

School of Computer Science and Engineering

CURRICULUM AND SYLLABI

(2023-2024)

M.Tech (CSE) – (Big Data Analytics)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

To be a world-renowned centre of education, research and service in computing and allied domains.

MISSION STATEMENT OF THE SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

- To offer computing education programs with the goal that the students become technically competent and develop lifelong learning skill.
- To undertake path-breaking research that creates new computing technologies and solutions for industry and society at large.
- To foster vibrant outreach programs for industry, research organizations, academia and society.

School of Computer Science and Engineering

M.Tech (CSE) – (Big Data Analytics)

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering professionals who will engage in technology development and deployment with social awareness and responsibility.
- 2. Graduates will function as successful practicing engineer / researcher / teacher / entrepreneur in the chosen domain of study.
- 3. Graduates will have holistic approach addressing technological, societal, economic and sustainability dimensions of problems and contribute to economic growth of the country.

M. Tech Computer Science and Engineering (Big Data Analytics)

PROGRAMME OUTCOMES (POs)

- PO_01: Having an ability to apply mathematics and science in engineering applications.
- PO_03: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment
- PO_04: Having an ability to design and conduct experiments, as well as to analyze and interpret data, and synthesis of information
- PO_05: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice
- PO_06: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems
- PO_07: Having adaptive thinking and adaptability in relation to environmental context and sustainable development
- PO_08: Having a clear understanding of professional and ethical responsibility
- PO_11: Having a good cognitive load management skills related to project management and finance

M. Tech Computer Science and Engineering (Big Data Analytics)

ADDITIONAL PROGRAMME OUTCOMES (APOs)

APO_02: Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)

APO_03: Having design thinking capability

APO_04: Having computational thinking (Ability to translate vast data in to abstract concepts and to understand database reasoning

APO_07: Having critical thinking and innovative skills

APO_08: Having a good digital footprint

School of Computer Science and Engineering

M.Tech (CSE) – (Big Data Analytics)

PROGRAMME SPECIFIC OUTCOMES (PSOs)

- 1. Ability to design and develop computer programs/computer-based systems in the advanced level of areas including algorithms design and analysis, networking, operating systems design, etc.
- 2. Ability to apply the advanced concepts of Big Data that pave the way to create a platform to gain analytical skills which impacts business decisions and strategies.
- 3. Ability to bring out the capabilities for research and development in contemporary issues and to exhibit the outcomes as technical report.

M. Tech Computer Science and Engineering (Big Data Analytics)

CREDIT STRUCTURE

Category-wise Credit distribution

S.no	Catagory	Credits
1	Discipline Core	24
2	Specialization Elective	12
3	Projects and Internship	26
4	Open Elective	3
5	Skill Enhancement	5
	Total Credits	70

	Discipline Core								
sl.no	Course Code	Course Title	Course Type	Ver sio	L	Т	P	J	Credits
1	MCSE501L	Data Structures and Algorithms	Theory Only	1.0	3	0	0	0	3.0
2	MCSE501P	Data Structures and Algorithms Lab	Lab Only	1.0	0	0	2	0	1.0
3	MCSE502L	Design and Analysis of Algorithms	Theory Only	1.0	3	0	0	0	3.0
4	MCSE502P	Design and Analysis of Algorithms Lab	Lab Only	1.0	0	0	2	0	1.0
5	MCSE503L	Computer Architecture and Organisation	Theory Only	1.0	3	0	0	0	3.0
6	MCSE503P	Computer Architecture and Organisation Lab	Lab Only	1.0	0	0	2	0	1.0
7	MCSE504L	Operating Systems	Theory Only	1.0	3	0	0	0	3.0
8	MCSE504P	Operating Systems Lab	Lab Only	1.0	0	0	2	0	1.0
9	MCSE505L	Computer Networks	Theory Only	1.0	3	0	0	0	3.0
10	MCSE505P	Computer Networks Lab	Lab Only	1.0	0	0	2	0	1.0
11	MCSE506L	Database Systems	Theory Only	1.0	3	0	0	0	3.0
12	MCSE506P	Database Systems Lab	Lab Only	1.0	0	0	2	0	1.0

		Specialization E	lective						
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	Т	P	J	Credits
1	MCSE614L	Big Data Frameworks and Technologies	Theory Only	1.0	2	0	0	0	2.0
2	MCSE614P Big Data Frameworks and Technologies Lab		Lab Only	1.0	0	0	2	0	1.0
3	MCSE615L	Data Analytics	Theory Only	1.0	2	0	0	0	2.0
4	MCSE615P	Data Analytics Lab	Lab Only	1.0	0	0	2	0	1.0
5	MCSE616L	Data Visualization	Theory Only	1.0	2	0	0	0	2.0
6	MCSE616P	Data Visualization Lab	Lab Only	1.0	0	0	2	0	1.0
7	MCSE617L	Domain Specific Predictive Analytics	Theory Only	1.0	2	0	0	0	2.0
8	MCSE617P	Domain Specific Predictive Analytics Lab	Lab Only	1.0	0	0	2	0	1.0
9	MCSE618L	Social Network Analytics	Theory Only	1.0	2	0	0	0	2.0
10	MCSE618P	Social Network Analytics Lab	Lab Only	1.0	0	0	2	0	1.0
11	MCSE619L	Text and Speech Analytics	Theory Only	1.0	2	0	0	0	2.0
12	MCSE619P	Text and Speech Analytics Lab	Lab Only	1.0	0	0	2	0	1.0
13	MCSE620L	Analytics for Internet of Things	Theory Only	1.0	2	0	0	0	2.0

	Specialization Elective									
ſ	14	MCSE620P	Analytics for Internet of Things Lab	Lab Only	1.0	0	0	2	0	1.0

	Projects and Internship										
sl.no	Course Code	Course Title	Course Type	Ver	L	Т	P	J	Credits		
				sio							
				n							
1	MCSE696J	Study Oriented Project	Project	1.0	0	0	0	0	2.0		
2	MCSE697J	Design Project	Project	1.0	0	0	0	0	2.0		
3	MCSE698J	Internship I/ Dissertation I	Project	1.0	0	0	0	0	10.0		
4	MCSE699J	Internship II/ Dissertation II	Project	1.0	0	0	0	0	12.0		

	Open Elective										
sl.no	Course Code	Course Title	Course Type	Ver	L	Т	P	J	Credits		
				sio							
				n							
1	MFRE501L	Français Fonctionnel	Theory Only	1.0	3	0	0	0	3.0		
2	MGER501L	Deutsch fuer Anfaenger	Theory Only	1.0	3	0	0	0	3.0		

	Skill Enhancement										
sl.no	Course Code	Course Title	Course Type	Ver sio	L	Т	P	J	Credits		
				n							
1	MENG501P	Technical Report Writing	Lab Only	1.0	0	0	4	0	2.0		
2	MSTS501P	Qualitative Skills Practice	Soft Skill	1.0	0	0	3	0	1.5		
3	MSTS502P	Quantitative Skills Practice	Soft Skill	1.0	0	0	3	0	1.5		

Course code	rse code Course title				C			
MCSE501L Data Structures and Algorithms				0	3			
Pre-requisite	Pre-requisite NIL			Syllabus version				
				V	. 1.0			

- 1. To familiarize the concepts of data structures and algorithms focusing on space and time complexity.
- 2. To provide a deeper insight into the basic and advanced data structures.
- 3. To develop the knowledge for the application of advanced trees and graphs in real-world scenarios.

Course Outcomes

After completion of this course, the student shall be able to:

- 1. Understand and analyze the space and time complexity of the algorithms.
- 2. Identification of suitable data structure for a given problem.
- 3. Implementation of graph algorithms in various real-life applications.
- 4. Implementation of heaps and trees for querying and searching.
- 5. Use of basic data structures in advanced data structure operations.
- 6. Use of searching and sorting in various real-life applications.

Module:1	Growth of Functions	3 hours								
Overview ar	nd importance of algorithms and data structures- Algor	ithm specification, Recursion,								
Performance	analysis, Asymptotic Notation - The Big-O, Omega an	nd Theta notation, Programming								
Style, Refine	Style, Refinement of Coding - Time-Space Trade Off, Testing, Data Abstraction.									
Module:2	Elementary Data Structures	6 hours								
Array, Stack	, Queue, Linked-list and its types, Various Represent	ations, Operations & Applications of								
Linear Data										
Module:3	Sorting and Searching	7 hours								
Insertion sor	Insertion sort, merge sort, sorting in linear Time-Lower bounds for sorting, Radix sort, Bitonic sort,									
	t, Medians and Order Statistics-Minimum and maximu									
	Selection in worst-case linear time, linear search, Interpolation search, Exponential search.									
Module:4	Trees	6 hours								
Binary trees-	Properties of Binary trees, B-tree, B-Tree definition-	Operations on B-Tree: Searching a B-								
tree, Creating	g, Splitting, Inserting and Deleting, B+-tree.									
Module:5	Advanced Trees	8 hours								
Threaded bit	nary trees, Leftist trees, Tournament trees, 2-3 tree, Spl	lay tree, Red-black trees, Range trees.								
Module:6	Graphs	7 hours								
Representati	on of graphs, Topological sorting, Shortest path algorithms	orithms- Dijkstra's algorithm, Floyd-								
-	orithm, Minimum spanning trees - Reverse delete algo									
Module:7	Heap and Hashing	6 hours								
Heaps as pri	ority queues, Binary heaps, binomial and Fibonacci he	aps, Heaps in Huffman coding,								
	Extendible hashing.									
Module:8	Contemporary Issues	2 hours								
	Total Lecture hours:	45 hours								

Tex	Text Book(s)								
1.	Cormen, Thomas H., Charles E. Leis	serson, Ronald L. R	Rivest, and	Clifford Stein. Introduction to					
	algorithms. MIT press, 2022.								
Ref	Reference Books								
1.	Skiena, Steven S. "The Algorithm Design Manual (Texts in Computer Science)." 3rd edition, 2020,								
	Springer.	_							
2.	Brass, Peter. Advanced data structure	es. Vol. 193. Camb	ridge: Can	nbridge University Press, 2008.					
Mod	Mode of Evaluation: CAT / Written Assignment / Quiz / FAT								
Rec	Recommended by Board of Studies 26-07-2022								
App	Approved by Academic Council No. 67 Date 08-08-2022								

Course code	Course title				C
MCSE501P Data Structures and Algorithms LAB		0	0	2	1
Pre-requisite NIL		Syllabus version			
		V	. 1.0		

- 1. To familiarize the concepts of data structures and algorithm focusing on space and time complexity.
- 2. To provide a deeper insight on the basic and advanced data structures.
- 3. To develop the knowledge for application of the advanced trees and graphs in real world scenarios.

Course Outcome

After completion of this course, the student shall be able to:

- 1. Understand and analyze the space and time complexity of the algorithms.
- 2. Identification of suitable data structure for a given problem.
- 3. Implementation of graph algorithms in various real-life applications.
- 4. Implementation of heaps and trees for querying and searching.
- 5. Use of basic data structures in advanced data structure operations.
- 6. Use of searching and sorting in various real-life applications.

Indicative Experiments							
1.	Analyzing the complexity of iterati	ve and recursive al	gorithms				
2.	Implement Linear data structures (S	Stacks, Queues, Lir	nked Lists)				
3.	Linear time sorting techniques						
4.	Interpolation search & Exponential	search					
5.	Binary tree & Tree traversals						
6.	B-trees & B+ trees						
7.	Advanced Trees: 2-3 tree, splay tree, red black tree etc.						
8.	Advanced Trees: Threaded Binary trees, tournament trees						
9.	Graph traversals (BFS, DFS, Topological sorting)						
10.	Determining the Shortest path between pair of nodes in the given graph						
11.	Minimum Spanning trees- reverse delete & Boruvka's algorithm						
12.	Heaps & Hashing						
			Total Lab	poratory Hours 30 hours			
Tex	t Book(s)						
1.	Cormen, Thomas H., Charles E. Leis algorithms. MIT press, 2022.	serson, Ronald L. R	Rivest, and	Clifford Stein. Introduction to			
Ref	erence Books						
1.	Skiena, Steven S. "The Algorithm D	esign Manual (Tex	ts in Comp	uter Science)." 3rd edition, 2020,			
	Springer.						
2.	2. Brass, Peter. Advanced data structures. Vol. 193. Cambridge: Cambridge University Press, 2008.						
Mod	Mode of Evaluation: CAT / Mid-Term Lab/ FAT						
Recommended by Board of Studies 26-07-2022							
App	proved by Academic Council	No. 67	Date	08-08-2022			

	Course title	\mathbf{L}	T	P	C	
MCSE502L	Design and Analysis of Algorithms	3 0 0				
Pre-requisite	NIL	Syll	abus	vers	sion	
				V.	. 1.0	
Course Objectives						
	minate knowledge on how to create strategies for dealing with roop efficient algorithms for use in a variety of engineering design			oble	ms.	
Course Outcomes						
On completion of the	is course, student should be able to:					
11.	ledge of computing and mathematics to algorithm design.					
	as algorithm paradigms to solve scientific and real-life problems					
	the string matching and network flow algorithms relating to rea	al-life p	oroble	ems.		
	and apply geometric algorithms.					
	optimization techniques to various real-world linear optimization		olems	5.		
6. Explain the	hardness of real-world problems with respect to algorithmic des	ign.				
Module:1 Greed	ly, Divide and Conquer Techniques Introduction			6 ho	ur	
	ortance of Algorithms - Stages of algorithm development: Description	ribing t	he			
	g a suitable technique, Design of an algorithm, Illustration of Des	sign Šta	iges -	- Gre	edy	
Overview and Imp	8 4 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		nd (ona	uer:	
Overview and Imp problem, Identifyin	Coloring Problem, Job Sequencing Problem with Deadlines- D	Pivide a	mu C	Jong		
Overview and Imp problem, Identifyin techniques: Graph (Karatsuba's fast mu				9 ho		
Overview and Imp problem, Identifyin techniques: Graph (Coloring Problem, Job Sequencing Problem with Deadlines- D		1110		•	

methods.

Module:3 Amortized analysis and String Matching Algorithms 6 hours Stack operation and Incrementing Binary counter -The aggregate method, the accounting method, the potential method, and Dynamic tables. Naïve String matching Algorithms, KMP algorithm, Rabin-Karp Algorithm, String matching with Finite Automata.

Module:4 **Network Flow Algorithms** 6 hours Flow Networks, Maximum Flows: Ford-Fulkerson, Edmond-Karp, Push relabel Algorithm, The

relabel-to-front algorithm, Minimum Cost flows – Cycle Cancelling Algorithm. Module:5 **Computational Geometry**

5 hours Line Segments – properties, intersection; Convex Hull finding algorithms- Graham's Scan, Jarvis's March Algorithm.

Linear Optimization and Randomized algorithms Module:6 5 hours Linear Programming problem - Simplex Method-Big M Method, LP Duality- The hiring problem, Finding the global Minimum Cut.

Module:7 NP Completeness and A pproximation Algorithms 6 hours
--

The Class P - The Class NP - Reducibility and NP-completeness - Circuit Satisfiability problem-SAT 3CNF, Independent Set, Clique, Approximation Algorithm: Vertex Cover, Set Cover and Travelling salesman.

Module:8	Contemporary Issues	2 hours
	Total Lecture hours:	45 hours

Tex	Text Book(s)						
1.	Cormen, Thomas H., Charles E. Leis	serson, Ronald L. F	Rivest, and	Clifford Stein. Introduction to			
	algorithms. MIT press, 2022.						
Ref	Reference Books						
1.	1. Rajeev Motwani, Prabhakar Raghavan; "Randomized Algorithms, Cambridge University						
	Press, 1995 (Online Print — 2013).	Press, 1995 (Online Print — 2013).					
2.	Ravindra K. Ahuja, Thomas L. Mag	nanti, and James B	. Orlin, Ne	twork Flows: Theory,			
	Algorithms, and Applications, 1st Ed	dition, Pearson Edu	ication, 20	14.			
3.	Jon Kleinberg and EvaTardos, Algor	rithm Design, Pear	son Educat	ion, 1"Edition, 2014.			
Mo	Mode of Evaluation: CAT / Written Assignment / Quiz / FAT						
Rec	commended by Board of Studies	26-07-2022					
App	proved by Academic Council	No. 67	Date	08-08-2022			

Course code	Course title		T	P	C
MCSE502P Design and Analysis of Algorithms Lab				2	1
Pre-requisite	NIL		abus	s ver	sion
				V	. 1.0

- 1. To provide a mathematical framework for the design and analysis of algorithms.
- 2. To disseminate knowledge on how to create strategies for dealing with real-world problems.
- 3. To develop efficient algorithms for use in a variety of engineering design settings.

Course Outcome

On completion of this course, student should be able to:

- 1. Apply knowledge of computing and mathematics to algorithm design.
- 2. Apply various algorithm paradigms to solve scientific and real-life problems.
- 3. Demonstrate the string matching and network flow algorithms relating to real-life problems.
- 4. Understand and apply geometric algorithms.
- 5. Apply linear optimization techniques to various real-world linear optimization problems.
- 6. Explain the hardness of real-world problems with respect to algorithmic design.

Ind	icative Experiments					
1.	Greedy Strategy: Graph Coloring	Problem, Job Sequ	encing Pro	blem with Dea	dlines	
2.	Divide and Conquer : Karatsuba's	fast multiplication	method, tl	ne Strassen alg	orithm for matrix	
	multiplication					
3.	Dynamic Programming: Matrix	Chain Multiplicati	on, Longe	est Common S	Subsequence, 0-1	
	Knapsack					
4.	Backtracking: N-queens, Subset su	ım				
5.	Branch and Bound: Job selection					
6.	String Matching Algorithms: Rabi					
7.	Network Flows : Ford -Fulkerson		p, Cycle ca	incelling algori	thm	
8.	Minimum Cost flows – Cycle Can	celling Algorithm				
9.	Linear programming: Simplex met	thod				
10.	Randomized Algorithms: Las Veg	as and Monte carlo	ı			
11.	Polynomial time algorithm for ver	ification of NPC pr	oblems			
12.	Approximation Algorithm: Vertex	cover ,Set cover an	nd TSP			
			Total Lab	oratory Hours	30 hours	
Tex	t Book(s)					
1.	Cormen, Thomas H., Charles E. Le	iserson, Ronald L.	Rivest, an	d Clifford Stei	n. Introduction	
	to algorithms. MIT press, 2022.					
Ref	erence Books					
1.	Rajeev Motwani, Prabhakar Raghav		Algorithms,	Cambridge Ur	niversity	
	Press, 1995 (Online Print — 2013).					
2	Ravindra K. Ahuja, Thomas L. Mag				Theory,	
	Algorithms, and Applications, 1 st Edition, Pearson Education, 2014.					
3	Jon Kleinberg and EvaTardos, Algo		rson Educa	tion, 1"Edition	, 2014.	
	de of Evaluation: CAT / Mid-Term L					
	ommended by Board of Studies	26-07-2022				
App	proved by Academic Council	No. 67	Date	08-08-2022		

Course code	Course title		T	P	С
MCSE503L Computer Architecture and Organization		3	0	0	3
Pre-requisite	NIL	Syllabus vers			sion
				V.	. 1.0

- 1. To provide knowledge on the basics of computer architectures and organization that lays the foundation to study high-performance architectures
- 2. To design and develop parallel programs using parallel computing platforms such as OpenMP, CUDA
- 3. To evaluate the performance using profiling tools and optimize parallel codes using various optimization techniques

Course Outcomes

After completion of this course, the student shall be able to:

- 1. Outline the developments in the evolution of computer architectures and parallel programming paradigms
- 2. Comprehend the various programming languages and libraries for parallel computing platforms
- 3. Use of profiling tools to analyze the performance of applications by interpreting the given data
- 4. Evaluate efficiency trade-offs among alternative parallel computing architectures for an efficient parallel application design
- 5. Develop parallel programs using OpenMP and CUDA and analyze performance parameters such as speed-up, and efficiency for parallel programs against serial programs

Module:1 Computer Evolution And Performance

5 hours

Defining Computer Architecture and Organization, Overview of Computer Components, Von Neumann architecture, Harvard Architecture CISC & RISC, Flynn's Classification of Computers, Moore's Law, Multi-threading, Comparisons of Single Core, Multi Processors, and Multi-Core architectures, Metrics for Performance Measurement

Module:2 Memory Hierarchy

8 hours

Key Characteristics of Memory systems, Memory Hierarchy, Cache Design policies, Cache Performance, Cache Coherence, Snoopy Protocols, Cache coherence protocols, MSI, MESI, MOESI

Module:3 Parallel Computers

8 hours

Instruction Level Parallelism(ILP), Compiler Techniques for ILP & Branch Prediction, Thread Level Parallelism (TLP), Threading Concepts, Shared Memory, Message Passing, Vectorization

Module:4 | Multithreaded Programming using OpenMP

7 hours

Introduction to OpenMP, Parallel constructs, Runtime Library routines, Work-sharing constructs, Scheduling clauses, Data environment clauses, atomic, master Nowait Clause, Barrier Construct

Module:5 Programming for GPU

6 hours

Introduction to GPU Computing, CUDA Concepts, CUDA Programming Model, Program Structure of CUDA & Execution, Methods for operations on Device Memory, Thread Organization, Examples

Module:6 | **Performance Analyzers**

6 hours

Performance Evaluation, performance bottlenecks, Profiling categories; Profiling tools: Trace analyzer and collector (ITAC), VTune Amplifier XE, Energy Efficient Performance, Integrated Performance Primitives (IPP)

Mo	dule:7	Energy	Effici	ent Arc	hitectures				5 hours
Ove	erview of	power i	issues,	CMOS	Device-level	Powe	r dissipati	ion basics,	Sources of energy
Cor	sumption	, Strategie	s to say	ve power	or Energy, Lo	w pow	er designs,	, Power mana	gement techniques
Mo	dule:8	Contem	porary	Issues					1 hours
							Total Le	cture hours:	45 hours
Tex	t Book(s)								
1.	William	Stallings,	Compi	uter Orga	nization and A	rchited	cture: Desi	gning for Per	formance,
	Pearson	, 2022, 11	th Edit	ion, Pear	son				,
2	Gerassir	nos Barlas	, Multi	core and	GPU Program	ming:	An Integra	ated Approach	h, 2022, 2 nd
	edition,	Morgan K	aufmar	ın	C	C		11	
Ref	erence B	ooks							
1.	J.L. Hen	nessy and	D.A. F	atterson.	Computer Ar	chitecti	ıre: A Qua	intitative App	proach. 5th Edition,
		organ Kau							
2.								asing Perform	nance Through
	Software Multi-threading, 2010, Intel Press, BPB Publications								
Mo	de of Eva	luation: CA	AT / W	ritten As	signment / Qu	iz / FA	T		
Rec	ommende	ed by Boar	d of St	udies	26-07-2022	2			
App	proved by	Academic	Counc	cil	No. 67		Date	08-08-2022	

Course code	Course title	L	T	P	C
MCSE503P Computer Architecture and Organization LAB		0	0	2	1
Pre-requisite	NIL	Syllabus ver		sion	
				V	. 1.0

- 1. To provide knowledge on basics of computer architectures and organization that lays foundation to study high performance architectures
- 2. To design and develop parallel programs using parallel computing platforms such as OpenMP, CUDA
- 3. To evaluate the performance using profiling tools and optimize parallel codes using various optimization techniques

Course Outcome

After completion of this course, the student shall be able to:

- 1. Outline the developments in the evolution of computer architectures and parallel programming paradigms
- 2. Comprehend the various programming languages and libraries for parallel computing platforms
- 3. Use of profiling tools to analyze the performance of applications by interpreting the given data
- 4. Evaluate efficiency trade-offs among alternative parallel computing architectures for an efficient parallel Application design.
- 5. Develop parallel programs using OpenMP and CUDA and analyze performance parameters such as speed-up, efficiency for parallel programs against serial programs

Indicative Experiments

1.	Set-up an environment for OpenMP Programming:							
	Activities: create a Project using Visual Studio, Writing Sample OpenMp Program, Setting up							
	properties, compile & Execute OpenMP program, OpenMP manual study, Creation of Login							
	credential on Intel for Intel Parallel Studio							
2.	OpenMP program using following construct and describe scenario for the need of construct							
	Use of Parallel Construct, Determine the Number of processors in a parallel Region, Find the							
	thread ID of each processor							
3.	Computation of Execution Time							
	Using OpenMP clock, Using windows clock							
4.	OpenMP Program using various Environment Routines to access the processor run-time							
	information and write interesting observations by comparing various routines							
5.	OpenMP program using following Worksharing Constructs and describe scenario for the need of							
	construct							
	loop construct, sections construct, single construct							
6.	OpenMP program using following schedule clauses and describe scenario for the need of clause							
	Static, Dynamic, Guided							
7.	Develop parallel programs for given serial programs and profile the program using Vtune Analysis							
	tool							
	Matrix-Matrix multiplication, Matrix-Vector multiplication							
8.	Develop parallel programs for given serial programs and profile the program using Vtune Analysis							
	tool							
	Quicksort, Minimum Spanning Tree							
9.	CUDA-platform setup on NVIDIA / Google Colab							
10.	Write a CUDA C/C++ program that add two array of elements and store the result in third array							
11.	Write a CUDA C/C++ program that Reverses Single Block in an Array; CUDA C/C++							
12.	Write a CUDA C program for Matrix addition and Multiplication using Shared memory							
	Total Laboratory Hours 30 hours							

Tex	Text Book(s)						
1.	Gerassimos Barlas, Multicore and C	GPU Programming:	An Integra	ated Approach, 2022, 2 nd			
	edition, Morgan Kaufmann						
Ref	Reference Books						
1.	Shameem Akhter, Jason Roberts, Multi-core Programming: Increasing Performance Through						
	Software Multi-threading, 2010, Int	el Press, BPB Publ	ications				
Mo	de of Evaluation: CAT / Mid-Term L	ab/ FAT					
Rec	Recommended by Board of Studies 26-07-2022						
App	Approved by Academic Council No. 67 Date 08-08-2022						

Course code	Course title	L	T	P	C			
MCSE504L	CSE504L OPERATING SYSTEMS		0	0	3			
Pre-requisite	Nil	Syllabus version		sion				
				V	. 1.0			
Course Objectives								

- 1. To focus the core functionalities required to develop and manage operating systems.
- 2. To encompass process management, synchronization strategies, memory management, file systems, device management, and virtualization.
- 3. To introduce the concepts and features of real-time operating systems as well as virtualization.

Course Outcomes

After completion of this course, the student shall be able to:

- 1. Understand the fundamental operating system abstractions, including processes, threads, semaphores, and file systems.
- 2. Implement scheduling, devising and addressing synchronization issues.
- 3. Gain an understanding of memory management tasks.
- 4. Develop real-time working prototypes of different small-scale and medium-scale embedded systems.
- 5. Comprehend the basics of virtualization and differentiate types of virtualization.

Module:1 Introduction to Operating Systems

4 hours

Computer Organization and Architecture - OS definition - OS history - OS Operations - OS design issues - Operating systems structures - Library files - Systems calls - Interrupts - Kernel approaches - Building and booting an OS.

Module:2 Process and Scheduling

6 hour

Process states – State transitions with suspend and resume - Process control block - Context-switching - Processes operations - Process scheduling - CPU scheduling: Non-preemptive, preemptive - Multi-queue scheduling - Multi-level feedback queue scheduling.

Module:3 | Synchronization

9 hours

IPC: Shred memory, message passing - Race condition - Critical section problem - Peterson's solution - Bakery Algorithm - Mutex locks - Semaphores - Classical synchronization problems - Monitors - Thread synchronization - Multi-threading Models, Deadlocks - Resource allocation graphs - Deadlock: prevention, avoidance, detection and recovery.

Module:4 | **Memory Management**

5 hours

Address binding – Fragmentation - Pinning Memory – Paging – Structure of the page table – Swapping - Segmentation - Demand Paging – Copy-on-write - Replacement – Thrashing – Working set – Memory compression – Allocating kernel memory.

Module:5 | Managing Devices, Files, Security and Protection

9 hour

 $I/O\ Management-DMA-Delayed\ write-Disk\ scheduling\ algorithms:\ Seek-time\ and\ rotational\ latency\ based-File\ control\ block-Inode-Access\ method-Directory\ structure-Directory\ implementation-File\ allocation\ methods-Free\ space\ management-Program\ and\ network\ threats-Cryptography\ as\ a\ security\ tool-Domains\ of\ protection-Access\ matrix-Capability\ based\ systems$

Module:6 Real-time Operating Systems

5 hours

RTOS Internals - Real-Time Scheduling - Task Specifications - Performance Metrics of RTOS - Schedulability Analysis - RTOS Programming Tools.

Module:7 Virtualization

5 hours

Need for virtualization - Virtual machines and architectures – Hypervisors - Virtualization Technologies: Para Virtualization, Full Virtualization - Virtualization types: Server virtualization, Application virtualization, Storage virtualization.

Module:8 Contemporary Issues

2 hours

Total Lecture hours:	45 hours
I Utai Lecture nours.	TO HOULS

Tex	kt Book(s)						
1.	Abraham Silberschatz, Peter B. Ga	lvin, Greg Gagne,	"Operatin	g System Concepts", 2018, 10 th			
	Edition, Wiley, United States.		_	-			
Ref	Reference Books						
1.	Arpaci-Dusseau, R. H., & Arpaci-Dusseau, A. C, "Operating Systems: Three easy pieces, 2018,						
	1 st Edition, Boston: Arpaci-Dusseau Books LLC.						
2.	Kamal, R, Embedded Systems: Arc	hitecture, Programi	ning and I	Design, 2011, 1 st Edition, Tata			
	McGraw-Hill Education.						
3.	Portnoy, M, "Virtualization Essentia	als", 2012, 2 nd Editi	on, John W	Viley & Sons, New Jersey, USA.			
Mo	de of Evaluation: CAT / Written Assi	gnment / Quiz / FA	T				
Rec	commended by Board of Studies	26-07-2022					
App	proved by Academic Council	No. 67	Date	08-08-2022			

Course code	Course title	L	T	P	C
MCSE504P OPERATING SYSTEMS LAB					1
Pre-requisite	Nil	Syllabus vers			sion
					. 1.0

- 1. To encompass process management, synchronization strategies, memory management, file systems, device management, and virtualization.
- 2. To introduce the concepts and features of real-time operating systems as well as virtualization.

Course Outcome

After completion of this course, the student shall be able to:

- 1. Implement scheduling, devising and addressing synchronization issues.
- 2. Gain an understanding of memory management tasks.
- 3. Develop real-time working prototypes of different small-scale and medium-scale embedded systems.
- 4. Comprehend the basics of virtualization and differentiate types of virtualization.

Indi	cative Experiments							
1.	Investigate the fundamental Unix/Linux commands.							
2.	Obtaining the OS system data file and its associated information.							
3.	Shell Programming.							
4.	Create utility programs that use I/O system calls to simulate operations such as ls, cp, grep, and others.							
5.	Create child, Orphan and Zombie processes using suitable system calls such as fork(), exec(), wait(), kill(), sleep() and exit() system calls.							
6.	Create a program that mimics the CPU Scheduling algorithms including multi-level queue							
	scheduling algorithm. Ex: Assume that all processes in the system are divided into two categories:							
	system processes and user processes. System processes are to be given higher priority than user							
	processes. Use FCFS scheduling for the processes in each queue.							
7.	Implement the deadlock-free solution to Dining Philosophers problem using Semaphore.							
8.	Simulation of Bankers algorithm to check whether the given system is in safe state or not. Also							
	check whether addition resource requested can be granted immediately.							
9.	Parallel Thread management using Pthreads library. Implement a data parallelism using multi-							
	threading. Ex: An application should have a thread created with synchronization and thread							
	termination. Every thread in the sub-program must return the value and must be synchronized with							
	the main function. Final consolidation should be done by the main (main function).							
10.	Dynamic memory allocation algorithms – First-fit, Best-fit, Worst-fit algorithms.							
11.	Page Replacement Algorithms FIFO, LRU and Optimal							
12.	Implement a file locking mechanism.							
13.	RTOS Based Parameter Monitoring and Controlling System – Monitoring: Collecting data from							
	sensors and interface display devices/actuators using a microcontroller. Controlling: Provide an							
	alert when the received data reaches a certain threshold value.							
14.	Virtualization Setup: Type-1, Type-2 Hypervisor (Detailed Study Report).							
	Total Laboratory Hours 30 hours							

Tex	Text Book(s)						
1.	Vijay Mukhi, "The C Odyssey: UN	IX: v. 3", 2004, 3 rd	^d Edition, I	BPB Publications, New Delhi,			
	India.						
Ref	Reference Books						
1.	Stevens, W. R., & Rago, S. A. (2013). Advanced Programming in the UNIX Environment: Advanc						
	Progra UNIX Envir_p3. Addison-W	esley.					
2.	Love, Robert, "Linux System Progra	amming: talking di	rectly to the	e kernel and C library", 2013, 2 nd			
	Edition, O'Reilly Media, Inc, United	d States.					
Mo	de of Evaluation: CAT / Mid-Term L	ab/ FAT					
Rec	commended by Board of Studies	26-07-2022					
App	proved by Academic Council	No. 67	Date	08-08-2022			

Course code	Course title	L T	P C
MCSE505L	Computer Networks	3 0	0 3
Pre-requisite	NIL	Syllabu	s version
•			v. 1.0
Course Objectives			
	ious network models, layers and their protocols.		
	ndamental understanding of routing algorithms.		
	end the basics of wireless as well as mobile networks and their cl	haracteris	tics.
1			
Course Outcomes			
	this course, the student shall be able to:		
-	basics of Computer Networks and various performance metrics.		
-	application layer services and their protocols.		
	requirements for reliable services and implications of congestion	n at the tra	nsport
layer service			sp orv
•	ous functionalities required in the control and data plane at netw	ork laver	services.
	racteristics of wireless as well as mobile networks and their secu		
Module:1 Comp	outer Networks and the Internet		7 hours
	d-Bolts Description - Network Protocols - The Network Edge: Ac	ccess Netv	vorks and
	he Network Core: Packet Switching, Circuit Switching - Netw		
	oughput in Packet-Switched Networks - Protocol Layers and Th		
	ication Layer		5 hours
1.1	ork Applications: Architectures, Processes and Transport Services	ces - The	Web and
	Mail in the Internet - DNS—The Internet's Directory Service		
	et Programming: Creating Network Applications		
	sport Layer		7 hours
Relationship Betwe	en Transport and Network Layers - Overview of the Transport L	Laver in th	e Internet
	Demultiplexing - Connectionless Transport: UDP - Reliable Data		
	ective Repeat (SR) - Connection-Oriented Transport: TCP,		
Congestion Control			
Module:4 Netwo	ork Layer: Data Plane		5 hours
Network Layer – I	Router - The Internet Protocol (IP): IPv4, Addressing and I	IPv6 - Ge	eneralized
Forwarding and SD	` ' '		
Module:5 Netwo	ork Layer: Control Plane		5 hours
Control Plane: Per-	router control and logically centralized control - Routing Algo-	rithms - I	Link-State
(LS) Routing Algor	ithm, Distance-Vector (DV) Routing Algorithm, Intra-AS Routing	ng in the I	nternet:
	Among the ISPs: BGP - SDN Control Plane	C	
	Layer and LANs		8 hours
	Layer Services - Error-Detection and -Correction Techniqu	es: Parity	Checks,
	C - Multiple Access Links and Protocols: Channel Partition	-	
	otocols - Switched Local Area Networks: Link-Layer Addressing	_	
Local Area Network			
	ess and Mobile Networks-Security		6 hours
	ess network - Wireless Links and Network Characteristics - Wil	Fi: 802.11	
	anagement: Principles - Wireless and Mobility: Impact on High		
•	there Network- Message Integrity and Digital Signatures - Netwo	•	
IPsec and Virtual Pr			~ · · · · · · · · · · · · · · · · · · ·
			2 hours
	temporary Issues		2

Total Lecture hours:

45 hours

Tex	Text Book(s)							
1.	James F. Kurose, Keith W. Ross, "Control of the Control of the Con	Computer Network	ing: A Top	p-Down Approach", 2022, 8 th				
	Edition (Paperback), Pearson, United Kingdom.							
Ref	erence Books							
1.	Larry Peterson and Bruce Davie, "Computer Networks: A Systems Approach", 2019, 6 th Edition,							
	Morgan Kaufmann, United States of America.							
2.	Andrew S. Tanenbaum, "Computer	Networks", 2013, 6	5 th Edition,	Pearson, Singapore.				
Mo	de of Evaluation: CAT / Written Assi	gnment / Quiz / FA	T					
Rec	commended by Board of Studies	26-07-2022						
App	proved by Academic Council	No. 67	Date	08-08-2022				

Course code	Course title	L	T	P	C
MCSE505P	Computer Networks Lab				1
Pre-requisite	NIL			s ver	sion
				V	. 1.0

- 1. To introduce the computer network concepts and provide skills required to trouble shoot the network devices.
- 2. To describe the basic knowledge of VLAN.
- 3. To develop the knowledge for application of software defined networks.

Course Outcome

After completion of this course, the student shall be able to:

- 1. Understand the types of network cables and practical implementation of cross-wired and straight through cable.
- 2. Design and implementation of VLAN.
- 3. Analyze and apply network address translation using packet tracer and network simulators.
- 4. Design and develop software defined networks.

Indi	cative Experiments						
1.	Hardware Demo(Demo session	n of all networking	hardware a	and Functionalities)			
	OS Commands (Network configuration commands)						
2.	Error detection and correction mechanisms						
	Flow control mechanisms						
3.	IP addressing Classless addres	sing					
4.	Network Packet Analysis usin	g Wireshark					
	 Packet Capture Using 	Wire shark					
	ii. Starting Wire shark						
	iii. Viewing Captured Traffic						
	iv. Analysis and Statistics	& Filters.					
5.	Socket programming(TCP and						
6.	Networking Simulation Tool -		S				
7.	SDN Applications and Use Ca						
8.	Security in Network- Use case	es					
9	Performance evaluation of rout	ing protocols using	simulation	tools.			
Refe	rence Books						
1.	James F. Kuross, Keith W. Ross,	"Computer Networ	king, A To	pp-Down Approach", 8 th Edition			
	(Paperback), Pearson Education, 20	22.					
Mod	e of Evaluation: CAT / Mid-Term L	ab/ FAT					
Reco	mmended by Board of Studies	26-07-2022					
	roved by Academic Council	No. 67	Date	08-08-2022			

Course code	Course title	L	T	P	
MCSE506L	DATABASE SYSTEMS	3	0	0	
Pre-requisite	NIL	Syllabus versi			
<u> </u>				v. 1	
Course Object					
	inderstand the underlying principles of Relational Database Manag		•		
	ocus on the modeling and design of secured databases and usage of	f advance	ed dat	a	
mod					
	mplement and maintain the structured, semi-structured, and unstructured.	ctured da	ta in	an	
effic	eient database system using emerging trends				
Course Outcon	mag				
	of this course, students must be able to				
-	gn and implement a database depending on the business requir	ramants	conc	idarin	
	ous design issues	cincins,	COIIS	ideiii	
	erstand the concepts of Indexing, Query optimization, transaction	ction m	anage	ment	
	currency control, and recovery mechanisms	ction in	anast	ATTICITE,	
	n to apply parallel and distributed databases in Real-time scenarios	S			
	gorize and design the structured, semi-structured, and unstructured		es		
	racterize the database threats and their countermeasures				
5. Cha	acterize the database timents and their countermoustres				
5. Cha	actionize the dutabase timetits and their countermoustres				
	Design and Implementation of Relational Model			6 hou	
Module:1		, Relation			
Module:1 Database Syste	Design and Implementation of Relational Model		nal M	lodel-	
Module:1 Database Syste Keys, and Integ Normal Form,	Design and Implementation of Relational Model m Concepts and Architecture, Entity-Relationship (ER) Modelling, rity Constraints, Mapping ER model to Relational Schema, Norma Multi-valued dependency and Fourth Normal form		nal M Boyo	lodel- ce Coo	
Module:1 Database Syste Keys, and Integ Normal Form,	Design and Implementation of Relational Model m Concepts and Architecture, Entity-Relationship (ER) Modelling, rity Constraints, Mapping ER model to Relational Schema, Norma		nal M Boyo	lodel-	
Module:1 Database Syste Keys, and Integ Normal Form, Module:2 Storage and Fil	Design and Implementation of Relational Model m Concepts and Architecture, Entity-Relationship (ER) Modelling, rity Constraints, Mapping ER model to Relational Schema, Norma Multi-valued dependency and Fourth Normal form Query Processing and Transaction Management e Structure, Indexing, Query processing, and Query Optimization,	alization,	nal M Boyo	lodel- ce Coo	
Module:1 Database Syste Keys, and Integ Normal Form, Module:2 Storage and Fil Management, O	Design and Implementation of Relational Model m Concepts and Architecture, Entity-Relationship (ER) Modelling, rity Constraints, Mapping ER model to Relational Schema, Norma Multi-valued dependency and Fourth Normal form Query Processing and Transaction Management	alization,	nal M Boyo	lodel- ce Coo	

Parallel Database Architecture, Data partitioning strategy, Inter-Query, and Intra-Query Parallelism, Distributed Database Features, Distributed Database Architecture, Fragmentation, Replication,

spatial databases, Multimedia database concepts, Automatic Analysis of Images, Object Recognition in

Cloud databases- Data Storage Systems on the Cloud, Data Representation, Partitioning and Retrieving Data, Challenges with Cloud-Based Databases- NoSQL Data model: Aggregate Models, Document

Database Security Issues, Security Models, Different threats to databases, Challenges to maintaining

Spatial database concepts, Spatial data types, and models, Spatial operators and queries,

Data Model, Key-Value Data Model, Columnar Data Model, Graph-Based Data Model

Semi Structured databases- XML Schema-DTD- XPath- XQuery, Semantic Web, RDF, RDFS

6 hours

6 hours

6 hours

5 hours

2 hours

45 hours

Total Lecture hours:

Indexing in

Distributed Query Processing, Distributed Transactions Processing

Semi-Structured Databases

Cloud and NoSQL Databases

Database Security

Contemporary Issues

Spatial and Multimedia Databases

Module:4

Module:5

Module:6

Module:7

Module:8

database security

Images, Semantic Tagging of Images

Tex	kt Book(s)					
1	Abraham Silberschatz, Hen	ry F. Korth, a	nd S. Su	dharsan, "Database System Concepts", 7h		
	Edition, McGraw Hill, 2019					
2	R. Elmasri and S. Navathe,	Fundamentals	of Databa	ase Systems, 7 th Edition, Addison-Wesley,		
	2016					
Re	ference Books					
1	Fawcett, Joe, Danny Ayers, and Liam RE Quin. "Beginning XML", Wiley India Private Ltd., 5 th					
	Edition, 2012					
2	Rigaux, Ph, Michel Scholl	, and Agnes V	oisard. "	Spatial databases: with application to GIS".		
	Morgan Kaufmann, 2002.					
3	Dunckley L. Multimedia d	atabases: An o	bject rela	ational approach. Addison-Wesley Longman		
	Publishing Co., Inc.; 2003 Ja	an 1.				
Mo	de of Evaluation: CAT / Writ	ten Assignmen	t / Quiz / 1	FAT		
Red	commended by Board of	26-07-2022				
Stu	dies					
Ap	proved by Academic	No. 67	Date	08-08-2022		
Co	uncil					

Course code	Course title	L	T	P	C
MCSE506P	DATABASE SYSTEMS LAB	0	0	2	1
Pre-requisite	NIL	Syll	abu	s ver	sion
				V	. 1.0

- 1. To understand the underlying principles of Relational Database Management System.
- 2. To focus on the modeling and design of secure databases and usage of advanced data models.
- 3. To implement and maintain the structured, semi structured and unstructured data.

Course Outcome

After completion of this course, the student shall be able to:

- 1. Construct database queries using Structured Query Language (SQL)
- 2. Design and implement applications that make use of distributed fault-tolerant databases.
- 3. Apply Spatial and Multimedia Database concepts to solve real-world problems.
- 4. Implement applications that work with structured, semi-structured, and unstructured databases
- 5. Create applications that use cloud storage technologies and relevant distributed file systems

Indicative Experiments

- 1. Study of Basic SQL Commands.
 - Model any given scenario into ER/EER Model
- 2. Table creation with constraints, alter schema, insert values, aggregate functions, simple and complex queries with joins, Views, Subqueries.
- 3. PL/SQL-Procedures, Cursors, Functions, Triggers
- 4. Partition a given database based on the type of query and compares the execution speed of the query with/without parallelism.
- 5. Create a distributed database scenario, insert values, fragment and replicate the database Query the distributed database
- 6. Consider a schema that contains the following table with the key underlined:

Employee (Eno, Ename, Desg, Dno). Assume that we horizontally fragment the table as follows:

Employee1(Eno; Ename; Desg; Dno), where 1<= Dno <=10 Employee2(Eno; Ename; Desg; Dno), where 11 <= Dno <=20 Employee3(Eno; Ename; Desg; Dno), where 21 <= Dno <=30

In addition, assume we have 4 sites that contain the following fragments:

- Site1 has Employee1
- Site2 has Employee2
- Site3 has Employee2 and Employee3
- Site4 has Employee1

Implement at least 5 suitable queries on Employee fragments. Add relations to the database as per your requirements.

- 7. Plot points, lines, and polygons using Spatial Databases such as Oracle Spatial, PostgreSQL, Microsoft SQL Server etc
- Use Spatial Databases to store data using Latitude and Longitude, find the distance between two spatial objects, find the area of a polygon
 - Store and retrieve images from a multimedia database
- 9. Create an XML document and validate it against an XML Schema/DTD. Use XQuery to query and view the contents of the database
- 10. Execute XPATH expressions on a database.

11.	Perform the following using a MongoDB Database								
	 Create an Employee Collect below for reference) 	tion and insert a fev	v documen	ts (sample document given					
	 { "name" : "Satish", "salary" : 30000, "address" : "Vellore", "school" : "SCOPE" } Display all employees whose address is vellore and salary is greater than 30000 Update the salary for an employee by name 'Ram' as 40000 Display only name and salary for all employees in the collection Display all employees who are not from 'SCOPE' school Display only documents that contains the address property 								
12.	2. Create an application that interacts with a cloud database.								
			Total Lab	poratory Hours 30 hours					
Tex	t Book(s)								
1.	D Abraham Silberschatz, Henry F. K McGraw Hill, 2021	orth, S. Sudarshan '	'Database S	System Concepts" 7th Edition					
Ref	erence Books								
1.	Elmasri and Navathe "Fundamentals	of Database Syste	ms", 7th E	dition Addison Wesley, 2014					
2.	Thomas Connolly, Carolyn Begg "Database Systems: A Practical Approach to Design, Implementation and Management" 6 th Edition, Pearson India, 2015								
3.	3. Mishra, Sanjay, and Alan Beaulieu. Mastering Oracle SQL: Putting Oracle SQL to Work. O'Reilly Media, Inc., 2004.								
Mod	de of Evaluation: CAT / Mid-Term La	ab/ FAT							
Rec	ommended by Board of Studies	26-07-2022							
App	Approved by Academic Council No. 67 Date 08-08-2022								

Course Code Course Title				Т	Р	С
MCSE614L Big Data Frameworks and Technologies			2	0	0	2
Pre-requisite NIL			llab	us \	/ers	ion
				1.0		

- 1. To understand the need of a framework to store and process the big data.
- 2. To have knowledge on the Big Data Technologies for processing the Different types of Data.
- 3. To understand the advanced frame work for faster accessing and processing of Big Data.

Course Outcomes

Upon completion of the course the student will be able to

- 1. Understand the need of new frame work to deal with huge amounts of Data.
- 2. Demonstrate the Hadoop framework Hadoop Distributed File System and MapReduce.
- 3. Demonstrate the Pig architecture and evaluation of pig scripts.
- 4. Describe the Hive architecture and execute SQL queries on sample data sets.
- 5. Demonstrate spark programming with different programming languages and graph algorithms.

Module:1 | Big Data

3 hours

Understanding Big Data: Concepts and terminology, Big Data Characteristics, Different types of Data, Identifying Data Characteristics - Big Data Architecture - Big Data Storage: File system and Distributed File System, NoSQL, Sharding, Replication, Sharding and Replication, ACID and BASE Properties.

Module:2 | Hadoop Framework

5 hours

Hadoop Architecture - Hadoop Distributed File System (HDFS) –YARN – Hadoop I/O – Map Reduce: Developing a map-reduce application – Map-reduce working procedure – Types and Formats - Features of Map reduce: sorting and joins- Pipelining MapReduce jobs.

Module:3 Hadoop Technologies-PIG

4 hours

Introduction, Parallel processing using Pig, Pig Architecture, Grunt, Pig Data Model-scalar and complex types. Pig Latin- Input and output, Relational operators, User defined functions -Working with scripts. Hadoop Operations.

Module:4 Hive

4 hours

Introduction-Hive modules, Data types and file formats, Hive QL-Data Definition and Data Manipulation-Hive QL queries, Hive QL views- reduce query complexity. Hive scripts. Hive QL Indexes- Aggregate functions- Bucketing vs Partitioning.

Module:5 | Spark

5 hours

Overview of Spark – Hadoop Overview of Spark – Hadoop vs. Spark – Cluster Design – Cluster Management – performance, Application Programming interface (API): Spark Context, Resilient Distributed Datasets, Creating RDD, RDD Operations, and Saving RDD - Lazy Operation – Spark Jobs.

Module:6 Data Analysis with Spark Shell

4 hours

Writing Spark Application - Spark Programming in Scala, Python, R, Java - Application Execution

Module:7 | Spark SQL and GraphX

4 hours

SQL Context – Importing and Saving data – Data frames – using SQL – GraphX overview – Creating Graph – Graph Algorithms.

Module:8 | Contemporary Issues

1 hour

Total Lecture hours:	30 hours

Text Book(s)

- 1. Thomas Erl, Wajid Khattak, and Paul Buhler, Big Data Fundamentals: Concepts, Drivers & Techniques, Pearson India Education Service Pvt. Ltd., First Edition, 2016.
- 2. Tom White, Hadoop: The Definitive Guide, O'Reilly Media, Inc., Fourth Edition, 2015.

Reference Books

- 1. Alan Gates, Programming Pig Dataflow Scripting with Hadoop, O'Reilly Media, Inc, 2011.
- 2. Jason Rutherglen, Dean Wampler, Edward Caprialo, Programming Hive, O'ReillyMedia Inc,2012
- 3. Mike Frampton, "Mastering Apache Spark", Packt Publishing, 2015.

Mode of Evaluation: CAT / written assignment / Quiz / FAT / Project / Seminar

Recommended by Board of Studies	26-07-2022		
Approved by Academic Council	No. 67	Date	08-08-2022

Cou	rse Code	Co	urse Title			L	Т	Р	С		
MCSE614P Big Data Frameworks and Technologies La						0	0	2	1		
Pre-	requisite	NIL				Syllabus version					
						1.0					
Cou	rse Objectiv	es			l.						
	1. To understand the need of a framework to store and process the big data.										
2	2. To have knowledge on the Big Data Technologies for processing the Different types										
	of Data.										
,		and the advanced frame	work for fa	ster acce	essing and	d proce	essir	ng of	Big		
	Data.										
Cou	rse Outcome										
		and evaluate the data m	aninulation	nrocedur	ee Heina	nia hiv	/A 21	nd er	nark		
	•	frame work.	iai lipulation	procedui	es using	pig, ili	ve a	iu s	Jain		
	on nadoo	TIGHTO WORK.									
Indi	cative Experi	ments									
1.		I configuring the Hadoop	frame work.	HDFS C	ommands	3,					
2.	Map Reduce	Program to show the ne	ed of combir	ner							
3.	Map Reduce	I/O Formats – Text, Key	– Value								
4.	Map Reduce	I/O Formats – NLine – M	1ultiline								
5.		I Configuring Apache PIG									
6		le Input / Output Formats									
7.		ache & Map side Join, R		Join							
8.		Running Spark Application	on								
9.		n Hadoop and Spark									
10.	Manipulation				0.1						
11.		nentation of Matrix algori			Sqi						
	programming	յ, Building Spark Streami			ratory Ho	ure	30 h	ours			
Refe	erence Books		10	iai Labo	ratory ric	Juis	30 11	Ours	<u> </u>		
		pton "Mastering Apache	Spark" – Pra	ct Publis	hina 2015	;					
	2. Tom White	, "Hadoop – The Definitiv	re Guide". O	'Relly 4 th	Edition 20) 15					
		eath, "Machine Learning									
4		d Gulle , "Big Data Anal					ide	to U	sing		
		arge Scale Data Analysis							Ū		
ļ	5. Adam Sh	ook and Donald Mine,"N	MapReduce	Design	Patterns:	Build	ing	Effec	ctive		
		and Analytics for Hadoo									
		ent: Continuous Assessm		Oral exar	nination a	nd oth	ers				
			7-2022								
App	roved by Acad	emic Council No. 6	57 [Date	08-08-20	22					

Course Code Course Title			L	Т	Р	С
MCSE615L Data Analytics				0	0	2
Pre-requisite	Pre-requisite Nil			us v	ersi	on
		1.0				

- 1. Explicate how to design, construct, and quality check a dataset before using it to a build prediction model.
- 2. Understanding the importance about feature selection in data models.
- 3. Understanding how information theory, similarity score and Probability theory can be used to build prediction models.

Course Outcomes

Text Book(s)

Upon completion of the course the student will be able to

- 1. Students will understand the basic concept of data mining and life cycles of data analytics.
- 2. Analyze and Apply the different data preprocessing techniques.
- 3. Analyze the characteristics of the data and its important feature.
- 4. Apply the prediction model for decision making for a given set of problems.
- 5. Students will understand the concept of distributed machine learning.

Module:1 Introduction to Data Mining 4 hours Introduction to Data Mining, Challenges in Data Mining, Data Mining Tasks, Machine Learning, Predictive Data Analytics Lifecycle, Predictive Data Analytics Tools Module:2 | Exploring Data 5 hours Different types of data, Normal Distribution, Identifying Data Quality Issues, Missing Values, Irregular Cardinality, Outlier, Advanced Data Exploration, Visualizing Relationships Between Features, Measuring Covariance and Correlation, Data Preparation, Normalization, Binning, Sampling Module:3 | Feature Selection 3 hours Feature Reduction- Feature Selection, Statistics for Feature Selection, Chi-Squared Test for Feature Selection, ANOVA F-test for Feature Selection, RFE feature selection, Dimensionality Reduction and PCA Module:4 Decision Tree and Similarity-based Learning 5 hours Decision Trees, Shannon's Entropy Model, Information Gain, Standard Approach: The ID3 Measuring Similarity Using Distance Metrics, Standard Algorithm, Feature Space, Approach: The Nearest Neighbor Algorithm, Extensions and Variations, Handling Noisy Data, Efficient Memory Search, Data Normalization, Predicting Continuous Targets Module:5 Probability-based Learning 3 hours Fundamentals, Bayes' Theorem, Bayesian Prediction, Conditional Independence and Factorization, Standard Approach: The Naive Bayes Model Module:6 | Error-based Learning 4 hours Simple Linear Regression, Measuring Error, Error Surfaces, Standard Approach: Multivariable Linear Regression with Gradient Descent, Multivariable Linear Regression, Gradient Descent, Choosing Learning Rates and Initial Weights. Module:7 Distributed Machine Learning 5 hours Data Parallelism - Splitting Input Data, Parameter Server and All-Reduce - Building a Data Parallel Training and Serving Pipeline-Model Parallelism - Splitting the Model-Pipeline Input and Layer Split- Implementing Model Parallel Training and Serving Workflows - Federated Learning and Edge Devices Module:8 Contemporary Issues 1 hour Total Lecture hours 30 hours

1. John D. Kelleher, Brian Mac Namee, Aoife D'Arcy -Fundamentals of Machine Learning

for Predictive Data Analytics: Algorithms, Worked Examples, MIT Press 2020, 2nd Edition.

2. Jason Brownlee -Data Preparation for Machine Learning: Data Cleaning, Feature Selection, and Data Transforms in Python, First Edition, 2020.

Reference Books

- 1. Pang-Ning Tan; Michael Steinbach; Anuj Karpatne; Vipin Kumar -Introduction to Data Mining. By: Publisher: Pearson, Edition: 2nd, 2019.
- 2. Guanhua Wang-Distributed Machine Learning with Python, Packt Publishing, 2022.

Mode of Evaluation: CAT / written assignment / Quiz / FAT / Project / Seminar

Recommended by Board of Studies	26-07-202	22	
Approved by Academic Council	No. 67	Date	08-08-2022

Course Code Course Title						L	Т	Р	С	
MCS	SE615P	I	Data Analytics I	_ab		0	0	2	1	
Pre-	Pre-requisite NIL					Syllab	ous v	vers	ion	
	•					1.0				
Cou	rse Objective	es								
Cou Upo	theory can	of the course the stu	ediction models. udent will be able	e to	ilarity sco	re and	d Pr	obal	oility	
		e different data pre _l prediction model for			n oot of n	roblom				
		ession algorithms fo								
	cative Experi	•	n initialing relation	Silips betv	veen data	variab	103			
1.		atistical measures o	of central tenden	cv and dis	persion su	ich as	min/	`)		
		(), meadian(), quan		•			,	, .	ets.	
2.	Demonstrate	e the different data v gram, Visualization (isualization tech	niques. (S	Scatter Plo	t, Hori	zont	al Ba	ar	
3.	Perform the	chi-square test and	ANOVA F-test of	n datasets	S.					
4.	Implement th	ne PCA method for	dimensionality re	duction or	n datasets	-				
5.		ne RFE method and								
6.	Implement th	ne Decision Tree for	given datasets	and compi	ute the acc	curacy	of m	node	l.	
7.	Implement the results.	ne K-Nearest Neighl	bor Algorithm for	given data	asets and	analyz	ze th	е		
8.		ne Naïve Bayes met								
9.	Implement si the goodnes	imple linear regress s of fit.	ion program to p	redict the	future valu	ies an	d an	alyze	Э	
10.	Implement ment the goodnes	nultivariate linear reç s of fit.	gression progran	n to predic	t the future	e value	es ar	nalyz	e.	
11.	Implementat	ion of Distributed De	ecision Trees							
			T	otal Labo	ratory Ho	ours	30 h	ours	>	
Text	t Book(s)									
•	John D. Kelleher, Brian Mac Namee, Aoife D'Arcy -Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, MIT Press 2020, 2nd Edition.									
Ref	erence Books	3								
,		wnlee -Data Prepara and Data Transforn		•		aning,	Fea	iture		
,		Wang-Distributed I	•			Public	shine	1 20	22	
		ent: Continuous As						ر, <u>د</u> ن		
		Board of Studies	26-07-2022	Jiui Okai	imiddion d	114 0111	J. J			
		demic Council	No. 67	Date	08-08-20	22				

Course Code	Course Title				Р	С
MCSE616L	Data Visualization				0	2
Pre-requisite	NIL	Syllabus vers				
		1.0				

- 1. To understand the various types of data, apply and evaluate the principles of data visualization.
- 2. Acquire skills to apply visualization techniques to a problem and its associated dataset.
- 3. To apply structured approach to create effective visualizations from the massive dataset using various visualization tools.

Course Outcomes

Upon completion of the course the student will be able to

- 1. Analyze the different data types, visualization types to bring out the insight.
- 2. Relate the visualization towards the problem based on the dataset to analyze and bring out valuable insight on large dataset.
- 3. Design visualization dashboard to support the decision making on large scale data.
- 4. Demonstrate the analysis of large dataset using various visualization techniques and tools.

Module:1 Introduction to Data Visualization 4 hours Overview of data visualization - Data Abstraction - Task Abstraction - Dimensions and Measures - Analysis: Four Levels for Validation. Statistical charts (Bar Chart - stacked bar chart - Line Chart - Histogram - Pie chart - Frequency Polygon - Box plot - Scatter plot -Regression curves.) Module:2 Visualization Techniques 4 hours Introduction to various data visualization tools - Scalar and point techniques - vector visualization techniques - multidimensional techniques - visualizing cluster analysis - Kmeans and Hierarchical Cluster techniques. Module:3 | Spatio-temporal Data Visualization Time Series data visualization – Text data visualization – Spatial Data Visualization Module:4 | Visual Analytics 3 hours Networks and Trees - Heat Map - Tree Map - Map Color and Other Channels Manipulate View - Visual Attributes Module:5 Multivariate Data Visualization Multivariate data visualization - Geometric projection techniques - Icon-based techniques -Pixel-oriented techniques - Hierarchical techniques - Scatterplot matrix - Hyper box - Trellis display - Parallel coordinates Module:6 Data Visualization Tools 5 hours Tableau functions and logics: Marks and Channels-Arrange Tables- Arrange Spatial Data-Facets into multiple views **Module:7** Visualization Dashboard Creations Data Dashboard- Taxonomies- User Interaction- Organizational Functions-Dashboard Design – Worksheets - Workbooks – Workbook Optimization - Protection and common mistakes. Dashboard creation using visualization tool use cases: Finance-marketinginsurance-healthcare. Module:8 | Contemporary Issues 1 hour **Total Lecture hours:** 30 hours Text Book(s) 1. Tamara Munzer, Visualization Analysis and Design, 1st edition, CRC Press, United

	States, 2015.						
2	Michael Fry, Jeffrey Ohlmann, Jeffrey Camm, James Cochran, Data Visualization:						
	Exploring and Explaining with Data, South-Western College Publishing, 2021						
Ref	ference Books						
1.	Dr. Chun-hauh Chen, W. K. H	ardle, A. Unwin,	Handboo	ok of Data Visualization, 1st			
	edition, Springer publication, Ger	rmany, 2008.					
2.	Ben Fry, Visualizing Data, 1st ed	lition, O'Reilly Me	edia, Unite	ed States, 2008.			
3.	Avril Coghlan, A little book of F	R for multivariate	analysis	, 1st edition, Welcome Trust			
	Sanger Institute, United Kingdom	ո, 2013.					
Mo	de of Evaluation: CAT / written as:	signment / Quiz /	FAT / Pro	oject / Seminar			
	Recommended by Board of Studies 26-07-2022						
App	proved by Academic Council	No. 67	Date	08-08-2022			

Course Code	Course Title		L	Т	Р	С
MCSE616P	Data Visualization Lab				2	1
Pre-requisite	NIL	Syllabus Versio				
		1.0				

1. Analyze and solve real time data visualization scenarios using Python/R integrating with Tableau.

Course Outcome

Upon completion of the course the student will be able to

- 1. Integrate with Tableau for various data visualization scenarios.
- 2. Design visualization dashboard to support the decision making on large scale data.
- 3. Demonstrate the analysis of large dataset using various visualization techniques and tools.

Indicative Experiments 1. Acquiring and plotting data 2. Statistical Analysis 3. K-means and Hierarchical Cluster techniques 4. Multivariate Analysis, Correlation, regression and analysis of variance. 5. Financial analysis Clustering, Histogram and Heat Map. 6. Time-series analysis Stock Market. 7. Visualization of various massive dataset Healthcare, Census, Geospatial. 8. Visualization on Streaming dataset Stock market, weather forecasting. 9. Market-Basket Data analysis-visualization 10. Text visualization using web analytics Total Laboratory Hours 30 hours

Text Book(s)

- 1. Tamara Munzer, Visualization Analysis and Design, 1st edition, CRC Press, United States, 2015.
- 2. Michael Fry, Jeffrey Ohlmann, Jeffrey Camm, James Cochran, Data Visualization: Exploring and Explaining with Data, South-Western College Publishing, 2021

Reference Books

- 1. Dr. Chun-hauh Chen, W. K. Hardle, A. Unwin, Handbook of Data Visualization, 1st edition, Springer publication, Germany, 2008.
- 2. Ben Fry, Visualizing Data, 1st edition, O'Reilly Media, United States, 2008.
- 3. Avril, A little book of R for multivariate analysis, 1st edition, Welcome Trust Sanger Institute, United Kingdom, 2013.

Mode of Assessment: Continuous Assessment / FAT / Oral examination and others						
Recommended by Board of Studies 26-07-2022						
Approved by Academic Council	No. 67	Date	08-08-2022			

Course Code	Course Title		L	Т	Р	С
MCSE617L	Domain Specific Predictive Analytics		2	0	0	2
Pre-requisite	NIL Syllab				visi	on
		1.0				

- 1. To introduce the fundamental concepts of predictive analytics.
- 2. To impart the knowledge on various steps that are necessary before constructing the predictive model.
- 3. To gain knowledge on the assessment of predictive models for decision making.

Course Outcomes

Upon completion of the course the student will be able to

- 1. Understand the fundamental concepts of predictive analytics.
- 2. Define the problem and prepare the data for analysis.
- 3. Construct different predictive models for decision making.
- 4. Apply descriptive modeling techniques for the given data.
- 5. Assess and interpret different predictive models.
- 6. Understand and apply appropriate algorithms for analyzing the data in healthcare domain.

Module:1 Overview of Predictive Analytics

4 hours

Introduction to Analytics – Predictive Analytics – Parametric vs. Non-Parametric Models -Business Intelligence – Predictive Analytics vs. Business Intelligence – Predictive Analytics vs. Statistics – Predictive Analytics vs. Data Mining – Challenges in using Predictive Analytics - Obstacles with Data - Obstacles with Modeling

Module:2Problem Setting, Data understanding and Preparation4 hoursDefiningData for Predictive Modeling - Defining Target Variable - DefiningDefiningMeasures of Success for Predictive Models - Single Variable and Multiple VariableSummaries - Data Visualization - Variable Cleaning - Feature Creation - Casestudy: Fraud Detection

Module:3 | Predictive Modeling

4 hours

Parameter Settings – Measures of Interesting Rules – Deploying Association Rules – Building Classification Rules from Association Rules – Neural Networks - Decision Trees – Linear Regression - Logistic Regression – K-Nearest Neighbor Classifier

Module:4 Descriptive Modeling

4 hours

Data Preparation Issues with Descriptive Modeling - Principal Component Analysis (PCA) Algorithm - Applying PCA to New Data - PCA for Data Interpretation - Clustering Algorithms - The K-Means Algorithm - The Kohonen SOM Algorithm - Visualizing Kohonen Maps

Module:5 | Model Ensembles and Assessing Predictive Models

4 hours

Model Ensembles - The Wisdom of Crowds - Bias Variance Tradeoff - Bagging - Boosting - Random Forests - Stochastic Gradient Boosting - Heterogeneous Ensembles - Interpreting Model Ensembles - Batch Approach to Model Assessment - Percent Correct Classification - Rank-Ordered Approach to Model Assessment - Assessing Regression Models.

Module:6 Healthcare Analytics(T2:Ch1&11)

Introduction - Healthcare Data Sources and Basic Analytics - Electronic Health

Records -Clinical Prediction Models - Privacy-Preserving Data Publishing -Temporal Data Mining for Healthcare Data - Association Analysis - Classical Methods - Temporal Methods - Temporal Pattern Mining - Sequential Pattern Mining Time-Interval Pattern Mining - Medical Applications - Sensor Data Analysis -Convolutional Event Pattern Discovery - Patient Prognostic via Case-Based Reasoning - Disease Progression Modeling Module:7 Visual Analytics for Healthcare Data 5 hours Visual Analytics and Medical Data Visualization - Clinical Data Types - Standard Techniques to Visualize Medical Data - High-Dimensional Data Visualization -Visualization of Imaging Data - Visual Analytics in Healthcare - Visual Analytics in Public Health and Population Research - Geospatial Analysis- Visual Analytics for Clinical Workflow - Visual Analytics for Clinicians - Patient Progress and Guidelines -Visual Analytics for Patients - Assisting Comprehension Module:8 | Contemporary Issues 1 hour Total Lecture hours: 30 hours Text Book(s) Dean Abbott, Applied Predictive Analytics: Principles and Techniques for the professional Data Analyst, John Wiley & Sons Inc. Publishers, First edition, 2014. Chandan K. Reddy, Charu C. Aggarwal, Healthcare Data Analytics, Chapman & Hall/CRC, Data Mining and Knowledge Discovery Series, 2015. **Reference Books** Klimberg, Ron and B.D. McCullough, Fundamentals of Predictive Analytics with JMP®, Cary, NC: SAS Institute Inc., Second Edition, 2016. Eric Siegel, Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die, John Wiley & Sons Inc. Publishers, Second edition, 2016. Hui Yang, Eva K. Lee, Healthcare Analytics: From Data to Knowledge to Healthcare Improvement, John Wiley & Sons Inc. Publishers, 2016. Mode of Evaluation: CAT / written assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 18-11-2022 Approved by Academic Council No. 68 Date 19-12-2022

Course code	Course Title				Р	С
MCSE617P	Domain Specific Predictive Analytics Lab				2	1
Pre-requisite	NIL	Syllabus version			ion	
				1.0		

- 1. To introduce the fundamental concepts of predictive analytics.
- 2. To impart the knowledge on various steps that are necessary for constructing the predictive model.
- 3. To gain knowledge on the assessment of predictive models for decision making.

Course Outcome

2014.

Upon completion of the course the student will be able to

- 1. Understand the fundamental concepts of predictive analytics.
- 2. Define the problem and prepare the data for analysis.
- 3. Construct different predictive models for decision making.
- 4. Apply descriptive modeling techniques for the given data.
- 5. Assess and interpret different predictive models.
- 6. Understand and apply appropriate algorithms for analyzing the data in healthcare domain.

Indi	cative Experiments
Ехр	eriments can be implemented using R/Python.
1.	Clustering based data analytics using R/Python. (K-Means, SOM algorithms)
2.	Demonstrate the statistics for a sample data like mean, standard deviation,
	normal/uniform distribution, variance and correlation.
3.	Demonstrate missing value analysis, fixing missing values and outlier analysis
	using Healthcare domain datasets.
4.	Demonstrate data visualization, histograms and multiple variable summaries.
5.	Demonstrate transformation, scaling, binning, fixing skewed values and
	sampling.
6	Demonstration of Apriori algorithm on transaction dataset to find association
	rules.
7.	Demonstration of Linear and Logistic regression using various domain
	datasets.
8.	Demonstration of predictive models such as Decision Tree, Neural network and
	K-Nearest Neighbor using various domain datasets.
9.	Demonstration of Temporal Mining Techniques
10.	Demonstration of predictive analytics using healthcare data and microarray
	data.
	Total Laboratory Hours 30 hours
Tex	t Book(s)

Dean Abbott, Applied Predictive Analytics: Principles and Techniques for the professional Data Analyst, John Wiley & Sons Inc. Publishers, First edition,

 Chandan K. Reddy, Charu C. Aggarwal, Healthcare Data Analytics, Chapman & Hall/CRC, Data Mining and Knowledge Discovery Series, 2015. 							
Reference Books							
	Manohar Swamynathan, Mastering Machine Learning with Python in Six						
Steps, Apress Publishers, First	edition, 201	17.					
Mode of Assessment: Continuous Asse	Mode of Assessment: Continuous Assessment / FAT						
Recommended by Board of Studies	18-11-2022						
Approved by Academic Council	No. 68	Date	19-12-2022				

Course Code	Course Title	Course Title				С
MCSE618L	Social Network Analytics	Social Network Analytics				2
Pre-requisite	NIL	Syllabus version				on
		1.0				

- 1. Understand the components and entities of the social network
- 2. Analyze social media data to comprehend user sentiments and recommend the essential information appropriately.
- 3. Model and visualize the social network

Course Outcomes

- 1. Illustrate the basic concepts of social network.
- 2. Analyse the networks to find prominent actors and relate social network models.
- 3. Develop social network applications using tools and techniques.
- 4. Detect and analyze the communities in social networks.
- 5. Design a system to assimilate information available on the web to model and build Social Network Application.

Module:1 | Fundamentals of Social Network Analysis

4 hours

Social Network Perspective, Fundamentals concepts in Network Analysis: Sociogram, Sociometry. Social Network Data: Types of Networks: One-Mode, Two-Mode, Affiliation, Ego-centered and Special Dyadic Networks, Network Data, Measurement and Collection, Notations for Social Network Data: Graphs, Directed, Singed, Valued graphs, Multigraph, Relations and Matrices.

Module:2 Centrality and Prestige

4 hours

Prominence: Actor-Centrality, Prestige, Group-Centrality, Prestige, Non directional Relations-Degree, Closeness, Betweenness, Eigen Vector Centrality, Directional Relations-Centrality, Prestige.

Module:3 | Structural Balance and Transitivity

3 hours

Structural Balance: Signed Non directional, Signed Directional Relations, Checking for Balance, Index for Balance, Clusterability-Theorems, Clustering Coefficient and Transitivity.

Module:4 | Cohesive Subgroups

5 hours

Social Group and Subgroup-Notation, Subgroups Based on Complete Mutuality: Clique, Reachability and Diameter: n-cliques, n-clans and n-clubs, Subgroups Based on Nodal Degree: k-plexes, k-cores, Measures of Subgroup Cohesion, Community detection using Subgroups and Betweenness.

Module:5 | Structural Equivalence

4 hours

Definition, Social Roles and , Positional Analysis, Measuring Structural Equivalence, Representation of Network Positions, Block Models: Introduction, Network Positions and roles-Introduction

Module:6 Dyadic and Triadic Methods

4 hours

Dyads: Definitions, Dyad Census, Index, Simple Distributions, Triads: Random Models and Substantive Hypotheses, Triad Census, Distribution of a Triad Census-Mean and Variance, Testing Structural Hypotheses.

Module:7 | Models in Social Network

5 hours

Small world netw	ork- Watt Strogatz n	etworks - sta	itistical m	odels	for social networks -				
network evaluation model - Preferential attachment - power law - Random Model :									
Erdos -Renyi mo	Erdos -Renyi model - Barabasi Albert model - Epidemic model - Case study: Text								
and opinion Anal	ysis								
Module:8 Cont	emporary Issues				1 hour				
		Total Lec	ture hou	ırs:	30 hours				
Text Book(s)				I					
	Stanley, and Kathe	rine Faust	Social N	etwork	k Analysis: Methods				
					ciences. Cambridge				
	ess, 2012 Online Ed		500	iai oc	olenoes. Cambriage				
2.	CSS, ZOTZ CTIIITO ZO	ilitioi i.							
1 1	Barahási Networ	k Science	Cambrid	ae Ui	niversity Press, 1st				
edition, 2016		K Science,	Odmbna	ge o	111VO131LY 1 1033, 13C				
	•								
Reference Book	s								
		alvsis" Sage	Publica	tions	Ltd., Fourth Edition,				
2017.	Social Network 741	arysis, sage	, i abilea	10113	Ltd., Tourth Edition,				
2.									
_ :	& Song Vang "So	cial Network	Δnalvsi	s" Sa	ge Publishing, Third				
Edition, 2020		Ciai i vetivoii	· / iiidiyəi.	5 , Ju	go r abiisiiiig, riiiia				
Mode of Evaluation: CAT / written assignment / Quiz / FAT / Project / Seminar									
IVIOGE OF EVAIDAGE	on. OAT / Willen as.	significant / Q	uiz / I A I	, i 10j	CCC / Ocminal				
Recommended b	y Board of Studies	18-11-2022)						
Approved by Aca	3	No. 68	Date	19-12	2-2022				

Course Code	Course Title				Р	С
MCSE618P	Social Network Analytics Lab		0	0	2	1
Pre-requisite	NIL	Syllabus version				
		1.0				

- 1. Understand the components of the social network
- 2. Analyze social media data to understand user sentiment and recommend the requisite information accordingly.
- 3. Model and visualize the social network

Course Outcome

Upon completion of the course the student will be able to

- 1. Demonstrate the basic properties of social network
- 2. Demonstrate of analysis of social networks to find prominent actors and apply social network models.
- 3. Develop social network applications using visualization tools.
- 4. Detect and analyze the communities in social networks.
- 5. Design a system to harvest information available on the web to model and build Social Network Application.

Indicative Experiments

- 1. Study and demonstrate to find the basic properties of a Graph/Social Network.
- 2. Demonstrate the calculation of Centrality measures.
- 3. Demonstrate the ranking of web pages in a web graph.
- 4. Find divisions in a Social Network.
- 5. Implement Community Detection algorithms on a Social Network.
- 6. Demonstrate modelling of Social Networks.
- 7. Visualize multidimensional Social Network.
- 8. Applications of Classification and Clustering on a Social Network.
- 9. Design and implement a Sentiment Analyzer.
- 10. Design and implement a Social Network.

Total Laboratory Hours | 30 hours

Text Book(s)

- 1. Wasserman Stanley, and Katherine Faust, Social Network Analysis: Methods and Applications, Structural Analysis in the Social Sciences. Cambridge University Press, 2012 Online Edition.
- 2. Albert-László Barabási, Network Science, Cambridge University Press, 1st edition, 2016.

Reference Books

- 1. John Scott, "Social Network Analysis", Sage Publications Ltd., Fourth Edition, 2017.
- 2. David Knoke & Song Yang, "Social Network Analysis", Sage Publishing, Third Edition, 2020.

Mode of	Assessment:	Continuous	Assessment :	/ FAT
INDUC OF	ひつつこうしょ	COHUHUUUS	M33C33HICHL	

Recommended by Board of Studies	18-11-2022				
Approved by Academic Council	No. 68	Date	19-12-2022		

Course code	Course Title		L	Т	Р	С
MCSE619L	9L Text and Speech Analytics					
Pre-requisite	NIL	Syl	lab	us \	/ers	ion
				1.0		

- 1. To introduce the tools and techniques for performing text and speech analytics in diverse contexts.
- 2. To understand the tools and technologies involved in developing text and speech applications.
- 3. To demonstrate the use of computing for building applications in text and speech processing.

Course Outcomes

Upon completion of the course the student will be able to

- 1. Develop tools to analyse the syntax and semantics of a statement written in a natural language.
- 2. Apply machine learning and deep learning techniques to natural language processing.
- 3. Use signal processing techniques to analyze/represent speech.
- 4. Execute trials of speech systems.
- 5. Evaluate the performance of NLP & Speech systems.

Module:1	Introduction to Text Processing and Language	5 hours
	Modeling	
Introduction	n to Natural Language Processing (NLP) and Levels	of NLP - Regular
Expression	- Basic Text processing- Text normalization - Ver	ctor Semantics and
embedding	: Lexical Semantics , Vector Semantics , Words and	Vectors - Pointwise
Mutual Info	rmation, N-gram Language Models: N-grams, Smoot	hing.

Module:2 Parts of speech and Named entities 4 hours

Parts of Speech Tagging - Hidden Markov Model - Conditional Random Fields. Constituency Grammars: Constituency, Context Free Grammars, Dependency Parsing: Dependency Relations, Dependency Formalism, Neural Dependency Parser.

Module:3	Logical Representations of Sentence Meaning	4 hours
Logical Re	presentations of Sentence Meaning, Word Sense ar	nd Word Net, Word
Sense Disa	ambiguation, Word Sense Induction.	

Module:4 | Applications of Text and NLP 4 hours

Naive Bayes and Sentiment Analysis: Naive Bayes for text classification, Information Extraction - Relation extraction. Learning Architectures for Sequence Processing: Recurrent Neural Networks for text classification- Long Short-Term Memory (LSTM).

Module:5	Phonetics				3 hours			
Speech Sounds and Phonetic Transcription, Articulatory Phonetics - Prosc								
Acoustic P	honetics and Signals - Pho	netic Resou	ırces.					
Module:6		4 hours						
Automatic	Speech Recognition (ASR)) Task - Fea	ature Extr	raction:	Log Mel Spectrum -			
Speech F	Recognition Architecture	Introduc	tion: Ga	aussian	Mixture Model -			
Connectio	nist Temporal Classification	n (CTC) - AS	SR Evalu	ation: W	ord Error Rate.			
Module:7	Text-To-Speech				5 hours			
Text-To-S	beech (TTS) Preprocessii	ng: Text n	ormaliza	tion –	TTS: Spectrogram			
Prediction	– TTS: Vocoding - TTS Eva	aluation.						
Module:8	Contemporary Issues				1 hour			
	Т	Total	Lastura	haurai	20 hours			
		lotai	Lecture	nours:	30 hours			
Text Book	<u> </u>							
	ırafsky, D. and J. H. M.	artin Snee	ch and	langua	ne processina. An			
	troduction to Natural Lan	•		-	• •			
	nd Speech Recognition (3rd		_	о оттро	anona <u> </u>			
Reference	<u>-</u>							
1. Jo	hn Atkinson-Abutridy, Tex	t Analytics:	An Intro	duction	to the Science and			
	oplications of Unstructured							
2. In	troduction to Voice Comput	ting in Pytho	on, Jim S	chwoeb	el, NeuroLex, 2018			
_ TI	neory and Applications o	of Digital S	Speech	Process	sing Lawrence R			
J.	abiner, Ronald W. Schafe,	•	•		mg, Lawrence in			
4	•	av. Natura			Processing and			
	Computational Linguistics. A practical guide to text analysis with 1 yillon							
Gensim, spaCy, and Keras. Packt Publishing Ltd, 2018.								
Mode of E	valuation: CAT / written ass	signment / C	Quiz / FA	T / Proje	ect / Seminar			
Recomme	nded by Board of Studies	18-11-202	2					
	by Academic Council	No. 68	Date	19-12-	2022			

Course Code	Course Title		L	Т	Р	С
MCSE619P	Text and Speech Analytics Lab		0	0	2	1
Pre-requisite	NIL Syllabus ve					ion
		1.0				

- 1. To introduce the tools and techniques for performing text and speech analytics in diverse contexts.
- 2. To understand the tools and technologies involved in developing text and speech applications.
- 3. To demonstrate the use of computing for building applications in text and speech processing.

Course Outcomes

Upon completion of the course the student will be able to

- 1. Develop tools to analyse the syntax and semantics of a statement written in a natural language.
- 2. Apply machine learning and deep learning techniques to natural language processing.
- 3. Use signal processing techniques to analyze/represent speech.
- 4. Execute trials of speech systems.
- 5. Evaluate the performance of NLP & Speech systems.

Indicative Experiments Introduction to text processing packages in Python. Demonstration of Genism for Vectorizing Text, Transformations and n-grams. 2. 3. Demonstration of Part-of-Speech tagging using spaCy. Demonstration of text parsing, topic modeling, text clustering and text classification. Demonstration of Deep learning techniques for text classification and for designing a chatbot. Analyze Speech signal - Fast Fourier Transform (FFT), spectrogram, Linear predictive coding, Mel-frequency Cepstral Coefficients (MFCC) features. Demonstration of Hidden Markov Model based Isolated word recognition. 8. Demonstration of Continuous speech recognition using CTC. 9. Demonstration of Alexa speech enabled application development system. Demonstration of Google voice API based speech transcription system. Total Laboratory Hours 30 hours

Text Book(s)

 Jurafsky, D. and J. H. Martin, Speech and language processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition (3rd Draft), 2021. 2. Srinivasa-Desikan, Bhargav. Natural Language Processing and Computational Linguistics: A practical guide to text analysis with Python, Gensim, spaCy, and Keras. Packt Publishing Ltd, 2018.

Reference Books

- 1. John Atkinson-Abutridy, Text Analytics: An Introduction to the Science and Applications of Unstructured Information Analysis, CRC Press, 2022.
- 2. Introduction to Voice Computing in Python, Jim Schwoebel, NeuroLex, 2018
- 3. Theory and Applications of Digital Speech Processing, Lawrence R. Rabiner, Ronald W. Schafe, 1st Edn. Pearson, 2010.

Mode of Assessment: Continuous Assessment / FAT							
Recommended by Board of Studies	18-11-2022						
Approved by Academic Council	No. 68	Date	19-12-2022				

Course Code	Course Title		L	Т	Р	С
MCSE620L	Analytics for Internet of Things		2	0	0	2
Pre-requisite	NIL Sylla				ersi	on
		1.0				

- 1. To introduce the fundamentals of IoT data analytics and major challenges in IoT data analytics.
- 2. To provide knowledge on IoT network architecture and design.
- 3. To understand smart objects and IoT networking protocols.

Course Outcomes

Upon completion of the course the student will be able to

- Understand the specific challenges in applying data analytics techniques over IoT data.
- 2. Will know IoT network architecture and design.
- 3. Smart objects and connecting smart objects
- 4. Analyze various IoT networking protocols.
- 5. Apply IoT analytics for cloud and data science for IoT analytics.

Module:1 IoT Analytics and Challenges 3 hours

Defining IoT analytics: Defining Analytics, Defining Internet of Things, The concepts of constrained - IoT analytics challenges: the Data volume, Problem with time and space, Data quality, Analytics Challenges - Business value concerns.

Module:2 | IoT Network Architecture and Design 5 hours

Drivers behind New Network Architectures, Comparing IoT Architectures, A Simplified IoT Architecture, The Core IoT Functional Stack, IoT Data Management and Compute Stack.

Module:3 Smart Objects: The Things in IoT 3 hours

Sensors, Actuators, and Smart Objects, Sensor Networks

Module:4 Connecting Smart Objects 6 hours

Communications Criteria, Range, Frequency Bands, Power Consumption, Topology, Constrained Devices, Constrained-Node Networks, IoT Access Technologies, IEEE 802.15.4, IEEE 802.15.4g and 802.15.4e, LoRaWAN.

Module:5 IoT Networking Protocols 3 hours

IoT networking data messaging protocols, Message Queue Telemetry Transport (MQTT), Hyper-Text Transport Protocol (HTTP), Constrained Application Protocol (CoAP), Data Distribution Service (DDS).

Module:6 | IoT Analytics for the Cloud 4 hours

Building elastic analytics, Elastic analytics concepts, designing for scale, Cloud security and analytics, The AWS overview, Microsoft Azure overview.

Module:7 Data Science for IoT Analytics 5 hours

	Machine learning (ML), Feature engineering with IoT data, Validation methods,								
		ding the bias-variance trace							
	best fit using R, Random forest models using R, Anomaly detection using R. Module:8 Contemporary Issues 1 hour								
IVIO	dule.o	Contemporary issues					1 Hour		
			Total I	_ecture h	nours:		30 hours		
Tex	t Book	(s)							
1.	Andrev	v Minteer , Analytics for the	Internet of	things, P	ackt pu	blishing 2	017.		
2.	2. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, IoT Fundamentals:Networking Technologies, Protocols and Use Cases for Internet of Things, Cisco Press, 2017.								
Ref	ference	Books							
1.		u Raj, Anupama C. R ologies, Platforms, and Use				Things,	Enabling		
2.		nar Buyya, Amir Vahid D gms, Morgan Kaufmann, 1s			of Thir	ngs Princ	iples and		
3.		Schwartz, Internet of ning,2016	Things	with Ar	duino	Cookboo	k, Packt		
4.	4. Adeel Javed, "Building Arduino Projects for the Internet of Things: Experiments with Real-World Applications", 1st Edition, Apress, 2016.								
Mo	de of Ev	valuation: CAT / written assi	gnment / C	uiz / FAT	7 Proje	ct / Semir	nar		
		nded by Board of Studies	18-11-20	22		-			
App	oroved b	y Academic Council	No. 68	Date	19-12	-2022			

Course Code	Course Title		L	Т	Р	С
MCSE620P	Analytics for Internet of Things Lab		0	0	2	1
Pre-requisite	NIL	Syllabus versio				ion
		1.0				

- 1. To introduce the fundamentals of IoT data analytics and major challenges in IoT data analytics.
- 2. To provide knowledge on IoT network architecture and design.
- 3. To understand smart objects and IoT networking protocols.

Course Outcome

Upon completion of the course the student will be able to

- 1. Understand the specific challenges in applying data analytics techniques over IoT data.
- 2. Will know IoT network architecture and design.
- 3. Smart objects and connecting smart objects
- 4. Analyze various IoT networking protocols.
- 5. Apply IoT analytics for cloud and data science for IoT analytics.

Indi	cative Experiments						
1.	Study different sensors, actuators, and their applications.						
2.	Write a program using Arduino IDE for Blink LED.						
3.	Write a program to interface the DHT11 sensor with Arduino/Raspberry to print						
	temperature and humidity readings.						
4.	Write an application to read temperature from the environment. If the						
	temperature crosses the threshold value then it notifies with a buzzer.						
5.	Study and implement MQTT protocol using Arduino.						
6	Study and implement COAP protocol using Arduino.						
7.	Write a program on Arduino/Raspberry Pi to upload temperature and humidity						
_	data to the ThingSpeak cloud.						
8.	Write an application to send Light Sensor Values to the ThingSpeak cloud						
9.	Write an application to send Temperature and Humidity Values to the ThingSpeak cloud						
10.	Implementation of Machine learning approaches over IoT data.						
	Total Laboratory Hours 30 hours						
Tex	t Book(s)						
1.	Andrew Minteer, Analytics for the Internet of things, Packt publishing 2017.						
2.	David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome						
	Henry, IoT Fundamentals: Networking Technologies, Protocols and Use Cases						
	for Internet of Things, Cisco Press, 2017.						
Ref	erence Books						
1.	Pethuru Raj, Anupama C. Raman, The Internet of Things, Enabling						
	Technologies, Platforms, and Use Cases, CRC Press, 2017.						
2.	Rajkumar Buyya, Amir Vahid Dastjerdi, Internet of Things Principles and						

Paradigms, Morgan Kaufmann, 1st edition, 2016.

3.	Marco	Schwartz,	Internet	of	Things	with	Arduino	Cookbook,	Packt	
	Publish	ing,2016			_					
4.	Adeel Javed, "Building Arduino Projects for the Internet of Things: Experiments									
	with Real-World Applications", 1st Edition, Apress, 2016.									
Mod	le of Ass	essment: Co	ntinuous /	∖sse	essment /	FAT				
Rec	Recommended by Board of Studies 18-11-2022									
App	roved by	Academic C	Council	1	No. 68	Date	19-12	2-2022		

Course Code	Course Title	L	Т	Р	С
MCSE696J	Study Oriented Project				02
Pre-requisite	NIL	Syll	abus	vers	ion
			1.	0	

- 1. The student will be able to analyse and interpret published literature for information pertaining to niche areas.
- 2. Scrutinize technical literature and arrive at conclusions.
- 3. Use insight and creativity for a better understanding of the domain of interest.

Course Outcome:

- 1. Retrieve, analyse, and interpret published literature/books providing information related to niche areas/focused domains.
- 2. Examine technical literature, resolve ambiguity, and develop conclusions.
- 3. Synthesize knowledge and use insight and creativity to better understand the domain of interest.
- 4. Publish the findings in the peer reviewed journals / National / International Conferences.

Module Content (Project duration: One sen	iester)
---	---------

This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty.

Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science, Engineering Technology.

Recommended by Board of Studies	26-07-202	2	
Approved by Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title	L	T	Р	С
MCSE697J	Design Project				02
Pre-requisite	NIL	Sylla	abus	vers	ion
		1.0			

- 1. Students will be able to design a prototype or process or experiments.
- 2. Describe and demonstrate the techniques and skills necessary for the project.
- 3. Acquire knowledge and better understanding of design systems.

Course Outcome:

- 1. Develop new skills and demonstrate the ability to upgrade a prototype to a design prototype or working model or process or experiments.
- 2. Utilize the techniques, skills, and modern tools necessary for the project.
- 3. Synthesize knowledge and use insight and creativity to better understand and improve design systems.
- 4. Publish the findings in the peer reviewed journals / National / International Conferences.

Students are expected to develop new skills and demonstrate the ability to develop prototypes to design prototype or working models related to an engineering product or a process.

Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Report to be submitted, presentation and project reviews – Presentation in the National / International Conference on Science, Engineering Technology.

Recommended by Board of Studies	26-07-202	2	
Approved by Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title	L	Т	Р	С
MCSE698J	Internship I/ Dissertation I				10
Pre-requisite	NIL	Syll	abus	vers	ion
			1.0)	

To provide sufficient hands-on learning experience related to the design, development and analysis of suitable product / process so as to enhance the technical skill sets in the chosen field and also to give research orientation.

Course Outcome:

- 1. Considerably more in-depth knowledge of the major subject/field of study, including deeper insight into current research and development work.
- 2. The capability to use a holistic view to critically, independently and creatively identify, formulate and deal with complex issues.
- 3. A consciousness of the ethical aspects of research and development work.
- 4. Publications in the peer reviewed journals / International Conferences will be an added advantage.

Module Content

(Project duration: one semester)

- 1. Dissertation may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities.
- 2. Dissertation should be individual work.
- 3. Carried out inside or outside the university, in any relevant industry or research institution.
- 4. Publications in the peer reviewed journals / International Conferences will be an added advantage.

Mode of Evaluation: Assessment on the project - Dissertation report to be submitted, presentation, project reviews and Final Oral Viva Examination.

Recommended by Board of Studies	26-07-2022		
Approved by Academic Council	No. 67	Date	08-08-2022

Course Code	Course Title	L	T	Р	С
MCSE699J	Internship II/ Dissertation II				12
Pre-requisite	NIL	Syl	labus	vers	sion
			1.0)	

To provide sufficient hands-on learning experience related to the design, development and analysis of suitable product / process so as to enhance the technical skill sets in the chosen field.

Course Outcome:

Upon successful completion of this course students will be able to

- 1. Formulate specific problem statements for ill-defined real life problems with reasonable assumptions and constraints.
- 2. Perform literature search and / or patent search in the area of interest.
- 3. Conduct experiments / Design and Analysis / solution iterations and document the results.
- 4. Perform error analysis / benchmarking / costing.
- 5. Synthesize the results and arrive at scientific conclusions / products / solution.
- 6. Document the results in the form of technical report / presentation.

Module Content

(Project duration: one semester)

- Dissertation may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities.
- 2. Dissertation should be individual work.
- 3. Carried out inside or outside the university, in any relevant industry or research institution.
- 4. Publications in the peer reviewed journals / International Conferences will be an added advantage.

Mode of Evaluation: Assessment on the project - Dissertation report to be submitted, presentation, project reviews and Final Oral Viva Examination.

Recommended by Board of Studies	26-07-2022		
Approved by Academic Council	No. 67	Date	08-08-2022

Course code	Course Title		L	T	Р	С
MFRE501L	Français Fonctionnel		3	0	0	3
Pre-requisite	NIL	Syll	abı	is v	ers	ion
			1	.0		

- 1. Demonstrate competence in reading, writing, and speaking basic French, including knowledge of vocabulary (related to profession, emotions, food, workplace, sports/hobbies, classroom and family).
- 2. Achieve proficiency in French culture oriented view point.

Course Outcome

At the end of the course, the student will be able to

- 1. Remember the daily life communicative situations via personal pronouns, emphatic pronouns, salutations, negations, interrogations etc.
- 2. Create communicative skill effectively in French language via regular / irregular verbs.
- 3. Demonstrate comprehension of the spoken / written language in translating simple sentences.
- 4. Understand and demonstrate the comprehension of some particular new range of unseen written materials.
- 5. Demonstrate a clear understanding of the French culture through the language studied

Module:1 Saluer, Se présenter, Etablir des contacts. Compétences en lecture - consulter un dictionnaire, appliquer des stratégies de lecture, lire pour comprendre.

Les nombres cardinaux- Les 7 jours de la semaine-Les 12 mois de l'année- La date-Les saisons-Les Pronoms personnels sujets-Les Pronoms Toniques- La conjugaison des verbes réguliers- er / - ir /-re verbes (Le présent)- La conjugaison des verbes irréguliers- avoir /être / aller / venir / faire /vouloir /pouvoir etc.

Savoir-faire pour: saluer, et se présenter – épeler en français – communiquer en classe – utiliser des stratégies pour comprendre un texte en français.

Module:2	Présenter quelqu'un, Chercher un(e) correspondant(e), Demander des nouvelles d'une personne.	7 hours
La conjugai	son des verbes Pronominaux (s'appeler/ s'amuser/ se promen-	er)- La Négation-
L'interrogati	on avec 'Est-ce que ou sans Est-ce que'- Répondez négativeme	ent.
Module:3	Situer un objet ou un lieu, Poser des questions	6 hours

Les articles (défini/ indéfini)- Les prépositions (à/en/au/aux/sur/dans/avec etc.)- L'article contracté- L'heure- La Nationalité du Pays- Les professions- L'adjectif (La Couleur, l'adjectif possessif, l'adjectif démonstratif, l'adjectif interrogatif (quel/quelle/quels/quelles)- L'interrogation avec Comment/ Combien / Où etc., Pronoms relatifs simples (qui/que/dont/où).

Modu	e:4 Comprendre et traduire un texte court, Demander et indiquer le chemin.	5 hours
La trad	uction simple d'un texte/ dialogue :(français-anglais / anglais –frança	is)
Modu	Trouver les questions, Répondre aux questions générales en français, Écouter des vidéos (site internet, YouTube) qui aident à améliorer leur prononciation/ vocabulaire et leurs compétences orales	6 hours

L'article Partitif (du/ de la / de l'/ des) -Faites une phrase avec les mots donnés- Mettez les phrases en ordre, masculin/féminin ; singulier/pluriel- Associez les phrases- les adverbes de temps (ensuite/hier/puis....)

J						/		
	Mod	lule	e:6	ompéte	nces r	re un passage - développer des édactionnelles. Discussion de gr	roupe	5 hours
				(aonne:	z un su	ijet et demandez aux élèves de p	artager	

		leurs idées)					
1		Famille -La Maison -L'unive	ersité -Les Loisir	rs-La Vie qu	otidienne	e- La ville natale-	
		age célèbre					
		Comment écrire un dialog	ue			5 hours	
1	Dialogue						
1 '		r un billet de train					
		ıx amis qui se rencontrent au	u caté				
		membres de la famille					
		eatient et le médecin					
		professeur et l'étudiant(e)				2 haura	
IVIOC	dule:8	Contemporary Topics				2 hours	
		I			1		
			То	tal Lecture	hours:	45 hours	
Text	t Book(s)			'		
	Adoma	ania 1, Méthode de franç	ais, CelineHim	iber, Corina	Brillant	, Sophie Erlich.	
1.	Publisher HACHETTE, February 2016.						
2.	Encha	nté 1 !, Méthode de français,	, Rachana Saga	ar Private Lir	nited, Ja	n 2017.	
Refe	erence	Books	_				
1.		nçais pour vous 1, Métho publishing, Jan 2019.	de de français	s, VinodSikı	ri, Anna	Gabriel Koshy,	
2.	Accue	l 1, Méthode de français, Ra	ichana Sagar P	rivate Limite	d, Janua	ary 2016	
3.	Apprenone la français 1 Méthoda de français Mahitha Paniit & Monica Singh Jan						
Mod	Modeof Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final						
Assessment Test							
Rec	Recommended by Board of Studies 19-05-2022						
App	roved b	/ Academic Council	No. 66	Date 1	6-06-202	22	

Course code	Course Title		Т	Р	С
MGER501L	Deutsch für Anfänger	3	0	0	3
Pre-requisite	NIL	Syllabus version			rsion
		1.0			

- 1. Demonstrate competency in reading, writing and speaking in Basic German.
- 2. Achieve proficiency in German culture oriented view point.
- 3. Develop basic vocabulary in the technical field.

Course Outcome

At the end of the course, the student will be able to

- 1. Communicate in German language in their daily life communicative situations.
- 2. Apply the German language skill in writing corresponding letters, E-Mailsetc.
- 3. Create the talent of translating passages from English-German and vice versa and to

frame simple dialogues based on given situations.

4. Understand and demonstrate the comprehension of some particular new range of unseen

written materials.

5. Develop a general understanding of German culture and society.

Module:1 Die erste Begegnung

6 hours

Einleitung, Begrüssungs formen, Länder und Sprachen, Alphabet, Buchstabieren, Personalpronomen, Zahlen (1-100), Telefonnummer und E-Mail Addressenennen W-fragen, Aussagesätze, Nomen – Singular und Plural und Artikel

Lernziel:

Verständnisvon Deutsch, Genus- Artikelwörter

Module:2 Hobbys und Berufe

6 hours

Über Hobbyssprechen, Wochentage, Jahreszeiten, und Monatenennen, Uhrzeitensagen, über Arbeit, Berufe und Arbeitszeitensprechen, Zahlen (Hundertbiseine Million) Aritel (bestimmter, unbestimmter), Plural der Substantive, Konjugation der Verben (regelmässig /unregelmässig), Ja-/Nein- Frage, Imperativmit Sie.

Lernziel:

Sätzeschreiben, überHobbyserzählen, über Berufesprechenusw.

Module:3 | Alltag und Familie

7 hours

Über die Familiesprechen, eineWohnungbeschreiben, Tagesablaufschreiben, Mahlzeiten, Lebensmittel, Getränke Possessivpronomen, Negation, Kasus- Akkusatitv und Dativ (bestimmter, unbestimmterArtikel), trennnbareverben, Modalverben, Adjektive, Präpositionen

Lernziel:

Sätzemit Modalverben, Verwendung von Artikel, über Familiesprechen, eine Wohnungbeschreiben.

Module:4 | Situations gespräche

6 hours

Dialoge:

- a) Gespräche mit Familienmitgliedern, am Bahnhof,
- b) Gespräche beim Einkaufen, in einem Supermarkt, in einer Buchhandlung
- c) Gespräche in einem Hotel/ in einem Restaurant, Treffen im Cáfe, Termin beim Arzt.

Module:5 Korrespondenz

6 hours

Leseverständnis, Mindmapmachen, Korrespondenz- Briefe, Postkarten, E-Mail **Lernziel**:

Wortschatzbildung und aktiverSprachgebrauch

Module:6 Aufsatzschreiben

6 hours

Aufsätze:

Meine Universität, Das Essen, mein Freund odermeine Freundin, meine Familie, einFest in Deutschlandusw.

Module:7 Übersetzungen

6 hours

Übersetzungen : (Deutsch – Englisch / Englisch –Deutsch)

Lernziel:

Gram	nmatik -	- Wortschatz – Übung					
Modu	ule:8	Trainierung den Sprach	2 hours				
		-	-				
				Total L	ecture hours:	45 hours	
Text	Book(s	5)					
	Netzw	erk A1, Stefanie Dengler, I	Paul Rusch,	Helen So	hmitz, Tanja S	ieber, Ernst Klett	
1.	Sprac	hen GmbH, Stuttgart, 2017					
Refe	rence E	Books					
1	Studio	d A1 Deutsch als Frei	ndsprache,	Hermanr	n Funk, Christ	ina Kuhn, Silke	
1.	Demn	ne: Heuber Verlag, Muench	en, 2012.				
2.	Lagun	e ,Hartmut Aufderstrasse,	Jutta Müller,	, Thomas	Storz,. Muench	nen, 2012	
3.		che SprachlehrefürAusländ					
4.		en Aktuell 1, Hartmurt Aufd elmut Müller, 2010, Muenc		eiko Bocl	k, MechthildGer	des, Jutta Müller	
	www.g	poethe.de					
	wirtscl	naftsdeutsch.de					
		r.de, klett-sprachen.de					
		deutschtraning.org					
1	Mode of Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final						
Asse	Assessment Test						
Reco	mmend	led by Board of Studies	19-05-2022) -			
Appro	Approved by Academic Council No.66 Date 16-06-2022						

Course code	Course Title		T	Р	С
MENG501P	Technical Report Writing	0	0	4	2
Pre-requisite	Nil	Syll	Syllabus version		sion
		1.0			

- 1.To develop writing skills for preparing technical reports.
- 2. To analyze and evaluate general and complex technical information.
- 3. To enable proficiency in drafting and presenting reports.

Course Outcome

At the end of the course, the student will be able to

- 1. Construct error free sentences using appropriate grammar, vocabulary and style.
- 2. Apply the advanced rules of grammar for proofreading reports.
- 3. Interpret information and concepts in preparing reports.
- 4. Demonstrate the structure and function of technical reports.

5 lm	prove the ability of presenting technical reports.				
0	provo and ability of proceduring testimical reporter				
Indic	cative Experiments				
	Basics of Technical Communication				
1.	General and Technical communication,				
	Process of communication, Levels of communication				
	Vocabulary& Editing				
2.	Word usage: confusing words, Phrasal verbs				
	Punctuation and Proof reading				
	Advanced Grammar				
3.	Shifts: Voice, Tense, Person, Number				
	Clarity: Pronoun reference, Misplace and unclear modifiers				
	Elements of Technical writing				
4.	Developing paragraphs, Eliminating unnecessary words, Avoiding clichés and slang				
	Sentence clarity and combining				
_	The Art of condensation				
5.	Steps to effective precis writing,				
	Paraphrasing and summarizing				
6.	Technical Reports: Meaning, Objectives, Characteristics and Categories				
7.	Formats of reports and Prewriting : purpose, audience, sources of information, organizing the material				
	Data Visualization				
8.	Interpreting Data - Graphs - Tables – Charts - Imagery - Info graphics				
	Systematization of Information: Preparing Questionnaire				
9.	Techniques to Converge Objective-Oriented data in Diverse Technical Reports				
	Research and Analyses: Writing introduction and literature review, Reference styles,				
10.	Synchronize Technical Details from Magazines, Articles and e-content				
	Structure of Reports				
11	Title – Preface – Acknowledgement - Abstract/Summary – Introduction - Materials and				
	Methods – Results – Discussion - Conclusion - Suggestions/Recommendations				
12.	Writing the Report: First draft, Revising,				
12.	Thesis statement, Developing unity and coherence				
13.	Writing scientific abstracts: Parts of the abstract, Revising the abstract				
13.	Avoiding Plagiarism, Best practices for writers				
14.	Supplementary Texts				
	Appendix – Index – Glossary – References – Bibliography - Notes				
15	Presentation				

	Presenting Technical Reports						
	Planning, creating anddigital pres	entation of re	ports				
	J, J,			tory hours :	60 hours		
Text	Book(s)						
1.	Raman, Meenakshi and Sangeeta Sharma, (2015). Technical Communication: Principles and Practice, Third edition, Oxford University Press, New Delhi.						
Refe	erence Books						
1.	Aruna, Koneru, (2020). English Language Skills for Engineers. McGraw Hill Education, Noida.						
2.	Rizvi,M. Ashraf (2018)Effective Hill Education, Chennai.	Technical Co	ommunica	ation Second	Edition. McGraw		
3.	Kumar, Sanjay and Pushpalatha, for Engineers, Oxford University I		ish Langı	uage and Com	nmunication Skills		
4.	Elizabeth Tebeaux and Sam Dragga, (2020).The Essentials of Technical Communication, Fifth Edition, Oxford University Press.						
Mode	e of Evaluation : Continuous Asses	sment Tests,	Quizzes	, Assignment,	Final		
Asse	Assessment Test						
Reco	Recommended by Board of Studies 19-05-2022						
Appr	oved by Academic Council	No. 66	Date	16-06-2022			

Course Code	Course Title	L	Т	Р	С
MSTS501P	Qualitative Skills Practice	0	0	3	1.5
Pre-requisite	Nil	Syllabus versi			rsion
		1.0			

- 1. To develop the quantitative ability for solving basic level problems.
- 2. To improve the verbal and professional communication skills.

Course Outcome:

At the end of the course, the student will be able to

- 1. Execute appropriate analytical skills.
- 2. Solve problems pertaining to quantitative and reasoning ability.
- 3. Learn better vocabulary for workplace communication.
- 4. Demonstrate appropriate behavior in an organized environment.

	Business Etiquette: Social and Cultural Etiquette; Writing	
Module:1	Company Blogs; Internal Communications and Planning:	9 hours
	Writing press release and meeting notes	

Value, Manners- Netiquette, Customs, Language, Tradition, Building a blog, Developing brand message, FAQs', Assessing Competition, Open and objective Communication, Two way dialogue, Understanding the audience, Identifying, Gathering Information,. Analysis, Determining, Selecting plan, Progress check, Types of planning, Write a short, catchy headline, Get to the Point –summarize your subject in the first paragraph., Body– Make it relevant to your audience.

Module:2 Time management skills

3 hours

Prioritization, Procrastination, Scheduling, Multitasking, Monitoring, Working under pressure and adhering to deadlines

Presentation skills – Preparing presentation; Organizing Module:3 materials; Maintaining and preparing visual aids; Dealing with questions 7 hours

10 Tips to prepare PowerPoint presentation, Outlining the content, Passing the Elevator Test, Blue sky thinking, Introduction, body and conclusion, Use of Font, Use of Color, Strategic presentation, Importance and types of visual aids, Animation to captivate your audience, Design of posters, Setting out the ground rules, Dealing with interruptions, Staying in control of the questions, Handling difficult questions.

Module:4 QuantitativeAbility-L1–Numberproperties; Averages; Progressions; Percentages; Ratios

Number of factors, Factorials, Remainder Theorem, Unit digit position, Tens digit position, Averages, Weighted Average, Arithmetic Progression, Geometric Progression, Harmonic Progression, increase and Decrease or Successive increase, Types of ratios and proportions.

Module:5 Reasoning Ability - L1 – Analytical Reasoning 8 hours

Data Arrangement (Linear and circular & Cross Variable Relationship), Blood Relations, Ordering / ranking / grouping, Puzzle test, Selection Decision table.

Module:6 Verbal Ability -L1 – Vocabulary Building 7 hours

1 -	onyms & Antonyms, One word substitutes, Word Pairs, Spellings, Idioms, Sentence pletion, Analogies.							
00111	piction, 7 thatogrees.							
	Total Lecture hours: 45 hours							
Refe	erence Books							
1.	Kerry Patterson, Joseph Grenny, Ron McMillan and Al Switzler, (2017).2 nd Edition, Crucial Conversations: Tools for Talking when Stakesare High .McGraw-Hill Contemporary, Bangalore.							
2.	Dale Carnegie,(2016).How to Win Friends and Influence People. Gallery Books, New York.							
3.	Scott Peck. M, (2003). Road Less Travelled. Bantam Press, New York City.							
4.	SMART, (2018). Place Mentor, 1 st edition. Oxford University Press, Chennai.							
5.	FACE, (2016). Aptipedia Aptitude Encyclopedia. Wiley publications, Delhi.							
6.	ETHNUS, (2013). Aptimithra. McGraw – Hill Education Pvt .Ltd, Bangalore.							
Web	osites:							
1.	www.chalkstreet.com							
2.	www.skillsyouneed.com							
3.	www.mindtools.com							
4.	www.thebalance.com							
5.	www.eguru.ooo							
Mod Test	Mode of Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final Assessment Test							
Rec	Recommended by Board of Studies 19-05-2022							
App	oproved by Academic Council No.66 Date 16-06-2022							

Course Code	Course Title	L	Т	Р	С
MSTS502P	Quantitative Skills Practice	0	0	3	1.5
Pre-requisite	Nil	Sy	Syllabus versio		sion
			1.0		

- 1. To develop the students' advanced problem solving skills.
- 2. To enhance critical thinking and innovative skills.

Course Outcome:

At the end of the course, the student will be able to

- 1. Create positive impression during official conversations and interviews.
- 2. Demonstrate comprehending skills of various texts.
- 3. Improve advanced level thinking ability in general aptitude.
- 4. Develop emotional stability to tackle difficult circumstances.

Module:1 Resume skills – Resume Template; Use of power verbs; 2 hours

Structure of a standard resume, Content, color, font, Introduction to Power verbs and Write up, Quiz on types of resume, Frequent mistakes in customizing resume, Layout-Understanding different company's requirement, Digitizing career portfolio.

Module:2	Interview skills – Types of interview; Techniques to face	3 hours
	remote interviews and Mock Interview	

Structured and unstructured interview orientation, Closed questions and hypothetical questions, Interviewers' perspective, Questions to ask/not ask during an interview, Video interview, Recorded feedback, Phone interview preparation, Tips to customize preparation for personal interview, Practice rounds.

Module:3	Emotional Intelligence - L1 – Transactional Analysis; Brain	12 hours
	storming; Psychometric Analysis; SWOT analysis	

Introduction, Contracting, ego states, Life positions, Individual Brainstorming, Group Brainstorming, Stepladder Technique, Brain writing, Crawford's Slip writing approach, Reverse brainstorming, Star bursting, Charlette procedure, Round robin brainstorming, Skill Test, Personality Test, More than one answer, Unique ways, SWOT analysis.

Module:4	Quantitative Ability - L3-Permutation - Combinations; Probability; Geometry and menstruation; Trigonometry; Logarithms; Functions; Quadratic Equations; Set Theory	14 hours
----------	--	----------

Counting, Grouping, Linear Arrangement, Circular Arrangements, Conditional Probability, Independent and Dependent Events, Properties of Polygon, 2D & 3D Figures, Area & Volumes, Heights and distances, Simple trigonometric functions, Introduction to logarithms, Basic rules of logarithms, Introduction to functions, Basic rules of functions, Understanding Quadratic Equations, Rules & probabilities of Quadratic Equations, Basic concepts of Venn Diagram.

Module:5	Reasoning ability - L3 – Logical reasoning; Data Analysis and Interpretation	7 hours
----------	--	---------

	•	Binary logic, Sequential output tracing, Crypto arithmetic, Data Sufficen-Advanced, Interpretation tables, pie charts & bar chats.	ciency, Data
Mod	lule:6	Verbal Ability - L3 - Comprehension and Critical reasoning	7 hours
	•	mprehension, Para Jumbles, Critical Reasoning (a) Premise and Cor	nclusion,
(b) A	Assump	tion & Inference, (c) Strengthening & Weakening an Argument.	
		-	4= 1
Def		Total Lecture hours:	45 hours
Rete	erence		
1.	Michael Farra and JIST Editors,(2011).Quick Resume & Cover Letter Book: Write and Use an Effective Resume in Just One Day. Jist Works, Saint Paul, Minnesota.		
2.	Flage Daniel E, (2003).The Art of Questioning: An Introduction to Critical Thinking. Pearson, London.		
3.		Allen, (2015).Getting Things done: The Art of Stress-Free productivit in Books, New York City.	y.
4.	SMAR	RT, (2018). Place Mentor 1 st edition. Oxford University Press, Chenna	i.
5.	FACE	, (2016).Aptipedia Aptitude Encyclopedia. Wileypublications, Delhi.	
6.	ETHN	US, (2013).Aptimithra. McGraw-Hill Education Pvt Ltd, Bangalore.	
Web	sites:		
1.	www.c	chalkstreet.com	
2.	www.s	skillsyouneed.com	
3.	www.r	mindtools.com	
4.	www.t	hebalance.com	
5.	www.e	eguru.ooo	
Asse	essmen		
		ded by Board of Studies 19-05- 2022	
дрр	rovea b	y Academic Council No.66 Date 16-06-2022	