n Estimat	ing and Costing", 2018, 2 nd
Ref	ference	Books			
1.			ower Substations	Enginee	ring", 2012, 3 rd Edition, CRC
2.	T.A. Sł CRC Pi		tribution Equipme	ent and S	Systems", 2006, 2 nd Edition,
3.	R.L. Gil	es, "Layout of EHV Subst	tations", 1970, Ca	mbridge	University and IEE Press
4.		and International Standar NFPA 70, IEEE 998, IEE		ns of IS 7	32, IS- 3043, IS 5216, NEC-
Мо	de of Eva	aluation:			
CA	T, Assiar	nment, Quiz, FAT			
		ded by Board of Studies	28.05.2022		
		y Academic Council	No. 66	Date	16-06-2022
			•		

BEEE391J	Technical Ans	wers to Real Pro	oblome Pi	roject	L	Т	Ρ	С	
	NIL			Ojeci	0	0	0	3	
Pre-requisite					Syllabus vers				
Course Objective	es:					1.0	,		
	n understanding of r	eal-life issues fac	ced by soc	iety.					
2. To study a	appropriate technolo	ogies in order to fi	ind a solut	ion to rea	l life is	sues.			
3. Students v	will design system c	omponents inten	ded to sol	ve a real-	life iss	ue.			
Course Outcome	9:								
1. Identify rea	al life issue(s) facec	l by society.							
	ropriate technologie								
Design the	e related system co	mponents/proces	sses inten	ded to pro	ovide a	a solut	tion to	С	
the identifi	ied issue(s).								
Module Content									
	ected to perform a s	survey and intera	ct with so	ciety to fin	d out	the re	al life	;	
issues.		-		-					
Logical steps with	the application of a	appropriate techn	ologies sł	nould be s	sugges	sted to	o solv	/e	
the identified issu	es.								
Subsequently the	student should des	sign the related sy	ystem con	nponents	or pro	cesse	s wh	ich	
is intended to prov	vide the solution to	the identified real	l-life issue	S.					
General Guidelin	les:								
	on of real-life proble		_						
	can be arranged b				(.I''.	- 12			
	of 3 students can for of eight hours on se			e/differen	t aisci	pline)			
	te scientific method			a tha ida	ntifiad	iccup			
	hould be in the form	0						ess	
	evant scientific met		a						
7. Consolida	ted report to be sub	mitted for assess	sment						
•	on, involvement and				•				
	be used as the mod	dalities for the co	ntinuous a	issessme	nt of tl	he the	ory		
componen	it tcome to be evaluat	ted in terms of te	chnical e	conomical	soci	al anv	iron-		
-	litical and demogra		crinical, et		, 3006	ai, ein	/11011-		
	on of each group me		ssed						
	<u> </u>								
	ion: Evaluation invo	•	-	•					
•	tered. Assessment	• •	/lark weigl	ntage of 2	0:30:5	50 – R	epor	t to	
be submitted, pre	sentation and proje	ct reviews							
Recommended by	y Board of Studies	09-03-2022							
Approved by Acad	demic Council	No.65	Date	17-03-20)22				

						L	Т	Ρ	С
BEE	EE392J	Desi	ign Project			0	0	0	3
Pre-re	quisite	NIL				Sylla	abus	versi	ion
							1.0)	
	e Objective								
		vill be able to upgrade a		•					
		and demonstrate the tech	•		-	the p	roject.	•	
3.	Acquire kn	owledge and better unde	erstanding c	of design s	systems.				
Cours	e Outcome								
1.	•	ew skills and demonstrat	te the ability	to upgrad	de a proto	type to	o a de	sign	
	1 21	or working model.			6				
		techniques, skills, and m				•		1:	
3.	•	e knowledge and use ins gn systems.	ight and cre	alivity to i	beller und	erstar	id and	a Irri-	
	prove desi	gii systems.							
	le Content								
prototy	/pes to desi	ected to develop new skil gn prototype or working						or a	
proces	SS.								
studen	nt has regist	ion: Evaluation involves ered. Assessment on the sentation and project rev	e project – N	-	•				t to
Recom	nmended by	/ Board of Studies	09-03-202	2					
Approv	ved by Acad	demic Council	No. 65	Date	17-03-20)22			

BEEE393J	L	aboratory Proje	ct		L	Т	P	C
Pre-requisite	NIL	, ,			0 Svii	0 abus	0 Vors	3 ion
i ie-iequisite					Jyn	<u>abus</u> 1.		
Course Objective	es:						-	
2. Analyse ex	nt will be able to con operimental data. e results with appro			oncepts a	Iready	/ learr	nt.	
Course Outcome):							
•	d conduct experime ady studied.	ents in order to ga	ain hands-	on experi	ence	on the	e con	-
•	nd interpret experim	nental data.						
,	r and concise techn		esearch a	rticles				
		•						
Module Content					-			
	ected to perform ex			•				-
courses they have	e already studied o	r registered in the	e ongoing	semester	. The	theor	у соц	irse
registered is not	expected to have	laboratory comp	onent an	d the stud	dent i	s exp	ected	d to
register with the	same faculty who h	nandled the theo	ry course.	This is n	nostly	appli	cable	e to
the elective course	es. The nature of th	e laboratory expe	eriments is	s depende	d on t	he co	urse.	
student has regist	ion: Evaluation invo ered. Assessment sentation and proje	on the project – N						t to
Recommended by	y Board of Studies	09-03-2022						
Approved by Acad	demic Council	No. 65	Date	17-03-20)22			

DEEE2041	Due due		Ducleat		L	Т	Ρ	С
BEEE394J		ct Development	Project		0	0	0	3
Pre-requisite	NIL				Syll	abus		ion
						1.	0	
Course Objective	es:							
1. Studer	nts will be able to tra	anslate a prototyp	be to a use	eful produc	xt.			
2. Apply	relevant codes and	standards during	product c	levelopme	nt.			
3. The st	udent will be able to	present his resu	ilts by mea	ans of clea	r tech	nical	repo	rts.
		•	-				•	
0								
Course Outcome								
	nstrate the ability to		velopea pi	ototype/w	orking) moo	ei to	а
	product useful to so	• •						
	the appropriate cod	-		÷ ·	uct de	velop	ment	i.
3. Write d	clear and concise te	chnical reports a	nd resear	ch articles				
Module Content								
Students are expe	ected to translate th	e developed prot	totypes / v	orking mo	dels i	nto a	prod	uct
-	ation to society or ind	• •		0			•	
		adoli y.						
Mode of Evalua	tion: Evaluation in	volves periodic	roviows h	v the fac	ilty w	ith w	hom	tho
	tered. Assessment	•		•	•			
-	sentation and proje		Mark weig	maye of z	0.00.	1 – 00	veho	
be submitted, pre	sentation and proje	ct leviews						
Recommended by	y Board of Studies	09-03-2022						
Approved by Acad	demic Council	No.65	Date	17-03-20	22			

BEEE39	5.1	Com	puter Pr	niect			L	Т	Ρ	С
		-		oject			0	0	0	3
Pre-requis	Ite	NIL					Syll	abus 1.		sion
Course Ob	iective	is'						1.	0	
	•						-			
		ts will be able to analyse	•			• •				
		be the applications and l			0	0	j proc	ess.		
э.	Presen	t the results in written re	epons an	iu ora	li preser	itations.				
Course Ou		-								
Course Ou	itcome	<u>.</u>								
		programming skills/mo	delling to	o ana	alyse co	mplex enç	gineer	ing p	roce	SS-
	es/prot									
		strate the ability to eval	uate the	appli	cability	and limitat	ions c	of the	giver	n
	•	ering process.								
		unicate effectively throu	gh writte	n rep	orts, ora	l presenta	tions,	and	discu	s-
	sion.									
Module Co	ontent									
		pected to use program								
		esses. The student sl aid engineering process		e abl	le to e	valuate th	e ap	plicati	ion a	and
minialions (and engineering process	5.							
Mode of E	Evaluat	ion: Evaluation involve	es perio	dic re	eviews b	by the fac	ulty w	/ith w	hom	the
		ered. Assessment on th	•							
be submitte	ed, pres	sentation and project rev	views.		-	-				
			00.00	0000						
Recommer	Recommended by Board of Studies 09-03-2022									
Approved b	y Acad	lemic Council	No.65		Date	17-03-20	22			
••	-									

DEE	E206 I		Pooding Course			L	Т	Ρ	С
	BEEE396J Reading Course Pre-requisite NIL						0	0	3
Pre-re	quisite	NIL				Syll	abus		ion
0							1.	0	
	e Objective						. ,		
1.		nt will be able to an	alyse and interpr	et publish	ed literatu	re for	inforr	natio	n
		to niche areas.							
		technical literature							
3.	Use insigh	t and creativity for a	a better understa	nding of th	ne domain	of inte	erest.		
Cours	e Outcome):							
1.	Retrieve, a	analyse, and interpr	et published liter	ature/bool	ks providir	ng info	ormati	on re) -
	lated to nic	che areas/focused o	domains.						
2.	Examine te	echnical literature, r	esolve ambiguity	, and dev	elop conclu	usions	5.		
3.	Synthesize	e knowledge and us	se insight and cre	ativity to l	petter und	erstan	d the	dom	ain
	of interest.								
	e Content								
		owards reading pu		e or dook	s related	to nic	ne a	reas	or
10005		s under the guidanc	e of a faculty.						
Mode	of Evaluati	on: Evaluation invo	lves periodic rev	iews by th	ne faculty v	with w	hom	the	
		ered. Assessment	•	-	•				t to
	•	sentation and proje	• •	lant noigi	hage of L	0.0010	•	oper	
Recom	mended by	/ Board of Studies	09-03-2022						
Approv	ved by Acad	demic Council	No.65	Date	17-03-20	22			

BEEE397J	Spo	ecial Project			L	Т 0	P 0	C 3			
Pre-requisite	NIL	-			Syllabus versi						
T Te-requisite					Jyn	<u>abus</u> 1.(
Course Objective	2S:						•				
	vill be able to identify ar	nd solve prob	lems in a	time-bour	d mar	ner.					
	najor approaches and f										
	e results in a clear and										
Course Outcome):										
1. To identify	/, formulate, and solve	e problems u	ising appi	opriate ir	forma	tion a	and a	ap-			
proaches i	in a time-bound manne	r.									
2. To demon	strate an understandir	ng of major a	approache	s, concep	ots, ar	nd cui	rrent	re-			
search find	dings in the area of inte	erest.		•							
	r and concise researc		r publicati	on in cor	feren	ce pro	oceed	d-			
	reviewed journals.		P 0.0.000.0								
inge, poor											
Module Content											
This is an open-e	ended course in which	the student	is expect	ed to wo	rk on	a tim	e bo	und			
	under the supervision										
	on of research articles	in a confere	ence proce	eding or	in a p	peer-r	eview	ved			
Scopus indexed jo	ournal.										
	tion: Evaluation involv	•		-							
•	tered. Assessment on	• •		ightage o	f 20:3	0:50 -	- pro	ject			
report to be subm	itted, presentation and	project reviev	NS.								
Recommended by	/ Board of Studies	09-03-2022	1	1							
Approved by Acad	demic Council	No. 65	Date	17-03-20)22						
			2410								

BEEE398J	s	imulation Proje	ct		L	Т	P	C
Pre-requisite	NIL	,			0 Svil	0 abus	0	3
Fie-lequisite					Syn	abus 1.(
Course Objective	es:							
	will be able to simula	ate a real system						
	e variables which af							
3. Describe t	he performance of	a real system.						
Course Outcome								
	ate the ability to sim	ulate and critical	hu analwaa	the work	vina of	0 r00		
tem.			iy analyse		ang or	alea	u 5y5	-
	d atudy tha difforon	t voriables which	offoot the	aveter o	lohoro	toly		
,	nd study the differen				apora	itery.		
3. Evaluate t	he impact and perfo	ormance of the re	al system					
Module Content								
The student is ex	pected to simulate	and critically ana	lyse the v	vorking of	a rea	syste	em. F	Role
	oles which affect th							
	tep in the process i		ereby the	performa	nce of	each	step	oof
the engineering p	rocess is evaluated.	•						
student has regis	tion: Evaluation in stered. Assessment sitted, presentation a	on the project -	Mark we	•	•			
Recommended by	y Board of Studies	09-03-2022	1	1				
Approved by Aca	demic Council	No. 65	Date	17-03-20	022			

Course code	Course Title				
BEEE401EPower Systems Protection and Switchgear202					
Pre-requisite			Syllabus version		
			1.0		
Course Objective	95				
	al grounding and characteristics of protect	ive relavs			
	d realize the protection schemes of Power	•	onents		
	wledge on the principle and operation of c				
			,		
Course Outcome	PS				
On completion of	the course the student will be able to				
•	ding, relays characteristics and protection s	schemes			
•	priate protection schemes for different pow		nonents		
	ess and execution of circuit breakers	ci system con	nponenta		
	ppropriate type of circuit breaker based or	voltage and	current ratings		
in the system	ppropriate type of circuit breaker based of	i voltage and t	current ratings		
Module:1 Grou	nded Neutral System		4 hours		
Ungrounded and	grounded neutral system; Types of neutral	grounding; E	arthing at		
substation and lin	e structure		·		
Module:2 Prote	ective devices		5 hours		
Review of relay	characteristics; Protection schemes: sim	ple and perc	centage differential		
relay protection s	cheme, Distance protection scheme by sin	nple impedan	ce relay, mho relay		
· ·	lay; Protective transformers: Current tran	• •	•		
Characteristics	- , ,	,	·····,		
	al and Numerical Relay		5 hours		
)	o-Processor based relay; Trivector meter;	Numerical Re	lav: Numerical		
	ithms; Phasor extraction; Smart relay; Sm		- ,		
Module:4 Unit	Protection Schemes		6 hours		
Generator: Stator	protection, rotor protection, loss of excitat	ion; Transforn	ner protection from		
	ernal faults and incipient faults; Bus-bar d				
Transmission line	protection using digital relays; Concepts c	of Digital prote	ction		
Module:5 Arc F	henomenon		4 hours		
Arc: Formation,	Interruption, Extinction; Restriking volta	age: Peak re	estriking voltage,		
Recovery voltage	, rate of rise of recovery voltage, making &	breaking cap	acity; Resistance		
switching: current	chopping, interruption of capacitive current	nt	-		
)))	it Breakers		4 hours		
DC Circuit breakir	ng; Types of Circuit breakers: Oil, Air blast	Vacuum and	SF6: Testing of		
	ype tests and Routine tests	,	J J J		
	emporary Issues		2 hours		
	Total Lecture hours:		30 hours		
Indicative Experi	ments				
1. (i) Performance characteristics of current transformers					
(ii) Earth leakage protection using core balance transformers					
2. (i) Study of Zonal Protection Scheme					
(ii) Testing of breakdown voltage strength of the given sample of transformer oil using					
Transformer oil testing kit					
	ctrode resistance and soil resistivity measu	irements usin	a Meager Farth		
Tester			3		
103(0)					

	(ii) Cable fault location						
4.	(i) Earth fault protection for a 3-\$\phi induction motor using Air circuit breakers						
	(ii) Microcontroller based over and under voltage, IDMT/DMT relay						
5.	Transformer protection using differential protection scheme						
6.	Transformer protection using over current relay						
7.	Performance characteristics over current relay (IDMT Type)						
8.	Protection of three phase induction motor against earth fault using IDMT type Earth Fault Over current relay						
9.	Alternator Protection using						
	(i) Reverse Power Rela	У					
	(ii) Differential relay						
10.	Time graded protection for Radial Feeders						
11.	Fault analysis of 3-						
12.	Generator protection using numeric protective relays, over current, over voltage and						
	under voltage relay						
		Т	otal Labo	ratory Hours 30 hours			
Text Books							
1.	Vladimir Gurevich, "Digital Protective Relays, Problems and Solutions", 2019, CRC Press, Delhi						
2.	Y.G.Paithankar and S.R.Bhide, "Fundamentals of Power System Protection", 2014, 2 nd Edition, PHI Learning Private Limited, Delhi						
Ref	erence Books						
1	J.B.Gupta, "A Course in Power Systems", 2020, 11th Edition, S.K. Kataria & Sons, New Delhi						
2.	C.L.Wadhwa, "Electrical Power Systems", 2017, 7th Edition, New Academic Science Limited, London						
3.	B. Ravindranath, and N. Chander, "Power System Protection & Switchgear", 2019, 2nd Edition, New Age International Private Limited, Chennai						
Mode of Evaluation: CAT, Assignment, Quiz and FAT							
Recommended by Board of Studies 28.05.2022							
Approved by Academic Council No. 66 Date 16-06-2022							

Course code	Course Title				
BEEE401EPower Systems Protection and Switchgear202					
Pre-requisite			Syllabus version		
			1.0		
Course Objective	95				
	al grounding and characteristics of protect	ive relavs			
	d realize the protection schemes of Power	•	onents		
	wledge on the principle and operation of c				
			,		
Course Outcome	PS				
On completion of	the course the student will be able to				
•	ding, relays characteristics and protection s	schemes			
•	priate protection schemes for different pow		nonents		
	ess and execution of circuit breakers	ci system con	nponenta		
	ppropriate type of circuit breaker based or	voltage and	current ratings		
in the system	ppropriate type of circuit breaker based of	i voltage and t	current ratings		
Module:1 Grou	nded Neutral System		4 hours		
Ungrounded and	grounded neutral system; Types of neutral	grounding; E	arthing at		
substation and lin	e structure		·		
Module:2 Prote	ective devices		5 hours		
Review of relay	characteristics; Protection schemes: sim	ple and perc	centage differential		
relay protection s	cheme, Distance protection scheme by sin	nple impedan	ce relay, mho relay		
· ·	lay; Protective transformers: Current tran	• •	•		
Characteristics	- , ,	,	·····,		
	al and Numerical Relay		5 hours		
)	o-Processor based relay; Trivector meter;	Numerical Re	lav: Numerical		
	ithms; Phasor extraction; Smart relay; Sm		- ,		
Module:4 Unit	Protection Schemes		6 hours		
Generator: Stator	protection, rotor protection, loss of excitat	ion; Transforn	ner protection from		
	ernal faults and incipient faults; Bus-bar d				
Transmission line	protection using digital relays; Concepts c	of Digital prote	ction		
Module:5 Arc F	henomenon		4 hours		
Arc: Formation,	Interruption, Extinction; Restriking volta	age: Peak re	estriking voltage,		
Recovery voltage	, rate of rise of recovery voltage, making &	breaking cap	acity; Resistance		
switching: current	chopping, interruption of capacitive current	nt	-		
)))	it Breakers		4 hours		
DC Circuit breakir	ng; Types of Circuit breakers: Oil, Air blast	Vacuum and	SF6: Testing of		
	ype tests and Routine tests	,	J J J		
	emporary Issues		2 hours		
	Total Lecture hours:		30 hours		
Indicative Experi	ments				
1. (i) Performance characteristics of current transformers					
(ii) Earth leakage protection using core balance transformers					
2. (i) Study of Zonal Protection Scheme					
(ii) Testing of breakdown voltage strength of the given sample of transformer oil using					
Transformer oil testing kit					
	ctrode resistance and soil resistivity measu	irements usin	a Meager Farth		
Tester			3		
103(0)					

	(ii) Cable fault location				
4.	(i) Earth fault protection for a 3- ϕ induction motor using Air circuit breakers				
	(ii) Microcontroller based over and u				
5.	Transformer protection using different		on schem	e	
6.	Transformer protection using over o				
7.	Performance characteristics over c	urrent relay (I	DMT Type	e)	
8.	Protection of three phase induction Fault Over current relay	motor agains	st earth fai	ult using IDMT type Earth	
9.	Alternator Protection using				
	(i) Reverse Power Rela	У			
	(ii) Differential relay				
10.	Time graded protection for Radial F	eeders			
11.	Fault analysis of 3- ϕ Alternator				
12.	Generator protection using numer	ic protective	relays, ov	er current, over voltage and	
	under voltage relay				
		Т	otal Labo	ratory Hours 30 hours	
-	t Books				
1.	Vladimir Gurevich, "Digital Protecti Press, Delhi	•			
2.	Y.G.Paithankar and S.R.Bhide, "Fur Edition, PHI Learning Private Limited		f Power S	System Protection", 2014, 2 nd	
Ref	erence Books				
1	J.B.Gupta, "A Course in Power Syste Delhi	ems", 2020, 1	1th Editio	n, S.K. Kataria & Sons, New	
2.	C.L.Wadhwa, "Electrical Power Systems", 2017, 7th Edition, New Academic Science Limited, London				
3.	. B. Ravindranath, and N. Chander, "Power System Protection & Switchgear", 2019, 2nd Edition, New Age International Private Limited, Chennai				
	-				
Мос	de of Evaluation: CAT, Assignment, C	uiz and FAT			
	commended by Board of Studies	28.05.2022			
Δ	proved by Academic Council	No. 66	Date	16-06-2022	

Course Code Course Title L T P					
BEEE402L		3 0	0 3	3	
Pre-requisite	BEEE306L, BEEE306P	Sy	llabus	versio	n
			1.0		
Course Objective					
	analyze the frequency control and voltage regulat			em	
	e generator units economically and calculates the	individual	power		
generation		ant avatan) and	
	the recent developments in the energy management curity in modern power system network	ent systen		s) and	I
System Se					
Course Outcome	S				
On completion of	the course, the students will be able to:				
1 Analyze th	e power system load characteristics				
-	power system for frequency control and voltage re	gulation a	nd anal	vse fo	or
stability		3		,	
3. Schedule	the generation units and economically generate the	e required	power		
2	e system state under abnormal condition and predi	cts the co	ntingen	cies in)
the networ		to no in the	aantra	0.0.04	
5. Realize the	e working of SCADA and Energy Management Sys	stem in the	e contro	centr	e
Module:1 Powe	er System Load Characteristics			5 hou	rs
	n Indian grid; Indian Grid codes; Functions of Na	ational an			
	Requirements of good power system, Necessity				
	atic generation control; System load characteristic		urve and	load	•
	ad factor and diversity factor; Reserves; Case stud	lies			
	Power and Frequency Control			7 hou	
	real power and frequency, Turbine speed gov				
	Frequency Control (LFC) of single area syste controlled and controlled cases, Control area con				
•	system: Static and dynamic responses, tie line with				•
	nomic despatch control with LFC	noquono.	y 6100 0	0110101,	,
	tive Power and Voltage Control			7 hou	rs
	reactive power and voltage control, Generation a	nd absorp	tion of	reactiv	ve
	reactive power control, Automatic Voltage Regula				
	and AVR modelling: Static and dynamic resp				
	Methods of reactive power control on transmiss		m: Con	cept o	of
	Isformer, Series and shunt Reactor, FACTS device	5		6 hou	re
	nulation, Constraints in unit commitment: spinning	rosorvo			
	d other constraints, unit commitment solution meth			•	
programming					
	omic Dispatch			7 hou	rs
•	conomic dispatch and unit commitment (UC), Inc				
	ions without loss and with loss, Economic				
Programming, Lai factors	mbda iteration method, dynamic programming, Bas	se point ai	nd partio	cipatio	'n
	em Security			5 hou	rs
	power system security, security state diagram;	Continger			
	ansmission outages; State estimation; Application				e
estimation		-	•		
	gy Management System			6 hou	rs
Energy control ce	ntre, EMS functions, framework and time frame, da	ita acquisi	tion and	1	

		ADA, RTU and IED, Monitor,	VVAIVIS, FIVIU			
Мо	dule:8	Contemporary Issues			2 hours	
		Tot	al Lecture ho	urs:	45 hours	
Tex	kt Book	5				
1.	1. Allen J Wood, Bruce F Wollenberg, Gerald B Sheble, "Power Generation Operation and Control", 2014, 3 rd Edition, John Wiley Publication					
Re	ference	Books				
1.	Olle. I.	Elgerd, "Electric Energy Sy	stems Theory	/ – An I	ntroduction", 2 nd Edition, 46 th	
	reprint	McGraw-Hill Education, 201	7			
2.	John J. Grainger, William D. Stevenson, Gary W. Chang, "Power System Analysis", 2016, McGraw-Hill Education					
3.	Kundu	r, Prabha S, "Power System S	Stability and Co	ontrol", 3	rd edition, CRC Press, 2017	
Мо	de of Ev	aluation: CAT, Assignment, C	Quiz, FAT			
Re	commer	ided by Board of Studies	28.05.2022			
		y Academic Council	No. 66	Date	16-06-2022	

Course Code	Course Title		LT	P C			
BEEE403L	Restructured Power Systems		3 0	0 3			
Pre-requisite	BEEE304L	Syl	labus ve	ersion			
•			1.0				
Course Objective	28						
1. Explore the res	tructuring of power industry and market models						
•	ous key issues pertaining to deregulation both in the tra	ansmis	ssion and	b			
distribution syster							
3. Illustrate the various power sectors in India and abroad							
	•						
Course Outcome	9S						
On completion of	the course the student will be able to						
1. Comprehend th	ne difference between the conventional & restructured p	ower	system				
operation.							
2. Recognize the	power market operations in various countries						
3. Analyze the key	y issues in transmission and congestion pricing						
4. Solve the unad	dressed problems in electricity market						
	er System Restructuring: An Overview			hours			
	regulated electricity system; Comparison with vertical		•				
	for restructuring of power system: Different entitie						
	onment; International scenario in deregulation: USA, UI	K, Car	nada, No	rway			
and Sweden							
Module:2 Ope	rations in Power Market		6	hours			
Restructuring Mo	odels: PoolCo, bilateral, hybrid models; Role of ISO	; Pow	er exch	ange;			
Market Clearing F	Price; Market operations: Day ahead and hour ahead m	narket,	Elastic a	and			
inelastic market, I	Market power						
Module:3 Marl	ket settlement		6	hours			
UK; Nordic electri	city market; Single auction and double auction market	biddin	g strateg	jies;			
	narket; Analysis of bilateral market; GENCO in pool	marke	et; GEN	CO in			
	Aarket participation issues						
	smission and Congestion Pricing			hours			
	cing; Transmission cost allocation methods: Postage						
	thod, MW Mile method with examples; Congestion F	Pricing	; Conge	stion			
	Transmission rights						
Module:5 Con	gestion Management & ATC		7	hours			
Management of I	nter-zonal and intra- zonal congestion: solution proced	ure, Fo	ormulatio	on of			
	stion sub problem with examples, Formulation of Int						
	examples; Definitions of ATC; OASIS; Methods of ATC	Deter					
Module:6 Anc	illary service Management		6	hours			
	ry services as per NERC, Classification of Ancil						
generation balancing related services, Voltage control and reactive power support devices,							
Black start capability service; NERC standards: CPS1 and CPS2, Ancillary service							
management various countries: USA, UK, Australia, Nordic countries							
	orms in Indian Power Sector			hours			
	lian power sector; Reform initiatives; Availability based			•			
	he Indian power system; Open access issues; Power	excha	nge refo	rms in			
the near future		-					
Module:8 Con	temporary Issues		2	hours			
	Total Lecture hours:		45	hours			

Tex	Text Books					
1.	Shahidehpour, Mohammad, and Alo	,			al Power	
	Systems: Operation: Trading, and V					
2.			Daalder, "	Operation of Re	structured	
	Power Systems", Springer USA, 201	2				
Re	ference Books					
1.	Loi Lei Lai, "Power System Restruc		eregulatio	n: Trading, Perfe	ormance and	
	Information Technology", Wiley, USA	A, 2001				
2.	Marija Illic,Francisco Galiana a	nd Lester	fink, "Pov	ver Systems I	Restructuring:	
	Engineering and Economics", Kluwe					
3.	Venkatesh, P., Manikandan, B. V., S				Power	
	Systems: Analysis, Security and Deregulation", PHI Learning, India, 2012					
Мо	Mode of Evaluation: CAT, Assignment, Quiz, FAT					
	commended by Board of Studies	28.05.2022				
Ap	proved by Academic Council	No. 66	Date	16-06-2022		

Course Code	Course Title		TPC
BEEE404L	High Voltage Engineering	3	0 0 3
Pre-requisite		Syllabus v	
1 to requience		<u>- 1.</u>	
Course Objectiv			0
	ss and analyze the various breakdown mechanisms in c		nuid and
	dielectrics	jaseous, iic	fuiu ariu
	n high voltage, high current and impulse generators		
	ze the various methodologies for high voltage, high of	ourropt on	
-	e measurement		i inpuise
	in the various types of over-voltages in power system	n and mot	hode for
	tion coordination of power apparatus	n and met	nous ioi
IIISUIA			
Course Outcom	25		
	the course, the student will be able to		
•	ze the various types of electrical stress control techn	iques in q	as and
•	m insulation systems	iques in g	
	and analyze the various mechanisms in gas, liquid	and solid (hiplactrics
break			
	n the high voltage direct current, alternating current and	impulse ar	nerators
	ze the various types of high voltage and high cur		
techni		Tone mode	
	ate the impact of various insulation tests of electrical pov	wer appara	tus
	·		
Module:1 High	voltages in electrical systems and electric stress:		6 Hours
	voltage, Electrical insulation and Dielectrics, importa		
	ielectrics, Electric field stresses, gas / vacuum as insul	lator, estim	nation and
	stress, Surge voltage their distribution and control		
Module:2 Con	duction and breakdown in gases		6 Hours
	ing media, Collision Processes, Ionization Processes, T		
	, Current growth in the presence of secondary proc		
	down, the experimental determination of coefficients α		
	gases, time lags for breakdown, streamer theory of b	reakdown	in gases,
	eakdown in non-uniform field and corona discharges		
	duction and breakdown in Liquid, solid dielectrics		6 Hours
	tor, conduction and breakdown in pure liquids, conduc		
	quids, testing of insulating oils, breakdown in solid di	electrics, ii	ntrinsic,
	al and thermal breakdown in composite dielectrics		0.11
	erations of high voltages and currents	<u> </u>	6 Hours
	igh direct current and alternating voltages, generation		
	oping and control of impulse generators; Resonant tra	ansformer	and tesla
	of switching surges		0.11
	surement of high voltages and currents		6 Hours
	high direct current voltages, Measurement of high ac a		
	high current, direct, alternating and impulse, cathode		
	and current measurements, measurement of dielectric		
-	hniques in high voltage measurement, partial discharge	measurem	
•	voltage testing of electrical apparatus	<u> </u>	7 Hours
	tors and bushings, Testing of isolators and circuit br		
	f transformers, Testing of surge arrestors, radio interfere		
	voltage and insulation coordination in electric	power	6 Hours
Notural courses for			rotootion
	or over voltages, lightning switching and temporary over age, Bewley's lattice diagram, and principles of insulat		
ayamsi uver voll	aye, Dewiey's lattice ulayram, and philoples of Insulat		

r								
high voltage and extra high voltage power system, High voltage testing of electrical power apparatus as per International and Indian standards: IEC, ISO								
Мо	dule:8	Contemporary Issues				2 Hours		
					1			
				Tota	al Lecture hours:	45 hours		
Tex	kt Book	S						
1.	M.S.N	aidu and V. Kamaraju, "High	Voltage Engin	eering", T	MH Publications, 6	th edition,		
	2020							
2.	C.L.W	adhwa, "High Voltage Engine	ering", New A	ge Interna	ationals Pvt. Ltd, 6 ^{tt}	ⁿ edition,		
	2020		-	-				
Ref	ference	Books						
1.	E.Kuffe	el, W.S.Zaengl, "High Voltag	e Engineering	: Fundan	nentals", Elsevier, 3	3 rd edition,		
	2016							
2.		lra Arora, Wolfgang, "High Vo		on Engine	ering", New Age			
	Internationals Pvt. Ltd.2 nd edition, 2019							
Mo	Mode of Evaluation: CAT, Assignment, Quiz, FAT							
Red	commer	nded by Board of Studies	28.05.2022					
Арр	proved b	y Academic Council	No. 66	Date	16-06-2022			
		•	1					

Course Code	Course Title	L	Т	Ρ	С		
BEEE405L	Renewable Energy Systems	3	0	0	3		
Pre-requisite BEEE301L, BEEE304L			us v	ersi	on		
		-	1.0				
Course Objective	9S:						
1. Impart in d	epth knowledge of various types of renewable energy sou	rces					
2. Design and	d develop micro-grids using different renewable energy so	urces					
Understan	d the basic principles of operation of the various re	enewal	ole	ener	gу		
systems							
Course Outcome	S:						
•	the course, the student will be able to						
	e different types of renewable energy sources						
-	d develop the solar energy and wind energy systems						
	d the principle of operation and types of tidal and wave en	•••	yster	ns			
	he different types of geothermal energy and biomass energy	gу					
	d discuss the chemical energy sources						
	I for Renewable Energy Sources			hou			
••	on earth; Environmental problems due to fossil fuels; R						
•••	ypes, advantages and disadvantages; Scenario of conve	ntiona	an an	d no	n-		
conventional ener							
	r Energy and Applications			hou			
	olar radiation geometry and measurements; Collectors:						
	d efficiency; Solar energy storage; Applications: water he						
	oumping, drying, tower concept and solar pond; Photovolt						
	energy conversion, PV cell, module, array, I-V and P- Maximum power point tracking; Applications: stand-a						
connected system		aione	anu	gno	L		
	Energy and Applications		7	hοι	irs		
	wind; theory, types of wind turbines; Performance and e	officion					
•••	energy generation schemes; Maximum power point tracki		•				
	rid connected systems	···9, / 1	pno	anon			
	and Wave Energy		7	hοι	irs		
	rgy from tides, working principles, operation methods of p	ower					
•••	; Wave energy: Energy from waves, Wave energy co		•				
••	Thermal Energy Conversion (OTEC) plant; Economics and						
impacts of OTEC							
Module:5 Geot	hermal Energy		6	hou	Jrs		
	ces: Hydrothermal resources, Geo-pressured resource	s, Ho	t dr	y ro	ck		
	a resources, Analysis of geothermal resources, Prim						
geothermal energ	y conversion						
Module:6 Bio-F	Energy		6	hou	ırs		
	ion techniques: Biogas generation, classification and t						
plants; Energy fro	m Industrial, municipal and agricultural wastes; Biomass g						
	ss, pyrolysis, thermochemical processes						
Madula 7 Char	nical Energy			hοι			
	Hydrogen energy: Hydrogen production, storage; Fuel cell: Principle of operation, types of						
Hydrogen energy:				rictic	S		
Hydrogen energy: fuel cells, constru	ction, applications; Battery energy storage: Fundamentals			ristic	s,		
Hydrogen energy: fuel cells, constru types, applications	ction, applications; Battery energy storage: Fundamentals		acte	ristic			

				Total	Lecture Hours	45 hours
Text E	Books	5			I	
1		Frank Kreith, Susan Krumdeick, Principles of Sustainable Energy Systems, CRC press, Taylor and Francis group, 2 nd edition, 2014				
2.	Gilbert M Masters, "Renewable and efficient electric power systems", John Wiley & Sons, 2 nd edition, 2013					
Refere	ence	Books				
1		n Twidell and Tony Weir, Renev Francis, 2006	vable Ene	rgy Reso	urces, Second e	dition, Taylor
2		hari, Dwarkadas Pralhaddas, K rgy sources and emerging techn	-		-	
3	Arthur Pecher and Jens Peter Kofoed, Handbook of Ocean Wave Energy, Springer Edition, 2017				rgy, Springer	
Mode	of Eva	aluation: CAT, Assignment, Quiz	, FAT			
		ded by Board of Studies	28.05.20	22		
Approv	ved b	y Academic Council	No. 66 Date 16-06-2022			

FACTS an BEEE301L, BEEE304L es	αΗνυς	3003Syllabus version1.0					
2 25							
econcepts of real and reactive r	ower control using flexib	le AC					
n systems							
able FACTS controllers for enha	ncing the transmission c	apacity of AC					
system							
	stems and propose augn	nentation plans for					
		d agrica FACTS					
le functional operation and ch	aracteristics of shuft ar	IU SELIES FACTS					
the working principles operation	on and control of LIPEC:	and IPFC					
-	Ū	6 hours					
	enefits; HVDC transmiss	ion, Comparison					
		7 hours					
		C, ICK, ISC, FC-					
		7 hours					
ation: Concept of series ca	pacitive compensation,	voltage stability,					
		erter Type Series					
	stics of SSSC	<u> </u>					
	-inter-second to a la terr	6 hours					
		u characteristics,					
		5 hours					
		,,					
C Transmission		7 hours					
•	· · · · ·						
HVDC system, Recent trends	in HVDC transmission,	HVDC systems in					
		5 hours					
-		2 hours					
emporary 155065		z nours					
	C systems with DC systems s this course, the students will be and the concepts of FACTS and be functional operation and ch the working principles, operation to controllers for mitigating Sub- to f FACTS controllers and be and HVAC systems t connected FACTS devices tion: Midpoint voltage regulation ent voltage instability, Improve generations, working principles STATCOM, Comparison between to controllers of GCSC, TSSC and orking principles and characteristics ansient stability; Variable Imped aracteristics of GCSC, TSSC and orking principles and characteristics bined Controllers low Controller: Operating principles and controller: Operating principles STATCS controller: Operating principles and controller: Operating principles STATCS controller: Operating principles and controller: Operating principles and principles and characteristics bined Controllers low Controller: Operating principles and controller: Operating principles and controller: Operating principles and the Controllers controller: Operating principles and the controller: Operating principles and t	this course, the students will be able to and the concepts of FACTS and HVDC systems be functional operation and characteristics of shunt ar e the working principles, operation, and control of UPFC a TS controllers for mitigating Sub-Synchronous Resonan- ferent Multi Terminal DC systems for existing ac transmis exept of FACTS and soin interconnections; Control of power flow in AC t s of FACTS controllers and benefits; HVDC transmiss and HVAC systems t connected FACTS devices ion: Midpoint voltage regulation for line segmentation, E ent voltage instability, Improvement of transient stat generations, working principles and characteristics of SV STATCOM, Comparison between STATCOM and SVC escanacted FACTS esa ation: Concept of series capacitive compensation, ansient stability; Variable Impedance Type Series Comparacteristics of GCSC, TSSC and TCSC; Switching Conv orking principles and characteristics of SSSC bined Controllers low Controller: Operating principles, conventional tra- line Power Flow Controller: Operating principles and Multifunctional FACTS controllers ial Purpose FACTS Controllers ial Operation science and Thyristor-Controlled Braking ation C Transmission ed HVDC systems, Components of HVDC, Principles HVDC system, Recent trends in HVDC transmission, C Links and Grounding : Mono polar, Homo polar, bipolar, back-to-back HVDC systems for polar, Homo polar, bipolar, back-to-back HVDC systems istems, Grounding and Ground Electrodes for HVDC Systems					

		Tot	al Lecture ho	ours:	45 hours	
Tex	xt Book	S				
1.	Green	R. Andersen, Stig L. Nilssor books, Springer Publications	s, 2020			
2	K.R.Pa	diyar, "HVDC Power Transm	nission Systen	ns", New	Academic Science , 2017	
Re	ference	Books				
1.		an Mathur, Rajiv.K.Varma, ' nission Systems", John Wile			S Controllers for Electrical	
2	Jos Arrillaga, Y. H. Liu, Neville R. Watson, "Flexible Power Transmission: The HVDC Options", Wiley 2007					
3	S Kamakshaiah, V Kamaraju , "HVDC Transmission", Tata McGraw Hill, 2017					
Мо	de of Ev	aluation: CAT, Assignment,	Quiz, FAT			
Re	commer	nded by Board of Studies	28.05.2022			
Ар	proved b	y Academic Council	No. 66	Date	16-06-2022	
			•	•	·	

Course Code	Course Title		LTPC			
BEEE407L	Power Quality		3 0 0 3			
Pre-requisite	BEEE301L	Svi	llabus version			
•		,	1.0			
Course Objective	es	I				
1. Classify power	quality disturbances as per IEEE/IEC stand	lards				
	ance and design a compensator					
	itigate harmonics using filters					
Course Outcome	25					
On completion of	the course the student will be able to					
1. Differentiate va	rious power quality disturbances as per inte	ernational standard	ds			
2. Characterize a	nd evaluate harmonics due to various loads	j.				
3. Apply various s	ensors, equipment for power quality analys	is as per standard	s			
4. Analyze and de	esign compensators and filters for mitigation	n of harmonics				
5. Utilize various	software tools for power quality analysis an	d applications				
	dards of Power Quality		4 hours			
	cepts of transients; Short duration variation					
	variation: Sustained interruption, unde					
	e fluctuation, power frequency variations;					
	EC, ANSI, EN, UL; Computer Busine	ess Equipment	Manufacturers			
	EMA) curve and ITI curve		7 6 6 1 1 1 1			
	ge Sags and Interruptions		7 hours			
	and interruptions; Estimating Voltage Sa					
	ons at the end-user level; Evaluating the ecor or starting sags; Utility system fault; Clearing		nt ride-through			
Module:3 Over		1 135005	6 hours			
	bltage: Capacitor switching, lightning, ferro	rocononco: Mitigo				
	esters, low pass filters, power conditioners;					
	otection of transformers and cables	Lighting protection	Jri. Shiciding,			
Module:4 Harm			6 hours			
	s: Commercial and industrial loads, locating	harmonic source				
	characteristics; Effect of harmonics: Harmo		,			
•	nt harmonic indices for different loads, Inte					
	er Quality Monitoring and Survey		5 hours			
	derations; Power quality measurement ed	uipment: Assessi				
	nent data; Application of intelligent syst					
standards		-,	, , , , , , , , , ,			
Module:6 Powe	er Quality Mitigation		8 hours			
	ance; Compensator design; Mitigation of ha	armonics: Passive				
	M; Dynamic Voltage Restorer (DVR); Activ					
	onic Analysis Tools and Case Study		7 hours			
	Software tools for power quality analysis; Harmonic Calculation Software (HCS); PQ					
analyser; Case studies and reports on impact of renewables integration on power quality						
•	electrical network	- '				
Module:8 Cont	emporary Issues		2 hours			
	Total Lecture hours:		45 hours			
Text Books	igan, Mark F. McGranaghan, Surya San					

	Quality", Tata Mcgraw-Hill, New De	elhi, 2012							
2.	Bhim Singh, Ambrish Chandra, Kar	mal Al-Haddad, "Power Quality: Problems and							
	Mitigation Techniques", John Wiley	/ & Sons Ltd, 2	2015						
Ref	ference Books								
1.	Hirofumi Akagi, Edson Hirokazu Wa	atanabe, Maur	icio Arede	es, "Instantaneous power					
	theory and applications to power co	onditioning", Jo	ohn Wiley	& Sons, 2017					
2.	Mohammad A.SMasoum, Ewald Electrical Machines", Academic Pre			ity in Power Systems and					
Мо	de of Evaluation: CAT, Assignment,	Quiz and FAT							
Ree	commended by Board of Studies	28.05.2022							
Арр	proved by Academic Council	No. 66	Date	16-06-2022					
		-	•						

Course Code	Course Title	L	Т	Ρ	С			
BEEE408L	Reliability Engineering	3 0 0 Syllabus versio						
Pre-requisite	BMAT202L, BMAT202P	Syllabus versio						
1.0 Course Objectives								
· · · · · · · · · · · · · · · · · · ·								
 Create a techniqu 	awareness on principles & methods of reliability and safety engir	heering	tool	s and	1			
2. Compre	hend the importance of reliability and its relationship with quality the factors that influence a system's reliability	and sa	fety					
Course Outcor	nes							
 Examine Construct Evaluate Recognia assessir 	on of this course the student will be able to: the system's reliability requirements and assign sub-systems to to models to analyze and predict reliability performance using blo a design's ability to achieve its reliability and safety goals the various reliability test methodologies and choose the app ng, demonstrating, or increasing reliability how manufacturing variability affects system reliability	ock dia	gram					
Module: 1 F	Reliability Fundamentals	6	hou	rs				
Curve, Interrela	lability, Maintainability, Safety (RAMS), Benefits of Reliability E itionship between RAMS and quality; Product Life Cycle: Pha ; Reliability Engineer: Role and responsibilities; Ethics in reliabi	ises an	id ap	plica				
Module: 2 F	Probability and Statistics for Reliability	6	hou	rs				
	robability concepts: Probability distributions, Probability function eliability Testing, Confidence intervals; Weibull Analysis	is; Sam	pling	j plar	าร:			
Module: 3 F	Reliability and Safety in Design	6	hou	rs				
Reliability Cons	uirements: Allocation, Reliability Modelling, Life Estimation, F siderations; Reliability Analysis Techniques: FMEA, Fault Tro Durability Analysis							
Module: 4 F	Reliability Testing	9	hou	rs				
RGT, ALT, Frac	ng Strategies: Introduction, Design of Experiments, Combinatori as and Root Cause Analysis; Sample Size and Test Duration: C nple size calculation, Life data Analysis							
Module: 5 F	AMS – AERO & MEDICAL	6	hou	rs				
RAMS in Aerospace Domain: ARP 4761 and ARP 4754, System Safety Assessment Process; Introduction: DO-178, DO-254 and DO-160E Standards; Process FMEA, MSG 3 Analysis; RAMS Case Study on Aero Program RAMS in Medical Domain: Medical Devices, Classification and Applicable Reliability and Risk Management Tasks, Standards: ISO 14971, ISO 13485; Post Market Surveillance (PMS) in Medical Devices; RAMS Case Study on Medical Devices								
	AMS – AUTO & INDUSTRIALS	6	hou	rs				
Standard, Warra	Domain: DFR Process in Auto Domain, ISO 26262, Functional S anty Data Management; RAMS Case Study on Auto Systems rial Domain: IEC 61508, Functional Safety Standard; RAMS Ca ms	•			49			
	RAMS - Appliances, Office Automation Products, Consumer	4	hou					

		Electronics				
RAI	MS in App	liances, Case Study: Offic	ce Automation Pro	duct and	Consumer Electro	onics
Мо	dule: 8	Contemporary Issues				2 hours
				Tota	I Lecture Hours	45 hours
Τον	t Book					
ICA	L DOOK					
1.		ng, "An Introduction to I nd Press, Inc., 2019	Reliability and Ma	aintainabil	ity Engineering",	3 rd edition,
2.	CRE Pri 2018	mer – The Reliability En	igineer solution T	ext, Quali	ity Council of Ind	liana, USA,
Ref	erence B	ooks				
1.		nton and Ronald N. Allan, 4 th reprint, Springer India I			ngineering Systen	ns", 2 nd
2.		or, Patrick, and Andre Kley Sons, 2015	yner, "Practical reli	ability eng	gineering", 5 th edit	ion, John
3		K.S. Jardine, Albert H.C. ⁻ lications, Second Edition				ability: Theory
				•	•	
Мо	de of Eval	uation: CAT, Quiz, Assign	ments, FAT			
Rec	commende	ed by Board of Studies	28.05.2022			
Δnr	proved by	Academic Council	No. 66	Date	16-06-2022	

Course Code	Course Title			L	Т	Ρ	С
BEEE409L	Robotics and Control			3	0	0	3
Pre-requisite	BEEE303L, BEEE303P		Syl	labu	IS V	ersi	on
•					1.0		
Course Object	ives						
1. Impart knowl	edge on the kinematics and dynamics of the m	anipulator					
2. Develop a co	ntroller for tracking a desired trajectory and pa	th planning	by a r	obo	t		
	ine vision system in robotic motion control						
Course Outco	ne						
	of this course, the students will be able to						
	he forward and inverse kinematic of robot man						
	dynamics of the robotic manipulator using Eule			road	h		
	an ability to generate joint trajectories for moti						
	e multivariable controller for setpoint tracking a	and disturba	ince re	eject	ion		
5. Apply machi	ne vision system in robotic motion control						
Module:1 Ro	bots				3	hou	ır۹
	; Degrees of freedom; Robot configurations ar	nd concept (of wor	ken	-		
V 1	ent types of grippers: vacuum and other me						
hvdraulic and e	ectrical actuators; Specifications of industrial r	obots	ippinį	у , і	ncu	mat	ю,
Module:2 Kir	ematics of Robot Manipulator	0.000			8	hou	urs
	nes, Rotation matrix, Inverse transformation	ns. Compos	site ro	otati	on	mat	rix.
	ansformations; Robotic manipulator joint co-						
	ations, Roll Pitch Yaw (RPY) transformation, A						
representation	& transformation matrices for standa	Ų				cob	
	n robotic manipulation	-					
Module:3 Dy	namics of Robot Manipulator				8	hou	urs
Lagrangian for	mulation; General expression for kinetic a	nd potentia	al ene	ergy	of	n-li	nk
manipulator;							
	equations of motion; Application of Lagrange		namic	mo	dell	ing	of
	ators; Two link robotic dynamics with distribute	d mass			_		
	jectory and Path Planning		• •			hou	
	ning and avoidance of obstacles; Trajectory for						
	ectory, Quintic polynomial; LSPB (Linear se	egment with	n para	aboi		len	a);
Minimum	Trajectories for paths Specified by via points						
	ntrol design for Robotic system				7	hou	ire
	closed loop control of robotic systems; Traje	otory contr		locit			
Force control: (Computed torque control; Linear and Nonlinear	controller d	u, ve Iesian	ofr	.y u nhat	JIIII	Ы,
	bot machine vision and sensor		coign			hou	irs
	nsor-based system in robotics; Machine visior	system [.] D	escrin	tion			
	ge Processing, Analysis and Application;						
	prs; Visual servo-control		200011		00	1001	Ξ,
-	plication of Robotics				2	hou	urs
	robotics in active perception; Medical robotics;	Autonomou	us veh	nicle	s an	d	
other areas	• • •						
Module:8 Co	ntemporary Issues				2	hou	urs
· · · ·							
	Total Lecture hours:				45	hou	urs
Text Books							

1.	John J. Craig, "Introduction to Robo International, 2022	tics: Mechanic	s and Co	ntrol", 4^{m} Edition, Pearson					
2.	2. Mark W. Spong, Seth Hutchinson, M. Vidyasagar, "Robot Modeling and Control", 2 nd edition, Wiley, 2020								
Re	ference Books								
1.	M.P. Groover, et.al., "Industrial Rol McGraw Hill, 2 nd Indian edition, 20		gy, Progr	amming and applications",					
2.	M O Tokhi, A K M Azad, "Flexible r 2 nd	obot manipula	tor: mode	elling, simulation and control"					
3.	Edition, 2017								
	Ashitava Ghosal, "Robotic fundame	ental Concept a	and Analy	sis", Oxford University Press					
	11 th Impression, 2015								
Мо	Mode of Evaluation: CAT, Assignment, Quiz, FAT.								
Re	commended by Board of Studies	28.05.2022							
Ар	proved by Academic Council	No. 66	Date	16-06-2022					

BEEE410L Machine Learning 3 0 0 Pre-requisite BMAT202L, BMAT202P Syllabus versi 1. Implement the concepts of Machine Learning in socio-economic problem statement 2. Explore supervised learning, unsupervised learning and their applications. 3. Relate the theoretical and practical aspects of Probabilistic Graphical Models. 4. Impart knowledge in advanced learning of ML Algorithms Course Outcomes On completion of this course, the students will be able to 1. Solve regression and classification problems 2. Apply the supervised/unsupervised algorithms to a real problem and report on the expected accuracy that can be achieved by applying the models 3. Evaluate dimensionality reduction problems using PCA and ICA 4. Propose solutions for sequential decision making problems using Reinforcement learning by formulating MDP 5. Implement the ML models and Algorithms for Engineering applications Module:1 Overview of Machine Learning: Learning Reinforcement Learning readient Descent; Batch Gradient Descent; Stochastic Gradient Descent; Data proceptron Learning Algorithm; Multi-layer Perceptron: Feed-forward Network, Feedba Network (RNN); Convolution Medule:2 Module:2 Artificial Meveral Networks 6 Hoo	Course Code	Course Title		L	Т	Ρ	С
1.0 Course Objectives 1.0 Course Objectives 1.10 Course Objectives 1.10 Course Supervised learning, unsupervised learning and their applications. 3. Relate the theoretical and practical aspects of Probabilistic Graphical Models. 4. Impart knowledge in advanced learning of ML Algorithms 1.00 Course Outcomes 00 On completion of this course, the students will be able to 1.10 1. Solve regression and classification problems 2.00 2. Apply the supervised/unsupervised algorithms to a real problem and report on the expected accuracy that can be achieved by applying the models 3. Evaluate dimensionality reduction problems using PCA and ICA 4. Propose solutions for sequential decision making problems using Reinforcement learning by formulating MDP 5. Implement the ML models and Algorithms for Engineering applications 7 hot The Motivation & Applications of Machine Learning: Learning Associations, Classification gradient Descent: Batch Gradient Descent, Stochastic Gradient Descent: Data processing: Under fitting and Overfitting issues 7 hot Module:1 Artificial Neural Networks 7 hot Perceptron Learning Algorithm; Multi-layer Perceptron: Feed-forward Network, Feedba Network; Eack propagation Algorithm; Recurrent Neural Network (RNN); Convolution Neural Network (RNN) 6 Hot Linear Models: Unsupervised Learning	BEEE410L	Machine Learning		3	0	0	3
Course Objectives 1. Implement the concepts of Machine Learning in socio-economic problem statement 2. Explore supervised learning, unsupervised learning and their applications. 3. Relate the theoretical and practical aspects of Probabilistic Graphical Models. 4. Impart knowledge in advanced learning of ML Algorithms Course Outcomes On completion of this course, the students will be able to 1. Solve regression and classification problems 2. Apply the supervised/unsupervised algorithms to a real problem and report on the expected accuracy that can be achieved by applying the models 3. Evaluate dimensionality reduction problems using PCA and ICA 4. Propose solutions for sequential decision making problems using Reinforcement learning by formulating MDP 5. Implement the ML models and Algorithms for Engineering applications Module:1 Overview of Machine Learning: Learning: Learning Associations, Classificati Regression; Supervised Learning; Unsupervised Learning; Reinforcement Learni Gradient Descent; Batch Gradient Descent; Batch gradient Descent; Batch Gradient Descent; Stochastic Gradient Descent; Batch processing; Under fitting and Overfitting issues 7 hot Module:2 Artificial Neural Networks 7 hot Perceptron Learning Methods 6 Hoto Linear Models; Classification: Support Vector Machines, Decision Tree, Random Fores 8 hot Graphical Models: Undirected Graphical M	Pre-requisite	BMAT202L, BMAT202P	Syl	labu	s ve	ersi	on
1. Implement the concepts of Machine Learning in socio-economic problem statement 2. Explore supervised learning, unsupervised learning and their applications. 3. Relate the theoretical and practical aspects of Probabilistic Graphical Models. 4. Impart knowledge in advanced learning of ML Algorithms Course Outcomes On completion of this course, the students will be able to 1. Solve regression and classification problems 2. Apply the supervised/unsupervised algorithms to a real problem and report on the expected accuracy that can be achieved by applying the models 3. Evaluate dimensionality reduction problems using PcA and ICA 4. Propose solutions for sequential decision making problems using Reinforcement learning by formulating MDP 5. Implement the ML models and Algorithms for Engineering applications Module:1 Overview of Machine Learning: Learning Associations, Classificati Regression; Supervised Learning; Unsupervised Learning; Reinforcement Learni Gradient Descent: Batch Gradient Descent, Stochastic Gradient Descent; Data proceeptron Learning Algorithm; Multi-layer Perceptron: Feed-forward Network, Feedba Network (RNN); Convolution Neural Network(CNN) Module:2 Artificial Neural Networks 6 Hoo Linear Models: Undirected Graphical Models 8 hoo Grapincal Models: Undirected Graphical Models, Markov Random Fields				1	.0		
 Explore supervised learning, unsupervised learning and their applications. Relate the theoretical and practical aspects of Probabilistic Graphical Models. Impart knowledge in advanced learning of ML Algorithms Course Outcomes On completion of this course, the students will be able to Solve regression and classification problems Apply the supervised/unsupervised algorithms to a real problem and report on the expected accuracy that can be achieved by applying the models Evaluate dimensionality reduction problems using PCA and ICA Propose solutions for sequential decision making problems using Reinforcement learning by formulating MDP Implement the ML models and Algorithms for Engineering applications Module:1 Overview of Machine Learning: Learning: Reinforcement Learning Gradient Descent: Batch Gradient Descent, Stochastic Gradient Descent; Data processing; Under fitting and Overfitting issues Module:2 Artificial Neural Networks Por Propagation Algorithm; Recurrent Neural Network (RNN); Convolution Neural Network (CNN) Module:3 Supervised Learning Methods Hod Module:3 Probabilistic Graphical Models Module:4 Unsupervised Learning Methods Hod Module:4 Unsupervised Learning Methods Bato Graphical Models; Classification: Support Vector Machines, Decision Tree, Random Fores Regression: Linear Models; Classification; Support Vector Machines, Decision Tree, Random Fores Regression: Linear and Logistic Module:5 Probabilistic Graphical Models Module:6 Reinforcement Learning Module:7 Probabilistic Graphical Mod							
3. Relate the theoretical and practical aspects of Probabilistic Graphical Models. 4. Impart knowledge in advanced learning of ML Algorithms Concompletion of this course, the students will be able to 1. Solve regression and classification problems 2. Apply the supervised/unsupervised algorithms to a real problem and report on the expected accuracy that can be achieved by applying the models 3. Evaluate dimensionality reduction problems using PCA and ICA 4. Propose solutions for sequential decision making problems using Reinforcement learning by formulating MDP 5. Implement the ML models and Algorithms for Engineering applications Module:1 Overview of Machine Learning 7 hoo The Motivation & Applications of Machine Learning: Learning Associations, Classificati Regression; Supervised Learning; Unsupervised Learning; Reinforcement Learni Gradient Descent: Batch Gradient Descent, Stochastic Gradient Descent; Data processing; Under fitting and Overfitting issues 7 hoo Module:2 Artificial Neural Networks 7 hoo Perceptron Learning Algorithm; Multi-layer Perceptron: Feed-forward Network, Feedba Network: Back propagation Algorithm; Recurrent Neural Network (RNN); Convolutior Neural Network (CNN) 6 Hoo Linear Models; Classification: Support Vector Machines, Decision Tree, Random Fores Regression: Linear and Logistic 7 hoo Module:3 Supervised Learning Methods 7 hoo </td <td></td> <td></td> <td></td> <td></td> <td>tem</td> <td>ent</td> <td>S</td>					tem	ent	S
4. Impart knowledge in advanced learning of ML Algorithms Course Outcomes On completion of this course, the students will be able to 1. Solve regression and classification problems 2. Apply the supervised/unsupervised algorithms to a real problem and report on the expected accuracy that can be achieved by applying the models 3. Evaluate dimensionality reduction problems using PCA and ICA 4. Propose solutions for sequential decision making problems using Reinforcement learning by formulating MDP 5. Implement the ML models and Algorithms for Engineering applications Module:1 Overview of Machine Learning 7 hot The Motivation & Applications of Machine Learning: Learning Associations, Classificati Regression; Supervised Learning; Unsupervised Learning; Reinforcement Learni Gradient Descent: Batch Gradient Descent, Stochastic Gradient Descent; Dearning Algorithm; Multi-layer Perceptron: Feed-forward Network, Feedba 7 hot Module:2 Artificial Neural Networks 7 hot Module:3 Supervised Learning Methods 6 Hot Linear Models; Classification: Support Vector Machines, Decision Tree, Random Fores Regression: Linear and Logistic Module:3 Supervised Learning Methods 7 hot Clustering: K-means, Hierarchical; Association; Dimension Reduction: Principal Componer Analysis, Independent Components Analysis 8 hot							
Course Outcomes On completion of this course, the students will be able to 1. Solve regression and classification problems 2. Apply the supervised/unsupervised algorithms to a real problem and report on the expected accuracy that can be achieved by applying the models 3. Evaluate dimensionality reduction problems using PCA and ICA 4. Propose solutions for sequential decision making problems using Reinforcement learning by formulating MDP 5. Implement the ML models and Algorithms for Engineering applications Module:1 Overview of Machine Learning 7 hot The Motivation & Applications of Machine Learning: Learning Associations, Classificatil Regression; Supervised Learning; Unsupervised Learning; Reinforcement Learni Gradient Descent: Batch Gradient Descent, Stochastic Gradient Descent; Data p processing; Under fitting and Overfitting issues 7 hot Module:2 Artificial Neural Networks 7 hot 7 hot Perceptron Learning Algorithm; Multi-layer Perceptron: Feed-forward Network, Feedba Network: Back propagation Algorithm; Recurrent Neural Network (RNN); Convolution Module:3 Supervised Learning Methods 6 Hot Linear Models; Classification: Support Vector Machines, Decision Tree, Random Fores Regression: Linear and Logistic Module:4 Unsupervised learning Methods 7 hot Clustering: K-means, Hi		· · · · ·	cai M	odels	s.		
On completion of this course, the students will be able to 1. Solve regression and classification problems 2. Apply the supervised/unsupervised algorithms to a real problem and report on the expected accuracy that can be achieved by applying the models 3. Evaluate dimensionality reduction problems using PCA and ICA 4. Propose solutions for sequential decision making problems using Reinforcement learning by formulating MDP 5. Implement the ML models and Algorithms for Engineering applications Module:1 Overview of Machine Learning: Learning: Associations, Classificati Regression; Supervised Learning; Unsupervised Learning; Reinforcement Learni Gradient Descent: Batch Gradient Descent, Stochastic Gradient Descent; Data processing: Under fitting and Overfitting issues Module:2 Artificial Neural Networks 7 hor Perceptron Learning Algorithm; Multi-layer Perceptron: Feed-forward Network, Feedba Network (CNN) 6 Hor Module:3 Supervised Learning Methods 6 Hor Linear Models; Classification: Support Vector Machines, Decision Tree, Random Fores Regression: Linear and Logistic Module:5 Probabilistic Graphical Models 8 hor Graphical Models: Undirected Graphical Models, Markov Random Fields; Directed Graphi 8 hor Graphical Models: Undirected Graphical Models, Markov Random Fields; Directed Graphi 8 hor Graphical Models: Undirected Graphical Models, Markov Random Field	4. Impart kno	wiedge in advanced learning of ML Algoninms					
On completion of this course, the students will be able to 1. Solve regression and classification problems 2. Apply the supervised/unsupervised algorithms to a real problem and report on the expected accuracy that can be achieved by applying the models 3. Evaluate dimensionality reduction problems using PCA and ICA 4. Propose solutions for sequential decision making problems using Reinforcement learning by formulating MDP 5. Implement the ML models and Algorithms for Engineering applications Module:1 Overview of Machine Learning: Learning: Associations, Classificati Regression; Supervised Learning; Unsupervised Learning; Reinforcement Learni Gradient Descent: Batch Gradient Descent, Stochastic Gradient Descent; Data processing: Under fitting and Overfitting issues Module:2 Artificial Neural Networks 7 hor Perceptron Learning Algorithm; Multi-layer Perceptron: Feed-forward Network, Feedba Network; Back propagation Algorithm; Recurrent Neural Network (RNN); Convolution Neural Network (CNN) 6 Hor Module:3 Supervised Learning Methods 7 hor Module:4 Unsupervised learning Methods 7 hor Module:5 Probabilistic Graphical Models, Markov Random Fields; Directed Graphi Models: Markov Random Fields; Directed Graphi Models: Bayesian Networks; Conditional Independence properties: Hidden Markov Mode Conditional Random Fields (CRFs) 8 hor Module:6 Reinforcement Learning: Exploration Strategies; Rewards and Actions; Markov Reses and Act	Course Outcome	S					
1. Solve regression and classification problems 2. Apply the supervised/unsupervised algorithms to a real problem and report on the expected accuracy that can be achieved by applying the models 3. Evaluate dimensionality reduction problems using PCA and ICA 4. Propose solutions for sequential decision making problems using Reinforcement learning by formulating MDP 5. Implement the ML models and Algorithms for Engineering applications Module:1 Overview of Machine Learning 7 hot The Motivation & Applications of Machine Learning: Learning Associations, Classificati Regression; Supervised Learning; Unsupervised Learning; Reinforcement Learni Gradient Descent: Batch Gradient Descent, Stochastic Gradient Descent; Data processing; Under fitting and Overfitting issues 7 hot Module:2 Artificial Neural Networks 7 hot Module:3 Supervised Learning Methods 6 Hot Linear Models; Classification: Support Vector Machines, Decision Tree, Random Fores Regression: Linear and Logistic Module:3 Forobabilistic Graphical Models 8 hot Graphical Models: Undirected Graphical Models, Markov Random Fields; Directed Graphical Models: Bayesian Network; Conditional Independence properties: Hidden Markov Mode Conditional Random Fields(CRFs) 8 hot Module:5 Reinforcement Learning, Model-Based Learning: Value Iteration, Policy Iteration; Temporal Difference Learning: Exploration to Continuous							
 Apply the supervised/unsupervised algorithms to a real problem and report on the expected accuracy that can be achieved by applying the models Evaluate dimensionality reduction problems using PCA and ICA Propose solutions for sequential decision making problems using Reinforcement learning by formulating MDP Implement the ML models and Algorithms for Engineering applications Module:1 Overview of Machine Learning 7 hot The Motivation & Applications of Machine Learning: Learning Associations, Classificati Regression; Supervised Learning; Unsupervised Learning; Reinforcement Learni Gradient Descent: Batch Gradient Descent, Stochastic Gradient Descent; Data processing; Under fitting and Overfitting issues Module:2 Artificial Neural Networks 7 hot Perceptron Learning Algorithm; Multi-layer Perceptron: Feed-forward Network, Feedba Network: Back propagation Algorithm; Recurrent Neural Network (RNN); Convolution Neural Networks; Classification: Support Vector Machines, Decision Tree, Random Fores Regression: Linear and Logistic Module:3 Supervised learning Methods 6 Hot Clustering: K-means, Hierarchical; Association; Dimension Reduction: Principal Componer Analysis, Independent Components Analysis Module:5 Probabilistic Graphical Models, Markov Random Fields; Directed Graphi Module:6 Reinforcement Learning, Model-Based Learning: Value Iteration, Policy Iteration Freeder Reinforcement Learning; Exploration Strategies; Rewards and Actions; Markov Decision Process (MDP); Generalization to Continuous States; Q-learning Module:7 Contemporary Issues 2 hot 							
expected accuracy that can be achieved by applying the models 3. Evaluate dimensionality reduction problems using PCA and ICA 4. Propose solutions for sequential decision making problems using Reinforcement learning by formulating MDP 5. Implement the ML models and Algorithms for Engineering applications Module:1 Overview of Machine Learning 7 hoo The Motivation & Applications of Machine Learning: Learning Associations, Classificati Regression; Supervised Learning; Unsupervised Learning; Reinforcement Learni Gradient Descent: Batch Gradient Descent, Stochastic Gradient Descent; Data p processing; Under fitting and Overfitting issues Module:2 Artificial Neural Networks 7 hoo Perceptron Learning Algorithm; Multi-layer Perceptron: Feed-forward Network, Feedba Network: Back propagation Algorithm; Recurrent Neural Network (RNN); Convolutior Neural Network(CNN) Module:3 Supervised Learning Methods 6 Hoo Linear Models; Classification: Support Vector Machines, Decision Tree, Random Fores Regression: Linear and Logistic Module:4 Unsupervised learning Methods 7 hoo Graphical Models: Undirected Graphical Models, Markov Random Fields; Directed Graphi Graphical Models: Undirected Graphical Models, Markov Random Fields; Directed Graphi Module:6 Reinforcement Learning, Model-Based Learning: Value Iteration, Policy Iteration; Temporal Difference Learning; Exploration Strategies; Rewards and Actions; Markov Decision Process (MDP); Generalization to Continuous States; Q-learning Module:7 Contemporary Issues 2 hoo Total Lecture hours: 45 hoo Text Books 1. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014			nd rep	oort o	on th	ne	
4. Propose solutions for sequential decision making problems using Reinforcement learning by formulating MDP 5. Implement the ML models and Algorithms for Engineering applications Module:1 Overview of Machine Learning 7 hot The Motivation & Applications of Machine Learning: Learning, Reinforcement Learni Graverised Learning; Unsupervised Learning; Reinforcement Learni Gradient Descent: Batch Gradient Descent, Stochastic Gradient Descent; Data pi processing; Under fitting and Overfitting issues Module:2 Artificial Neural Networks 7 hot Perceptron Learning Algorithm; Multi-layer Perceptron: Feed-forward Network, Feedba Network: Back propagation Algorithm; Recurrent Neural Network (RNN); Convolutior Neural Network(CNN) Module:3 Supervised Learning Methods 6 Hot Linear Models; Classification: Support Vector Machines, Decision Tree, Random Fores Regression: Linear and Logistic 7 hot Module:4 Unsupervised learning Methods 7 hot 7 hot Clustering: K-means, Hierarchical; Association; Dimension Reduction: Principal Component Analysis 8 hot Module:5 Probabilistic Graphical Models 8 hot Graphical Models: Undirected Graphical Models, Markov Random Fields; Directed Graphi 8 hot Module:6 Reinforcement Learning, Model-Based Learning; Value Iteration, Policy			•				
learning by formulating MDP 5. Implement the ML models and Algorithms for Engineering applications Module:1 Overview of Machine Learning 7 hot The Motivation & Applications of Machine Learning: Learning Associations, Classificati Regression; Supervised Learning; Unsupervised Learning; Reinforcement Learni Gradient Descent: Batch Gradient Descent, Stochastic Gradient Descent; Data processing; Under fitting and Overfitting issues 7 hot Module:2 Artificial Neural Networks 7 hot Perceptron Learning Algorithm; Multi-layer Perceptron: Feed-forward Network, Feedbaa Network: Back propagation Algorithm; Recurrent Neural Network (RNN); Convolution Neurolk:3 Supervised Learning Methods 6 Hot Linear Models; Classification: Support Vector Machines, Decision Tree, Random Fores Regression: Linear and Logistic Module:4 Unsupervised learning Methods 7 hot Clustering: K-means, Hierarchical; Association; Dimension Reduction: Principal Componer Analysis 8 hot Graphical Models: Undirected Graphical Models 8 hot Graphical Models: Undirected Graphical Models, Markov Random Fields; Directed Graphi Module:5 Module:5 Probabilistic Graphical Models, Markov Random Fields; Directed Graphi Module:6 Module:6 Reinforcement Learning; Exploration Strategies; Rewards a	3. Evaluate c	imensionality reduction problems using PCA and ICA					
5. Implement the ML models and Algorithms for Engineering applications Module:1 Overview of Machine Learning 7 hoo The Motivation & Applications of Machine Learning: Learning Associations, Classificati Regression; Supervised Learning; Unsupervised Learning; Reinforcement Learni Gradient Descent: Batch Gradient Descent, Stochastic Gradient Descent; Data proprocessing; Under fitting and Overfitting issues 7 hoo Module:2 Artificial Neural Networks 7 hoo Perceptron Learning Algorithm; Multi-layer Perceptron: Feed-forward Network, Feedbaa Network (RNN); Convolution Neural Network Back propagation Algorithm; Recurrent Neural Network (RNN); Convolution Neural Network Back propagation Algorithm; Recurrent Neural Network (RNN); Convolution Neural Network Supervised Learning Methods 6 Hoo Linear Models; Classification: Support Vector Machines, Decision Tree, Random Fores Regression: Linear and Logistic Module:3 Supervised learning Methods 7 hoo Clustering: K-means, Hierarchical; Association; Dimension Reduction: Principal Componer Analysis, Independent Components Analysis Module:5 Probabilistic Graphical Models, Markov Random Fields; Directed Graphin 8 hoo Graphical Models: Undirected Graphical Models, Markov Random Fields; Directed Graphin 8 hoo			Reinfo	orcer	men	t	
Module:1 Overview of Machine Learning 7 hot The Motivation & Applications of Machine Learning: Learning Associations, Classificati Regression; Supervised Learning; Unsupervised Learning; Reinforcement Learni Gradient Descent: Batch Gradient Descent, Stochastic Gradient Descent; Data pr processing; Under fitting and Overfitting issues Module:2 Artificial Neural Networks 7 hot Perceptron Learning Algorithm; Multi-layer Perceptron: Feed-forward Network, Feedba 7 hot Network: Back propagation Algorithm; Recurrent Neural Network (RNN); Convolution Neural Network(CNN) Module:3 Supervised Learning Methods 6 Hot Linear Models; Classification: Support Vector Machines, Decision Tree, Random Fores Regression: Linear and Logistic Module:4 Unsupervised learning Methods 7 hot Clustering: K-means, Hierarchical; Association; Dimension Reduction: Principal Componer Analysis, Independent Components Analysis Module:5 Probabilistic Graphical Models 8 hot Graphical Models: Undirected Graphical Models, Markov Random Fields; Directed Graphi Models: Bayesian Networks; Conditional Independence properties: Hidden Markov Mode Conditional Random Fields(CRFs) 8 hot Elements of Reinforcement Learning, Model-Based Learning: Value Iteration, Policy Iteration; Temporal Difference Learning: Exploratio							
The Motivation & Applications of Machine Learning: Learning Associations, Classificati Regression; Supervised Learning; Unsupervised Learning; Reinforcement Learni Gradient Descent: Batch Gradient Descent, Stochastic Gradient Descent; Data processing; Under fitting and Overfitting issues Module:2 Artificial Neural Networks 7 hot Perceptron Learning Algorithm; Multi-layer Perceptron: Feed-forward Network, Feedban Network: Back propagation Algorithm; Recurrent Neural Network (RNN); Convolution Neural Network(CNN) 6 Hot Module:3 Supervised Learning Methods 6 Hot Linear Models; Classification: Support Vector Machines, Decision Tree, Random Fores Regression: Linear and Logistic 7 hot Module:4 Unsupervised learning Methods 7 hot Clustering: K-means, Hierarchical; Association; Dimension Reduction: Principal Componer Analysis, Independent Components Analysis Module:5 Probabilistic Graphical Models 8 hot Graphical Models: Undirected Graphical Models, Markov Random Fields; Directed Graphin 8 hot Graphical Models: Bayesian Networks; Conditional Independence properties: Hidden Markov Mode 8 hot Elements of Reinforcement Learning: Exploration Strategies; Rewards and Actions; Markov Decision Process (MDP); Generalization to Continuou	5. Implement	the ML models and Algorithms for Engineering application	ions				
Regression; Supervised Learning; Unsupervised Learning; Reinforcement Learning; Gradient Descent: Batch Gradient Descent, Stochastic Gradient Descent; Data processing; Module:2 Artificial Neural Networks 7 hor Perceptron Learning Algorithm; Multi-layer Perceptron: Feed-forward Network, Feedbaa Network: Back propagation Algorithm; Recurrent Neural Network (RNN); Convolution Network: Back propagation Algorithm; Recurrent Neural Network (RNN); Convolution Module:3 Supervised Learning Methods 6 Hor Linear Models; Classification: Support Vector Machines, Decision Tree, Random Fores Regression: Linear and Logistic 7 hor Module:4 Unsupervised learning Methods 7 hor Clustering: K-means, Hierarchical; Association; Dimension Reduction: Principal Componer Analysis, Independent Components Analysis 8 hor Graphical Models: Undirected Graphical Models, Markov Random Fields; Directed Graphical Models 8 hor Graphical Models: Networks; Conditional Independence properties: Hidden Markov Mode 8 hor Elements of Reinforcement Learning, Model-Based Le	Module:1 Over	view of Machine Learning			7	hοι	irs
Gradient Descent: Batch Gradient Descent; Data pipocessing; Under fitting and Overfitting issues Module:2 Artificial Neural Networks 7 hor Perceptron Learning Algorithm; Multi-layer Perceptron: Feed-forward Network, Feedback Network: Back propagation Algorithm; Recurrent Neural Network (RNN); Convolution Network: Back propagation Algorithm; Recurrent Neural Network (RNN); Convolution Network: Back propagation Algorithm; Recurrent Neural Network (RNN); Convolution Network: Back propagation Algorithm; Recurrent Neural Network (RNN); Convolution Module:3 Supervised Learning Methods 6 Hot Grapsical Module:4 Unsupervised learning Methods 7 hot Clustering: K-means, Hierarchical; Association; Dimension Reduction: Principal Componer Analysis Module:5 Probabilistic Graphical Models 8 hot Graphical Models; Directed Graphical Models, Mark	The Motivation &	Applications of Machine Learning: Learning Associat	ions,	Clas	ssifi	catio	on,
processing; Under fitting and Overfitting issuesModule:2Artificial Neural Networks7 horPerceptronLearning Algorithm; Multi-layer Perceptron: Feed-forward Network, FeedbarNetwork:Back propagationNetwork:Back propagationNetwork:Back propagationModule:3Supervised Learning MethodsModule:4Unsupervised Learning MethodsModule:4Unsupervised learning MethodsModule:5Probabilistic Graphical ModelsModule:5Probabilistic Graphical ModelsModule:5Probabilistic Graphical ModelsModule:6Reinforcement LearningBayesian Networks; Conditional Independence properties: Hidden Markov Mode Conditional Random Fields(CRFs)Module:7Contemporary IssuesModule:7Contemporary IssuesModule:7Contemporary Issues1Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014							
Module:2Artificial Neural Networks7 hotPerceptronLearning Algorithm; Multi-layer Perceptron: Feed-forward Network, FeedbaaNetwork:Back propagation Algorithm; Recurrent Neural Network (RNN); ConvolutionNeural Network(CNN)6 HotModule:3Supervised Learning Methods6 HotLinear Models; Classification: Support Vector Machines, Decision Tree, Random ForesRegression:Linear and LogisticModule:4Unsupervised learning Methods7 hotClustering:K-means, Hierarchical; Association; Dimension Reduction: Principal ComponerAnalysis, Independent Components Analysis8 hotModule:5Probabilistic Graphical Models8 hotGraphical Models:Undirected Graphical Models, Markov Random Fields; Directed GraphicModelModule:6Reinforcement Learning, Model-Based Learning: Value Iteration, Policy8 hotIteration; Temporal Difference Learning:Exploration Strategies; Rewards and Actions;Markov Decision Process (MDP); Generalization to Continuous States; Q-learning2 hotModule:7Contemporary Issues2 hotTotal Lecture hours:45 hotText Books1.Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014			escer	nt; D	Data	pr	e-
Perceptron Learning Algorithm; Multi-layer Perceptron: Feed-forward Network, Feedbar Network: Back propagation Algorithm; Recurrent Neural Network (RNN); Convolution Module:3 Supervised Learning Methods 6 Hot Linear Models; Classification: Support Vector Machines, Decision Tree, Random Fores Regression: Linear and Logistic 7 hot Module:4 Unsupervised learning Methods 7 hot Clustering: K-means, Hierarchical; Association; Dimension Reduction: Principal Component Analysis, Independent Components Analysis 8 hot Graphical Models: Undirected Graphical Models; 8 hot Graphical Models: Undirected Graphical Models; Narkov Model Module:5 Probabilistic Graphical Models, Markov Random Fields; (CRFs) Model Module:6<						_	
Network: Back propagation Algorithm; Recurrent Neural Network (RNN); Convolution Neural Network (CNN) Module:3 Supervised Learning Methods 6 Hot Linear Models; Classification: Support Vector Machines, Decision Tree, Random Fores Regression: Linear and Logistic Module:4 Unsupervised learning Methods 7 hot Clustering: K-means, Hierarchical; Association; Dimension Reduction: Principal Componer Analysis Module:5 Probabilistic Graphical Models 8 hot Graphical Models: Undirected Graphical Models, Markov Random Fields; Directed Graphical Models: Bayesian Networks; Conditional Independence properties: Hidden Markov Mode Conditional Random Fields(CRFs) 8 hot Module:6 Reinforcement Learning, Model-Based Learning: Value Iteration, Policy Iteration; Temporal Difference Learning: Exploration Strategies; Rewards and Actions; Markov Decision Process (MDP); Generalization to Continuous States; Q-learning Module:7 Contemporary Issues 2 Anot Text Books 1. 1. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014							
Neural Network(CNN) 6 Hou Module:3 Supervised Learning Methods 6 Hou Linear Models; Classification: Support Vector Machines, Decision Tree, Random Fores Regression: Linear and Logistic Module:4 Unsupervised learning Methods 7 hou Clustering: K-means, Hierarchical; Association; Dimension Reduction: Principal Componer Analysis, Independent Components Analysis Module:5 Probabilistic Graphical Models 8 hou Graphical Models: Undirected Graphical Models, Markov Random Fields; Directed Graphic Models: Bayesian Networks; Conditional Independence properties: Hidden Markov Mode Conditional Random Fields(CRFs) 8 hou 8 hou Module:6 Reinforcement Learning, Model-Based Learning: Value Iteration, Policy 8 hou Elements of Reinforcement Learning: Exploration Strategies; Rewards and Actions; Markov Decision Process (MDP); Generalization to Continuous States; Q-learning Module:7 Contemporary Issues 2 hou Total Lecture hours: 45 hou Text Books 1. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014							
Module:3Supervised Learning Methods6 HouLinear Models; Classification: Support Vector Machines, Decision Tree, Random ForesRegression: Linear and LogisticModule:4Unsupervised learning Methods7 houClustering: K-means, Hierarchical; Association; Dimension Reduction: Principal ComponerAnalysis, Independent Components AnalysisModule:5Probabilistic Graphical Models8 houGraphical Models: Undirected Graphical Models, Markov Random Fields; Directed GraphicModule:6Reinforcement Learning8 houConditional Random Fields(CRFs)8 houModule:6Reinforcement Learning, Model-Based Learning: Value Iteration, PolicyIteration; Temporal Difference Learning: Exploration Strategies; Rewards and Actions;Markov Decision Process (MDP); Generalization to Continuous States; Q-learningModule:7Contemporary Issues2 houTotal Lecture hours:45 houText Books1.Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014			NN);	Con	volu	tion	al
Linear Models; Classification: Support Vector Machines, Decision Tree, Random Fores Regression: Linear and LogisticModule:4Unsupervised learning Methods7 horClustering: K-means, Hierarchical; Association; Dimension Reduction: Principal Componer Analysis, Independent Components Analysis8 horModule:5Probabilistic Graphical Models8 horGraphical Models: Undirected Graphical Models, Markov Random Fields; Directed Graphic Module:58 horModule:6Reinforcement Learning8 horElements of Reinforcement Learning, Model-Based Learning: Value Iteration, Policy Iteration; Temporal Difference Learning: Exploration Strategies; Rewards and Actions; Markov Decision Process (MDP); Generalization to Continuous States; Q-learning2 horModule:7Contemporary Issues2 horTotal Lecture hours:45 hor1.Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014					6	Hou	ire
Regression: Linear and Logistic 7 hot Module:4 Unsupervised learning Methods 7 hot Clustering: K-means, Hierarchical; Association; Dimension Reduction: Principal Componer Analysis, Independent Components Analysis Module:5 Probabilistic Graphical Models 8 hot Graphical Models: Undirected Graphical Models, Markov Random Fields; Directed Graphic Models: Bayesian Networks; Conditional Independence properties: Hidden Markov Mode Conditional Random Fields(CRFs) Module:6 Reinforcement Learning 8 hot Elements of Reinforcement Learning, Model-Based Learning: Value Iteration, Policy Iteration; Temporal Difference Learning: Exploration Strategies; Rewards and Actions; Markov Decision Process (MDP); Generalization to Continuous States; Q-learning Module:7 Contemporary Issues 2 hot Total Lecture hours: 45 hot Text Books 1. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014			Rar	ndom			
Module:4Unsupervised learning Methods7 horClustering: K-means, Hierarchical; Association; Dimension Reduction: Principal Componer Analysis, Independent Components AnalysisStateModule:5Probabilistic Graphical Models8 horGraphical Models: Undirected Graphical Models, Markov Random Fields; Directed Graphic Models: Bayesian Networks; Conditional Independence properties: Hidden Markov Mode Conditional Random Fields(CRFs)8 horModule:6Reinforcement Learning8 horElements of Reinforcement Learning, Model-Based Learning: Value Iteration, Policy Iteration; Temporal Difference Learning: Exploration Strategies; Rewards and Actions; Markov Decision Process (MDP); Generalization to Continuous States; Q-learning2 horModule:7Contemporary Issues2 horText Books1.Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014			, itai	luon		163	ι,
Clustering: K-means, Hierarchical; Association; Dimension Reduction: Principal Componer Analysis, Independent Components Analysis Module:5 Probabilistic Graphical Models 8 hor Graphical Models: Undirected Graphical Models, Markov Random Fields; Directed Graphic 8 hor Module:5 Bayesian Networks; Conditional Independence properties: Hidden Markov Mode Conditional Random Fields(CRFs) 8 hor Module:6 Reinforcement Learning 8 hor Elements of Reinforcement Learning, Model-Based Learning: Value Iteration, Policy 8 hor Iteration; Temporal Difference Learning: Exploration Strategies; Rewards and Actions; Markov Decision Process (MDP); Generalization to Continuous States; Q-learning Module:7 Contemporary Issues 2 hor Text Books 1. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014					7	hοι	irs
Analysis, Independent Components Analysis Module:5 Probabilistic Graphical Models 8 hot Graphical Models: Undirected Graphical Models, Markov Random Fields; Directed Graphic Models; Directed Graphic Models; Directed Graphic Models: Bayesian Networks; Conditional Independence properties: Hidden Markov Mode Conditional Random Fields(CRFs) Module:6 Reinforcement Learning 8 hot Module:6 Reinforcement Learning, Model-Based Learning: Value Iteration, Policy Iteration; Temporal Difference Learning: Exploration Strategies; Rewards and Actions; Markov Decision Process (MDP); Generalization to Continuous States; Q-learning 2 hot Module:7 Contemporary Issues 2 hot Text Books 45 hot 1. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014			ncipa	l Cor			
Graphical Models: Undirected Graphical Models, Markov Random Fields; Directed Graphic Models: Bayesian Networks; Conditional Independence properties: Hidden Markov Mode Conditional Random Fields(CRFs) Module:6 Reinforcement Learning 8 hot Elements of Reinforcement Learning, Model-Based Learning: Value Iteration, Policy Iteration; Temporal Difference Learning: Exploration Strategies; Rewards and Actions; Markov Decision Process (MDP); Generalization to Continuous States; Q-learning Module:7 Contemporary Issues 2 hot Total Lecture hours: 45 hot 1. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014							
Models: Bayesian Networks; Conditional Independence properties: Hidden Markov Model Conditional Random Fields(CRFs) 8 hot Module:6 Reinforcement Learning 8 hot Elements of Reinforcement Learning, Model-Based Learning: Value Iteration, Policy Iteration; Temporal Difference Learning: Exploration Strategies; Rewards and Actions; Markov Decision Process (MDP); Generalization to Continuous States; Q-learning Module:7 Contemporary Issues 2 hot Text Books 1. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014	Module:5 Proba	abilistic Graphical Models			8	hοι	ırs
Models: Bayesian Networks; Conditional Independence properties: Hidden Markov Model Conditional Random Fields(CRFs) 8 hot Module:6 Reinforcement Learning 8 hot Elements of Reinforcement Learning, Model-Based Learning: Value Iteration, Policy Iteration; Temporal Difference Learning: Exploration Strategies; Rewards and Actions; Markov Decision Process (MDP); Generalization to Continuous States; Q-learning Module:7 Contemporary Issues 2 hot Text Books 1. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014	Graphical Models	: Undirected Graphical Models, Markov Random Fields;	Direc	cted	Gra	phic	cal
Module:6 Reinforcement Learning 8 hor Elements of Reinforcement Learning, Model-Based Learning: Value Iteration, Policy Iteration; Temporal Difference Learning: Exploration Strategies; Rewards and Actions; Markov Decision Process (MDP); Generalization to Continuous States; Q-learning 2 hor Module:7 Contemporary Issues 2 hor Total Lecture hours: 45 hor 1. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014			en Ma	arkov	v Mo	odel	IS,
Elements of Reinforcement Learning, Model-Based Learning: Value Iteration, Policy Iteration; Temporal Difference Learning: Exploration Strategies; Rewards and Actions; Markov Decision Process (MDP); Generalization to Continuous States; Q-learning Module:7 Contemporary Issues 2 hor Total Lecture hours: 45 hor Text Books 1. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014						_	
Iteration; Temporal Difference Learning: Exploration Strategies; Rewards and Actions; Markov Decision Process (MDP); Generalization to Continuous States; Q-learning Module:7 Contemporary Issues 2 hor Total Lecture hours: 45 hor Text Books 1. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014						hοι	ırs
Markov Decision Process (MDP); Generalization to Continuous States; Q-learning Module:7 Contemporary Issues 2 hor Total Lecture hours: 45 hor Text Books Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014							
Module:7 Contemporary Issues 2 hor Total Lecture hours: 45 hor Text Books 1. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014					ns;		
Total Lecture hours: 45 hou Text Books 1. 1. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014			leam	ing	<u> </u>	hai	
Text Books 1. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014	Module:/ Cont	emporary issues			2	ποι	115
Text Books 1. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014		Total Lecture hours	-		45	hoi	ire
1. Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, 3rd edition, 2014	Text Books		-		-10		
		lin "Introduction to Machine Learning" MIT Press 3rd e	dition	201	14		
A COMPANY AND A CO				-)	
3. Tom Mitchell, "Machine Learning", McGraw-Hill, 1997			110	, z	.012		
Reference Books							
1. Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, Reprint,			prina	er, R	epri	nt.	
2016	2016				•		
2. Stephen Marsland, "Machine Learning – An Algorithmic Perspective", Chapman and	2. Stephen Mars	sland, "Machine Learning – An Algorithmic Perspective"	", Cha	apma	an a	nd	

Hall, CRC Press, 2nd edition, 2014			
Mode of Evaluation: CAT, Assignment,	Quiz, FAT		
Recommended by Board of Studies	28.05.2022		
Approved by Academic Council	No. 66	Date	16-06-2022

Course Objectives 1. Impart artificial intelligence principles, techniques and its history 2. Assess knowledge representation, problem solving, and learning methering problems 3. Develop intelligent systems by assembling solutions to concrete compuproblems Course Outcomes On completion of this course, the students will be able to 1. Evaluate Artificial Intelligence methods and describe their foundations 2. Apply the principles of Al in solutions that require problem solving, infer perception, knowledge representation and learning 3. Demonstrate the knowledge of reasoning and representation for solving problems 4. Analyze and illustrate search and planning algorithms in problem solvir 5. Implement the Al models for Engineering applications Module:1 Agents & Environment Benefits and risks in Al, Al technique; Agents: Structure, behavior, intelliger Environment: Nature of environment, task environment, properties; Types of based agents, utility-based agents, learning agents Module:2 Problem Solving Problem solving agents; Searching for Solutions; Uninformed Search Strat first search, depth limited search, bidirectional search; Ir strategies: Greedy best-first search, A* search, AO* search; Memory bou search; Optimization problems: Hill climbing search, simulated annealing seasearch; Optimization problems: Hill climbing search, simulated annealing seasearch and games: Optimal decisions and strategies, Monte-Carlo tree seesearch procedure; Alpha-Beta pruning; Additional ref	ods i Itatic	1.0 in		C 3 ion
Pre-requisite BMAT202L, BMAT202P Sy Course Objectives 1. Impart artificial intelligence principles, techniques and its history 2. Assess knowledge representation, problem solving, and learning methengineering problems 3. Develop intelligent systems by assembling solutions to concrete compuproblems Course Outcomes 0 On completion of this course, the students will be able to 1. 1. Evaluate Artificial Intelligence methods and describe their foundations 2. Apply the principles of Al in solutions that require problem solving, infer perception, knowledge representation and learning 3. Demonstrate the knowledge of reasoning and representation for solving problems 4. Analyze and illustrate search and planning algorithms in problem solvir 5. Implement the Al models for Engineering applications Module:1 Agents & Environment Benefits and risks in Al, Al technique; Agents: Structure, behavior, intelliger Environment: Nature of environment, task environment, properties; Types of based agents, utility-based agents, learning agents Module:2 Problem Solving Problem solving agents; Searching for Solutions; Uninformed Search Strat first search, depth limited search, bidirectional search; Ir strategies: Greedy best-first search, A* search, AO* search; Memory bou search; Optimization problems: Hill	ods in Itatic	us v 1.0	ersi	-
Course Objectives 1. Impart artificial intelligence principles, techniques and its history 2. Assess knowledge representation, problem solving, and learning methering problems 3. Develop intelligent systems by assembling solutions to concrete compuproblems Course Outcomes On completion of this course, the students will be able to 1. Evaluate Artificial Intelligence methods and describe their foundations 2. Apply the principles of Al in solutions that require problem solving, infer perception, knowledge representation and learning 3. Demonstrate the knowledge of reasoning and representation for solving problems 4. Analyze and illustrate search and planning algorithms in problem solvir 5. Implement the Al models for Engineering applications Module:1 Agents & Environment Benefits and risks in Al, Al technique; Agents: Structure, behavior, intelliger Environment: Nature of environment, task environment, properties; Types of based agents, utility-based agents, learning agents Module:2 Problem Solving Problem solving agents; Searching for Solutions; Uninformed Search Strat first search, depth limited search, bidirectional search; Ir strategies: Greedy best-first search, A* search, AO* search; Memory bou search; Optimization problems: Hill climbing search, simulated annealing seaserch Module:3 Constraint Satisfaction Problems Module:4 Constraint Sati	ods i Itatic	1.0 in		
 Impart artificial intelligence principles, techniques and its history Assess knowledge representation, problem solving, and learning meth- engineering problems Develop intelligent systems by assembling solutions to concrete compu- problems Course Outcomes Concompletion of this course, the students will be able to Evaluate Artificial Intelligence methods and describe their foundations Apply the principles of Al in solutions that require problem solving, infer perception, knowledge representation and learning Demonstrate the knowledge of reasoning and representation for solvin- problems Analyze and illustrate search and planning algorithms in problem solvir Implement the Al models for Engineering applications Module:1 Agents & Environment Benefits and risks in Al, Al technique; Agents: Structure, behavior, intelliger Environment: Nature of environment, task environment, properties; Types of based agents, utility-based agents, learning agents Module:2 Problem Solving Problem representation: Problem space, state space, problem reduction; Ca Tac - Toe problem; Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computation Module:3 Search Techniques Problem solving agents; Searching for Solutions; Uninformed Search Strat first search, depth first search, AO* search; Memory bou search; Optimization problems: Hill climbing search, simulated annealing sea search Module:4 Constraint Satisfaction Problems Constraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deepe Module:5 Knowledge Engineering Knowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predic	ods i Itatic	in		
 Impart artificial intelligence principles, techniques and its history Assess knowledge representation, problem solving, and learning meth- engineering problems Develop intelligent systems by assembling solutions to concrete compu- problems Course Outcomes Concompletion of this course, the students will be able to Evaluate Artificial Intelligence methods and describe their foundations Apply the principles of Al in solutions that require problem solving, infer perception, knowledge representation and learning Demonstrate the knowledge of reasoning and representation for solvin- problems Analyze and illustrate search and planning algorithms in problem solvir Implement the Al models for Engineering applications Module:1 Agents & Environment Benefits and risks in Al, Al technique; Agents: Structure, behavior, intelliger Environment: Nature of environment, task environment, properties; Types of based agents, utility-based agents, learning agents Module:2 Problem Solving Problem representation: Problem space, state space, problem reduction; Ca Tac - Toe problem; Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computation Module:3 Search Techniques Problem solving agents; Searching for Solutions; Uninformed Search Strat first search, depth first search, AO* search; Memory bou search; Optimization problems: Hill climbing search, simulated annealing sea search Module:4 Constraint Satisfaction Problems Constraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deepe Module:5 Knowledge Engineering Knowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predic	ence			
 Assess knowledge representation, problem solving, and learning metheling problems Develop intelligent systems by assembling solutions to concrete compulation of this course, the students will be able to Evaluate Artificial Intelligence methods and describe their foundations Apply the principles of Al in solutions that require problems solving, infer preception, knowledge representation and learning Demonstrate the knowledge of reasoning and representation for solvin problems Analyze and illustrate search and planning algorithms in problem solvir 5. Implement the Al models for Engineering applications Module:1 Agents & Environment Benefits and risks in Al, Al technique; Agents: Structure, behavior, intelliger Environment: Nature of environment, task environment, properties; Types of based agents, utility-based agents, learning agents Module:2 Problem Solving Problem representation: Problem space, state space, problem reduction; Ca Tac - Toe problem; Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computation Module:3 Search Techniques Problem solving agents; Searching for Solutions; Uninformed Search Strat first search, depth first search, Act search, AO* search; Memory bou search; Optimization problems: Hill climbing search, simulated annealing sea search Module:4 Constraint Satisfaction Problems Constraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deepe Module:5 Knowledge Engineering Knowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative knog programming; Forward and backward reasonin	ence			
engineering problems 3. Develop intelligent systems by assembling solutions to concrete compu- problems Course Outcomes On completion of this course, the students will be able to 1. Evaluate Artificial Intelligence methods and describe their foundations 2. Apply the principles of AI in solutions that require problem solving, infer- perception, knowledge representation and learning 3. Demonstrate the knowledge of reasoning and representation for solvin- problems 4. Analyze and illustrate search and planning algorithms in problem solvin 5. Implement the AI models for Engineering applications Module:1 Agents & Environment Benefits and risks in AI, AI technique; Agents: Structure, behavior, intelliger Environment: Nature of environment, task environment, properties; Types of based agents, utility-based agents, learning agents Module:2 Problem Solving Problem Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computation Module:3 Search Techniques Problem solving agents; Searching for Solutions; Uninformed Search Strat first search, depth first search, depth limited search, bidirectional search; Ir strategies: Greedy best-first search, A* search, AO* search; Memory bou search; Optimization problems: Hill climbing search, simulated annealing sea search Module:4 Constraint Satisfaction Problems Constraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deepe Module:5 Knowledge Engineering Knowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative kno programming; Forward and backward reasoning; Matching; Representing	ence			
 3. Develop intelligent systems by assembling solutions to concrete compuproblems Course Outcomes On completion of this course, the students will be able to Evaluate Artificial Intelligence methods and describe their foundations Apply the principles of Al in solutions that require problem solving, inferperception, knowledge representation and learning Demonstrate the knowledge of reasoning and representation for solving problems Analyze and illustrate search and planning algorithms in problem solving. Implement the Al models for Engineering applications Module:1 Agents & Environment Benefits and risks in Al, Al technique; Agents: Structure, behavior, intelliger Environment: Nature of environment, task environment, properties; Types of based agents, utility-based agents, learning agents Module:2 Problem Solving Problem representation: Problem space, state space, problem reduction; Ca Tac - Toe problem; Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computation Problem solving agents; Searching for Solutions; Uninformed Search Strat first search, depth first search, depth limited search, simulated annealing sear search; Optimization problems: Hill climbing search, act, is monly bou search; for CSS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deeped Module:5 Knowledge Engineering Knowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative kno programming; Forward and backward reasoning; Matching; Representing	ence	onal		
problems Course Outcomes Course Outcomes On completion of this course, the students will be able to 1. Evaluate Artificial Intelligence methods and describe their foundations 2. Apply the principles of AI in solutions that require problem solving, infer perception, knowledge representation and learning 3. Demonstrate the knowledge of reasoning and representation for solving problems 4. Analyze and illustrate search and planning algorithms in problem solving. 5. Implement the AI models for Engineering applications Module:1 Agents & Environment Benefits and risks in AI, AI technique; Agents: Structure, behavior, intelliger Environment: Nature of environment, task environment, properties; Types of based agents, utility-based agents, learning agents Module:2 Problem Solving Problem representation: Problem space, state space, problem reduction; Ca Tac - Toe problem; Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computation Module:3 Search Techniques Problem solving agents; Searching for Solutions; Uninformed Search Strat first search, depth first search, depth limited search, bidirectional search; It strategies: Greedy best-first search, A* search, AO* search; Memory bou search; Optimization problems: Hill climbing search, simulated annealing search Constraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisio	ence			
Course Outcomes On completion of this course, the students will be able to 1. Evaluate Artificial Intelligence methods and describe their foundations 2. Apply the principles of AI in solutions that require problem solving, infer perception, knowledge representation and learning 3. Demonstrate the knowledge of reasoning and representation for solving problems 4. Analyze and illustrate search and planning algorithms in problem solving 5. Implement the AI models for Engineering applications Module:1 Agents & Environment Benefits and risks in AI, AI technique; Agents: Structure, behavior, intelliger Environment: Nature of environment, task environment, properties; Types of based agents, utility-based agents, learning agents Module:2 Problem Solving Problem representation: Problem space, state space, problem reduction; Ca Tac - Toe problem; Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computation Module:3 Search Techniques Problem solving agents; Searching for Solutions; Uninformed Search Strat first search, depth first search, depth limited search, AO* search; Memory bou search; Optimization problems: Hill climbing search, simulated annealing sea search Module:4 Constraint Satisfaction Problems Constraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deepeed Module:5 Knowledge Engineering </td <td></td> <td></td> <td></td> <td></td>				
 Évaluate Artificial Intelligence methods and describe their foundations Apply the principles of AI in solutions that require problem solving, inferperception, knowledge representation and learning Demonstrate the knowledge of reasoning and representation for solving problems Analyze and illustrate search and planning algorithms in problem solvin Implement the AI models for Engineering applications Module:1 Agents & Environment Benefits and risks in AI, AI technique; Agents: Structure, behavior, intelliger Environment: Nature of environment, task environment, properties; Types of based agents, utility-based agents, learning agents Module:2 Problem Solving Problem representation: Problem space, state space, problem reduction; Ca Tac - Toe problem; Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computation Module:3 Search Techniques Problem solving agents; Searching for Solutions; Uninformed Search Strat first search, depth first search, depth limited search, bidirectional search; bus search; Optimization problems: Hill climbing search, anealing search; Optimization problems: Hill climbing search, anealing search; Optimization problems: Hill climbing search, Simulated annealing search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deepet Module:5 Knowledge Engineering Knowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative know programming; Forward and backward reasoning; Matching; Representing 				
 Apply the principles of Al in solutions that require problem solving, inferenception, knowledge representation and learning Demonstrate the knowledge of reasoning and representation for solving problems Analyze and illustrate search and planning algorithms in problem solvin Implement the Al models for Engineering applications Module:1 Agents & Environment Benefits and risks in Al, Al technique; Agents: Structure, behavior, intelliger Environment: Nature of environment, task environment, properties; Types of based agents, utility-based agents, learning agents Module:2 Problem Solving Problem representation: Problem space, state space, problem reduction; Ca Tac - Toe problem; Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computation Module:3 Search Techniques Problem solving agents; Searching for Solutions; Uninformed Search Strat first search, depth first search, depth limited search, bidirectional search; Ir strategies: Greedy best-first search, A* search, AO* search; Memory bou search; Optimization problems: Hill climbing search, simulated annealing search Module:4 Constraint Satisfaction Problems Constraint propagation; Backtracking search for CSP; Local search for CSS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deeper Module:5 Knowledge Engineering Knowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative know programming; Forward and backward reasoning; Matching; Representing 				
perception, knowledge representation and learning 3. Demonstrate the knowledge of reasoning and representation for solving problems 4. Analyze and illustrate search and planning algorithms in problem solvin 5. Implement the AI models for Engineering applications Module:1 Agents & Environment Benefits and risks in AI, AI technique; Agents: Structure, behavior, intelliger Environment: Nature of environment, task environment, properties; Types of based agents, utility-based agents, learning agents Module:2 Problem Solving Problem representation: Problem space, state space, problem reduction; Ca Tac - Toe problem; Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computation Module:3 Search Techniques Problem solving agents; Searching for Solutions; Uninformed Search Strat first search, depth first search, depth limited search, bidirectional search; Ir strategies: Greedy best-first search, A* search, AO* search; Memory bou search; Optimization problems: Hill climbing search, simulated annealing sear search Module:4 Constraint Satisfaction Problems Constraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree segench procedure; Alpha-Beta pruning; Additional refinements; Iterative deepeemocedure; Alpha-Beta pruning; Additional refinements; Iterative deepeemocedure; Alpha-Beta pruning; Additional refinements; Represention networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative kno				
 Demonstrate the knowledge of reasoning and representation for solving problems Analyze and illustrate search and planning algorithms in problem solvin Implement the AI models for Engineering applications Module:1 Agents & Environment Benefits and risks in AI, AI technique; Agents: Structure, behavior, intelliger Environment: Nature of environment, task environment, properties; Types of based agents, utility-based agents, learning agents Module:2 Problem Solving Problem representation: Problem space, state space, problem reduction; Ca Tac - Toe problem; Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computation Module:3 Search Techniques Problem solving agents; Searching for Solutions; Uninformed Search Strat first search, depth first search, depth limited search, bidirectional search; Ir strategies: Greedy best-first search, A* search, AO* search; Memory bou search; Optimization problems: Hill climbing search, simulated annealing sear search Module:4 Constraint Satisfaction Problems Constraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deepe Module:5 Knowledge Engineering Knowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative know programming; Forward and backward reasoning; Matching; Representing instance, computable) rea	e,		
problems 4. Analyze and illustrate search and planning algorithms in problem solvin 5. Implement the AI models for Engineering applications Module:1 Agents & Environment Benefits and risks in AI, AI technique; Agents: Structure, behavior, intelliger Environment: Nature of environment, task environment, properties; Types of based agents, utility-based agents, learning agents Module:2 Problem Solving Problem representation: Problem space, state space, problem reduction; Ca Tac - Toe problem; Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computation Module:3 Search Techniques Problem solving agents; Searching for Solutions; Uninformed Search Stratfirst search, depth first search, depth limited search, bidirectional search; Ir strategies: Greedy best-first search, A* search, AO* search; Memory bou search Constraint Satisfaction Problems Constraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deeper Module:5 Knowledge Engineering Knowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natura	j rea			
 Analyze and illustrate search and planning algorithms in problem solvin Implement the AI models for Engineering applications Module:1 Agents & Environment Benefits and risks in AI, AI technique; Agents: Structure, behavior, intelliger Environment: Nature of environment, task environment, properties; Types of based agents, utility-based agents, learning agents Module:2 Problem Solving Problem representation: Problem space, state space, problem reduction; Ca Tac - Toe problem; Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computation Module:3 Search Techniques Problem solving agents; Searching for Solutions; Uninformed Search Stratt first search, depth first search, depth limited search, bidirectional search; Ir strategies: Greedy best-first search, A* search, AO* search; Memory bou search Module:4 Constraint Satisfaction Problems Constraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deepee Module:5 Knowledge Engineering Knowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deductio; Procedural and declarative knowledge 		al wo	orld	
5. Implement the AI models for Engineering applications Module:1 Agents & Environment Benefits and risks in AI, AI technique; Agents: Structure, behavior, intelliger Environment: Nature of environment, task environment, properties; Types of based agents, utility-based agents, learning agents Module:2 Problem Solving Problem representation: Problem space, state space, problem reduction; Ca Tac - Toe problem; Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computation Module:3 Search Techniques Problem solving agents; Searching for Solutions; Uninformed Search Strat first search, depth first search, depth limited search, bidirectional search; Ir strategies: Greedy best-first search, A* search, AO* search; Memory bou search Module:4 Constraint Satisfaction Problems Constraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deepee Module:5 Knowledge Engineering Knowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative knowledge properesenting; Forward				
Module:1 Agents & Environment Benefits and risks in AI, AI technique; Agents: Structure, behavior, intelliger Environment: Nature of environment, task environment, properties; Types of based agents, utility-based agents, learning agents Module:2 Problem Solving Problem representation: Problem space, state space, problem reduction; Ca Tac - Toe problem; Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computation Module:3 Search Techniques Problem solving agents; Searching for Solutions; Uninformed Search Strat first search, depth first search, depth limited search, bidirectional search; Ir strategies: Greedy best-first search, A* search, AO* search; Memory bou search Module:4 Constraint Satisfaction Problems Constraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deepe Module:5 Knowledge Engineering Knowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative knowledge	g			
Benefits and risks in AI, AI technique; Agents: Structure, behavior, intelliger Environment: Nature of environment, task environment, properties; Types of based agents, utility-based agents, learning agents Module:2 Problem Solving Problem representation: Problem space, state space, problem reduction; Ca Tac - Toe problem; Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computation Module:3 Search Techniques Problem solving agents; Searching for Solutions; Uninformed Search Stratt first search, depth first search, depth limited search, bidirectional search; Ir strategies: Greedy best-first search, A* search, AO* search; Memory bou search Module:4 Constraint Satisfaction Problems Constraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deeper Module:5 Knowledge Engineering Knowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable procedures, resolution, natural deduction; Procedural and declarative knowledge programming; Forward and backward reasoning; Matching; Representing				
Benefits and risks in AI, AI technique; Agents: Structure, behavior, intelliger Environment: Nature of environment, task environment, properties; Types of based agents, utility-based agents, learning agents Module:2 Problem Solving Problem representation: Problem space, state space, problem reduction; Ca Tac - Toe problem; Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computation Module:3 Search Techniques Problem solving agents; Searching for Solutions; Uninformed Search Stratt first search, depth first search, depth limited search, bidirectional search; Ir strategies: Greedy best-first search, A* search, AO* search; Memory bou search Module:4 Constraint Satisfaction Problems Constraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deeper Module:5 Knowledge Engineering Knowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative knowledge programming; Forward and backward reasoning; Matching; Representing		6	ho	urs
Environment: Nature of environment, task environment, properties; Types of based agents, utility-based agents, learning agents Module:2 Problem Solving Problem representation: Problem space, state space, problem reduction; Ca Tac - Toe problem; Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computation Module:3 Search Techniques Problem solving agents; Searching for Solutions; Uninformed Search Stratt first search, depth first search, depth limited search, bidirectional search; Ir strategies: Greedy best-first search, A* search, AO* search; Memory bou search; Optimization problems: Hill climbing search, simulated annealing search Module:4 Constraint Satisfaction Problems Constraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deeper Module:5 Knowledge Engineering Knowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative knowledge programming; Forward and backward reasoning; Matching; Representing	ce			
based agents, utility-based agents, learning agents Module:2 Problem Solving Problem representation: Problem space, state space, problem reduction; Ca Tac - Toe problem; Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computation Module:3 Search Techniques Problem solving agents; Searching for Solutions; Uninformed Search Stratt first search, depth first search, depth limited search, bidirectional search; In strategies: Greedy best-first search, A* search, AO* search; Memory bou search Module:4 Constraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deepee Module:5 Knowledge Engineering Knowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative knowledge programming; Forward and backward reasoning; Matching; Representing				
Module:2Problem SolvingProblem representation: Problem space, state space, problem reduction; Ca Tac - Toe problem; Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computationModule:3Search TechniquesProblem solving agents; Searching for Solutions; Uninformed Search Stratt first search, depth first search, depth limited search, bidirectional search; Ir strategies: Greedy best-first search, A* search, AO* search; Memory bou search; Optimization problems: Hill climbing search, simulated annealing searchModule:4Constraint Satisfaction Problems Constraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deepee Module:5Module:5Knowledge EngineeringKnowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative knowledge programming; Forward and backward reasoning; Matching; Representing	age.		000	
Problem representation: Problem space, state space, problem reduction; Ca Tac - Toe problem; Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computation Module:3 Search Techniques Problem solving agents; Searching for Solutions; Uninformed Search Strate first search, depth first search, depth limited search, bidirectional search; Ir strategies: Greedy best-first search, A* search, AO* search; Memory bou search Module:4 Constraint Satisfaction Problems Constraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deepee Module:5 Knowledge Engineering Knowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative knowledge programming; Forward and backward reasoning; Matching; Representing		4	ho	urs
Tac - Toe problem; Solving Approaches: Search algorithms, Heuristics (inform Evolutionary computationModule:3Search TechniquesProblem solving agents; Searching for Solutions; Uninformed Search Strate first search, depth first search, depth limited search, bidirectional search; In strategies: Greedy best-first search, A* search, AO* search; Memory bou search; Optimization problems: Hill climbing search, simulated annealing searchModule:4Constraint Satisfaction ProblemsConstraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deeper Module:5Module:5Knowledge EngineeringKnowledge base: Representations, mapping of domain knowledge, if-then n etworks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative knowledge programming; Forward and backward reasoning; Matching; Representing	se si	tudy	/: Ti	с-
Evolutionary computation Module:3 Search Techniques Problem solving agents; Searching for Solutions; Uninformed Search Stratt first search, depth first search, depth limited search, bidirectional search; Instrategies: Greedy best-first search, A* search, AO* search; Memory bout search; Optimization problems: Hill climbing search, simulated annealing sear search Module:4 Constraint Satisfaction Problems Constraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deeper Module:5 Knowledge Engineering Knowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative knowledge programming; Forward and backward reasoning; Matching; Representing				
Problem solving agents; Searching for Solutions; Uninformed Search Stratfirst search, depth first search, depth limited search, bidirectional search; Irstrategies: Greedy best-first search, A* search, AO* search; Memory bousearch; Optimization problems: Hill climbing search, simulated annealing searchModule:4Constraint Satisfaction ProblemsConstraint propagation; Backtracking search for CSP; Local search for CSsearch and games: Optimal decisions and strategies, Monte-Carlo tree sesearch procedure; Alpha-Beta pruning; Additional refinements; Iterative deepeModule:5Knowledge EngineeringKnowledge base: Representations, mapping of domain knowledge, if-thennetworks, frames; Predicate logic: Representing instance, computablepredicates, resolution, natural deduction; Procedural and declarative knowledgeprogramming; Forward and backward reasoning; Matching; Representing			, .	
first search, depth first search, depth limited search, bidirectional search; In strategies: Greedy best-first search, A* search, AO* search; Memory bou search; Optimization problems: Hill climbing search, simulated annealing searchModule:4Constraint Satisfaction ProblemsConstraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deeperModule:5Knowledge EngineeringKnowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative knowledge programming; Forward and backward reasoning; Matching; Representing		8	ho	urs
strategies: Greedy best-first search, A* search, AO* search; Memory bou search; Optimization problems: Hill climbing search, simulated annealing searchModule:4Constraint Satisfaction ProblemsConstraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deepe Module:5Module:5Knowledge EngineeringKnowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative knowledge programming; Forward and backward reasoning; Matching; Representing				
search; Optimization problems: Hill climbing search, simulated annealing searchModule:4Constraint Satisfaction ProblemsConstraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deeper Module:5Module:5Knowledge EngineeringKnowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative knowledge programming; Forward and backward reasoning; Matching; Representing				
searchModule:4Constraint Satisfaction ProblemsConstraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deeperModule:5Knowledge EngineeringKnowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative knowledge programming; Forward and backward reasoning; Matching; Representing				
Module:4Constraint Satisfaction ProblemsConstraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deeperModule:5Knowledge EngineeringKnowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative knowledge programming; Forward and backward reasoning; Matching; Representing	ch, l	loca	l be	am
Constraint propagation; Backtracking search for CSP; Local search for CS search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deepe Module:5 Knowledge Engineering Knowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative knowledge programming; Forward and backward reasoning; Matching; Representing				
search and games: Optimal decisions and strategies, Monte-Carlo tree se search procedure; Alpha-Beta pruning; Additional refinements; Iterative deepe Module:5 Knowledge Engineering Knowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative knowledge programming; Forward and backward reasoning; Matching; Representing			ho	
search procedure; Alpha-Beta pruning; Additional refinements; Iterative deepeModule:5Knowledge EngineeringKnowledge base:Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic:Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative knowledge programming; Forward and backward reasoning; Matching; Representing	'			
Module:5Knowledge EngineeringKnowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative knowledge programming; Forward and backward reasoning; Matching; Representing			Inim	ax
Knowledge base: Representations, mapping of domain knowledge, if-then networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative knowledge programming; Forward and backward reasoning; Matching; Representing	ning		ho	
networks, frames; Predicate logic: Representing instance, computable predicates, resolution, natural deduction; Procedural and declarative known programming; Forward and backward reasoning; Matching; Representing				
predicates, resolution, natural deduction; Procedural and declarative know				
programming; Forward and backward reasoning; Matching; Representing				
uncertain domain		Meuį	ye i	
Module:6 Reasoning and Planning		6	ho	urs
Reasoning Systems for Categories; Reasoning with default information; Proba	hilis			
reasoning: Bayesian networks, hidden Markov models, Kalman filter; Planning			ner	nts
of planning system, goal stack planning, hierarchical planning	00.	mpe		
Module:7 Decision Making		5	ho	urs
Simple decisions: Beliefs, Desires, Combining beliefs and desires under unce		ty, L	Jtilitv	/
functions, Decision networks; Complex decisions: Sequential decision pro	taint			
Partially observable MDPs		, -		,
Module:8 Contemporary Issues		-	ho	urs
· · · · ·		2		

			T	Total Lect	ture hours:	45 hours	
Tex	kt Book	S			÷		
1.		I. S and Norvig. P, "Artificial Ir on, 2022	ntelligence - A	A Modern	Approach", 4 th e	edition,	
2.	Agents", Cambridge University Press, 2 nd Edition, 2017						
Re	ference	Books					
1.	Ric, E. 2017	, Knight, K and Shankar, B., "	Artificial Intell	ligence", 3	Brd edition, Tata	McGraw Hill,	
2.	Solving	G.F., "Artificial Intelligence -S j", ion, Pearson, 2011	tructures and	l Strategie	es for Complex F	Problem	
Мо	de of Ev	aluation: CAT, Assignment, C	Quiz, FAT				
Re	commer	nded by Board of Studies	28.05.2022				
Ap	proved b	y Academic Council	No. 66	Date	16-06-2022		

BEIE301L	Biomedical Instrumentat	ion		L	Т	Ρ	С
		-		3	0	0	3
Pre-requisite	NIL		Syl	labı	is v	ersi	on
•					1.0		
Course Objectiv	es						
1. Understand bio	-signal characteristics and acquisition of bio	o-signals.					
	velop diagnostic, therapeutic and clinical eq						
3. Compare and a	nalyze imaging concepts for medical applic	cations.					
Course Outcome							
•	ysiological signals by applying principles of						
	vledge to select appropriate diagnostic instr	ruments and a	advan	ced			
techniques.							
	velop therapeutic devices in medical practic						
	struments for clinical applications and analy						
5. Design a produ	uct with all relevant standards and realistic of	constraints.					
Module:1 Bio S	Signals				7	ho	Ire
	acteristics: frequency and amplitude rang	une: Origin of	hic	noto			
	action potentials; Electrode-electrolyte in						
	, non-polarizable electrodes; Types of ele						
	odes for ECG, EMG, EEG.		acc,	nee	uic,	THIC	10
	Signal Amplifiers and Recorders				6	ho	urs
	strumentation amplifier, isolation amplifier;	: Recording c	levice	s: B	sio e	elect	ric
Safety; Codes an		, g .		-, -			
	nostic Equipment				8	ho	urs
Electrophysiology	: Electrocardiography (ECG), Einthover	n's triangle,	ECG	lea	d s	yste	em;
Electroencephalo	graphy (EEG), 10-20 electrode syste	em; Electror	nyogr	aph	у (ΈM	G);
Electrooculograp	hy (EOG); Blood pressure monitors; Pulse	Oximeter; Spi	irome	ter.			
	apeutic Equipment					ho	
	fibrillator; Heart lung machine; Nerve and	l muscle stim	ulato	rs; [Dialy	/ser	;
Surgical diatherm						-	
	cal Instruments					ho	
	od: Measurement of pH, pO2, pCO2						- ,
	ctrophoresis: Principles and applications; B	iooa cell coun	iters;	BIO 8	sens	sors	:
	ensors; GSR measurements				0	ho	
	cal imaging techniques				0	no	511
Basics of diagno	stic Radiology: X-Ray Imaging; Comput	ted Tomogra	ohy ((CT);	Ма	igne	tic
	ging (MRI) System; Ultrasonic Imaging						
Radiation therapy	: Gamma Camera, PET, SPECT.	-				-	
Module:7 Con	temporary Issues				2	ho	urs
	Total Lecture hours:				45	ho	urs
Text Books							
	ster, Amit J Nimunkar, Medical instrument tion, John Wiley & Sons	ation: applica	ition a	and	desi	gn,	
	R.S., Handbook of biomedical instrumen	itation, 2014,	3rd	Edi	tion	,	
Reference Book	S						

Carr, J.J. and Brown, J.M., Introdu Edition, Pearson College Division.	uction to biome	edical equ	uipment technology. 2001, 4 th		
Cromwell, L., Weibell, F.J., Pfeiffer	, E.A. and Uss	elman, L.I	B., Biomedical		
instrumentation and measurements	s,1990, Englev	vood Cliffs	s, N. J., Prentice-Hall, Inc		
Haidekker, M.A., Medical imaging t	echnology, 20	13, Spring	ger		
de of Evaluation: CAT, Assignment,	Quiz, FAT				
Recommended by Board of Studies 19-02-2022					
proved by Academic Council	No. 65	Date	17-03-2022		
	Edition, Pearson College Division. Cromwell, L., Weibell, F.J., Pfeiffer instrumentation and measurements Haidekker, M.A., Medical imaging t de of Evaluation: CAT, Assignment, commended by Board of Studies	Edition, Pearson College Division. Cromwell, L., Weibell, F.J., Pfeiffer, E.A. and Uss instrumentation and measurements,1990, Englev Haidekker, M.A., Medical imaging technology, 20 de of Evaluation: CAT, Assignment, Quiz, FAT commended by Board of Studies 19-02-2022	Cromwell, L., Weibell, F.J., Pfeiffer, E.A. and Usselman, L. instrumentation and measurements,1990, Englewood Cliffs Haidekker, M.A., Medical imaging technology, 2013, Spring de of Evaluation: CAT, Assignment, Quiz, FAT commended by Board of Studies 19-02-2022		

BFI	EE101N	Introduction to Engineering			T F) C
					 D 0	
Pre	-requisite	Nil	Syll	abus		sion
	•			1.0		
Со	urse Objectiv	/e:				
•	To make the	student comfortable and get familiarized with the facilitie	s availa	able	on	
	campus					
		student aware of the exciting opportunities and usefulne	ss of e	ngine	erin	g to
	society	aturdant understand the philosophy of engineering				
•	To make the	student understand the philosophy of engineering				
Coi	urse Outcom	۵.				
		infrastructure facilities available on campus				
		utilize the facilities during their term for their professional	arowth	n		
		e the engineering principles, involve in life-long learning a				
	• •	practice as a service to society		1		
	neral Guideli					
	1. Student s	hould observe and involve in the activities during the ind	uction	prog	ramr	ne.
	•	eral activities and those which are discipline-specific sho	uld be	inclu	ded	
	here.					
		hould get familiarized with the infrastructure facilities ava			ampi	JS
		e general induction, school induction programme and als al website.	o from	the		
		should attend the lecture by industries, including those or	o caree	r		
		ties, organized by the School and probably involve in 'De			,	
		or projects involving reverse-engineering.	,			
		under 'Do-it-Yourself' will be detailed by the School.				
		hould prepare a report on the activities and observations				
	•	format, and submit the same in institutional LMS, VTOP	for furt	her		
	evaluatio	1				
	General i	nstruction on formatting: Document to be prepared with t	he title	s aiv	on ir	h
		ate; Arial type with font size of 12 to be used; photograph				
	•	cument as per the requirement; 1.5 line spacing to be use				
Mo	de of Evaluat	on: Evaluation of the submitted report and interaction with	th the s	stude	nts	
Rec	commended I	by Board of Studies 02.07.2021				
		ademic Council No. 63 Date 23.09.202	21			
r r						

BHUM101N	Ethics and Values	IL IT IP IC
Dre reguisite	10 10 10 2	
Pre-requisite	Nil	Syllabus version
Course Objective		1 1.0
		uidual in profession
	tand and appreciate the ethical issues faced by an indi-	vidual in profession,
society ar	tand the negative health impacts of certain unhealthy be	abavior
	ciate the need and importance of physical, emotiona	
health.	clate the need and importance of physical, emotiona	
nealui.		
Expected Course	e Outcomes:	
•	will be able to:	
	und morals and ethical values scrupulously to prove as	and citizens
	nd various social problems and learn to act ethically.	good chizeris.
	id the concept of addiction and how it will affect the ph	aveigal and montal
health.		iysical and mental
	hical concerns in research and intellectual contexts,	including academic
	use and citation of sources, the objective presentation	
	of human subjects.	
	ne main typologies, characteristics, activities, acto	rs and forms of
cybercrim		
ey bereinin		
Module:1 Bein	g Good and Responsible	
	such as truth and non-violence - Comparative analysis	s on leaders of past
	ociety's interests versus self-interests - Personal So	
	y, charity and serving the society.	
Module:2 Socia		
Harassment - Ty	pes - Prevention of harassment, Violence and Terrorism).
Module:3 Socia	al Issues 2	
Corruption: Ethica	al values, causes, impact, laws, prevention - Electoral m	nalpractices;
	es - Tax evasions - Unfair trade practices.	, , ,
Module:4 Addi		
Peer pressure - A	Alcoholism: Ethical values, causes, impact, laws, preve	ntion - III effects of
smoking - Prever		
	revention and impact of pre-marital pregnancy and Se	exually Transmitted
Diseases.		
Module:5 Drug	Abuse	
Abuse of differen	t types of legal and illegal drugs: Ethical values, causes	s, impact, laws and
prevention.		-
Module:6 Pers	onal and Professional Ethics	
	alinq - Malpractices in Examinations - Plaqiarism.	
Module:7 Abus	e of Technologies	
	er cyber crimes, Addiction to mobile phone usage, Vide	o games and Social
networking websi		
	Total Lecture Hours:	60 hours
Text Books:		
A R R Gaur,	R Asthana, G P Bagaria, "A Foundation Course in Hu	man Values and
	nal Ethics", 2019, 2nd Revised Edition, Excel Books, N	
2. Hartmann	, N., "Moral Values", 2017, United Kingdom: Taylor & F	rancis.
Reference Book	S:	
Rachels .	lames & Stuart Rachels, "The Elements of Moral Philo	sophy". 9th edition
	v York: McGraw-Hill Education.	
_0.0,.101		

2.	Blackburn, S. "Ethics: A Very Short Introduction", 2001, Oxford University Press.					
3.	Dhaliwal, K.K, "Gandhian Philosophy of Ethics: A Study of Relationship between his Presuooosition and Precepts", 2016, Writers Choice, New Delhi, India.					
4	Ministry of Social Justice and Empowerment, "Magnitude of Substance Use in India", 2019, Government of India.					
5.	Ministry of Home Affairs, "Accidental Deaths and Suicides in India", 2019, Government of India.					
6.	Ministry of Home Affairs, "A Handbook for Adolescents/ Students on Cyber Safety", 2018, Government of India.					
Mode	Mode of Evaluation: Poster making, Quiz and Term End - Quiz					
Recor	Recommended by Board of Studies 2?-10-2021					
Aooro	Aooroved by Academic Council No. 64 Date 16-12-2021					

50004041	Economic of Traditional Vicensia day	
BSSC101N	Essence of Traditional Knowledge	IL IT IP IC
Pre-requisite	Nil	Syllabus version
Fie-lequisite		
Course Objective	PS:	
	the knowledge on Indian tradition and Culture.	
	the students to acquire the traditional knowledge in diffe	erent sectors.
To analyz	e and understand the Science, Management and Ir	ndian Knowledge
System.		
-		
Course Outcome		
	e the concept of Traditional Indian Culture and Knowled	ge.
-	e Indian religion, philosophy and practices.	a u al Auto
	nd understand the Indian Languages, Culture, Literature	
	ear understanding on the Indian perspective of modern ciples of Yoga and holistic health care system of India.	scientific world and
	owledge on Legal framework and traditional knowledge.	
		'
Module:1 Intro	duction to Traditional Knowledge	
	edge: Definition, nature and characteristics, scope and i	mportance, kinds of
	dge, Indigenous Knowledge, characteristics, Tradition	
	owledge, Traditional knowledge Vs Western Knowledge).
	ire and Civilization	
	ulture and Civilization, Culture and Heritage, Charac	
	portance of Culture, Cultural practices in Ancient India	, Medieval India and
Modern India.		
	guages and Literature	
society, Indian ph	s and Literature: the role of Sanskrit, significance of s ilosophies, other Sanskrit literature and literatures of So ion and Philosophy	
	psophy: Religion and Philosophy in ancient India, Relig	I ion and Dhilasanhy
	Religious Reform Movements in Modern India (selected	
Module:5 Fine		
	ndian handicrafts, Music, divisions of Indian classic mu	Isic modern Indian
	d Drama. Science and Technology in India, Develop	
	I and modern India. Traditional Medicine - Herbal H	
Pranayama pract	-	5 5
Module:6 Trad	itional Knowledge in different sectors	
	edge and engineering, Traditional medicine system, Tra	
U ,	ependence of Traditional Societies on food and	
	nservation and sustainable development of environmer	nt, Management of
-	rotection of Traditional knowledge.	
	I framework and Traditional Knowledge	
	egal framework and Traditional Knowledge: The Sch	
	Forest Dwellers (Recognition of Forest Rights) Act, 20 armer's Rights Act, 2001 (PPVFR Act); The Biological	
	The protection of traditional knowledge bill, 2016.	Diversity Act 2002
	Total Lecture Hours:	60 hours
Text Books:	• •	
	ain, Parul G Munjal And Somya Joshi,(2020) Tradi	
Systems A	And Cultural Heritage, Aryan Books International, India	
2. Anindva B		
🖆 🛛 Anindya B	hukta(2020), Legal Protection for Traditional Knowledge	ge: Towards A New

	Law for Indigenous Intellectual Property, Emerald Publishing Limited, United					
.	Kingdom.					
Refer	rence Books :					
1.	Traditional Knowledge System in India, by Amit Jha, 2009.					
	Basant Kumar Mohanta & Vipin Kumar Singh (2012), "Traditional Knowledge System					
2.	& Technology in India", Pratibha Prakashan, India.					
3.	S. Baliyan, Indian Art and Culture, Oxford University Press, India.					
5.						
4	http://indiafacts.org/author/michel-danino/					
~	GN Jha (Eng. Trans.) Ed. R N Jha, Yoga-darshanam with Vyasa Bhashya,					
5.	Vidyanidhi Prakasham, Delhi,2016.					
	viuyaniuni Prakasnam, Deini,2016.					
Mode	of Evaluation: Quiz and Term End - Quiz					
_						
	mmended by Board of Studies I 16-11-2021					
Appro	oved by Academic Council No. 64 Date 16-12-2021					

BEEE399J		Summ	Summer Industrial Internship		L	Т	Ρ	С	
					0	0	0	1	
Pre-re	Pre-requisite NIL				Syllabus version				
						1.0			
	e Objective								
1.	The cours	e is designed so as	to expose the st	udents to	industry e	enviror	nment	and	to
	take up on	n-site assignment as	s trainees or inter	ns.					
Cours	e Outcome	-							
1.	Demonstra	ate professional and	d ethical responsi	bility.					
2.	Understan	d the impact of eng	ineering solution	s in a glob	al, econo	mic, e	nviror	nmen	tal
	and societ	nd societal context.							
		ne ability to engage		o involve	in life-long	g learn	ing.		
4.	Comprehe	end contemporary is	sues.			-	-		
Modu	e Content								
Four w	eeks of wo	rk at industry site.							
Superv	vised by an	expert at the indust	try.						
Mode	of Evaluati	ion: Internship Rep	ort, Presentation	and Proje	ct Review	1			
Recon	nmended by	y Board of Studies	09-03-2022						
Approv	ved by Acad	demic Council	No. 65	Date	17-03-20)22			
			110.00	Dale	17-05-20	522			

BEEE497J		Project - I			L	T	Ρ	C	
	· · · · · · · · · · · · · · · · · · ·				0	0	3		
Pre-requisite	NIL				Syllabus version				
Course Objectives						1.0			
Course Objective	ent hands-on learn	ing experience r	olated to	the desig	n dov	alonn	oont	and	
•	le product / proces	0		0		•			
field.				iiiicai ski	11 3013	in the		3011	
Course Outcome									
	ate professional and	•	•						
	evidence to determine	•	•						
	d support peers to a								
4. Work in m	ulti-disciplinary tear	ms and provide s	olutions to	problem:	s that	arise	in mu	ulti-	
disciplinar	y work.								
Module Content									
	the second second second second								
	theoretical analys fabrication of new								
	lied research and a			iu analys	13 01 0	Jala,	3011	ale	
	work or a group pro	-		students					
	projects, the individ	•			hould	enocif	w the	in-	
	ition to the group pr			Student Si	louiu	speci	y the	; 111-	
	or outside the univ	•	vant indus	strv or res	earch	institu	ition		
	e peer reviewed jo			•					
vantage.						ana	Jueu	au-	
Tainager									
Mode of Evaluation: Assessment on the project - project report to be submitted,								d.	
presentation and		· · · · · · · · · · · · · · · · · · ·	[···]··					,	
Recommended by	/ Board of Studies	09-03-2022							
Approved by Acad	demic Council	No. 65	Date	17-03-20	022				

BEEE498J	Projo	ot II / Intorna	hin		L	Т	Р	С
					0	0	0	5
Pre-requisite NIL					Syllabus version 1.0			
Course Objective						1.0)	
	ent hands-on learning	n experience r	elated to t	the desig	n dev	elopn	nent	and
	le product / process s			-				
field.								
Course Outcome	7.							
	specific problem state	monte for une	ll defined	roal life p	oblom		<u> </u>	
	le assumptions and co		ii-ueiiiieu i	ieai ilie pi	UDIEIT	is witi	1	
	erature search and / c		h in the ar	ea of inte	rest			
	xperiments / Design a	•				cume	nt the	-
results.								
4. Perform er	rror analysis / benchm	arking / costing	g.					
5. Synthesize	e the results and arrive	e at scientific c	onclusion	s / produc	ts / so	lution		
6. Document	the results in the form	n of technical r	eport / pre	esentation).			
Module Content								
 Project may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities. Project can be for one or two semesters based on the completion of required number of credits as per the academic regulations. Can be individual work or a group project, with a maximum of 3 students. In case of group projects, the individual project report of each student should specify the individual's contribution to the group project. Carried out inside or outside the university, in any relevant industry or research institution. Publications in the peer reviewed journals / International Conferences will be an added advantage. 							ata, er of he - d	
Mode of Evaluation and	project reviews.		ct - proje	ect repor	t to b	be su	bmitt	ed,
Recommended by	y Board of Studies	09-03-2022	1					
Approved by Acad	demic Council	No. 65	Date	17-03-20)22			