

SCHOOL OF ELECTRICAL ENGINEERING

B. Tech Electronics and Instrumentation Engineering

(B.Tech EIE)

Curriculum

(2020-2021 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF ELECTRICAL ENGINEERING

To be a leader for academic excellence in the field of electrical, instrumentation and control engineering imparting high quality education and research leading to global competence for the societal and industrial developments.

MISSION STATEMENT OF THE SCHOOL OF ELECTRICAL ENGINEERING

M1: Impart high quality education and interdisciplinary research by providing conducive teaching learning environment and team spirit resulting in innovation and product development.

M2: Enhance the core competency of the students to cater to the needs of the industries and society by providing solutions in the field of electrical, electronics, instrumentation, and automation engineering.

M3: Develop interpersonal skills, leadership quality and societal responsibility through ethical value-added education.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The school of Electrical Engineering has established and sustained a well-defined set of educational objectives and preferred program outcomes. Educational objectives of the program satisfy to the requirements of the stakeholders such as students, parents, employers, alumni, faculty etc. The Program Educational Objectives (PEOs) are as follows.

- **PEO-1:** Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems in electrical engineering and allied disciplines.
- **PEO-2:** Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- **PEO-3:** Graduates will function in their profession with social awareness and responsibility.
- **PEO-4:** Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- **PEO-5:** Graduates will be successful in pursuing higher studies leading to careers in engineering, management, teaching, and research.

PROGRAMME OUTCOMES (POs)

POs are statements that describe what students are expected to know and be able to do upon graduating from the program. These relate to the skills, knowledge, analytical ability attitude and behaviour that students acquire through the program.

NBA has defined the following twelve POs for an engineering graduate. These are in line with the Graduate Attributes as defined by the Washington Accord:

PO_01: Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO_02: Problem Analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.

PO_03: Design / Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO_04: Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions for complex problems:

- that cannot be solved by straightforward application of knowledge, theories and techniques applicable to the engineering discipline as against problems given at the end of chapters in a typical text book that can be solved using simple engineering theories and techniques
- that may not have a unique solution. For example, a design problem can be solved in many ways and lead to multiple possible solutions that require consideration of appropriate constraints / requirements not explicitly given in

the problem statement such as cost, power requirement, durability, product life, etc.

- which need to be defined (modelled) within appropriate mathematical framework
- that often require use of modern computational concepts and tools, for example, in the design of an antenna or a DSP filter.
- PO_05: Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- PO_06: The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO_07: Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO_08: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO_09: Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO_10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO_11: Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO_12: Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of B. Tech. (Electronics and Instrumentation Engineering) programme, graduates will be able to

- PSO1: Design and develop electronics and instrumentation systems for fulfilling socio-economic and environmental requirements.
- PSO2: Analyze and design signal conditioning circuits for sensors, measurement, instrumentation system, process control and automation techniques by considering economic and environmental constraints.
- PSO3: Apply and implement intelligent systems using modern tools for instrumentation engineering.

CREDIT STRUCTURE

Category-wise Credit distribution

Distribution	Credits
University Core (UC)	53
University Elective (UE)	12
Programme Core (PC)	59
Programme Elective (PE)	36
Total	160

DETAILED CURRICULUM

University Core

University Core (53 Credits)									
S. No.	Course Code	Course Title	L	Т	P	J	С		
1.	CHY1701	Engineering Chemistry	3	0	2	0	4		
2.	CHY1002	Environmental Sciences	3	0	0	0	3		
3.	CSE1001	Problem Solving and Programming	0	0	6	0	3		
4.	CSE1002	Problem Solving and Object Oriented Programming	0	0	6	0	3		
5.	EEE1901	Technical Answers for Real World Problems (TARP)	1	0	0	4	2		
6.	EEE4098	Comprehensive Examination	0	0	0	0	1		
7.	EEE4099	Co-op /Capstone Project	0	0	0	0	12		
8.	ENG1901/	Technical English I							
	ENG1902/	Technical English II	0/0/0	0/0/0	4/4/2	0/0/4	2		
	ENG1903	Advanced Technical English							
9.	ENG 1000/	Foundation English I	0	0	4	0	2		
	ENG 2000	Foundation English II							
10.	HUM1021	Ethics and Values	2	0	0	0	2		
11.	MAT1011	Calculus for Engineers	3	0	2	0	4		
12.	MAT2001	Statistics for Engineers	3	0	2	0	4		
13.	MGT1022	Lean Start-up Management	1	0	0	4	2		
14.	PHY1701	Engineering Physics	3	0	2	0	4		
15.	PHY1901	Introduction to Innovative Projects	1	0	0	0	1		
16.	EXC4097	Extra & Co- Curricular Activities	0	0	0	0	2		
17.	EEE1902	Industrial Internship	0	0	0	0	1		
18.	FLC4097	Foreign Language Courses Basket	2	0	0	0	2		
19.	STS4097	Soft Skills	-	-	_	-	6		

Programme Core

	Programme Core (59 Credits)								
S. No.	Course Code	Course Title	L	T	P	J	C		
1.	EEE1002	Electric Circuits	3	0	0	0	3		
2.	EEE1004	Engineering Electromagnetics	3	0	2	0	4		
3.	EEE1005	Signals and Systems	3	0	0	0	3		
4.	EEE2001	Network Theory	3	0	0	0	3		
5.	EEE2002	Semiconductor Devices and Circuits	2	0	2	4	4		
6.	EEE2005	Digital Signal Processing	2	0	2	0	3		
7.	EEE3001	Control Systems	3	0	2	0	4		
8.	EEE3002	Analog and Digital Circuits	3	0	2	0	4		
9.	EEE4001	Microprocessor and Microcontroller	2	0	2	0	3		
10.	EEE4021	Sensors and Signal Conditioning	3	0	2	0	4		
11.	EEE4031	Electrical and Electronic Instrumentation	3	0	2	0	4		
12.	EEE4032	Process Automation and Control	3	0	2	0	4		
13.	EEE4033	Industrial Instrumentation	3	0	0	4	4		
14.	MAT2002	Applications of Differential and Difference Equations	3	0	2	0	4		
15.	MAT3003	Complex Variables and Partial Differential Equations	3	1	0	0	4		
16.	MAT3005	Applied Numerical Methods	3	1	0	0	4		

Programme Elective

S. No.	Course Code	Course Title	L	Т	P	J	C
1.	EEE1007	Neural Network and Fuzzy Control	2	0	0	4	3
2.	EEE1008	Bio-Medical Instrumentation	3	0	0	4	4
3.	EEE1011	Automated Test Engineering	2	0	2	0	3
4.	EEE1012	Optoelectronic Instrumentation	3	0	0	0	3
5.	EEE1013	Analytical Instrumentation	3	0	0	0	3
6.	EEE1014	Fiber Optic Sensors	3	0	0	0	3
7.	EEE1015	Micro Electromechanical Systems	3	0	0	4	4
8.	EEE1016	Non-Destructive Testing	3	0	0	0	3
9.	EEE1018	Nanotechnology Fundamentals and its Applications	3	0	0	0	3
10.	EEE1020	Engineering Optimization	2	1	0	4	4
11.	EEE2006	Communication Engineering	3	0	2	0	4
12.	EEE2008	Electrical Technology	3	0	2	0	4
13.	EEE3008	Data Communication Network	3	0	0	0	3
14.	EEE3009	Digital Image Processing	3	0	0	4	4
15.	EEE4018	Advanced Control Theory	3	0	0	4	4
16.	EEE4019	Advanced Digital System Design With FPGAs	2	0	0	4	3
17.	EEE4020	Embedded System Design	2	0	0	4	3
18.	EEE4022	Analog VLSI Design	3	0	0	0	3
19.	EEE4024	Computer Architecture and Organization	3	0	0	0	3
20.	EEE4026	Digital Control Systems	2	0	0	4	3
21.	EEE4027	Robotics and Control	2	0	0	4	3
22.	EEE4028	VLSI Design	3	0	2	0	4
23.	EEE4029	Advanced Microcontrollers	2	0	0	4	3

24.	EEE4030	System on Chip Design	3	0	0	4	4
25.	EEE4034	Wireless Sensor Networks	3	0	0	4	4
26.	EEE4035	Virtual Instrumentation	0	0	2	4	2
27.	EEE4037	Rapid Prototyping with FPGAs	0	0	4	0	2
28.	EEE4038	Testing and Calibration Systems	0	0	2	0	1
29.	MEE1006	Applied Mechanics and Thermal Engineering	2	0	2	0	3
30.	ECE3501	IoT Fundamentals	2	0	2	4	4
31.	ECE3502	IoT Domain Analyst	2	0	2	4	4

University Elective Baskets

Management courses

Sl.No	Code	Title	L	T	P	J	C
1	MGT1001	Basic Accounting	3	0	0	0	3
2	MGT1002	Principles of Management	2	0	0	4	3
3	MGT1003	Economics for Engineers	2	0	0	4	3
4	MGT1004	Resource Management	2	0	0	4	3
5	MGT1005	Design, Systems and Society	2	0	0	4	3
6	MGT1006	Environmental and Sustainability Assessment	2	0	0	4	3
7	MGT1007	Gender, Culture and Technology	2	0	0	4	3
8	MGT1008	Impact of Information Systems on Society	2	0	0	4	3
9	MGT1009	Technological Change and Entrepreneurship	2	0	0	4	3
10	MGT1010	Total Quality Management	2	2	0	0	3
11	MGT1014	Supply Chain Management	3	0	0	0	3
12	MGT1015	Business Mathematics	3	0	0	0	3
13	MGT1016	Intellectual Property Rights	3	0	0	0	3
14	MGT1017	Business Regulatory Framework For Start- ups	3	0	0	0	3
15	MGT1018	Consumer Behaviour	3	0	0	0	3

		(Deemed to be University under section 3 of UGC Act, 1956)					
16	MGT1019	Services Marketing	3	0	0	0	3
17	MGT1020	Marketing Analytics	2	0	2	0	3
18	MGT1021	Digital and Social Media Marketing	3	0	0	0	3
19	MGT1022	Lean Start-up Management	1	0	0	4	2
20	MGT1023	Fundamentals of Human Resource Management	3	0	0	4	4
21	MGT1024	Organizational Behaviour	3	0	0	4	4
22	MGT1025	Foundations of Management And Organizational Behaviour	3	0	0	4	4
23	MGT1026	Information Assurance and Auditing	2	0	0	4	3
24	MGT1028	Accounting and Financial Management	2	2	0	4	4
25	MGT1029	Financial Management	2	1	0	4	4
26	MGT1030	Entrepreneurship Development	3	0	0	4	4
27	MGT1031	International Business	3	0	0	4	4
28	MGT1032	Managing Asian Business	3	0	0	4	4
29	MGT1033	Research Methods in Management	2	1	0	4	4
30	MGT1034	Project Management	3	0	0	4	4
31	MGT1035	Operations Management	3	0	0	0	3
32	MGT1036	Principles of Marketing	3	0	0	4	4
33	MGT1037	Financial Accounting and Analysis	2	1	0	4	4
34	MGT1038	Financial Econometrics	2	0	0	4	3
35	MGT1039	Financial Markets and Institutions	2	0	0	4	3
36	MGT1040	Personal Financial Planning	2	0	0	4	3
37	MGT1041	Financial Derivatives	2	1	0	4	4
38	MGT1042	Investment Analysis and Portfolio Management	2	0	0	4	3
39	MGT1043	Applications in Neuro Marketing	3	0	0	4	4
40	MGT1044	Global Brand Marketing Strategies	3	0	0	4	4
41	MGT1045	Industrial Marketing	3	0	0	4	4
42	MGT1046	Sales and Distribution Management	3	0	0	4	4
	1					1	1

43	MGT1047	Social Marketing	3	0	0	4	4
44	MGT1048	Political Economy of Globalization	3	0	0	4	4
45	MGT1049	Sustainable Business Models	3	0	0	4	4
46	MGT1050	Software Engineering Management	2	0	0	4	3
47	MGT1051	Business Analytics for Engineers	2	2	0	0	3
48	MGT1052	Bottom of the Pyramid Operations	3	0	0	0	3
49	MGT1053	Entrepreneurship Development, Business Communication and IPR	1	0	2	0	2
50	MGT1054	Product Planning and Strategy	2	2	0	0	3
51	MGT1055	Design Management	2	2	0	0	3
52	MGT1056	Accounting and Financial Management	3	0	0	4	4
53	MGT6001	Organizational Behaviour	2	0	0	4	3

Humanities courses

Sl.No	Code	Title	L	T	P	J	C
1	HUM1001	Fundamentals of Cyber Laws	3	0	0	0	3
2	HUM1002	Business Laws	3	0	0	0	3
3	HUM1003	Basic Taxation for Engineers	3	0	0	0	3
4	HUM1004	Corporate Law for Engineers	3	0	0	0	3
5	HUM1005	Cost Accounting for Engineers	3	0	0	0	3
6	HUM1006	Business Accounting for Engineers	3	0	0	0	3
7	HUM1007	Contemporary Legal Framework for Business	3	0	0	0	3
8	HUM1009	International Business	3	0	0	0	3
9	HUM1010	Foreign Trade Environment	3	0	0	0	3
10	HUM1011	Export Business	3	0	0	0	3
11	HUM1012	Introduction to Sociology	3	0	0	0	3
12	HUM1013	Population Studies	3	0	0	0	3
13	HUM1021	Ethics and Values	2	0	0	0	2

		(Deemed to be University under section 3 of UGC Act, 1956)					
14	HUM1022	Psychology in Everyday Life	2	0	0	4	2
15	HUM1023	Indian Heritage and Culture	2	0	0	4	2
16	HUM1024	India and Contemporary World	2	0	0	4	2
17	HUM1025	Indian Classical Music	1	0	2	4	1
18	HUM1033	Micro Economics	3	0	0	0	3
19	HUM1034	Macro Economics	3	0	0	0	3
20	HUM1035	Introductory Econometrics	2	0	2	0	2
21	HUM1036	Engineering Economics and Decision Analysis	2	0	0	4	2
22	HUM1037	Applied Game Theory	2	0	0	4	2
23	HUM1038	International Economics	3	0	0	0	3
24	HUM1039	Community Development in India	2	0	0	4	2
25	HUM1040	Indian Social Problems	3	0	0	0	3
26	HUM1041	Indian Society Structure and Change	3	0	0	0	3
27	HUM1042	Industrial Relations and Labour Welfare in India	3	0	0	0	3
28	HUM1043	Mass Media and Society	2	0	0	4	2
29	HUM1044	Network Society	3	0	0	0	3
30	HUM1045	Introduction to Psychology	2	0	2	0	2
31	HUM1706	Business Accounting for Engineers	3	0	0	0	3
	I	1		1		1	1

CHY1002	Environmental Sciences	L	T	P	J	C
		3	0	0	0	3
Pre-requisite	NIL	Sy	Syllabus version			
						v:1.1

- 1. To make students understand and appreciate the unity of life in all its forms, the implications of life style on the environment.
- 2. To understand the various causes for environmental degradation.
- 3. To understand individuals contribution in the environmental pollution.
- 4. To understand the impact of pollution at the global level and also in the local environment.

Expected Course Outcome:

- 1. Students will be able to
- 2. Students will **recognize** the environmental issues in a problem oriented interdisciplinary perspectives
- 3. Students will **understand** the key environmental issues, the science behind those problems and potential solutions.
- 4. Students will **demonstrate** the significance of biodiversity and its preservation
- 5. Students will **identify** various environmental hazards
- 6. Students will **design** various methods for the conservation of resources
- 7. Students will **formulate** action plans for sustainable alternatives that incorporate science, humanity, and social aspects
- 8. Students will have foundational **knowledge** enabling them to make sound life decisions as well as enter a career in an environmental profession or higher education.

Module:1	Environment and Ecosystem	7 hours

Key environmental problems, their basic causes and sustainable solutions. IPAT equation. Ecosystem, earth – life support system and ecosystem components; Food chain, food web, Energy flow in ecosystem; Ecological succession- stages involved, Primary and secondary succession, Hydrarch, mesarch, xerarch; Nutrient, water, carbon, nitrogen, cycles; Effect of human activities

on these cycles.

Module:2	Biodiversity	6 hours

Importance, types, mega-biodiversity; Species interaction - Extinct, endemic, endangered and rare species; Hot-spots; GM crops- Advantages and disadvantages; Terrestrial biodiversity and Aquatic

biodiversity – Significance, Threats due to natural and anthropogenic activities and Conservation methods.

		to be University under section 3 of UGC Act, 1956)		
Module:3	Sustaining Resources Quality	Natural and Environmental	7 hours	
Environmental hazards – Chemical hazards- BPA, F of hazards. Water footprin	PCB, Phthalate	es, Mercury, Nuclear haza	rds- Risk and evaluation	
its conservation. Solid and hazardous waste – types an	nd waste mana	gement methods.		
Module:4	Energy Reso	ources	6 hours	
Renewable - Non renewable gas, Coal, Nuclear energy. Hydroelectric power, Ocean thermal ener Hydrogen revolution.	Energy efficie	ency and renewable energy	. Solar energy,	
Module:5	Environmon	ital Impact Assessment	6 hours	
Introduction to environmen		*		
of India (Environmental Prassessment methodologies. Public awa		, ,	, 1	
8		, , , , , , , , , , , , , , , , , , ,		
Module:6	Human Pop Environmen	ulation Change and at	6 hours	
Urban environmental problement – Impact of pempowerment. Sustaining leducation.	opulation age	structure - Women and ch	nild welfare, Women	
Module:7	Global Clim Mitigation	atic Change and	5 hours	
Climate disruption, Green protocol,		• •	·	
Carbon credits, Carbon seq technology in environment	=		col. Role of Information	
Module:8	Contempora	nry issues	2 hours	
Lecture by Industry Expe		ii y issues	2 Hours	
	Total Lectur	re hours:	45 hours	
Text Books				
	G. Tyler Miller and Scott E. Spoolman (2016), Environmental Science, 15 th Edition, Cengage learning.			
	George Tyler Miller, Jr. and Scott Spoolman (2012), Living in the Environment – Principles, Connections and Solutions, 17 th Edition, Brooks/Cole, USA.			

Reference Books						
1.	David M.Has	senzahl, Mary	Catherine	Hager, Linda		
	R.Berg	g(2011), Visual	lizing Enviro	nmental Science,		
	4thEdition, Jo	hn Wiley & So	ns, USA.			
Mode of evaluation: Intern	Mode of evaluation: Internal Assessment (CAT, Quizzes, Digital Assignments) & FAT					
Recommended by Board	ecommended by Board 12.08.2017					
of Studies						
Approved by Academic	46 th AC	Date		24.08.2017		
Council						

	Vellore Institute of Technolo (Deemed to be University under section 3 of UGC Act,						
CHY1701	Engineering Chemistry		L T P J C				
			3 0 2 0 4				
Pre-requisite	NIL		Syllabus version				
			v.1				
Course Objectives	3:						
1. To impart t	echnological aspects of applied chemistry						
2. To lay four	ndation for practical application of chemistry i	n engineering	aspects				
Expected Course	Outcomes (CO): Students will be able to						
1. Recall and	analyze the issues related to impurities in war	ter and their re	emoval methods and				
apply recer	at methodologies in water treatment for domes	tic and industr	rial usage				
2. Evaluate th	ne causes of metallic corrosion and apply the	methods for	corrosion protection				
of metals							
	ne electrochemical energy storage systems su						
and solar ce	ells, and design for usage in electrical and elec	tronic applica	tions				
4. Assess the	quality of different fossil fuels and creat	e an awaren	ess to develop the				
alternative							
	e properties of different polymers and distin	guish the poly	mers which can be				
	nd demonstrate their usefulness						
	theoretical aspects: (a) in assessing the water						
	n and working of electrochemical cells; (c) a		=				
_	mental methods; (d) evaluating the viscosity	and water abs	orbing properties of				
polymeric r	naterials						
Module:1 Wate	O.		5 hours				
	ard water - hardness, DO, TDS in water and						
F	ss determination by EDTA; Modern techniqu	es of water an	nalysis for industrial				
	of hard water in industries.	T					
	r Treatment		8 hours				
_	hods: - Lime-soda, Zeolite and ion exchange	•					
	ater for domestic use (ICMR and WHO); U						
	treatment for municipal supply - Sedimentation with coagulant- Sand Filtration - chlorination;						
Domestic water purification – Candle filtration- activated carbon filtration; Disinfection methods-							
Ultrafiltration, UV treatment, Ozonolysis, Reverse Osmosis; Electro dialysis.							
Module:3 Corr			6 hours				
	on - detrimental effects to buildings, machine						
	ential aeration, Pitting, Galvanic and Stress		acking; Factors that				
enhance corrosion a	nd choice of parameters to mitigate corrosion.						
Module:4 Corr	osion Control		4 hours				
	n - cathodic protection – sacrificial anodic	and impressed					

Corrosion protection - cathodic protection - sacrificial anodic and impressed current protection methods; Advanced protective coatings: electroplating and electroless plating, PVD and CVD. Alloying for corrosion protection - Basic concepts of Eutectic composition and Eutectic mixtures -

Selected examples – Ferrous and non-ferrous alloys.

Module:5 | Electrochemical Energy Systems 6 hours

Brief introduction to conventional primary and secondary batteries; High energy electrochemical energy systems: Lithium batteries – Primary and secondary, its Chemistry, advantages and applications.

Fuel cells – Polymer membrane fuel cells, Solid-oxide fuel cells- working principles, advantages, applications.

Solar cells – Types – Importance of silicon single crystal, polycrystalline and amorphous silicon solar cells, dye sensitized solar cells - working principles, characteristics and applications.

Module:6 Fuels and Combustion

8 hour

Calorific value - Definition of LCV, HCV. Measurement of calorific value using bomb calorimeter and Boy's calorimeter including numerical problems.

Controlled combustion of fuels - Air fuel ratio – minimum quantity of air by volume and by weight-Numerical problems-three way catalytic converter- selective catalytic reduction of NO_X; Knocking in IC engines-Octane and Cetane number - Antiknocking agents.

Module:7 | **Polymers**

6 hours

Difference between thermoplastics and thermosetting plastics; Engineering application of plastics - ABS, PVC, PTFE and Bakelite; Compounding of plastics: moulding of plastics for Car parts, bottle caps (Injection moulding), Pipes, Hoses (Extrusion moulding), Mobile Phone Cases, Battery Trays, (Compression moulding), Fibre reinforced polymers, Composites (Transfer moulding), PET bottles (blow moulding);

Conducting polymers- Polyacetylene- Mechanism of conduction – applications (polymers in sensors, self-cleaning windows)

Mo	dule:8	Contemporary issues:		2 hours				
Lec	Lecture by Industry Experts							
		Total Lecture hours:	45 hours					
Tex	t Book((\mathbf{s})						
1.	Sashi C	Chawla, A Text book of Engineering Chemistry, Dha	anpat Rai Publ	ishing Co., Pvt. Ltd.,				
	Educati	onal and Technical Publishers, New Delhi, 3rd Edit	tion, 2015.					
2.	O.G. Pa	alanna, McGraw Hill Education (India) Private Lim	ited, 9 th Reprin	nt, 2015.				
3.	B. Siva	sankar, Engineering Chemistry 1st Edition, Mc Gra	aw Hill Educat	ion (India), 2008				
4.	"Photo	voltaic solar energy: From fundamentals to Ap	plications", A	ingà le Reinders,				
	Pierre V	Verlinden, Wilfried van Sark, Alexandre Freundlich	, Wiley publish	hers, 2017.				
Ref	erence l	Books						

- 1. O.V. Roussak and H.D. Gesser, *Applied Chemistry-A Text Book for Engineers and Technologists*, Springer Science Business Media, New York, 2nd Edition, 2013.
- 2. S. S. Dara, *A Text book of Engineering Chemistry*, S. Chand & Co Ltd., New Delhi, 20th Edition, 2013.

Mode of Evaluation: Internal Assessment (CAT, Quizzes, Digital Assignments) & FAT

List of Experiments

	Experiment title	Hours
1.	Water Purification: Estimation of water hardness by EDTA method and its	3 Hours
	removal by ion-exchange resin	
	Water Quality Monitoring: Assessment of total dissolved oxygen in different	3 Hours
2.	water samples by Winkler's method	
	Estimation of sulphate/chloride in drinking water by conductivity method	3 Hours
3.		
4/5	Material Analysis: Quantitative colorimetric determination of divalent	6 Hours
	metal ions of Ni/Fe/Cu using conventional and smart phone digital-imaging	
	methods	
6.	Analysis of Iron in carbon steel by potentiometry	3 Hours
7.	Construction and working of an Zn-Cu electrochemical cell	3 Hours

8.	8. Determination of viscosity-average molecular weight of different				3 Hours
	natural/synthetic polymers				
9.	9. Arduino microcontroller based sensor for monitoring				3 Hours
	pH/temperature/conductivity in samples.				
	Total Laboratory Hours				
Mode of Evaluation: Viva-voce and Lab performance & FAT					
Recommended by Board of Studies 31-05-2019					
Approved by Academic Council 54 th AC Date 13-06-2019					

CSE1001	Problem Solving and Programming			P	J	C
		0	0	6	0	3
Pre-requisite	NIL	Sy	llab	us v	er	sion
						v.1

- 1. To develop broad understanding of computers, programming languages and their generations
- 2. Introduce the essential skills for a logical thinking for problem solving
- 3. To gain expertise in essential skills in programming for problem solving using computer

Expected Course Outcome:

- 1. Understand the working principle of a computer and identify the purpose of a computer programming language.
- 2. Learn various problem solving approaches and ability to identify an appropriate approach to solve the problem
- 3. Differentiate the programming Language constructs appropriately to solve any problem
- 4. Solve various engineering problems using different data structures
- 5. Able to modulate the given problem using structural approach of programming
- 6. Efficiently handle data using flat files to process and store data for the given problem

List o	f Challenging Experiments (Indicative)	
1	Steps in Problem Solving Drawing flowchart using yEd tool/Raptor Tool	4 Hours
2	Introduction to Python, Demo on IDE, Keywords, Identifiers, I/O Statements.	4 Hours
3	Simple Program to display Hello world in Python.	4 Hours
4	Operators and Expressions in Python	4 Hours
5	Algorithmic Approach 1: Sequential	4 Hours
6	Algorithmic Approach 2: Selection (if, elif, if else, nested if else	4 Hours
7	Algorithmic Approach 3: Iteration (while and for)	6 Hours
8	Strings and its Operations	6 Hours
9	Regular Expressions	6 Hours
10	List and its operations.	6 Hours
11	Dictionaries: operations	6 Hours
12	Tuples and its operations	6 Hours
13	Set and its operations	6 Hours
14	Functions, Recursions	6 Hours
15	Sorting Techniques (Bubble/Selection/Insertion)	6 Hours
16	Searching Techniques : Sequential Search and Binary Search	6 Hours
17	Files and its Operations	6 Hours
	Total Lecture hours:	45 hours

Text Book(s)						
1.	John V. Guttag., 2016.	Introduction to co	omputation and			
	programming using py	thon: with applica	tions to understanding data.			
	PHI Publisher.					
Reference Books						
1.	Charles Severance.201	16.Python for ev	erybody: exploring data in			
	Python 3, Charles Seve	erance.				
2.	Charles Dierbach.2013.Introduction to computer science using					
	python: a computational problem-solving focus. Wiley Publishers.					
Mode of Evaluation:	PAT/CAT/FAT					
Recommended by	04-04-2014					
Board of Studies						
Approved by	38 th AC Date 23-10-2015					
Academic Council						

CSE1002	Problem Solving and Object Oriented Programming	L T P J C
		0 0 6 0 3
Pre-requisite	NIL	Syllabus version
		v.1.0

- 1. To emphasize the benefits of object oriented concepts
- 2. To enable the students to solve the real time applications using object oriented programming features.
- 3. To improve the skills of a logical thinking and to solve the problems using any processing elements

Expected Course Outcome:

- 1. Recall the basics of procedural programming and to represent the real world entities as programming constructs
- 2. Enumerate object oriented concepts and translate real-world applications into graphical representations
- 3. Demonstrate the usage of classes and objects of the real world entities in applications
- 4. Discriminate the reusability and multiple interfaces with same functionality based features to solve complex computing problems
- 5. Propose possible error-handling constructs for unanticipated states/inputs and to use generic programming constructs to accommodate different datatypes
- 6. Validate the program against file inputs towards solving the problem

List of Challenging Experiments (Indicative)

1. | Postman Problem

A postman needs to walk down every street in his area in order to deliver the mail. Assume that the distances between the streets along the roads are given. The postman starts at the post office and returns back to the post office after delivering all the mails. Implement an algorithm to help the post man to walk minimum distance for the purpose.

2. Budget Allocation for Marketing Campaign

A mobile manufacturing company has got several marketing options such as Radio advertisement campaign, TV non peak hours campaign, City top paper network, Viral marketing campaign, Web advertising. From their previous experience, they have got a statistics about paybacks for each marketing option. Given the marketing budget (rupees in crores) for the current year and details of paybacks for each option, implement an algorithm to determine the amount that shall spent on each marketing option so that the company attains the maximum profit.

3. Missionaries and Cannibals

Three missionaries and three cannibals are on one side of a river, along with a boat that can hold one or two people. Implement an algorithm to find a way to get everyone to the other side of the river, without ever leaving a group of missionaries in one place outnumbered by the cannibals in that place.

4. Register Allocation Problem

A register is a component of a computer processor that can hold any type of data and can be accessed faster. As registers are faster to access, it is desirable to use them to the maximum so that the code execution is faster. For each code submitted to the processor, a register interference graph (RIG) is constructed. In a RIG, a node represents a temporary variable and an edge is added between two nodes (variables) t1 and t2 if they are live simultaneously at some point in the program. During register allocation, two temporaries can be allocated to the

same register if there is no edge connecting them. Given a RIG representing the dependencies between variables in a code, implement an algorithm to determine the number of registers required to store the variables and speed up the code execution.

5. Selective Job Scheduling Problem

A server is a machine that waits for requests from other machines and responds to them. The purpose of a server is to share hardware and software resources among clients. All the clients submit the jobs to the server for execution and the server may get multiple requests at a time. In such a situation, the server schedule the jobs submitted to it based on some criteria and logic. Each job contains two values namely time and memory required for execution. Assume that there are two servers that schedules jobs based on time and memory. The servers are named as Time_Schedule_Server and memory_Schedule_Server respectively. Design a OOP model and implement the time_Schedule_Server and memory_Schedule_Server. The Time_Schedule_Server arranges jobs based on time required for execution in ascending order whereas memory_Schedule_Server arranges jobs based on memory required for execution in ascending order.

6. Fragment Assembly in DNA Sequencing

DNA, or deoxyribonucleic acid, is the hereditary material in humans and almost all other organisms. The information in DNA is stored as a code made up of four chemical bases: adenine (A), guanine (G), cytosine (C), and thymine (T). In DNA sequencing, each DNA is sheared into millions of small fragments (reads) which assemble to form a single genomic sequence ("superstring"). Each read is a small string. In such a fragment assembly, given a set of reads, the objective is to determine the shortest superstring that contains all the reads. For example, given a set of strings, {000, 001, 010, 011, 100, 101, 110, 111} the shortest superstring is 0001110100. Given a set of reads, implement an algorithm to find the shortest superstring that contains all the given reads.

7. **House Wiring**

An electrician is wiring a house which has many rooms. Each room has many power points in different locations. Given a set of power points and the distances between them, implement an algorithm to find the minimum cable required.

Total Laboratory Hours: 90 Hours

Text Book(s)

- 1. Stanley B Lippman, Josee Lajoie, Barbara E, Moo, "C++ primer", Fifth edition, Addison-Wesley, 2012.
- 2. Ali Bahrami, Object oriented Systems development, Tata McGraw Hill Education, 1999
- 3. Brian W. Kernighan, Dennis M. Ritchie, The "C" programming Language, 2nd edition, Prentice Hall Inc., 1988.

Reference Books

- 1. Bjarne stroustrup, The C++ programming Language, Addison Wesley, 4th edition, 2013
- 2. Harvey M. Deitel and Paul J. Deitel, C++ How to Program, 7th edition, Prentice Hall, 2010.
- 3. Maureen Sprankle and Jim Hubbard, Problem solving and Programming concepts, 9th edition, Pearson Eduction, 2014

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

Recommended by Board of Studies	29-10-2015		
Approved by Academic Council	39 th AC	Date	17-12-2015

EEE1901	Technical Answers for Real World Problems (TARP)) L T P J C
		1 0 0 4 2
Pre-requisite	PHY1901 and 115 Credits Earned	Syllabus version
		v. 1.0

- 1. To help students to identify the need for developing newer technologies for industrial / societal needs
- 2. To train students to propose and implement relevant technology for the development of the prototypes / products
- 3. To make the students learn to the use the methodologies available to assess the developed prototypes / products

Expected Course Outcome:

At the end of the course, the student will be able to

- 1. Identify real life problems related to society
- 2. Apply appropriate technology(ies) to address the identified problems using engineering principles and arrive at innovative solutions
 - 1. Identification of real life problems
 - 2. Field visits can be arranged by the faculty concerned
 - 3. 6-10 students can form a team (within the same / different discipline)
 - 4. Minimum of eight hours on self-managed team activity
 - 5. Appropriate scientific methodologies to be utilized to solve the identified issue
 - 6. Solution should be in the form of fabrication/coding/modeling/product design/process design/relevant scientific methodology(ies)
 - 7. Consolidated report to be submitted for assessment
 - 8. Participation, involvement and contribution in group discussions during the contact hours will be used as the modalities for the continuous assessment of the theory component
 - 9. Project outcome to be evaluated in terms of technical, economical, social, environmental, political and demographic feasibility
 - 10. Contribution of each group member to be assessed
 - 11. The project component to have three reviews with the weightage of 20:30:50

Mode of Evaluation: (No FAT) Continuous Assessment the project done – Mark weightage of 20:30:50 – project report to be submitted, presentation and project reviews

Recommended by Board of Studies	05/03/2016		
Approved by Academic Council	40 th AC	Date	18/03/2016

EEE4098	Comprehensive Examination	L T P J C
		0 0 0 0 1
Pre-requisite	NIL	Syllabus version
		v.1.0

Module:1 Electrical Circuits

Voltage and current sources: independent, dependent, ideal and practical; V-I relationships of resistor, inductor, mutual inductor and capacitor; transient analysis of RLC circuits with dc excitation. Kirchhoff's laws, mesh and nodal analysis, superposition, Thevenin's, Norton, maximum power transfer and reciprocity theorems. Peak, average and rms values of ac quantities; apparent, active and reactive powers; phasor analysis, impedance and admittance; series and parallel resonance, locus diagrams, realization of basic filters with R, L and C elements. One-port and two-port networks, driving point impedance and admittance, open-, and short circuit parameters

Module:2 | Signals and Systems

Periodic, aperiodic and impulse signals; Laplace, Fourier and z-transforms; transfer function, frequency response of first and second order linear time invariant systems, impulse response of systems; convolution, correlation. Discrete time system: impulse response, frequency response, pulse transfer function; DFT and FFT; basics of IIR and FIR filters

Module:3 | Control Systems

Mathematical modelling and representation of systems, Feedback principle, transfer function, Block diagrams and Signal flow graphs, Transient and Steady-state analysis of linear time invariant systems, Routh-Hurwitz and Nyquist criteria, Bode plots, Root loci, Stability analysis, Lag, Lead and Lead-Lag compensators; P, PI and PID controllers; State space model, State transition matrix

Module:4 Analog and Digital Circuits

Characteristics and applications of diode, Zener diode, BJT and MOSFET; small signal analysis of transistor circuits, feedback amplifiers. Characteristics of operational amplifiers; applications of opamps: difference amplifier, adder, sub tractor, integrator, differentiator, instrumentation amplifier, precision rectifier, active filters and other circuits. Oscillators, signal generators, voltage controlled oscillators and phase locked loop. Combinational logic circuits, minimization of Boolean functions. IC families: TTL and CMOS. Arithmetic circuits, comparators, Schmitt trigger, multi-vibrators, sequential circuits, flip-flops, shift registers, timers and counters; sample-and-hold circuit, multiplexer, analog-to-digital (successive approximation, integrating, flash and sigma-delta) and digital-to-analog converters (weighted R, R-2R ladder and current steering logic). Characteristics of ADC and DAC (resolution, quantization, significant bits, conversion/settling time); basics of number systems, microcontroller: applications, memory and input-output interfacing; basics of data acquisition systems.

Module:5 | Electrical and Electronic Instrumentation

SI units, systematic and random errors in measurement, expression of uncertainty - accuracy and precision index, propagation of errors. PMMC, MI and dynamometer type instruments; dc potentiometer; bridges for measurement of R, L and C, Q-meter. Measurement of voltage, current and power in single and three phase circuits; ac and dc current probes; true rms meters, voltage and current scaling, instrument transformers, timer/counter, time, phase and frequency measurements, digital voltmeter, digital multimeter; oscilloscope, shielding and grounding

Module:6 Industrial Instrumentation

Resistive-, capacitive-, inductive-, piezoelectric-, Hall effect sensors and associated signal conditioning circuits; transducers for industrial instrumentation: displacement (linear and angular), velocity, acceleration, force, torque, vibration, shock, pressure (including low pressure), flow (differential pressure, variable area, electromagnetic, ultrasonic, turbine and open channel flow meters) temperature (thermocouple, bolometer, RTD (3/4 wire), thermistor, pyrometer and semiconductor); liquid level, pH, conductivity and viscosity measurement

Module:7 Optoelectronic Instrumentation

Optical sources and detectors: LED, laser, photo-diode, light dependent resistor and their characteristics; interferometer: applications in metrology; basics of fiber optic sensing.

Module:8 | Communication Engineering

Amplitude- and frequency modulation and demodulation; Shannon's sampling theorem, pulse code modulation; frequency and time division multiplexing, amplitude-, phase-, frequency-, pulse shift keying for digital modulation.

sinit kejing for digital modulation.			
Mode of Evaluation: Witten Exam			
Recommended by Board of Studies	05.06.2015		
Approved by Academic Council	37 th AC	Date	16.06.2015

ENG1901	Technical English - I	L	T	P	J	C
		0	0	4	0	2
Pre-requisite	Foundation English-II	Syllabus Version			ion	
		V			v.	.1.1

- 1. To enhance students' knowledge of grammar and vocabulary to read and write error-free language in real life situations.
- 2. To make the students' practice the most common areas of written and spoken communications skills.
- 3. To improve students' communicative competency through listening and speaking activities in the classroom.

Expected Course Outcome:

- 1. Develop a better understanding of advanced grammar rules and write grammatically correct sentences.
- 2. Acquire wide vocabulary and learn strategies for error-free communication.
- 3. Comprehend language and improve speaking skills in academic and social contexts.
- 4. Improve listening skills so as to understand complex business communication in a variety of global English accents through proper pronunciation.
- 5. Interpret texts, diagrams and improve both reading and writing skills which would help them in their academic as well as professional career.

Module:1 Advanced Grammar

4 hours

Articles, Tenses, Voice and Prepositions

Activity: Worksheets on Impersonal Passive Voice, Exercises from the prescribed text

Module:2 Vocabulary Building I

4 hours

Idioms and Phrases, Homonyms, Homophones and Homographs

Activity: Jigsaw Puzzles; Vocabulary Activities through Web tools

Module:3 Listening for Specific Purposes

4 hours

Gist, monologues, short conversations, announcements, briefings and discussions

Activity: Gap filling; Interpretations

Module:4 | Speaking for Expression

6 hours

Introducing oneself and others, Making Requests & responses, Inviting and Accepting/Declining Invitations

Activity: Brief introductions; Role-Play; Skit.

Module:5 Reading for Information

4 hours

Reading Short Passages, News Articles, Technical Papers and Short Stories

Activity: Reading specific news paper articles; blogs

Module:6 Writing Strategies

4 hours

Joining the sentences, word order, sequencing the ideas, introduction and conclusion

Activity: Short Paragraphs; Describing familiar events; story writing

Module:7 Vocabulary Building II 4 hours

Enrich the domain specific vocabulary by describing Objects, Charts, Food, Sports and Employment. Activity: Describing Objects, Charts, Food, Sports and Employment **Listening for Daily Life** 4 hours Listening for statistical information, Short extracts, Radio broadcasts and TV interviews Activity: Taking notes and Summarizing Module:9 **Expressing Ideas and Opinions** 6 hours Telephonic conversations, Interpretation of Visuals and describing products and processes. Activity: Role-Play (Telephonic); Describing Products and Processes **Comprehensive Reading** 4 hours Reading Comprehension, Making inferences, Reading Graphics, Note-making, and Critical Reading. Activity: Sentence Completion; Cloze Tests Module: 11 Narration 4 hours Writing narrative short story, Personal milestones, official letters and E-mails. Activity: Writing an E-mail; Improving vocabulary and writing skills. **Module:12** | **Pronunciation** 4 hours Speech Sounds, Word Stress, Intonation, Various accents Activity: Practicing Pronunciation through web tools; Listening to various accents of English Module:13 | Editing 4 hours Simple, Complex & Compound Sentences, Direct & Indirect Speech, Correction of Errors, Punctuations. Activity: Practicing Grammar **Module:14** | Short Story Analysis 4 hours "The Boundary" by Jhumpa Lahiri Activity: Reading and analyzing the theme of the short story. **Total Lecture hours** 60 hours Text Book / Workbook Wren, P.C.; Martin, H.; Prasada Rao, N.D.V. (1973–2010). High School English Grammar & Composition. New Delhi: Sultan Chand Publishers. 2 Kumar, Sanjay,; Pushp Latha. (2018) English Language and Communication Skills for Engineers, India: Oxford University Press. Reference Books Guptha S C, (2012) Practical English Grammar & Composition, 1st Edition, India: Arihant Steven Brown, (2011) Dorolyn Smith, Active Listening 3, 3rd Edition, UK: Cambridge

B.TECH (EIE) Page 29

University Press.

		72	No. of the contract of the con			
3.	Liz Hamp-Lyons, Ben Heasley University Pres.	y, (2010) Study V	riting, 2nd Edition, UK: C	ambridge		
4.	Kenneth Anderson, Joan Maclean, (2013) Tony Lynch, Study Speaking, 2nd Edition, UK: Cambridge, University Press.					
5.	Eric H. Glendinning, Beverly l Cambridge University Press.	Holmstrom, (201	2) Study Reading, 2nd Edit	ion, UK:		
6.	Michael Swan, (2017) Practical Oxford University Press.	l English Usage	(Practical English Usage),	4th edition, UK:		
7.	Michael McCarthy, Felicity O' Asian Edition), UK: Cambridg		•	vanced (South		
8.	Michael Swan, Catherine Walt 4th Edition, UK: Oxford Unive		d English Grammar Course	Advanced, Feb,		
9.	Watkins, Peter. (2018) Teachir for Language teachers, UK: Ca			ge Handbooks		
10.	. (The Boundary by Jhumpa Lah https://www.newyorker.com/m		29/the-boundary?intcid=inlin	ne_amp		
Mode	of evaluation: Quizzes, Presenta	ntion, Discussion	, Role play, Assignments a	nd FAT		
List of	f Challenging Experiments (Ind	licative)				
1. S	Self-Introduction			12 hours		
	Sequencing Ideas and Writing a F	aragraph		12 hours		
	Reading and Analyzing Technica			8 hours		
	Listening for Specificity in Interv	iews (Content S ₁	ecific)	12 hours		
5. I	dentifying Errors in a Sentence of		8 hours			
6. V	Writing an E-mail by narrating life events			8 hours		
	Total Laboratory Hours 60 hours					
	of evaluation: Quizzes, Presentat	ion, Discussion,	Role play, Assignments an	d FAT		
	nmended by Board of Studies	08.06.2019				
Appro	ved by Academic Council	55 th AC	Date: 13-06-2019			

ENG 1902	Technical English - II	L	T	P	J	C
		0	0	4	0	2
Pre-requisite	71% to 90% EPT score	Syllabus Vers			ion	
		v.			1.1	

- 1. To acquire proficiency levels in LSRW skills on par with the requirements for placement interviews of high-end companies / competitive exams.
- 2. To evaluate complex arguments and to articulate their own positions on a range of technical and general topics.
- 3. To speak in grammatical and acceptable English with minimal MTI, as well as develop a vast and active vocabulary.

Expected Course Outcome:

- 1. Communicate proficiently in high-end interviews and exam situations and all social situations
- 2. Comprehend academic articles and draw inferences
- 3. Evaluate different perspectives on a topic
- 4. Write clearly and convincingly in academic as well as general contexts
- 5. Synthesize complex concepts and present them in speech and writing

Module:1 Listening for Clear Pronunciation

4 hours

Ice-breaking, Introduction to vowels, consonants, diphthongs.

Listening to formal conversations in British and American accents (BBC and CNN) as well as other 'native' accents

Activity: Factual and interpretive exercises; note-making in a variety of global English accents

Module:2 Introducing Oneself

4 hours

Speaking: Individual Presentations

Activity: Self-Introductions, Extempore speech

Module:3 Effective Writing

6 hours

Writing: Business letters and Emails, Minutes and Memos

Structure/ template of common business letters and emails: inquiry/ complaint/ placing an order;

Formats of Minutes and Memos

Activity: Students write a business letter and Minutes/ Memo

Module:4 Comprehensive Reading

4 hours

Reading: Reading Comprehension Passages, Sentence Completion (Technical and General Interest), Vocabulary and Word Analogy

Activities: Cloze tests, Logical reasoning, Advanced grammar exercises

Module:5 Listening to Narratives

4 hours

Listening: Listening to audio files of short stories, News, TV Clips/ Documentaries, Motivational Speeches in UK/ US/ global English accents.

Activity: Note-making and Interpretive exercises

Module:6 Academic Writing and Editing

6 hours

Writing: Editing/ Proofreading symbols

Citation Formats

Structure of an Abstract and Research Paper

Activity: Writing Abstracts and research paper; Work with Editing/ Proofreading exercise

Module:7 Team Communication

4 hours

	(Deemed to be University under section 3 of UGC Act, 1956)	
	king: Group Discussions and Debates on complex/ contemporary topics	
	assion evaluation parameters, using logic in debates	
	vity: Group Discussions on general topics	
Mod	ule:8 Career-oriented Writing	4 hours
Writ	ing: Resumes and Job Application Letters, SOP	
Activ	vity: Writing resumes and SOPs	
Mod	ule:9 Reading for Pleasure	4 hours
	ing: Reading short stories	
	vity: Classroom discussion and note-making, critical appreciation of the short story	
Mod	ule: 10 Creative Writing	4 hours
	ing: Imaginative, narrative and descriptive prose	
Activ	vity: Writing about personal experiences, unforgettable incidents, travelogues	
Mod	ule: 11 Academic Listening	4 hours
Liste	ening: Listening in academic contexts	
	vity: Listening to lectures, Academic Discussions, Debates, Review Presentations, R	lesearch
Talks	s, Project Review Meetings	
Mod	ule:12 Reading Nature-based Narratives	4 hours
Narr	atives on Climate Change, Nature and Environment	
Activ	vity: Classroom discussions, student presentations	
Mod	lule:13 Technical Proposals	4 hours
Writ	ing: Technical Proposals	
Activ	vities: Writing a technical proposal	
Mod	lule:14 Presentation Skills	4 hours
Persu	asive and Content-Specific Presentations	
Activ	vity: Technical Presentations	
	Total Lecture hours:	60 hours
Text	Book / Workbook	
1.	Oxenden, Clive and Christina Latham-Koenig. New English File: Advanced Stud	ents Book.
	Paperback. Oxford University Press, UK, 2017.	
2	Rizvi, Ashraf. Effective Technical Communication. McGraw-Hill India, 2017.	
Refe	rence Books	
	Oxenden, Clive and Christina Latham-Koenig, New English File: Advanced: Tea	
1.	with Test and Assessment. CD-ROM: Six-level General English Course for Adult	ts.
	Paperback. Oxford University Press, UK, 2013.	
2.	Balasubramanian, T. English Phonetics for the Indian Students: A Workbook. Lax	xmi
	Publications, 2016.	
3.	Philip Seargeant and Bill Greenwell, From Language to Creative Writing. Bloom	sbury
	Academic, 2013.	
4.	Krishnaswamy, N. Eco-English. Bloomsbury India, 2015.	
5.	Manto, Saadat Hasan. Selected Short Stories. Trans. Aatish Taseer. Random House	se India,
	2012.	
6.	Ghosh, Amitav. The Hungry Tide. Harper Collins, 2016.	
7.	Ghosh, Amitav. The Great Derangement: Climate Change and the Unthinkable. P Books, 2016.	enguın
8.	The MLA Handbook for Writers of Research Papers, 8th ed. 2016.	
	Online Sources:	
	Omme Sources	

https://americanliterature.com/short-short-stories. (75 short short stories)

http://www.eco-ction.org/dt/thinking.html (Leopold, Aldo."Thinking like a Mountain")

<u>/www.esl-lab.com/</u>;

www.bbc.co.uk/learningenglish/;

/www.bbc.com/news;

learningenglish.voanews.com/a/using-voa-learning-english-to-improve-listening-

skills/3815547.html

Mode of evaluation: Quizzes, Presentation, Discussion, Role play, Assignments and FAT

	List of Challenging l	Experiments (Indicative)	
1.	Self-Introduction using SWOT			12 hours
2.	Writing minutes of meetings			10 hours
3.	Writing an abstract			10 hours
4.	Listening to motivational speeche	es and interpre	tation	10 hours
5.	Cloze Test			6 hours
6.	Writing a proposal			12 hours
			Total Laboratory H	ours 60 hours
Mod	de of evaluation: Quizzes, Presenta	tion, Discussion	on, Role play, Assignme	nts and FAT
Rec	ommended by Board of Studies	08.06.2019		
App	proved by Academic Council	55 th AC	Date: 13-06-2019	

ENG1903	Advanced Technical English	L	T	P	J	C
		0	0	2	4	2
Pre-requisite	Greater than 90 % EPT score	Syllabus Versi			ion	
		V.			v.	1.1

- 1. To review literature in any form or any technical article
- 2. To infer content in social media and respond accordingly
- 3. To communicate with people across the globe overcoming trans-cultural barriers and negotiate successfully

Expected Course Outcome:

- 1. Analyze critically and write good reviews
- 2. Articulate research papers, project proposals and reports
- 3. Communicate effectively in a trans-cultural environment
- 4. Negotiate and lead teams towards success
- 5. Present ideas in an effective manner using web tools

Module:1 | Negotiation and Decision Making Skills through Literary Analysis | 5 hours

Concepts of Negotiation and Decision Making Skills

Activity: Analysis of excerpts from Shakespeare's "The Merchant of Venice" (court scene) and discussion on negotiation skills.

Critical evaluation of excerpts from Shakespeare's "Hamlet" (Monologue by Hamlet) and discussion on decision making skills

Module:2 Writing reviews and abstracts through movie interpretations 5 hours

Review writing and abstract writing with competency

Activity: Watching Charles Dickens "Great Expectations" and writing a movie review

Watching William F. Nolan's "Logan's Run" and analyzing it in tune with the present scenario of depletion of resources and writing an abstract

Module:3 Technical Writing

4 hours

Stimulate effective linguistics for writing: content and style

Activity: Proofreading Statement of Purpose

Module:4 Trans-Cultural Communication

4 hours

Nuances of Trans-cultural communication

Activity: Group discussion and case studies on trans-cultural communication.

Debate on trans-cultural communication.

Module:5 | Report Writing and Content Writing

4 hours

Enhancing reportage on relevant audio-visuals

Activity: Watch a documentary on social issues and draft a report

Identify a video on any social issue and interpret

Module:6 Drafting project proposals and article writing

4 hours

Dynamics of drafting project proposals and research articles

Activity: Writing a project proposal., Writing a research article.

Module:7 Technical Presentations

4 hours

Build smart presentation skills and strategies

Activity: Technical presentations using PPT and Web tools

Total Lecture hours | 30 hours

Text Book / Workbook

		/2	der section 3 of UGC Act, 1956)	
1.			nical Communication: Principles and	Practice,
	3rd edition, Oxford University Pr	ess, 2015.		
	Perence Books			
1	Basu B.N. Technical Writing, 201			
2	Arathoon, Anita. Shakespeare's T Publishers, 2015.	he Merchant	of Venice (Text with Paraphrase), Ev	ergreen
3	Kumar, Sanjay and Pushp Lata. E Oxford University Press, India, 20		gage and Communication Skills for En	ngineers,
4	Frantisek, Burda. On Transcultura Publishing, UK.	al Communic	eation, 2015, LAP Lambert Academic	
5	Geever, C. Jane. The Foundation Reprint 2012 The Foundation Cer		de to Proposal Writing, 5th Edition, 2	.007,
6	Young, Milena. Hacking Your St. 2014 Kindle Edition.	atement of Pu	urpose: A Concise Guide to Writing Y	Your SOP,
7	Ray, Ratri, William Shakespeare's	s Hamlet, Th	e Atlantic Publishers, 2011.	
8	C Muralikrishna & Sunitha Mishi Pearson, 2011.	a, Communi	cation Skills for Engineers, 2nd edition	on, NY:
Mo	de of Evaluation: Quizzes, Present	ation, Discus	ssion, Role Play, Assignments	
Lis	t of Challenging Experiments (Inc	licative)		
1.	Enacting a court scene - Speaking	g		6 hours
2.	Watching a movie and writing a r	eview		4 hours
3.	Trans-cultural – case studies			2 hours
4.	Drafting a report on any social iss	sue		6 hours
5.	Technical Presentation using web	tools		6 hours
6.	Writing a research paper			6 hours
J- (Component Sample Projects			•
	1. Short Films			
	2. Field Visits and Reporting			
	3. Case studies			
	4. Writing blogs			
	5. Vlogging			
	1		Total Hours (J-Component)	60 hours
Mo	de of evaluation: Quizzes, Presentat	tion, Discussi	ion, Role play, Assignments and FAT	
	commended by Board of Studies	08.06.2019		
App	proved by Academic Council	55 th AC	Date: 13-06-2019	

ENG1000	Foundation English - I	L	T	P	J	C
		0	0	4	0	0
Pre-requisite	Less than 50% EPT score	Syllabus Versi			ion	
		V.			v.	1.1

- 1. To equip learners with English grammar and its application.
- 2. To enable learners to comprehend simple text and train them to speak and write flawlessly.
- 3. To familiarize learners with MTI and ways to overcome them.

Expected Course Outcome:

- 1. Develop the skills to communicate clearly through effective grammar, pronunciation and writing.
- 2. Understand everyday conversations in English
- 3. Communicate and respond to simple questions about oneself.
- 4. Improve vocabulary and expressions.
- 5. Prevent MTI (Mother Tongue Influence) during usual conversation.

Module:1	Essentials of grammar	3 Hours
	asic grammar-Parts of Speech	
Activity: Gra	mmar worksheets on parts of speech	
Module:2	Vocabulary Building	3 Hours
Vocabulary d	levelopment; One word substitution	
Activity: Ele	mentary vocabulary exercises	
Module:3	Applied grammar and usage	4 Hours
Types of sent	ences; Tenses	<u> </u>
Activity: Gra	mmar worksheets on types of sentences; tenses	
Module:4	Rectifying common errors in everyday conversation	4 Hours
	ctify common mistakes in everyday conversation mmon errors in prepositions, tenses, punctuation, spelling and othe n	er parts of speech;
Module :5	Jumbled sentences	2 Hours
Sentence stru	cture; Jumbled words to form sentences; Jumbled sentences to for	m paragraph/
short story		
Activity: Uns	scramble a paragraph / short story	
Module:6	Text-based Analysis	4 Hours
Wings of Fire	e -Autobiography of APJ Abdul Kalam (Excerpts)	<u> </u>
Activity: Enr	ich vocabulary by reading and analyzing the text	
Module:7	Correspondence	3 Hours
Letter, Email	, Application Writing	
Activity: Cor	npose letters; Emails, Leave applications	
Module:8	Listening for Understanding	4 Hours
Listening to s	simple conversations & gap fill exercises	
Activity: Sim	ple conversations in Received Pronunciation using audio-visual m	naterials.

Module:9	(Deemed to be University under section 3 of UGC Act, 1956) Speaking to Convey	6 Hours			
	ı; role-plays; Everyday conversations	0 110 011			
	y and communicate characteristic attitudes, values, and talents; Work	ing and			
interacting within		C			
Module:10	Reading for developing pronunciation	6 Hours			
Loud reading wi	th focus on pronunciation by watching relevant video materials				
_	e pronunciation by reading aloud simple texts; Detecting syllables; V	isually			
=	e words shown in relevant videos	·			
Module:11	Reading to Contemplate	4 Hours			
Reading short sto	pries and passages				
Activity: Readin	g and analyzing the author's point of view; Identifying the central ide	ea.			
Module:12	Writing to Communicate	6 Hours			
Paragraph Writin	ng; Essay Writing; Short Story Writing				
Activity: Writing	g paragraphs, essays and short- stories				
Module:13	Interpreting Graphical Data	6 Hours			
Describing graph	nical illustrations; interpreting basic charts, tables, and formats				
Activity: Interpre	eting and presenting simple graphical representations/charts in the for	m of PPTs			
N. 1. 1. 1.4	O M. Al The T. Cl (NATION)	5 Hours			
Module:14	Overcoming Mother Tongue Influence (MTI) in Pronunciation				
	Pronunciation				
Practicing comm	on variants in pronunciation				
Activity: Identify	ying and overcoming mother tongue influence.				
	Total Laboratory Hours	60 Hours			
Text Book / Wo	rkbook				
1. Wren, P.O	C., & Martin, H. (2018). High School English Grammar & Composition	on N.D.V.			
	ao (Ed.). NewDelhi: S. Chand & Company Ltd.				
McCarthy	v, M. O'Dell, F.,& Bunting, J.D. (2010). Vocabulary in Use(High Inte	ermediate			
,	book with answers). Cambridge University Press				
Reference Book	•				
Watkins	P.(2018). Teaching and Developing Reading Skills: Cambridge Hand	books for			
	teachers. Cambridge University Press.	000115 101			
	., &Muralikrishna, C. (2014).Communication Skills for Engineers. Po	earson			
Education					
,,,,,,,,,,,,,,,,,,	Lewis, N. (2011). Word Power Made Easy. Goyal Publisher				
	<u> </u>				
4 https:/amo	ericanliterature.com/short-short-stories	olom			
4 https:/amo	ericanliterature.com/short-short-stories ., &Kalam, A. (1999).Wings of Fire - An Autobiography of Abdul K	alam.			
4 https:/amo 5 Tiwari, A Universit	ericanliterature.com/short-short-stories	alam.			

List of	Challenging Experiments (Inc	dicative)				
1.	1. Rearranging scrambled sentences					
2.	Identifying errors in oral and	written communic	ation		12 hours	
3.	3. Critically analyzing the text					
4.	4. Developing passages from hint words					
5.	5. Role-plays					
6.	Listening to a short story and	analyzing it			12 hours	
		To	otal Laborato	ory Hours	60 hours	
Mode o	of Evaluation: Quizzes, Presenta	ation, Discussion,	Role Play, As	ssignments		
Recom	mended by Board of Studies	08-06-2019				
Approv	ved by Academic Council	55 th AC	Date	13-06-2019)	

ENG2000 Foundation English - II	
	LTPJC
	0 0 4 0 0
Pre-requisite51% - 70%EPT Score / Foundation English I	Syllabus version
	v.1.1
Course Objectives:	
 To practice grammar and vocabulary effectively To acquire proficiency levels in LSRW skills in diverse social situations. 	
3. To analyze information and converse effectively in technical communication	1
Expected Course Outcome:	
Accomplish a deliberate reading and writing process with proper grammar at	nd vooobulom
 Accomplish a denoerate reading and writing process with proper grammar a. Comprehend sentence structures while Listening and Reading. 	nu vocabulary.
 Comprehend sentence structures with Elstering and Reading. Communicate effectively and share ideas in formal and informal situations. 	
4. Understand specialized articles and technical instructions and write clear technical	hnical
correspondence.	imicai
 Critically think and analyze with verbal ability. 	
Module:1 Grammatical Aspects	4 hours
1	7 110413
Sentence Pattern, Modal Verbs, Concord (SVA), Conditionals, Connectives	
Activity: Worksheets, Exercises	41
Module:2 Vocabulary Enrichment	4 hours
Active & Passive Vocabulary, Prefix and Suffix, High Frequency Words	1
Activity: Worksheets, Exercises	
Module:3 Phonics in English	4 Hours
Speech Sounds - Vowels and Consonants - Minimal Pairs- Consonant Clusters- Pa	ast Tense Marker
and Plural Marker	
Activity: Worksheets, Exercises	
Module:4 Syntactic and Semantic Errors	2 Hours
Tenses /SVA/Articles/ Prepositions/ Punctuation & Right Choice of Vocabulary	1
Tenses /SVA/Articles/ Prepositions/ Punctuation & Right Choice of Vocabulary Activity : Worksheets, Exercises	
	2 Hours
Activity : Worksheets, Exercises Module:5 Stylistic errors	
Activity: Worksheets, Exercises	
Activity : Worksheets, Exercises Module:5 Stylistic errors Dangling Modifiers, Parallelism, Standard English, Ambiguity, Redundancy, Brevi Activity : Worksheets, Exercises	
Activity : Worksheets, Exercises Module:5 Stylistic errors Dangling Modifiers, Parallelism, Standard English, Ambiguity, Redundancy, Brevi Activity : Worksheets, Exercises	ty 6 Hours
Activity: Worksheets, Exercises Module:5 Stylistic errors Dangling Modifiers, Parallelism, Standard English, Ambiguity, Redundancy, Brevi Activity: Worksheets, Exercises Module:6 Listening and Note making	ty 6 Hours urt scene in The
Activity: Worksheets, Exercises Module:5 Stylistic errors Dangling Modifiers, Parallelism, Standard English, Ambiguity, Redundancy, Brevi Activity: Worksheets, Exercises Module:6 Listening and Note making Intensive and Extensive Listening - Scenes from plays of Shakespeare (Eg: Control of Con	ty 6 Hours urt scene in The
Activity: Worksheets, Exercises Module:5 Stylistic errors Dangling Modifiers, Parallelism, Standard English, Ambiguity, Redundancy, Brevi Activity: Worksheets, Exercises Module:6 Listening and Note making Intensive and Extensive Listening - Scenes from plays of Shakespeare (Eg: Commerchant of Venice, Disguise Scene in The Twelfth Night, Death of Desdemona in	ty 6 Hours urt scene in The
Activity: Worksheets, Exercises Module:5 Stylistic errors Dangling Modifiers, Parallelism, Standard English, Ambiguity, Redundancy, Brevi Activity: Worksheets, Exercises Module:6 Listening and Note making Intensive and Extensive Listening - Scenes from plays of Shakespeare (Eg: Communication of Venice, Disguise Scene in The Twelfth Night, Death of Desdemona is scene in Julius Caesar and Balcony scene from Romeo and Juliet)	ty 6 Hours urt scene in The

Reading Comprehension Skills 4 Hours

Page 39 B.TECH (EIE)

Activity: Ice Breaking; Extempore speech; Structured technical talk and Group presentation

Presentations – Individual & Group

Module:8

Skimming, scanning, comprehensive reading, guessing words from context, understanding text organization, recognizing argument and counter-argument; distinguishing between main information and supporting detail, fact and opinion, hypothesis versus evidence; summarizing and note-taking, Critical Reasoning Questions – Reading and Discussion

Activity: Reading of Newspapers Articles and Worksheets on Critical Reasoning from web resources

1680	uices		
Mo	dule: 9	Creative Writing	4 Hours
Stru	cture of an	essay, Developing ideas on analytical/ abstract topics	
Act	ivity: Movie	Review, Essay Writing on suggested Topics, Picture Descriptions	
Mo	dule: 10	Verbal Aptitude	6 hours
Wo	rd Analogy,	Sentence Completion using Appropriate words, Sentence Correction	
Act	ivity: Praction	cing the use of appropriate words and sentences through web tools.	
Mo	dule: 11	Business Correspondence	4 hours
For	mal Letters-	Format and purpose: Business Letters - Sales and complaint letter	
Act	ivity: Letter	writing- request for Internship, Industrial Visit and Recommendation	
Mo	dule: 12	Career Development	6 hours
Tele	ephone Etiqu	uette, Resume Preparation, Video Profile	
Ac	tivity: Prepa	aration of Video Profile	
Mo	dule: 13	Art of Technical Writing - I	4 hours
Tec	hnical Instru	actions, Process and Functional Description	
Act	ivity: Writi	ng Technical Instructions	
Mo	dule: 14	Art of Technical Writing – II	4 hours
For	mat of a Ret	port and Proposal	
		nical Report Writing, Technical Proposal	
1100	1,10,1	men report wining, recimient fropositi	
		Total Lecture hours:	60 hours
Tex	t Book / W	orkbook	
1.	Sanjay Ku	mar & Pushp Lata, Communication Skills, 2nd Edition, OUP, 2015	
2	Wren & N	fartin, High School English Grammar & Composition, Regular ed., ND:	Blackie
	ELT Book	cs, 2018	
Ref	erence Boo	ks	
1	Peter Wat	kins, Teaching and Developing Reading Skills: Cambridge Handbooks for	r Language
		Cambridge, 2018	
2	Aruna Ko	neru, Professional Speaking Skills, OUP, 2015.	
3	J.C.Nesfie	eld, English Grammar English Grammar Composition and Usage, Macmil	llan. 2019.
4	Richard Jo	ohnson-Sheehan, Technical Communication Today, 6th edition, ND: Pear	son, 2017.
5	Balasubra	maniam, Textbook of English Phonetics For Indian Students, 3rd Edition	, S. Chand
	Publishers	_	•
	1		

Web Resources 1. https://www.hitbullseye.com/Sentence-Correction-Practice.php 2. https://hitbullseye.com/Critical-Reasoning-Practice-Questions.php Mode of Evaluation: Presentation, Discussion, Role Play, Assignments, FAT **List of Challenging Experiments (Indicative)** Reading and Analyzing Critical Reasoning questions 8 hours 1. Listening and Interpretation of Videos $\overline{12}$ hours 2. Letter to the Editor 6 hours 3. Developing structured Technical Talk 12 hours 4. Drafting SOP (Statement of Purpose) 10 hours 5. Video Profile 12 hours 6. **Total Laboratory Hours** 60 hours Mode of Evaluation: Presentation, Discussion, Role Play, Assignments, FAT Recommended by Board of Studies 08.06.2019 55th AC Approved by Academic Council Date 13-06-2019

EEE4099	Capstone Project	L T P J C
		0 0 0 0 12
Pre-requisite	As per the academic regulations	Syllabus version
		v. 1.0

1. To provide sufficient hands-on learning experience related to the design, development and analysis of suitable product / process so as to enhance the technical skill sets in the chosen field.

Expected Course Outcome:

At the end of the course the student will be able to

- 1. Formulate specific problem statements for ill-defined real life problems with reasonable assumptions and constraints.
- 2. Perform literature search and / or patent search in the area of interest.
- 3. Conduct experiments / Design and Analysis / solution iterations and document the results.
- 4. Perform error analysis / benchmarking / costing
- 5. Synthesise the results and arrive at scientific conclusions / products / solution
- 6. Document the results in the form of technical report / presentation

Contents

- 1. Capstone Project may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities.
- 2. Project can be for one or two semesters based on the completion of required number of credits as per the academic regulations.
- 3. Can be individual work or a group project, with a maximum of 3 students.
- 4. In case of group projects, the individual project report of each student should specify the individual's contribution to the group project.
- 5. Carried out inside or outside the university, in any relevant industry or research institution.
- 6. Publications in the peer reviewed journals / International Conferences will be an added advantage

Mode of Evaluation: Periodic reviews, Presentation, Final oral viva, Poster submission

Recommended by Board of Studies	10.06.2015		
Approved by Academic Council	37 th AC	Date	16.06.2015

EEE1902	Industrial Internship	L	T	P	J	C
		0	0	0	0	1
Pre-requisite	Completion of minimum of Two semesters	Syllabus version		ion		
					v.	1.0

1. The course is designed so as to expose the students to industry environment and to take up on-site assignment as trainees or interns.

Expected Course Outcome:

At the end of this internship the student should be able to:

- 1. Have an exposure to industrial practices and to work in teams
- 2. Communicate effectively
- 3. Understand the impact of engineering solutions in a global, economic, environmental and societal context
- 4. Develop the ability to engage in research and to involve in life-long learning
- 5. Comprehend contemporary issues
- 6. Engage in establishing his/her digital footprint

Contents				4	Weeks
Four weeks of work at industry sit	e.				
Supervised by an expert at the indu	ıstry.				
Mode of Evaluation: Internship Re	eport, Present	ation and	Project Reviev	W	
Recommended by Board of	05/03/2016)			
Studies					
Approved by Academic Council	40 th AC	Date	18/03/2016	•	

MAT1011	Calculus for Engineers		L	T	P	J	C
			3	0	2	0	4
Pre-requisite	MAT1001	Sy	ylla	bus	V	ersi	on
		1	v.1.	0			

- 1. To provide the requisite and relevant background necessary to understand the other important engineering mathematics courses offered for Engineers and Scientists.
- 2. To introduce important topics of applied mathematics, namely Single and Multivariable Calculus and Vector Calculus etc.
- 3. To impart the knowledge of Laplace transform, an important transform technique for Engineers which requires knowledge of integration

Expected Course Outcome:

At the end of this course the students should be able to

- 1. apply single variable differentiation and integration to solve applied problems in engineering and find the maxima and minima of functions
- 2. understand basic concepts of Laplace Transforms and solve problems with periodic functions, step functions, impulse functions and convolution
- 3. evaluate partial derivatives, limits, total differentials, Jacobians, Taylor series and optimization problems involving several variables with or without constraints
- 4. evaluate multiple integrals in Cartesian, Polar, Cylindrical and Spherical coordinates.
- 5. understand gradient, directional derivatives, divergence, curl and Greens', Stokes, Gauss theorems
- 6. demonstrate MATLAB code for challenging problems in engineering

Module:1 Application of Single Variable Calculus 9 hours

Differentiation- Extrema on an Interval-Rolle's Theorem and the Mean Value Theorem-Increasing and Decreasing functions and First derivative test-Second derivative test-Maxima and Minima-Concavity. Integration-Average function value - Area between curves - Volumes of solids of revolution - Beta and Gamma functions—interrelation

Module:2 Laplace transforms 7 hours

Definition of Laplace transform-Properties-Laplace transform of periodic functions-Laplace transform of unit step function, Impulse function-Inverse Laplace transform-Convolution.

Module:3 | Multivariable Calculus | 4 hours

Functions of two variables-limits and continuity-partial derivatives —total differential-Jacobian and its properties.

Module:4 Application of Multivariable Calculus 5 hours

Taylor's expansion for two variables—maxima and minima—constrained maxima and minima—Lagrange's multiplier method.

Module:5 Multiple integrals 8 hours	Š
---	---

Evaluation of double integrals-change of order of integration-change of variables between

Cartesian and polar co-ordinates - Evaluation of triple integrals-change of variables between Cartesian and cylindrical and spherical co-ordinates- evaluation of multiple integrals using gamma and beta functions.

Modu	ıle:6	Vector Differentiation		5 hours
Scalar	r and v	ector valued functions – gradient, tangent plane	-directional	
and co	url–sca	lar and vector potentials-Statement of vector ide	entities-Simp	ole problems
Modu		Vector Integration		5 hours
		and volume integrals - Statement of Green'		nd Gauss divergence
theore	ems -ve	erification and evaluation of vector integrals usin	ng them.	
Modu	ıle:8	Contemporary Issues:		2 hours
Indu	ustry E	xpert Lecture		
		Total Lecture hours:		45 hours
Text 1	Book(s	8)		
1	The	mas' Calculus, George B.Thomas, D.Weir and J	I Hoga 12 th a	odition Doomson 2014
1. 2.		anced Engineering Mathematics, Erwin Kreyszig		
	ence F		g, 10 Euiuo	ii, whey maia, 2013.
Keiei	Tence I	DUUKS		
1.	High	er Engineering Mathematics, B.S. Grewal, 43 rd	Edition Kha	nna Publishers 2015
2.	High	er Engineering Mathematics, John Bird, 6 th Edit	ion. Elsevier	Limited, 2017.
3.	_	ulus: Early Transcendentals, James Stewart, 8 th		
4.		neering Mathematics, K.A.Stroud and Dexter J.		
4.		millan (2013)	Bootii, / L	Millon, Faigrave
Mode		aluation: Digital Assignments, Quiz, Continuou	s Assessmen	ts Final Assessment
Test	OILV	mution. Digital rissignments, Quiz, continuou		its, I mai 7 issessment
	of Chal	lenging Experiments (Indicative)		
		uction to MATLAB through matrices, and gener		2 hours
2		ng and visualizing curves and surfaces in MATL	AB -	2 hours
2		olic computations using MATLAB		
3.				
	TT 1	ating Extremum of a single variable function		2 hours
4.		standing integration as Area under the curve	on)	2 hours
4. 5.	Evalua	standing integration as Area under the curve ation of Volume by Integrals (Solids of Revoluti		2 hours 2 hours
4. 5. 6.	Evalua Evalua	standing integration as Area under the curve ation of Volume by Integrals (Solids of Revoluti ating maxima and minima of functions of severa		2 hours 2 hours 2 hours
4. 5. 6. 7.	Evalua Evalua Apply	standing integration as Area under the curve ation of Volume by Integrals (Solids of Revoluti ating maxima and minima of functions of severa ing Lagrange multiplier optimization method		2 hours 2 hours 2 hours 2 hours
4. 5. 6. 7. 8.	Evalua Evalua Apply Evalua	standing integration as Area under the curve ation of Volume by Integrals (Solids of Revoluting maxima and minima of functions of severating Lagrange multiplier optimization method ating Volume under surfaces		2 hours 2 hours 2 hours 2 hours 2 hours
4. 5. 6. 7. 8. 9.	Evalua Apply Evalua Evalua	standing integration as Area under the curve ation of Volume by Integrals (Solids of Revolution ating maxima and minima of functions of severating Lagrange multiplier optimization method ating Volume under surfaces ating triple integrals		2 hours
4. 5. 6. 7. 8.	Evalua Apply Evalua Evalua Evalua	standing integration as Area under the curve ation of Volume by Integrals (Solids of Revoluting maxima and minima of functions of severating Lagrange multiplier optimization method ating Volume under surfaces		2 hours 2 hours 2 hours 2 hours 2 hours

	Total Labor	ratory Hours	24 hours			
Mode of Assessment: Weekly assessment, Final Assessment Test						
Recommended by Board of Studies	12-06-2015					
Approved by Academic Council	37 th AC	Date	16-06-2015			

MAT2001	Statistics for Engineers	L	T	P	J	C
		3	0	2	0	4
Prerequisites	MAT1011	Syllabus Version:		v.1.0		

- 1. To provide students with a framework that will help them choose the appropriate descriptive methods in various data analysis situations.
- 2. To analyse distributions and relationship of real-time data.
- 3. To apply estimation and testing methods to make inference and modelling techniques for decision making.

Expected Course Outcome:

At the end of the course the student should be able to:

- 1. Compute and interpret descriptive statistics using numerical and graphical techniques.
- 2. Understand the basic concepts of random variables and find an appropriate distribution for analysing data specific to an experiment.
- 3. Apply statistical methods like correlation, regression analysis in analysing, interpreting experimental data.
- 4. Make appropriate decisions using statistical inference that is the central to experimental research.
- 5. Use statistical methodology and tools in reliability engineering problems.
- 6. demonstrate R programming for statistical data

Module: 1	Introduction to Statistics	6 hours			
Introduction to statis	stics and data analysis-Measures of	of central tendency -Measures of			
variability-[Moments	variability-[Moments-Skewness-Kurtosis (Concepts only)].				
Module: 2	Random variables	8 hours			
Introduction -random	variables-Probability mass Function	n, distribution and density functions			
- joint Probability dis	tribution and joint density functions	- Marginal, conditional distribution			
and density function	s- Mathematical expectation, and it	ts properties Covariance, moment			
generating function –	characteristic function.				
Module: 3	Correlation and regression	4 hours			
Correlation and Regi	ression – Rank Correlation- Partial	and Multiple correlation- Multiple			
regression.					
Module: 4	Probability Distributions	7 hours			
Binomial and Poissor	distributions – Normal distribution	– Gamma distribution –			
Exponential distribution – Weibull distribution.					
Module: 5	Hypothesis Testing I	4 hours			
Testing of hypothesi	Testing of hypothesis – Introduction-Types of errors, critical region, procedure of testing				
hypothesis-Large sample tests- Z test for Single Proportion, Difference of Proportion, mean					

and diffe	erence of	mea		(Deemed to be Univ	ersity under section 3 o	1 UGC Act, 1956)	
Module: 6 Hypothesis Testing II				9 ho	ours		
attribute	-	n of I			-	t- goodness of fit - – one and two way	-
Module	Module: 7 Reliability 5 hours				ours		
	-					l es and parallel s nance- Availability	•
Module	: 8	Con	temporary l	ssues		2 ho	ours
Industry	Expert L	ectu	re				
		Tota	al Lecture he	ours		45 h	ours
Text bo	ok(s)						
S	S.L.Maye	rs and	d K.Ye, 9 th E	dition, Pear	son Educati	sts, R.E.Walpole, R ion (2012). ouglas C. Montgor	•
F		th Edi	ition, John W				
			ringaring E I	Pologurusor	ny Toto Mo	Graw Hill, Tenth r	oprint 2017
2. I						Brooks/Cole, Ceng	
				r Engineers	, R.A.Johns	son, Miller Freund'	s, 8th edition,
5. I	Probabilit	y, St	ndia (2011). atistics and R . McCuen, 3 ^r	eliability for deliability for	or Engineers CRC press (2	s and Scientists, Bil 2011).	al M. Ayyub
Assessm	nent Test.		Digital Assign	nments, Co	ntinuous As	sessment Tests, Qu	niz, Final
			<u> </u>	na Doto tym	ass importin	na/aynartina data	2 hours
1.					<u>-</u>	ng/exporting data.	2 hours
2.	Computing Summary Statistics /plotting and visualizing data using Tabulation and Graphical Representations. Description						
3.	3. Applying correlation and simple linear regression model to real dataset; computing and interpreting the coefficient of determination.						
4.	4. Applying multiple linear regression model to real dataset; computing and interpreting the multiple coefficient of determination.				2 hours		
5.	Fitting tl	he fo	llowing prob	ability distr	ibutions: Bi	nomial	2 hours
							l

	distribution					
6.	Normal distribution, Poisson distri		2 hours			
7.	Testing of hypothesis for One sar real-time problems.	on from	2 hours			
8.	Testing of hypothesis for Two sample means and proportion from real-time problems				2 hours	
9.	Applying the t test for independent and dependent samples			es	2 hours	
10.	O. Applying Chi-square test for goodness of fit test and Contingency test to real dataset			tingency	2 hours	
11.	11. Performing ANOVA for real dataset for Completely randomized design, Randomized Block design ,Latin square Design					
	Total laboratory hours					
Mode o	Mode of Evaluation: Weekly Assessment, Final Assessment Test					
Recommended by Board of Studies 25-02-2017						
Approv	ed by Academic Council	47 th AC	Date:	05-10-2017	1	

	(Deemed to be University under section 3 of UGC A					
MGT1022	Lean Start up Managem	ent	L T P J C			
			1 0 0 4 2			
Pre-requisite	NIL		Syllabus version			
			v.1.0			
Course Objective	s: To develop the ability to					
	ods of company formation and management					
2. Gain practi	ical skills in and experience of stating of b	ousiness using p	re-set collection of			
business id						
3. Learn basic	es of entrepreneurial skills.					
T						
Expected Course	Outcome: On the completion of this course	the student will	be able to:			
1. Understand	developing business models and growth dri	vers				
	siness model canvas to map out key component		e			
	arket size, cost structure, revenue streams, ar	1				
4. Understand	l build-measure-learn principles					
Foreseeing	and quantifying business and financial risks					
		T				
Module:1			2 Hours			
-	sign Thinking (identify the vertical for busing	ness opportunit	y, understand your			
customers, accurat	ely assess market opportunity)					
		Т				
Module:2		. D. 11.1	3 Hours			
Minimum Viable I	Product (Value Proposition, Customer Segme	ents, Build- mea	sure-learn process)			
Module:3		T	3 Hours			
	Development(Channels and Partners, Re	venue Model				
	ies and Costs, Customer Relationships and					
	nvas –the lean model- templates)	customer beve	siopment Trocesses,			
200111000100	in the mount templates,					
Module:4			3 Hours			
	d Access to Funding(visioning your ventu	re, taking the				
	lan including Digital & Viral Marketing,	_	-			
Losses/cash flow,	Angel/VC,/Bank Loans and Key elements of	raising money)				
		T				
Module:5			3 Hours			
Legal, Regulatory,	CSR, Standards, Taxes					
		T				
Module:6			2 Hours			
Lectures by Entrep	preneurs					
	Total Lecture		15 hours			
Text Book(s)						
1. The Startup O	wner's Manual: The Step-By-Step Guide for B	uilding a Great C	Company, Steve			
Blank, K & S Ranch; 1 st edition (March 1,2012)						
The Four Steps to the Epiphany, Steve Blank, K&S Ranch; 2 nd edition (July 17, 2013)						
11101 301 500	The Four Steps to the Epiphany, Steve Blank, Rees Rainen, 2 Californ (Cary 17, 2015)					

	(Deemed to be University under section 3 of UGC Act, 1956)				
3	The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically				
	Successful Businesses, Eric Ries, Crown Business; (13 September 2011)				
Re	Reference Books				
1.	Holding a Cat by the Tail, Steve Blank, K&S Ranch Publishing LLC (August 14, 2014)				
2	Product Design and Development, Karal T Ulrich, SD Eppinger, McGraw Hill				
3	Zero to One: Notes on Startups, or How to Build the Future, Peter Thiel, Crown Business(2014)				
4	Lean Analytics: Use Data to Build a Better Startup Faster (Lean Series), Alistair Croll &				
	Benjamin Yoskovitz, O'Reilly Media; 1st Edition (March 21, 2013)				
5	Inspired: How To Create Products Customers Love, Marty Cagan, SVPG Press; 1st edition				
	(June 18, 2008)				
6	Website References:				
	1. http://theleanstartup.com/				
	2. https://www.kickstarter.com/projects/881308232/only-on-kickstarter-the-leaders-guide-				
	by-eric-ries				
	3. http://businessmodelgeneration.com/				
	4. https://www.leanstartupmachine.com/				
	5. https://www.youtube.com/watch?v=fEvKo90qBns				
	6. http://thenextweb.com/entrepreneur/2015/07/05/whats-wrong-with-the-lean-startup-methodology/#gref				
	7. http://www.businessinsider.in/Whats-Lean-about-Lean-Startup/articleshow/53615661.cms				
	8. https://steveblank.com/tools-and-blogs-for-entrepreneurs/				
	9. https://hbr.org/2013/05/why-the-lean-start-up-changes-everything				
	10.chventures.blogspot.in/platformsandnetworks.blogspot.in/p/saas-model.html				
	ode of Evaluation: Assignments; Field Trips, Case Studies; e-learning; Learning through earch, TED Talks				
	oject				
1.	Project 60 hours				

1050	research, 122 Tanks						
Pro	ject						
1.	1. Project				60 hours		
				Total Project	60 hours		
Recommended by Board of Studies 08-06-2015							
App	Approved by Academic Council 37 th AC Date			16-06-2015			

PHY1701	Engineering Physics	L T P J C
D	NY	3 0 2 0 4
Pre-requisite	NIL	Syllabus version v.1.0
Course Objective	25:	V.1.0
	ability to apply mathematics and science in	engineering applications
	lear understanding of the subject related cor	
3. Having Sea	nse-Making Skills of creating unique insigh	ts in what is being seen or observed
(Higher lev	vel thinking skills which cannot be codified))
	-	
Expected Course		
	ire the necessary knowledge about modern	
	g and technology disciplines. This course m	
	to apply knowledge of physics in engineer	
 an ability an ability 	to design and conduct experiments, as well to identify, formulate, and solve engineering	as to analyze and interpret data
3. an aomity	to identify, formulate, and solve engineering	g problems
Module:1 Intr	roduction to Modern Physics	6 hours
	(hypothesis), Compton Effect, Particle prope	
*	Experiment, Heisenberg Uncertainty Princip	
	pendent & independent).	:, ·· · · · · · · · · · · · · · · · · ·
1		_
Module:2 App	olications of Quantum Physics	5 hours
Particle in a 1-D b	ox (Eigen Value and Eigen Function), 3-D	Analysis (Qualitative), Tunneling
Effect (Qualitative	e) (AB 205), Scanning Tunneling Microscop	be (STM).
Module:3 Nan	ophysics	5 hours
	no-materials, Moore's law, Properties of Na	
	ntum well, wire & dot, Carbon Nano-tubes (
nanotechnology in	· · · · · · · · · · · · · · · · · · ·	(- // FF
	r Principles and Engineering Application	
	ics, Spatial and Temporal Coherence, Einste	
	on, Two, three & four level systems, Pumpi	
_	onents of laser, Nd-YAG, He-Ne, CO2 and	Dye laser and their engineering
applications.		
Module:5 Elec	etromagnetic Theory and its application	6 hours
	ctromagnetic Theory and its application rgence, Gradient and Curl, Qualitative unde	
•	ell Equations (Qualitative), Wave Equation (
•	velocity, Group index, Wave guide (Quality	
velocity, Group	velocity, Group index, wave guide (Quant	attve)
7. 7. 1. 1. 1. D	pagation of EM waves in Optical fibers	6 hours
Module:6 Pro		
Module:6 Proj		·
Light propagation	on through fibers, Acceptance angle, Numer dex, single mode & multimode, Attenuation	

9 hours

Optoelectronic Devices & Applications of Optical fibers

Module:7

Sources-LED & Laser Diode, Detectors-Photodetectors- PN & PIN - Applications of fiber optics in

communication- Endoscopy.

Special Theory of Relativity:

Frame of reference, Galilean relativity, Postulate of special theory of relativity, Simultaneity, length contraction and time dilation.

Module:8	Contemporary issues:	2 hours
ecture by I	ndustry Experts	
	m . 1 x	
V. 4 D . 1 (Total Lecture hours: 45 hours	
Cext Book(s	,	M.C. II'II
	Beiser et al., Concepts of Modern Physics, 2013, Sixth Edition, Tat	a McGraw Hill.
	Silfvast, Laser Fundamentals, 2008, Cambridge University Press.	
	iffith, Introduction to Electrodynamics, 2014, 4th Edition, Pearson	
. Djafar I Pearson	K. Mynbaev and Lowell L.Scheiner, Fiber Optic Communication T	echhology, 2011,
Reference B		
. Raym Editio	ond A. Serway, Clement J. Mosses, Curt A. Moyer Modern Physic	s, 2010, 3rd Indian
	R. Taylor, Chris D. Zafiratos and Michael A. Dubson, Modern Phytists and Engineers, 2011, PHI Learning Private Ltd.	sics for
. Kenne	eth Krane Modern Physics, 2010, Wiley Indian Edition.	
	nand Choudhary and Richa Verma, Laser Systems and Application ing Private Ltd.	s, 2011, PHI
	gabhushana and B. Sathyanarayana, Lasers and Optical Instrumental I.K. International Publishing House Pvt. Ltd.,	ation,
R. Sh	evgaonkar, Electromagnetic Waves, 2005, 1st Edition, Tata McGra	w Hill
. Princi	ples of Electromagnetics, Matthew N.O. Sadiku, 2010, Fourth Edit	ion, Oxford.
Press.		mbridge Universit
Mode of Eva	aluation: Quizzes, Digital Assignments, CAT-I and II and FAT	
	lenging Experiments (Indicative)	
. Deter	mination of Planck's constant using electroluminescence process ule 1)	2 hours
Electr	on diffraction (Module 1)	2 hours
of dif	mination of wavelength of laser source (He -Ne laser and diode lase ferent wavelengths) using diffraction technique (Module 4)	ers 2 hours
. Dispe	rsive power of prism (Module 6)	2 hours
7+8)	al Fiber communication (source + optical fiber + detector) (Module	
5. Deter	mination of size of fine particle using laser diffraction (Module 3)	2 hours
. Deter	mination of the track width (periodicity) in a written CD (Module 4	l) 2 hours

Appr	oved by Academic Council	46 th AC	Date	24.08.2017		
Reco	mmended by Board of Studies	11.08.2017				
Total Laboratory Hours					30 hours	
3)						
15.	Quantum confinement and Heiser	nberg's uncertair	ity principle	(Module 1 +	2 hours	
	14. Proof for transverse nature of E.M. waves (Module 6)					
4.4	- C		1 6		2 hours	
13.					2 hours	
	(Module 2) (can be given as an as	r)				
12.	/				2 hours	
11.	Analysis of crystallite size and str diffraction (Module 3)	m using X-ray	2 hours			
	+8)	•		, ,	2 hours	
10.	Optical Fiber communication (sou	rce ⊥ ontical fil	per _ detecto	vr) (Modules 7	2 hours	
9.	Black body Radiation (Module 1+		2 hours			
8.	PIN diode characteristics (Module	PIN diode characteristics (Module 8)				

PHY1901	Introduction to Innovative Projects	L T P J C
		1 0 0 4 2
Pre-requisite	NIL	Syllabus version
		v.1.0

This course is offered to the students in the 1st Year of B.Tech. in order to orient them towards independent, systemic thinking and be innovative.

- 1. To make students confident enough to handle the day to day issues.
- 2. To develop the "Thinking Skill" of the students, especially Creative Thinking Skills
- 3. To train the students to be innovative in all their activities
- 4. To prepare a project report on a socially relevant theme as a solution to the existing issues

Expected Course Outcome: Students will be able to

- 1. Understand the various types of thinking skills.
- 2. Enhance the innovative and creative ideas.
- 3. Find out a suitable solution for socially relevant issues- J component

Module:1 A | Self Confidence

1 hour

Understanding self – Johari Window –SWOT Analysis – Self Esteem – Being a contributor – Case Study

Project : Exploring self, understanding surrounding, thinking about how s(he) can be a contributor for the society, Creating a big picture of being an innovator – writing a 1000 words imaginary autobiography of self – Topic "Mr X – the great innovator of 2015" and upload. (4 **non-contact hours**)

Module:1 B | Thinking Skill

1 hour

Thinking and Behaviour – Types of thinking – Concrete – Abstract, Convergent, Divergent, Creative, Analytical, Sequential and Holistic thinking – Chunking Triangle – Context Grid – Examples – Case Study.

Project: Meeting at least 50 people belonging to various strata of life and talk to them / make field visits to identify a min of 100 society related issues, problems for which they need solutions and categories them and upload along with details of people met and lessons learnt. (4 noncontact hours)

Module:1 C | Lateral Thinking Skill

1 hour

Blooms Taxonomy – HOTS – Outof the box thinking – deBono lateral thinking model – Examples

Project: Last weeks - incomplete portion to be done and uploaded

Module:2 A | Creativity

1 hour

Creativity Models – Walla – Barrons – Koberg & Begnall – Examples

Project : Selecting 5 out of 100 issues identified for future work. Criteria based approach for prioritisation, use of statistical tools & upload . (4 non-contact hours)

Module:2 B | Brainstorming

1 hour

25 brainstorming techniques and examples

Project: Brainstorm and come out with as many solutions as possible for the top 5 issues identified & upload. (4 non- contact hours)

Module:3 | Mind Mapping

1 hour

Mind Mapping techniques and guidelines. Drawing a mind map

Project : Using Mind Maps get another set of solutions forthe next 5 issues (issue 6-10). (4 non-contact hours)

Module:4 A | Systems thinking

1 hour

Systems Thinking essentials – examples – Counter Intuitive condemns

Project: Select 1 issue / problem for which the possible solutions are available with you. Apply Systems Thinking process and pick up one solution [explanation should be given why the other possible solutions have been left out]. Go back to the customer and assess the acceptability and upload. (4 non-contact hours)

Module:4 B Design Thinking

1 hour

Design thinking process – Human element of design thinking – case study

Project: Apply design thinking to the selected solution, apply the engineering & scientific tinge to it. Participate in "design week" celebrations upload the weeks learning out come.

Module:5 A Innovation

1 hour

Difference between Creativity and Innovation – Examples of innovation –Being innovative. **Project:** A literature searches on prototyping of your solution finalized. Prepare a prototype

model or process and upload. . (4 non- contact hours)

Module:5 B | Blocks for Innovation

1 hour

Identify Blocks for creativity and innovation – overcoming obstacles – Case Study

Project : Project presentation on problem identification, solution, innovations-expected results – Interim review with PPT presentation. . (4 non- contact hours)

Module:5 C Innovation Process

1 hour

Steps for Innovation – right climate for innovation

Project: Refining the project, based on the review report and uploading the text. . (4 noncontact hours)

Module: 6 A Innovation in India

1 hour

Stories of 10 Indian innovations

Project: Making the project better with add ons. . (4 non- contact hours)

Module:6 B JUGAAD Innovation

1 hour

Frugal and flexible approach to innovation - doing more with less Indian Examples

Project: Fine tuning the innovation project with JUGAAD principles and uploading (Credit for JUGAAD implementation). (4 non- contact hours)

Module:7 A Innovation Project Proposal Presentation

1 hour

Project proposal contents, economic input, ROI – Template

Project: Presentation of the innovative project proposal and upload. (4 non-contact hours)

Module:8 A Contemporary issue in Innovation

1 hour

Contemporary issue in Innovation

Project: Final project Presentation, Viva voce Exam (4 non- contact hours)

Total Lecture hours:

15 hours

Text Book(s)

1.	How to have Creative Ideas, Edward debone, Vermilon publication, UK, 2007					
2.	The Art of Innovation, Tom Kelley & Jonathan Littman, Profile Books Ltd, UK, 2008					
Ref	ference Books					
1.	Creating Confidence, Meribeth Bo	onct, Kogan Page	India Ltd	l, New Delhi, 2000		
2.	Lateral Thinking Skills, Paul Sloar	ne, Keogan Page I	ndia Ltd, 1	New Delhi, 2008		
3.	Indian Innovators, Akhat Agrawal, Jaico Books, Mumbai, 2015					
4.	JUGAAD Innovation, Navi Radjou, Jaideep Prabhu, Simone Ahuja Random house India,					
	Noida, 2012.					
	Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Three reviews with weightage of 25 : 25 : 50 along with reports					
Rec	Recommended by Board of Studies 15-12-2015					
App	Approved by Academic Council 39 th AC Date 17-12-2015					

HUM1021	Ethics and Values	L	T	P	J	С
		2	0	0	0	2
Pre-requisite	NIL		Sylla	ion		
			v. 1.2			
Course Objectives	•					

- 1. To understand and appreciate the ethical issues faced by an individual in profession, society and polity
- 2. To understand the negative health impacts of certain unhealthy behaviors
- 3. To appreciate the need and importance of physical, emotional health and social health

Expected Course Outcome:

Students will be able to:

- 1. Follow sound morals and ethical values scrupulously to prove as good citizens
- 2. Understand various social problems and learn to act ethically
- 3. Understand the concept of addiction and how it will affect the physical and mental health
- 4. Identify ethical concerns in research and intellectual contexts, including academic integrity, use and citation of sources, the objective presentation of data, and the treatment of human subjects
- 5. Identify the main typologies, characteristics, activities, actors and forms of cybercrime

Module:1 Being Good and Responsible

5 hours

Gandhian values such as truth and non-violence – Comparative analysis on leaders of past and present – Society's interests versus self-interests - Personal Social Responsibility: Helping the needy, charity and serving the society

Module:2 Social Issues 1

4 hours

Harassment – Types - Prevention of harassment, Violence and Terrorism

Module:3 Social Issues 2

4 hours

Corruption: Ethical values, causes, impact, laws, prevention – Electoral malpractices; White collar crimes - Tax evasions – Unfair trade practices

Module:4 Addiction and Health

5 hours

Peer pressure - Alcoholism: Ethical values, causes, impact, laws, prevention – Ill effects of smoking - Prevention of Suicides:

Sexual Health: Prevention and impact of pre-marital pregnancy and Sexually Transmitted Diseases

Module:5 Drug Abuse

3 hours

Abuse of different types of legal and illegal drugs: Ethical values, causes, impact, laws and prevention

Module:6 Personal and Professional Ethics

4 hours

Dishonesty - Stealing - Malpractices in Examinations - Plagiarism

Module:7 Abuse of Technologies

3 hours

Hacking and other cyber crimes, Addiction to mobile phone usage, Video games and Social networking

Module:8 Contemporary issues:

2 hours

Guest lectures by Experts

		Total Lecture he	ours:	30 hours			
Reference Books							
1.	1. Dhaliwal, K.K, "Gandhian Philosophy of Ethics: A Study of Relationship between his						
	Presupposition and Precepts, 20	16, Writers Choic	e, New	Delhi, India.			
	Vittal, N, "Ending Corruption?	- How to Clean u	p India	?", 2012, Peng	guin Publishers,		
2.	UK. Pagliaro, L.A. and Pagliar	o, A.M, "Handboo	ok of C	hild and Adol	escent Drug and		
	Substance						
	Abuse: Pharmacological, Deve	elopmental and Cl	inical (Considerations	", 2012Wiley		
	Publishers, U.S.A.						
	Pandey, P. K (2012), "Sexual I	Harassment and La	ıw in Iı	ndia", 2012, L	ambert Publishers,		
4.	Germany.						
Mode of I	Evaluation: CAT, Assignment,	Quiz, FAT and So	eminar				
Dagaman	D 1 11 D 1 CO 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
	ended by Board of Studies	26-07-2017	1				
Approved	Approved by Academic Council 46 th AC Date 24-08-2017						

EEE1002	Electric circuits		L T P J				C
D 1.14	NIII		3	0	0	0	3
Pre-requisite			Sy	llab	IS VO		1.0
Anti-requisit Course Obje						v.	1.0
	e the mathematical model of the electric circuits using	basia laws				—	
	rious network theorems to solve the electric circuits	basic laws					
11.	and analyze the steady state and transient responses o	f DC and AC circu	iits				
	urse Outcome:	De and He ence	1113				
	etion of this course the student will be able to:						
	e the equations of the electric circuits using basic laws						
	e the response of DC circuits using basic analysis met						
	the response of DC circuits using network theorems						
	he transient behavior of electric circuits with different	types of source					
•	the elements of AC circuits and the phasor concept	71					
6. Design re	sonance circuits, and solve three phase ac circuits						
7. Solve sim	ple magnetic circuits						
Module:1	Fundamentals of Electric Circuits					Hou	
	to Circuit Elements, Ohms Law and Kirchhoff's L	aws. Voltage and	Cu	rrent	Div	'isi	on,
Star-Delta Tr	ansformation and Source Transformation.						
Module:2	Linear Circuit Analysis				5 F	Iou	ırs
	esh Analysis of Linear Network with Independent and	Dependent DC so	ource	25.		100	-15
1 (Oddi dio 1)	2511 I mary 515 51 Emour 1 votwork with independent une	Dependent De se	7010				
Module:3	Network Theorems				7]	Tot	urs
Thevenin's	Theorem, Norton's Theorem, Maximum Power Tr	ansfer Theorem	and	Sup	erpo	siti	ion
Inc. ciiii 5	circuits with independent and dependent sources.						
	incurts with independent and dependent sources.						
Theorem for					7 1	Tor	ırs
Theorem for Module:4	Transient Circuit Analysis	C. RL and RLC C	ircu	its. S			
Module:4 Dynamic Cir		C, RL and RLC C	ircu	its, S			
Module:4 Dynamic Cir Functions, St	Transient Circuit Analysis cuit Elements – L and C. Analysis of Source Free Rep Response of RC, RL and RLC Circuits.	C, RL and RLC C	ircu	its, S	Singu	ılar	rity
Module:4 Dynamic Cir Functions, St Module:5	Transient Circuit Analysis cuit Elements – L and C. Analysis of Source Free Rep Response of RC, RL and RLC Circuits. Introduction to Phasors				7 1	ılar Hou	rity
Module:4 Dynamic Cir Functions, St Module:5 Introduction	Transient Circuit Analysis cuit Elements – L and C. Analysis of Source Free Rep Response of RC, RL and RLC Circuits. Introduction to Phasors co Sinusoids and Phasors, Impedance and Admittance	with Phasors Rep	orese	entat	7 I	ılar Hou RN	rity urs MS
Module:4 Dynamic Cir Functions, St Module:5 Introduction and Average	Transient Circuit Analysis cuit Elements – L and C. Analysis of Source Free Rep Response of RC, RL and RLC Circuits. Introduction to Phasors to Sinusoids and Phasors, Impedance and Admittance Values of Sinusoids, Instantaneous and Average I	with Phasors Rep Power, and Comp	orese	entat	7 I	ılar Hou RN	urs MS
Module:4 Dynamic Cir Functions, St Module:5 Introduction and Average	Transient Circuit Analysis cuit Elements – L and C. Analysis of Source Free Rep Response of RC, RL and RLC Circuits. Introduction to Phasors co Sinusoids and Phasors, Impedance and Admittance	with Phasors Rep Power, and Comp	orese	entat	7 I	ılar Hou RN	rity urs MS
Module:4 Dynamic Cir Functions, St Module:5 Introduction and Average	Transient Circuit Analysis cuit Elements – L and C. Analysis of Source Free Rep Response of RC, RL and RLC Circuits. Introduction to Phasors to Sinusoids and Phasors, Impedance and Admittance Values of Sinusoids, Instantaneous and Average I	with Phasors Rep Power, and Comp	orese	entat	7] on.	ılar Hou RN	urs MS eal

Sinusoidal Steady State Analysis for AC circuits with independent sources. Frequency Response of

Circuits with R, L and C Combinations. Resonance in Series and Parallel RLC Circuits. Balanced Three Phase Circuits, Power in a Balanced System, Three Phase Power Measurement.

Magnetic Circuits **Hours 5** Module:7 Magnetically Coupled Circuits, Self and Mutual Inductance, Dot Convention, Energy in Coupled Circuits, Mesh Analysis of Magnetically Coupled Circuits.

Module:8	Contemporary issues:	2 hours
	Total Lecture hours:	45 Hours

Page 60 B.TECH (EIE)

Text Bo	ook(s)			
1.	Charles K Alexander, Mathew N	I O Sadiku, 'Fund	damentals	of Electric Circuits, Tata McGraw
	Hill, 2012.			
Referen	nce Books			
1.	Allan R. Hambley, 'Electrical	Engineering-Prin	ciples &	Applications', Pearson Education
	Limited, 7/e, 2017.			
2.	Robert L Boylestad, 'Introductor	y Circuit Analysi	s', Pearsoi	n Education Limited, 13/e, 2016.
3.	W. H. Hayt, J.E. Kemmerly and	S. M. Durbin, 'H	Engineerin	g Circuit Analysis', McGraw Hill,
	New York, 8/e, 2012.			
4.	Abhijit Chakrabarti, 'Circuit Th	neory: Analysis	and Synt	hesis', Dhanpat Rai & Co., New
	Delhi, 6/e, 2014			
5.	Mahmood Nahvi; Joseph A Edmi	inister, 'Electric (Circuits', l	McGraw Hill Education, 6/e, 2015.
Mode o	of Evaluation: CAT / Assignment /	Quiz / FAT / Pro	ject / Sem	inar
Recomi	mended by Board of Studies	29/05/2015		
Approv	red by Academic Council	37 th AC	Date	16/06/2015

EEE1004	Engineering Electromagnetics	\mathbf{L}	T	P	J	C
		3	0	2	0	4
Pre-requisite	MAT1011	Syllabus version				sion
Anti-requisite	NIL				V.	. 1.1
α οι ι						

- 1. To convey the basic physical concepts that lie behind all electrical engineering, the interactions between charged particles, whether stationary or in motion.
- 2. To examine the electric and magnetic forces between stationary and steadily moving charged particles.
- 3. To study the various electric & magnetic field concepts both in static and time varying condition.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Explore different coordinate systems related to magnetic fields.
- 2. Define the electric flux density, field intensity and different charge distributions.
- 3. Demonstrate the boundary conditions and method of images.
- 4. Compare the electric and magnetic boundary conditions, calculate the capacitance and inductance.
- 5. Analyze Maxwell equations.
- 6. Summarise the electric magnetic waves and wave propagation in different medium.
- 7. Apply the electric and magnetic field concepts
- 8. Design and Conduct experiments, as well as analyze and interpret data

Module:1 Review of Scalar and Vector Fields

6 Hours

Different Co-ordinate Systems: Cartesian, Cylindrical and Spherical –Differential elements in different coordinate systems – Del Operator: Divergence, Curl and Gradient, Divergence Theorem – Stoke's Theorem - Helmholtz's Decomposition.

Module:2 | Electrostatics: Charges

5 Hours

Coulomb's law – Electric Field Intensity – Electric Flux – Gauss's Law – Potential due to Point, Line and Surface Charge Distributions.

Module:3 | Electric Fields in Dielectrics and Conductors

8 Hours

Different current flow mechanisms – Continuity equation and relaxation time - Boundary conditions – Laplace and Poisson's equations - Solutions – Analytical Methods – Variables separable methods – Method of images – Numerical Techniques - Finite Difference Method – Electrostatic Energy – Capacitance Calculations

Module:4 | Magneto statics

8 Hours

Magnetic Fields – Magnetic Flux – Biot Savart's Law – Ampere's Law – Magnetic Torque and Moment – Forces due to Magnetic Fields – Vector Potential – Magnetic Boundary Conditions – Inductors and Inductances – Calculations - Magnetic Energy

Module:5 | Electromagnetic Fields

8 Hours

Faraday's law – Lenz's Law – Maxwell's equations – Displacement current – Maxwell's Equations in Final Forms – Time Varying Fields - Relation between field theory and circuit theory

Mod	lule:6	(Deemed to be University under section 3 of UGC Act,		8 Hours
		of waves in lossy dielectrics, conductors and fr	ee space – Skin e	
_	_	Power and Poynting Vector.		
	-			
	lule: 7	Application		2 hours
Sour	ces, Effe	ects and application of Electromagnetic fields		
Mod	lule:8	Contemporary issues:		2 Hours
11100	<u>iuicio</u>	Total Lecture hours:		45 Hours
Mod	le of Eva	luation: CAT / Assignment / Quiz / FAT / Project /	Seminar	
		lenging Experiments (Indicative)	Schillar	
1.		magnetic concepts using Matlab tool functions		2 hours
2.		Representation ,Coordinate Systems and conversion	1	2 hours
3.		e and surface integration (Vectorial)	•	2 hours
4.	Determ	ining electric field distribution for an infinite shee	t charges and line	2 hours
5.	charge Determ	ining voltage due to line charge or surface or volun	ne charge	2 hours
6.	1	stored in a region due to electric field	8	2 hours
7.		g dielectric(\Box r1) - dielectric (\Box r2) boundary condition	on problem	2 hours
8.		ination of electrical field and potential inside		2 hours
9.	Determ	nination of voltage and electric field distribution insi Laplace equation).	de the co-axial	2 hours
10.		ining and plotting the magnetic field due to infinite	sheet current	2 hours
11.		ination of an inductance of a solenoid		2 hours
12.		ination of the mutual inductance between an infinitingular coil	te line current and	2 hours
13.		magnetic wave propagation in good conductors.		2 hours
14.		ination of Electric field and Voltage profile for a s ruptured by the presents of a needle inclusion on t		2 hours
15.	Determ	ination of static magnetic field induced by the state electric motor.		2 hours
	two pos		aboratory Hours	30 hours
Mod	le of Eva	luation: Assignment / FAT	<u> </u>	
Та=-4	Desl-(
1 ext	t Book(s)		mlas of Electrome	amatica? Oxford
1.		thew N. O. Sadiku & S. V. Kulkarni, 'Princi versity Press, New York, Sixth Edition, 2015.	pies of Electroma	ignetics, Oxiord
Refe	erence B			
1.		Hayt, John A. Buck, 'Engineering Electromagne	tics', McGraw-Hill	l, Eighth Edition,
2.	A. E	Edminister, 'Schaum's Outline of Electromagnetics'	, McGraw-Hill Pro	ofessional, Fourth
2		ion, 2013.	ndomental CTI	
3.		E. Lonngren, Sava Savov, Randy J. Jost, 'Fu	ndamental of Elec	ciomagnetic with
	IVIA	TLAB', 2007.		

Recommended by Board of Studies	30/11/2015		
Approved by Academic Council	39 th AC	Date	17/12/2015

EEE1005	Signals and systems	L	T	P J	C	
		3	0	0 (3	
Pre-requisite	MAT2002	Syllabus version				
Anti-requisite	NIL			V	. 1.0	

- 1. To understand the mathematical representations of signals and systems in continuous and discrete domain.
- 2. Analyse and perform various operations with the signals.
- 3. Analyse the response of linear time invariant (LTI) systems in continuous and discrete domain.
- 4. Understand sampling theorem and represent signals in the frequency domain.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Define the term signals and systems, apply translation techniques and classify different types of systems based on their properties
- 2. Analyse LTI systems
- 3. Apply Fourier Series techniques for dealing with periodic continuous and discrete systems
- 4. Differentiate the behaviour of LTI systems as periodic and aperiodic signals using Fourier Transforms
- 5. Construct the original signal from samples.
- 6. Extend the analysis to unstable systems using the Laplace Transforms
- 7. Develop and formulate techniques of dealing with discrete systems using the z-transform.

Module:1 Fundamentals of Signals

5 Hours

Representation of Continuous and Discrete-time Signals, Unit Step, Unit Ramp, Unit Impulse, Sinusoidal and Complex Exponentials. Classification of signals – Periodic and Aperiodic Signal, Even and Odd Signal, Energy and Power Signal, Deterministic and Random signals. Transformation of Independent Variables –Time Shifting, Time Scaling and Time Reversal.

Module:2 Fundamentals of Systems

5 Hours

Representation of Continuous and Discrete Time Systems. Classification of systems - Static and Dynamic, Linear and Nonlinear, Time variant and Time Invariant, Causal and Non–Causal, Stable and unstable, Invertible and non- invertible systems. Block Diagram Representation and Interconnection of Systems

Module:3 Analysis of LTI System

6 Hou

Impulse Response of Continuous and Discrete Time LTI Systems. Convolution, Basic properties of systems using impulse response.

Module:4 Fourier Representation of Periodic Signals and LTI Systems 6 Hours

Fourier Series Representation of Continuous Time and Discrete-time periodic signals, Properties of Fourier Series, Parseval's relation, Response of LTI Systems to Complex Exponentials.

Module:5	Fourier Representation of Aperiodic Signals	7 Hours
	and LTI Systems	

Continuous Time and Discrete Time Fourier Transforms, Properties of Fourier Transforms, Frequency response of LTI system. Applications: Modulation for communications, Filtering, Time–Frequency representation and uncertainty principle.

		(Deeme	ed to be University under section 3 of U	JGC Act, 1	(סכע
Modul		Representation of Continuits samples		-	5 Hours
					of Continuous Time Signals with
Sample	and F	Hold, Reconstruction of Sign	al from Samples –	Inter	polation.
				1	
Modul	e:7	Analysis of Continuous an			9 Hours
		Systems with Laplace Transform	ansform and Z-		
		1	•		rization of LTI systems with
-				_	plane, Review of Z-Transform,
_		-	pansion, and partial	fract	ion expansion. Characterization of
LTI sys	stems	using Z -Transforms.			
Modul	۵۰8	Lecture by industry expe	erts		2 Hours
Modul		Decidie by industry expe	Total Lecture hor	iire•	45 Hours
Text B	oolz(g)		Total Lecture not	uis.	43 110u1 S
1.			Onnanhain Alan S	· XX 7:1	laky and C. Hamid, Daarson 2016
			Oppennem, Alan S). WII	lsky and S. Hamid, Pearson 2016.
Refere	nce B	DOKS			
1.	Sign	als and systems by Simon H	laykin, John Wiley,	, 2016	ó.
2.	Func	lamentals of Signals and Sy	stems Usin Web ar	nd MA	ATLAB, Edward W Kamen, Bonnie
2.	S. H	eck, Pearson, 2014.			
Mode o	of Eva	luation: CAT / Assignment /	Quiz / FAT / Proje	ect / S	Seminar
Recom	mende	ed by Board of Studies	30/11/2015		
Approv	ed by	Academic Council	39 th AC	Date	17/12/2015
11					

EEE2001	Network theory		L	T	P	J	C
			3	0	0	0	3
Pre-requisite	EEE1002, MAT1011	Syllabus version			ion		
Anti-requisite	NIL					v.	1.0
~ ~ .							

- 1. Analyse the steady state response of circuits and discuss various theorems and their applications
- 2. Apply Laplace transform and Fourier transform techniques to circuits and obtain the complete response
- 3. Design passive filters and analyse its frequency response.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Apply node voltage and mesh current methods to analyse circuits in steady state.
- 2. Apply Laplace transform techniques for solving problems and discuss the complete response of circuits.
- 3. Derive the transfer function and identify its poles and zeros
- 4. Analyse the harmonics in nonsinusoidal inputs to circuits using Fourier series.
- 5. Apply Fourier transform to circuits with nonsinusoidal inputs
- 6. Design passive filters and analyse the frequency response.
- 7. Evaluate and relate two-port network parameters.

Module:1 | Sinusoidal Steady State Analysis

6 Hours

Review of Phasors. Nodal Analysis, Mesh Analysis, Theorem, Norton's Theorem, Maximum Power Transfer Theorem and Superposition Theorem for circuits with independent and dependent sinusoidal sources

Module:2 | **Modeling of Network in s-Domain**

6 Hours

Circuit Models of R, L and C in s-Domain. Application of Laplace Transforms to integro-differential equations of RL, RC and RLC circuits. Transfer Function. Impulse Response of RL and RC Circuits and Response to any other sources using convolution integral.

Module: 3 Complete Response of Networks

6 Hours

Circuit Analysis with zero and non zero initial conditions in s-domain. Pole-Zero Maps. Network Stability.

Periodic

Module:4 Networks Excitation

7 Hours

Trigonometric Fourier Series for Non-Sinusoidal Functions. Circuit Analysis. Average Power and RMS Values using Fourier Coefficients. Exponential Fourier Series.

Non-Sinusoidal

Module:5 Network Analysis using Fourier Transform

with

7 Hours

Fourier Transform for commonly used periodic and aperiodic functions. Circuit Analysis in frequency domain. Energy in the signal using Parseval's Theorem.

Module:6 Design of Filters

4 Hours

Review of Frequency Response of RL, RC and RLC circuits. Passive Filters—Low Pass, High Pass, Band Pass and Band Stop. Magnitude and Frequency Scaling.

Module:7 | Two Port Networks

6 Hours

Introduction to Two-Port Networks - Impedance and Admittance parameters, Transmission and

Hybrid	Param	eters. Relationship between	parameter, Interco	onnection	of Networks.					
Module	Module:8 Contemporary issues: 2 hour									
			Total Lecture he	ours:	45 Hours					
Text Bo	Text Book(s)									
1.	Charles K Alexander, Mathew N O Sadiku, "Fundamentals of Electric Circuits", Tata									
	McG	raw Hill, 2012.								
Referen	nce Bo	ooks								
1.	Allar	n R. Hambley, 'Electrical En	gineering-Princip	les & App	olications' Pearson Education,					
	First	Impression, 6/e, 2013.								
2.	Robe	ert L Boylestad, 'Introductor	y Circuit Analysis	s' Pearson	Education Ltd, 12th Edition,					
	2010.									
3.	3. H. Hayt, J.E. Kemmerly and S. M. Durbin, 'Engineering Circuit Analysis', 6/e, Tata									
McGraw Hill, New Delhi, 2011.										
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar										
Recomr	mende	d by Board of Studies	29/05/2015							
Approv	ed by	Academic Council	37 th AC	Date	16/06/2015					

EEE2002	Semiconductor Devices and Circuits		L	T	P	J	C
			2	0	2	4	4
Pre-requisite	EEE1002	Sy	llat	ous	ve	rsi	on
Anti-requisite	NIL				,	v. 1	0.1

- 1. To apply the knowledge of solid state devices principles to analyze electronic circuits.
- 2. To design amplifiers under different configurations and study their responses
- 3. To have hands on learning experience and software knowledge by doing practical exercises and projects.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Understand the behavior of semiconductor devices
- 2. Analyze diode circuits
- 3. Relate the characteristics of various transistors with DC sources
- 4. Compare the various configurations of BJT
- 5. Understand the various configurations of MOSFET
- 6. Analyze the high speed response of semiconducting devices.
- 7. Compare and contrast the negative and positive feedback in amplifiers
- 8. Design and conduct experiments, as well as analyze and interpret data
- 9. Design a component or a product applying all the relevant standards with realistic constraints.

Module:1Semiconductor Device Physics2 HoursSemi-conductors, charge carriers, intrinsic and extrinsic semi-conductors, carrier generation,
recombination, injection of carriers, Drift and diffusion, carrier mobility, conductivity.

Module:2 | **Diode Circuit Analysis**

4 Hours

PN junction diode – Formation of Junction, Junction Capacitance, characteristics, Diode equations, Diode Circuits – Clipper and Clamper, rectifiers with and without filters, other multiple diode circuits, Regulated power supplies.

Module:3 Transistor DC Analysis

BJT Characteristics, current gains, h-parameters, MOSFET Characteristics, Load line and Operating point analysis, DC analysis and biasing of BJTs and MOSFETs.

Module:4 BJT Amplifiers

5 Hours

Small signal analysis of BJT amplifiers, Calculation of Gain, Input Impedance and Output Impedance. Basic BJT amplifier Configurations (CE, CC and CB). Power Amplifiers.

Module:5 | **MOSFET Amplifiers**

4 Hours

Small signal analysis of MOSFET amplifiers. Calculation of Gain, Input Impedance and Output Impedance. Basic MOSFET amplifier configurations - (CS, CD and CG) amplifiers.

Module:6 | Frequency response

5 Hours

Amplifier Frequency Response, System Transfer Functions, Frequency Response of Transistor Amplifier with Circuit Capacitors, Frequency Response of the FET, High-Frequency Response of Transistor Circuits.

Module:7	Feedback Amplifiers and Oscillators 3 Hours								
Basic concepts of feedback-Negative feedback advantages and types. Voltage/Current Series/Shunt,									
Positive feedback, Stability, Conditions for Oscillations RC and LC oscillators.									
•									
Module:8	Module:8 Contemporary issues: 2 Hour								
Total Lecture hours: 30 Hours									
Text Book(s	s)								
1.	A.S.Sedra, K.C. Smith, "Microelectronic Circuits: Theory with Applications", 6Ed, Oxford University Press, 2013.								
Reference I									
1.	D.A. Neamen, Electronic C	Circuits – Analysis	and Desig	gn, 3Ed, McGrav	w Hill, 2011.				
2.	David A. Bell, "Electronic	Devices and Circu	its", 5ed,	Oxford Univers	ity Press, 2008.				
3.	Behzad Razavi, Fundamen	tals of Microelectro	onics, 3E	d, Wiley, 2013.					
4.	Ben Streetman, Sanjay Bar	nerjee, Solid State I	Electronic	Devices, 7ED,	Pearson, 2014.				
Mode of Eva	aluation: CAT / Assignment	/ Quiz / FAT / Proj	ect / Sem	inar					
	llenging Experiments (Indic	· · · · · · · · · · · · · · · · · · ·							
	ation of logic gates using dio				2 hours				
	n line and load voltage regula		Zener dic	ode	2 hours				
	n a capacitor for a rectifier cir				2 hours				
	n various clamping circuits us				2 hours				
	n various clipping circuits usi				2 hours				
6. Design	n the circuit using BJT as a s	witch in an alarm s	system		2 hours				
	the h-parameters for diffe characteristics	rent configuration	s in BJT	using input –	2 hours				
8. Design	the circuit for a verification	on of BJT as a sw	itch and	amplifier using	2 hours				
	Darlington pair Design the circuit to perform DC analysis of a BJT 2 hours								
	U I								
11. Design	2 hours								
12. Design	2 hours								
13. Design	2 hours								
14. Design	2 hours								
17. Design	30 hours								
Mode of Eva	aluation: Assignment /FAT		. บเลเ เวสบ	oratory Hours	20 Hours				
	led by Board of Studies	29/05/2015							
	y Academic Council	37 th AC	Date	16/06/2015					
Tippioved U	y readenne Council	<i>31</i> 110	Date	10/00/2015					

EEE2005	Digital Signal Processing	L	T	P	J	C
		2	0	2	0	3
Pre-requisite	EEE1005	Syl	lab	us v	ver	sion
Anti-requisite	NIL				V.	2.0

- 1. To recognize Linear Time-Invariant (LTI) discrete-time systems
- 2. To design IIR filters using impulse invariance & bilinear transformation techniques
- 3. To design FIR filters using various window functions
- 4. To obtain knowledge and ability to use the appropriate tools like digital signal processors to build DSP systems for real time problems

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Understand the transform- domain signal and analyze the frequency response
- 2. Analyze and design analog filters
- 3. Design and implement IIR filtering operations with the real time constraints
- 4. Design a FIR filter for specific digital signal applications.
- 5. Compose and realize the structures of digital filters.
- 6. Estimate the adaptive filters for performance improvement.
- 7. Identify the techniques, skills and modern technical tools necessary for engineering practice to design and simulate a DSP system.
- 8. Design and Conduct experiments, as well as analyze and interpret data

Module:1 Frequency Analysis of Signals and Systems 6 Hours

Review of discrete -time signals and systems – Classification, Z- transform – ROC-stability/causality analysis, DTFT- Frequency domain sampling - DFT-Properties-Frequency analysis of signals using DFT-FFT Algorithm-Radix-2 FFT algorithms-Applications of FFT.

Module:2 Theory and Design of Analog Filters 4 Hours

Design techniques for analog low pass filter -Butterworth and Chebyshev approximations, frequency transformation, Properties.

Module:3 Design of IIR Digital Filters 4 Hours

IIR filter design - Bilinear and Impulse Invariant Transformation techniques - Spectral transformation of digital filters.

Module:4 Design of FIR Digital Filters 4 Hours

FIR Filter Design - Phase and group delay - Design characteristics of FIR filters with linear phase – Frequency response of linear phase FIR filters – Design of FIR filters using Rectangular, Hamming, Hanning, Bartlett and Blackmann window functions.

Module:5	Realization of Digital Filters	4 Hours

Direct Forms I and II, Cascade, Parallel and Lattice structures.

Module:6	Filters	for	removal	of	artefacts	and	4 Hours
	interfer	ence					

Optimum Filter - The Wiener Filter, Adaptive filters and their applications.

		(Deemed to be University under section 3 of UGC Act, 1	956)					
Mod	lule:7	Digital Signal Processors		2 Hours				
effec		oose digital signal processors - Fixed point and floa AC, filter operation in different DSP architectures		_				
Mod	lule:8	2 Hours						
		Total Lecture hours:		30 Hours				
Text	t Book(s))						
1.	John G. Proakis, D.G. Manolakis and D.Sharma, "Digital Signal Processing Principles, Algorithms and Applications", 4th edition, Pearson Education, 2012. Sanjit K. Mitra, Digital Signal Processing, 4th edition, TMH, 2013.							
	erence B		- , , ·					
1.		Sophocles J. Orfanidis, "Introduction to Signal I Hall, Inc, 2010 Oppenhiem V.A.V and Schaffer R.W, "Discrete						
3.		edition, Pearson new international edition, 2014. Lawrence R Rabiner and Bernard Gold, "Theory and Processing", Pearson India Education Services, 201 Emmanuel C. Ifeachor, "Digital Signal Processing"	6.					
Mod		edition, Prentice Hall, 2011. luation: CAT / Assignment / Quiz / FAT / Project / S		approuen 2nu				
List		lenging Experiments (Indicative)		2 hours				
2.	Analysis of continuous time and discrete time signals. Consider a symmetric square wave with frequency 100 Hz. Plot the 4-term, 10-term and 25-term Fourier series approximations. Compare the FS approximations with the actual square wave. Observe the approximation behavior at the points of discontinuity.							
3.		program to convolve two discrete time square pulse ects of repeated convolution with a square pulse.	e signals. Observe	2 hours				
4.		he effects of signal length and windowing on the speted with FFT.	ectrum of a signal	2 hours				
5.	Plot the low-pas	2 hours						
6.	Analyz the free	2 hours						
7.	General frequent and with results.	2 hours						
8.	Design followi	2 hours						

9.	Design a FIR filter and estimate	the filter coeffic	rients for	the following	2 hours		
7.	specifications. Plot, comment and in		70110	the following	2 110015		
	į ž						
	Type of filter: Band stop						
	Order of the filter: 10						
	Pass band frequency: 200 H						
10.	Design Chebyshev Type 1 and Typ	e 2 high pass and	band pas	s analog filters	2 hours		
	for the following specifications.						
	Passband ripple $=0.04$ dB;						
	Stopband attenuation= 30dB						
	Passband frequency = 400H	00Hz					
	Sampling frequency = 2000)Hz					
	Plot their magnitude and phase char						
11.	Signal processing methods for Mus	ic Signals using D	SP Proces	ssor	2 hours		
12.	Signal processing mechanisms for I	Bio-Signals using	DSP proc	essor	2 hours		
	30 hours						
Mod	Mode of Evaluation: Assignment /FAT						
Reco		_					
Approved by Academic Council 40 th AC Date 18/03/2016							

EEE3001	Control Systems	L	T P	J	C
		3	0 2	0	4
Pre-requisite	EEE2001, MAT2002/EEE1001	Sylla	bus v	vers	sion
				v.	1.0

- 1. To present a clear exposition of the classical methods of control engineering, physical system modelling, and basic principles of frequency and time domain design techniques.
- 2. To teach the practical control system design with realistic system specifications.
- 3. To provide knowledge of state variable models and fundamental notions of state feedback design

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Formulate the mathematical model and transfer function of physical systems
- 2. Analyze the system performance by applying various input signals
- 3. Determine the stability of linear systems in time domain
- 4. Perform frequency domain analysis using bode and polar plot
- 5. Analyze the stability of linear system in the frequency domain
- 6. Design compensators and controllers for the given specifications
- 7. Design and analyze state space model
- 8. Design and Conduct experiments, as well as analyze and interpret data

Module:1 | Systems and their Representations 6 hours Basic elements in control systems - open loop & closed loop - Transfer functions of mechanical,

electrical and analogous systems. Block diagram reduction - signal flow graphs.

Module:2 | Time Response Analysis Standard test signals, Time response of first and second order system, Time domain specifications, Steady state error, error constants, generalized error coefficient.

6 hours

Module:3 | Stability Analysis and Root Locus 6 hours

Stability - concept and definition, Characteristic equation - Location of poles - Routh Hurwitz criterion - Root locus techniques: construction, properties and applications.

Module:4 | Frequency Response Analysis 6 hours

Bode plot - Polar plot - Correlation between frequency domain and time domain specifications

Module:5 | Stability in Frequency Domain 6 hours

Relative stability, Gain margin, Phase margin, stability analysis using frequency response methods, Nyquist stability criterion.

Module:6 | Compensator and Controller 7 hours

Realization of basic compensators, cascade compensation in time domain and frequency domain, feedback compensation - Design of lag, lead, lag-lead series compensator (using Bode plot), P, PI and PID controllers in frequency domain.

Module:7 | State Space Analysis 6 hours

Concepts of state variable and state model, Solution of state equation, State space to transfer

function or	(Deemed to be University under section 3 of UGC Act, 1956)							
	function conversion, Controllability, Observability, Pole placement control							
Module:8	Contemporary issues:				2 hours			
					45 hours			
		Total Lecture ho	nire.		45 110018			
Toyt Rook	Text Book(s)							
	an S. Nise, "Control System	Engineering" Joh	n Wiley &	2 Sons 6 th Editi	on 2011			
	min C Kuo "Automatic Cont							
Reference		ioi system John	whey & i	bolis, o Luitioi	1, 2007.			
	ata, "Modern Control Engine	eering" Pearson 5	th Edition	2010				
	Oorf & R.H. Bishop, "Moder				th Edition 2008			
2. K.C. I	7011 & K.11. Bishop, Woden	ii Collifor Systems	, i carso	i Education, 11	Edition, 2008.			
3. M. Go	ppal, "Control Systems-Princ	iples And Design'	', Tata Mo	Graw Hill –4 th	Edition, 2012.			
4. Graha	m C. Goodwin, Stefan F. Gra	aebe, Mario E. Saș	gado, " Co	ontrol System D	esign", Prentice			
Hall, 2	2003'							
5 IN	1 1260 120 4 16		11 NT	A T	1 D 11' 1			
	rath and M.Gopal," Control Sition, 2006.	System Engineerin	ıg", New	Age Internation	al Publishers,			
	·							
Mode of E	valuation: CAT / Assignmen	t / Quiz / FAT / Pr	roject / Se	minar				
List of Ch	allenging Experiments (Ind	liantiva)						
	allenging Experiments (Ind CDiagram Reduction	ncauve)			2 hours			
	mination of Time Domain S	nacifications			2 hours			
	lity analysis of linear system				2 hours			
	Controller Design using Book				2 hours			
	Controller Design using Root		ina		2 hours			
	pensator Design in Frequency			:1:4 o.m.d	2 hours			
	sfer Function to State Space (rvability Tests	Conversion with C	ontrollad	mty and	2 hours			
	compensator design for linear	r servo motor for s	peed cont	rol	2 hours			
	cation		1					
	placement controller design t	for inverted pendu	lum		2 hours			
	ontroller design for position				2 hours			
	ade control design for ball an				2 hours			
13. Trans		2 hours						
14. Trans	2 hours							
15. Study	2 hours							
	Total Laboratory Hours 30 hours							
Mode of evaluation: CAM/ FAT								
Recommended by Board of Studies 30/11/2015								
	by Academic Council	39 th AC	Date	17/12/2015				
			-	1				

EEE3002	Analog and Digital Circuits	J	,]	Γ	P	J	С
		3	6 ()	2	0	4
Pre-requisite	Pre-requisite EEE2002		llat	u	s v	er	sion
Anti-requisite	NIL					V	.2.0
~ ~ .							

- 1. To introduce the functional building blocks, characteristics and applications of Analog ICs
- 2. To understand different methods for design and implementation of Digital circuits
- 3. To introduce the various applications of digital and analog ICs

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Analyze the performance characteristics of Op-Amp.
- 2. Design Op-Amp based circuits for engineering applications.
- 3. Identify the power supply requirements for electronic circuit applications.
- 4. Design a basic logic circuit for arithmetic operations in computers.
- 5. Design complex digital circuits for real time applications.
- 6. Design registers for memory applications in computers.
- 7. Apply analog/digital ICs for industrial control applications.
- 8. Design and Conduct experiments, as well as analyze and interpret data.

Module:1 Operational Amplifier

6 Hours

DC Performance - The operational amplifier, Input resistance, Output resistance, Open loop gain, Bias currents, Offset currents, Offset voltage, Common mode rejection ratio. Negative feedback Amplifier, closed loop gain, Differential amplifier.AC Performance - Frequency response, Transient response, Stability, Compensation, Poles and zeros cancelation

Module:2 Opamp Applications

7 Hours

Linear applications of op-amp – summing, subtracting, averaging amplifier, voltage to current converter, current to voltage converter, differentiator and integrator. Nonlinear applications – comparator, Multivibrators, Schmitt Triggers, Precision Diode, Half wave and full wave rectifiers, Peak detector, Wave form generators and Active Filters.

Module:3 | Timer And Power Supplies

5 Hours

555 Timer and its applications, monostable multivibrator, Astable multivibrator. Linear voltage regulator, 78XX and 79XX family, 723 IC voltage regulator, Switching regulators.

Module:4 Digital Techniques

6 Hours

Number systems - Binary, octal and hexadecimal numbers. Binary codes, Logic Gates, Boolean algebra - Conversion and operations. De Morgan's laws, Truth tables, Karnaugh's map, Min term, Max term, SOP, POS, Synthesis of Boolean functions, Quine Mccluskey method.

Module:5 | Combinational Circuit Design

6 Hours

Arithmetic circuits, Parity generator, Seven-segment display, Analysis and Design Procedure - Multiplexer, Decoder, Encoder, Design using programmable logic Devices.

Module:6 Synchronous Sequential Circuit Design

6 Hours

Flip Flops - SR, D, T and JK Flip-flops, Master slave Flip Flops, Counters, Registers. Design using State machines-Moore and Mealy machines, Design Examples.

Mod	lule:7	Asynchronous Sequential Circuit Design		6 Hours			
Design Procedure- Asynchronous Sequential Circuits-State Diagram-State assignment-implication							
table	-Design	examples. Applications: Temperature Indicator a	nd Controller, Spe	ed control of DC			
Motor using Analog/Digital ICs							
Mod	lule:8	Contemporary issues:		2 Hours			
		Total Lecture hours:		45 Hours			
Text	Book(s)					
1.		Op-Amps & Linear Integrated Circuits by Rama	kant Gayakwad, P	rentice Hall of			
		India, New Delhi, 4th edition, 2002.		41-			
2.		Digital Design by M. Morris Mano and Mictae	el Ciletti, Pearson	Education, 5 th			
- A		Edition, 2013.					
	erence B		1 5 1 5 6	17. 17. 1.1			
1.		Operation Amplifiers & Linear Integrated Circuits		hlin and Frederick			
		F. Driscoll, Prentice Hall of India, New Delhi, 6 th B	· · · · · · · · · · · · · · · · · · ·	G . F			
2.		Design with Operational Amplifiers & Analog In	itegrated Circuits b	by Sergio Franco,			
		Tata McGraw Hill Education, 4 rd Edition, 2015.	t th page	2016			
3.		Digital Fundamentals by Floyd, Madrid Pearson Ed					
4.		Digital System Design using Verilog by Charles R	oth, Lizy John and	Byeong Kil Lee,			
		Cengage Learning, 1 st Edition, 2016.	D T) (*****			
5.		Electronic Principles by Albert Malvino, David.J.	Bates, Tata Megra	w Hill Education,			
3.6.1	6.17	8 th Edition, 2016.	· ·				
Mod	e of Eva	luation: CAT / Assignment / Quiz / FAT / Project / S	Seminar				
T • 4	0.01.1						
		lenging Experiments (Indicative)	11.01				
1.		and implementation of inverting and non-inverting a		2 hours			
2.		and implementation of precision rectifier using op-a	*	2 hours			
3.	Design	and implementation of low pass and high pass filter		2 hours			
4.		of implementation of integrator and differentiator us		2 hours			
5.		and implementation of triangular wave generator us		2 hours			
6.		and implementation of summing and difference amp	olifier	2 hours			
7.		and implementation of astable multivibrator		2 hours			
8.		and implementation of half and full adder circuit		2 hours			
9.	Design	2 hours					
10.	Design	2 hours					
11.	Design	2 hours					
12.	Design	and implementation of code converters		2 hours			
13.		and implementation of J,K and D flip flops		2 hours			
14.	Design	and implementation of shift registers		2 hours			
15.	Design	and implementation of synchronous decade counter		2 hours			
		Total L	aboratory Hours	30 hours			

Mode of Evaluation: Assignment /FAT						
Recommended by Board of Studies	05/03/2016					
Approved by Academic Council	40 th AC	Date	18/03/2016			

EEE4001	Microprocessor and Microcontroller		L	T	P	J	C
			2	0	2	0	3
Pre-requisite	EEE3002	S	ylla	bus	s ve	ersi	ion
Anti-requisite	NIL					v. :	2.0

- 1. To emphasis on the hardware functionality of Intel 8051 and ARM
- 2. To create the essential knowledge on operating modes of I/O ports ,Timers/Counters, control registers and various types of interrupts.
- 3. To analyse various interfacing techniques.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Interpret the architecture of microprocessor and classify the different modes of ARM
- 2. Classify the instructions and differentiate the instruction under various categories
- 3. Solve real time problems using ARM
- 4. Develop a broad knowledge on the complete architecture of 8051 microcontroller
- 5. Analyse the instructions and write simple programs using 8051 microcontroller
- 6. Summarize various interrupts and write programs to handle interrupts
- 7. Design a microcontroller based embedded systems by interfacing external devices
- 8. Design and Conduct experiments, as well as analyze and interpret data

Module:1	Introduction to ARM Processor	4 Hours						
Introduction to RISC processor - Comparison between CISC and RISC - Overview of ARM								
architecture -	architecture – Different modes of ARM processor – Program status register							
Module:2	ARM Instruction Set	3 Hours						

Data transfer instruction – Arithmetic instruction - Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction.

Module:3	Programming using ARM Processor	2 Hours
Solving an si	Iemory operations	

Module:4 8051 Microcontroller Architecture 4 Hours Architecture of 8051 Micro controller – Program Status Register – Structure of Random Access

Memory – Special Function Registers - Pin diagram of 8051 Microcontroller – Ports of 8051 microcontroller.

Module:5	Instruction set of 8051 microcontroller	3 Hours
----------	---	---------

Data transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution.

Module:6	8051 Microcontroller Programming	5 Hours					
Programmin	ng I/O ports - Different modes of timer programs – C	ounters – Transferring data					
serially – Re	serially – Receive data serially - Interrupts and Interrupt Handling – Interrupt priority						
Module:7	Interfacing Techniques	7 Hours					

Interfacing of Analog to Digital Converter – Digital to Analog Converter – Sensor Interface – Keypad Interface. Display Interface: 7 segment interface – LCD.Communication Interface: GSM – Xbee – GPS – Bluetooth.

Mod	lule:8	Con	temporai	ry issues	•				2 Hours		
					Tota	l Lecture hours	s:		30 Hours		
Text	t Book	x (s)									
1.		Andrew N Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide: Designing and Optimizing System Software", Morgan Kaufmann Publishers, 1 st edition, 2009.									
2.	Mohammad Ali Mazidi, Janice Gillispie Mazidi, " The 8051 Microcontroller and Embedded Systems", Pearson education, 2 nd Edition, 2014.										
Refe	erence	Books									
1.		Kenn	eth J.Ayla	a, "The 8	051 Micı	o controller", T	nomson learnin	g, 3 rd Editi	on, 2010.		
2.		D Ka	runa Saga	ır, "Micro	ocontroll	er 8051, Oxf	ord: Alpha Sci	ence, 2011	l.		
3.		P.V C	duruprasa	d, "Arm	Architect	ture System on (Chip and More '	', Apress,	2013.		
Mod	le of E	valuation	: CAT / A	Assignme	ent / Quiz	/ FAT / Project	/ Seminar				
List	of Ch	allenging	g Experin	nents (Ir	dicative)					
1.	to pe	rform the	arithmet	ic operat	ions			2 h	nours		
2.	Writ	e a progra	am to solv	e the giv	en equat	ion.		2 h	nours		
	D= (A.B.C2 -	+ A2B +	AB2 - A	A3B2)/ (A	A+B+C)					
	Assu	ıme : A, E	3 & C are	8 bit nur	nbers.						
3.	Writ	e a progra	am to perf	form the	following	g data transfer		2 ł	nours		
		a. RA	AM to RA	.M							
		b. RC	OM to RA	M							
		c. EX	TERNA	L to EXT	ERNAL						
		d. RA	AM to EX	TERNA							
4.	to so	lve the fo	llowing I	Boolean e	expressio	n		21	nours		
5.	Writ	e a progra	am to perf	form the	following	g tasks		21	nours		
		Option	0	1	2	3	9				
		Task	A + B	~B +1		$AB + \sim A \sim B$	~A +1				
		Option	4	5	6	7	8				
		Task	A A to	55H	A ^ B	~A	~B				
			P1	to P1							
6.	Writ	e a progra	am to gen	erate the	followin	g wave forms.		2 1	nours		
	a.			square w	ave on P	0.0. use Timer 1	in mode 1. As	sume			
	XTA	L = 16M									
	b.		ate step w								
7.					ED's with	n 8051 microcon	ntroller also ger	nerate 2 ł	nours		
			ing LED'								
8.						are wave on P			nours		
						wave on P1.1.	Use timer 0 in	mode			
	1. A	ssume X	$\Gamma AL = 11$.0592 M	Hz.						

9.					
	0-2-4-6-8				
10.					
	$Ab^2 + c^2d$ where, a,b,c,d are 16 bit numbers.				
	30 hours				
				ratory Hours	
Mod	e of Evaluation: Assignment / FAT			·	
	e of Evaluation: Assignment / FAT ommended by Board of Studies	05/03/2016			

EEE4021	Sensors and Signal Conditioning		L	T	P	J	C
			3	0	2	0	4
Pre-requisite	PHY 1001, EEE3002	Syllabus versi			ion		
Anti-requisite	NIL					v.	1.0

- 1. To give an understanding of the general concepts and terminology of measurement systems and transducer classifications.
- 2. To introduce the basics of various sensors and transducers and their construction.
- 3. To describe the principle of operation and function of sensors.
- 4. To teach the design of signal conditioning circuits.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Promote the concepts of transducers, standards and calibration.
- 2. Analyse various types of resistive sensors.
- 3. Apply reactive variation sensors in real time industrial environments.
- 4. Interpret the concepts of signal conditioning circuits for resistive sensors.
- 5. Illustrate the working principle of signal conditioning for reactance variation sensors
- 6. Describe the Self-generating Sensors and its signal conditioning circuits
- 7. Discuss various types of Electromagnetic ,Optical and Digital Sensors
- 8. Design and Conduct experiments, as well as analyze and interpret data

Module:1 7 Hours
Introduction: General concepts and terminology of measurement systems, Transducers classification,
General input-output configuration, Static and dynamic characteristics of a measurements system,

Calibration and standards. Errors and statistical analysis in measurement systems, least square fit of

experimental data in measurement systems.

Module:2 Resistive Sensors

5 Hours

Strain gages: Introduction - Beam, column and Ring type force, torque measurement, Piezo resistive effect, RTDs, Thermistor- models-types and applications-linearization, Magneto resistors, Light dependent resistors.

Module:3 Reactance Variation Sensors

4 Hours

Capacitive sensors-variable-differential, Inductive sensors- variable reluctance-eddy current-LVDT-Synchros-resolvers- inductosyn- magnetoelastic- magnetostrictive

Module:4 | Signal conditioning for resistive sensors

5 Hours

Voltage dividers - amplifiers for voltage dividers, Wheatstone bridge- balance measurements-deflection measurements- sensitivity, linearity, and analog linearization of resistive sensor bridges, Differential and Instrumentation amplifiers. Grounding and Isolation

Module:5 | Signal conditioning for reactance variation sensors

5 Hours

AC bridges, Operation Amplifier based inductance and capacitance measuring circuits, carrier amplifiers and coherent detection, signal conditioners for capacitive sensors.

Module:6 | Self-generating Sensors and its signal conditioning

8 Hours

Thermocouple, piezoelectric sensors-effect-materials-applications, pyroelectric sensors- effect-materials-applications, and electrochemical sensors. Signal conditioning circuits: Chopper and low drift amplifiers, electrometer and trans impedance amplifiers, charge amplifiers, noise in amplifiers

Module:7 | Electromagnetic ,Optical and Digital Sensors

9 Hours

Electromagnetic sensors- sensors based on Faraday's law-Hall effect sensor, Ultrasonic based sensors,

Module:8

Contemporary issues:

Optical transducer, Photo emissive cells, Photoconductive cells, Photo diodes, Photo transistors, Photovoltaic cells – Measurement of physical quantities. Position encoders-absolute position encoder-incremental position encoder, Resonant sensors- sensors based on quartz resonators- digital quartz thermometer- quartz micro balance-quartz resonators for force and pressure sensing- quartz angular rate sensor, SAW sensors.

Total Lecture hours:

2 Hours

45 Hours

Text B	ook(s)	
1.	Ramon Pallas-Areny, John G. Webster, "Sensors and Signal Conditioning",	Wiley India
	Pvt.Ltd.,NewDelhi, 2nd Edition 2013.	
2.	D.V.S.Murthy, "Transducers and Instrumentation", Prentice Hall of India Learn	ing Pvt. Ltd.
	2nd edition 2012.	
	nce Books	- 1 - D - 11 - 1
1.	Doebelin E.O., "Measurement System Application and Design", McGraw Hill 2004.	, 5th Edition
2.	Patranabis, "Sensors and Transducers", Prentice Hall of India, New Delhi, 2003.	
3.	A.K.Shawney, "A course in Electrical and Electronic measurement and Instr	umentation",
	Dhanpat Rai & Company, 18th Edition, 2010.	
4.	John P. Bentley, "Principles of Measurement Systems", 3rd edition Addison Wes Longman Ltd, UK 2000	sley
5.	Jacob Fraden, "Handbook of Modern Sensors: Physics, Designs, and Application Science + Business Media, Inc, 3rd Edition, 2004.	n", Springer
Mode o	of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar	
T * 4 . C	Challes de Francisco (Falles de la	TT
List of	Challenging Experiments (Indicative)	Hours
1.	Strain gauge based torque measurement	
2.	Temperature Measurement using RTD	
3.	Temperature Measurement using Thermistor	
4.	Temperature Measurement using J and K type Thermocouples	
5.	Displacement Measurement using LVDT	
6.	Speed measurement using magnetic sensor	
7.	Displacement Measurement using Inductive Pickup	
8.	Pressure Measurement using Diaphragm pressure gauge	
9.	Velocity measurement using Piezo-electric Transducer	
10.	Acceleration measurement using Piezo-electric Transducer	
11.	Design a signal conditioning circuit for thermocouple cold junction	
	compensation using K-type thermocouple and analyse its output.	
12.	Design the linearization circuit for the $5K\Omega$ thermistor	
13.	Design the signal conditioning circuit using RTD PT100with a input range of	
	30 °C to 100 °C to get an output voltage of 0 to 4 V with $\alpha = 0.004$ and	

	Power dissipation = 30 mW	and test its perf	ormance.						
14.	Design signal conditioning circuit for strain gauge sensor to compensate temperature effects.								
15.	Design the signal conditioning circuit for the pressure cell using Piezo electric sensor having the sensitivity of 10mV/g.								
	Total Laboratory Hour								
Mode	of Evaluation: Assignment /FAT			1					
Recom	Recommended by Board of Studies 25/10/2017								
Approv	ved by Academic Council	37 th AC	Date	05/10/2017					

EEE4031	Electrical and Electronic Instrumentation	L	T]	PJ	C
		3	0 2	2 0	4
Pre-requisite	EEE2002, EEE4021	Syllabus version			
Anti-requisite	NIL			v.	1.0

- 1. To provide basic understanding of electrical and electronic measurement systems.
- 2. To give a thorough knowledge of varieties of measuring instruments, its operating principles, and limitations.
- 3. To provide basic understanding of data acquisition systems and virtual instrumentation

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Realize the basic concepts and working principle of electrical parameter measuring meters.
- 2. Identify the correct meters for measuring electrical parameters.
- 3. Design an AC and DC bridges to measure resistance, capacitance and inductance
- 4. Design a potentiometer to measure the unknown voltage and resistance.
- 5. Design an oscillator in audio and radio frequency range.
- 6. Analyze the signal in both time and frequency domain.
- 7. Design different types of ADC and DAC circuits.
- 8. Design and Conduct experiments, as well as analyze and interpret data

Module:1 Electrical Measurements - I 8 Hours

PMMC, Moving coils, moving iron, dynamometer type, rectifier type, and thermal instruments - Power Measurement: Hall effect Wattmeter, Thermal type wattmeter, Compensated wattmeter, Single and three-phase power measurement.

Module:2 | Electrical Measurements - II

6 Hours

Energy measurement: energy meter - Magnetic measurements: Ballistic tests - Maximum demand meter - P.F. meter - High voltage measurements.

Module:3 DC & AC Bridges

6 Hours

Series and Shunt type ohmmeter – Megger - DC Bridges: Wheatstone Bridge, Kelvin Bridge - AC Bridges: Maxwell Bridge, Wien Bridge, Anderson, Hay, Desauty, and Schering Bridges – Q meter.

Module:4 Potentiometers

5 Hours

Transformer ratio Bridges - Detectors in Bridge measurements - Wagner Ground connections - DC and AC Potentiometers: Various types, Working Principle and applications.

Module:5 Electronic Measurements

6 Hours

Solid State measurement Design and Instruments: BJT, FET and MOSFET Voltmeter circuits, Solid State Multi-meter, Digital Multi-meter – DSO - Signal Generation: Audio and Radio frequency signal generators, Function generator.

Module:6 | Signal Analyzers

5 Hours

Wave analyzer - Spectrum analyzer - Frequency Measurement - Measurement of period and time - Phase angle measurement.

Module:7 Data Acquisition & LABVIEW

7 Hours

A/D converters: Types, resolution, dynamic range, accuracy, sampling concepts and techniques, A/D boards - D/A converters: Types, D/A boards - Digital I/O boards - Counter/Timer I/O boards. Virtual Instrumentation: Components of LabView - Front panel - LOOP Behaviour and inter loop communication - Block diagram - SubVI- DAQ cards and accessories-Data Acquisition with LabVIEW.

Module:	8 Contemporary issues:				2 Hours
1.100000		Total Lecture ho	urs:		45 Hours
Text Boo	ok(s)				
1.	David A. Bell, "Electronic I	nstrumentation and	l Measure	ements" 3 rd F	dition, Oxford
1.	university press, New Delhi		rivicasare	ments, 5 L	dition, Oxioid
2.	Cooper W.D and Helfr		rn Elec	tronic Instru	mentation and
	Measurement Techniques",				
Reference	ce Books				
1.	H.S. Kalsi, "Electronic Instr	rumentation", 3 rd E	dition, M	c-Graw Hill e	ducation, 2015.
2.	A.K. Sawhney, "A Cou	rse In Electrical	And I	Electronic M	leasurements And
	Instrumentation", Dhanpat I				
3.	Jovitha Jerome, "Virtual Ins	strumentation using	LABVII	EW", Prentice	Hall India, 2013.
Mode of	Evaluation: CAT / Assignment /	Quiz / FAT / Proje	ct / Semii	nar	
List of E	experiments (Indicative)	-			
	sign a bridge circuit to measure a	resistance in low a	nd mediu	m range.	2 hours
	sign a circuit to measure high value				2 hours
ran	ge meters.				
	sign of inductance measurement b				2 hours
	sign of capacitance measurement				2 hours
	sign a circuit for calibrating the gwer factor.	iven single phase e	nergy me	ter at unity	2 hours
	sign a circuit for Calibrating the s ttmeter with direct loading.	ingle phase electro	dynamor	neter type	2 hours
7. Des	sign a circuit for Calibrating the g	given voltmeter and	ammeter	î .	2 hours
	asurement of insulation resistance				2 hours
9. Bui	ild a VI to acquire and process a r	real time signals us	ing NI Da	AQ cards.	2 hours
	velop a VI to check the amplitude I activate the alarm if it exceeds the	_	al for a pi	e-set value	2 hours
11. De	velop a VI to read the LVDT outponse.		SB 6221a	and plot the	2 hours
	velop a VI diagram to calculate th	ne monthly EMI for	r a loan re	eceived.	2 hours
13. Bui	ild a VI that reverses the order of mbers.				2 hours
	ild a VI diagram using formula no	ode in case structur	e palette.		2 hours
	velop a VI to check the amplitude				2 hours
	l activate the alarm if it exceeds the				
		To	tal Labo	ratory Hour	s 30 hours
Mode of	Evaluation: Assignment / FAT				
Recomm	ended by Board of Studies	05/03/2016			
Approve	d by Academic Council	40 th AC	Date	18/03/2016	

EEE4032	Process Automation and Control	\mathbf{L}	T	P	J	C
		3	0	2	0	4
Pre-requisite	EEE3001, EEE4021	Syllabus version				
Anti-requisite	NIL				v.	1.0

- 2. Prepare the learner to have successful career in process industries and motivate for higher studies.
- 3. Provide strong foundation to solve control and instrumentation problems in continuous or batch problems.
- 4. Impart knowledge on advanced control strategies and industrial network protocols.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Develop the mathematical model of a process.
- 2. Design and test PID controllers.
- 3. Recommend necessary final control element for a given application.
- 4. Plan a control strategy for a process involving multiple variables and constraints.
- 5. Design or configure various subsystems for industrial automation.
- 6. Interpret PLC architecture and configure DCS to handle local and distributed automation tasks
- 7. Recommend proper industrial network protocol for the given multilayer automation task.
- 8. Design and Conduct experiments, as well as analyze and interpret data

Module:1 Process Dynamics: 8 Hours

Need for process control – Mathematical model of Processes – Interacting and non-interacting systems – Degrees of freedom – Continuous and batch processes – Self regulation – Servo and regulatory operations – Lumped and Distributed parameter models.

Module:2 Control Actions & Tuning:

8 Hours

Characteristic of on-off, proportional, integral and derivative controllers – P+I, P+D and P+I+D control modes – Electronic PID controller – Selection of control modes for different process. Evaluation criteria – IAE, ISE, ITAE and ¼ decay ratio - Tuning:- Process reaction curve method, Continuous cycling method and Damped oscillation Method. Direct Digital Control - Digital forms of PID Controller.

Module:3 | Final Control Elements:

5 Hours

I/P converter – Pneumatic and electric actuators – Valve Positioner – Control Valves – Characteristic of Control Valves:- Inherent and Installed characteristics – Classification of control valves – globe, butterfly, diaphragm, ball valves – Valve body – Commercial valve bodies – Control valve sizing – Cavitation and flashing – Selection criteria.

Module:4 | Process Control Strategies:

6 Hours

Feed-forward control – Ratio control – Cascade control – Inferential control – Split-range and introduction to multivariable control – Case studies from distillation column and boiler systems – IMC– Model Predictive Control – Adaptive control – Dead – time Compensation – Smith Predictor Algorithm.

Module:5 Automation Structure:

4 Hours

Automation Pyramid - Subsystems: Instrumentation- Measurement and data acquisition, Control, Human Machine Interface: Definition, need, Hardware based, Software based: Operator stations.-Data acquisition and control unit (DACU) - Network Control Systems (NCS) - Supervisory Control and Data Acquisition (SCADA) systems.

Module:6 Logical Control Units: 5 Hours

Programmable Logic Controller (PLC): Ladder Logic Programming, Remote Terminal Unit (RTU). Distributed Control System (DCS): detail engineering, specifications, configuration and programming - Performance Criteria for DCS and other automation tools.

pro	programming - Performance Criteria for DCS and other automation tools.							
Mod	lule:7	Instrumentation Standard Protocols:	7 Hours					
HAF	RT Proto	ocol introduction, frame structure, programming, i	implementation examples, Benefits,					
Adv	antages	and Limitations. Foundation Fieldbus H1, introduc	tion, structure, programming, FDS					
conf	iguration	n, implementation examples, Benefits, Advantages	and Limitations. Other Industrial					
netw	orking p	protocols MODBUS - Device net - Profibus (Proces	s Field Bus) – Controlnet – CAN -					
Indu	strial Eth	nernet.						
Mod	lule:8	Contemporary issues:	2 Hours					
		Total Lecture hours:	45 Hours					
Text	t Book(s)						
1.	Step	hanopoulos, G., 'Chemical Process Control - An In	troduction to Theory and Practice',					
		rson India Education Services, 2015.	•					
2.	Terr	y L. M. Bartelt , 'Industrial Automated Systems: In	strumentation and Motion Control',					
		gage Learning, 2011.						
3.	Fran	k D. Petruzella, 'Programmable logic controllers', M	IcGraw Hill Education, 3rd Edition,					
	2010							
Refe	erence B	ooks						
1.	Sebo	org, D.E., Edgar, T.F. and Mellichamp, D.A., 'Prod	ess Dynamics and Control', Wiley					
		a and Sons, 3 rd Edition, 2010.						
2.		ghanowr, D.R., 'Process Systems Analysis and Co	ntrol", McGraw –Hill International					
	Edit	ion, 2009.	•					
3.	Beq	uette, B.W., 'Process Control Modeling, Design and S	Simulation', Prentice Hall, 2010.					
4.		is D. Johnson, 'Process Control Instrumentation	Technology', 8th Edition, 2006.					
		don: Pearson, 2014.	th					
5.		art A. Boyer, SCADA: 'Supervisory control and Dat	a Acquisition', ISA Publication, 4"					
		ion, 2010.						
Mod	le of Eva	luation: CAT / Assignment / Quiz / FAT / Project / Se	eminar					
		lenging Experiments (Indicative)						
1.		nentation of Level control process using SCADA	2 hours					
2.	-	nentation of Temperature process using SCADA	2 hours					
3.	Implen	nentation of Pressure control process using SCADA	2 hours					
4.		is of interacting and non-interacting systems	2 hours					
5.	Conica	l tank control using LabVIEW	2 hours					
6.	Tuning	of controllers for single loop and multi loop setup	2 hours					
7.	Analyz	ing inherent and installed characteristics of control va	lves 2 hours					
8.	IMC ar	nd Smith predictive control strategies using MATLAE	3 2 hours					
9.	Analys	is of timer and counter functions using PLC	2 hours					
10.	Batch p	process control and Sequential control using PLC	2 hours					
11.	Contro	lling a pick and place robotic arm using PLC	2 hours					
12.	Contro	lling a gantry crane using PLC	2 hours					
1.0		III. O	2.1					

B.TECH (EIE) Page 88

Controlling a 3 axis positioner using PLC

2 hours

14.	Multi-level conveyor control using	g PLC			2 hours				
15. HMI module interface and coding with PLC					2 hours				
	Total Laboratory Hours 30 hours								
Mod	Mode of evaluation: CAM / FAT								
Reco	Recommended by Board of Studies 05/03/2016								
App	roved by Academic Council	47 th AC	Date	18/03/2016					

ı v	EEE4033	Industrial Instrumentation		L	T	P	J	C
				3	0	0	4	4
Anti-requisite NII	Pre-requisite	EEE4021	Syllabus version				ion	
Anti-requisite NIE	Anti-requisite	NIL	v. 1.0				1.0	

- 1. To develop a better understanding of various sensors & instrumentation system applications in industrial monitoring and control.
- 2. To provide a good design level understanding of industrial measurement systems.
- 3. To understand the instrumentation methods available to monitor and control process variables like temperature, pressure flow & level.

Expected Course Outcome:

On successful completion of this programme the graduate will

- 1. Understand the physics and methodology for various types of pressure measurement
- 2. Have detailed knowledge and understanding of a wide range of flow techniques
- 3. Exercise appropriate judgement in planning, design, technical evaluation of temperature measurement
- 4. Design the various industrial level measurement system
- 5. Formulate responses to well defined force and torque process parameter problems
- 6. Understand theory, concepts and methods pertaining to the speed measuring technique
- 7. Demonstrate a range of standard and specialized research or equivalent tools and techniques of vibrations parameters
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 | Pressure Measurement

8 Hours

Elastic type pressure gauges — Bourdon tubes, bellows, diaphragms; Electrical methods — elastic elements with LVDT and strain gauges — capacitive type pressure gauge — piezo resistive pressure sensor — resonator pressure sensor ; measurement of vacuum — McLeod gauge — pirani gauge - thermal conductivity gauges — Ionization gauge cold cathode and hot cathode types.

Module:2 | Flow Measurements:

7 Hours

Pressure gradient techniques, Positive displacement flow meters, turbine flow meter; Rotameter: Design—Coriolis mass flow meters—thermal mass flow meter—volume flow meter; Electrical type flow meter: Electromagnetic flow meter, different types of ultrasonic flow meters—laser doppler anemometer systems; vortex shedding flow meter—target flow meter—solid flow rate measurement.

Module:3 Temperature, Measurements:

6 Hours

RTDs and Thermistor characteristics; Thermocouples-Laws, Principals, cold junction compensation; Radiation methods of temperature measurement total and selective radiation pyrometers – optical pyrometer; Thermal conductivity measurements-liquids and gases.

Module:4 Level Measurements:

6 Hours

Gauge glass technique coupled with photo electric readout system; float type level indication – different schemes – level switches level measurement using displacer and torque tube – bubbler system; differential pressure method; electrical types of level gauges using resistance, capacitance, nuclear radiation and ultrasonic sensors.

Module:5 Force and Torque Measurements: 6 Hours

Hydraulic – Pneumatic – Resistive (Strain gauge) Force measurement: Different meth measurement – Strain gauge, relative regular twist. Module:6 Speed measurement: Revolution counter – Capacitive tacho-drag cup type tacho – D.C and A.C tacho Stroboscope. Module:7 Vibration Measurement:	6 Hours
Module:6 Speed measurement: Revolution counter – Capacitive tacho-drag cup type tacho – D.C and A.C tacho Stroboscope.	generators –
Revolution counter – Capacitive tacho-drag cup type tacho – D.C and A.C tacho Stroboscope.	generators –
Revolution counter – Capacitive tacho-drag cup type tacho – D.C and A.C tacho Stroboscope.	generators –
Stroboscope.	_
	6 Hours
Module:7 Vibration Measurement:	6 Hours
Module:7 Vibration Measurement:	6 Hours
Nature of vibrations – Seismic transducer – Types of accelerometers – Potentiometric	type – LVDT
Accelerometer – Piezo electric type.	
Module:8 Contemporary issues:	2 hours
Total Lecture hours:	45 Hours
	-
Text Book(s)	
1. D. Patranabis, 'Principles of Industrial Instrumentation', Tata McGraw Hill, 201	10.
2. R.K.Jain, 'Mechanical and Industrial Measurements', Khanna Publishers, 6th ed	edition New
Delhi 2010.	
Reference Books	
1. J.P Holman, 'Experimental Methods for Engineers' Tata McGraw Hill Internati	ional, 2010.
2. Donald. P Eckman, 'Industrial Instrumentation', CBS publishers, 2012.	
3. Doeblein E.O, 'Measurement Systems, Applications and Design', McGraw Hill	l International,
2013.	
4. Alan S. Morris, 'Principles of Measurement and Instrumentation', PHI, 2009.	
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar	
Recommended by Board of Studies 05/03/2016	
Approved by Academic Council 47 th AC Date 18/03/2016	

B.TECH (EIE) Page 91

MAT2002	Applications of Differential and Differ Equations	Applications of Differential and Difference Equations		T	P	J	С	
			3	0	2	0	4	
Pre-requisite	MAT1011		Syllabus Version					
			v.1.0					

The course is aimed at

- 1. Presenting the elementary notions of Fourier series, which is vital in practical harmonic analysis
- 2. Imparting the knowledge of eigenvalues and eigen vectors of matrices and the transform techniques to solve linear systems, that arise in sciences and engineering
- 3. Enriching the skills in solving initial and boundary value problems
- 4. Impart the knowledge and application of difference equations and the Z-transform in discrete systems, that are inherent in natural and physical processes

Expected Course Outcome

At the end of the course the student should be able to

- 1. Employ the tools of Fourier series to find harmonics of periodic functions from the tabulated values
- 2. Apply the concepts of eigenvalues, eigen vectors and diagonalisation in linear systems
- 3. Know the techniques of solving differential equations
- 4. understand the series solution of differential equations and finding eigen values, eigen functions of Strum-Liouville's problem
- 5. Know the Z-transform and its application in population dynamics and digital signal processing
- 6. demonstrate MATLAB programming for engineering problems

Module:1Fourier series:6 hoursFourier series - Euler's formulae - Dirichlet's conditions - Change of interval - Half rangeseries - RMS value - Parseval's identity - Computation of harmonicsModule:2Matrices:6 hoursFigenvalues and Figen vectors - Properties of eigenvalues and eigen vectors - Cayley-

Eigenvalues and Eigen vectors - Properties of eigenvalues and eigen vectors - Cayley-Hamilton theorem - Similarity of transformation - Orthogonal transformation and nature of quadratic form

Module:3 Solution of ordinary differential equations: 6 hours

Linear second order ordinary differential equation with constant coefficients – Solutions of homogenous and non-homogenous equations - Method of undetermined coefficients – method of variation of parameters – Solutions of Cauchy-Euler and Cauchy-Legendre differential equations

Module:4	Solution of differential equations through	8 hours
	Laplace transform and matrix method	

Solution of ODE's - Nonhomogeneous terms involving Heaviside function, Impulse function - Solving nonhomogeneous system using Laplace transform - Reduction of nth order differential equation to first order system - Solving nonhomogeneous system of first

order differential equations (X' = AX + G) and X'' = AX

Module:5	Strum Liouville's problems	and power	6 hours
	series Solutions:		

The Strum-Liouville's Problem - Orthogonality of Eigen functions - Series solutions of differential equations about ordinary and regular singular points - Legendre differential

	-		Deemed to be University u	inter section 5 of occasi	1230)	
		essel's differential equa	tion			
	lule:6	Z-Transform:				6 hours
		-transforms of standard	functions - I	nverse Z-tra	nsform: by partial	fractions
		tion method				
		Difference equations:				5 hours
		quation - First and secon				
		sequence - Solution of				
		tegral by the method		nined coeffi	icients - Solution	of simple
		uations using Z-transfor				
		Contemporary Issues			2 hours	
Indu	stry Exp	ert Lecture				
			Total Lecti	ire hours:		45 hours
Text Book(s)						
		ed Engineering Mathem	natics, Erwin	Kreyszig,	10 th Edition, Joh	ın Wiley
	India, 20	015				
	erence B					
1.	Higher I	Engineering Mathematic	s, B. S. Grew	al, 43 rd Edi	tion, Khanna Publi	shers,
	India, 20					
2.	Advance	ed Engineering Mathema	tics by Mich	ael D. Greer	nberg, 2 nd Edition,	Pearson
	Education	on, Indian edition, 2006				
Mod	le of Eva	luation				
Digi	tal Assig	gnments (Solutions by t	ising soft sk	ills), Contin	uous Assessment	
Tests	s, Quiz,	Final Assessment Test				
1.	Solving	Homogeneous differen	tial equations	arising in e	engineering	2 hours
	proble	ns	_	_		
2.	Solving	g non-homogeneous diff	erential equat	ions and Ca	uchy, Legendre	2 hours
	equation	ns	_		-	
3.	Applyi	ng the technique of Lapl	ace transforn	n to solve di	fferential	2 hours
	equation	ns				
4.	Applic	ations of Second order d	ifferential equ	uations to M	lass spring	2 hours
	system	(damped, undamped, Fo	orced oscillati	ons), LCR	circuits etc.	
5.	Visuali	zing Eigen value and Ei	gen vectors			2 hours
6.	Solving	g system of differential e	quations aris	ing in engin	eering	2 hours
	applica	tions				
7.	Applyi	ng the Power series metl	nod to solve o	lifferential e	equations arising	2 hours
		neering applications			3	
8.	Applyi	ng the Frobenius method	l to solve diff	erential equ	ations arising in	2 hours
	engine	ering applications		-		
9. Visualising Bessel and Legendre polynomials					2 hours	
10. Evaluating Fourier series-Harmonic series					2 hours	
11. Applying Z-Transforms to functions encountered in engineering 2 hours						
12. Solving Difference equations arising in engineering applications 2 hours						
		1	<u> </u>		aboratory Hours	24 hours
Mod	le of Eva	luation: Weekly Assessr	nent, Final A		•	
		ed by Board of Studies	25-02-2017			
		Academic Council	37 th AC	Date	05-10-2017	
-17			· -	1		

MAT3003	Complex Variables and Partial Differential Equation	L	T	P	J	C
		3	2	0	0	4
Pre-requisite	MAT2002	S	yllał	ous	vers	ion
					V.	.1.1

The aim of this course is to present a comprehensive, compact and integrated treatment of two most important branches of applied mathematics for engineers and scientists namely the functions of complex variable and Partial differential equations in finite and infinite domains

Expected Course Outcome:

At the end of the course the student should be able to

- 1. construct analytic functions and find complex potential of fluid flow and electric fields
- 2. find the image of straight lines by elementary transformations and
- 3. able to express analytic functions in power series
- 4. evaluate real integrals using techniques of contour integration
- 5. analyze partial differential equations, and its applications, design the boundary value problems (one dimensional heat and wave equations) and find Fourier series, Fourier transform techniques in their respective engineering problems.

Module:1 | Analytic Functions

6 hours

Complex variable-Analytic functions and Cauchy – Riemann equations - Laplace equation and Harmonic functions - Construction of Harmonic conjugate and analytic functions - Applications of analytic functions to fluid-flow and Field problems.

Module:2 | Conformal and Bilinear transformations

5 hours

Conformal mapping - Elementary transformations-translation, magnification, rotation, inversion. Exponential and Square transformations ($w = e^z$, z^2) - Bilinear transformation Cross-ratio-Images of the regions bounded by straight lines under the above transformations.

Module:3 | Power series

4 hours

Functions given by Power Series - Taylor and Laurent series -singularities - poles - Residues.

Module:4 | Complex Integration

5 hours

Integration of a complex function along a contour - Cauchy-Goursat theorem- Cauchy's integral formula -Cauchy's residue theorem - Evaluation of real integrals - Indented contour integral.

Module:5 | Partial Differential equations of first order

6 hours

Formation and solution of partial differential equation - General, Particular, Complete and Singular integrals - Partial Differential equations of first order of the forms: F(p,q)=0, F(z,p,q)=0, F(x,p)=G(y,q) and Clairaut's form - Lagrange's equation: Pp+Qq=R.

Module:6	Applications of Partial Differential	10 hours
	Equations	

Linear partial differential equations of higher order with constant coefficients. Solution of a partial differential equation by separation of variables - Boundary Value Problems-one dimensional wave and heat equations- Fourier series solution.

	<u></u>		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
Module:7	Fourier transforms				7 hours
Complex	Fourier transform and proper	ties - Relatio	n betw	een Fourie	er and Laplace
transform	- Fourier sine and cosine to	ransforms –	Convol	ution Theo	orem and Parseval's
identity.					
Module:8	1 0				2 hours
Industry E	xpert Lecture				
				e hours:	45 hours
Tutorial	1. A minimum of 10			ked out	30 hours
	by students inver				
	2. Another 5 problem		l Class	to be	
	given as home wor	<u>'k</u>			
Text Boo				4 oth Table	T 1 TTT' 1
	nced Engineering Mathemat		eyszıg,	10 th Editi	on, John Wiley &
	(Wiley student Edison) (201:	5)			
Reference		D C C 1	42rd	F 1'.' (0	010) 171
_	r Engineering Mathematics,	B. S. Grewai,	, 43	Edition (2	019), Knanna
	shers, New Delhi	ia vyith appli	antiona	C Donnie	7:11 Detriels D. Chanchen
	dition, 2013, Jones and Bartl				s Zill, Patrick D. Shanahan,
	nced Engineering Mathemati	cs, Michael, I). Gree	nberg, 2 nd	Edition, Pearson
	ation (2006)	D t V C	N NT '1	ath E ive	
	nced Engineering Mathemati	cs, Peter V. C)' Neil,	/ Editio	on, Cengage Learning
(2012)					
5 Complex Analysis for Mathematics and Engineers, JH Mathews, R. W. Howell, 5 th					
Edition, Narosa Publishers (2013)					
Mode of Evaluation: Digital Assignments, Quiz, Continuous Assessments, Final Assessment Test					
Recommended by Board of Studies 25-02-2017					
	by Academic Council	47 th AC	Date	05-10-20	17

MAT3005	Applied Numerical Met	thods	L	T	P	J	C
			3	2	0	0	4
Pre-requisite	MAT2002		Syll	abu	s V	ersi	on
				v.	1.1		

The aim of this course is to

- 1. cover certain basic, important computer oriented numerical methods for analyzing problems that arise in engineering and physical sciences.
- 2. use MATLAB as the primary computer language to obtain solutions to a few problems that arise in their respective engineering courses.
- 3. impart skills to analyse problems connected with data analysis,
- 4.solve ordinary and partial differential equations numerically

Expected Course Outcome

At the end of the course the student should be able to

- 1. Observe the difference between exact solution and approximate solution.
- 2. Use the numerical techniques to find the solution of algebraic equations and system of equations.
- 3. Fit the data using interpolation technique and spline methods.
- 4. Find the solution of ordinary differential equations, Heat and Wave equation numerically.
- 5. Apply calculus of variation techniques to extremize the functional and also find approximate series solution to ordinary differential equations

Module:1	Module:1 Algebraic and Transcendental Equations					
General iterative me	General iterative method- rates of convergence- Secant method - Newton - Raphson method-					
System of non-linear equations by Newton's method.						

Module:2	System of Linear Equations and Eigen	6 hours
	Value Problems	

Gauss —Seidel iteration method. Convergence analysis of iterative methods-LU Decomposition -Tri diagonal system of equations-Thomas algorithm- Eigen values of a matrix by Power and Jacobi methods.

Module:3 Interpolation 6 hours

Finite difference operators- Newton's forward-Newton's Backward- Central differences-Stirling's interpolation - Lagrange's interpolation - Inverse Interpolation-Newton's divided difference-Interpolation with cubic splines.

Module:4 Numerical Differentiation and Integration 6 hours

Numerical differentiation with interpolation polynomials-maxima and minima for tabulated values-Trapezoidal rule, Simpsons $1/3^{rd}$ and $3/8^{th}$ rules. –Romberg's method. Two and Three point Gaussian quadrature formula.

Module:5	Numerical	Solution	of	Ordinary	8 hours
	Differential 1	Equations			

First and second order differential equations - Fourth order Runge - Kutta method. Adams-Bashforth-Moulton predictor-corrector methods. Finite difference solution for the second order ordinary differential equations.

Module:6	Numerical Solution of Partial Differential	6 hours
----------	--	---------

		(Deemed to be	University under section 3 of UGC Ac	et, 1956)			
		Equations					
Classification of second order linear partial differential equations-Laplace equation –Gauss-							
Seidal met	hod-One	dimensional heat equ	ation- Schmidt ex	xplicit met	hod-Crank-Nicolson		
implicit methodOne dimensional wave equation—Explicit method.							
			-				
Module:7		Variational Methods			6 hours		
Introduction	n - functi	onal –variational proble	ems- extremals of f	unctional o	f a single dependent		
variable and	d its first	t derivative- functional	involving higher of	order deriva	atives- Isoperimetric		
problems- (Galerkins	s- Rayleigh Ritz method	s.				
Module:8		Contemporary Issues	5		2 hours		
Industry Ex	pert Leci	ture		•			
,							
			Total Lecture ho	urs:	45 hours		
Tutorial		1. A minimum of 10	problems to be wo	rked	30 hours		
		out by students in e	•				
		2. Another 5 problem	_	ss to			
		be given for practis	se.				
Text Book							
1.	Nui Iye:	merical Methods for S ngar and R. K. Jain, Ne	Scientific and Engi w Age Internationa	ineering,N l Ltd., 6 th E	I. K. Jain, S. R. K. dition, 2012.		
2.		plied Numerical Analy					
		sley, 7 th Edition, 2004.			• .		
Reference 1	Books						
1.	Introduc	ctory Methods of Nun	nerical Analysis, S	S.S. Sastry,	, PHI Pvt. Ltd., 5th		
	Edition,	, New Delhi, 2009.	•	·			
2.	Applied	Numerical Methods U	Jsing MATLAB, W	V.Y. Yang,	W. Cao, T.S. Chung		
	and						
3.	J. Morr	ris, Wiley India Edn., 20	007.				
4.		cal Methods for Engine					
		C. Chapra and Ra P. Ca					
5.		cal Analysis, R.L. Burd					
6. Numerical Methods: Principles, Analysis and Algorithms, Srimanta Pal, Oxford							
	Univers	ity Press India, 2009.					
Mode of Evaluation: Digital Assignments, Continuous Assessment Tests, Final Assessment							
Test	1 11 5	1 (0, 1)	25.02.2045				
		oard of Studies	25-02-2017	D.	05 10 2015		
Approved b	y Acade	mic Council	47 th AC	Date	05-10-2017		

EEE1007	Neural Networks and Fuzzy Control			P	J	C
		2	0	0	4	3
Pre-requisite	MAT1011	Sylla	abu	s v	ers	ion
Anti-requisite	NIL				v.	1.1

- 1. Apply the design concepts of feed forward and feedback neural networks for solving Engineering problems
- 2. Select appropriate weight and learning constant values for every learning
- 3. Formulate and analyze the real time system with the knowledge of fuzzy logic control

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Design the mathematical model for single and multi-layer Perceptron for real time systems.
- 2. Demonstrate the concepts of feed forward and re-current neural networks to find the optimal solution
- 3. Explore the concepts of Recurrent and feedback networks in multilayer neurons.
- 4. Design the competitive learning neural networks for solving the engineering problems.
- 5. Estimate the performance of Self organizing networks.
- 6. Design of fuzzy systems for non-linear simulation with extension principle.
- 7. Apply membership functions with suitable de-fuzzification method and apply neuro-fuzzy inference system concepts to modern controllers.
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 Introduction to Artificial Neural Networks and Learning Laws 7 Hours

Artificial neural networks and their biological motivation – Terminology – Models of neuron – Topology – Characteristics of artificial neural networks – Types of activation functions.

Learning Laws: Learning methods – Error correction learning – Hebbian learning – Perceptron – XOR problem – Perceptron learning rule convergence theorem – Adaline – Madaline.

Module:2 Feed Forward Networks

4 Hours

Multilayer Perceptron – Delta Learning – Back Propagation learning algorithm – Universal function approximation – Associative memory: auto association and hetero association.

Module:3 Recurrent Neural Networks

2 Hours

Bi-directional associative memory – Hopfield neural network – Travelling Salesman Problem.

Module:4 Unsupervised Learning

3 Hours

Competitive learning neural networks – Max net – Maxican Hat – Hamming net.

Module:5 | Self Organizing Networks

5 Hours

Kohonen Self organizing Feature Map – Counter propagation – Learning Vector Quantization – Adaptive Resonance Theory – Concept of support vector machines – Applications of neural networks in image processing, signal processing, modeling and control.

Module:6 Fuzzy Sets and Fuzzy Relations

5 Hours

Introduction – Classical sets and fuzzy sets – Classical relations and fuzzy relations – Membership

functions - Fuzzy to Crisp conversion, Fuzzy Arithmetic, numbers, vectors and extension principle.

principle.		
Module:7	Fuzzy Decision Making	2 Hours
Fuzzy rule b	based systems – Fuzzy nonlinear simulation – Fuzzy control systems and Defu	uzzification
methods.		
Neuro Fuzz	xy: Mathematical formulation of adaptive Neuro – Fuzzy inference systems.	
Module:8	Contemporary issues:	2 Hours
Text Book	(\mathbf{s})	•
1.	Jacek. M. Zurada, "Introduction to Artificial Neural Systems", Jaico	Publishing
	House, 2006.	
2.	Simon Haykin, Neural Networks and learning Machines", Mac Millen Colle	ege Pubco.,
	New York, 2016.	
Reference I	Books	
1.	Laurene Fausett, Fundamentals of Neural Networks - Architectures, algo-	rithms and
	applications, Pearson Education Inc., 2004	
2.	Timothy J.Ross, Fuzzy Logic with Engineering Applications, John Wiley	and sons,
	2017.	
3.	J.S.R. Jang, C.T. Sun, E. Mizutani, "Neural Fuzzy and Soft Comp	uting – A
	computational Approach to learning and Machine Intelligence", Pearson	Education
	Inc., 2010.	

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

Recommended by Board of Studies		05/03/2016		
Approved by Academic Council		40 th AC	Date	18/03/2016

EEE1008	Bio-Medical Instrumentation	L	T	P J	C
		3	0	0 4	4
Pre-requisite	NIL	Syll	abu	s ve	rsion
Anti-requisite	NIL			,	v. 2.0

- 1. To give an understanding of the biological signals and signal acquisition
- 2. To provide the design concepts of bioelectric amplifiers
- 3. To learn the principle and operation of various biomedical systems

Expected Course Outcomes:

On the completion of this course the student will be able to:

- 1. Evaluate and analyse the different physiological signals
- 2. Relate the knowledge to select appropriate medical instruments
- 3. Design the bio electric devices used for diagnostic equipment
- 4. Develop and analyse the therapeutic devices.
- 5. Understand the procedure for blood analysis in medical laboratory
- 6. Analyze the process involved in blood cell counters and sensors
- 7. Differentiate the advanced diagnostic techniques.
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 Introduction to Biomedical Instrumentation and Measurement 8 Hours Sources of bioelectric potentials, cardiovascular system, Central nervous system, Muscular System, linear/nonlinear analysis of different physiological signals (ECG, EEG, EMG), Electrode theory-mathematical analysis including Nernst equation, Goldman equation, Electrical conductivity of electrode, Electrodes for ECG, EEG &EMG.

Module:2 General Considerations of Medical Instruments 8 Hours

Operational Amplifiers, Bioelectric Amplifiers, Selection of biomedical amplifiers – Isolation amplifiers, Charge amplifiers and Chopper amplifier. Characteristics of biomedical recorder amplifiers, Physiological effects of electric currents, Electric shock hazards and leakage currents, Methods of accident prevention.

Module:3 Diagnostic Equipment

ECG Lead Configuration, Vector cardiograph, Phono-cardiograph, EEG and EMG Electrode system, Recorders, Measurement of various volumes/capacity of lungs, Spirometer. Measurement of cardiac output, blood flow and blood pressure.

7 Hour

Module:4 Therapeutic Equipment 6 Hours

Cardiac pacemakers, cardiac defibrillators, nerve & muscle stimulators, diathermy-types, ventilators, Dialyzer.

Module:5 | Medical Laboratory Instrumentation | 5 Hours

Analysis of Blood-Measurement of pH, pO2 and pCO2 value of blood using pH/gas analyzers

Module:6 | Medical Laboratory Measurement | 4 Hours

Photometers, Hematology, Blood cell counters, Electrophoresis- Serum detection and classification, Blood Glucose Sensors, GSR measurements.

Module:7 Advanced Diagnostic Techniques 5 Hour

2D, 3D Analysis and Visualization (X-Ray, MRI, CT), Biomedical Spectroscopy, Optical coherence tomography, Fluorescence based Bio-detection & Bio-imaging- Case study: Telemedicine based health care monitoring system.

Module:8	Contemporary issues:	2 hours
Text Book(s		

1.	Leslie Cromwel Measurements',			P Feiffer,	'Biomedical Instrumentation and		
			· ·	. 15	. T. 1 1 1 D .: II 11		
2.			duction to biomed	ıcal Equipi	ment Technology', Prentice Hall,		
2.	4 th Edition, 201	1.					
Refere	Reference Books						
1	R. S. Khandpu	r, 'Handbook	of Biomedical In	nstrumenta	tion', Tata Mc-Graw Hill, 2nd		
1. edition, 2014.							
2	John.E. Hall, G	buyton and Hal	l, Textbook of M	edical Phy	ysiology, Saunders; 13 th Edition,		
2.	2015.	•	,	•			
2	Rangarai M. Ra	ngayyan, 'Bion	nedical Signal An	alysis', A	Case-Study Approach, Wiley, 2 nd		
3.	Edition, 2015.		C	•	3 11 , 3,		
Mode o	Mode of Evaluation: CAT I & II – 30%, DA I & II – 20%, Quiz – 10%, FAT – 40%						
Recomm	nended by Board of	of Studies	30/11/2015				
Approved by Academic Council 39 th AC Date 17/12/2015				17/12/2015			

EEE1011	Automated Test Engineering			J	C
		2	0 2	0	3
Pre-requisite	EEE3002	Sylla	bus v	vers	ion
Anti-requisite	NIL			v.	1.0

- 1. Aims to provide knowledge about the testing of IC's using automated Testing Equipment (ATE).
- 2. Providing hands-on in Simulation software's used to simulate the evaluation conditions.
- 3. Practical knowledge imparted on LabVIEW usage in PCBA testing for its full functional behaviour

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Discover the possible component faults that can occur in electronic manufacturing.
- 2. Classify the faults that occur in PCBs.
- 3. Analyze and develop practical skills involved in troubleshooting.
- 4. Test the Various parameters involved in ATE
- 5. Understand the board functional testing.
- 6. Design and analyze the board functional Testing.
- 7. Distinguish the Boundary Scan and Board Testing to understand the equipment used in automated testing.
- 8. Design and conduct the experiments, as well as analyze and interpret data

Module:1 Introduction Topcb Assemblies:

3 Hours

Printed Circuit Board (PCB)-types of PCB-multilayer PCBs-Plat Plated though Hole Technology - Surface Mount Technology (SMT) - Ball Grid Array (BGA) Technology - PCB Bare board manufacturing process - Bare board testing- PCB Inspection methods - Visual, Optical and X-ray Inspection systems- Electrical tests in PCBs

Module:2 PCBA Troubleshoot Methods:

2 Hours

PCB assembly troubleshoot – locating faults & Manual troubleshoot – Online & Offline troubleshoot – Fault types and causes in circuits – Tools and instruments for usage – DMM(Digital Multimeter) – CRO (Cathode Ray Oscilloscope) - Logic probes – Logic pulser – Logic Analyzer.

Module:3 | PCBA Troubleshoot Methods:

2 Hours

Automated Testing of PCBs – Out-circuit & In-circuit test methods – VI Trace Technique – signature analysis – Board Functional Testing Techniques– Boundary Scan Test Strategy & methods – External Instrumentation in Automated Testing – PCB diagnostic testers – Diagnostic Testing technique.

Module:4 Automated Test Techniques:

5 Hours

Automated Test Techniques – Various parameters – AC – DC Parametric testing– QA testing– Identify and troubleshoot the failures of parameters– Environmental, Electrical Standards & Requirements for IC testing – In-circuit Testing methodologies – Back Driving – functional test– Digital, Analog and Mixed Signal ICs– Guarding Technique – VI Trace Technique of components – Boundary Scan Test for components on board – In-circuit measurement of passive components – Kelvin measurement – Test Fixtures – Types of Test Fixtures – Bed of Nails Fixtures – Card Edge

(Deemed to be University under section 3 of UGC Act, 1956)						
Test Fixtures – Reverse Engg to rebuild the Schematic Diagram using ATE and Software.						
Module:5 Board Functional Testing (BI	F T):			6 Hours		
Board Functional Test (BFT) techniques – Go Backtracking Technique – Simulators – Onlin Comprehensiveness of Board program – Fault testing– BCSS– Interface adaptor or personality testing – External Instrumentation used for board PXI instruments.	o-No-go T e and Off Dictionary- adaptor(Po	fline Sin – Analy od) - Sa	nulation - Fau sis — BS and i mple board pro	alt Simulation— Non-BS device ogramming and		
Module:6 DFT:				4 Hours		
Design for testability (DFT)- test issues – Fault M ATE for test.	lodels — B	Soundary	Scan Test– Se			
Module:7 DFM:				6 Hours		
Design for manufacturability (DFM) - Manufactur – strategies – new strategy for DFM – benefits of applications.	0 1		•	•		
Module:8 Contemporary issues:				2 Hours		
Total Le	cture hou	rs:		30 Hours		
Text Book(s)		I				
1. S R Sabapathi, "Test Engineering for E Edition, 2011.	lectronic H	Hardware	e", Tata McGr	aw Hill, First		
Reference Books						
1. Gordon Rogers and Yon Mayheq, "Engin	eering The	rmodyn	amics", Pearson	n,2009		
2. Floyd, "The Fundamentals of Digital S Sep-2005	emiconduc	tor Test	ing", Pearson	Education India,		
List of Challenging Experiments (Indicative)						
1. Functional Test Using Boundary Scan Tester		•		2hours		
2. Cluster Test Using Boundary Scan Tester				2 hours		
3. Out Circuit Functional Test				2 hours		
4. In Circuit Functional Test				2 hours		
5. QSMVI Signature Test				2 hours		
6. Scan Chain Test				2 hours		
7. Continuity Test Using Short Locater				2 hours		
8. Analog Test Using ATE 2 ho				2 hours		
9. Parametric Testing DC and AC parameters 2 hours				2 hours		
10. VLSI high speed Testing using ATE 2 hours						
			ratory Hours	20 hours		
Mode of Evaluation: CAT I & II -30% , DA I		%, Quiz	– 10%, FAT – 4	40%		
Recommended by Board of Studies 05/03/20						
Approved by Academic Council 40 th AC	D	D ate	18/03/2016			

EEE1012	Optoelectronic Instrumentation			T	P	J	C
			3	0	0	0	3
Pre-requisite	PHY1001/PHY1701	Syl	labi	us v	ver	sio	n
Anti-requisite	NIL				V	. 1.	0

- 1. To understand the principles underlying the theory and wide applications of optical instrumentation.
- 2. To design and develop an optical instrument for non-contact measurements.
- 3. To provide an exposure on latest developments of optical instrumentation

Course Outcome:

On the completion of this course the student will be able to:

- 1. Comprehend the various types of noncontact optical instruments
- 2. Understand the working principle of various optical sources and detectors
- 3. Infer the optical fiber characteristics and their usage in measurement.
- 4. Design the fiber optic sensor for various physical parameter measurements.
- 5. Design the laser based optical instrumentation.
- 6. Understand the use of laser in optical non-destructive testing.
- 7. Develop solutions for real world problems using optical instrumentation

Module:1 Overview Of Optical Instrumentation:

Introduction - advantages of noncontact measurements, competing technologies, classification of optical measurements.

3 Hours

Module:2 Optical Sources and detectors: 10 Hours

Principle of light emission, materials, population inversion, pumping processes, optical amplification. Semiconductor Optical Sources - homojunction and double heterostructure - LEDs and LASERs. Response time, design of drive circuitry. Classifications: Ruby lasers, Neodymium Lasers, He-Ne Lasers, CO2 Lasers, Dye Lasers, Fiber lasers. Detectors: PN, P-i-N and Avalanche Photodiodes (APD), gain and responsivity calculation. Quadrant photodiode, CCD cameras and displays.

Module:3 Fundamentals of Fiber Optics: 5 Hours

Optical Fiber Characteristics and Classifications. Manufacturing of Optical fibers, Light sources - Source-to-Fiber power coupling, calculations, Fiber connectors and splices - Splicing techniques. Fiber Amplifier and optical modulators.

Module:4 Fiber Optic Instrumentation: 5 Hours

Fiber optic sensors – measurement of displacement, pressure, temperature, acceleration, torque, strain, fluid level and flow. Electric and magnetic field sensors.

Module:5 | Laser Instrumentation: 10 Hours

Principles of laser measurements and applications. Laser Interferometer- principle, performance parameters and applications. Alignment, position and sizing Instruments - position detecting sensor wire diameter sensor, particle sizing. Laser doppler velocimetry - Principle of operation,

performance parameters, electronic processing of doppler signal. Holography - Basic principles - Methods of holographic interferometry and applications.

Method	ls of h	olographic interferometry ar	nd applications.			
Module	e:6	Optical Non-Destructive	Testing:			5 Hours
Fiber techno	-	s, Laser speckle, Infrared	thermography,	endoscopy,	holography	and terahertz
Module	e:7	Advanced optical Instrun	nentation:		5 Hours	
Laser	remot	e sensing (LIDAR), advan	nced optical pol	lution mea	surements,	optical imaging,
lithogra	phy, s	spectrometers.				
Module	e :8	Contemporary issues:				2 Hours
			Total Lectu	re hours:		45 Hours
Text Bo	ook(s)					
1.		d A. Krohn, Trevor W.			endez, "Fibe	r optic Sensors:
	Func	lamental and Applications",	SPIE, 4 th Edition,	2015.		
2.		ano Donati, 'Electro-Optical 2010.	Instrumentation:	Sensing an	d Measurem	ents with lasers',
3.	W. 0	Osten and N. Reingand, P,"	Advanced Method	ds for Optic	al Nondestru	ictive Testing, in
	Opti	cal Imaging and Metrology	: Advanced Techi	nologies", V	Wiley-VCH	Verlag GmbH &
	Co.	KGaA, 2012.				
Referen	nce B	ooks				
1.	Gero	l Keiser, "Optical Fiber Con	nmunications", Ta	ta McGraw	Hill, 5 th Edi	tion, 2013.
2.	A.K	Ganguly, " Optical and O	ptoelectronics Ins	strumentatio	on", Alpha S	Science Intl Ltd,
	2010	•				
3.		G. Webster, Halit Eren,				
		ond Edition: Electromagn		adiation,	Chemical,	and Biomedical
		surement", CRC press, 2014				
Mode o			%, DA I & II – 20	%, Quiz − 1	10%, FAT –	40%
		ed by Board of Studies	05/03/2016			
Approv	ed by	Academic Council	40 th AC	Date	18/03/2	016

EEE1013	Analytical Instrumentation		L	T	P	J	C
			3	0	0	0	3
Pre-requisite	PHY1001	Sy	llab	us	ve	rsi	on
Anti-requisite	NIL				,	v. 1	1.0

- 1. To analyze and interpret data from different chromatography spectrums.
- 2. To design the radiation sources, detectors and optical systems for various spectrometers.
- 3. To understand the working principles of spectrometry and spectrophotometer.
- **4.** To analyze the performance of various nuclear radiation sources and detectors.

Course Outcome:

On the completion of this course the student will be able to:

- 1. Demonstrate the interaction of electromagnetic radiations with matter and spectroscopy and its types
- 2. Apply and analyse the analytical techniques to determine the elements present in the given sample accurately.
- 3. Analyse the concepts of NMR, Spectrometers and their working.
- 4. Demonstrate contemporary measurement techniques related to analyzers.
- 5. Apply chromatography to analyse industrial environments.
- 6. Illustrate the working principle of Ion Selective Electrodes, PH electrodes and conductivity meters.
- 7. Measure and formulate the composition of dissolved oxygen, sodium, silica elements present in the given samples.

Module:1 Electromagnetic Radiation: 5 Hours

EM Radiation characteristics – interaction of EM radiation with matter; spectral methods of analysis – absorption spectroscopy – Beer-Lamberts Law – radiation sources – monochromators – filters – prisms – diffraction gratings.

Module:2	Instrumentation for Absorption and Emission	8 Hours
	spectroscopy:	

UV – Visible spectroscopy – single beam and double beam instruments – instrumentation, sources and detectors; IR spectroscopy - FTIR spectrometer – instrumentation- sources and detectors. Atomic absorption spectroscopy – instrumentation, sources and detectors; Flame emission photometry – instrumentation, sources and detectors; Applications of absorption spectroscopy techniques.

Module:3	Nuclear Magnetic Resonance and Radiation	8 Hours
	Techniques:	

Nuclear Magnetic Resonance – basic principles –Constructional features and working of NMR spectrometers – applications. Nuclear radiation detectors – GM counter – proportional counter – scintillation counter; X- ray diffraction- instrumentation and applications.

Module:4	Mass spectroscopy:	4 Hours			
Mass spectroscopy – basic principles – Constructional features and working and applications.					
Module:5	Chromatography:	8 Hours			
Basic princ	iples-Gas chromatography – Liquid chromato	graphy – High pressure liquid			

	angum sunay again	(Deemed to be University under section 3 of	UGC Act, 1956)			
chromatogra	phy – instrumentation a	nd applications.				
37.11.6	TT C 1 41 44 0 T	N 1 10				
Module:6	_	Dissolved Component		5 Hours		
T 1 (*	Analyser:	**	1.	1 1 1 1		
		•	rs – disso	lved oxygen analyser – sodium		
analyser – s	silica analyser – moistur	e balance.				
Module:7	Gas Analysers:			5 Hours		
	•	Ov dust and amalia	dataatam			
•	• •	Ox - dust and smoke	detectors	s – analysers based on thermal		
conductivity	measurement.					
Module:8	Contemporary issue	AC.		2 Hours		
Module.8	Contemporary issue	Total Lecture ho	nine.	45 Hours		
		Total Lecture in	Juis.	43 110015		
Text Book(s	<u> </u>					
1.	•		Instrume	nts', McGraw Hill Publishing		
	Company Ltd., 3rd Edi					
2.	-		•	ouch, 'Principles of Instrumental		
	Analysis', Thomson Br	ooks/Cole, 7 th Edition,	2007.			
Reference I						
1.	Ewing G.W., 'Instrume	ental methods of chemic	al analysi	s, McGraw-Hill, Newyork.2009.		
2.	Sivasankar B, 'Instrum	ental Methods of Analy	sis', Oxfo	ord University press.2012.		
3.	Willard, H.H., Merrit I	L.L., Dean J.A Seattle	F.L., 'Ins	trumental Methods of Analysis',		
	CBS Publishing and Di	stribution, 2012.				
Mode of Ev	aluation:	CAT I & II – 30%, I	OA I & II	– 20%, Quiz – 10%, FAT –		
		40%				
Recommended by Board of		05/03/2016				
Studies						
Approved by Academic Council		40 th AC	Date	18/03/2016		

EEE1014	Fiber Optic Sensors		L	T	P	\mathbf{J}	C
			3	0	0	0	3
Pre-requisite	PHY1001/PHY1701	Syllabus versio		on			
Anti-requisite	NIL					v. 1	0.1

- 1. To understand the principles underlying the theory and its wide application.
- 2. To design and develop fiber optic sensors for industrial applications.
- 3. To design and implementation of fiber optic distributed sensors for various applications.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Understand the overview of fiber optic sensors and its unique applications.
- 2. Analyse the optical fiber characteristics and their usage in sensing.
- 3. Comprehend the working principle of various optical sources and detectors used for fiber optic sensors
- 4. Understand the principle of various fiber optic components used to construct the fiber optic sensor
- 5. Analyse the working principle of fiber optic sensors.
- 6. Apply the fiber optic sensor for different physical parameter measurements.
- 7. Design the multiplexing and distributed sensing of optical fiber sensors.

Module:1 Overview of Optical Sensors:

Introduction - Advantages of optical sensors, Competing technologies, Classification of optical sensors.

Module:2 Fundamentals of Fiber Optics:

5 Hours

3 Hours

Basic characteristics of optical fiber, Classification, dispersion, attenuation, nonlinear optical effects-SRS, SBS, SPM. Modal birefringence and polarization maintaining fibers. Source to fiber coupling, fiber to fiber joints, fiber splicing, optical fiber connectors

Module:3 Optical Sources and Detectors:

5 Hours

Light sources – LED and laser diodes – various structures, radiation pattern, characteristics, modulation of light sources. Photo detector – PIN Photodiodes and Avalanche Photodiodesprinciples, quantum efficiency, responsivity, detector noises.

Module:4 Optical Fiber Components and Devices:

3 Hours

Directional couplers, polarizers, polarization splitters, polarization controllers, optical isolators, fiber filters, wavelength division multiplexers and demultiplexers, switches, intensity, phase and frequency modulators.

Module:5 | Principles of Fiber Optic Sensors:

10 Hours

Intensity modulation sensors – Extrinsic and intrinsic type – Transmissive, Reflective, Microbending and other Optic Effects sensor. Phase modulation sensors – Michelson Interferometers, Fabry – Perot Interferometer, Mach – Zender Interferometer and Sagnac Interferometer. Polarization based sensors

Module:6 Applications of Fiber Optic Sensors:

8 Hours

Temperature Measurement, Pressure Measurement, Fluid – Level Measurement, Flow Measurement, Current – Voltage Measurement, Vibration Measurement. Laser Doppler velocimetry. Optical gyroscope. Fiber Bragg grating sensors – strain, temperature, pressure and acceleration measurement – distributed sensing. Nonlinear fiber optic sensor for very high temperature sensing.

					_ 1		
Module	e:7			Distributed Sens	ors and	9 Hours	
		smart Stru	ictures:				
Sensor	netv	vork archi	tectures. Multi	iplexing of int	ensity-based	d sensors. Multiplexing of	
Interfer	ometr	ric sensors.	Distributed se	ensing – quasi	and fully	distributed sensing - linear	
backsca	tterin	g, nonlinear	r backscattering	and forward sca	ttering syst	ems. Fiber optic smart sensor	
system	– App	olication of f	fiber optic smart	structures and ski	ns		
Module	e:8	Contemp	orary issues:			2 Hours	
				Total Lectu	re hours:	45 Hours	
Text Bo	ook(s))			-		
1.	Dav	id A. Kroh	nn, Trevor W.	MacDougall and	Alexis M	Iendez, "Fiber optic Sensors:	
	Fund	damental and	d Applications",	SPIE, Fourth Edi	tion, 2015.		
2.	Eric	Uddand Wi	illiam B. Spillm	an, Jr., "Fiber opt	ics sensors:	An introduction for Engineers	
	and	scientists", J	John Wiley & So	ons, Second Edition	n, 2011.		
Referen	nce B	ooks					
1.	Gero	l Keiser, "O	ptical Fiber Con	nmunications", Ta	ta McGraw	Hill, Fifth Edition, 2013.	
2.	José	Miguel L	ópez-Higuera, '	'Handbook of O	ptical Fibre	e Sensing Technology", John	
	Wile	ey & Sons L	td., 2002.				
3.	Zuji	e Fang, Kei	n Chin, Ronghu	i Qu, Haiwen C	ai, Kai Cha	ing, "Fundamentals of Optical	
	Fibe	r Sensors",	John Wiley &So	ons Inc, 2012.		_	
4.	Eric	Udd, Willia	ım B. Spillman <u>.</u> ,	"Field guide to F	iber optics s	ensors", SPIE, 2014.	
Mode o	f Eva	luation:	CAT I & II – 3	0%, DA I & II – 2	20%, Quiz –	10%, FAT – 40%	
	Recommended by Board of Studies 05/03/2016						
	Approved by Academic Council 40 th AC Date 18/03/2016						

EEE1015	Micro Electromechanical Systems		L	T	P	J	C
			3	0	0	4	4
Pre-requisite	MAT2002	Sy	llab	us	vei	rsi	n
Anti-requisite	NIL				7	z. 1	.1

- 1. To understand the operation principles of MEMS Devices,
- 2. To understand the various micromachining techniques used to fabricate MEMS devices
- 3. To become familiar with a wide variety of MEMS application areas such as MEMS sensors, RF MEMS, Optical MEMS, and Fluidic MEMS

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Apply scaling laws for miniaturization,
- 2. Understand the concepts of micro fabrication techniques
- 3. Select the most suitable manufacturing process and strategies for micro fabrication
- 4. Understand the working principles of MEMS sensors and Actuators
- 5. Analyse the mechanical properties of MEMS based application
- 6. Assess Bio-MEMS and relevant detection methods
- 7. Apply MEMS based devices for various applications
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 Introduction to MEMS:

Introduction - Evolution from microelectronics-Comparative Study - Multidisciplinary nature of MEMS

Module:2 MEMS and Miniaturization:

6 Hours

4 Hours

Scaling Laws of Miniaturization - Scaling in Geometry - Rigid Body Dynamics - Electrostatic Forces - Electromagnetic Forces - Electricity - Fluid Mechanics - Heat Transfer

Module:3 Materials and Process:

10 Hours

Substrates-Silicon, Glass, Ceramics; Photolithography, Bulk Micromachining: Wet etching-Isotropic Etching and Anisotropic Etching; Dry Etching; Wafer Bonding, High Aspect-Ratio Processes (LIGA); Surface Micromachining: basic process flow, release, Stiction, material choices, residual stress; CVD, PVD; Epitaxy

Module:4 | **MEMS Actuators and Sensors:**

10 Hours

Cantilevers, Hinges, Pumps, Motors; comb drive, levitation, equivalent circuits; resonator, SAW, Piezoelectric transducers; Thermoelectric devices; accelerometers & gyroscopes; RF MEMS Switch

Module:5 FEM for MEMS:

5 Hours

Stress, strain, material properties, measurement & characterization of mechanical parameters; bending moment and strain, flexural rigidity, residual stress, boundary conditions, spring combinations

Module:6 MOEMS and Bio-MEMS:

4 Hours

MOEMS: Overview, MOEM technology and applications to telecom, micro-optics; MOEMS related sensors, micro-optic components, testing and applications.

Bio-MEMS: Materials and processes for Bio-MEMS; Biochips and microarrays; Systems on Chip; Biochip Sensors & detection methods - Electrochemical; Optical (labeled and unlabeled)

Chip; Bioch	nip Sensors & detection meth	ods - Electrochemi	cal; Optical (l	abeled and unlabeled)
Module:7	Applications of MEMS:			4 Hours
Piezo resisti	ve Pressure Sensors, Capa	citive Accelerome	ters; Electros	tatic Projection Displays;
Piezoelectric	Gyroscope; DNA Amplific	cation; Thermoelec	tric Inkjet Prir	nt heads; Micro valves and
Pumps				
Module:8	Contemporary issues:			2 Hours
	Tot	al Lecture hours:		45 Hours
Text Book(s			<u> </u>	
1. Ricl	nard C. Jaeger, "Introducti	on to Microelectr	onic Fabricat	ion", Singapore: Pearson
	cation South Asia, 2014.			
2. Step	ohen D Senturia, " Microsyst	em design", Kluwe	r Academic P	ublishers, 2003.
Reference B	ooks	-		
1. Mai	c. J. Madou, "Fundamenta	als of microfabrica	ation and nar	notechnology. Volume II,
Maı	nufacturing techniques for r	nicrofabrication ar	nd nanotechno	ology", Boca Raton, FL:
CRO	C Press, 2012.			
2. P. R	ai-Choudhury, "MEMS and	MOEMS Technolo	gy and Appli	cations", SPIE, 2017.
3. Tho	mas Adams and Richard Lay	yton, "Introductory	MEMS: Fabr	rication and Applications",
Spri	inger, 2010.			
4. M-I	H. Bao, "Micromechanica	1 Transducers: F	ressure sens	ors, accelerometers and
	oscopes", Elsevier, 2000.	i iiuiisaaccis. i	ressure sens	ors, accordinately and
	njun Wang, Steven A. Sop	or "Dio MEMS:	Tachnalagias	and Applications' CPC
	ss, 2007.	ei, bio-menis.	reciliologies	and Applications, exc
	ss, 2007. Iluation: CAT / Assignment /	/ Ouiz / FAT / Droi	act / Saminar	
MIDUE OF EVE	nuation. CA1 / Assignment /	QuiZ / I'A I / Ploje		
Recommend	ed by Board of Studies	05/03/2016		
	Academic Council	40 th AC	Date	18/03/2016

EEE1016	Non Destructive Testing	L	T	P	J	$\overline{\mathbf{C}}$
		3	0	0	0	3
Pre-requisite	PHY1001	Sylla	bus	vei	rsic	n
Anti-requisite	NIL			7	7. 1	0.

1. To study and understand the various Non Destructive Evaluation and Testing methods, theory and their industrial applications

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Extrapolate the Non Destructive Testing techniques to determine defects and characterization of industrial components
- 2. Study and realize the visual testing
- 3. Develop and demonstrate liquid penetrant testing methods
- 4. Acquire the skills of magnetic particle and eddy current testing
- 5. Analyse the practical implementation of radiographic testing
- 6. Practise and implement ultrasonic testing for NDT
- 7. Promote advancement of research and implementation of NDE technology

Module:1 Visual Testing:

6 Hours

Fundamentals of Visual Testing - Vision, lighting, material attributes, environmental factors, Visual perception, direct and indirect methods - mirrors, magnifiers, Boroscopes Fibroscopes, closed circuit television, light sources and special lighting, A systems, computer enhanced system, standards units and codes.

Module:2 Liquid Penetrant Testing:

6 Hours

Principles – types and properties of liquid penetrants - developers – advantages and limitations of various methods - Preparation of test materials - Application of penetrants to parts, removal of surface penetrants, post cleaning - - selection of penetrant method - solvent removable, water washable, standards units and codes

Module:3 Magnetic Particle Testing:

7 Hours

Theory of magnetism -magnetisation by means of direct and alternating current - surface strength characteristics - Depth of penetration factors, Direct pulsating current typical fields, advantages - Circular magnetisation techniques, field around a strength conductors, right hand rule field - Prods technique, current calculation - Longitudinal magnetization - field produced by current in a coil, shape and size of coils, field strength, current calculations, Magnetic Burghausan Noise Analysis (MBN).

Module:4 Radiography:

6 Hours

X-rays, Properties of X-rays relevant to NDE. Absorption of rays, scattering, types and use of filters, screens, geometric factors, inverse square, law, film type and processing, characteristics of films - density, speed, contrast, Characteristic curves, Penetrameters, Exposure charts, radiographic equivalence, Radiography of pipes, welds and castings. Safety with X-rays Special Radiographic Techniques

Module:5 | **Eddy Current Testing**:

7 Hours

Generation of eddy currents - effect of created fields - effect of change of impedance on

instrumentation - properties of eddy currents - eddy current sensing elements, probes, type of arrangement - a) absolute b) differential lift off, operation, applications, advantages, limitations - Through encircling or around coils, type of arrangements a)absolute b) differential fill factor, operation, application, advantages, limitations - Factors affecting sensing elements and coil impedance - test part and test system - Signal to noise ratio, relationship to eddy current testing - equipment's

Module:6 Ultrasonic Testing: 6 Hours

Ultrasonic NDT principles, Different types of wave modes, Physics of wave generation, reception, interactions and propagation. Calibration, data collection, quantification, and interpretation, New methods using guided waves, Resonance and other Low Frequency Methods; Angle beam inspection – thickness measurements – Applications.

Module:7 Other Techniques:

5 Hours

Holography and Acoustic emission technique. Pressure and leak testing. Condition monitoring of machines, Wear monitoring, Spark testing. Brief over view of Non- Destructive testing standards - ASTM, ISO, ASNT, API, ASME boiler and pressure vessel code.

Module	e:8	Contempo	rary issues:			2 Hours
				Total Lecture ho	ours:	45 Hours
Text Bo	ook(s))				
1.	BH	ull,"Non-dest	ructive testing	, S.l.: Springer, 2	012.	
2.	Ravi	i Prakash,"No	on-Destructive	Testing Techniqu	es", Tunbi	ridge Wells: New Academic
Science, 2012.						
Referei	nce B	ooks				
1.	Cha	rles, J. Hellier	, Handbook of	Non destructive e	valuation,	McGraw Hill, New York 2013.
2.	Bald	lev Raj, T.Ja	yakumar, M.T	havasimuthu , Pr	actical No	on-Destructive Testing", Narosa
	Publ	ishing House	, 2009.			
3.	Paul	E Mix, Intro	duction to No	n-destructive testi	ng: a traiı	ning guide", Wiley, 2nd Edition
	New	Jersey, 2005				
Mode o	Mode of Evaluation: CAT I & II – 30%, DA I & II – 20%, Quiz – 10%, FAT – 40%					
Recom	nende	ed by Board o	f Studies	05/03/2016		
Approved by Academic Council 40 th AC Date 18/03/2016			18/03/2016			

	(Deemed to be University under section 3 of UGC Act, 1956) Nano Technology Fundamentals And Its Applications							
EEE1018			T	P	J	C		
		3		0	0	0	3	
Pre-requisite	PHY1001	S	yl	lal	bus	s v	ersion	
Anti-requisite	NIL						v. 1.0	
Course Objective	Course Objectives:							
1. To underst	and the basic concepts involved in Nanoscience						_	

2. To gain knowledge about various methods of synthesis, characterization and applications in Nanotechnology.

Expected Course Outcomes:

Module:7

Nanophotonics

On the completion of this course the student will be able to:

- 1. Understand the fundamental aspects of nanoscience
- 2. Identify various types of nanomaterials, their properties and applications
- 3. Compare the different nano fabrication processes
- 4. Synthesize and understand the properties & application of Carbon Nanotubes
- 5. Characterize nanoscale particles using various characterization techniques
- 6. Understand the limitations of current technology and advancements of nanoscale electronic devices
- 7. Apply nanotechnology in photonic devices

Module:1 Basic Concepts 8 Hours

Basic properties of Conductors, Insulators and Semiconductors; Band diagram concept of typical semiconductors; Basic Chemistry Concepts; Physical aspects, Bonding, Wave-particle duality, Heisenberg Uncertainty Principle, Schrödinger wave equation, Quantum confinement in 1-D, 2-D and 3-D; Effects of the nanometer length scale- Change in properties.

Module:2 Nanomaterials 6 Hours

Basic Types of Nanostructures- Quantum wells, Quantum Wires-Carbon Nanotubes, Nanowires; Quantum Dots, Nanoclusters; Nanoparticles- Colloidal nanoparticle crystals, Functionalized nanoparticles

Module:3 Fabrication Methods 5 Hours

Top-down processes, Bottom-up processes, Nanolithography techniques, Arc discharge method, Laser Ablaton method, Ion Implantation, Chemical Vapour deposition.

Module:4 Carbon Nanotubes & its applications 6 Hours

Synthesis of CNTs, Electronic properties, Mechanical properties; Applications- CNTs as interconnects, CNTFETs, CNTs for solar cell and energy storage applications

Module:5 Characterization Techniques 8 Hours

Classification of characterization methods, Different Microscopy techniques-Light Microscopy, Principle & Resolution, Electron Microscopy- Scanning Electron Microscopy (SEM), Principle & Resolution, Scanning Probe Microscopy- Scanning Tunneling Microscopy (STM) & Atomic Force Microscopy (AFM), Principle & Resolution.

Module:6	Nanoelectronics	5 Hours
Si Technolog	gy and its limitations, Nanoscale Devices, Single	Electron Devices, Organic Field-effect
transistors, S	pintronics.	

8 Hours

Phot	tonic Cr	ystals and their applications, F	Plasmonics, Near fi	eld optics	, Q-Dot Lasers						
Mod	dule:8	Contemporary issues:				2 Hours					
		7	Total Lecture hou	rs:	45 H						
Tex	t Book(s	s)									
1	Jeremy	J. Ramsden, Nanotechnology	y-An Introduction,	Second E	dition, Elseiver, 2016						
2	Amreta	ashis Sengupta , Chandan Kur	nar Sarkar (Eds.)	"Introduc	tion to Nano-Basics to						
	Nanos	cience and Nanotechnology",	Springer, 2015								
Refe	erence I	Books									
1	Chr	ris Binns , "Introduction to Na	noscience and Nar	otechnolo	ogy", Wiley, 2010						
Mod	de of Eva	aluation: CAT / Assignment /	Quiz / FAT / Proje	ect / Semin	nar						
Reco	Recommended by Board of Studies 05/03/2016										
App	roved by	y Academic Council	40 th AC	Date	18/03/2016						

EEE1020	Engineering Optimization	L	T	P	J	C
		2	1	0	1	4
Pre-requisite	NIL	Sy	lla	bus	s v	ersion
Anti-requisite	NIL					v. 1.1

1. Exposure to and learning of engineering optimization concepts applied across the spectrum of courses in engineering curriculum

Expected Course Outcome:

On the completion of each module the student will be able to:

- 1. Understand the basic concepts of engineering optimization
- 2. Analyze the 1- D search methods in optimization
- 3. Design gradient based optimization method for various algorithms
- 4. Formulate and analyze systems using conjugate direction methods
- 5. Program and analyze dynamic optimization techniques
- 6. Apply mathematics and science in engineering applications
- 7. Understand genetic algorithm and PSO algorithm
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 Classical Optimization basics

7 Hours

Taylor's series, Single-variable optimization, Multivariable optimization without and with equality and inequality constraints, Definitness of matrices, Sylvester's criterion, Convex programming problem.

Module:2 1-D search methods

5 Hours

Golden Section Search, Fibonacci Search, Inexact line search.

Module:3 Gradient based optimization

7 Hours

Gradient descent method, method of steepest descent, Newton's Method, Levenberg-Marquardt algorithm.

Module:4 Conjugate Direction Methods:

7 Hours

Conjugate directions and conjugate gradient method, Fletcher-Reeves formula. Convergence analysis of all algorithms.

Module:5 | **Miscellaneous topics**

6 Hours

Dynamic programming. Dynamic optimization. Sample applications of gradient based and gradient free methods in engineering.

Module:6 Application of optimization methods to neural networks

5 Hours

NN basics, capabilities and limitations of single perceptron, multilayer perceptron. Training by gradient based and gradient free methods.

Module:7 Gradient-free Optimization

6 Hours

Direct and indirect methods, Limitations of gradient based methods, metaheuristic algorithms, Introduction to the genetic algorithm, particle swarm optimization. Simulated annealing.

Module:8 | Contemporary issues:

2 Hours

Text Book

1. Introduction to Optimization by Chong and Zak, John Wiley & Sons, Inc., IV Ed., 2013.

Referen	Reference Books								
1.		ry and Practic	y and Practice by S S Rao, John Wiley & Sons, Inc., IV Ed.,						
	2009.								
2.	Practical Methods of Optimization	on, by Fletche	r, John Wiley & S	ons, Inc., II Ed., 2006					
3.	Current literature.								
Mode o	f Evaluation: CAT / Assignment /	Quiz / FAT /	Project / Seminar						
Recom	Recommended by Board of Studies 05/03/2016								
Approv	ed by Academic Council	40 th AC	Date	18/03/2016					

EEE2006	Communication Engineering		L	T	P	J	C
			3	0	2	0	4
Pre-requisite	EEE1005	Sy	llal	ous	ve	ersi	ion
Anti-requisite	NIL					v.	2.0

- 1. To equip students with the knowledge of analog and digital communication engineering fundamentals.
- 2. To teach the students various communication systems and its analysis & applications
- 3. To provide basic understanding of appropriate tools and technologies to develop communication-engineering solutions.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Demonstrate the need for modulation.
- 2. Examine the presence of noise in communication systems.
- 3. Analyze modulation techniques for analog and digital Signals.
- 4. Design transmitters and receivers for communication systems
- 5. Assess various shift keying techniques.
- 6. Demonstrate spread spectrum techniques and channel assignment strategies.
- 7. Analyze and design modern communication systems.
- 8. Design and Conduct experiments, as well as analyze and interpret data

Module:1 Introduction to Communication System

6 Hours

Communication systems: Introduction, need, importance, elements, block diagram and role of each block, types, frequency ranges – bandwidth– pre-emphasis and de-emphasis –modulation and its need– applications of electronic communications.

Module:2 Noise in CW Modulation System

4 Hours

Internal noise – external noise – noise voltage – signal-to-noise ratio – noise figure – noise temperature – noise in CW modulation systems.

Module:3 Amplitude Modulation

8 Hours

Representation and generation of analog modulation systems including AM, SSB, DSB,VSB – frequency spectrum, power relation—different types of modulators – AM transmitter: low level and high level modulation – SSB transmitter – AM demodulators: Square-law detector, envelope detector, rectifier detector, synchronous detector – characteristics of receivers – Super heterodyne principle – AM super heterodyne receiver – SSB receiver – comparison of different AM systems.

Module:4 Phase Modulation:

10 Hours

Representation and generation of frequency and phase modulation (FM and PM) – generation of NBFM and WBFM – FM transmitters – comparison of AM and FM – comparison of FM and PM – conversion of FM to PM and PM to FM – TRF Receivers – Choice of IF and oscillator frequencies – AVC – AFC – FM super heterodyne receiver – slope detectors – HF Communication Receiver – diversity reception.

Module:5 Pulse Modulation Systems

5 Hours

Pulse modulations— sampling theorem — pulse amplitude modulation— pulse width modulation — pulse position modulation — signal to noise ratio of pulse modulation systems — delta modulation — pulse code modulation

Module:6 | Digital modulation systems

5 Hours

Amplitude shift keying – frequency shift keying – phase shift keying – advantages and disadvantages of digital communication systems.

	7 Cellular concept				5 Hours
	assignment strategies – interfer				
	uence spread spectrum – Freq				n multiplexing –
OFDM fo	or wireless communication – Br	oadband integrate	d services	network.	
Module:	Contemporary issues:				2 Hours
		Total Lecture ho	ours:		45 Hours
Text Boo	k(s)				
1.	Simon Haykin; Michael M	Ioher, "An Int	roduction	to Analog	and Digital
(Communications.", Hoboken:	Wiley Textbooks,	2012.		
2. I	Leon W Couch, "Digital and an	nalog communicat	ion system	s", Upper Sado	lle River, N.J,
I	Prentice Hall, 2013				
3. I	Rappaport T.S., "Wireless Com	munications", Pea	rson Educ	ation, 2010.	
Reference	e Books				
1. I	Herbert Taub; Donald L Sci	hilling; Goutam	Saha, "Pr	rinciples of co	ommunication
S	ystems", New Delhi : McGrew	Hill Education, 2	013.		
2. I	Ramjee Prasad, "OFDM for	wireless commu	nications	systems", Bos	ton; London:
A	Artech House, 2004.				
3. V	Wayne Tomasi, "Electronic	Communication	Systems	 Fundamer 	ntals through
	dvanced", 4th edition, Pearson				
4. J	ohn G Proakis; Masoud Sa	lehi, "Digital Co	mmunicat	ion", 5th edit	ion, New York
	McGraw-Hill 2014.				
5. I	Kennedy and Davis, "Electronic	c Communication	Systems",	4th edition, Ta	ta McGraw Hill,
	2008.				
Mode of I	Evaluation: CAT / Assignment	/ Quiz / FAT / Pro	oject / Sem	inar	
List of C	hallenging Experiments (Indi	cative)			
1. Am	plitude Modulation				2 hours
2. Pre-	Emphasis and De-Emphasis				2 hours
3. Puls	se Amplitude Modulation				2 hours
4. Puls	se Width Modulation				2 hours
5. Free	quency Modulation/Mixer				2 hours
	eration of Shift Keying Method	ds			2 hours
7. DS1	B, SSB Modulation and Detecti	on			2 hours
	and PM Modulation and Detec	ction			2 hours
	se Code Modulation and Delta				2 hours
	eration and Detection of spread				2 hours
1			otal Labor	ratory Hours	30 hours
Recomme	ended by Board of Studies	30/11/2015		v	
	by Academic Council	39 th AC	Date	17/12/2015	

EEE2008	Electrical Technology	L	T	P	J	C
		3	0	2	0	4
Pre-requisite	EEE1002	Syllabus version			sion	
Anti-requisite	NIL	v. 1.0			1.0	

- 1. To analyze the basic working principle of DC Machines
- 2. To understand the various performance and testing of transformer
- 3. Evaluate the various characteristics of AC Machines and Special Machines

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Understand the constructional details and working principle of DC Generator
- 2. Analyse and evaluate the performance characteristics of DC motor
- 3. Understand the theory and operation of transformer
- 4. Compute the equivalent circuit parameters of transformer
- 5. Analyse the working principle of synchronous generator
- 6. Comprehend the working principle of synchronous motor and applications.
- 7. Understand the different types of induction motor and miscellaneous machines
- 8. Design and Conduct experiments, as well as analyze and interpret data

Module:1DC Generators:7 HoursConstructional details of DC machines, Operation of DC generators - EMF equation -
Characteristics of different types of generators.EMF equation -
6 Hours

Principle of operation of DC motors – Torque and speed equation – Characteristics of different types of DC motors – Starting, braking and speed control of DC motors, Simple problems of emf.

Module:3 Construction of Transformers: 6 Hours

Principle – Types – general constructional feature of single phase and three phase transformers.

Module:4 Performance evaluation of Transformers: 6 Hours

Phasor diagrams and equivalent circuit – Regulation and efficiency – OC and SC Test on transformers – Simple problems on emf induced in the Primary & Secondary windings, Autotransformers.

Module:5 Synchronous Generator: 6 Hours

Principle of operation – Types and general constructional features – synchronous generators – Characteristics – EMF equation – Regulation – Simple problems on emf.

Module:6 Synchronous Motor: 5 Hours

Principle of operation-Phasor diagram of synchronous motor – V curve – Starting methods, Hunting.

Module:7 Induction and Miscellaneous Machines: 7 Hours

Types – Constructional features of 3-phase induction motors – phasor diagram – Slip torque characteristics – Starting and speed control methods – principles of operation and types of single-phase induction motor. DC/AC servomotors – Stepper motors – Brushless motors – Reluctance and hysteresis motors – Linear induction motors.

Mod	lule:8	Contemp	orary issues:	ed to be University under section 3			2 Hours
			•	Total Lecture ho	ours:		45 Hours
List	of Chal	lenging Exp	periments (Indi	cative)			
1.		of DC shunt	•	·	l		2 hours
2.	Load characteristics of DC shunt generator						2 hours
3.	Load test on DC compound generator						2 hours
4.	No loa	d saturation	characteristics o	f separately excite	ed DC generato	r	2 hours
5.	Load c	haracteristic	s of DC series g	enerator			2 hours
6.	Load c	haracteristic	s of DC separate	ely excited genera	tor		2 hours
7.	Load to	est on DC se	ries motor				2 hours
8.	Load to	est on DC sh	unt motor				2 hours
9.	Speed	control of D	C shunt motor				2 hours
10.	Swinb	urne's Test					2 hours
11.	OC/SC	test on a sin	ngle phase transf	former			2 hours
12.	Load to	est on single	phase transform	ner			2 hours
13.	Paralle	l operation of	of single phase to	ransformer			2 hours
14.	Predetermination of percentage regulation of alternator by synchronous impedance method					2 hours	
15.	Load test on three phase alternator with resistive load				2 hours		
16.					2 hours		
17.		•	phase Induction				2 hours
18.				ge induction motor	or		2 hours
19.			phase slip-ring in				2 hours
			r8		otal Laborator	rv Hours	30 hours
Text	t Book(s	3)		_		J =======	
1. 2.	Edit Abl	tion, 2014. nijit Chakra	barti, Sudipta	Electrical Machin Debnath, "Electr			
D - F		cation, 2012	2.				
Refe 1.	Reference Books 1. Cotton H, "Advanced Electrical Technology", CBS Publishers and Distributors, New. Delhi, 2001.						
			Text Book Elect	trical Machines",	Laxmi Publicat	ion, 4 th Ec	lition, 2016.
	B.L	01	l A.K.Theraja, ".	A Text Book of E			
Mod		aluation:	1	0%, DA I & II – 2	20%, Quiz – 10	%. FAT _	40%
		ed by Board		05/03/2016	10	,	
		Academic		40 th AC	Date	18/03/20	16

EEE3008	Data Communication Network	L	T	P	J	C
		3	0	0	0	3
Pre-requisite	EEE2006	Syll	abu	s v	ers	ion
Anti-requisite	NIL				v.	1.0

- 1. To teach the basic fundamentals in network topology.
- 2. To provide essential knowledge on various layer in OSI model
- 3. To expose the students to the recent advances in various protocol in application layer.
- 4. To teach various networking.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Understand the overview of a data communication and network.
- 2. Analyze the bandwidth utilization and switching of data networks
- 3. Understand the protocol of seven layer model.
- 4. Comprehend and configure Local Area Networks
- 5. Apply the various communication methods in transmission media.
- 6. Understand the different coding methods to avoid error in communication in data link layer.
- 7. Formulate the strategies for QoS network applications
- 8. Appreciate usefulness and importance of application layer protocol in today life and society

Module:1 Overview of data communication: 4 Hours

Introduction- Data Communications, Networks, The Internet, Protocols and Standards, Network Models- The OSI Model, Layers in the OSI Model, TCP/IP Protocol Suite, Addressing, Physical Layer and Media.

Module:2 Bandwidth utilization and switching:

6 Hours

Multiplexing and Spreading, Transmission Media Wireless. Switching - Circuit-Switched Networks, Datagram Networks, Virtual-Circuit Networks, Structure of a Switch.

Module:3 Data Link Layer:

7 Hours

Error Detection and Correction- Block Coding, Liner Block Codes, Cyclic Codes, Checksum, Data Link Control - Framing, Flow and Error Control, Protocols, Noiseless Channels, HDLC, Point-to-Point Protocol, Multiple Access - Random Access, Controlled Access, Channelization, IEEE Standards - Standard Ethernet, Changes in the Standard, Fast Ethernet, Gigabit Ethernet, IEEE 802.11, Bluetooth

Module:4 | Local Area Network:

6 Hours

Connecting LANs, Backbone Networks, and Virtual LANs, Connecting Devices, Cellular Telephony, Satellite Networks, Sonet/SDH, Architecture, STS Multiplexing, Sonet Networks, Virtual Tributaries, Virtual-Circuit Networks: Frame Relay and ATM, Frame Relay, ATM, ATM LANs.

Module:5 Network Layer:

6 Hours

Network Layer: Internet Protocol, Internetworking, IPv4, IPv6, Transition from IPv4 to IPv6, Address Mapping, Error Reporting and Multicasting, ICMP, IGMP, ICMPv6, Delivery, Forwarding and Routing, Unicast and Multicast Routing Protocols.

Module:6 Transport Layer: 6 Hours

Process-Process Delivery: UDP, TCP and SCTP, Process-to-Process Delivery, User Datagram Protocol (UDP), TCP, SCTP, Congestion Control and Quality of Service, Data Traffic, Congestion, Congestion Control, Quality Service, Techniques to improve QoS, Integrated Services, Differentiated Services, QoS in Switched Networks.

Module:7 Application Layer:

Domain Name System - Name Space, Domain Name Space, Distribution of Name Space, DNS in the Internet, Resolution, DNS Messages, Types of Records, Registrars, Dynamic Domain Name System (DDNS), Encapsulation, Remote Logging, Electronic Mail and File Transfer, Remote Logging, Telnet, Electronic Mail, File Transfer.

8 Hours

WWW and HTTP:

Architecture, Web Documents, HTTP, Network Management: SNMP, Network Management System, Simple Network Management Protocol (SNMP), Multimedia, Digitizing Audio and Video, Audio and Video Compression, Streaming Stored Audio/Video, Streaming Live Audio/Video, Real-Time Interactive Audio/Video, RTP, RTCP, Voice over IP.

Module:8	Contemporary issues:	2 Hours
	Total Lecture hours:	45 Hours

Text Book(s)

1.Behrouz A. Forouzan, "Data Communications and Networking", McGraw Hill, Fifth Edition, 2017. 2.A. S. Tanenbaum, "Computer Networks", Pearson education, 5th Edition, 2013.

Reference Books

- 1. W. Tomasi, "Introduction to Data communications and Networking", Pearson education, 4thEdition, 2005.
- 2. G.S.Hura and M.Singhal, "Data and Computer Communications", CRC Press, 2001.
- 3. S.Keshav, "An Engineering Approach to Computer Networks", Pearson Education, 2ndEdition, 2010.
- 4. W.A.Shay, "Understanding communications and Networks", Cengage Learning, 3rd Edition, 2008.

Mode of valuation:	CAT I & II – 30%, DA I & II – 20%, Quiz – 10%, FAT – 40%				
Recommended by Board	d of Studies	05/03/2016			
Approved by Academic	Council	40 th AC	Date	18/03/2016	

EEE3009	Digital Image Processing	L	T	P J	l C
		3	0	0 4	4
Pre-requisite	EEE2005	Syllabus version			sion
Anti-requisite	NIL			V	. 2.1
G 014 4					

- 1. To develop student's skills in performing spatial and transform domain transformations associated with image processing and skills associated with techniques related to coding.
- 2. To resolve complex algorithms and to reinstate sophisticated techniques to improve the performance.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Understand the fundamentals of digital image processing
- 2. Analyse the various image transform techniques
- 3. Implement frequency domain in image enhancement
- 4. Comprehend the image compression techniques
- 5. Analyse the images using various segmentation techniques
- 6. Represent and describe the image processing techniques
- 7. Apply the image processing techniques in various applications
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 8 Hours

Basics of Digital Image Processing (DIP):

Introduction, Fundamental steps in DIP – Elements of visual perception -Image sensing and Acquisition – Image Sampling and Quantization – Imaging geometry, discrete image mathematical characterization- Basic relationship between pixels. Basic Gray level Transformations – Histogram Processing – Smoothing spatial filters- Sharpening spatial filters -color Image Processing-Color models-pseudo color image processing- color transformations.

Module:2 10 Hours

Image Transforms:

Two dimensional Fourier Transform- Properties – Fast Fourier Transform – Inverse FFT- Discrete cosine transform and KL transform.-Discrete Short time Fourier Transform. Discrete Wavelet Transform- the Haar wavelet family-Multirate solution analysis and the scaling function-Implementation using filters.

Module:3 8 Hours

Image Enhancement in Frequency domain:

Smoothing frequency domain filters- sharpening frequency domain filters- Homomorphic filtering, A model of the image degradation and restoration process, Noise models, Spatial filtering, Frequency domain filtering –Inverse filtering, Wiener filtering, Constrained Least square filtering

Module:4 4 Hours
Image Compression:
Overview of Image Compression Techniques- Quantization- Entropy Encoding-JPEG and MPEG

standardsModule:5 6 Hours

Image Segmentation:

Detection of discontinuities – edge linking and boundary detection- thresholding -edge based segmentation-region based segmentation- matching-morphological segmentation- watershed algorithm

algorith		-region based segmentati	on- matching-m	iorphologic	cal segmentation- wa	atershed
Modul	e:6				3	3 Hours
_	lary d	on and Description: escriptions-Region descriptor	rs- Use of Princip	al Compoi	nents and Description, T	Cexture
Modul	e:7				3	3 Hours
Applica	ations	of Image Processing:				
Machin	e Visi	on- Image Analysis-pattern r	recognition and int	troduction	to video processing	
Modul	e:8	Contemporary issues:				2 Hours
		. v	Total Lecture ho	ours:		5 Hours
Text B	ook(s)			'		
1.		el C.Gonzalez, Richard E.Woon, 2017.	oods, "Digital Ima	ge Process	ing", Pearson Education	ı 4th
2.	Anil.	K.Jain, "Fundamentals of Di	gital Image Proces	ssing", Pea	rson Education, 2000.	
Refere	nce B	ooks				
1.		E Umbaugh, "Digital Image ications with CVIPtools", Se	_	•		
2.	Willi	am K. Pratt, "Digital Image I	Processing", John	Wiley & S	ons, 2016.	
3.	-	nane Mallat , "A Wavelet tou emic Press, 2009.	r of signal process	ing: The S	parse Way", 3 rd Edition,	,
4.		Nixon, Alberto Aguado, "Fe chnology Publicatiton, Secon		and Image	Processing", Elsevier's	Science
5.	5.7					
6.		anda,D.DuttaMajumder, "Di , 2011	gital Image Proces	ssing and A	Analysis", Prentice Hall	of
Mode o	of Eval	luation: CAT / Assignment /	Quiz / FAT / Proje	ect / Semir	nar	
		ed by Board of Studies	05/03/2016			
Approv	ed by	Academic Council	40 th AC	Date	18/03/2016	

EEE4018	Advanced Control Theory	L	T	P	J	C
		3	0	0	4	4
Pre-requisite	EEE 3001	Syllabus version			ion	
Anti-requisite	NIL	v. 2.0		2.0		

- 1. To impart in-depth knowledge in the field of control theory, analysis and design of MIMO systems in state space
- 2. Basic understanding on features of linear and nonlinear systems
- 3. To analyze the features of linear and nonlinear systems using phase plane analysis and describing function analysis
- 4. To analyze the stability of linear and nonlinear systems using stability concepts

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Model physical systems using state variable approach
- 2. Analyze MIMO systems by state space approach
- 3. Design state feedback controller and observer for simple and practical dynamic systems
- 4. Identify and classify the nonlinearities in the physical systems
- 5. Analyze the features and stability of nonlinear systems using phase portraits
- 6. Analyze the systems with common nonlinearities using describing function
- 7. Analyze stability of linear and non linear systems
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 State Variable Representation

6 Hours

Introduction, Concept of State Equation for Dynamic Systems, Non Uniqueness of State model, State Diagrams, Physical Systems and State Assignments - State space representation of multivariable systems

Module:2 | **Solution Of State Equations**

6 Hours

State transition matrix – Properties and Computation. Controllability and Observability, Stabilizability and Detectability.

Module:3 Design In State Space

7 Hours

State Feedback, Output Feedback, Design Methods, Pole Assignment, Full Order and Reduced Order Observers. Introduction to Linear Quadratic problems.

Module:4 Introduction To Non Linear Sytems

5 Hours

Introduction, Features of Linear and Non Linear Systems, Types of non-linearity, Common nonlinearities in control systems, Typical Examples , Concept of phase portraits – Singular points – Limit cycles

Module:5 PHASE PLANE ANALYSIS

7 Hours

Construction of phase portrait, Concepts of phase plane analysis Phase plane analysis of linear system and nonlinear system, Existence of limit cycles.

Module:6 Describing Function Analysis

6 Hours

Describing function fundamentals, Describing functions of common nonlinearities, Describing function analysis of nonlinear systems, Limit cycles, Stability of Oscillations

Module:7 Stability Analysis

6 Hours

Stability Concepts, Equilibrium Points, BIBO and Asymptotic Stability, Lyapunov theory,

Lyapunov's Direct method, Variable gradient method Frequency Domain Stability Criteria, Popov's Method & its Extension.

Module	e :8	Contemporary issues:			2 Hours			
		T	otal Lecture hou	ırs:	45 Hours			
Text Bo	` '			•				
1.	1. Katsuhiko Ogata, "Modern Control Engineering", PHI Learning Pvt Ltd, 5 th Edition, 2010							
2.	Hass	an K Khalil, "Nonlinear Con-	trol ", Pearson Pro	entice Hall	, 1 st Edition, 2014.			
Referen	nce Bo	ooks						
1.	M. (Gopal, "Modern Control Syste	ms Theory", New	Age Publ	lishers, 3 rd Edition, 2014.			
2.	Rich	ard C. Dorf, Robert H. Bisho	p, "Modern Cont	rol System	s", Prentice Hall, 12 th Edition,			
	2010).						
Mode o	Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar							
Recomi	mende	ed by Board of Studies	05/03/2016					
Approv	ed by	Academic Council	40 th AC	Date	18/03/2016			

EEE4019	Advanced Digital Design with FPGAs	L	T	P	J	C
		2	0	0	4	3
Pre-requisite	EEE3002	Syllabus version			ion	
Anti-requisite	NIL				v.	1.0

- 1. To learn complex digital systems using Hardware Description Language.
- 2. To learn field programmable gate array (FPGA) technologies and utilize associated computer aided design (CAD) tools to synthesize and analyze digital systems.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Design and recognize the trade-offs involved in digital design flows for system
- 2. Compile and synthesize Verilog HDL.
- 3. Analyze and synthesize digital modules and circuits for a wide application range.
- 4. Design state machines to control complex systems.
- 5. Verify Verilog test bench to test Verilog modules.
- 6. Build a synchronous DSP system in Verilog and verify its performance.
- 7. Design a floating point arithmetic using the IEEE-754 Standard.
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Introduction to FPGAs	3 Hours					
Basic Programmable Logic architectures, Complex Programmable Logic Devices (CPLDs),						
Field Programmable Gate Arrays (FPGAs), Design Flow, Design Tools.						
g	ric architectures, Complex Programmable Logic Devi					

Module:2	Introduction to Verilog HDL	5 Hours
Review of Verilog HD	L, Modeling styles: Behavioral, Dataflow, and Structu	ral Modeling,
gate delays, switch-leve	l Modeling, Hierarchal structural modeling.	

Module:3	Implementing Logic using MSI Combinational 4 Hou							
	Logic Blocks							
Multiplexer, DeMultiplexer, Encoder, Decoder, ROM, PAL, PLA.								
Module:4 Verilog Modelling of Sequential Circuits 4 Hours								
Flip-Flops, Shift Registers, Counters, Finite State Machine Modelling.								

Mo	dule	:5		Ve	erificat	ion							3 Hours
-	. •	1	 . •	•	1		T . D	1 1	•	1	1	1	(TICD)

Functional verification, simulation types, Test Bench design, value change dump (VCD) files.

Module:6	Design	6 Hours
Adders and Substractors	Multiplication Digital Signal Processing m	odules: FID and IID

Adders and Substractors, Multiplication Digital Signal Processing modules: FIR and IIR Filters, Bus structures, Synchronous & Asynchronous data transfer, UART baud rate generator, A simple CPU design.

Module:7	Floating point arithmetic circuits	3 Hours
Adders, Subtractors, Multiplie	ers	

Module:8	Contemporary issues:	2 Hours
	Total Lecture hours:	30 Hours
Text Book(s)	·	

- Michael D Ciletti, "Advanced Digital Design with the Verilog HDL" Prentice Hall, 2nd Edition, 2011.
- 2. Samir Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis" Pearson, Second Edition, 2009.

Reference Books

- 1. Stephen Brown & Zvonko Vranesic, "Fundamentals of digital Logic with Verilog Design" TATA Mc Graw Hill Ltd. 3rd Edition 2014.
- 2. Ming-Bo Lin., Digital System Designs and Practices Using Verilog HDL and FPGAs. Wiley, 2008.
- 3. Woods, R., McAllister, J., Yi, Y. and Lightbody, G. FPGA-based implementation of signal processing systems. John Wiley & Sons, 2017.

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar							
Recommended by Board of Studies	05/03/2016						
Approved by Academic Council	40 th AC	Date	18/03/2016				

EEE4020	Embedded System Design					J	C
			2	0	0	4	3
Pre-requisite	EEE4001	Syllabus version		ion			
Anti-requisite	NIL					v.	1.0
G 01 1 11							

- 1. To give an emphasis on the characteristics and hardware architecture of embedded system and real time operating systems.
- 2. To provide essential knowledge on various communication protocols and understanding of Mealy and Moore machines.
- 3. To provide the essential knowledge in the embedded modeling and design of finite state machines.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Understand the characteristics and concepts of embedded system.
- 2. Understand the architecture of hardware embedded system
- 3. Compare the concepts of RTOS with general purpose OS.
- 4. Design hardware components/architecture for embedded system applications.
- 5. Interpret the wired and wireless communication protocols.
- 6. Design state space model using Moore and Mealy technique
- 7. Analyze the embedded system modelling with state transition and FSM.
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 Introduction to Embedded systems: Embedded system Definition Categories Requirements Challenges and issues in

Embedded system- Definition, Categories, Requirements. Challenges and issues in embedded software development, Trends in embedded software development, Applications of embedded systems.

Module:2 Hardware architecture of embedded system: 4 Hours

Processor, Memory, Memory models, Latches and Buffers, crystal, Timers, reset circuit, Watchdog timer, chip select logic circuit, ADC and DAC, Display units, Communication interfaces, Introduction to emulators.

Module:3 Real time operating system (RTOS) with Kernel: 4 Hours

RTOS vs General purpose OS, Kernel Architecture and Functionalities - Task management, Process Scheduling, Resource management (Semaphores and Mutex), Task Synchronization. Embedded software development Life cycle.

Module:4 Serial Bus for embedded systems: 5 Hours

I2C- Features, Arbitration, Bit Transfer Waveform and exceptions. CAN- Layered Architecture of CAN, properties, Data Rates, Frame types. USB- Physical interface, Enumeration process in USB, Types of packets, Types of transfers.

Module:5 Wireless Applications:

4 Hours

3 Hours

Introduction to wireless networking —Basics. Bluetooth — Overview, power levels, Device communication, Base band, Packet format, packet heading, packet types and packet timing. Overview of IEEE 802.15.4 standard feature, Device types and Frame format. ZigBee —

Architecture objectives, Network model, ZigBee stack block diagram, Network layer. ZigBee Vs Bluetooth.

Module:6 Introduction to Moore and Mealy models

4 Hours

Design of a Level to Pulse converter implementing Moore and Mealy FSM- Block diagram, definition of the state, building state transition diagram to state table, Relative trade-offs. State space models of sequential machines- Introduction.

Module:7 Embedded System Modelling:

4 Hours

Finite State Machine (FSM) - Rules for designing FSM, Design examples implementing state and state transition diagram for vending machine, ATM, digital lock.

Module:8	Contemporary issues:	2 Hours
	Total Lecture hours:	30 Hours

Text Book(s)

- 1. David.E. Simon, "An Embedded Software primer", Pearson Education Inc., 2012.
- 2. Tammy Noergaard, "Embedded systems architecture: a comprehensive guide for engineers and programmers" Berlin: Elsevier, 2014.

Reference Books

- 1. Xiacong Fan, "Real-time embedded systems: Design principles and engineering practices", Amsterdam [Netherlands]: Newnes, 2015.
- 2. Frank Vahid and Tony Givargis, "Embedded System Design: A Unified Hardware/Software Approach", Wiley; Student edition, 2010.

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar						
Recommended by Board of Studies	05/03/2016					
Approved by Academic Council	40 th AC	Date	18/03/2016			

syllabus version v. 1.0 tems, CMOS amplifiers and oscillators. og devices. to: fy the issues in sizing of transistors. s configurations. ous applications. circuit applications. and MOS devices. 4 Hours el, long-channel and short channel devices. 7 Hours								
to: fy the issues in sizing of transistors. so configurations. ous applications. circuit applications. def MOS devices. 4 Hours el, long-channel and short channel devices.								
tems, CMOS amplifiers and oscillators. to: fy the issues in sizing of transistors. s configurations. ous applications. circuit applications. ag MOS devices. 4 Hours el, long-channel and short channel devices.								
to: fy the issues in sizing of transistors. s configurations. ous applications. circuit applications. ag MOS devices. 4 Hours el, long-channel and short channel devices.								
to: fy the issues in sizing of transistors. s configurations. ous applications. circuit applications. ag MOS devices. 4 Hours el, long-channel and short channel devices.								
to: fy the issues in sizing of transistors. s configurations. ous applications. circuit applications. ng MOS devices. 4 Hours el, long-channel and short channel devices.								
fy the issues in sizing of transistors. s configurations. ous applications. circuit applications. ng MOS devices. 4 Hours el, long-channel and short channel devices.								
fy the issues in sizing of transistors. s configurations. ous applications. circuit applications. ng MOS devices. 4 Hours el, long-channel and short channel devices.								
fy the issues in sizing of transistors. s configurations. ous applications. circuit applications. ng MOS devices. 4 Hours el, long-channel and short channel devices.								
s configurations. ous applications. circuit applications. ng MOS devices. 4 Hours el, long-channel and short channel devices.								
ous applications. circuit applications. ng MOS devices. 4 Hours el, long-channel and short channel devices.								
el, long-channel and short channel devices.								
ng MOS devices. 4 Hours el, long-channel and short channel devices.								
4 Hours el, long-channel and short channel devices.								
4 Hours el, long-channel and short channel devices.								
el, long-channel and short channel devices.								
el, long-channel and short channel devices.								
7 Hours								
7 Hours								
1 1 1 0 0 11								
d, current source load, Source follower,								
8 Hours								
pair analysis, common mode response,								
of Amplifier.								
F								
5 Hours								
current mirrors- small signal analysis and								
7 Hours								
Op-Amps, Gain Boosting, Noise in Op-Amp.								
7 Hours								
cillators.								
5 II								
Module:7Phase-Locked Loops:5 HoursBasic PLL, Charge-Pump PLLs, Non-ideal effects in PLLs.								
LS.								
)								

1.	Tony	Chan	Carusone	David	A.	Johns	Kenneth	W.	Martin,	"Computer	System
	Archit	ecture"	, John Wile	ey & Soi	ns, Ir	nc, Seco	nd Edition	n, 20	12.		

2. Behzad Razavi, "Design of Analog CMOS integrated circuits", Tata McGraw Hill, Second Edition, 2003.

Reference Books

1. Jacob Baker, "CMOS circuit design", Wiley-IEEE press, Third Edition, 2010

Mode of valuation:	CAT I & II – 30	%, DA I & II –	20%, Quiz –	10%, FAT – 40%
Recommended by Board	05/03/2016			
Approved by Academic Council		40 th AC	Date	18/03/2016

EEE4024	Computer Architecture & Organization			T	P	J	C
			3	0	0	0	3
Pre-requisite	EEE3002	Sy	llał	u	s v	ers	ion
Anti-requisite	NIL					v.	1.0

- 1. To gain an understanding of computer data representation and manipulation.
- 2. To understand the basic organization for data storage and access across various media.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Interpret the data flow between various modules of the computer and data representation in various formats.
- 2. Analyze the performance of processor and their interconnections.
- 3. Perform the various arithmetic tasks and familiarize the various multiplication algorithms.
- 4. Acquaint the knowledge about floating point and decimal arithmetic's.
- 5. Design the various register transfer functions and develop programs for various CPU organizations.
- 6. Realize the various mapping techniques and familiarize the various data transfer mechanism.
- 7. Describe the functionality and issues of parallel and vector processing.

Module:1 Fundamental Concepts

4 Hours

Introduction- Generation of Computer, Computer families and developments, Functional units, Basic operational concepts, Data Representation-Fixed point and Floating point numbers.

Module:2 Introduction to computer architecture

5 Hours

CPU organization by Vou-Newmann model, CPU transistor count-Moore's law, Performance analysis of CPU, Typical Mother board, interconnection of components.

Module:3 | Computer Arithmetic

7 Hours

Fixed-Point Arithmetic, Addition, Subtraction, Multiplication and Division, Combinational and Sequential ALUs, Carry look ahead adder, Robertson algorithm, booth's algorithm, Modified booth's Algorithm.

Module:4 | Floating point and Decimal Arithmetic

3 Hours

Floating Point Arithmetic, Decimal Arithmetic unit-Decimal Arithmetic operations.

Module:5 Introduction to CPU Design

9 Hours

Function of CPU, Register Classification and organization, ALU and control unit, instruction set with examples, addressing modes, stack organization, Register Transfer, Bus and memory transfers, Input - Output and Interrupt. Micro programmed control CPU design.

Module:6 | Memory System Design and I/O Organization

7 Hours

Basic concepts semiconductors, RAM memories, Read-only memories- Cache memory and related mapping- Virtual memories. Introduction to buses and connecting I/O devices to CPU and

memo	memory-Programmed controlled I/O transfer- Interrupt controlled I/O transfer-DMA Controller.									
Module	e:7	Pipeline and Vector Proce	essing		8 Hours					
Introdu	ction t	to pipelining and pipeline ha	azards-design issu	es of pipeline a	rchitecture-Instruction level					
parallel	ism a	nd advanced issues-parallel	processing conce	epts-Vector Pro	ocessing, Array Processors,					
CISC, a	and RI	SC & VLIW.								
Module	e:8	Contemporary issues:			2 Hours					
			Total Lecture ho	ours:	45 Hours					
Text Bo	Text Book(s)									
1.		iam Stallings, "Computer	Organization and	d Architecture	", Prentice Hall, Tenth					
		on, 2016.								
2.		Hamacher, Zvonks Vranesi	ic, SafeaZaky, "C	omputer Orga	nization", McGraw Hill,					
	Fifth	Edition, 2011.								
D C										
Referen	nce Bo	DOKS								
1. Davi	id A.	Patterson & John L. Henr	nessy, "Computer	Architecture:	A Quantitative Approach",					
Elsevie	r, Fiftl	h Edition, 2012.								
Mode o	f valu	ation: CAT I & II -30°	%, DA I & II – 20	%, Quiz – 10%	, FAT – 40%					
Recomi	mende	ed by Board of Studies	05/03/2016							
Approv	ed by	Academic Council	40 th AC	Date	18/03/2016					
					•					

EEE4026	Digital Control Systems	L	T P	J	C
		2	0 0	4	3
Pre-requisite	EEE3001	Sylla	bus v	ersi	ion
Anti-requisite	NIL		•	v.	1.0

- 1. The aim of this course is to understand the discretization of continuous system
- 2. To understand the discrete state space modelling of physical systems and to exploit the properties such as controllability, observability.
- 3. Synthesis the digital controller.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Visualise discrete and continuous system
- 2. Analyze the response of the discrete system.
- 3. Analyze the stability of the discrete system.
- 4. Infer controllability/ observability of a system
- 5. Analyse and design digital PID controllers
- 6. Discuss and analyze State variable methods
- 7. Understand the mechanization of control algorithms
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1Introduction:4 HoursOverview of design approaches, continuous versus digital control, sampling process, Sample and hold device, A/D, D/A conversion. Calculus of difference equations. Z-transform. Pulse transfer functionModule:2Stability Analysis of discrete systems:2 Hours

location of poles, Jury's stability criterion, stability analysis through bilinear transforms.

State equations of discrete data systems – State transition equations – Relationship between state equation and transfer functions - Characteristic equations – Eigen value – Eigen vector.

Module:4 State Space Model Transformation: 4 Hours

Diagonalization of Matrix – Jordan canonical form – Methods of computing state transition matrix – State diagram – Decomposition of discrete data transfer function. Controllability and observability of linier time invariant discrete data systems.

Module:5	Design of Digital Control Systems - Classical	6 Hours
	Method:	
Digital PID	controllers and frequency domain compensation design	on

Digital PID controllers and frequency domain compensation design.

Module:6	Design of Digital	Control Syst	ms –	State	5 Hours
	Feedback Design:				

State variable methods - Pole placement design, Observer design and the discrete linear regulator problem.

Module	e:7	Microprocessor Implementation:	Based	Digital	Contro	ol	3 Hours			
Selection	on of	processors - Mech	anization	of control	algorithm	ns. Ite	erative computation via parallel,			
direct, o	canoni	cal, cascade realizat	tion. Case	e studies.						
Module	e :8	Contemporary is	sues:				2 Hours			
			ŗ	Total Lectu	ire hours	s :	30 Hours			
Text B	ook(s)									
1.	K. O	gata, "Discrete-time	control s	systems", Po	earson, 20	015.				
2.	G. F	. Franklin, J. D. Po	well and	M Workm	an, 'Digi	tal Co	ontrol of Dynamic Systems' PHI			
	(Pear	Pearson), 2008.								
Refere	nce B	ooks								
1.	G. F	Franklin, J. D. Pov	vell and A	A. E. Naein	i, 'Feedb	ack Co	ontrol of Dynamic Systems' PHI			
	(Pear	rson), 2015.								
2.	Loan	D. Landau, Gian	luca Zite	o, 'Digital	Control	Syste	ems, Design, Identification and			
	Impl	ementation' Springe	er, 2007.							
3.	D. It	rahim, 'Micro-conti	roller bas	ed Applied	Digital C	ontrol	' John Wiley & Sons Ltd., 2006			
4.	.M.C	opal, "Digital Conti	rol Engin	eering", Ne	w Age Pı	ıblishe	ers, 2008.			
Mode o	of Eval	luation: CAT / Assig	gnment /	Quiz / FAT	/ Project	/ Sem	inar			
Recom	mende	ed by Board of Studi	es	05/03/2016						
Approv	ed by	Academic Council		40 th AC	Da	ite	18/03/2016			

EEE4027	Robotics and Control	L	T	P J	I C
		2	0	0 4	1 3
Pre-requisite	EEE3001	Sylla	bus	ver	sion
Anti-requisite	NIL			V	·. 1.0

- 1. To develop the student's knowledge in various robot structures and their workspace.
- 2. To develop student's skills in performing spatial transformations associated with rigid body motions & some knowledge and analysis skills associated with trajectory planning.
- 3. To develop student's skills in performing kinematic analysis of robotic systems and some knowledge and skills associated with robot control

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Select different types of sensors and actuators for robotic systems
- 2. Apply spatial transformation to obtain the forward kinematic equation of robot manipulators.
- 3. Analyse forward and inverse kinematics for simple robot manipulators.
- 4. Derive Jacobian matrix and identify singularities.
- 5. Identify the dynamics of the robotic manipulator using Euler Lagrangian approach
- 6. Generate joint trajectories for motion planning.
- 7. Implement the multivariable controller for setpoint tracking and disturbance rejection
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 Introduction 2 Hours

Brief History, Types of robots, Degrees of freedom of robots, Robot configurations and concept of workspace, End effectors and Different types of grippers, vacuum and other methods of gripping. Pneumatic, hydraulic and electrical actuators, applications of robots, specifications of different industrial robots.

Module:2	Rigid	Motion	and	Homogeneous	5 Hours
	transfor	mation			

Position definitions. Coordinate frames. Different orientation descriptions. Free vectors. Translations rotations and relative motion, Composition of rotation, rotation with respect to fixed frame and current frame, parameterisation of rotation, Euler Angele, roll, pitch, yaw, axis/angle representation, Homogeneous transformation

Module:3 Forward Kinematics

Link coordinate frames. Denavit-Hartenberg convention. Assignment, of coordinate frame, Joint and end effector Cartesian space. Calculation of DH parameters and forward kinematic equation of different configuration of manipulator, Planner elbow manipulator, Cylindrical three link, SCARA, Spherical Wrist and other configuration.

Module:4 Velocity Kinematics:

4 Hours

4 Hours

Forward kinematics transformations of position Translational and rotational velocities. Velocity Transformations. Singularity, The Manipulator Jacobian.

Module:5 Robot Dynamics

4 Hours

Lagrangian formulation, general expression for kinetic and potential energy of n-link manipulator, Newton-Euler equations of motion. Derivation of equations of motion for simple cases: two-link manipulators.

Module:6 | Trajectory Planning& Programming

5 Hours

Trajectory planning and avoidance of obstacles. Trajectory for point to point motion, Cubic polynomial trajectory, Quintic polynomial, LSPB(Linear segment with parabolic blend) Minimum

		ry, Trajectories for Paths S ₁	pecified by Via P	oints. R	obot langua	ges, computer control			
and Ro				T		1			
Modul		Independent Joint Control			Hours				
	•	amics, Set point tracking Fed	ed forward contro	l, Drive	Гrain dynam	ics. Introduction to			
force c	ontrol	and multivariable control.							
Modul	e:8	Contemporary issues:				2 Hours			
Text B	ook(s)								
1.	M.W	. Spong, S. Hutchinson, and	d M. Vidyasagar,	Robot N	Modeling and	d Control, Wiley, 2nd			
	revis	e edition, 2012							
2.	J.J. C	J. Craig, Introduction to Robotics: Mechanics and Control, Pearson Education, 4 th Edition,							
	2017								
3.	M.P.	M.P. Groover, et.al., Industrial Robots: Technology, Programming and applications, McGraw							
	Hill,	2 nd indian edition, 2012.							
Refere	ngo P	ooks							
			DC A	1	1. C41	las Edianas Dandas			
1.		ot Manipulators : Modeling		naiysis a	ina Control.	by Etienne Dombre;			
		ama Khalil, Somerset : Wiley			1 11' '	1 . 1 . 1 ond			
2.		Tokhi, A K M Azad,Flexil	ole robot manipul	ator :mo	delling,simu	llation and control 2 nd			
		on, 2017.	1.0			TT 1 1 D 11th			
3.		tava Ghosal.Robotic fundar	mental Concept a	nd Anal	ysis,Oxford	University Press 11 th			
	impr	ression 2015.							
Mode o	of Eva	luation: CAT / Assignment /	Ouiz / FAT / Pro	iect / Sei	minar				
Mode	льча	Tuddon. CAT / Assignment /	QuiZ/17110	jeet / Bei					
Recom	mende	ed by Board of Studies	05/03/2016						
Approv	ed by	Academic Council	40 th AC	Date	18/03/20	16			

Pre-requisite EEE3002	2				
Pre-requisite FFF3002	3	0	2	0	4
11c-requisite EEE5002	Sylla	bu	S V	ers	ion
Anti-requisite NIL				v.	2.0

- 1. To provide an understanding of the digital VLSI concepts, circuit design, principles.
- 2. To provide introduction to architecture and design concepts underlying modern complex VLSI.
- 3. To provide students with the background needed to design, develop, and test digital circuits using VHSIC Hardware Description Language (VHDL) and Verilog HDL.
- 4. To provide the students to design the digital circuits using transistors for complex systems.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Analyze and identify the methodologies for fabricating the ICs.
- 2. Synthesize and design arithmetic circuits using HDL.
- 3. Design logic circuits using CMOS and its equivalent layout for fabrication.
- 4. Analyze the characteristics of CMOS to reduce the delay and power dissipation in logic circuits.
- 5. Identify transistor configurations for better performance in logic circuits.
- 6. Design memory devices using transistors.
- 7. Identify and design arithmetic circuits for various applications.
- 8. Design and Conduct experiments, as well as analyze and interpret data

Module:1 Overview of VLSI Design Methodology 4 Hours

The VLSI design process, Architectural design, logical design, Physical design, layout styles, Full custom, Semi custom approaches.

Module:2 Introduction to Verilog HDL

6 Hours

Introduction Verilog HDL, Gate level, data flow, behavioral modeling, Data types and Operators, Blocking and non-blocking assignment statements. Test benches.

Module:3 Introduction to MOS Devices 6 Hours

Introduction to MOS Transistor Theory: nMOS, pMOS Enhancement Transistor, MOSFET as a Switch, Threshold voltage, MOS Device Design Equations, Body effect, Second order effects. MOS Transistor Circuit Model. Stick Diagram, Layout Design Rules.

Module:4 Circuit Characterization And Performance Estimation 6 Hours

DC Characteristics of CMOS Inverter, Switching Characteristics of CMOS Inverter, Transistor Sizing Analytical Delay model- Rise Time, Fall Time. Gate Delays, RC Delay Models, Logical Effort. Power Dissipation: Static-Dynamic-Short Circuit Power Dissipation

Module:5Combinational logic Circuits6 HoursIntroduction, Static CMOS Design- Complex Logic Gates, Ratioed Logic, Pass-Transistor Logic,
Transmission gate Logic, Dynamic CMOS Logic Design: Dynamic Logic Design Considerations.

Module:6 Sequential Logic Circuits 6 Hours

Speed and Power Dissipation of Dynamic logic, Signal integrity issues, Cascading Dynamic gates.

		(Deem	ed to be University under section 3 of	UGC Act, 1956)			
Sta	tic and D	ynamic Latches and Registe	ers, Timing issues,	pipelining			
	lule:7	Designing arithmetic circ				9 Hours	
		le carry, Carry-Look ahead,					
		Multiplier using Tree based-		da Tree, Booth	Multiplier, Sq	uarer.	
		arithmetic circuits using HD					
Pipe	lined Mu	Iltiplier and Accumulator, F	IR filter design. Ve	rilog Coding for	or arithmetic c	ircuits.	
Mod	lule:8	Contemporary issues:				2 Hours	
			Total Lecture ho	urs:		45 Hours	
List	of Chall	enging Experiments (Indic	cative)				
1.	Four b	it adder using different appr	oaches for delay an	d Area reducti	on	2 Hours	
2.	Four B	t Wallace tree multiplier				2 Hours	
3.	Four b	it dada tree multiplier				2 Hours	
4.	Four bi	t squarer design				2 Hours	
5.	Multiplier and Accumulator design						
6.							
7.	CMOS	switch level implementation	n of Complex Bool	ean functions		2 Hours	
8.	CMOS	switch level implementation	n of adder and subt	ractor		2 Hours	
9.	Implem	entation of Boolean functio	n using various trai	nsistors		2 Hours	
10.	Positive	e and negative edge triggere	d register design			2 Hours	
				Total Labor	ratory Hours	30 hours	
Text	t Book(s						
1		Rabaey, Anantha Chandra bective". Second Edition, Pro		-	grated circuit	s: A design	
2	2. Neil	H.E.Weste, David Money	Harris, "CMOS	VLSI DESIG	N: a circuits	and systems	
	persp	pective", Fourth edition, Pea	rson 2015.			·	
Ref	erence B	ooks					
1	I. Sam	ir Palnitkar, "Verilog HDL"	, Prentice Hall, 201	0.			
2	2. Sung	g-Ma Kong, Yusuf Leblebi	ici and Chulwoo	Kim, "CMOS	digital integra	ated circuits:	
	_	ysis and design", 4th edition					
Mod	le of Eva	luation: CAT I & II – 3	60%, DA I & II – 20	0%, Quiz – 109	%, FAT – 40%		
Reco	ommende	ed by Board of Studies	05/03/2016				
App	roved by	Academic Council	40 th AC	Date	18/03/2016		

EEE4029	Advanced Microcontrollers		L	T	P	J	C
			2	0	0	4	3
Pre-requisite	EEE4001	Sy	llal	ous	ve	rsi	on
Anti-requisite					,	v. 1	1.0

Module:1

Text Book(s)

2009.

- 1. To give an emphasis on the features of ARM Processors & PIC Microcontroller
- 2. To provide essential knowledge on various operating modes, I/O ports,
 - a. Timers/Counters, control register and the various types of interrupts of those microcontroller.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Describe the architecture of ARM processor
- 2. Analyse the Peripherals of ARM processor
- 3. Develop the Program for processor peripherals

Architecture of LPC 21XX

- 4. Apply the knowledge to utilize the ARM processor for real time applications
- 5. Comprehend the architecture of PIC18FXX microcontroller
- 6. Develop the program for PIC18FXX microcontroller
- 7. Utilize the MPLAB software to simulate PIC18FXX microcontroller programs
- 8. Design a component or a product applying all the relevant standards with realistic constraints

3 Hours

	111 0111 00 00 01 01 01 01 01 01 01 01 0	0 110 011 2		
Features, ove	erview of LPC 21XX architecture, Various registers o	f 21XX, ports of LPC 21XX.		
Module:2	Functional Blocks of LPC 21XX	4 Hours		
Timers, ADC	C and DAC, Serial communication and Interrupt.			
Module:3	Programming of LPC21XX Functional Blocks	6 Hours		
Programming of LPC 21XX: GPIO, Timer, ADC, DAC, UART and Interrupt.				
Module:4	Case Studies	3 Hours		
FAN speed c	ontrol using temperature sensor, generation of delay,	multitasking using interrupt.		
Module:5	Architecture of PIC 18FXX	3 Hours		
Microcontroller Architecture—PIC18F Family, Programming Model and Its registers.				
Module:6	Instruction Set & Functional Blocks of PIC	6 Hours		
	18FXX			
Data Transf	er, Arithmetic, and Branch Instructions, Introduction	n to Logic, Bit Manipulation, and		
Multiply-Divide Operations, Stack and Subroutines. Input/output (I/O) Ports, Interrupts and				
Timers.				
Module:7	Application Programs	3 Hours		
MPLAB intro	oduction, solving real time problems using PIC 18FX	X		
Module:8	Contemporary issues:	2 Hours		
	Total Lecture hours:	30 Hours		

B.TECH (EIE) Page 142

Andrew N Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide: Designing and Optimizing System Software", Morgan Kaufmann Publishers, 1st edition,

2.	Muhammad Ali Mazidi , Rolin D. McKinlay, Danny Causey, "PIC Microcontroller and				
	Embedded Systems Using Assembly and C for PIC 18", Prentice Hall, 2 nd Edition, 2009.				
Referen	Reference Books				
1.	David Seal, "ARM Architecture Reference Manual", Addison Wesley, 2 nd Edition, 2007				
2.	Peatman, "Designing with PIC Microcontroller", Pearson Education, 1 st Edition, 2011.				
3.	P.V Guruprasad, "Arm Architecture System on Chip and More", Apress, 2013.				
4.	4. http://www.nxp.com/documents/user_manual/UM10114.pdf.				
Mode of Evaluation: CAT I & II – 30%, DA I & II – 20%, Quiz – 10%,			%, FAT – 40%		
Recomi	Recommended by Board of Studies 05/03/2016				
Approv	Approved by Academic Council		40 th AC	Date	18/03/2016

EEE4030	EEE4030 System on Chip Design		,	T	P	J	\mathbf{C}
		3		0	0	4	4
Pre-requisite	NIL	S	yl	la	bu	S V	ersion
Anti-requisite	site NIL v. 2.1				v. 2.1		
Course Objective	es:						
1. To provide	an overview on the present day design technology for System	n-On-Cl	nip)			
2. To understand how various domains integrate with each other such as hardware and software.							

To understand how various domains integrate with each other such as hardware and software analogue and digital constructions.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Understand the basics of SoC.
- 2. Solve the design issues in processors
- 3. Interpret the complex SoC system.
- 4. Develop the RTL coding for SoC designs.
- 5. Design and verify the various configurations of SoC system.
- 6. Acquire the knowledge of physical design flow.
- 7. Analyze the various routing issues in SoCs.
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1	Introduction to SoCs	3 Hours		
Technology	trends, design challenges, Overview of SoC Design	Flow.		
Module:2	SoC Design	7 Hours		

Hardware System Structure, Software structure, Semiconductor Economics, Major issues in SoC Design. Design for Integration. Accelerating Processor for traditional software task. System design multiple processors.

Module:3 System Level Design 5 Hours

Complex SoC system architecture, Processor centric SoC organization, Communication Design – Hardware and Software interconnects, Non-processor building block in SoC design.

Module:4 RTL Synthesis 8 Hours

Review of Verilog - RTL Coding and RTL Synthesis RTL coding guidelines, Synthesizable coding style, FSM Coding style, Memory Modeling.

Module:5 SoC Verification	10 Hours
---------------------------	----------

Verification technology options, Verification methodology. System level verification, block-level verification. Timing verification.

Module:6	Physical Design	7 Hours
----------	-----------------	---------

Partitioning, Floor Planning, Placement, Routing, Goals of routing - Global routing - Maze routing, Detailed routing, Over the Cell Routing, Physical verification and design sign-off.

Module:7	Routing	3 Hours			
Clock routing	Clock routing, Power and Ground routing, Clock tree synthesis.				
Module:8	Contemporary issues:	2 Hours			

			Total Lec	ture hours:		45 Hours	
Text B	ook(s)						
1.	Chri	s Rowen, "Engineering tl	he Complex	x SOC: Fast,	Flexible Design with	Configurable	
	Proc	essors", Pearson, 2004.					
2.	Rocl	nit Rajsuman, 'System-on-a	a-Chip: Des	sign and Test	', Artech House, 2006.		
Refere	ence B	ooks					
1.	Prak	ash Rashinkar, Peter Paters	son, Leena	Singh, "Syste	m on a chip verification	n: Methodology	
	and	Verification", Kluwer Acad	demic Publi	ishers, 2013	_		
2.	Hima	anshu Bhatnagar, "Advance	ed ASIC Cl	nip Synthesis'	", Kluwer Academic Po	ublishers, 2nd	
	Editi	on, 2002.					
3.	Rao	Tummala, Madhavan Swai	minathan, '	'Introduction	to System-On-Package	e:	
	Min	iaturization of the entire sys	stem", McC	Graw-Hill, 1st	Edition, 2008.		
Mode	Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar						
			1				
Recom	mende	ed by Board of Studies	05/03/201	16			
Approv	Approved by Academic Council 40 th AC Date: 18/03/2016					18/03/2016	

EEE4034	Wireless Sensor Networks	L	T	P	J	C
		3	0	0	4	4
Pre-requisite	Pre-requisite EEE4021 Sy				ers	ion
Anti-requisite NIL					v.	1.0
G 014 4						

Course Objectives:

- 1. To explore the basic fundamentals in wireless sensor technology.
- 2. To expose the students to the recent advances in various wireless networks.
- 3. To discover various routing mechanism and the storage requirement for networking of sensors.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Understand the fundamentals and basic features of wireless sensor networks.
- 2. Analyze the localization and tracking techniques of wireless sensor networks
- 3. Acquire the knowledge about Medium access and sleep based control strategies for wireless channels
- 4. Realize the various routing protocols, energy minimization and security issues in sensor networks.
- 5. Understand the fundamentals of sensor tasking and control
- 6. Discuss the data storage management, retrieval and solve security challenges
- 7. Know the importance of wireless sensors security and reliability
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 Introduction: 8 Hours

Basic sensor network architectural elements, Advantages of Sensor Networks, Applications - Technological Trends- Storage, search and Retrieval - Network Deployment - Structured versus randomized deployment - Network topology- Connectivity in geometric random graphs - Connectivity using power control-Coverage metrics- Mobile deployment

Module:2 Localization and Tracking: 6 Hours

Localization and Tracking – Localization approaches -Network-wide localization - Theoretical analysis of localization techniques-Tracking Methods

Module:3	Medium Access and Sleep Based Topology	6 Hours
	Control:	

Medium Access and Sleep Based Topology Control - Contention-Free Medium Access -Contention-Based Medium Access -Wireless MAC Protocols - Characteristics of MAC Protocols in Sensor Networks -Hybrid MAC Protocols-Sleep based topology control

Module:4 Routing: 7 Hours

Routing-Energy aware routing – Unicast geographic routing, routing on a curve, energy minimizing broadcast, energy aware routing to a region, Attribute based routing – directed diffusion, rumor routing, geographic hash tables.

Module:5 Sensor Tasking and Control: 5 Hours

Sensor Tasking and Control – Task driven sensing, roles of sensor nodes and utilities, information based sensor tasking – IDSQ, cluster leader based protocol, sensor tasking in tracking relations, joint routing and information aggregation – multi step information directed routing, sensor group

		(Deems	ed to be University under section 3 o	f UGC Act, 1950	6)	
manage	ement.					
Module	e:6	Data-centric networking:			5 Hours	
			_	with compression - Querying -		
Data-c	entric	storage and retrieval- Th	e database perspe	ective of	n sensor networks-sensor group	
manag	gemen	t.				
Module		Transport reliability and			5 Hours	
					parameters- Reliability guarantees	
-Securi	ty Att	acks in Sensor Networks - P	rotocols and Mech	nanisms	for Security- Case Studies.	
Module	e:8	Contemporary issues:			2 Hours	
			Total Lecture ho	ours:	45 Hours	
Text B	ook(s					
1.	Bha	skarKrishnamachari, "Netw	orking Wireless S	Sensors'	', Cambridge University Press,	
	201					
2.		Fuat Akyildiz, "Wireless sen	isor networks", Ch	ichester	[u.a.] : Wiley, 2011.	
Refere	nce B	ooks				
1.		•	,		Sensor Networks: Technology,	
	Prot	ocols, and Applications' Joh	n wiley& sons, 20	07.		
2.	Feng	g Zhao, Leonidas. J.Guil	oas, 'Wireless S	ensor	Networks', Morgan Kaufamann	
	Publ	ishers, 2008.				
3.	Ivan	Stojmenovi, 'Handbook of	Sensor Networks:	Algorit	thms and Architectures', Hoboken:	
	John Wiley & Sons, 2005.					
4.	4. Raghavendra, C. S., Sivalingam, Krishna M., Znati, Taie, Wireless Sensor Networks,					
Kluwer Academic publishers, 2007.						
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar						
Recomi	Recommended by Board of Studies 05/03/2016					
	Approved by Academic Council 40 th AC Date 18/03/2016				18/03/2016	
1.1						

			ed to be University under section 3 of			
EEE40	35		Virtual Instrumen	tation		L T P J C
						0 0 2 4 2
Pre-rec		EEE4021				Syllabus version
Anti-re	_	NIL				v. 1.0
	Objectives:					
		ng Virtual Instrument				
		Virtual Instruments for				
		ligital measurement	principles			
4.	Data Acquisi	tion operation				
Evnect	ed Course O	lutcome:				
		f this course the stud	ent will be able to:			
	1	analog and digital sig		devices		
	=	analog and digital sign aponent or a product	=		dards with re	palietic constraints
2.	Design a con	inponent of a product	apprying an the re-	C vant stan	dards with re	ansie constraints
List of	Challenging	Experiments (Indicate)	cative)			
1	Basic	arithmetic and boole	an operations.			
2	Progra	am using SUBVI con	cept.			
3	Wave	forms & Graphs				
4	Iterati	ve data processing us	sing (FOR,WHILE	Loops, Fo	rmula Node.)
5	Case S	Structures.				
6	Introd	luction to various too	ol boxes			
7	Array	and string operations	S.			
8		g signals interfacing				
9	Digita	l signals interfacing	using DAQ.			
10	NI EL	VIS.				
Text Bo	ook(s)					
1.	Robert H	Bishop, "LabVIEW"	', Pearson,2016.			
Referen	nce Books					
1	Garv W. J	ohnson, Richard Jen	ning, "LabVIEW C	raphical P	rogramming	", 4th /e, Tata
_	_	Hill, New York, 2006	•	r	<i>6B</i>	, ,
2.				1 in at-	mts 2012	
	Ladviev	W. Core 3, Exercises	-manual by Nationa	ai instrume	mts,2013.	
3.	Ronald W Larsen, "LabVIEW for Engineers, Prentice Hall, 2011.					
4.	4. S Sumathi, "LabVIEW based advanced instrumentation systems", Springer, 2007.					
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar						
Recomi	nended by B	oard of Studies	05/03/2016			
	ed by Acade		40 th AC	Date	18/03/2016	- -
-r r,			1 10 110		10,00,2010	

EEE4037 Rapid Prototyping with FPGAs L T						L	T	PJ	C	
						0	0	4 0	2	
Pre-req	uisite	NIL				Syllabus vei				
Anti-re	quisite							V	1.0	
Course	Objectives:									
-		rse exposes students				and tes	t of	f a v	vide	
		f prototype electric ar							_	
		ing design by app				ivity a	ınd	mod	iern	
	computa	tional tools to the syn	tnesis of a simple of	component	or system.					
Expecte	ed Course O	outcome:								
On the o	completion of	of this course the stude	ent will be able to:							
1. 1	Design and O	Conduct experiments,	as well as analyze	and interp	ret data					
Tiet of	E									
List of 1	Experiment	s nulator design in Ver	iloa							
2		design in Verilog	nog							
3		programming- Adder	Subtractor Multpl	lever Dem	ultinlever					
4		converter	, Subtractor, wramp	icaci, Delli	utipiexei					
5		register/Universal ship	ft register							
6		unter/Downcounters	it register							
7	FIR fi									
8		multiplier								
		Prototyping of F	Power Electronics	Convert	ers for Ph	otovolt	aic	Sys	tem	
9	-	Application Using Xilinx System Generator								
10		n Principles for Rapic		es Sensors	Using 3-D P	rinting				
11	Rapid	Control Prototypin	g of Active Vib	oration Co	ntrol Syster	ns in	Au	tomo	tive	
11	Applie	cations								
12	I -	Prototyping of a Lo	ow-Cost Solar Arr	ay Simula	tor Using ar	n Off-tl	ne-S	helf	DC	
12		Power Supply								
13	Rapid	Prototyping of Minia	ture Capsule Robo	ots						
			Total I	aboratory	y Hours		(60 ho	ours	
Referen	nce Books									
1. Chee Kai Chua, Kah Fai Leong, Chu Sing Lim Rapid Prototyping: Principles					oles	and				
_	Applications ,3rd Edition, Kindle Edition									
2. Miltiadis Boboulas, CAD-CAM & Rapid prototyping Application Evaluation, Bookboon										
3.	3. R. C. Cofer Benjamin Harding, Rapid System Prototyping with FPGAs									
Recommended by Board of Studies 10-05-2017										
	Approved by Academic Council 53 th AC Date 13-12-2018									

		d to be University under section 3 of			-	1 1 1		
EEE4038	Testin	ng and Calibration	on Systems	S	L	TPJ	C	
					0	0 2 0	1	
Pre-requisite	EEE4021/EEE2004	l			Sylla	abus vers		
Anti-requisite	NIL					V.	1.0	
	Course Objectives:							
1. To explore	e the basic concepts a	nd terminology of	testing and	d calibration	system	ıs.		
Expected Course O	outcome:							
On the completion o	f this course the stude	ent will be able to:						
1. Design a	and Conduct experime	ents, as well as ana	alyze and in	nterpret data				
List of Experiment	<u> </u>							
1 Perform	a comparative exper					uge Usin	ıg a	
an experi	the errors and estim imental study on calib	oration of pressure	gauge to o	vercome the	same.			
estimation	an experimental strong of uncertainties dur	ring flow measurer	ment.					
	uncertainty calculation multifunctional c	_						
wattmete	a verification and er. Perform uncertaint	y calculations for	the same					
kettle be	re and calibrate the g tween 25°C to 250°C.	. Perform uncertai	nty analysi	s.				
' temperat	a calibration and u ure of a system betwe	en 25°C to 150°C	•					
^	a verification and va- ment uncertainty for t		rometer fo	or measuring	humic	lity. Perf	orm	
	an experiment for RT							
10 Conduct	an experiment for tor	que transducer cal	ibration an	nd check the	errors			
		Tota	al Laborat	tory Hours		30 ho	ours	
Reference Books								
1. Calibration	Handbook of Measu	ring Instruments b	y Alessand	dro Brunelli,	Ist Edi	tion,ISA.		
2.ction to Mea	suration and Calibrati	on by Paul.D.Q. C	Campbell Ir	ndustrial Pres	ss Inc			
3. Sensors and Signal Conditioning by Ramon Pallas-Areny/John.G.Webster , Second Edition, Wiley India.								
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar								
Recommended by B	oard of Studies	13-10-2018						
Approved by Acade	mic Council	53 rd AC	Date	13-12-2018	3			

MEE1006	Applied Mechanics and Thermal E	LTPJC			
			2 0 2 0 3		
Pre-requisite	NIL	`Syllabus version			
		2.1			

Course Objectives:

- 1. To make the students to understand the principles of solid mechanics.
- 2. To make the students to understand the basic concepts of mechanical vibrations.
- 3. To familiarize the students with the properties of fluids and the applications of fluid mechanics.
- 4. To make the students to understand the principles of thermodynamics and to get broad knowledge in its applications.
- 5. To provide the students a gist of the theory behind the refrigeration and air conditioning system.
- 6. To make the students to understand the principles of heat transfer.

Expected Course Outcome:

Student will be able to

- 1. Evaluate the allowable loads and associated allowable stresses before mechanical failure in different types of structures.
- 2. Assess the vibrations associated with various mechanical systems.
- 3. Apply the fundamental laws of thermodynamics for the analysis of wide range of thermodynamic systems.
- 4. Explain basic concepts of fluid mechanics and their applications.
- 5. Demonstrate and analyze various refrigeration and air conditioning systems.
- 6. Evaluate heat transfer through different modes.

Module 1 Solid Mechanics 5 hour

Concept of stress and strain-Normal and shear stress -relationship between stress and strain-Elasticity- poisson's ratio-shear force and bending moment diagrams for simply supported, cantilever and overhanging beams - Analysis of forces in truss members

Module 2 | Mechanical Vibrations

5 hour

Single degree of freedom systems- Un-damped and damped- Natural frequency- transverse vibration of shafts- critical speed by Rayleigh's and Dunkerley's method. Forced vibration-Harmonic excitation-Magnification factor- Vibration isolation-Torsional vibration-Holzer's analysis.

Module 3 | Fluid Mechanics

4 hour

Properties of fluid- Uniform and steady flow- Euler's and Bernoulli's Equations- pressure losses along the flow. Flow measurement- Venturi meter and Orifice meters, Pipes in series and parallel. Introduction to Turbines and pumps - classification of turbines - specific speed and speed governance. Classification of pumps- characteristics and efficiency.

Module 4 Thermodynamic systems

3 hour

Basic concepts of Thermodynamics - First law of thermodynamics - Second law of thermodynamics - applications. Working Principle of four stroke and two stroke engines - Open and closed cycle gas turbines

Module 5 | Steam Boilers and Turbines

3 hour

Formation of steam - Thermal power plant - Boilers - Modern features of high-pressure boilers -

Vellore Institute of Technology (Deemed to be University under section 3 of UGC Act, 1956)							
Mour	ntings a	nd accessories - S	team turbines: Im	pulse and	reaction	on principle.	
Modu	ule 6	Compressors, conditioning	Refrigeration	and	Air		5 hour
		ssors- Principle o					al flow compressors -
			s and comparison.				
Modi	ule 7	Heat Transfer					3 hour
		s of heat transfe	r-conduction, con	vection a	nd rad	iation - Free o	convection and forced
conve	ection -	Applications like	cooling of electro	onic comp	onents	, electric moto	r and transformers
							2 hour
Modu	ule 8	Cont	emporary Discus	sion			2 nour
			Total hours			30 hour	
			[Lecture to be v of 2 lectures by in			e of physical	cut section models to
		periments					
		of Engineering S	Stress / Strain Dia	gram on S	Steel ro	d, Thin and Tv	visted Bars under
tensic			C . 11 1				
	-		, Concrete blocks.			~ 4 ~	
			udinal vibration of vibration frequence		•		
			equivalent spring	•	_	or system	
	_		alent spring mass	_	ottiii		
	-	igh Venturimeter		system			
		igh Orifice Meter					
		on of Bernoulli's					
			nditioning system				
			r compression ref		syster	n	
		sfer in natural/for	_		•		
13. H	eat tran	sfer through a co	mposite wall.				
Mode	e of Eva	luation				sessment inclu Juizzes, FAT	des CAT I, CAT II,
	Book(s						
1.	R.K. R	ajput, (2010), The	ermal Engineering	, Lakshm	i Publi	cations	
Reference Books							
1.							
Wesley, New Delhi, 1999.							
2.	2. B.K. Sarkar, 'Thermal Enginerring', Tata McGraw Hill, New Delhi, 1998.						
3.							
4.	P.K. Nag, 'Heat Transfer', Tata McGraw Hill 2002.						

5.	R.K. Rajput, (2006), Strength of materials (Mechanics of solids), S. Chand & Company Ltd.							
6.	P.K. Nag, 'Basic and Applied Engineering Thern Delhi,2010.	modynamics', Tata McGraw Hill, New						
7.	B.K. Sachdeva, 'Fundamentals of Engineering Heat and Mass Transfer (SI Units)', New Age International (P) Limited (2009).							
8.	C.P. Arora 'Refrigeration and Air Conditioning', Tata	a McGraw Hill (2001).						
	Recommended by Board of Studies	17.08.2017						
	Approved by Academic Council No. 47 th AC	Date 05.10.2017						

ECE3501	IoT Fundamentals	L	T	P	J	C
	Job Role: SSC/Q8210	2	0	2	4	4
Pre-requisite	NIL	S	yllab	us v	vers	ion
					v.	1.0

Course Objectives:

- 1. To impart knowledge on the infrastructure, sensor technologies and networking technologies of IoT.
- 2. To analyse, design and develop IoT solutions.
- 3. To explore the entrepreneurial aspect of the Internet of Things
- 4. To apply the concept of Internet of Things in the real world scenarios

Expected Course Outcome:

After successfully completing the course the student should be able to

- 1. Identify the main component of IoT
- 2. Program the controller and sensor as part of IoT
- 3. Assess different Internet of Things technologies and their applications

Module:1	Introduction:	2
		hour
IT-ITeS/BPM In	ndustry – An Introduction, the relevance of the IT-ITeS sector	r, Future Skills –
An Introduction	n, General overview of the Future Skills sub-sector	
Module:2	Internet of Things - An Introduction:	3 hours
Evolution of Io	Γ and the trends, Impact of IoT on businesses and society, Ex	isting IoT use cases
and applications	s across industries.	<u> </u>
Module:3	IoT Security and Privacy:	6 hours
	vacy risks, analyze security risks, Technologies and methods y standards and regulations, Social and privacy impacts	that mitigate
Module:4	IoT Solutions	6 hours
IoT use case de	velopment, Need and Goals for IoT solution, Adoption of IoT	Solutions,
Planning for Io	1 '	,
Solution: Evalu	ate costs, competition, technology challenges and internal res	ource
considerations,	Need for stakeholder buy-in	
Module:5	Prototyping the Pilot execution:	5 hours
	oping Stages, deploy real-time UI/UX visualizations, Method	
analyze and con	vey business outcomes, feedback and data obtained from exe	ecution.

Module:6	Scalability of IoT	Solutions:	5 hours			
Roadmap for de	veloping complete IoT	solutions, Strategies for imple	ementation, key Milestone,			
Scalability of Io	T Solutions, Methods, 1	platforms and tools. Web and	Mobile Interfaces			
Module:7		Build and Maintain Relationships at the Workplace, Team Empowerment				
	Total Lecture h	ours:	30 hours			
Text Book(s)			1			
-	Bahga, Vijay Madisetti Press, 2015.	, "Internet of Things: A hands	s-on Approach",			
		nally, "Designing the Internet	of Things", Wiley, Nov			
2013, (1 s	· · · · · · · · · · · · · · · · · · ·					
	Connected Products: U	nan, Martin Charlier, Ann Lig JX for the consumer internet o				
Reference Bool	KS					
Francis da	Costa, Apress, 2014	A Scalable Approach to Con				
		eter Waher, Packt Publishing,				
Designing Private Li	•	by Adrian Mcewen, Hakin Ca	assimally, Wiley India			
4. Cloud Co.	mputing, Thomas Erl, I	Pearson Education, 2014				
	ns of Modern Network Addison-Wesley Profe	ing: SDN, NFV, QoE, IoT, and ssional; 1 edition	d Cloud, William			
	lcindia.org/sites/default n%20Specialist_09.04.	/files/MC_SSCQ8210_V1.0_I 2019.pdf	О			
List of Experin	nents					
1. Measure 2. Control	the light intensity in the your home power outleweb based application to	e room and output data to the from anywhere using raspber automate door that unlocks in	ry pi.			
4. Drinking web app		analytics, consists of IoT device	ce, cloud, and mobile and			
5. Smart Parking System						
6. IoT based Healthcare application						
7. Real-time environmental monitoring and weather prediction						
8. Traffic pattern prediction9. Smart Street light						
	alth monitoring					
, = - 		Total Labor	ratory Hours 30 hours			
Recommended b	by Board of Studies		<u> </u>			
	cademic Council	Date				
	·					

Job Role: SSC/Q8210 2 0 2 4 4 Pre-requisite Syllabus version	ECE3502	(Deemed to be University under section 3 of UGC Act, 1956) IoT Domain Analyst	L T PJC			
Pre-requisite Syllabus version V.1.1 Course Objectives: 1. To impart knowledge on the infrastructure, sensor technologies and networking technologie of loT. 2. To analyse, design and develop IoT solutions. 3. To explore the entrepreneurial aspect of the Internet of Things 4. To apply the concept of Internet of Things in the real world scenarios Expected Course Outcome: After successfully completing the course the student should be able to 1. Identify the main component of IoT 2. Program the controller and sensor as part of IoT 3. Assess different Internet of Things technologies and their applications Module:1 IoT Solution Models: Models applied in IoT solutions, Semantic models for data models, Application of semantic models, information models, information models to structure data, relationships between data categories. Module:2 Data Models: 3 hours Tags to organize data, tag data to pre-process large datasets, predictive models for forecasting, Application of predictive models. Module:3 Simulation Scenarios: 4 hours Models to simulate real-world scenarios, Application of the models, stages of data lifecycle, reuse existing IoT solutions, reusability plan. Module:4 Use Case Development Approaches to gather business requirements, defining problem statements, business requirement for use case development, Assets for development of IoT solutions. Module:5 Value engineering and Analysis; Frameworks for Value Engineering in IoT solutions, cost-function analysis of IoT solution components, action plans to incorporate Use Engineering, Data modelling requirements, Development models: Waterfall, Agile Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model. Module:6 Data Analytics for IoT Solutions: 6 hours Data generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis. Module:7 Deployment of Analytics Solutions Anomaly Detection and Data Clustering, Predictive Analytics a	ECE3302					
Course Objectives: 1. To impart knowledge on the infrastructure, sensor technologies and networking technologie of IoT. 2. To analyse, design and develop IoT solutions. 3. To explore the entrepreneurial aspect of the Internet of Things 4. To apply the concept of Internet of Things in the real world scenarios Expected Course Outcome: After successfully completing the course the student should be able to 1. Identify the main component of IoT 2. Program the controller and sensor as part of IoT 3. Assess different Internet of Things technologies and their applications Module:1	Pre-requisite	•	_ - - -			
Course Objectives: 1. To impart knowledge on the infrastructure, sensor technologies and networking technologie of IoT. 2. To analyse, design and develop IoT solutions. 3. To explore the entrepreneurial aspect of the Internet of Things 4. To apply the concept of Internet of Things in the real world scenarios	re-requisite		v.1.0			
of IoT. 2. To analyse, design and develop IoT solutions. 3. To explore the entrepreneurial aspect of the Internet of Things 4. To apply the concept of Internet of Things in the real world scenarios Expected Course Outcome: After successfully completing the course the student should be able to 1. Identify the main component of IoT 2. Program the controller and sensor as part of IoT 3. Assess different Internet of Things technologies and their applications Module:1	Course Objectives	5:	,,,,,			
2. To analyse, design and develop IoT solutions. 3. To explore the entrepreneurial aspect of the Internet of Things 4. To apply the concept of Internet of Things in the real world scenarios Expected Course Outcome: After successfully completing the course the student should be able to 1. Identify the main component of IoT 2. Program the controller and sensor as part of IoT 3. Assess different Internet of Things technologies and their applications Module:1	1. To impart know	rledge on the infrastructure, sensor technologies and netwo	vorking technologies			
3. To explore the entrepreneurial aspect of the Internet of Things 4. To apply the concept of Internet of Things in the real world scenarios Expected Course Outcome: After successfully completing the course the student should be able to 1. Identify the main component of IoT 2. Program the controller and sensor as part of IoT 3. Assess different Internet of Things technologies and their applications Module:1	of IoT.					
Expected Course Outcome: After successfully completing the course the student should be able to 1. Identify the main component of IoT 2. Program the controller and sensor as part of IoT 3. Assess different Internet of Things technologies and their applications Module:1						
Expected Course Outcome: After successfully completing the course the student should be able to 1. Identify the main component of IoT 2. Program the controller and sensor as part of IoT 3. Assess different Internet of Things technologies and their applications Module:1						
After successfully completing the course the student should be able to 1. Identify the main component of IoT 2. Program the controller and sensor as part of IoT 3. Assess different Internet of Things technologies and their applications Module:1	4. To apply the co	ncept of Internet of Things in the real world scenarios				
After successfully completing the course the student should be able to 1. Identify the main component of IoT 2. Program the controller and sensor as part of IoT 3. Assess different Internet of Things technologies and their applications Module:1	Expected Course	Outcomo				
1. Identify the main component of IoT 2. Program the controller and sensor as part of IoT 3. Assess different Internet of Things technologies and their applications Module:1	_					
2. Program the controller and sensor as part of IoT 3. Assess different Internet of Things technologies and their applications Module:1						
Module:1 IoT Solution Models: Module:1 IoT Solution Models: Models applied in IoT solutions, Semantic models for data models, Application of semantic models, information models, information models to structure data, relationships between data categories. Module:2 Data Models: Tags to organize data, tag data to pre-process large datasets, predictive models for forecasting, Application of predictive models. Module:3 Simulation Scenarios: Models to simulate real-world scenarios, Application of the models, stages of data lifecycle, reuse existing IoT solutions, reusability plan. Module:4 Use Case Development Approaches to gather business requirements, defining problem statements, business requirement for use case development, Assets for development of IoT solutions. Module:5 Value engineering and Analysis: Principles and phases of Value Engineering and Analysis, Frameworks for Value Engineering in IoT solutions, cost-function analysis of IoT solution components, action plans to incorporate Value Engineering, Data modelling requirements, Development models: Waterfall, Agile Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model. Module:6 Data Analytics for IoT Solutions: Obelia Analytics for IoT Solutions: Obelia Analytics for IoT Solutions: Obelia Analytics for IoT Solutions Module:7 Deployment of Analytics Solutions Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.						
Models applied in IoT solutions, Semantic models for data models, Application of semantic models, information models, information models to structure data, relationships between data categories. Module:2 Data Models: Tags to organize data, tag data to pre-process large datasets, predictive models for forecasting, Application of predictive models. Module:3 Simulation Scenarios: Models to simulate real-world scenarios, Application of the models, stages of data lifecycle, reuse existing IoT solutions, reusability plan. Module:4 Use Case Development Approaches to gather business requirements, defining problem statements, business requirement for use case development, Assets for development of IoT solutions. Module:5 Value engineering and Analysis: 4 hours Principles and phases of Value Engineering and Analysis, Frameworks for Value Engineering in IoT solutions, cost-function analysis of IoT solution components, action plans to incorporate Value Engineering, Data modelling requirements, Development models: Waterfall, Agile Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model. Module:6 Data Analytics for IoT Solutions: 6 hours Data generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis. Module:7 Deployment of Analytics Solutions Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.			3			
Models applied in IoT solutions, Semantic models for data models, Application of semantic models, information models, information models to structure data, relationships between data categories. Module:2 Data Models: Tags to organize data, tag data to pre-process large datasets, predictive models for forecasting, Application of predictive models. Module:3 Simulation Scenarios: Models to simulate real-world scenarios, Application of the models, stages of data lifecycle, reuse existing IoT solutions, reusability plan. Module:4 Use Case Development Approaches to gather business requirements, defining problem statements, business requirement for use case development, Assets for development of IoT solutions. Module:5 Value engineering and Analysis: 4 hours Principles and phases of Value Engineering and Analysis, Frameworks for Value Engineering in IoT solutions, cost-function analysis of IoT solution components, action plans to incorporate Value Engineering, Data modelling requirements, Development models: Waterfall, Agile Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model. Module:6 Data Analytics for IoT Solutions: 6 hours Data generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis. Module:7 Deployment of Analytics Solutions Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.						
models, information models, information models to structure data, relationships between data categories. Module:2 Data Models: 3 hours Tags to organize data, tag data to pre-process large datasets, predictive models for forecasting, Application of predictive models. Module:3 Simulation Scenarios: 4 hours Models to simulate real-world scenarios, Application of the models, stages of data lifecycle, reuse existing IoT solutions, reusability plan. Module:4 Use Case Development 4 hours Approaches to gather business requirements, defining problem statements, business requirement for use case development, Assets for development of IoT solutions. Module:5 Value engineering and Analysis: 4 hours Principles and phases of Value Engineering and Analysis, Frameworks for Value Engineering in IoT solutions, cost-function analysis of IoT solution components, action plans to incorporate Value Engineering, Data modelling requirements, Development models: Waterfall, Agile Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model. Module:6 Data Analytics for IoT Solutions: 6 hours Data generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis. Module:7 Deployment of Analytics Solutions 6 hours Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.	Module:1	IoT Solution Models:	3 hour			
models, information models, information models to structure data, relationships between data categories. Module:2 Data Models: 3 hours Tags to organize data, tag data to pre-process large datasets, predictive models for forecasting, Application of predictive models. Module:3 Simulation Scenarios: 4 hours Models to simulate real-world scenarios, Application of the models, stages of data lifecycle, reuse existing IoT solutions, reusability plan. Module:4 Use Case Development 4 hours Approaches to gather business requirements, defining problem statements, business requirement for use case development, Assets for development of IoT solutions. Module:5 Value engineering and Analysis: 4 hours Principles and phases of Value Engineering and Analysis, Frameworks for Value Engineering in IoT solutions, cost-function analysis of IoT solution components, action plans to incorporate Value Engineering, Data modelling requirements, Development models: Waterfall, Agile Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model. Module:6 Data Analytics for IoT Solutions: 6 hours Data generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis. Module:7 Deployment of Analytics Solutions 6 hours Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.	Models applied in	 IoT solutions	ion of semantic			
Tags to organize data, tag data to pre-process large datasets, predictive models for forecasting, Application of predictive models. Module:3 Simulation Scenarios: 4 hours Models to simulate real-world scenarios, Application of the models, stages of data lifecycle, reuse existing IoT solutions, reusability plan. Module:4 Use Case Development 4 hours Approaches to gather business requirements, defining problem statements, business requirement for use case development, Assets for development of IoT solutions. Module:5 Value engineering and Analysis: 4 hours Principles and phases of Value Engineering and Analysis, Frameworks for Value Engineering in IoT solutions, cost-function analysis of IoT solution components, action plans to incorporate Value Engineering, Data modelling requirements, Development models: Waterfall, Agile Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model. Module:6 Data Analytics for IoT Solutions: 6 hours Data generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis. Module:7 Deployment of Analytics Solutions 6 hours Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.						
Tags to organize data, tag data to pre-process large datasets, predictive models for forecasting, Application of predictive models. Module:3 Simulation Scenarios: 4 hours Models to simulate real-world scenarios, Application of the models, stages of data lifecycle, reuse existing IoT solutions, reusability plan. Module:4 Use Case Development 4 hours Approaches to gather business requirements, defining problem statements, business requirement for use case development, Assets for development of IoT solutions. Module:5 Value engineering and Analysis: 4 hours Principles and phases of Value Engineering and Analysis, Frameworks for Value Engineering in IoT solutions, cost-function analysis of IoT solution components, action plans to incorporate Value Engineering, Data modelling requirements, Development models: Waterfall, Agile Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model. Module:6 Data Analytics for IoT Solutions: 6 hours Data generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis. Module:7 Deployment of Analytics Solutions 6 hours Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.		,	I			
Application of predictive models. Module:3 Simulation Scenarios: Models to simulate real-world scenarios, Application of the models, stages of data lifecycle, reuse existing IoT solutions, reusability plan. Module:4 Use Case Development Approaches to gather business requirements, defining problem statements, business requirement for use case development, Assets for development of IoT solutions. Module:5 Value engineering and Analysis: Principles and phases of Value Engineering and Analysis, Frameworks for Value Engineering in IoT solutions, cost-function analysis of IoT solution components, action plans to incorporate Value Engineering, Data modelling requirements, Development models: Waterfall, Agile Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model. Module:6 Data Analytics for IoT Solutions: Data generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis. Module:7 Deployment of Analytics Solutions Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.	Module:2	Data Models :	3 hours			
Module:3Simulation Scenarios:4 hoursModels to simulate real-world scenarios, Application of the models, stages of data lifecycle, reuse existing IoT solutions, reusability plan.4 hoursModule:4Use Case Development4 hoursApproaches to gather business requirements, defining problem statements, business requirement for use case development, Assets for development of IoT solutions.4 hoursModule:5Value engineering and Analysis:4 hoursPrinciples and phases of Value Engineering and Analysis, Frameworks for Value Engineering in IoT solutions, cost-function analysis of IoT solution components, action plans to incorporate Value Engineering, Data modelling requirements, Development models: Waterfall, Agile Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model.Module:6Data Analytics for IoT Solutions:6 hoursData generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis.6 hoursModule:7Deployment of Analytics Solutions6 hoursAnomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.	Tags to organize da	ata, tag data to pre-process large datasets, predictive mode	els for forecasting,			
Models to simulate real-world scenarios, Application of the models, stages of data lifecycle, reuse existing IoT solutions, reusability plan. Module:4 Use Case Development Approaches to gather business requirements, defining problem statements, business requirement for use case development, Assets for development of IoT solutions. Module:5 Value engineering and Analysis: Principles and phases of Value Engineering and Analysis, Frameworks for Value Engineering in IoT solutions, cost-function analysis of IoT solution components, action plans to incorporate Value Engineering, Data modelling requirements, Development models: Waterfall, Agile Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model. Module:6 Data Analytics for IoT Solutions: Oata generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis. Module:7 Deployment of Analytics Solutions Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.						
reuse existing IoT solutions, reusability plan. Module:4 Use Case Development Approaches to gather business requirements, defining problem statements, business requirement for use case development, Assets for development of IoT solutions. Module:5 Value engineering and Analysis: 4 hours Principles and phases of Value Engineering and Analysis, Frameworks for Value Engineering in IoT solutions, cost-function analysis of IoT solution components, action plans to incorporate Value Engineering, Data modelling requirements, Development models: Waterfall, Agile Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model. Module:6 Data Analytics for IoT Solutions: 6 hours Data generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis. Module:7 Deployment of Analytics Solutions 6 hours Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.	Module:3	Simulation Scenarios:	4 hours			
Approaches to gather business requirements, defining problem statements, business requirement for use case development, Assets for development of IoT solutions. Module:5 Value engineering and Analysis: Principles and phases of Value Engineering and Analysis, Frameworks for Value Engineering in IoT solutions, cost-function analysis of IoT solution components, action plans to incorporate Value Engineering, Data modelling requirements, Development models: Waterfall, Agile Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model. Module:6 Data Analytics for IoT Solutions: Data generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis. Module:7 Deployment of Analytics Solutions Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.			of data lifecycle,			
Approaches to gather business requirements, defining problem statements, business requirement for use case development, Assets for development of IoT solutions. Module:5 Value engineering and Analysis: 4 hours Principles and phases of Value Engineering and Analysis, Frameworks for Value Engineering in IoT solutions, cost-function analysis of IoT solution components, action plans to incorporate Value Engineering, Data modelling requirements, Development models: Waterfall, Agile Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model. Module:6 Data Analytics for IoT Solutions: 6 hours Data generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis. Module:7 Deployment of Analytics Solutions 6 hours Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.		V 1				
Module:5 Value engineering and Analysis: 4 hours Principles and phases of Value Engineering and Analysis, Frameworks for Value Engineering in IoT solutions, cost-function analysis of IoT solution components, action plans to incorporate Value Engineering, Data modelling requirements, Development models: Waterfall, Agile Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model. Module:6 Data Analytics for IoT Solutions: 6 hours Data generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis. Module:7 Deployment of Analytics Solutions 6 hours Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.	Module:4	Use Case Development	4 hours			
Module:5 Value engineering and Analysis: Principles and phases of Value Engineering and Analysis, Frameworks for Value Engineering in IoT solutions, cost-function analysis of IoT solution components, action plans to incorporate Value Engineering, Data modelling requirements, Development models: Waterfall, Agile Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model. Module:6 Data Analytics for IoT Solutions: Data generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis. Module:7 Deployment of Analytics Solutions Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.	Approaches to gath	ner business requirements, defining problem statements, b	usiness requirements			
Principles and phases of Value Engineering and Analysis, Frameworks for Value Engineering in IoT solutions, cost-function analysis of IoT solution components, action plans to incorporate Value Engineering, Data modelling requirements, Development models: Waterfall, Agile Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model. Module:6 Data Analytics for IoT Solutions: 6 hours Data generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis. Module:7 Deployment of Analytics Solutions 6 hours Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.		<u> </u>				
IoT solutions, cost-function analysis of IoT solution components, action plans to incorporate Value Engineering, Data modelling requirements, Development models: Waterfall, Agile Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model. Module:6 Data Analytics for IoT Solutions: 6 hours Data generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis. Module:7 Deployment of Analytics Solutions 6 hours Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.	Module:5	Value engineering and Analysis:	4 hours			
IoT solutions, cost-function analysis of IoT solution components, action plans to incorporate Value Engineering, Data modelling requirements, Development models: Waterfall, Agile Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model. Module:6 Data Analytics for IoT Solutions: 6 hours Data generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis. Module:7 Deployment of Analytics Solutions 6 hours Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.	Principles and phas	ses of Value Engineering and Analysis, Frameworks for V	Value Engineering in			
Value Engineering, Data modelling requirements, Development models: Waterfall, Agile Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model. Module:6 Data Analytics for IoT Solutions: 6 hours Data generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis. Module:7 Deployment of Analytics Solutions 6 hours Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.		· · · · · · · · · · · · · · · · · · ·				
Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model. Module:6 Data Analytics for IoT Solutions: 6 hours Data generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis. Module:7 Deployment of Analytics Solutions 6 hours Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.			•			
Module:6Data Analytics for IoT Solutions:6 hoursData generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis.6 hoursModule:7Deployment of Analytics Solutions6 hoursAnomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.						
vertical-specific algorithms, Exploratory Data Analysis. Module:7 Deployment of Analytics Solutions 6 hours Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.						
vertical-specific algorithms, Exploratory Data Analysis. Module:7 Deployment of Analytics Solutions 6 hours Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.	Data generation. D	ata gathering, Data Pre-processing, data analyzation, appl	lication of analytics.			
Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.						
cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.			6 hours			
cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.	Anomaly Detectio	n and Data Clustering, Predictive Analytics and Streamin	g Analytics,			
for data insights, deriving insights.						
Total Lecture hours: 30 hours						
Total Lecture hours: 30 hours						
		Total Lecture hours:	30 hours			

Text Book(s)

	(Deemed to be University under section 3 of UGC Act, 1956)					
1.	. Arshdeep Bahga, Vijay Madisetti, "Internet of Things: A hands-on Approach",					
	University Press, 2015.					
2.	Adrian McEwen & Hakim Cassimally, "Designing the Internet of Things", Wiley, Nov					
	2013, (1 st edition)					
3.	Claire Rowland, Elizabeth Goodman, Martin Charlier, Ann Light, Algred Lui,"					
	Designing Connected Products: UX for the consumer internet of things", O'Reilly, (1 st					
	edition),2015					
Reference Books						
1.	Rethinking the Internet of things: A Scalable Approach to Connecting Everything by					
	Francis daCosta, Apress, 2014					
2.	Learning Internet of Things by Peter Waher, Packt Publishing, 2015					
3.	Designing the Internet of Things, by Adrian Mcewen, Hakin Cassimally, Wiley India					
	Private Limited					
4.	Cloud Computing, Thomas Erl, Pearson Education, 2014					
5.	Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud, William					
	Stallings, Addison-Wesley Professional; 1 edition					
6.	https://nsdcindia.org/sites/default/files/MC_SSCQ8210_V1.0 IoT- Domain %20					
	Specialist_09.04.2019.pdf					

List of Experiments

- 1. Measure the light intensity in the room and output data to the web API.
- 2. Control your home power outlet from anywhere using raspberry pi.
- 3. Build a web based application to automate door that unlocks itself using facial recognition.
- 4. Drinking water monitoring and analytics, consists of IoT device, cloud, and mobile and web app.
- 5. Smart Parking System
- 6. IoT based Healthcare application
- 7. Real-time environmental monitoring and weather prediction
- 8. Traffic pattern prediction
- 9. Smart Street light
- 10. Plant health monitoring

		Total Laboratory Hours		30 hours
Recommended by Board of Studies				
Approved by Academic Council		Date		