

School of Computer Science and Engineering

CURRICULUM AND SYLLABI

(2024-2025)

M.Tech. Computer Science and Engineering (Information Security)

School of Computer Science and Engineering

M.Tech. Computer Science and Engineering (Information Security)

CURRICULUM AND SYLLABUS

(2024-25 Admitted Students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

To be a world-renowned centre of education, research and service in computing and allied domains.

MISSION STATEMENT OF THE SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

- To offer computing education programs with the goal that the students become technically competent and develop lifelong learning skill.
- To undertake path-breaking research that creates new computing technologies and solutions for industry and society at large.
- To foster vibrant outreach programs for industry, research organizations, academia and society.

School of Computer Science and Engineering

M.Tech (CSE) - Specialization in Information Security

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering professionals who will engage in technology development and deployment with social awareness and responsibility.
- 2. Graduates will function as successful practising engineer / researcher / teacher / entrepreneur in the chosen domain of study.
- 3. Graduates will have holistic approach addressing technological, societal, economic and sustainability dimensions of problems and contribute to economic growth of the country.

M. Tech Computer Science and Engineering Specialization in Information Security

PROGRAMME OUTCOMES (POs)

- PO 01: Having an ability to apply mathematics and science in engineering applications.
- PO_03: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment
- PO_04: Having an ability to design and conduct experiments, as well as to analyze and interpret data, and synthesis of information
- PO_05: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice
- PO_06: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems
- PO_07: Having adaptive thinking and adaptability in relation to environmental context and sustainable development
- PO 08: Having a clear understanding of professional and ethical responsibility
- PO_11: Having a good cognitive load management skills related to project management and finance

School of Computer Science and Engineering M.Tech (CSE) - Specialization in Information Security

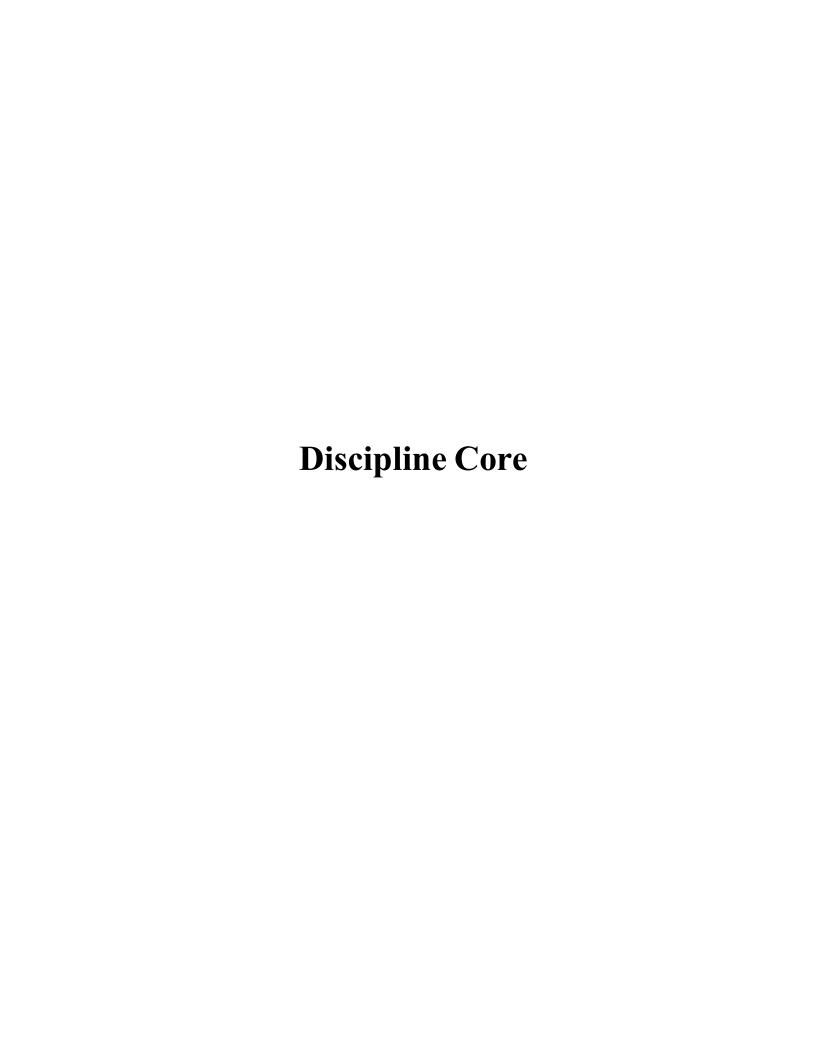
PROGRAMME SPECIFIC OUTCOMES (PSOs)

- 1. The ability to design and develop computer programs/computer-based systems in the advanced level of areas including algorithms design and analysis, networking, operating systems design etc.
- 2. The ability to investigate and analyze using appropriate methodologies as well as security principles and apply ethically acceptable security solutions to mitigate cyber security threats.
- 3. Ability to bring out the capabilities for research and development in contemporary issues and to exhibit the outcomes as technical report.

M. Tech Computer Science and Engineering Specialization in Information Security

CREDIT STRUCTURE

Category-wise Credit distribution


Discipline Core	24
Specialization Elective	12
Projects and Internship	26
Open Elective	3
Skill Enhancement	5
Total Credits	70

CURRICULUM M.Tech.-CSE (Information Security) - (2024)

Discipline Core	Specialization Elective	Projects and Internship	Open Elective	Skill Enhancement	Total Credits
24	12	26	3	5	70

		Discipline Core							
S. No.	Course Code	Course Title	Course Type	Version	L	T	P	J	С
1	MCSE501L	Data Structures and Algorithms	Theory Only	1.0	3	0	0	0	3.0
2	MCSE501P	Data Structures and Algorithms Lab	Lab Only	1.0	0	0	2	0	1.0
3	MCSE502L	Design and Analysis of Algorithms	Theory Only	1.0	3	0	0	0	3.0
4	MCSE502P	Design and Analysis of Algorithms Lab	Lab Only	1.0	0	0	2	0	1.0
5	MCSE503L	Computer Architecture and Organisation	Theory Only	1.0	3	0	0	0	3.0
6	MCSE503P	Computer Architecture and Organisation Lab	Lab Only	1.0	0	0	2	0	1.0
7	MCSE504L	Operating Systems	Theory Only	1.0	3	0	0	0	3.0
8	MCSE504P	Operating Systems Lab	Lab Only	1.0	0	0	2	0	1.0
9	MCSE505L	Computer Networks	Theory Only	1.0	3	0	0	0	3.0
10	MCSE505P	Computer Networks Lab	Lab Only	1.0	0	0	2	0	1.0
11	MCSE506L	Database Systems	Theory Only	1.0	3	0	0	0	3.0
12	MCSE506P	Database Systems Lab	Lab Only	1.0	0	0	2	0	1.0
		Specialization Elect	ive						
S. No.	Course Code	Course Title	Course Type	Version	L	T	P	J	C
1	MCSE608L	Information Security and Risk Management	Theory Only	1.0	3	0	0	0	3.0
2	MCSE609L	Cryptosystems	Theory Only	1.0	2	0	0	0	2.0
3	MCSE609P	Cryptosystems Lab	Lab Only	1.0	0	0	2	0	1.0
4	MCSE610L	Penetration Testing and Vulnerability Assessment	Theory Only	1.0	2	0	0	0	2.0
5	MCSE610P	Penetration Testing and Vulnerability Assessment Lab	Lab Only	1.0	0	0	2	0	1.0
6	MCSE611L	Malware Analysis	Theory Only	1.0	2	0	0	0	2.0
7	MCSE611P	Malware Analysis Lab	Lab Only	1.0	0	0	2	0	1.0
8	MCSE612L	Cyber Security	Theory Only	1.0	3	0	0	0	3.0
9	MCSE613L	Digital Forensics	Theory Only	1.0	3	0	0	0	3.0
		Projects and Interns	hip						
S. No.	Course Code	Course Title	Course Type	Version	L	T	P	J	C
1	MCSE698J	Internship I/ Dissertation I	PROJECT	1.0	0	0	0	0	10.0
2	MCSE699J	Internship II/ Dissertation II	PROJECT	1.0	0	0	0	0	12.0
3	MSET695J	Project Work	PROJECT	1.0	0	0	0	0	4.0
		Open Elective							
S. No.	Course Code	Course Title	Course Type	Version	L	T	P	J	C
1	MFRE501L	Français Fonctionnel	Theory Only	1.0	3	0	0	0	3.0
2	MGER501L	Deutsch fuer Anfaenger	Theory Only	1.0	3	0	0	0	3.0
3	MSTS601L	Advanced Competitive Coding	Soft Skill	1.0	3	0	0	0	3.0
		Skill Enhancemen	t						
S. No.	Course Code	Course Title	Course Type	Version	L	T	P	J	C
1	MENG501P	Technical Report Writing	Lab Only	1.0	0	0	4	0	2.0
2	MSTS501P	Qualitative Skills Practice	Soft Skill	1.0	0	0	3	0	1.5
3	MSTS502P	Quantitative Skills Practice	Soft Skill	1.0	0	0	3	0	1.5
	1.15155521	Z		1	بَــا				لتتا

Course code	Course title			P	C
MCSE501L Data Structures and Algorithms		3	0	0	3
Pre-requisite	NIL	Syllabus vers		sion	
		V			. 1.0

- 1. To familiarize the concepts of data structures and algorithms focusing on space and time complexity.
- 2. To provide a deeper insight into the basic and advanced data structures.
- 3. To develop the knowledge for the application of advanced trees and graphs in real-world scenarios.

Course Outcomes

After completion of this course, the student shall be able to:

- 1. Understand and analyze the space and time complexity of the algorithms.
- 2. Identification of suitable data structure for a given problem.
- 3. Implementation of graph algorithms in various real-life applications.
- 4. Implementation of heaps and trees for querying and searching.
- 5. Use of basic data structures in advanced data structure operations.
- 6. Use of searching and sorting in various real-life applications.

Module:1	Growth of Functions	3 hours				
Overview as	nd importance of algorithms and data structures- Algor	ithm specification, Recursion,				
Performance	analysis, Asymptotic Notation - The Big-O, Omega an	nd Theta notation, Programming				
Style, Refine	ement of Coding - Time-Space Trade Off, Testing, Dat	a Abstraction.				
Module:2	Elementary Data Structures	6 hours				
Array, Stack, Queue, Linked-list and its types, Various Representations, Operations & Applications of Linear Data Structures						
Module:3	Sorting and Searching	7 hours				
Insertion so	rt, merge sort, sorting in linear Time-Lower bounds	for sorting, Radix sort, Bitonic sort,				
Cocktail sor	t, Medians and Order Statistics-Minimum and maximu	im, Selection in expected linear time,				
Selection in worst-case linear time, linear search, Interpolation search, Exponential search.						
Module:4	Trees	6 hours				
Binary trees	Properties of Binary trees, B-tree, B-Tree definition-	Operations on B-Tree: Searching a B-				
tree, Creatin	g, Splitting, Inserting and Deleting, B+-tree.					
Module:5	Advanced Trees	8 hours				
Threaded bi	nary trees, Leftist trees, Tournament trees, 2-3 tree, Spl	ay tree, Red-black trees, Range trees.				
Module:6	Graphs	7 hours				
	on of graphs, Topological sorting, Shortest path algorithm, Minimum spanning trees - Reverse delete algo					
	1 0	6 hours				
Module:7	Heaps as priority queues, Binary heaps, binomial and Fibonacci heaps, Heaps in Huffman coding,					
	ority queues, Binary heaps, binomial and Fibonacci he	aps, Heaps in Huffman coding,				
	• • • • • • • • • • • • • • • • • • •	aps, Heaps in Huffman coding,				

Total Lecture hours:

45 hours

Tex	Text Book(s)						
1.	Cormen, Thomas H., Charles E. Leis	serson, Ronald L. R	Livest, and	Clifford Stein. Introduction to			
	algorithms. MIT press, 2022.						
Ref	Reference Books						
1.	Skiena, Steven S. "The Algorithm Design Manual (Texts in Computer Science)." 3rd edition, 2020,						
	Springer.						
2.	Brass, Peter. Advanced data structur	es. Vol. 193. Camb	ridge: Can	nbridge University Press, 2008.			
Mod	Mode of Evaluation: CAT / Written Assignment / Quiz / FAT						
Rec	Recommended by Board of Studies 26-07-2022						
App	proved by Academic Council	No. 67	Date	08-08-2022			

Course code	Course code Course title		T	P	C
MCSE501P	Data Structures and Algorithms LAB	0	0 0 2		1
Pre-requisite	NIL	Sy	Syllabus version		
			v. 1.		. 1.0
Course Objectiv	es				
1. To far	miliarize the concepts of data structures and algorithm fo	cusing on s	pace a	and t	ime

- 2. To provide a deeper insight on the basic and advanced data structures.
- 3. To develop the knowledge for application of the advanced trees and graphs in real world scenarios.

Course Outcome

Approved by Academic Council

After completion of this course, the student shall be able to:

- 1. Understand and analyze the space and time complexity of the algorithms.
- 2. Identification of suitable data structure for a given problem.
- 3. Implementation of graph algorithms in various real-life applications.
- 4. Implementation of heaps and trees for querying and searching.
- 5. Use of basic data structures in advanced data structure operations.
- 6. Use of searching and sorting in various real-life applications.

	o. Obe of searching and sorting in various rear the approaches.						
Ind	cative Experiments						
1.	Analyzing the complexity of iterative and recursive algorithms						
2.	, , ,						
	Implement Linear data structures (Stacks, Queues, Linked Lists)						
3.	Linear time sorting techniques						
4.	Interpolation search & Exponential search						
5.	Binary tree & Tree traversals						
6.	B-trees & B+ trees						
7.	Advanced Trees: 2-3 tree, splay tree, red black tree etc.						
8.	Advanced Trees: Threaded Binary trees, tournament trees						
9.	Graph traversals (BFS, DFS, Topological sorting)						
10.	Determining the Shortest path between pair of nodes in the given graph						
11.	Minimum Spanning trees- reverse delete & Boruvka's algorithm						
12.	Heaps & Hashing						
	Total Laboratory Hours 30 hours						
Tex	Text Book(s)						
1.	Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to						
	algorithms. MIT press, 2022.						
Ref	erence Books						
1.	Skiena, Steven S. "The Algorithm Design Manual (Texts in Computer Science)." 3rd edition, 2020,						
	Springer.						
2.	Brass, Peter. Advanced data structures. Vol. 193. Cambridge: Cambridge University Press, 2008.						
Mod	le of Evaluation: CAT / Mid-Term Lab/ FAT						
Rec	ommended by Board of Studies 26-07-2022						

No. 67

Date

08-08-2022

Course code	Course title	L	I		P	C
MCSE502L	Design and Analysis of Algorithms	3	0		0	3
Pre-requisite	NIL	Sy	lab	us '	vers	sion
					V	. 1.0
Course Objectiv	es					
2. To dis	ovide a mathematical framework for the design and analysis o seminate knowledge on how to create strategies for dealing we welop efficient algorithms for use in a variety of engineering d	vith real-w	orld	pro	ble	ms.

Course Outcomes

On completion of this course, student should be able to:

- 1. Apply knowledge of computing and mathematics to algorithm design.
- 2. Apply various algorithm paradigms to solve scientific and real-life problems.
- 3. Demonstrate the string matching and network flow algorithms relating to real-life problems.
- 4. Understand and apply geometric algorithms.
- 5. Apply linear optimization techniques to various real-world linear optimization problems.
- 6. Explain the hardness of real-world problems with respect to algorithmic design.

1	1 5	
Module:1	Greedy, Divide and Conquer Techniques Introduction	6 hours
	and Importance of Algorithms - Stages of algorithm development: Desc	
	entifying a suitable technique, Design of an algorithm, Illustration of De	
	Graph Coloring Problem, Job Sequencing Problem with Deadlines- I	
	fast multiplication method, the Strassen algorithm for matrix multiplication	
Module:2	Dynamic Programming, Backtracking and Branch & Bound	9 hours
	Techniques	
	ogramming: Matrix Chain Multiplication, Longest Common Subsequen	
	olem, Subset Sum, Graph Coloring- Branch & Bound: A-Star, LIFC	O-BB and FIFO BB
methods.		
Module:3	Amortized analysis and String Matching Algorithms	6 hours
Stack operat	ion and Incrementing Binary counter -The aggregate method, the account	unting method, the
potential me	thod, and Dynamic tables. Naïve String matching Algorithms, KMP alg	gorithm, Rabin-
Karp Algori	thm, String matching with Finite Automata.	
Module:4	Network Flow Algorithms	6 hours
	rks, Maximum Flows: Ford-Fulkerson, Edmond-Karp, Push relabel Al	gorithm, The
relabel-to-fr	ont algorithm, Minimum Cost flows – Cycle Cancelling Algorithm.	
Module:5	Computational Geometry	5 hours
Line Segme	nts - properties, intersection; Convex Hull finding algorithms- Graham	's Scan, Jarvis's
March Algo	rithm.	
Module:6	Linear Optimization and Randomized algorithms	5 hours
Linear Progr	ramming problem - Simplex Method-Big M Method, LP Duality- The l	niring problem,
Finding the	global Minimum Cut.	
Module:7	NP Completeness and A pproximation Algorithms	6 hours
The Class P	- The Class NP - Reducibility and NP-completeness - Circuit Satisfiab	ility problem-SAT
	pendent Set, Clique, Approximation Algorithm: Vertex Cover, Set Cov	
salesman.	, 1,,,	
Module:8	Contemporary Issues	2 hours
	,	

Total Lecture hours:

45 hours

Tex	kt Book(s)		Text Book(s)					
1.	Cormen, Thomas H., Charles E. Leis	serson, Ronald L. R	Livest, and	Clifford Stein. Introduction to				
	algorithms. MIT press, 2022.							
Ref	Reference Books							
1.	1. Rajeev Motwani, Prabhakar Raghavan; "Randomized Algorithms, Cambridge University							
	Press, 1995 (Online Print — 2013).							
2.	Ravindra K. Ahuja, Thomas L. Mag							
	Algorithms, and Applications, 1st Edition, Pearson Education, 2014.							
3.	Jon Kleinberg and EvaTardos, Algor	rithm Design, Pear	son Educa	tion, 1"Edition, 2014.				
Mo	Mode of Evaluation: CAT / Written Assignment / Quiz / FAT							
Rec	Recommended by Board of Studies 26-07-2022							
App	proved by Academic Council	No. 67	Date	08-08-2022				

Course code	Course title	L	T	P	C
MCSE502P Design and Analysis of Algorithms Lab		0	0	2	1
Pre-requisite	NIL	Syllabus vers		sion	
		V			. 1.0

- 1. To provide a mathematical framework for the design and analysis of algorithms.
- 2. To disseminate knowledge on how to create strategies for dealing with real-world problems.
- 3. To develop efficient algorithms for use in a variety of engineering design settings.

Course Outcome

On completion of this course, student should be able to:

- 1. Apply knowledge of computing and mathematics to algorithm design.
- 2. Apply various algorithm paradigms to solve scientific and real-life problems.
- 3. Demonstrate the string matching and network flow algorithms relating to real-life problems.
- 4. Understand and apply geometric algorithms.
- 5. Apply linear optimization techniques to various real-world linear optimization problems.
- 6. Explain the hardness of real-world problems with respect to algorithmic design.

Ind	icative Experiments						
1.	Greedy Strategy : Graph Coloring	Problem, Job Sequ	encing Pro	blem with Deadlines			
2.	Divide and Conquer : Karatsuba's multiplication						
3.	Dynamic Programming: Matrix Knapsack	•	ion, Longe	est Common Subsequence, 0-1			
4.	4. Backtracking: N-queens, Subset sum						
5.	Branch and Bound: Job selection						
6.	String Matching Algorithms: Rabin						
7.	Network Flows : Ford -Fulkerson a	and Edmond – Kar	p, Cycle ca	ancelling algorithm			
8.	Minimum Cost flows – Cycle Can	celling Algorithm					
9.	Linear programming: Simplex met	hod					
10.	Randomized Algorithms: Las Vega						
11.	Polynomial time algorithm for veri	fication of NPC pr	roblems				
12.	Approximation Algorithm: Vertex	cover, Set cover a	nd TSP				
			Total Lab	oratory Hours 30 hours			
Tex	at Book(s)						
1.	Cormen, Thomas H., Charles E. Le to algorithms. MIT press, 2022.	iserson, Ronald L.	Rivest, an	d Clifford Stein. Introduction			
Ref	erence Books						
1.	Rajeev Motwani, Prabhakar Raghav Press, 1995 (Online Print — 2013).	an; Randomized A	Algorithms,	Cambridge University			
2	Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin, Network Flows: Theory, Algorithms, and Applications, 1st Edition, Pearson Education, 2014.						
3	Jon Kleinberg and EvaTardos, Algo		rson Educa	tion, 1"Edition, 2014.			
Mo	de of Evaluation: CAT / Mid-Term L	ab/ FAT					
Rec	commended by Board of Studies	26-07-2022					
App	proved by Academic Council	No. 67	Date	08-08-2022			

Course code	Course title		T	P	С
MCSE503L	Computer Architecture and Organization	3	0	0	3
Pre-requisite	NIL	Sy	labu	s ver	sion
				V	. 1.0

- 1. To provide knowledge on the basics of computer architectures and organization that lays the foundation to study high-performance architectures
- 2. To design and develop parallel programs using parallel computing platforms such as OpenMP, CUDA
- 3. To evaluate the performance using profiling tools and optimize parallel codes using various optimization techniques

Course Outcomes

After completion of this course, the student shall be able to:

- 1. Outline the developments in the evolution of computer architectures and parallel programming paradigms
- 2. Comprehend the various programming languages and libraries for parallel computing platforms
- 3. Use of profiling tools to analyze the performance of applications by interpreting the given data
- 4. Evaluate efficiency trade-offs among alternative parallel computing architectures for an efficient parallel application design
- 5. Develop parallel programs using OpenMP and CUDA and analyze performance parameters such as speed-up, and efficiency for parallel programs against serial programs

Module:1 Computer Evolution And Performance

5 hours

Defining Computer Architecture and Organization, Overview of Computer Components, Von Neumann architecture, Harvard Architecture CISC & RISC, Flynn's Classification of Computers, Moore's Law, Multi-threading, Comparisons of Single Core, Multi Processors, and Multi-Core architectures, Metrics for Performance Measurement

Module:2 Memory Hierarchy

8 hours

Key Characteristics of Memory systems, Memory Hierarchy, Cache Design policies, Cache Performance, Cache Coherence, Snoopy Protocols, Cache coherence protocols, MSI, MESI, MOESI

Module:3 Parallel Computers

8 hours

Instruction Level Parallelism(ILP), Compiler Techniques for ILP & Branch Prediction, Thread Level Parallelism (TLP), Threading Concepts, Shared Memory, Message Passing, Vectorization

Module:4 Multithreaded Programming using OpenMP

7 hours

Introduction to OpenMP, Parallel constructs, Runtime Library routines, Work-sharing constructs, Scheduling clauses, Data environment clauses, atomic, master Nowait Clause, Barrier Construct

Module:5 Programming for GPU

6 hours

Introduction to GPU Computing, CUDA Concepts, CUDA Programming Model, Program Structure of CUDA & Execution, Methods for operations on Device Memory, Thread Organization, Examples

Module:6 Performance Analyzers

6 hours

Performance Evaluation, performance bottlenecks, Profiling categories; Profiling tools: Trace analyzer and collector (ITAC), VTune Amplifier XE, Energy Efficient Performance, Integrated Performance Primitives (IPP)

Mo	Module:7 Energy Efficient Architectures			5 hours				
								Sources of energy
Cor	nsumption			or Energy, Lo	w pow	er designs	, Power man	agement techniques
Mo	dule:8	Contempor	ıry Issues					1 hours
						Total Le	cture hours:	: 45 hours
Tex	t Book(s)							•
1.		Stallings, Con			rchite	cture: Desi	gning for Pe	rformance,
	Pearson	, 2022, 11 th E	dition, Pear	rson				
2		nos Barlas, Mı		GPU Program	ming:	An Integra	ated Approac	ch, 2022, 2 nd
	edition,	Morgan Kaufn	ıann					
Ref	erence B	ooks						
1.					chitect	ure: A Qua	intitative Ap	proach. 5th Edition,
		organ Kauffm						
2.							asing Perform	mance Through
	Software Multi-threading, 2010, Intel Press, BPB Publications							
Mo	de of Eva	luation: CAT /	Written As	ssignment / Qu	iz/FA	Т		
Rec	commende	ed by Board of	Studies	26-07-2022	2			
App	proved by	Academic Co	ıncil	No. 67		Date	08-08-2022	2

Course code	Course title	L	T	P	C
MCSE503P	Computer Architecture and Organization LAB	0	0	2	1
Pre-requisite	NIL	Syllabus version		sion	
		v. 1		. 1.0	

- 1. To provide knowledge on basics of computer architectures and organization that lays foundation to study high performance architectures
- 2. To design and develop parallel programs using parallel computing platforms such as OpenMP, CUDA
- 3. To evaluate the performance using profiling tools and optimize parallel codes using various optimization techniques

Course Outcome

After completion of this course, the student shall be able to:

- 1. Outline the developments in the evolution of computer architectures and parallel programming paradigms
- 2. Comprehend the various programming languages and libraries for parallel computing platforms
- 3. Use of profiling tools to analyze the performance of applications by interpreting the given data
- 4. Evaluate efficiency trade-offs among alternative parallel computing architectures for an efficient parallel Application design.
- 5. Develop parallel programs using OpenMP and CUDA and analyze performance parameters such as speed-up, efficiency for parallel programs against serial programs

Indicative	Experiments
III ai cati i c	LAPCHILLIO

	•
1.	Set-up an environment for OpenMP Programming:
	Activities: create a Project using Visual Studio, Writing Sample OpenMp Program, Setting up
	properties, compile & Execute OpenMP program, OpenMP manual study, Creation of Login
	credential on Intel for Intel Parallel Studio
2.	OpenMP program using following construct and describe scenario for the need of construct
	Use of Parallel Construct, Determine the Number of processors in a parallel Region, Find the
	thread ID of each processor
3.	Computation of Execution Time
	Using OpenMP clock, Using windows clock
4.	OpenMP Program using various Environment Routines to access the processor run-time
	information and write interesting observations by comparing various routines
5.	OpenMP program using following Worksharing Constructs and describe scenario for the need of
	construct
	loop construct, sections construct, single construct
6.	OpenMP program using following schedule clauses and describe scenario for the need of clause
	Static, Dynamic, Guided
7.	Develop parallel programs for given serial programs and profile the program using Vtune Analysis
	tool
_	Matrix-Matrix multiplication, Matrix-Vector multiplication
8.	Develop parallel programs for given serial programs and profile the program using Vtune Analysis
	tool
0	Quicksort, Minimum Spanning Tree
9.	CUDA-platform setup on NVIDIA / Google Colab
10.	Write a CUDA C/C++ program that add two array of elements and store the result in third array
11.	Write a CUDA C/C++ program that Reverses Single Block in an Array; CUDA C/C++
12.	Write a CUDA C program for Matrix addition and Multiplication using Shared memory

Total Laboratory Hours 30 hours

Tex	Text Book(s)					
1.	Gerassimos Barlas, Multicore and GPU Programming: An Integrated Approach, 2022, 2 nd					
	edition, Morgan Kaufmann					
Re	Reference Books					
1.	1. Shameem Akhter, Jason Roberts, Multi-core Programming: Increasing Performance Through					
	Software Multi-threading, 2010, Intel Press, BPB Publications					
Mo	Mode of Evaluation: CAT / Mid-Term Lab/ FAT					
Red	Recommended by Board of Studies 26-07-2022					
Ap	Approved by Academic Council No. 67 Date 08-08-2022					

Course code	Course title		T	P	C
MCSE504L	OPERATING SYSTEMS	3	0	0	3
Pre-requisite	Nil	Syll	abu	s ver	sion
				V	. 1.0

- 1. To focus the core functionalities required to develop and manage operating systems.
- 2. To encompass process management, synchronization strategies, memory management, file systems, device management, and virtualization.
- 3. To introduce the concepts and features of real-time operating systems as well as virtualization.

Course Outcomes

After completion of this course, the student shall be able to:

- 1. Understand the fundamental operating system abstractions, including processes, threads, semaphores, and file systems.
- 2. Implement scheduling, devising and addressing synchronization issues.
- 3. Gain an understanding of memory management tasks.
- 4. Develop real-time working prototypes of different small-scale and medium-scale embedded systems.
- 5. Comprehend the basics of virtualization and differentiate types of virtualization.

Module:1 Introduction to Operating Systems

4 hours

Computer Organization and Architecture - OS definition - OS history - OS Operations - OS design issues - Operating systems structures - Library files - Systems calls - Interrupts - Kernel approaches - Building and booting an OS.

Module:2 Process and Scheduling

6 hour

Process states – State transitions with suspend and resume - Process control block - Context-switching - Processes operations - Process scheduling - CPU scheduling: Non-preemptive, preemptive - Multi-queue scheduling - Multi-level feedback queue scheduling.

Module:3 Synchronization

9 hours

IPC: Shred memory, message passing - Race condition - Critical section problem - Peterson's solution - Bakery Algorithm - Mutex locks - Semaphores - Classical synchronization problems - Monitors - Thread synchronization - Multi-threading Models, Deadlocks - Resource allocation graphs - Deadlock: prevention, avoidance, detection and recovery.

Module:4 Memory Management

5 hours

Address binding – Fragmentation - Pinning Memory – Paging – Structure of the page table – Swapping - Segmentation - Demand Paging – Copy-on-write - Replacement – Thrashing – Working set – Memory compression – Allocating kernel memory.

Module:5 | Managing Devices, Files, Security and Protection

9 hours

I/O Management – DMA - Delayed write - Disk scheduling algorithms: Seek-time and rotational latency based - File control block – Inode – Access method – Directory structure - Directory implementation – File allocation methods - Free space management – Program and network threats – Cryptography as a security tool – Domains of protection – Access matrix – Capability based systems

Module:6 Real-time Operating Systems

5 hours

RTOS Internals - Real-Time Scheduling - Task Specifications - Performance Metrics of RTOS - Schedulability Analysis - RTOS Programming Tools.

Module:7 Virtualization

5 hours

Need for virtualization - Virtual machines and architectures - Hypervisors - Virtualization Technologies: Para Virtualization, Full Virtualization - Virtualization types: Server virtualization, Application virtualization, Storage virtualization.

Module:8	Contemporary	Issues
----------	--------------	--------

2 hours

Total I	ecture	hourse
i Otai i	Jectule	nours.

45 hours

Tex	Text Book(s)					
1.	Abraham Silberschatz, Peter B. Ga	lvin, Greg Gagne,	"Operatin	ng System Concepts", 2018, 10 th		
	Edition, Wiley, United States.					
Ref	Ference Books					
1.	Arpaci-Dusseau, R. H., & Arpaci-Du		rating Syst	tems: Three easy pieces, 2018,		
	1 st Edition, Boston: Arpaci-Dusseau	Books LLC.				
2.	Kamal, R, Embedded Systems: Arcl	nitecture, Program	ming and I	Design, 2011, 1 st Edition, Tata		
	McGraw-Hill Education.			_		
3.	Portnoy, M, "Virtualization Essentia	ls", 2012, 2 nd Editi	ion, John V	Wiley & Sons, New Jersey, USA.		
Mo	Mode of Evaluation: CAT / Written Assignment / Quiz / FAT					
Rec	Recommended by Board of Studies 26-07-2022					
Approved by Academic Council No. 67 Date 08-08-2022				08-08-2022		

Course code	code Course title		T	P	C
MCSE504P	OPERATING SYSTEMS LAB	0	0	2	1
Pre-requisite	Nil	Syl	labu	s ver	sion
				V	. 1.0

- 1. To encompass process management, synchronization strategies, memory management, file systems, device management, and virtualization.
- 2. To introduce the concepts and features of real-time operating systems as well as virtualization.

Course Outcome

After completion of this course, the student shall be able to:

- 1. Implement scheduling, devising and addressing synchronization issues.
- 2. Gain an understanding of memory management tasks.
- 3. Develop real-time working prototypes of different small-scale and medium-scale embedded systems.
- 4. Comprehend the basics of virtualization and differentiate types of virtualization.

Indi	cative Experiments
1.	Investigate the fundamental Unix/Linux commands.
2.	Obtaining the OS system data file and its associated information.
3.	Shell Programming.
4.	Create utility programs that use I/O system calls to simulate operations such as ls, cp, grep, and
	others.
5.	Create child, Orphan and Zombie processes using suitable system calls such as fork(), exec(),
	wait(), kill(), sleep() and exit() system calls.
6.	Create a program that mimics the CPU Scheduling algorithms including multi-level queue
	scheduling algorithm. Ex: Assume that all processes in the system are divided into two categories:
	system processes and user processes. System processes are to be given higher priority than user
	processes. Use FCFS scheduling for the processes in each queue.
7.	Implement the deadlock-free solution to Dining Philosophers problem using Semaphore.
8.	Simulation of Bankers algorithm to check whether the given system is in safe state or not. Also
	check whether addition resource requested can be granted immediately.
9.	Parallel Thread management using Pthreads library. Implement a data parallelism using multi-
	threading. Ex: An application should have a thread created with synchronization and thread
	termination. Every thread in the sub-program must return the value and must be synchronized with
	the main function. Final consolidation should be done by the main (main function).
10.	Dynamic memory allocation algorithms – First-fit, Best-fit, Worst-fit algorithms.
11.	Page Replacement Algorithms FIFO, LRU and Optimal
12.	Implement a file locking mechanism.
13.	RTOS Based Parameter Monitoring and Controlling System – Monitoring: Collecting data from
	sensors and interface display devices/actuators using a microcontroller. Controlling: Provide an
	alert when the received data reaches a certain threshold value.
14.	Virtualization Setup: Type-1, Type-2 Hypervisor (Detailed Study Report).
	Total Laboratory Hours 30 hours

Tex	Text Book(s)				
1.	Vijay Mukhi, "The C Odyssey: UNIX: v. 3", 2004, 3 rd Edition, BPB Publications, New Delhi,				
	India.				
Ref	erence Books				
1.	Stevens, W. R., & Rago, S. A. (2013)	3). Advanced Progr	amming ir	n the UNIX Environment: Advanc	
	Progra UNIX Envir_p3. Addison-Wesley.				
2.	Love, Robert, "Linux System Programming: talking directly to the kernel and C library", 2013, 2 nd				
	Edition, O'Reilly Media, Inc, United States.				
Mo	Mode of Evaluation: CAT / Mid-Term Lab/ FAT				
Rec	Recommended by Board of Studies 26-07-2022				
App	proved by Academic Council	No. 67	Date	08-08-2022	

Course code	Course title	L	T	P	C
MCSE505L	Computer Networks	3	0	0	3
Pre-requisite	NIL	Syll	abu	s ver	sion
				V	r. 1.0
Course Objectives					
1. To learn various network models, layers and their protocols.					
2. To gain a fundamental understanding of routing algorithms.					

3. To comprehend the basics of wireless as well as mobile networks and their characteristics.

Course Outcomes

IPsec and Virtual Private Networks

Contemporary Issues

Module:8

After completion of this course, the student shall be able to:

- 1. Explore the basics of Computer Networks and various performance metrics.
- 2. Interpret the application layer services and their protocols.
- 3. Evaluate the requirements for reliable services and implications of congestion at the transport layer services.
- 4. Analyse various functionalities required in the control and data plane at network layer services.

4. Analyse various functionalities required in the control and data plane at network layer services.					
5. Infer	the characteristics of wireless as well as mobile networks and their security	standards.			
75 1 1 4					
Module:1	Computer Networks and the Internet	7 hours			
	Nuts-and-Bolts Description - Network Protocols - The Network Edge: Acces				
	dia - The Network Core: Packet Switching, Circuit Switching - Network				
	and Throughput in Packet-Switched Networks - Protocol Layers and Their				
Module:2	Application Layer	5 hours			
	f Network Applications: Architectures, Processes and Transport Services				
HTTP - Ele	etronic Mail in the Internet - DNS-The Internet's Directory Service - Pe	er-to-Peer File			
Distribution	- Socket Programming: Creating Network Applications				
Module:3	Transport Layer	7 hours			
Relationship	Between Transport and Network Layers - Overview of the Transport Laye	r in the Internet			
- Multiplexii	ng and Demultiplexing - Connectionless Transport: UDP - Reliable Data Transport	nsfer: Go-Back-			
N (GBN) a	nd Selective Repeat (SR) - Connection-Oriented Transport: TCP, Flo	w Control and			
Congestion	Control				
Module:4	Network Layer: Data Plane	5 hours			
Network La	yer - Router - The Internet Protocol (IP): IPv4, Addressing and IPv6	- Generalized			
Forwarding	and SDN	Forwarding and SDN			
Module:5	Network Layer: Control Plane	5 hours			
	Network Layer: Control Plane ne: Per-router control and logically centralized control - Routing Algorithm				
Control Plan	•	ms - Link-State			
Control Plan (LS) Routing	ne: Per-router control and logically centralized control - Routing Algorithm	ms - Link-State			
Control Plan (LS) Routing	ne: Per-router control and logically centralized control - Routing Algorithm Algorithm, Distance-Vector (DV) Routing Algorithm, Intra-AS Routing in	ms - Link-State			
Control Plan (LS) Routing OSPF and R Module:6	ne: Per-router control and logically centralized control - Routing Algorithm Algorithm, Distance-Vector (DV) Routing Algorithm, Intra-AS Routing in couting Among the ISPs: BGP - SDN Control Plane	ms - Link-State n the Internet: 8 hours			
Control Plan (LS) Routing OSPF and R Module:6	ne: Per-router control and logically centralized control - Routing Algorithm g Algorithm, Distance-Vector (DV) Routing Algorithm, Intra-AS Routing in couting Among the ISPs: BGP - SDN Control Plane Link Layer and LANs	ms - Link-State n the Internet: 8 hours Parity Checks,			
Control Plan (LS) Routing OSPF and R Module:6 Overview of Checksum a	ne: Per-router control and logically centralized control - Routing Algorithm Algorithm, Distance-Vector (DV) Routing Algorithm, Intra-AS Routing is outing Among the ISPs: BGP - SDN Control Plane Link Layer and LANs f Link Layer Services - Error-Detection and -Correction Techniques:	ms - Link-State n the Internet: 8 hours Parity Checks, Protocols and			
Control Plan (LS) Routing OSPF and R Module:6 Overview of Checksum a	ne: Per-router control and logically centralized control - Routing Algorithm and Algorithm, Distance-Vector (DV) Routing Algorithm, Intra-AS Routing in couting Among the ISPs: BGP - SDN Control Plane Link Layer and LANs f Link Layer Services - Error-Detection and -Correction Techniques: and CRC - Multiple Access Links and Protocols: Channel Partitioning cess Protocols - Switched Local Area Networks: Link-Layer Addressing and	ms - Link-State n the Internet: 8 hours Parity Checks, Protocols and			
Control Plan (LS) Routing OSPF and R Module:6 Overview of Checksum a Random-Ac	ne: Per-router control and logically centralized control - Routing Algorithm and Algorithm, Distance-Vector (DV) Routing Algorithm, Intra-AS Routing in couting Among the ISPs: BGP - SDN Control Plane Link Layer and LANs f Link Layer Services - Error-Detection and -Correction Techniques: and CRC - Multiple Access Links and Protocols: Channel Partitioning cess Protocols - Switched Local Area Networks: Link-Layer Addressing and	ms - Link-State n the Internet: 8 hours Parity Checks, Protocols and			

LANs - Mobility Management: Principles - Wireless and Mobility: Impact on Higher-Layer Protocol-Security in Computer Network-Message Integrity and Digital Signatures - Network-Layer Security:

2 hours

45 hours

Total Lecture hours:

Tex	Text Book(s)				
1.	James F. Kurose, Keith W. Ross, "C	h W. Ross, "Computer Networking: A Top-Down Approach", 2022, 8 th			
	Edition (Paperback), Pearson, United Kingdom.				
Ref	erence Books				
1.	Larry Peterson and Bruce Davie, "Computer Networks: A Systems Approach", 2019, 6th Edition,				
	Morgan Kaufmann, United States of America.				
2.	Andrew S. Tanenbaum, "Computer	w S. Tanenbaum, "Computer Networks", 2013, 6th Edition, Pearson, Singapore.			
Mod	Mode of Evaluation: CAT / Written Assignment / Quiz / FAT				
Rec	Recommended by Board of Studies 26-07-2022				
App	Approved by Academic Council No. 67 Date 08-08-2022			08-08-2022	

Course code	Course title	L	T	P	C
MCSE505P	Computer Networks Lab	0	0 2	2	1
Pre-requisite	NIL	Syll	abus v	vers	sion
				v.	1.0

- 1. To introduce the computer network concepts and provide skills required to trouble shoot the network devices.
- 2. To describe the basic knowledge of VLAN.
- 3. To develop the knowledge for application of software defined networks.

Course Outcome

After completion of this course, the student shall be able to:

- 1. Understand the types of network cables and practical implementation of cross-wired and straight through cable.
- 2. Design and implementation of VLAN.
- 3. Analyze and apply network address translation using packet tracer and network simulators.
- 4. Design and develop software defined networks.

Ind	icative Experiments			
1.	Hardware Demo(Demo session of all networking hardware and Functionalities)			
	OS Commands(Network configuration commands)			
2.	Error detection and correction mechanisms			
	Flow control mechanisms			
3.	IP addressing Classless addressing			
4.	Network Packet Analysis using Wireshark			
	i. Packet Capture Using Wire shark			
	ii. Starting Wire shark			
	iii. Viewing Captured Traffic			
	iv. Analysis and Statistics & Filters.			
5.	Socket programming(TCP and UDP) Multi client chatting			
6.	Networking Simulation Tool –Wired and Wireless			
7.	SDN Applications and Use Cases			
8.	Security in Network- Use cases			
9	Performance evaluation of routing protocols using simulation tools.			
Ref	erence Books			
1.	James F. Kuross, Keith W. Ross, "Computer Networking, A Top-Down Approach", 8th Edition			
	(Paperback), Pearson Education, 2022.			

(Paperback), Pearson Education, 2022.

Mode of Evaluation: CAT / Mid-Term Lab/ FAT Recommended by Board of Studies 26-07-2022 Approved by Academic Council No. 67 Date 08-08-2022

Course code	Course title	L	T	P	C
MCSE506L	DATABASE SYSTEMS	3	0	0	3
Pre-requisite	NIL	Sylla	bus	vers	sion
		v. 1.0			

- 1. To understand the underlying principles of Relational Database Management Systems
- 2. To focus on the modeling and design of secured databases and usage of advanced data models
- 3. To implement and maintain the structured, semi-structured, and unstructured data in an efficient database system using emerging trends

Course Outcomes

On completion of this course, students must be able to

- 1. Design and implement a database depending on the business requirements, considering various design issues
- 2. Understand the concepts of Indexing, Query optimization, transaction management, concurrency control, and recovery mechanisms
- 3. Learn to apply parallel and distributed databases in Real-time scenarios
- 4. Categorize and design the structured, semi-structured, and unstructured databases
- 5. Characterize the database threats and their countermeasures

Module:1	Design and Implementation of Relational Model	6 hours			
Database System Concepts and Architecture, Entity-Relationship (ER) Modelling, Relational Model-					
Keys, and Integrity Constraints, Mapping ER model to Relational Schema, Normalization, Boyce Codd					
Normal Form	n, Multi-valued dependency and Fourth Normal form				
Module:2	Query Processing and Transaction Management	6 hours			
	File Structure, Indexing, Query processing, and Query Optimization, Trans	saction			
Management	, Concurrency Control, Recovery				
Module:3	Parallel Databases and Distributed Databases	8 hours			
Parallel Data	base Architecture, Data partitioning strategy, Inter-Query, and Intra-Quer	y Parallelism,			
Distributed D	Oatabase Features, Distributed Database Architecture, Fragmentation, Rep	olication,			
Distributed Q	Query Processing, Distributed Transactions Processing				
Module:4	Spatial and Multimedia Databases	6 hours			
Spatial databa	ase concepts, Spatial data types, and models, Spatial operators and querie	es, Indexing in			
	ases, Multimedia database concepts, Automatic Analysis of Images, Obje				
Images, Sema	antic Tagging of Images	-			
Module:5	Semi-Structured Databases	6 hours			
Semi Structu	red databases- XML Schema-DTD- XPath- XQuery, Semantic Web, RD	F, RDFS			
Module:6	Cloud and NoSQL Databases	6 hours			
Cloud databa	ses- Data Storage Systems on the Cloud, Data Representation, Partitionin	g and Retrieving			
	nges with Cloud-Based Databases- NoSQL Data model: Aggregate Mode				
Data Model,	Key-Value Data Model, Columnar Data Model, Graph-Based Data Mode	: l			
Module:7	Database Security	5 hours			
Database Sec	curity Issues, Security Models, Different threats to databases, Challenge	es to maintaining			
database secu	urity				
	·				
Module:8	Contemporary Issues	2 hours			
	·				
	Total Lecture hours:	45 hours			
1					

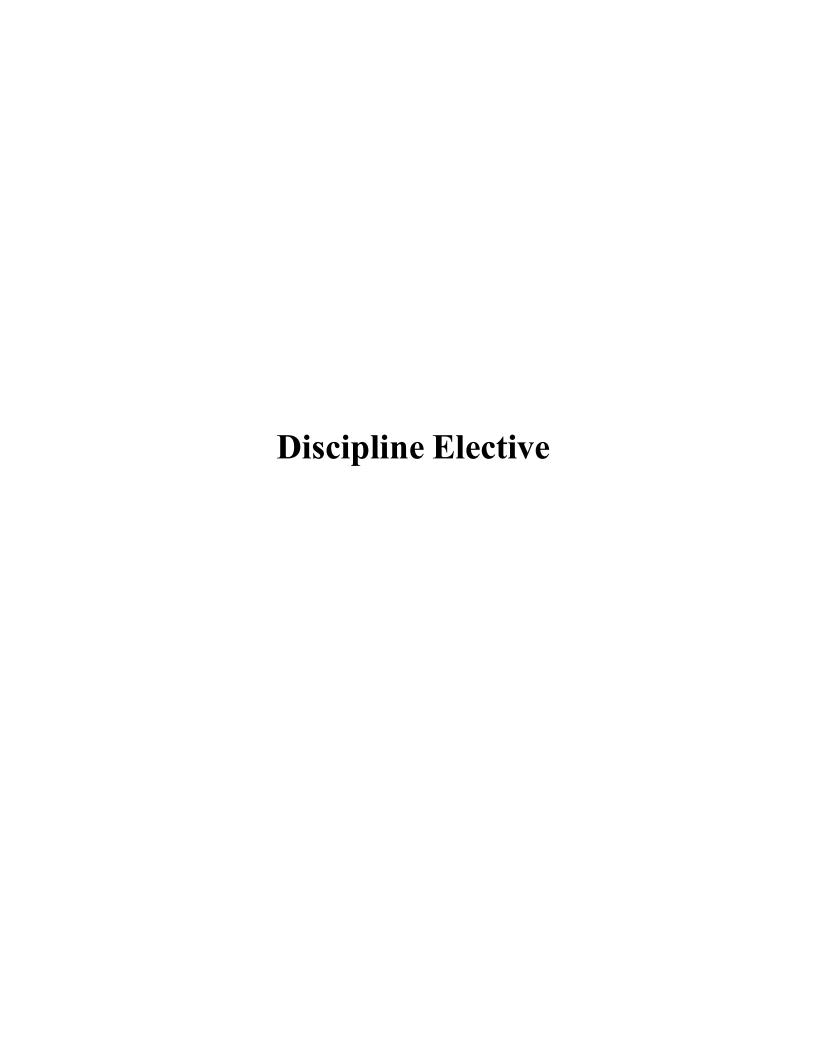
Tex	Text Book(s)				
1	Abraham Silberschatz, Henry F. Korth, and S. Sudharsan, "Database System Concepts", 7h				
	Edition, McGraw Hill, 2019.				
2	R. Elmasri and S. Navathe,	Fundamentals	of Datab	ase Systems, 7 th Edition, Addison-Wesley,	
	2016				
Ref	ference Books				
1	Fawcett, Joe, Danny Ayers,	and Liam RE	Quin. "Be	eginning XML", Wiley India Private Ltd., 5 th	
	Edition, 2012				
2	Rigaux, Ph, Michel Scholl, and Agnes Voisard. "Spatial databases: with application to GIS"			Spatial databases: with application to GIS".	
	Morgan Kaufmann, 2002.				
3	Dunckley L. Multimedia d	latabases: An o	bject rel	ational approach. Addison-Wesley Longman	
	Publishing Co., Inc.; 2003 Jan 1.				
Mo	de of Evaluation: CAT / Wri	tten Assignmen	t / Quiz /	FAT	
Rec	commended by Board of	26-07-2022			
Stu	dies				
Approved by Academic		No. 67	Date	08-08-2022	
Coi	uncil				

Course code	Course title	L T P C
MCSE506P	DATABASE SYSTEMS LAB	0 0 2 1
Pre-requisite	NIL	Syllabus version
		v. 1.0

- 1. To understand the underlying principles of Relational Database Management System.
- 2. To focus on the modeling and design of secure databases and usage of advanced data models.
- 3. To implement and maintain the structured, semi structured and unstructured data.

Course Outcome

After completion of this course, the student shall be able to:


- 1. Construct database queries using Structured Query Language (SQL)
- 2. Design and implement applications that make use of distributed fault-tolerant databases.
- 3. Apply Spatial and Multimedia Database concepts to solve real-world problems.
- 4. Implement applications that work with structured, semi-structured, and unstructured databases
- 5. Create applications that use cloud storage technologies and relevant distributed file systems

	5. Create applications that use cloud storage technologies and relevant distributed file systems
	cative Experiments
1.	Study of Basic SQL Commands.
	Model any given scenario into ER/EER Model
2.	Table creation with constraints, alter schema, insert values, aggregate functions, simple and
	complex queries with joins, Views, Subqueries.
3.	PL/SQL-Procedures, Cursors, Functions, Triggers
4.	Partition a given database based on the type of query and compares the execution speed of the query with/without parallelism.
5.	Create a distributed database scenario, insert values, fragment and replicate the database Query the distributed database
6.	Consider a schema that contains the following table with the key underlined:
	Employee (Eno, Ename, Desg, Dno). Assume that we horizontally fragment the table as follows:
	Employee1(Eno; Ename; Desg; Dno), where 1<= Dno <=10
	Employee2(Eno; Ename; Desg; Dno), where 11 <= Dno <=20
	Employee3(Eno; Ename; Desg; Dno), where 21 <= Dno <=30
	In addition, assume we have 4 sites that contain the following fragments:
	Site1 has Employee1
	• Site2 has Employee2
	• Site3 has Employee2 and Employee3
	• Site4 has Employee1
	Implement at least 5 suitable queries on Employee fragments. Add relations to the database as
	per your requirements.
7.	Plot points, lines, and polygons using Spatial Databases such as Oracle Spatial, PostgreSQL, Microsoft SQL Server etc
8.	Use Spatial Databases to store data using Latitude and Longitude, find the distance
	between two spatial objects, find the area of a polygon
	Store and retrieve images from a multimedia database
9.	Create an XML document and validate it against an XML Schema/DTD.
1	TT 370

Use XQuery to query and view the contents of the database

Execute XPATH expressions on a database.

11.	Perform the following using a MongoDB Database							
	 Create an Employee Collection and insert a few documents (sample document given below for reference) 							
	 { "name" : "Satish", "salary" : 30000, "address" : "Vellore", "school" : "SCOPE" } Display all employees whose address is vellore and salary is greater than 30000 Update the salary for an employee by name 'Ram' as 40000 Display only name and salary for all employees in the collection Display all employees who are not from 'SCOPE' school Display only documents that contains the address property 							
12								
12.	Create an application that interacts with a cloud database.							
	Total Laboratory Hours 30 hours							
Tex	t Book(s)							
1.	D Abraham Silberschatz, Henry F. Korth, S. Sudarshan "Database System Concepts" 7th Edition McGraw Hill, 2021							
Ref	erence Books							
1.	Elmasri and Navathe "Fundamentals of Database Systems", 7th Edition Addison Wesley, 2014							
2.								
3.	3. Mishra, Sanjay, and Alan Beaulieu. Mastering Oracle SQL: Putting Oracle SQL to Work. O'Reilly Media, Inc., 2004.							
Mod	de of Evaluation: CAT / Mid-Term Lab/ FAT							
Rec	ommended by Board of Studies 26-07-2022							
	proved by Academic Council No. 67 Date 08-08-2022							

Course code		INFORMATION SECURITY AN MANAGEMENT	ND RISK	L	Т	P	C
MCSE608L		MANAGEMENT		3	0	0	3
Pre-requisite	<u> </u>	Nil		Syllabus			
110 requisite	,			3 y mas a.	, , ст		1.0
Course Obje	ctives						
•		at security policies and their impacts.					
		framework, lifecycle and controls of security	under a variety	of scena	rios.		
		e security risk calculations and mitigating the					
Course Outc							
		this course, the student will be able to:					
		ne principles and policies of information secur	rity.				
		explore the information security controls.					
		valuate the risk management practices of infor					
4. Identi	fy the d	isasters and recovering from them with appro-	priate decisions.				
3/1 1 1 1	T C	4. G 4. D 1. 1	Γ			<u> </u>	
Module:1		mation Security Principles	1 11	T. C		6 ho	
		- Assets and Types - Threat, Vulnerability, Ri	sk and Impact -	Informa	tion	Secu	rity
Module:2	•	red for Information Security.	<u> </u>			7 hc	
		mation Security Framework	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
		esponsibilities: Organizational Policy, Standa					
		e - Information Assurance Programme In		- Secui	nty	incic	ient
Module:3		Framework: Security Standards and Procedurity Life Cycle and Controls	es.			8 hc	
			antuala Crystan	. Davia	1		
		Life Cycle - Testing, Audit, Review and Controls - People Security - User Access Controls					
		ware - Physical Security - Different Uses of C		Security	- 11	OLECI	.1011
Module:4		ity Management Models and Performance	ontrois.			6 ha	nire
Wiodule.4		urement				O IIC	, ui s
Blueprints - H		orks and Security Models - Security Architect	ure Models - Va	rious Ac	cess	Con	trol
		Security Performance Measurement.					
Module:5		Assessment				6 ho	ours
Threats and i	ts Categ	gories - Vulnerabilities and its Categories - Ris	k - Calculation o	f Overal	l Ris	k - R	isk
		Analysis - Risk Evaluation - Risk Control -					
Risk Transfer	- Risk	Tolerance - Overall Risk Assessment.					
Module:6	Risk I	Management				4 ho	ours
Risk Manage	ement I	Framework and Process - Managing Risk -	- Risk Treatmen	nt- Alte	rnati	ve F	₹isk
Management							
Module:7		ter Recovery and Business Continuity gement				6 ho	urs
		ocess and policy - Relationship between Disas					
		ence and Redundancy - Approaches to Writin	g and Implemen	ting Pla	ns - 1	Need	for
		intenance and Testing.					
Module:8	Conte	emporary Issues				2 ho	urs
	1		I				
		Total Lecture hours:			4	15 ho	urs

Tex	tt Book(s)						
1.	Andy Taylor, David Alexander, A Principles",2020, Third Edition, BCS			Sutton, "Information Security			
2.	Michael E. Whitman and Herbert J. Mattord, "Management of Information Security", 2018, Sixth Edition, Cengage Learning, United States of America.						
Ref	erence Books						
1.	Calder, A., and Watkins, S. ISO27001/ISO27002", 2018, Third I	-		•			
2.	Susanto, H., and Almunawar, M. N, "Information security management systems: A novel framework and software as a tool for compliance with information security standards", 2018, First Edition, Apple Academic Press, New York.						
Mode of Evaluation: CAT / Assignment / Quiz / FAT							
Rec	commended by Board of Studies	26-07-2022					
App	proved by Academic Council	No.67	Date	08-08-2022			

Course code		CRYPTOSYS	STEMS			L i	T	P	C
MCSE609L						2 (0	0	2
Pre-requisite	NIL				Sy	llab	us v	vers	ioi
								V	.1.
Course Object									
	the concept of Crypto		_						
	erstand the design of c								
3. To expl	ore various authentica	tion and hashing	algorithm	ıs.					
<u> </u>									
Course Outcom		. 1 . 111 11							
	on of this course, the s								
 Understand the fundamental of Cryptosystems requirements. Identify and apply the concept of Cryptographic algorithms. 									
	and explore the use of								
	ep insight into attacks nd analyze of signatur	~ ~	, .	,					
J. Explore a	ilu alialyze ol sigliatul	e and key exchan	ge algori	iuiiiis.					
Module:1 M	athematical Foundat	ions of Cryptosy	stems					l ho	—
	attacks – Modular a			eorem Euler's	Theor	em			
	rithm, Chinese Remai								
	Method, Pollard's p-1				ne suc	,001	Sy 1	1100	•
	assical Cryptograp		, 110112011				4	l ho	urs
	Affine Cipher, Vigen		ipher, Li	near Feedback S	hift R	egist			
	on Affine Cipher, Vi					8181	(,,,
	ock Ciphers and S		1				4	l ho	urs
	ory – Linear Cryptana		al Crypt	analvsis – Desc	ription	ano			
	ription and Analysis o				<u>r</u>				
Module:4 H	ash Functions and M	essage Authentic	ation				4	4 ho	urs
Hash Functions and HMAC – C	and Data Integrity –	Security of Hash	Function	is – MD5 – SHA	A512 -	- Ne	stec	l M	AC
Module:5 Pu	iblic Key Cryptogo ogarithms	aphy and Disc	rete				4	l ho	urs
	tem – Shanks' Algori	hm – Elliptic Cur	ves Ove	r the Reals – Ell	iptic C	urve	es N	Iod	ulo
	tic Curves Over Finite								
Module:6 Si	gnature Schemes a	nd Post-Quant	um				5	5 ho	urs
	ryptography								
	y Research Unit (NT	RU): Basics, Lat	tices and	Security of N	TRU -	– Co	ode	Ba	sed
	- McEliece Cryptogra								
Scheme – Merk	de Signature Scheme.								
Module:7 K	ey Distribution an	d Key Agreem	ent				4	l ho	urs
So	chemes								
•	tion - Session Key Di								
	ay Scheme - Diffie-			t - MTI Key A	Agreen	nent	-]	Pail	lier
Cryptosystem -	- Algebraic Structures	 Group and Ring 	3 .						
Module:8 Co	ontemporary Issues						1	l ho	urs
<u> </u>				·					
		Total Lecture	hours:				30) ho	urs

Text	Text Book(s)							
1.	Douglas R. Stinson, "Cryptog	raphy: Theory and	Practice",	2018, 4th Edition, CRC Press,				
	United states.							
Reference Books								
1.	Bruce Schneier, "Applied Cryptography: Protocols, Algorithms and Source code in C", 2017,							
	20th edition, John Wiley & Son	s, New York.						
2.	Behrouz A Forouzan, Debdeep	Mukhopadhyay, "C	ryptograpl	ny and Network Security", 2011,				
	Tata Mcgraw Hill education pri	ivate limited, India						
Mod	Mode of Evaluation: CAT / Assignment / Quiz / FAT							
Reco	Recommended by Board of Studies 26-07-2022							
App	roved by Academic Council	No.67	Date	08-08-2022				

Cou	rse code		CRYPTOSYSTEM	AS LAB	}		\mathbf{L}	T	P	C
MC	SE609P						0	0	2	1
Pre-	requisite	NIL				Syl	lab	us v	vers	ion
									V	.1.0
Cou	rse Objective									
1		e concept of Crypto								
			yptanalytics and sec		gorithms.					
3.	. To explore	various authenticat	ion and hashing algo	orithms.						
-										
	rse Outcome	0.1.1	. 1 . 911 11							
			student will be able t		*.1					
			and emerging secur							
	: Explore and icative Experi		re and key exchange	aigoriu	IIIIS.					
1.			r on different compu	tana Dar	fama tha aan		otio			
1.			r on anterent compu ising RSA cryptosys		Torm the con	mumc	auc)[]		
2.			r on different compu		form the outh	antion	tior	of	con	dor
۷.			ising digital signatur			iciiiica	пог	1 01	SCIIC	JCI
3.			attack in Diffie-Hell			orithn	1			
4.			ge digest algorithm	man key	exendinge dig	SOTTUIN	.1			
5.			tography algorithms							
6.		Data Encryption Sta								
7.		a session key agreer								
8.			essage authentication	n code (HMAC) algor	rithm.				
9.	Implement I	ElGamal cryptosyst	tems on elliptic curv	es						
10.	Implement A	Advanced Encrypti	on Standard algorith	m						
			Total Lecture he	ours:				3() ho	urs
TD .	(D ()									
	t Book(s)	G.: "G	1	<u> </u>	2 2010 441 1	D 1'4'		D.C	<u> </u>	
1.	United states	S.	raphy: Theory and I	ractice	, 2018, 4th	Editioi	1, C	RC	Pre	ess,
	erence Books	()								
1.	Bruce Schneier, "Applied Cryptography: Protocols, Algorithms and Source code in C", 2017, 20th edition, John Wiley & Sons, New York.									
2.	Tata Mcgrav	w Hill education pr	Mukhopadhyay, "Cı ivate limited, India	yptogra	phy and Netw	ork Se	ecur	ity [,]	', 20	11,
		on: Continuous Ass	sessment / FAT							
		Board of Studies	26-07-2022			-				
Ann	roved by Acad	demic Council	No. 67	Date	08-08-202	22				

Course code	PENETRATION TESTING AND VULNERABILITY ASSESSMENT	L	T	P	C
MCSE610L		-			2
Pre-requisite	NIL	Syllabus version			
					v.1.0
Course Objectiv	ves rehend the security framework related occurrences and known				
Course Outcom	e n of this course, the student will be able to:				
and confi 2. Deploy a	laws and vulnerabilities in applications, websites, networks gurations using both manual techniques and assistive tools. In test exploits over targeting operating systems and services.	s	ms, p	roto	cols,
the secur	wledge on legal and ethical issues related to vulnerability at perform pentest on target and generate a report based on the ity threats and vulnerabilities in computer networks.	e test	and c	leter	mine
the secur	wledge on legal and ethical issues related to vulnerability are perform pentest on target and generate a report based on the	e test	and c	leter	mine
the secur 5. Using the threats.	wledge on legal and ethical issues related to vulnerability at a perform pentest on target and generate a report based on the ty threats and vulnerabilities in computer networks. It is acquired knowledge into practice for testing the vulnerabilities.	e test	and c	leter entif	mine ying
the secur 5. Using the threats. Module:1 Pen	wledge on legal and ethical issues related to vulnerability as perform pentest on target and generate a report based on the ty threats and vulnerabilities in computer networks. acquired knowledge into practice for testing the vulnerabilities and Information Security	ties ar	and d	leter entif	mine ying hours
5. Using the threats. Module:1 Pen Pentester – Type Vulnerability As Security Control	wledge on legal and ethical issues related to vulnerability are perform pentest on target and generate a report based on the sty threats and vulnerabilities in computer networks. It acquired knowledge into practice for testing the vulnerabilities of Hackers – Pentest Methodology – Pentest Types – Vulnessessments – Pentest Target and Specializations - Asset Man s – Access Controls – Incident Responses – Malware –	ties ar	and ond ide	entif	ying hours ning – Triad –
5. Using the threats. Module:1 Pen Pentester – Type Vulnerability As Security Control Threats – Cyber	wledge on legal and ethical issues related to vulnerability and perform pentest on target and generate a report based on the ity threats and vulnerabilities in computer networks. It acquired knowledge into practice for testing the vulnerabilities and Information Security setsing and Information Security sets of Hackers – Pentest Methodology – Pentest Types – Vulnesessments – Pentest Target and Specializations - Asset Man	ties ar	and ond ide	entif 4 Scani CIA	hours hours ring – Friad – sistent
the secur 5. Using the threats. Module:1 Pen Pentester – Type Vulnerability As Security Control Threats – Cyber Module:2 Reconnaissance Sniffing and Scar	wledge on legal and ethical issues related to vulnerability are perform pentest on target and generate a report based on the sty threats and vulnerabilities in computer networks. It acquired knowledge into practice for testing the vulnerabilities of Hackers – Pentest Methodology – Pentest Types – Vulnesessments – Pentest Target and Specializations - Asset Man s – Access Controls – Incident Responses – Malware – Kill Chain – Air-gapped Machines – Dark Web.	ties and tie	lity Sent: Conced	entif 4 Scann CIA T Per 4 Inte	hours hing – Friad – sistent hours rnal –

Bypassing Firewalls – Evading Intruder Detection System - Securing Network from Attacks.

Understanding Web Languages - Web Architecture - Webpage Spoofing - Information Gathering from Target Websites - Finding Subdomains - Files Based Analysis - Cookies Handling - Web Page Attacks - Attack Detection - Protection Against Web Page Attacks - MITMF Code Injection.

Database - Testing Database Vulnerability - Securing SQL Server - Detecting Database Attacks - Protection Against Database Attacks - File Upload Vulnerability - Inclusion Vulnerability - Code Execution

Introduction to Gaining Access – Server Side – Client Side – Post – Exploitation Server Side Attacks – Metasploit and MSFS - Scripting Vulnerabilities - Automatic Vulnerability Compliances using OWASP

Trojan, Viruses and Backdoor Applications - Detection Mechanism - Unix Permission and Root Access - Buffer overflow - Memory Architecture - Examples - Escalation - Linux - Window - Preventing

Total Lecture hours:

4 hours

4 hours

5 hours

4 hours

1 hours

30 hours

Module:4 | Web Server Attacks

Module:5 Injection Vulnerability

Escalation

Module:8 | Contemporary Issues

Module:6 | Gaining Access

ZAP.

Module:7

- Local File - Remote File - Mitigation Strategies.

Mechanism – DDOS – Detection and Prevention – Tools.

T.	D 1()		W (D 1/)						
Text	t Book(s)								
1.	Phillip L. Wylie, Kim Crawley, "The Pentester BluePrint: Starting a Career as an Ethical Hacker", 2020, Wiley, United States.								
2.	Sabih, Zaid, "Learn Ethical Hacking from Scratch: Your stepping stone to penetration testing", 2018 Packt Publishing Ltd, United Kingdom.								
Refe	Reference Books								
1.	Diogenes, Yuri, and Erdal Ozkaya, "security with Red Team and Blue Tea								
2.	Andrew Whitaker, and Daniel P. New	vman. "Penetration To	esting and Network [Defense", 2005, Cisco					
	Press, New Jersey.								
Mod	Mode of Evaluation: CAT / Assignment / Quiz / FAT								
Reco	Recommended by Board of Studies 26-07-2022								
App	Approved by Academic Council No.67 Date 08-08-2022								

Course code	PENETRATION TESTING AND VULNERABILITY ASSESSMENT LAB	L	T	C
MCSE610P		0	0 2	2 1
Pre-requisite		Sylla	bus ve	rsion
			,	v.1.0
Course Objecti	ves:			
1. To compre	chend the security framework related occurrences and knowledge on ex	pected	1	
	s, and countermeasures against normal vulnerabilities.			
	y security weaknesses in a network, machine, and in software.			
	tudents familiarization with cyber kill-chains.			
Course Outcon				
	of this course, the student will be able to:			
	perform pentest on target and generate a report based on the test and de	termi	ne the	
	reats and vulnerabilities in computer networks.		_	
	acquired knowledge into practice for testing the vulnerabilities and ide	ntıfyır	ng threa	its.
	ging Experiments (Indicative)			
	li Linux in a Virtual machine and setup with DNS info and collection of		3 h	ours
local networ	ks			
2. Scan the net	work for Windows XP and Windows 7 Target machines in local		3 h	ours
	l virtual network			
3. Identify the	open ports and firewall rules setup		2 h	ours
4. Use passwo	rd guessing tools to guess a password. Use password strengthening tools		2 h	ours
	the password. Try guessing the password and tabulate the enhanced			
	the to length of password and addition of special characters.			
·	to rengan or place work and addition or special characters.			
-	word hashes from Windows XP/NT machine. Use a password extraction		2 h	ours
	vord list, single crack or external mode to recover the password.			
	complexity of the password and determine the point at which the			
cracking too				
	nux passwords			ours
	s on SQL injections			ours
8. Analysis of				ours
	s on Wireless DDoS Attacks			ours
	against Cross Site Scripting Attacks			ours
	s on Metasploit Framework			ours
12. Cross Site S	1 0			ours
	equest Forgery			ours
	vulnerability on social engineering			ours
Total Laborato	ry Hours		30 h	ours
Text Book(s)				
	rlie, Kim Crawley, "The Pentester BluePrint: Starting a Career as an Ethical F	lacker'	', 2020,	,
Wiley, Unite				
	Learn Ethical Hacking from Scratch: Your stepping stone to penetration testi	ing", 2	018 Pac	:kt
	d, United Kingdom.			
Reference Book				
_	ıri, and Erdal Ozkaya, "Cybersecurity??? Attack and Defense Strategies: Infr	astruct	ure sec	urity
with Red Tea	m and Blue Team tactics", 2018, Packt Publishing Ltd, United Kingdom.			
2. Andrew Whi	taker, and Daniel P. Newman. "Penetration Testing and Network Defense", 2	005, C	isco Pr	ess,
New Jersey.	- · · · · · · · · · · · · · · · · · · ·			
Mode of Evalua	tion: Continuous Assessment / FAT			

26-07-2022 No. 67

Date

08-08-2022

Recommended by Board of Studies
Approved by Academic Council

Course Code	Course Title	LTPC				
MCSE611L	Malware Analysis	2 0 0 2				
Pre-requisite	NIL	Syllabus version				
_		1.0				
Course Objective	ves					
1. To introdu	ice malware taxonomy and life cycle.					
2. To analyze malware samples using static, dynamic analysis, and reverse						
engineering techniques.						
To detect	and analyze obfuscation and anti-malware tech	ıniques.				

Course Outcomes

After completion of this course, the student shall be able to:

- 1. Apply the static and dynamic malware analysis on emerging samples.
- 2. Analyze the executable file and malware classification.
- 3. Understand the disassemblers, debuggers, and decompilers in malware analysis.
- 4. Explore the anti-malware analysis techniques.
- 5. Apply the reverse-engineering of malware and Obfuscation using emerging tools.

tools	S.	g					
Module:1	Introduction to Malware	4 hours					
Malware Ta	axonomy - Malware Attack Life Cycle - The Combat Tean	ns - Anti-malware					
Products- I	Products- Reverse Engineering for Windows and Linux systems.						
	Static Malware Analysis	4 hours					
	ing the Malware - PE: File types, and header analysis, Ex						
	Malware using YARA - Tools: PEid and TrID, MASTIFF,						
	Dynamic Malware Analysis	4 hours					
	ivents Analysis using ProcMon and Autoruns - Detecting						
	dynamic analysis - Sandboxing: Tools and Techniques -						
	Prepare for Reverse Engineering	4 hours					
	engineering as a process - Binary analysis tools, I						
	 Decompilers - Identification and Extraction of Hidde 	en Components -					
	lware behavior - Malware delivery.						
	Build and Debug the Malware	4 hours					
	Language: Registers, Memory addressing, Opcode by						
	IDA Pro, Ollydebug -Windows API libraries - Packing and						
	Obfuscation Techniques	5 hours					
	cation - Binary Obfuscation Techniques - Assembly of						
	fication - Decrypting with x86dbg - Control flow flatten	ing obfuscation -					
	ode insertion - Dynamic library loading.	T					
Module:7	Anti-Malware analysis	4 hours					
	ging - Anti-VM - Anti-emulation - Anti-dumping - SysInte						
	ing - Analysis of HTML scripts - MS Office macro an	alysis - PDF file					
	SWFTools – FLASM – Flare.						
Module:8	Contemporary Issues	1 hours					
	Total Lecture hours:	30 hours					
Text Book	(s)						

- 1. Abhijit Mohanta, Anoop Saldanha, Malware Analysis and Detection Engineering a Comprehensive Approach to Detect and Analyze Modern Malware, 2020, 1st edition, Apress (ISBN 978-1-4842-6192-7), United States.
- 2. Reginald Wong, Mastering Reverse Engineering, 2018, 1st edition, Packt Publishing Ltd, Birmingham, ISBN 978-1-78883-884-9, UK.

Reference Books

1. M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-on Guide to Dissecting Malicious Software. 2012, 1st edition, No Starch Press San Francisco, CA. (ISBN No.: 9781593272906), United States.

Mode of Evaluation: CAT, assignment, Quiz and FAT

Recommended by Board of Studies	18-11-2022	2	
Approved by Academic Council	No.68	Date	19-12-2022

Course Code	Course Title		L	Т	Р	С
MCSE611P	Malware Analysis Lab		0	0	2	1
Pre-requisite	NIL	Sy	/llat	ous	vers	ion
				1.0	0	

- 1. To introduce malware taxonomy and life cycle.
- 2. To analyze malware samples using static, dynamic analysis, and reverse engineering techniques.
- 3. To detect and analyze obfuscation and anti-malware techniques.

Course Outcomes

After completion of this course, the student shall be able to:

- 1. Explore the anti-malware analysis techniques
- 2. Apply the reverse-engineering of malware and Obfuscation using emerging tools.

Indic	ative Experiments			
1	Disassemble Portable Executable (PE32) Files using PEid and TrID,	3 hours		
	to identify			
	file compilation date			
	 imports/ exports, suspicious strings 			
	 run-time effect, procmon filter 			
	 hist -based signatures revealing files 			
	 registry keys, processes, services 			
	network-based signatures			
2	Static and Dynamic Malware Analysis:	4 hours		
	 Sandboxing the malware using SANDBOX tool: Cuckoo 			
	(open source)			
	Sample Malware analysis Virus Total			
	Registry analysis using Any run			
	Malware analysis via hex code			
3	Reverse-engineering the malware using IDA Pro: strings analysis,	4 hours		
	local variables, graph mode to cross-references, Analyzing			
	Functions			
4	Debug and Disassemble the malware using OllyDbg: Debug the	4 hours		
	malware, Viewing Threads and Stacks, OllyDbg Code-Execution			
	Options, Breakpoints, Loading DLLs, Exception Handling			
5	MASTIFF is a static analyzer framework (Linux and Mac) with the	4 hours		
	following plugins:			
	ssdeep: fuzzy hash, or context-triggered piecewise hashes			
	(CTPH) to identify nearly identical files for identifying			
	variants of a malware family			
	pdftools: extracts information about PDF files.			
	exiftool: This shows info, from image files.			
	disitool: extract digital signatures from signed executables.			
	pyOLEscanner: extract information from OLE file types,			
	such as Word documents and Excel spreadsheets	0 h		
6	Packing and obfuscation:	3 hours		
	Pack and unpack the malware: UPX tool			

	T				
	 obfuscation and de-obfuscation of the malware using CFF 				
	explorer	4 hours			
7	Tournge arrain transferer				
	SysInternals Suite's strings: This is a command-line tool for				
	Windows that shows the list of text strings in any type of				
	file.				
	 BinText: This is a GUI-based Windows tool that can display 				
	the ASCII and Unicode text strings for a given file.				
	 API Monitor: helps reverse engineering by monitoring API 				
	calls as the program runs.				
8	Anti Malware analysis using:	4 hours			
	WinDbg				
	IDA Pro / OllyDBG				
	SysInternals Suite Tools				
	Total Laboratory Hours 30 h	ours			
Text	Book(s)				
1.	Reginald Wong, Mastering Reverse Engineering, 2018, 1st edition	on, Packt			
	Publishing Ltd, Birmingham, ISBN 978-1-78883-884-9, UK				
Reference Books					
1. Abhijit Mohanta, Anoop Saldanha, Malware Analysis and Detection					
	Engineering a Comprehensive Approach to Detect and Analyze Modern				
	Malware, 2020, 1st edition, Apress (ISBN 978-1-4842-6192-7), United States.				
2.					
	Disassembler, 2nd Ed. San Francisco: No Starch Press San Francisco, CA,				
	2011. (ISBN No. :				
978-1-59327-289-0).					
	,				
	e of assessment: Continuous assessment and FAT				
Reco	,				

Course Code	Course Title	L	Т	Р	С
MCSE612L	Cyber Security	3	0	0	3
Pre-requisite	NIL	Syllabus version			
			1.0		

- 1. To understand key terms and concepts in Cyber security, Policies, Governance and Compliance.
- 2. To exhibit knowledge to secure corrupted systems, protect personal data, and secure computer networks in an Organization.
- 3. To understand principles of cyber security and to guarantee a secure network by analyzing the nature of attacks through cyber forensics software or tools.

Course Outcomes

After completion of this course, the student shall be able to:

- 1. Analyze and evaluate the cyber security needs of an organization.
- 2. Analyze the security issues in networks and computer systems to secure an infrastructure.
- 3. Design operational cyber security strategies and policies.
- 4. Apply critical thinking and problem-solving skills to detect current and future attacks on an organization's computer systems and networks.

Module:1 Introduction to Cyber Security

6 hours

Cyber Security- Layers of security, Vulnerability, Assets and Threat, Challenges and Constraints - Computer Criminals - CIA Triad - Motive of attackers - Spectrum of attacks - Taxonomy of various attacks - Cryptography - Security Governance - Challenges and Constraints, Security Models and Risk Management, Legacy Cyber security systems - Transformations in Cyber security.

Module: 2 | Cyber Security Technologies

6 hours

Mobile Security – Advanced Data Security: Cloud Security, IoT Security - Incident detection response - Penetration testing – User Behavior Analytics (UBA) – Endpoint Detection and Response (EDR).

Module:3 | Vulnerabilities and Safeguards

6 hours

Software Vulnerabilities - Complex Network Architectures, Open Access to Organizational Data, Weak Authentication, poor cyber security awareness - Cyber Security Safeguards – Overview, Access control, Audit, Authentication, Biometrics, Deception, Denial of Service Filters, Ethical Hacking, Firewalls, Scanning, Security policy, Threat Management, Defending malicious software, Applying software update and patches.

Module:4 | Securing Infrastructure and Local Host

7 hours

Infrastructure security in the real world and challenges – Understanding access control and monitoring systems: Access control security policies, Physical security controls – Intrusion detection and Reporting systems – Securing host device and challenges – Protecting the inner perimeter – Protecting remote access: Local protection tools, local intrusion detection tools, configuring browser security, Hardening operating systems.

Module:5 | Cyber Security Tools

6 hours

Zenmap – Hydra –Kismet – John the Ripper – Airgeddon – Deauther Board – Aircrack-ng – EvilOSX.

Module:6 Cyber Security Strategies 6 hours				
Need for building cyber strategy - Cyber-attack strategies (Red team) - Cy				
defense strategies (blue team) - Introduction to Cyber security kill chain -				
Reconnaissance - Weaponization - Privilege Escalation - Exfiltration - Threat Life				
cycle management phases.				
Module:7 Cybercrime Challenges 6 hours				
Challenges of fighting cybercrime- Opportunities, general challenges, and legal				
challenges - Capacity building- Cyber security and cybercrime: Capacity building				
methodology, Strategy as a starting point, the relevance of policy, the role of				
regulators in fighting cybercrime, high standards in developing countries.				
Module:8 Contemporary Issues 2 hours				
Total Lecture hours: 45 hours				
Text Book(s)				
1. Yuri Diogenes, Erdal Ozkaya, Cyber security - Attack and Defense Strategies,				
Packt Publishers, 2018.				
2. Charles J. Brooks, Christopher Grow, Philip A. Craig, Donald Short,				
Cybersecurity Essentials, Wiley Publisher, 2018.				
Cybersecurity Essentials, Wiley Publisher, 2018. Reference Books				
Cybersecurity Essentials, Wiley Publisher, 2018. Reference Books 1. William Stallings, Effective Cybersecurity: A Guide to Using Best Practices and				
Cybersecurity Essentials, Wiley Publisher, 2018. Reference Books 1. William Stallings, Effective Cybersecurity: A Guide to Using Best Practices and Standards, 1st edition, 2019.				
 Cybersecurity Essentials, Wiley Publisher, 2018. Reference Books William Stallings, Effective Cybersecurity: A Guide to Using Best Practices and Standards, 1st edition, 2019. Nina Godbole, Sunit Belapure, Cyber Security - Understanding cybercrimes, 				
 Cybersecurity Essentials, Wiley Publisher, 2018. Reference Books William Stallings, Effective Cybersecurity: A Guide to Using Best Practices and Standards, 1st edition, 2019. Nina Godbole, Sunit Belapure, Cyber Security - Understanding cybercrimes, Computer Forensics and Legal Perspectives, Wiley, 2011. 				
 Cybersecurity Essentials, Wiley Publisher, 2018. Reference Books William Stallings, Effective Cybersecurity: A Guide to Using Best Practices and Standards, 1st edition, 2019. Nina Godbole, Sunit Belapure, Cyber Security - Understanding cybercrimes, 				
 Cybersecurity Essentials, Wiley Publisher, 2018. Reference Books William Stallings, Effective Cybersecurity: A Guide to Using Best Practices and Standards, 1st edition, 2019. Nina Godbole, Sunit Belapure, Cyber Security - Understanding cybercrimes, Computer Forensics and Legal Perspectives, Wiley, 2011. 				

Course Code	Course Title		L	Т	Р	С
MCSE613L	Digital Forensics		3	0	0	3
Pre-requisite	NIL	Sy	llab	us	ver	sion
		1.0				

- 1. To understand the basics of digital forensics technology, systems and services.
- 2. To learn about data recovery, data seizure, digital evidence controls and forensics analysis.
- 3. To learn and develop different tools for digital forensic acquisition and analysis.

Course Outcomes

After completion of this course, the student shall be able to:

- 1. Learn the fundamentals of digital forensics technology along with different systems and services.
- 2. Recover and seize data from a crime scene without damage, using legal procedures and standards.
- 3. Exhibit knowledge in forensic data acquisition and analysis and investigate artifacts in different operating systems.
- 4. Apply forensics tools and concepts on modern frameworks such as network, email, smart phones, cloud and social media.

Module:1 Introduction to Digital Forensics

6 hours

Digital forensics fundamentals: Use of Computer Forensics - Benefits of Professional Forensics Methodology - Steps Taken by Computer Forensics Specialists - Case Studies - Types of Computer Forensics Technology: Military, Law Enforcement, Business - Specialized Forensics Techniques - Hidden Data and How to Find It - Protecting Data from Being Compromised - Internet Tracing Methods.

Module:2 Digital Forensics Systems and Services

6 hours

Types of Computer Forensics Systems: Firewall and IDS Security Systems - Storage Area Network Security Systems - Instant Messaging (IM) Security Systems - Biometric Security Systems - Computer Forensics Services: Occurrence of Cyber Crime - Cyber Detectives - Fighting Cyber Crime with Risk Management Techniques - Computer Forensics Investigative Services - Forensic Process Improvement.

Module:3 Digital Forensics Evidence and Capture

6 hours

Data Recovery: Data Backup and Recovery, Data-Recovery Solution, Hiding and Recovering Hidden Data - Evidence Collection and Data Seizure: Collection of Evidence and Options, Obstacles - Types of Evidence - The Rules of Evidence - Volatile Evidence - Volatile Memory Forensics- Controlling Contamination: The Chain of Custody, Reconstructing the Attack.

Module:4 Data Preservation and Forensics Analysis

7 hours

Duplication and Preservation of Digital Evidence: Preserving the Digital Crime Scene - Computer Evidence Processing Steps - Legal Aspects of Collecting and Preserving Evidence - Computer Image Verification and Authentication - Computer Forensics Analysis: Discovery of Electronic Evidence - Identification of Data - Reconstructing Past Events - disk and file system analysis.

Module:5 | Network and Operating System Forensics

6 hours

Network forensics: Investigation on virtual network and Email, Internet Artifacts - Damaging Computer Evidence - System Testing - Operating System Artifacts:

Windows System Artifacts, Linux System Artifacts.				
Module:6 Mobile and Cloud Forensics	6 hours			
Mobile Forensics: Acquisition Procedures for Mobile, Equipment, Tools, Internet of				
Anything - Cloud Forensics: Service Levels, cloud vendors, Legal Challenges and				
Technical Challenges, Acquisition, Investigation, Tools: Open-Stack, F-Response				
AXIOM.	·			
Module:7 Forensics Tools	6 hours			
Open source tools: The Sleuth Kit (TSK) and Autopsy - SANS SIF	T Investigative tool			
- Voltality - CAINE investigative environment - windows	System internals-			
Commercial tools: Encase, FTK, PRO Discover Basic, Nirsoft.				
Module:8 Contemporary Issues	2 hours			
Total Lecture hours:	45 hours			
Text Book(s)				
1. John R. Vacca, Computer Forensics: Computer Crime Scer	ne Investigation.			
2015, Second Edition, Charles River Media, Inc. (ISBN No.				
389-7)				
2. Cory Altheide, Harlan Carvey, Digital Forensics with Oper	Source Tools:			
Using Open Source Platform Tools, 2011, First Edition,				
Cataloguing-in-Publication Data. (ISBN No. : 978-1-59749-586-8)				
Reference Books				
1. B. Nelson, A. Phillips, F. Enfinger, and C. Steuart, Guide to C	omputer Forensics			
and Investigations, 2019, Sixth Edition. CENGAGE, INDIA (ISBN:				
9789353506261)				
,				
Mode of Evaluation: CAT, assignment, Quiz and FAT				
Recommended by Board of Studies 18-11-2022				
Approved by Academic Council No.68 Date 19-12-2022				
Applicated by Addressine Courton Money Date 10 12 2	<u> </u>			