

School of Computer Science and Engineering

CURRICULUM AND SYLLABI

(2021-2022)

B. Tech. Computer Science and Engineering with Specialization in Blockchain Technology

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

To be a world-renowned centre of education, research and service in computing and allied domains.

MISSION STATEMENT OF THE SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

- To offer computing education programs with the goal that the students become technically competent and develop lifelong learning skill.
- To undertake path-breaking research that creates new computing technologies and solutions for industry and society at large.
- To foster vibrant outreach programs for industry, research organizations, academia and society.

B. Tech. - CSE (Spl. in Blockchain Technology)

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.

2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.

3. Graduates will function in their profession with social awareness and responsibility.

4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.

5. Graduates will be successful in pursuing higher studies in engineering or management.

6. Graduates will pursue career paths in teaching or research.

B. Tech. - CSE (Spl. in Blockchain Technology)

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_02: Having a clear understanding of the subject related concepts and of contemporary issues and apply them to identify, formulate and analyse complex engineering problems.

PO_03: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment

PO_04: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information

PO_05: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice

PO_06: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems

PO_07: Having adaptive thinking and adaptability in relation to environmental context and sustainable development

PO_08: Having a clear understanding of professional and ethical responsibility

PO_09: Having cross cultural competency exhibited by working as a member or in teams

PO_10: Having a good working knowledge of communicating in English – communication with engineering community and society

PO_11: Having a good cognitive load management skills related to project management and finance

PO_12: Having interest and recognize the need for independent and lifelong learning

B. Tech. - CSE (Spl. in Blockchain Technology)

PROGRAMME SPECIFIC OUTCOMES (PSOs)

1. Apply computing theory, languages and algorithms, as well as mathematical and statistical models, and the principles of optimization to appropriately formulate and use data analysis.

2. Apply the principles and techniques of database design, administration, and implementation to enhance data collection capabilities and decision-support systems. Ability to critique the role of information and analytics in supporting business processes and functions.

3. Invent and use appropriate models of data analysis, assess the quality of input, derive insight from results, and investigate potential issues. Also to organize big data sets into meaningful structures, incorporating data profiling and quality standards.

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING B. Tech. – CSE with specialization in Blockchain Technology

	CREDIT INFO							
S.no	Catagory	Credit						
1	Foundation Core	55						
2	Discipline-linked Engineering Sciences	12						
3	Discipline Core	44						
4	Specialization Elective	21						
5	Projects and Internship	9						
6	Open Elective	9						
7	7 Bridge Course							
8	Non-graded Core Requirement	11						
	Total Credits							

Curriculum for 2021-2022 Batch

		Foundation Co	ore						
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	Т	Р	J	Credit
1	BCHY101L	Engineering Chemistry	Theory Only	1.0	3	0	0	0	3.0
2	BCHY101P	Engineering Chemistry Lab	Lab Only	1.0	0	0	2	0	1.0
3	BCSE101E	Computer Programming: Python	Embedded Theory and Lab	1.0	1	0	4	0	3.0
4	BCSE102L	Structured and Object-Oriented Programming	Theory Only	1.0	2	0	0	0	2.0
5	BCSE102P	Structured and Object-Oriented Programming Lab	Lab Only	1.0	0	0	4	0	2.0
6	BCSE103E	Computer Programming: Java	Embedded Theory and Lab	1.0	1	0	4	0	3.0
7	BECE101L	Basic Electronics	Theory Only	1.0	2	0	0	0	2.0
8	BECE101P	Basic Electronics Lab	Lab Only	1.0	0	0	2	0	1.0
9	BEEE101L	Basic Electrical Engineering	Theory Only	1.0	2	0	0	0	2.0
10	BEEE101P	Basic Electrical Engineering Lab	Lab Only	1.0	0	0	2	0	1.0
11	BENG101L	Technical English Communication	Theory Only	1.0	2	0	0	0	2.0
12	BENG101P	Technical English Communication Lab	Lab Only	1.0	0	0	2	0	1.0
13	BENG102P	Technical Report Writing	Lab Only	1.0	0	0	2	0	1.0
14	BFLE200L	B.Tech. Foreign Language - 2021	Basket	1.0	0	0	0	0	2.0
15	BHSM200L	B.Tech. HSM Elective - 2021	Basket	1.0	0	0	0	0	3.0
16	BMAT101L	Calculus	Theory Only	1.0	3	0	0	0	3.0
17	BMAT101P	Calculus Lab	Lab Only	1.0	0	0	2	0	1.0

	Foundation Core								
18	BMAT102L	Differential Equations and Transforms	Theory Only	1.0	3	1	0	0	4.0
19	BMAT201L	Complex Variables and Linear Algebra	Theory Only	1.0	3	1	0	0	4.0
20	BMAT202L	Probability and Statistics	Theory Only	1.0	3	0	0	0	3.0
21	BMAT202P	Probability and Statistics Lab	Lab Only	1.0	0	0	2	0	1.0
22	BPHY101L	Engineering Physics	Theory Only	1.0	3	0	0	0	3.0
23	BPHY101P	Engineering Physics Lab	Lab Only	1.0	0	0	2	0	1.0
24	BSTS101P	Quantitative Skills Practice I	Soft Skill	1.0	0	0	3	0	1.5
25	BSTS102P	Quantitative Skills Practice II	Soft Skill	1.0	0	0	3	0	1.5
26	BSTS201P	Qualitative Skills Practice I	Soft Skill	1.0	0	0	3	0	1.5
27	BSTS202P	Qualitative Skills Practice II	Soft Skill	1.0	0	0	3	0	1.5

		Discipline-linked Enginee	ring Sciences								
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	Т	Р	J	Credit		
1	BECE102L	Digital Systems Design	Theory Only	1.0	3	0	0	0	3.0		
2	BECE102P	Digital Systems Design Lab	Lab Only	1.0	0	0	2	0	1.0		
3	BECE204L	Microprocessors and Microcontrollers	Theory Only	1.0	3	0	0	0	3.0		
4	BECE204P	Microprocessors and Microcontrollers Lab	Lab Only	1.0	0	0	2	0	1.0		
5	BMAT205L	Discrete Mathematics and Graph Theory	Theory Only	1.0	3	1	0	0	4.0		
	Discipline Core										
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	Т	Р	J	Credit		
1	BCSE202L	Data Structures and Algorithms	Theory Only	1.0	3	0	0	0	3.0		
2	BCSE202P	Data Structures and Algorithms Lab	Lab Only	1.0	0	0	2	0	1.0		
3	BCSE204L	Design and Analysis of Algorithms	Theory Only	1.0	3	0	0	0	3.0		
4	BCSE204P	Design and Analysis of Algorithms Lab	Lab Only	1.0	0	0	2	0	1.0		
5	BCSE205L	Computer Architecture and Organization	Theory Only	1.0	3	0	0	0	3.0		
6	BCSE301L	Software Engineering	Theory Only	1.0	3	0	0	0	3.0		
7	BCSE301P	Software Engineering Lab	Lab Only	1.0	0	0	2	0	1.0		
8	BCSE302L	Database Systems	Theory Only	1.0	3	0	0	0	3.0		
9	BCSE302P	Database Systems Lab	Lab Only	1.0	0	0	2	0	1.0		
10	BCSE303L	Operating Systems	Theory Only	1.0	3	0	0	0	3.0		
11	BCSE303P	Operating Systems Lab	Lab Only	1.0	0	0	2	0	1.0		
12	BCSE304L	Theory of Computation	Theory Only	1.0	3	0	0	0	3.0		
13	BCSE305L	Embedded Systems	Theory Only	1.0	3	0	0	0	3.0		
14	BCSE306L	Artificial Intelligence	Theory Only	1.0	3	0	0	0	3.0		
15	BCSE307L	Compiler Design	Theory Only	1.0	3	0	0	0	3.0		
16	BCSE307P	Compiler Design Lab	Lab Only	1.0	0	0	2	0	1.0		
17	BCSE308L	Computer Networks	Theory Only	1.0	3	0	0	0	3.0		
18	BCSE308P	Computer Networks Lab	Lab Only	1.0	0	0	2	0	1.0		
19	BCSE309L	Cryptography and Network Security	Theory Only	1.0	3	0	0	0	3.0		
20	BCSE309P	Cryptography and Network Security Lab	Lab Only	1.0	0	0	2	0	1.0		

	Specialization Elective										
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	T	Р	J	Credit		
1	BCSE324L	Foundations of Blockchain Technology	Theory Only	1.0	3	0	0	0	3.0		
2	BCSE325L	Introduction to Bitcoin	Theory Only	1.0	3	0	0	0	3.0		
3	BCSE326L	Blockchain Architecture Design	Theory Only	1.0	3	0	0	0	3.0		
4	BCSE327L	Smart Contracts	Theory Only	1.0	2	0	0	0	2.0		
5	BCSE327P	Smart Contracts Lab	Lab Only	1.0	0	0	2	0	1.0		
6	BCSE328L	Cryptocurrency Technologies	Theory Only	1.0	3	0	0	0	3.0		
7	BCSE329L	Blockchain and Distributed Ledger Technology	Theory Only	1.0	2	0	0	0	2.0		
8	BCSE329P	Blockchain and Distributed Ledger Technology Lab	Lab Only	1.0	0	0	2	0	1.0		
9	BCSE330L	Public Key Infrastructure and Trust Management	Theory Only	1.0	3	0	0	0	3.0		

	Projects and Internship									
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	Т	Р	J	Credit	
1	BCSE399J	Summer Industrial Internship	Project	1.0	0	0	0	0	1.0	
2	BCSE497J	Project - I	Project	1.0	0	0	0	0	3.0	
3	BCSE498J	Project - II / Internship	Project	1.0	0	0	0	0	5.0	
4	BCSE499J	One Semester Internship	Project	1.0	0	0	0	0	14.0	

	Open Elective									
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	Т	Р	J	Credit	
1	BCSE351E	Foundation of Data Analytics	Embedded Theory and Lab	1.0	1	0	2	0	2.0	
2	BCSE352E	Essentials of Data Analytics	Embedded Theory and Lab	1.0	1	0	2	0	2.0	
3	BCSE391J	Technical Answers to Real Problems Project	Project	1.0	0	0	0	0	3.0	
4	BCSE392J	Design Project	Project	1.0	0	0	0	0	3.0	
5	BCSE393J	Laboratory Project	Project	1.0	0	0	0	0	3.0	
6	BCSE394J	Product Development Project	Project	1.0	0	0	0	0	3.0	
7	BCSE396J	Reading Course	Project	1.0	0	0	0	0	3.0	
8	BCSE397J	Special Project	Project	1.0	0	0	0	0	3.0	
9	BCSE398J	Simulation Project	Project	1.0	0	0	0	0	3.0	
10	BSTS301P	Advanced Competitive Coding - I	Soft Skill	1.0	0	0	3	0	1.5	
11	BSTS302P	Advanced Competitive Coding - II	Soft Skill	1.0	0	0	3	0	1.5	
12	CFOC102M	Introduction to Cognitive Psychology	Online Course	1.0	0	0	0	0	3.0	
13	CFOC103M	Introduction to Political Theory	Online Course	1.0	0	0	0	0	3.0	
14	CFOC104M	Six Sigma	Online Course	1.0	0	0	0	0	3.0	
15	CFOC105M	Emotional Intelligence	Online Course	1.0	0	0	0	0	2.0	

		Open Elective							
16	CFOC109M	Design Thinking - A Primer	Online Course	1.0	0	0	0	0	1.0
17	CFOC118M	Practical Machine Learning with Tensorflow	Online Course	1.0	0	0	0	0	2.0
18	CFOC122M	Educational Leadership	Online Course	1.0	0	0	0	0	2.0
19	CFOC133M	E-Business	Online Course	1.0	0	0	0	0	3.0
20	CFOC152M	Pattern Recognition and Application	Online Course	1.0	0	0	0	0	3.0
21	CFOC165M	Software testing	Online Course	1.0	0	0	0	0	3.0
22	CFOC188M	Ethical Hacking	Online Course	1.0	0	0	0	0	3.0
23	CFOC190M	Positive Psychology	Online Course	1.0	0	0	0	0	2.0
24	CFOC191M	Forests and their Management	Online Course	1.0	0	0	0	0	3.0
25	CFOC193M	Bioengineering: An Interface with Biology and Medicine	Online Course	1.0	0	0	0	0	2.0
26	CFOC197M	Bio-Informatics: Algorithms and Applications	Online Course	1.0	0	0	0	0	3.0
27	CFOC203M	Natural Hazards	Online Course	1.0	0	0	0	0	2.0
28	CFOC207M	Electronic Waste Management - Issues And Challenges	Online Course	1.0	0	0	0	0	1.0
29	CFOC227M	GPU Architectures and Programming	Online Course	1.0	0	0	0	0	3.0
30	CFOC232M	Consumer Behaviour	Online Course	1.0	0	0	0	0	2.0
31	CFOC235M	Rocket Propulsion	Online Course	1.0	0	0	0	0	3.0
32	CFOC236M	Aircraft Maintenance	Online Course	1.0	0	0	0	0	1.0
33	CFOC253M	Plastic Waste Management	Online Course	1.0	0	0	0	0	2.0
34	CFOC257M	Earthquake Geology: A tool for Seismic Hazard Assessment	Online Course	1.0	0	0	0	0	3.0
35	CFOC258M	Introduction to Geographic Information Systems	Online Course	1.0	0	0	0	0	1.0
36	CFOC282M	Waste to Energy Conversion	Online Course	1.0	0	0	0	0	2.0
37	CFOC329M	Design, Technology and Innovation	Online Course	1.0	0	0	0	0	2.0
38	CFOC332M	Fundamentals of Automotive Systems	Online Course	1.0	0	0	0	0	3.0
39	CFOC356M	Analog Circuits	Online Course	1.0	0	0	0	0	3.0
40	CFOC365M	Evolution of Air Interface towards 5G	Online Course	1.0	0	0	0	0	2.0
41	CFOC384M	Entrepreneurship Essentials	Online Course	1.0	0	0	0	0	3.0
42	CFOC388M	Energy Resources, Economics and Environment	Online Course	1.0	0	0	0	0	3.0
43	CFOC391M	Effective Writing	Online Course	1.0	0	0	0	0	1.0
44	CFOC395M	Speaking Effectively	Online Course	1.0	0	0	0	0	2.0
45	CFOC397M	Intellectual Property	Online Course	1.0	0	0	0	0	3.0
46	CFOC400M	Language and Mind	Online Course	1.0	0	0	0	0	2.0
47	CFOC401M	The Nineteenth - Century English Novel	Online Course	1.0	0	0	0	0	3.0
48	CFOC402M	Introduction to World Literature	Online Course	1.0	0	0	0	0	3.0
49	CFOC405M	Economic Growth & Development	Online Course	1.0	0	0	0	0	2.0
50	CFOC406M	Human Behaviour	Online Course	1.0	0	0	0	0	2.0
51	CFOC407M	Introduction to Modern Indian Political Thought	Online Course	1.0	0	0	0	0	3.0
52	CFOC408M	English Literature of the Romantic Period, 1798 - 1832	Online Course	1.0	0	0	0	0	2.0
53	CFOC416M	Feminism : Concepts and Theories	Online Course	1.0	0	0	0	0	3.0
54	CFOC419M	Basic Real Analysis	Online Course	1.0	0	0	0	0	3.0
55	CFOC442M	Robotics and Control : Theory and Practice	Online Course	1.0	0	0	0	0	2.0

		Open Elective							
56	CFOC475M	IC Engines and Gas Turbines	Online Course	1.0	0	0	0	0	3.0
57	CFOC488M	Business Analytics For Management Decision	Online Course	1.0	0	0	0	0	3.0
58	CFOC490M	Sales and Distribution Management	Online Course	1.0	0	0	0	0	2.0
59	CFOC493M	Management of Inventory Systems	Online Course	1.0	0	0	0	0	3.0
60	CFOC494M	Quality Design And Control	Online Course	1.0	0	0	0	0	3.0
61	CFOC495M	Foundation Course in Managerial Economics	Online Course	1.0	0	0	0	0	2.0
62	CFOC496M	Engineering Econometrics	Online Course	1.0	0	0	0	0	3.0
63	CFOC497M	Financial Statement Analysis and Reporting	Online Course	1.0	0	0	0	0	3.0
64	CFOC498M	Business Statistics	Online Course	1.0	0	0	0	0	3.0
65	CFOC499M	Global Marketing Management	Online Course	1.0	0	0	0	0	2.0
66	CFOC500M	Marketing Research and Analysis - II	Online Course	1.0	0	0	0	0	3.0
67	CFOC503M	Marketing Analytics	Online Course	1.0	0	0	0	0	3.0
68	CFOC505M	Management of Commercial Banking	Online Course	1.0	0	0	0	0	3.0
69	CFOC508M	Entrepreneurship	Online Course	1.0	0	0	0	0	3.0
70	CFOC543M	International Business	Online Course	1.0	0	0	0	0	3.0
71	CFOC550M	Numerical Analysis	Online Course	1.0	0	0	0	0	4.0
72	CFOC570M	Public Speaking	Online Course	1.0	0	0	0	0	3.0
73	CFOC575M	Wildlife Ecology	Online Course	1.0	0	0	0	0	3.0
74	CFOC578M	Wastewater Treatment And Recycling	Online Course	1.0	0	0	0	0	3.0
75	CFOC587M	Economics of Banking and Finance Markets	Online Course	1.0	0	0	0	0	3.0
76	CFOC591M	Principles Of Management	Online Course	1.0	0	0	0	0	3.0
77	CFOC593M	Corporate Finance	Online Course	2.0	0	0	0	0	2.0
78	CFOC594M	Customer Relationship Management	Online Course	1.0	0	0	0	0	2.0

		Bridge Course							
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	Т	Р	J	Credit
1	BENG101N	Effective English Communication	Lab Only	1.0	0	0	4	0	2.0
	Non-graded Core Requirement								
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	Т	Р	J	Credit
1	BCHY102N	Environmental Sciences	Online Course	1.0	0	0	0	0	2.0
2	BCSE101N	Introduction to Engineering	Project	1.0	0	0	0	0	1.0
3	BEXC100N	Extracurricular Activities / Co-Curricular Activities - B.Tech. Programmes	Basket	1.0	0	0	0	0	2.0
4	BHUM101N	Ethics and Values	Online Course	1.0	0	0	0	0	2.0
5	BSSC101N	Essence of Traditional Knowledge	Online Course	1.0	0	0	0	0	2.0
6	BSSC102N	Indian Constitution	Online Course	1.0	0	0	0	0	2.0

Image: Second structures Image:	BCSE202L	Data Structures and Algorithms	L	T	Ρ	С
1.0 Course Objectives 1. To impart basic concepts of data structures and algorithms. 1.0 2. To differentiate linear, non-linear data structures and their operations. 3. To comprehend the necessity of time complexity in algorithms. Course Outcomes 0 On completion of this course, students should be able to: 1. 1. Understand the fundamental analysis and time complexity for a given problem. 2. 2. Articulate linear, non-linear data structures and legal operations permitted on them. 3. 3. Identify and apply suitable algorithms for searching and sorting. 4. 4. Discover various tree and graph traversals. 5. 5. Explicate hashing, heaps and AVL trees and realize their applications. 8 hou Importance of algorithm Analysis 6 asymptotic notations and orders of growth Algorithm efficiency – best case, worst case, average case - Analysis of non-recursive arrecursive algorithms - Asymptotic analysis for recurrence relation: Iteration Metho Subsitution Method, Master Method and Recursive Tree Method. 7 hou Module:2 Linear Data Structures 7 hou 7 hou Arrays: 1D and 2D array-Stack - Applications of stack: Expression Evaluation, Conversion of Infix to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue: Circutar Queue, Double Ended Queue (deQueue) - Applications – List: Singly linked lists, Double Jinked lists, Applications: Polynonial Manipulation.			3	0	0	3
Course Objectives 1. To impart basic concepts of data structures and algorithms. 2. To differentiate linear, non-linear data structures and their operations. 3. To comprehend the necessity of time complexity in algorithms. Course Outcomes On completion of this course, students should be able to: 1. Understand the fundamental analysis and time complexity for a given problem. 2. Articulate linear, non-linear data structures and legal operations permitted on them. 3. Identify and apply suitable algorithms for searching and sorting. 4. Discover various tree and graph traversals. 5. Explicate hashing, heaps and AVL trees and realize their applications. Module:1 Algorithm Analysis 8 hou Importance of algorithms and data structures - Fundamentals of algorithm analysis: Spara and time complexity of an algorithm. Types of asymptotic notations and orders of growth Algorithm efficiency – best case, worst case, average case - Analysis of non-recursive are coursive algorithms - Asymptotic analysis for recurrence relation: Iteration Metho Substitution Method. Master Method and Recursive Tree Method. Module:2 Linear Data Structures 7 hou Arrays: 1D and 2D array- Stack - Applications of stack: Expression Evaluation, Conversion of Infix to postfix and prefix expression. Tower of Hanoi – Queue - Types of Queue: Circular Queue, Double Ended Queue (deQueue) - Applications. To dueue: Sortype and Sorting angorithms. Module:3 Searching	Pre-requisite	NIL	Syllab	ous v	vers	ion
1. To impart basic concepts of data structures and algorithms. 2. To differentiate linear, non-linear data structures and their operations. 3. To comprehend the necessity of time complexity in algorithms. Course Outcomes On completion of this course, students should be able to: 1. Understand the fundamental analysis and time complexity for a given problem. 2. Articulate linear, non-linear data structures and legal operations permitted on them, 3. Identify and apply suitable algorithms for searching and sorting. 4. Discover various tree and graph traversals. 5. Explicate hashing, heaps and AVL trees and realize their applications. Module:1 Algorithm Analysis 8 hou Importance of algorithms and data structures - Fundamentals of algorithm analysis: Span and time complexity of an algorithm. Types of asymptotic notations and orders of growth Algorithm efficiency – best case, worst case, average case - Analysis of non-recursive ar recursive algorithms and data structures Module:2 Linear Data Structures 1 fink to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue: Circular Queue, Double Ended Queue (deQueue) - Applications – List: Singly linked lists, Doubly linked lists. Applications: Polynomial Manipulation. Module:3 Searching and Sorting 7 hou Serting insertion sort, Bubble sort, Counting sort, Quick sort, Merge sort - Analysis of sorting algorithms.				1.0		
2. To differentiate linear, non-linear data structures and their operations. 3. To comprehend the necessity of time complexity in algorithms. Course Outcomes On completion of this course, students should be able to: 1. Understand the fundamental analysis and time complexity for a given problem. 2. Articulate linear, non-linear data structures and legal operations permitted on them. 3. Identify and apply suitable algorithms for searching and sorting. 4. Discover various tree and graph traversals. 5. Explicate hashing, heaps and AVL trees and realize their applications. Module:1 Algorithm Analysis 8 hou Importance of algorithms and data structures - Fundamentals of algorithm analysis: Spara and time complexity of an algorithm, Types of asymptotic notations and orders of growth Algorithm efficiency - best case, worst case, average case - Analysis of non-recursive are cursive algorithms. Thou Module:2 Linear Data Structures Thou Arrays: 1D and 2D array-Stack - Applications of stack: Expression Evaluation, Conversion of Infix to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue: Circular Queue, Double Ended Queue (deQueue) - Applications – List: Singly linked lists, Doubly linked lists, Circular linked lists- Applications. Thou Sorting algorithms. Module:3 Searching: Linear Search and binary search – Applications. Thou						
3. To comprehend the necessity of time complexity in algorithms. Course Outcomes On completion of this course, students should be able to: 1. Understand the fundamental analysis and time complexity for a given problem. 2. Articulate linear, non-linear data structures and legal operations permitted on them. 3. Identify and apply suitable algorithms for searching and sorting. 4. Discover various tree and graph traversals. 5. Explicate hashing, heaps and AVL trees and realize their applications. Module:1 Algorithm Analysis 8 hou Importance of algorithms and data structures - Fundamentals of algorithm analysis: Spat and time complexity of an algorithm, Types of asymptotic notations and orders of growth Algorithm efficiency - best case, worst case, average case - Analysis of non-recursive ar recursive algorithms - Asymptotic analysis for recurrence relation: Iteration Method Substitution Method, Master Method and Recursive Tree Method. Module:2 Linear Data Structures 7 hou Arrays: 1D and 2D array-Stack - Applications of stack: Expression Evaluation, Conversion of Infix to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue: Coulde: 4 Trees Module: 3 Searching and Sorting Y hou Searching algorithms.						
Course Outcomes On completion of this course, students should be able to: 1. Understand the fundamental analysis and time complexity for a given problem. 2. Articulate linear, non-linear data structures and legal operations permitted on them. 3. Identify and apply suitable algorithms for searching and sorting. 4. Discover various tree and graph traversals. 5. Explicate hashing, heaps and AVL trees and realize their applications. Module:1 Algorithm Analysis 8 hou Importance of algorithms and data structures - Fundamentals of algorithm analysis: Spat and time complexity of an algorithm, Types of asymptotic notations and orders of growth Algorithm efficiency - best case, worst case, average case - Analysis of non-recursive ar recursive algorithms - Asymptotic analysis for recurrence relation: Iteration Method, Master Method and Recursive Tree Method. Module:2 Linear Data Structures 7 hou Arrays: 1D and 2D array- Stack - Applications of stack: Expression Evaluation, Conversion of Infix to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue: Circular Queue, Double Ended Queue (deQueue) - Applications – Lis: Singly linked lists, Doubly linked lists, Circular linked lists- Applications: Sorting: Insertion sort, Selection sort, Bubble sort, Counting sort, Quick sort, Merge sort - Analysis of sorting algorithms. Module:3 Searching and Sorting 6 hou Introduction - Binary Tree: Definition and Properties						
On completion of this course, students should be able to: 1. Understand the fundamental analysis and time complexity for a given problem. 2. Articulate linear, non-linear data structures and legal operations permitted on them. 3. Identify and apply suitable algorithms for searching and sorting. 4. Discover various tree and graph traversals. 5. Explicate hashing, heaps and AVL trees and realize their applications. Module:1 Algorithm Analysis 8 hou Importance of algorithms and data structures - Fundamentals of algorithm analysis: Spaa and time complexity of an algorithm, Types of asymptotic notations and orders of growth Algorithm efficiency – best case, worst case, average case - Analysis of non-recursive ar recursive algorithms - Asymptotic analysis for recurrence relation: Iteration Method Substitution Method, Master Method and Recursive Tree Method. Module:2 Linear Data Structures 7 hou Arrays: 1D and 2D array-Stack - Applications of stack: Expression Evaluation, Conversion of Infix to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue: Circular Queue, Double Ended Queue (deQueue) - Applications. 7 hou Module:3 Searching and Sorting 7 hou Module:4 Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees Binary Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Sour Module:4 Trees 6 hou	3. To compreher	nd the necessity of time complexity in algorithms.				
On completion of this course, students should be able to: 1. Understand the fundamental analysis and time complexity for a given problem. 2. Articulate linear, non-linear data structures and legal operations permitted on them. 3. Identify and apply suitable algorithms for searching and sorting. 4. Discover various tree and graph traversals. 5. Explicate hashing, heaps and AVL trees and realize their applications. Module:1 Algorithm Analysis 8 hou Importance of algorithms and data structures - Fundamentals of algorithm analysis: Spaa and time complexity of an algorithm, Types of asymptotic notations and orders of growth Algorithm efficiency – best case, worst case, average case - Analysis of non-recursive ar recursive algorithms - Asymptotic analysis for recurrence relation: Iteration Method Substitution Method, Master Method and Recursive Tree Method. Module:2 Linear Data Structures 7 hou Arrays: 1D and 2D array-Stack - Applications of stack: Expression Evaluation, Conversion of Infix to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue: Circular Queue, Double Ended Queue (deQueue) - Applications. 7 hou Module:3 Searching and Sorting 7 hou Module:4 Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees Binary Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Sour Module:4 Trees 6 hou	Course Outcom	~				
I. Understand the fundamental analysis and time complexity for a given problem. Articulate linear, non-linear data structures and legal operations permitted on them. Identify and apply suitable algorithms for searching and sorting. Discover various tree and graph traversals. Explicate hashing, heaps and AVL trees and realize their applications. Module:1 Algorithm Analysis 8 hou Importance of algorithms and data structures - Fundamentals of algorithm analysis: Spar and time complexity of an algorithm, Types of asymptotic notations and orders of growth Algorithm efficiency – best case, worst case, average case - Analysis of non-recursive ar arecursive algorithms - Asymptotic analysis for recurrence relation: Iteration Metho Substitution Method, Master Method and Recursive Tree Method. Module:2 Linear Data Structures Thou Arrays: 10 and 20 array-Stack - Applications of stack: Expression Evaluation, Conversion of Infix to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue: Circular Queue, Double Ended Queue (deQueue) - Applications – List: Singly linked lists, Doubly linked lists. Circular linked lists- Applications. Sorting: Insertion sort, Selection sort, Bubble sort, Counting sort, Quick sort, Merge sort - Analysis of sorting algorithms. Module:4 Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees Binary Search Trees - Operations in BST: insertion, deletion, finding min and max, findii the k th minimum element. Module:6 Hashing - Closed hashing - Graph - Graph Traversal: Breadth First Search (DFS) - Minimum Spanning Tree: Prim's, Kruska's - Single Sourd Shouu Tert Book Module:7 Heaps and AVL Trees 5 foru Heaps -Heaps and AVL Trees 5 foru Heaps -Heaps and AVL Trees 5 hou Heaps -Heaps						
 Articulate linear, non-linear data structures and legal operations permitted on them. Identify and apply suitable algorithms for searching and sorting. Discover various tree and graph traversals. Explicate hashing, heaps and AVL trees and realize their applications. Module:1 Algorithm Analysis 8 hou Importance of algorithms and data structures - Fundamentals of algorithm analysis: Spaa and time complexity of an algorithm, Types of asymptotic notations and orders of growth Algorithm efficiency – best case, worst case, average case - Analysis of non-recursive ar recursive ar eductive algorithms - Asymptotic analysis for recurrence relation: Iteration Method Substitution Method, Master Method and Recursive Tree Method. Module:2 Linear Data Structures 7 hou Arrays: 1D and 2D array- Stack - Applications of stack: Expression Evaluation, Conversion of Infix to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue: Circular Queue, Double Ended Queue (deQueue) - Applications. Module:3 Searching and Sorting 7 hou Searching: Linear Search and binary search – Applications. Sorting: Insertion sort, Selection sort, Bubble sort, Counting sort, Quick sort, Merge sort - Analysis of sorting algorithms. Module:4 Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees Binary Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Sourc Shortest Path: Dijkstra's Algorithm. Module:6 Hashing - Closed hashing - Random probing – Rehashing - Extendible hashing. Module:7 Heaps and AVL Trees 5 hou Heaps - Heap sort- Applica	•		nrohlom			
 Identify and apply suitable algorithms for searching and sorting. Discover various tree and graph traversals. Explicate hashing, heaps and AVL trees and realize their applications. Module:1 Algorithm Analysis 8 hou Importance of algorithms and data structures - Fundamentals of algorithm analysis: Sparand time complexity of an algorithm, Types of asymptotic notations and orders of growth Algorithm efficiency – best case, worst case, average case - Analysis of non-recursive arrecursive algorithms - Asymptotic analysis for recurrence relation: Iteration Metho Substitution Method, Master Method and Recursive Tree Method. Module:2 Linear Data Structures A rouge: Queue Duble Ended Queue (Qeueue) - Applications – List: Singly linked lists, Double Ended Queue (Qeueue) - Applications. Circular Queue, Double Ended Queue (Qeueue) - Applications. Sorting: Insertion sort, Selection sort, Bubble sort, Counting sort, Quick sort, Merge sort - Analysis of sorting algorithms. Module:3 Trees Module:4 Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees Binary Search Trees - Operations in BST: insertion, deletion, finding min and max, finding the kth minimum element. Module:5 Graphs 6 hou Reminology – Representation of Graph – Graph Traversal: Breadth First Search (DFS) e Minimum Spanning Tree: Prim's, Kruskal's - Single Sourd Shoutes Papilications - Single Sourd Shoutest Path: Dijkstra's Algorithm. Module:6 Hashing 4 hou Hash functions - Separate chaining - Open hashing: Linear probing, Quadratic probing. Module:7 Heaps and AVL Trees 5 hou Heaps Ad AVL Trees Shou Heaps Ad AVL Trees Koule:7 Heaps and AVL Trees Shou			-		_	
 Discover various tree and graph traversals. Explicate hashing, heaps and AVL trees and realize their applications. Module:1 Algorithm Analysis 8 hou Importance of algorithms and data structures - Fundamentals of algorithm analysis: Space and time complexity of an algorithm, Types of asymptotic notations and orders of growth Algorithm efficiency – best case, worst case, average case - Analysis of non-recursive ar recursive algorithms - Asymptotic analysis for recurrence relation: Iteration Method Substitution Method, Master Method and Recursive Tree Method. Module:2 Linear Data Structures 7 hou Arrays: 1D and 2D array-Stack - Applications of stack: Expression Evaluation, Conversion of Infix to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue: Circular Queue, Double Ended Queue (deQueue) - Applications – List: Singly linked lists, Doubly linked lists, Circular linked lists- Applications: Polynomial Manipulation. Module:3 Searching and Sorting 7 hou Searching: Linear Search and binary search – Applications. Sorting: Insertion sort, Selection sort, Bubble sort, Counting sort, Quick sort, Merge sort - Analysis of sorting algorithms. Module:5 Graphs 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees Binary Search Trees - Operations in BST: insertion, deletion, finding min and max, findir the kth minimum element. Module:6 Hashing 4 hou Hash functions - Separate chaining - Open hashing: Linear probing, Quadratic probin Double hashing - Closed hashing - Rendom probing – Rehashing - Extendible hashing. Module:7 Heaps and AVL Trees 5 for Heaps - Heap sort Applications -Priority Queue using Heaps. AVL trees: Terminology, bas operations (rotation, insertion and deletion). Module:8 Contemporary Issues 2 hou Heaps - Heap sort Applications -Priority Queue using Heaps. AVL trees: Terminology, bas operations (rotation, insertion and		• · · · ·	illea on	inen	1.	
5. Explicate hashing, heaps and AVL trees and realize their applications. Module:1 Algorithm Analysis 8 hou Importance of algorithms and data structures - Fundamentals of algorithm analysis: Spara and time complexity of an algorithm, Types of asymptotic notations and orders of growth Algorithm efficiency – best case, worst case, average case - Analysis of non-recursive ar recursive algorithms - Asymptotic analysis for recurrence relation: Iteration Method substitution Method, Master Method and Recursive Tree Method. Module:2 Linear Data Structures 7 hou Arrays: 1D and 2D array- Stack - Applications of stack: Expression Evaluation, Conversion of Infix to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue: Circular Queue, Double Ended Queue (deQueue) - Applications – List: Singly linked lists, Doubly linked lists, Circular linked lists- Applications: Polynomial Manipulation. Module:3 Searching and Sorting 7 hou Module:4 Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees 6 hou Terminology - Representation of Graph - Graph Traversal: Breadth First Search (BFS Depth First Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Sourd Shorts 9 hou Hash functions - Separate chaining - Open hashing: Linear probing, Quadratic probin Double hashing - Closed hashing - Random probing - Rehashing - Extendible hashing.						
Module:1 Algorithm Analysis 8 hou Importance of algorithms and data structures - Fundamentals of algorithm analysis: Space and time complexity of an algorithm, Types of asymptotic notations and orders of growth Algorithm efficiency – best case, worst case, average case - Analysis of non-recursive ar recursive algorithms - Asymptotic analysis for recurrence relation: Iteration Method Substitution Method, Master Method and Recursive Tree Method. Module:2 Linear Data Structures 7 hou Arrays: 1D and 2D array- Stack - Applications of stack: Expression Evaluation, Conversion of Infix to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue: Circular Queue, Double Ended Queue (deQueue) - Applications – List: Singly linked lists, Doubly linked lists, Circular linked lists- Applications: Polynomial Manipulation. Module:3 Searching and Sorting 7 hou Sorting: Inear Search and binary search – Applications. 7 hou Sorting: Insertion sort, Selection sort, Bubble sort, Counting sort, Quick sort, Merge sort - Analysis of sorting algorithms. 6 hou Module:4 Trees 6 hou 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees Binary Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Source Module:5 Graphs 6 hou Terminology - Representation of Graph - Graph Traversal: Breadth First Search (BFS Depth First Search (DFS) -						
Importance of algorithms and data structures - Fundamentals of algorithm analysis: Space and time complexity of an algorithm, Types of asymptotic notations and orders of growth Algorithm efficiency – best case, worst case, average case - Analysis of non-recursive ar recursive algorithms - Asymptotic analysis for recurrence relation: Iteration Method. Substitution Method, Master Method and Recursive Tree Method. Module:2 Linear Data Structures 7 hou Arrays: 1D and 2D array- Stack - Applications of stack: Expression Evaluation, Conversion of Infix to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue: Circular Queue, Double Ended Queue (deQueue) - Applications – List: Singly linked lists, Doubly linked lists, Circular linked lists- Applications: Polynomial Manipulation. Module:3 Searching and Sorting 7 hou Sorting: Insertion sort, Selection sort, Bubble sort, Counting sort, Quick sort, Merge sort - Analysis of sorting algorithms. 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees 6 hou Terminology - Representation of Graph - Graph Traversal: Breadth First Search (BFS Depth First Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Sourd Shortest Path: Dijkstra's Algorithm. 4 hou Madule:6 Hashing - Closed hashing - Random probing - Rehashing - Extendible hashing. 5 hou Module:7 Heaps and AVL Trees 5 hou	5. Explicate hasi	hing, heaps and AVL trees and realize their applications.				
Importance of algorithms and data structures - Fundamentals of algorithm analysis: Space and time complexity of an algorithm, Types of asymptotic notations and orders of growth Algorithm efficiency – best case, worst case, average case - Analysis of non-recursive ar recursive algorithms - Asymptotic analysis for recurrence relation: Iteration Method. Substitution Method, Master Method and Recursive Tree Method. Module:2 Linear Data Structures 7 hou Arrays: 1D and 2D array- Stack - Applications of stack: Expression Evaluation, Conversion of Infix to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue: Circular Queue, Double Ended Queue (deQueue) - Applications – List: Singly linked lists, Doubly linked lists, Circular linked lists- Applications: Polynomial Manipulation. Module:3 Searching and Sorting 7 hou Sorting: Insertion sort, Selection sort, Bubble sort, Counting sort, Quick sort, Merge sort - Analysis of sorting algorithms. 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees 6 hou Terminology - Representation of Graph - Graph Traversal: Breadth First Search (BFS Depth First Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Sourd Shortest Path: Dijkstra's Algorithm. 4 hou Madule:6 Hashing - Closed hashing - Random probing - Rehashing - Extendible hashing. 5 hou Module:7 Heaps and AVL Trees 5 hou	Modulo:1 Algo	rithm Analysis			8 ho	ure
and time complexity of an algorithm, Types of asymptotic notations and orders of growth Algorithm efficiency – best case, worst case, average case - Analysis of non-recursive ar recursive algorithms - Asymptotic analysis for recurrence relation: Iteration Metho Substitution Method, Master Method and Recursive Tree Method. Module:2 Linear Data Structures 7 hou Arrays: 1D and 2D array- Stack - Applications of stack: Expression Evaluation, Conversion of Infix to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue: Circular Queue, Double Ended Queue (deQueue) - Applications – List: Singly linked lists, Doubly linked lists, Circular linked lists- Applications: Polynomial Manipulation. Module:3 Searching and Sorting 7 hou Searching: Linear Search and binary search – Applications. Sorting: Insertion sort, Selection sort, Bubble sort, Counting sort, Quick sort, Merge sort - Analysis of sorting algorithms. Module:4 Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees Binary Search Trees - Operations in BST: insertion, deletion, finding min and max, findir the k th minimum element. Module:5 Graphs 6 hou Interminology – Representation of Graph – Graph Traversal: Breadth First Search (BFS Depth First Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Sourd Shortest Path: Dijkstra's Algorithm. Module:6 Hashing 4 hou Hash functions - Separate chaining - Open hashing: Linear probing, Quadratic probin Double hashing - Closed hashing - Random probing – Rehashing - Extendible hashing. Module:8 Contemporary Issues 2 hou Total Lecture hours: 45 hou Heaps - Heap sort-Applications - Priority Queue using Heaps. AVL trees: Terminology, bas operations (rotation, insertion and deletion). Module:8 Contemporary Issues 2 hou			hm ana			
Algorithm efficiency – best case, worst case, average case - Analysis of non-recursive ar recursive algorithms - Asymptotic analysis for recurrence relation: Iteration Method Substitution Method, Master Method and Recursive Tree Method. Module:2 Linear Data Structures 7 hou Arrays: 1D and 2D array- Stack - Applications of stack: Expression Evaluation, Conversion of Infix to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue: Circular Queue, Double Ended Queue (deQueue) - Applications – List: Singly linked lists, Doubly linked lists, Circular linked lists- Applications: Polynomial Manipulation. Module:3 Searching and Sorting Medule:3 Searching and Sorting 7 hou Searching: Linear Search and binary search – Applications. Sorting: Insertion sort, Selection sort, Bubble sort, Counting sort, Quick sort, Merge sort - Analysis of sorting algorithms. Module:4 Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees Binary Search Trees - Operations in BST: insertion, deletion, finding min and max, findir the k th minimum element. Module:5 Graphs 6 hou Terminology – Representation of Graph – Graph Traversal: Breadth First Search (BFS Depth First Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Sourd Shortest Path: Dijkstra's Algorithm. Module:6 Hashing 4 hou Hash functions - Separate chaining - Open hashing: Linear probing, Quadratic probin Double hashing - Closed hashing - Random probing – Rehashing - Extendible hashing. Module:7 Heaps and AVL Trees 5 hou Heaps - Heap sort- Applications -Priority Queue using Heaps. AVL trees: Terminology, bas operations (rotation, insertion and deletion). Module:8 Contemporary Issues 2 hou Total Lecture hours: 45 hou Text Book 1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,						
recursive algorithms - Asymptotic analysis for recurrence relation: Iteration Method Substitution Method, Master Method and Recursive Tree Method. Module:2 Linear Data Structures 7 hou Arrays: 1D and 2D array- Stack - Applications of stack: Expression Evaluation, Conversion of Infix to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue: Circular Queue, Double Ended Queue (deQueue) - Applications – List: Singly linked lists, Doubly linked lists, Circular linked lists- Applications: Polynomial Manipulation. Module:3 Searching and Sorting 7 hou Searching: Linear Search and binary search – Applications. Sorting: Insertion sort, Selection sort, Bubble sort, Counting sort, Quick sort, Merge sort - Analysis of sorting algorithms. Module:4 Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees Binary Search Trees - Operations in BST: insertion, deletion, finding min and max, findir the k ^m minimum element. Module:5 Graphs 6 hou Terminology – Representation of Graph – Graph Traversal: Breadth First Search (BFS Depth First Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Sourd Shortest Path: Dijkstra's Algorithm. Module:6 Hashing - Closed hashing - Qpen hashing: Linear probing, Quadratic probin Double hashing - Closed hashing - Random probing – Rehashing - Extendible hashing. Module:7 Heaps and AVL Trees 5 hou Heaps - Heap sort- Applications - Priority Queue using Heaps. AVL trees: Terminology, bas operations (rotation, insertion and deletion). Module:8 Contemporary Issues 2 hou Total Lecture hours: 45 hou Text Book 1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,						
Substitution Method, Master Method and Recursive Tree Method. Module:2 Linear Data Structures 7 hou Arrays: 1D and 2D array- Stack - Applications of stack: Expression Evaluation, Conversion of Infix to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue: Circular Queue, Double Ended Queue (deQueue) - Applications – List: Singly linked lists, Doubly linked lists, Circular linked lists- Applications: Polynomial Manipulation. Module:3 Searching and Sorting 7 hou Searching: Linear Search and binary search – Applications. Sorting: Insertion sort, Selection sort, Bubble sort, Counting sort, Quick sort, Merge sort - Analysis of sorting algorithms. 6 hou Module:4 Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees 6 hou Terminology - Representation of Graph - Graph Traversal: Breadth First Search (BFS 6 hou Terminology - Representation of Graph - Graph Traversal: Breadth First Search (BFS 9 hou Module:5 Graphs 6 hou Module:6 Hashing						
Module:2Linear Data Structures7 houArrays: 1D and 2D array- Stack - Applications of stack: Expression Evaluation, Conversion of Infix to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue: Circular Queue, Double Ended Queue (deQueue) - Applications – List: Singly linked lists, Doubly linked lists, Circular linked lists- Applications: Polynomial Manipulation.Module:3Searching and Sorting7 houSearching: Linear Search and binary search – Applications. Sorting: Insertion sort, Selection sort, Bubble sort, Counting sort, Quick sort, Merge sort - Analysis of sorting algorithms.6 houModule:4Trees6 houIntroduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees Binary Search Trees - Operations in BST: insertion, deletion, finding min and max, findir the k th minimum element.6 houModule:5Graphs6 houTerminology - Representation of Graph - Graph Traversal: Breadth First Search (BFS Depth First Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Sourd Shortest Path: Dijkstra's Algorithm.4 houHash functions - Separate chaining - Open hashing: Linear probing, Quadratic probin Double hashing - Closed hashing - Random probing – Rehashing - Extendible hashing.5 houHeaps - Heap sort- Applications -Priority Queue using Heaps. AVL trees: Terminology, bas operations (rotation, insertion and deletion).2 houModule:8Contemporary Issues2 houIntroduction - Insertion and deletion).2 hou			norati	011	mou	iou,
Arrays: 1D and 2D array- Stack - Applications of stack: Expression Evaluation, Conversion of Infix to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue: Circular Queue, Double Ended Queue (deQueue) - Applications – List: Singly linked lists, Doubly linked lists, Circular linked lists- Applications: Polynomial Manipulation. Module:3 Searching and Sorting 7 hou Searching: Linear Search and binary search – Applications. Sorting: Insertion sort, Selection sort, Bubble sort, Counting sort, Quick sort, Merge sort - Analysis of sorting algorithms. 6 hou Module:4 Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals - Expression Trees 6 hou Module:5 Graphs 6 hou Terminology - Representation of Graph - Graph Traversal: Breadth First Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Sourd Shortest Path: Dijkstra's Algorithm. 4 hou Module:6 Hashing 4 hou Hash functions - Separate chaining - Open hashing: Linear pro		,			7 ho	urs
of Infix to postfix and prefix expression, Tower of Hanoi – Queue - Types of Queue: Circular Queue, Double Ended Queue (deQueue) - Applications – List: Singly linked lists, Doubly linked lists, Circular linked lists- Applications: Polynomial Manipulation. Module:3 Searching and Sorting 7 hou Searching: Linear Search and binary search – Applications. Sorting: Insertion sort, Selection sort, Bubble sort, Counting sort, Quick sort, Merge sort - Analysis of sorting algorithms. Module:4 Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees Binary Search Trees - Operations in BST: insertion, deletion, finding min and max, findir the k th minimum element. Module:5 Graphs 6 hou Terminology – Representation of Graph – Graph Traversal: Breadth First Search (BFS Depth First Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Sourd Shortest Path: Dijkstra's Algorithm. Module:6 Hashing 4 hou Hash functions - Separate chaining - Open hashing: Linear probing, Quadratic probing Double hashing - Closed hashing - Random probing – Rehashing - Extendible hashing. Module:7 Heaps and AVL Trees 5 hou Heaps - Heap sort- Applications -Priority Queue using Heaps. AVL trees: Terminology, bas operations (rotation, insertion and deletion). Module:8 Contemporary Issues 2 hou Text Book 1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,			ation. C			
Circular Queue, Double Ended Queue (deQueue) - Applications – List: Singly linked lists, Doubly linked lists, Circular linked lists- Applications: Polynomial Manipulation. Module:3 Searching and Sorting 7 hou Searching: Linear Search and binary search – Applications. Sorting: Insertion sort, Selection sort, Bubble sort, Counting sort, Quick sort, Merge sort – Analysis of sorting algorithms. Module:4 Trees 6 hou Introduction – Binary Tree: Definition and Properties - Tree Traversals- Expression Treees Binary Search Trees - Operations in BST: insertion, deletion, finding min and max, finding the k th minimum element. Module:5 Graphs 6 hou Terminology – Representation of Graph – Graph Traversal: Breadth First Search (BFS Depth First Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Sourd Shortest Path: Dijkstra's Algorithm. Module:6 Hashing 4 hou Hash functions - Separate chaining - Open hashing: Linear probing, Quadratic probin Double hashing - Closed hashing - Random probing – Rehashing - Extendible hashing. Module:7 Heaps and AVL Trees 5 hou Heaps - Heap sort- Applications -Priority Queue using Heaps. AVL trees: Terminology, bas operations (rotation, insertion and deletion). Module:8 Contemporary Issues 2 hou Text Book 1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,						
Doubly linked lists, Circular linked lists- Applications: Polynomial Manipulation. Module:3 Searching and Sorting 7 hou Searching: Linear Search and binary search – Applications. Sorting: Insertion sort, Selection sort, Bubble sort, Counting sort, Quick sort, Merge sort - Analysis of sorting algorithms. Module:4 Trees 6 hou Module:4 Trees 6 hou Module:5 Graphs 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees Binary Search Trees - Operations in BST: insertion, deletion, finding min and max, findir the kth minimum element. Module:5 Graphs 6 hou Terminology - Representation of Graph - Graph Traversal: Breadth First Search (BFS) Depth First Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Sourd Shortest Path: Dijkstra's Algorithm. Module:6 Hashing 4 hou Hash functions - Separate chaining - Open hashing: Linear probing, Quadratic probin Double hashing - Closed hashing - Random probing – Rehashing - Extendible hashing. Module:7 heaps and AVL Trees 5 hou Heaps - Heap sort- Applications -Priority Queue using Heaps. AVL trees: Terminology, bas operations (rotation, insertion and deletion). Module:8 Contemporary Issues 2 hou Text Book 1 Mark A. Weiss, Data Structures & Algorithm Anal						
Searching: Linear Search and binary search – Applications. Sorting: Insertion sort, Selection sort, Bubble sort, Counting sort, Quick sort, Merge sort - Analysis of sorting algorithms. Module:4 Trees Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees Binary Search Trees - Operations in BST: insertion, deletion, finding min and max, findir the k th minimum element. Module:5 Graphs Ghou Terminology – Representation of Graph – Graph Traversal: Breadth First Search (BFS) Depth First Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Sourd Shortest Path: Dijkstra's Algorithm. Module:6 Hashing Hash functions - Separate chaining - Open hashing: Linear probing, Quadratic probin Double hashing - Closed hashing - Random probing – Rehashing - Extendible hashing. Module:7 Heaps and AVL Trees Shou Shou Heaps - Heap sort- Applications -Priority Queue using Heaps. AVL trees: Terminology, bas operations (rotation, insertion and deletion). Total Lecture hours: Module:8 Contemporary Issues 2 hou Text Book 1			lation.			
Sorting: Insertion sort, Selection sort, Bubble sort, Counting sort, Quick sort, Merge sort - Analysis of sorting algorithms. Module:4 Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees Binary Search Trees - Operations in BST: insertion, deletion, finding min and max, findir the k th minimum element. 6 hou Module:5 Graphs 6 hou Terminology - Representation of Graph - Graph Traversal: Breadth First Search (BFS Depth First Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Sourd Shortest Path: Dijkstra's Algorithm. 4 hou Module:6 Hashing 4 hou Hash functions - Separate chaining - Open hashing: Linear probing, Quadratic probin Double hashing - Closed hashing - Random probing – Rehashing - Extendible hashing. 5 hou Module:7 Heaps and AVL Trees 5 hou Heaps - Heap sort- Applications -Priority Queue using Heaps. AVL trees: Terminology, bas operations (rotation, insertion and deletion). 2 hou Module:8 Contemporary Issues 2 hou Text Book 1 Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,	Module:3 Sear	ching and Sorting			7 ho	urs
Analysis of sorting algorithms. 6 hou Module:4 Trees 6 hou Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees Binary Search Trees - Operations in BST: insertion, deletion, finding min and max, findir the k th minimum element. 6 hou Module:5 Graphs 6 hou Terminology - Representation of Graph - Graph Traversal: Breadth First Search (BFS) 6 hou Depth First Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Sourd Shortest Path: Dijkstra's Algorithm. Module:6 Hashing 4 hou Hash functions - Separate chaining - Open hashing: Linear probing, Quadratic probin Double hashing - Closed hashing - Random probing – Rehashing - Extendible hashing. Module:7 Heaps and AVL Trees 5 hou Heaps - Heap sort- Applications -Priority Queue using Heaps. AVL trees: Terminology, bas operations (rotation, insertion and deletion). Module:8 Contemporary Issues 2 hou Text Book 1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,	Searching: Linea	Search and binary search – Applications.				
Module:4Trees6 houIntroduction - Binary Tree: Definition and Properties - Tree Traversals- Expression TreesBinary Search Trees - Operations in BST: insertion, deletion, finding min and max, findirthe kth minimum element.Module:5GraphsModule:5GraphsSearch (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single SourdShortest Path: Dijkstra's Algorithm.Module:6Hashing4 houHash functions - Separate chaining - Open hashing: Linear probing, Quadratic probinDouble hashing - Closed hashing - Random probing – Rehashing - Extendible hashing.Module:7Heaps and AVL TreesModule:8Contemporary IssuesQueue using Heaps. AVL trees: Terminology, basoperations (rotation, insertion and deletion).Module:8Contemporary Issues1.Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,			sort, M	erge	sort	-
Introduction - Binary Tree: Definition and Properties - Tree Traversals- Expression Trees Binary Search Trees - Operations in BST: insertion, deletion, finding min and max, findir the k th minimum element. Module:5 Graphs for poperation of Graph – Graph Traversal: Breadth First Search (BFS) Depth First Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Source Shortest Path: Dijkstra's Algorithm. Module:6 Hashing Hash functions - Separate chaining - Open hashing: Linear probing, Quadratic probin Double hashing - Closed hashing - Random probing – Rehashing - Extendible hashing. Module:7 Heaps and AVL Trees Short 5 hou Heaps - Heap sort- Applications -Priority Queue using Heaps. AVL trees: Terminology, bas operations (rotation, insertion and deletion). Module:8 Contemporary Issues 2 hou Text Book 1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,						
Binary Search Trees - Operations in BST: insertion, deletion, finding min and max, findire the k th minimum element. Module:5 Graphs 6 hou Terminology - Representation of Graph - Graph Traversal: Breadth First Search (BFS) Depth First Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Source Shortest Path: Dijkstra's Algorithm. Module:6 Hashing 4 hou Hash functions - Separate chaining - Open hashing: Linear probing, Quadratic probin Double hashing - Closed hashing - Random probing – Rehashing - Extendible hashing. 5 hou Module:7 Heaps and AVL Trees 5 hou Heaps - Heap sort- Applications -Priority Queue using Heaps. AVL trees: Terminology, bas operations (rotation, insertion and deletion). 2 hou Module:8 Contemporary Issues 2 hou Text Book 1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,						
the k th minimum element. 6 hou Module:5 Graphs 6 hou Terminology – Representation of Graph – Graph Traversal: Breadth First Search (BFS Depth First Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Sourd Shortest Path: Dijkstra's Algorithm. 4 hou Module:6 Hashing 4 hou Hash functions - Separate chaining - Open hashing: Linear probing, Quadratic probin Double hashing - Closed hashing - Random probing – Rehashing - Extendible hashing. 5 hou Module:7 Heaps and AVL Trees 5 hou Heaps - Heap sort- Applications -Priority Queue using Heaps. AVL trees: Terminology, bas operations (rotation, insertion and deletion). 2 hou Module:8 Contemporary Issues 2 hou Text Book 1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,						
Module:5Graphs6 houTerminology – Representation of Graph – Graph Traversal: Breadth First Search (BFS Depth First Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Source Shortest Path: Dijkstra's Algorithm.Source A houModule:6Hashing4 houHash functions - Separate chaining - Open hashing: Linear probing, Quadratic probin Double hashing - Closed hashing - Random probing – Rehashing - Extendible hashing.4 houModule:7Heaps and AVL Trees5 houHeaps - Heap sort- Applications -Priority Queue using Heaps. AVL trees: Terminology, bas operations (rotation, insertion and deletion).2 houModule:8Contemporary Issues2 houTotal Lecture hours:45 hou1.Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4th Edition, 2013,	Binary Search Tr	ees - Operations in BST: insertion, deletion, finding m	in and	max,	find	ling
Terminology – Representation of Graph – Graph Traversal: Breadth First Search (BFS Depth First Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Source Shortest Path: Dijkstra's Algorithm. Module:6 Hashing 4 hou Hash functions - Separate chaining - Open hashing: Linear probing, Quadratic probin Double hashing - Closed hashing - Random probing – Rehashing - Extendible hashing. 4 hou Module:7 Heaps and AVL Trees 5 hou Heaps - Heap sort- Applications -Priority Queue using Heaps. AVL trees: Terminology, bas operations (rotation, insertion and deletion). 2 hou Module:8 Contemporary Issues 2 hou Text Book 1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,					<u>.</u>	
Depth First Search (DFS) - Minimum Spanning Tree: Prim's, Kruskal's - Single Source Shortest Path: Dijkstra's Algorithm. Module:6 Hashing 4 hou Hash functions - Separate chaining - Open hashing: Linear probing, Quadratic probin Double hashing - Closed hashing - Random probing – Rehashing - Extendible hashing. Module:7 Heaps and AVL Trees 5 hou Heaps - Heap sort- Applications -Priority Queue using Heaps. AVL trees: Terminology, bas operations operations (rotation, insertion and deletion). 2 hou Module:8 Contemporary Issues 2 hou Text Book 1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,						
Shortest Path: Dijkstra's Algorithm. 4 hou Module:6 Hashing 4 hou Hash functions - Separate chaining - Open hashing: Linear probing, Quadratic probin Double hashing - Closed hashing - Random probing – Rehashing - Extendible hashing. Module:7 Heaps and AVL Trees 5 hou Heaps - Heap sort- Applications -Priority Queue using Heaps. AVL trees: Terminology, bas operations (rotation, insertion and deletion). 2 hou Module:8 Contemporary Issues 2 hou Text Book 45 hou 1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,						
Module:6 Hashing 4 hou Hash functions - Separate chaining - Open hashing: Linear probing, Quadratic probin Double hashing - Closed hashing - Random probing – Rehashing - Extendible hashing. Module:7 Heaps and AVL Trees 5 hou Heaps - Heap sort- Applications -Priority Queue using Heaps. AVL trees: Terminology, bas 5 hou operations (rotation, insertion and deletion). 2 hou Module:8 Contemporary Issues 2 hou Total Lecture hours: 45 hou 1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,			18 - 51	ngie	500	irce
Hash functions - Separate chaining - Open hashing: Linear probing, Quadratic probin Double hashing - Closed hashing - Random probing – Rehashing - Extendible hashing. Module:7 Heaps and AVL Trees Module:7 Heaps and AVL Trees Heaps - Heap sort- Applications -Priority Queue using Heaps. AVL trees: Terminology, bas operations (rotation, insertion and deletion). Module:8 Contemporary Issues 2 hou Total Lecture hours: 45 hou 1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,					1 ho	ure
Double hashing - Closed hashing - Random probing – Rehashing - Extendible hashing. Module:7 Heaps and AVL Trees 5 hou Heaps - Heap sort- Applications -Priority Queue using Heaps. AVL trees: Terminology, bas operations (rotation, insertion and deletion). 5 hou Module:8 Contemporary Issues 2 hou Total Lecture hours: 45 hou Text Book 1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,			Quadr			
Module:7 Heaps and AVL Trees 5 hou Heaps - Heap sort- Applications -Priority Queue using Heaps. AVL trees: Terminology, bas operations operations (rotation, insertion and deletion). 2 hou Module:8 Contemporary Issues 2 hou Total Lecture hours: 45 hou Text Book 1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,						mg,
Heaps - Heap sort- Applications -Priority Queue using Heaps. AVL trees: Terminology, bas operations (rotation, insertion and deletion). Module:8 Contemporary Issues 2 hou Total Lecture hours: 45 hou Text Book 1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,						urs
operations (rotation, insertion and deletion). Module:8 Contemporary Issues 2 hou Total Lecture hours: 45 hou Text Book 45 hou 1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,			Termir			
Module:8 Contemporary Issues 2 hou Total Lecture hours: 45 hou Text Book 1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,					, , , , , , , , , , , , , , , , , , , ,	
Total Lecture hours: 45 hou Text Book 45 hou 1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,					2 ho	urs
Text Book 1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,		· · ·				
1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,		Total Lecture hours:		4	5 ho	urs
1. Mark A. Weiss, Data Structures & Algorithm Analysis in C++, 4 th Edition, 2013,	Text Book					
		iss Data Structures & Algorithm Analysis in C++ 4	th Editio	n 2	2013	
				, z	_010	,

Ref	Reference Books								
1.	Alfred V. Aho, Jeffrey D. Ullman	and John E. Ho	ocroft, Dat	ta Structures and Algorithms,					
	1983, Pearson Education.								
2.	2. Horowitz, Sahni and S. Anderson-Freed, Fundamentals of Data Structures in C, 2008, 2 nd Edition, Universities Press.								
3.	3. Thomas H. Cormen, C.E. Leiserson, R L. Rivest and C. Stein, Introduction to Algorithms, 2009, 3 rd Edition, MIT Press.								
Мо	Mode of Evaluation: CAT, Assignment, Quiz and FAT								
Red	Recommended by Board of Studies 04-03-2022								
Арр	proved by Academic Council	No. 65	Date	17-03-2022					

BCS	E202P	Data Stru	ctures and	Algorithm	is Lab		L	Τ	Ρ	С
							0	0	2	1
Pre-	requisite	NIL				Syllabus versi			ersio	on
						1.0				
Cou	rse Objectiv	es								
1. 1	Γo impart bas	sic concepts of data sti	ructures and	algorithm	s.					
2. 1	Γo differentia	te linear, non-linear da	ata structures	s and their	operations					
3. 1	Го comprehe	nd the necessity of tim	ne complexity	/ in algorit	hms.					
Cou	rse Outcom	es								
On c	completion of	this course, students	should be a	ole to:						
1. Aj	pply appropri	ate data structures to	find solution	s to praction	cal problem:	s.				
2. Id	entify suitabl	e algorithms for solvin	g the given	problems.						
	cative Expe									
1.		tion of stack data struc								
2.		tion of queue data struc		applicatior	าร					
3.	Implementa	tion linked list and its	application							
4.		tion of searching algo								
5.		tion of sorting algorith								
6.		Traversal implementa								
7.		ch Tree implementation								
8.		ersal – Depth First Sea				orithm	1			
9.		panning Tree – Prim's								
10.	Single Sour	ce Shortest Path Algo	rithm - Dijkst							
				Total La	boratory H	ours	30	hοι	ırs	
Text	Book									
1.		iss, Data Structures &	Algorithm A	nalysis in	C++, 2013,	4 th Ed	litior	n,		
	Pearson.									
Refe	erence Book									
1.		no, Jeffrey D. Ullman a		Hopcroft,	Data Struct	ures a	nd			
		1983, Pearson Educa								
2.		ahni and S. Anderson	-Freed, Fund	amentals	of Data Stru	ucture	s in	C, 2	2008	3,
	2 ^{na} Edition,	Universities Press.								
3.		Cormen, C.E. Leisers		est and C.	Stein, Intro	ductio	n to			
		2009, 3 rd Edition, MIT								
		ment: Continuous ass								
		y Board of Studies	04-03-2022							
Аррі	roved by Aca	demic Council	No. 65	Date	17-03-202	22				

BCSE204L	Design and Analysis of Algorithms	L	Т	Ρ	С
		3	0	0	3
Pre-requisite	NIL	Sylla			ion
			1.0)	
Course Objecti					
	athematical foundations for analyzing the complexity of the alg				
	knowledge on various design strategies that can help in solvin	g the real	wor	d	
problems effecti					
3. To synthesiz	e efficient algorithms in various engineering design situations				
Course Outcon					
•	of this course, student should be able to:				
	athematical tools to analyze and derive the running time of the	algorithm	າຣ		
	e the major algorithm design paradigms.				
3. Explain maj	or graph algorithms, string matching and geometric algorithms	along with	h thei	r	
analysis.					
4. Articulating	Randomized Algorithms.				
5. Explain the	hardness of real-world problems with respect to algorithmic eff	iciency ar	nd lea	rning	g to
cope with it.				``	-
	esign Paradigms: Greedy, Divide and Conquer			6 h	ours
Te	echniques				
Overview and I	mportance of Algorithms - Stages of algorithm development: I	Doscribin	a tha	prot	
	uitable technique, Design of an algorithm, Derive Time				
	he algorithm, Illustration of Design Stages - Greedy technique				
	luffman coding - Divide and Conquer: Maximum Subarray, k				
multiplication alg		aratouba	1050	<i>//</i> ///	cyci
	esign Paradigms: Dynamic Programming, Backtracking			10 h	ours
	nd Branch & Bound Techniques				ouro
	amming: Assembly Line Scheduling, Matrix Chain Multiplica	tion. Lon	aest	Com	mon
)-1 Knapsack, TSP- Backtracking: N-Queens problem, Subse				
	I: LIFO-BB and FIFO BB methods: Job Selection problem, 0-1				
Module:3 S	tring Matching Algorithms			5 h	ours
Naïve String-ma	tching Algorithms, KMP algorithm, Rabin-Karp Algorithm, Suff	ix Trees.			
	raph Algorithms				ours
	t path: Bellman Ford Algorithm, Floyd-Warshall Algorithm				
	num Flows: Ford-Fulkerson, Edmond-Karp, Push Re-label Al	gorithm –	App	icatio	on of
	ximum matching problem				
	eometric Algorithms				ours
	Properties, Intersection, sweeping lines - Convex Hull findin	g algorith	ms: (Grah	am's
Scan, Jarvis' Ma					
	andomized algorithms			<u>5 h</u>	ours
	ick sort - The hiring problem - Finding the global Minimum Cut.				
	asses of Complexity and Approximation			7 h	ours
<u> </u>	Igorithms				
	The Class NP - Reducibility and NP-completeness - SAT (
	T, Independent Set, Clique, Approximation Algorithm – Verte	x Cover,	Set C	vover	and
Travelling sales				<u>י</u> ר ב	
Module:8 C	ontemporary Issues			∠ n	ours
	Total Lecture hours:			<u>15 h</u>	0.000
	i otal Lecture nours:			40 N	ours
Text Book					
	Cormen, C.E. Leiserson, R L.Rivest and C. Stein, Introduction	to Algori	thme	Thi	d
	Press, 2009.	i to ragon			3
	1,1000, 2000.				

Ref	Reference Books						
1.	Jon Kleinberg and ÉvaTardos, Algorithm Design, Pearson Education, 1 st Edition, 2014.						
2.	Rajeev Motwani, Prabhakar Raghavan; Randomized Algorithms, Cambridge University Press,						
	1995 (Online Print – 2013)						
3.	Ravindra K. Ahuja, Thomas L. Ma						
	Algorithms, and Applications, 1 st E	dition, Pea	rson Edu	cation, 2014.			
Мо	Mode of Evaluation: CAT, Written assignments, Quiz, FAT.						
Red	Recommended by Board of Studies		22				
App	proved by Academic Council	No. 65	Date	17-03-2022			

BCS	E204P	Design an	d Analysis of A	Igorithms	Lab		L	P	С
			-				0 0	2	1
Pre-r	requisite	Nil				Syll	abus	vers	ion
							1.	0	
Cour	se Objectiv	es							
1. To	provide mat	hematical foundatio	ns for analyzing	the comple	exity of th	e algo	orithm	าร	
		nowledge on variou	s design strateg	es that car	n help in s	solving	g the	real	
	l problems ef								
3. Sy	ynthesize effi	cient algorithms in	various engineer	ing design	situation	S			
	se Outcome								
		this course, student							
		e major algorithm c							
		raph algorithms, st	ring matching an	d geometri	c algorith	ms al	ong v	vith tl	neir
analy	/sis.								
<u> </u>									
	ative Experi								
1.		tegy : Activity Selec							
2.		ogramming : ALS, N	latrix Chain Mult	iplication,	Longest	Comn	non		
_		e, 0-1 Knapsack	<u> </u>						
3.		Conquer : Maximum	Subarray and K	aratsuba fa	aster integ	ger m	ultipli	catio	n
	algorithm								
4.	Backtracking								
5.		Bound: Job selectio							
6		ning algorithms : Na		abin Karp,s	suffix tree	s			
7		pair shortest path a		17					
8		ws : Ford –Fulkerso							
9		of line segments &				bair of	poin	ts	
10		ime algorithm for ve		; problems					
11	Approximati	on and Randomized	v				2011		
				Fotal Labor	ratory Ho	urs	30 Hc	ours	
Tarat	Deels								
	Book				the limit of a		. 4 -		
1.		Cormen, C.E. Leise		and C. Ste	ein, Introd	uctior	1 to		
Defe		Third edition, MIT P	ress, 2009.						
	rence Books			Deereen	Education	ıst		- 00	14
1.		rg and ÉvaTardos, /							
2.		vani, Prabhakar Ra		iizea Algor	iinms, Ca	ampric	ige U	niver	sity
2		(Online Print – 201		man P Or	lin Notwa			Thee	m (
3.		Ahuja, Thomas L. N					JWS:	i neo	ıy,
Mad		and Applications, 1 ^s			m, ∠014.				
		nent: Continuous a		۱.					
		/ Board of Studies	04-03-2022		47.00.00	000			
Appro	oved by Acad	demic Council	No. 65	Date	17-03-20)22			

BCSE205L	Computer Architecture and Organization	L	T	Ρ	C
		3	0	0	3
Pre-requisite NIL Syllabus V				/ersi	on
1.0					
Course Objecti	Ves				
1. To acqu	aint students with the basic concepts of fundar	nental	cor	npon	ent
architect	ure, register organization and performance metrics of	a com	pute	r and	d to
	ne knowledge of data representation in binary and	to une	derst	and	the
	ntation of arithmetic algorithms in a typical computer.				
	students how to describe machine capabilities and design				
	gn for instruction execution. To introduce students to sy	ntax ai	nd se	emar	ntics
	ne level programming.				
	students understand the importance of memory syst				
	es and external storage and their performance me				
	. And explore various alternate techniques for improving	the pe	rforr	nanc	eo
a proces	sor.				
<u> </u>					
Course Outcon					
	f this course, student should be able to:				
	entiate Von Neumann, Harvard, and CISC and RISC are				
	performance of machine with different capabilities. F				
	ction formats and addressing modes. Validate efficient and floating point arithmetic operations.	aigon	um		ixec
	in the importance of hierarchical memory organization		to (ronet	ruc
	^r memories. Analyze and suggest efficient cache map				
	cement algorithms for given design requirements. Der				
	for error detection and correction.	nonour		ann	mig
	rstand the need for an interface. Compare and contrast	st mem	orv	manı	oinc
	O mapping techniques. Describe and Differentiate diffe				
	er. Appraise the synchronous and asynchronous bus for				
	ation.				
4. Asse	ss the performance of IO and external storage system	ns. Cla	ssify	par	alle
	ine models. Analyze the pipeline hazards and solutions.		-	•	
	troduction To Computer Architecture and Organizati	on 5	Ηοι	irs	
Overview of C	rganization and Architecture -Functional component	is of	a c	ompi	uter
	egister files - Interconnection of components - Overvie				
function - Organ	ization of the von Neumann machine - Harvard architec	ture - C	SISC	8 R	ISC
Architectures.				<u>.</u>	
	ata Representation and Computer Arithmetic		Ηοι		
	ixed point arithmetic operations: Multiplication (Booths				
Division (restori	ng and non-restoring) - Algorithms for floating point arit	hmetic	one	ratio	ns
	of nonnumeric data (character codes).	millouo	ope	1010	

Module:3	Instruction Sets and Control Unit	9 Hours				
Computer In	Computer Instructions: Instruction sets, Instruction Set Architecture, Instruction formats,					
Instruction se	Instruction set categories - Addressing modes - Phases of instruction cycle - ALU - Data-					
path and co	path and control unit: Hardwired control unit and Micro programmed control unit -					
Performance	Performance metrics: Execution time calculation, MIPS, MFLOPS.					
Module:4	Memory System Organization and Architecture	7 Hours				
Memory syst	Memory systems hierarchy: Characteristics, Byte Storage methods, Conceptual view of					
memory cell - Design of scalable memory using RAM's- ROM's chips - Construction of larger						
size memorie	size memories - Memory Interleaving - Memory interface address map- Cache memory:					
principles, Ca	ache memory management techniques, Types of caches, caches	s misses, Mean				

memory access time evaluation of cache.

memory dee						
Module:5	Interfacing and Communic	ation		5 Hours		
I/O fundamentals: handshaking, buffering, I/O Modules - I/O techniques: Programmed I/O Interrupt-driven I/O, Direct Memory Access, Direct Cache Access - Interrupt structures						
Vectored and Prioritized-interrupt overhead - Buses: Synchronous and asynchronous -						
Arbitration.						
Module:6	Subsystems			5 Hours		
External sto	rage systems: Solid state driv	ers - Organiza	tion and Structure			
	magnetic and optical technol d error correcting systems - RA			systems - Error		
Module:7	High Performance Process	ors		7 Hours		
MIMD) - Pipelining: Two stages, Multi stage pipelining, Basic performance issues in pipelining, Hazards, Methods to prevent and resolve hazards and their drawbacks - Approaches to deal branches - Superscalar architecture: Limitations of scalar pipelines, superscalar versus super pipeline architecture, superscalar techniques, performance evaluation of superscalar architecture - performance evaluation of parallel processors: Amdahl's law, speed-up and efficiency.						
Approaches superscalar evaluation	to deal branches - Supersca versus super pipeline arch of superscalar architecture -	lar architecture itecture, supe	e: Limitations of s scalar technique	scalar pipelines, s, performance		
Approaches superscalar evaluation Amdahl's lav	to deal branches - Supersca versus super pipeline arch of superscalar architecture - w, speed-up and efficiency.	ilar architecture itecture, super performance e	e: Limitations of s scalar technique	scalar pipelines, s, performance Illel processors: 2 Hours		
Approaches superscalar evaluation Amdahl's lav	to deal branches - Supersca versus super pipeline arch of superscalar architecture - w, speed-up and efficiency. Contemporary Issues	ilar architecture itecture, super performance e	e: Limitations of s rscalar technique valuation of para	scalar pipelines, s, performance Illel processors: 2 Hours		
Approaches superscalar evaluation of Amdahl's lav Module:8 Text Book(s 1 David A.	to deal branches - Supersca versus super pipeline arch of superscalar architecture - w, speed-up and efficiency. Contemporary Issues	ilar architecture itecture, super performance e Tot sy, Computer C	e: Limitations of s rscalar technique valuation of para al Lecture Hours	scalar pipelines, s, performance illel processors: 2 Hours 45 Hours		
Approaches superscalar evaluation of Amdahl's lav Module:8 Text Book(s 1 David A. Hardwar Reference B	to deal branches - Supersca versus super pipeline arch of superscalar architecture - w, speed-up and efficiency. Contemporary Issues Contemporary Issues Batterson and John L. Hennes e / Software Interface 6 th Edition Book(s)	ilar architecture itecture, super performance e Tot sy, Computer C n, Morgan Kauf	e: Limitations of s rscalar technique valuation of para al Lecture Hours Organization and D mann, 2020	scalar pipelines, s, performance illel processors: 2 Hours 45 Hours esign -The		
Approaches superscalar evaluation of Amdahl's lav Module:8 Text Book(s 1 David A. Hardwar Reference I 1 Compute Tenth ed	to deal branches - Supersca versus super pipeline arch of superscalar architecture - w, speed-up and efficiency. Contemporary Issues Contemporary Issues Patterson and John L. Hennes e / Software Interface 6 th Edition Book(s) er Architecture and Organization lition, Pearson Education series	alar architecture itecture, super performance e Tot sy, Computer C n, Morgan Kauf n-Designing for s, 2016	e: Limitations of s rscalar technique valuation of para al Lecture Hours Organization and D mann, 2020 Performance, Will	acalar pipelines, s, performance illel processors: 2 Hours 45 Hours esign -The iam Stallings,		
Approaches superscalar evaluation of Amdahl's law Module:8 Text Book(s 1 David A. Hardwar Reference I 1 Compute 2 Carl Han Fifth edit	to deal branches - Supersca versus super pipeline arch of superscalar architecture - w, speed-up and efficiency. Contemporary Issues Contemporary Issues Action and John L. Hennes e / Software Interface 6 th Edition Book(s) er Architecture and Organization ition, Pearson Education series nacher, Zvonko Vranesic, Safw ion, Reprint 2011.	alar architecture itecture, super performance e Tot sy, Computer C n, Morgan Kauf n-Designing for s, 2016 at Zaky, Compu	e: Limitations of s scalar technique valuation of para al Lecture Hours Organization and D mann, 2020 Performance, Will uter organization, N	acalar pipelines, s, performance illel processors: 2 Hours 45 Hours esign -The iam Stallings,		
Approaches superscalar evaluation of Amdahi's law Module:8 Text Book(s 1 David A. Hardwar Reference I 1 Compute Tenth edi 2 Carl Han Fifth edit	to deal branches - Supersca versus super pipeline arch of superscalar architecture - w, speed-up and efficiency. Contemporary Issues Contemporary Issues A Contemporary Issues S) Patterson and John L. Hennes e / Software Interface 6 th Edition Book(s) er Architecture and Organization ition, Pearson Education series nacher, Zvonko Vranesic, Safw ion, Reprint 2011. aluation: CAT, Written Assignr	Ilar architecture itecture, super performance e Tot sy, Computer C n, Morgan Kauf n-Designing for s, 2016 at Zaky, Compu- nents, Quiz and	e: Limitations of s scalar technique valuation of para al Lecture Hours Organization and D mann, 2020 Performance, Will uter organization, N	acalar pipelines, s, performance illel processors: 2 Hours 45 Hours esign -The iam Stallings,		
Approaches superscalar evaluation of Amdahl's lav Module:8 Text Book(s 1 David A. Hardwar Reference I 1 Compute Tenth edi 2 Carl Han Fifth edit Mode of Ev Recommend	to deal branches - Supersca versus super pipeline arch of superscalar architecture - w, speed-up and efficiency. Contemporary Issues Contemporary Issues Action and John L. Hennes e / Software Interface 6 th Edition Book(s) er Architecture and Organization ition, Pearson Education series nacher, Zvonko Vranesic, Safw ion, Reprint 2011.	alar architecture itecture, super performance e Tot sy, Computer C n, Morgan Kauf n-Designing for s, 2016 at Zaky, Compu	e: Limitations of s scalar technique valuation of para al Lecture Hours Organization and D mann, 2020 Performance, Will uter organization, N	acalar pipelines, s, performance illel processors: 2 Hours 45 Hours esign -The iam Stallings,		

BCSE301L	Software Engineering					
Pre-requisite	NIL	Svl	3 0 Iabus v	03 ersion		
Tro requience			1.0			
Course Objective	es estatution est					
2. To impart conc efficient software s	e essential Software Engineering concepts. epts and skills for performing analysis, design develop, systems of various disciplines and applications ar about engineering practices, standards and metrics f s and poduds.					
Course Outcome						
	this course, student should be able to:					
	l assess the principles of various process model	s for	the s	oftware		
2 Demonstra	ate various software project management activities that	at inc	lude pla	anning ,		
	s, Risk assessment and Configuration Management equirements modelling and apply appropriate design a quality software systems.	and te	esting he	euristics		
4. Demonstra	ate the complete Software life cycle activities from requ	uirem	ents ana	alysis to		
	ce using the modern tools and techniques.	na th		an and		
product.	he use of various standards and metrics in evaluati	ng tr	ie proce	ess and		
	/iew Of Software Engineering e, Software Engineering, Software process, project, pro			6 hours		
	nary models, Introduction to Agility - Agile Process-E rinciples of Agile Software Development framework -					
	duction To Software Project gement		(6 hours		
Planning, Scope, - (Human Resou	Work break-down structure, Milestones, Deliverables, rces, Time-scale, Costs), Risk Management, RMMM I nagement, Managing team dynamics and commun	Plan,	CASE 1	FOOLS,		
	Iling Requirements		8	8 hours		
Elicitation, Syster	nents and its types, Requirements Engineering pro n Modeling – Requirements Specification and Req sitation techniques, Requirements management in Agil	uirem				
Module:4 Softw				8 hours		
Architectural desig	and principles - Abstraction - Refinement - Modularity C gn, Detailed Design Transaction Transformation, Refac esign User-Interface Design					
	ation And Verification			7 hours		
Execution, Revie Object oriented to	h to Software Testing, Testing Fundamentals Test Pla ws, Inspection and Auditing – Regression Testing - esting - Testing Web based System - Mobile App t ools – DevOps Testing – Cloud and Big Data Testing	- Mut	ation T	esting -		
Module:6 Softw	vare Evolution			4 hours		

Software Maintenance, Types of Maintenance, - Software Configuration Management – Overview – SCM Tools. Re-Engineering, Reverse Engineering, Software Reuse

Module:7 Quality Assurance	4 hours					
Product and Process Metrics, Quality Standards Models ISO, TQM, Six-Sigma, Process						
improvement Models: CMM & CMMI. Quality Control and Quality Assurance - Quality						
Management - Quality Factors - Methods of Quality Management						
Module:8 Contemporary Issues	2 hours					
Total Lecture hours:	45 hours					
Text Book(s)						
1. Ian Somerville, Software Engineering, 10 th Edition, Addison-Wesley, 2015						
Reference Books						
1. Roger S. Pressman and Bruce R. Maxim, Software Engineering: A Practition	ner's					
Approach, 10 th edition, McGraw Hill Education, 2019						
2. William E. Lewis, Software Testing and Continuous Quality Improvement, Th	ird Edition,					
Auerbach Publications, 2017						
Mode of Evaluation: CAT, Written assignment, Quiz, FAT.						
Recommended by Board of Studies 04-03-2022						
Approved by Academic Council No. 65 Date 17-03-2022						

BCSE	301P	Sof	tware Engineer	ing Lab			L	ΤI	P	С
			U				0	0 2	2	1
Pre-re	quisite	NIL				Syl	labus	s ver	rsio	n
							1	.0		
Cours	e Objective	es								
		ce the essential Sof								
2.		concepts and skills					test a	and e	evo	lve
efficient software systems of various disciplines and applications										
3. To make familiar about engineering practices, standards and metrics for devel						lopi	ing			
	softwareco	omponents and proc	ducts.							
Cours	e Outcome	<u> </u>								
		this course, student	t should be able t	·O.						
		ate the complete So			rom rea	nuirem	ents			
		maintenance using					101113			
					Inquee	•				
<u> </u>										
	tive Experi		<u> </u>		I -					
1.		and Identification of					<u></u>		1. 1	
2.		Break-down Struct		ased, Pro	auct B	ased,	Geo	grap	nic	
3.		d Role Based) and				tural	lada			
<u> </u>		ent modelling using ent modelling using								
<u>4.</u> 5.		ent modelling using)	
<u> </u>		n – Use case Mode		Diagram	Denav		louei	ing)		
7.		n – Interaction Mode								
8.		n – Package, Comp		vment mor	dels					
9.		d demonstration of				1 Non	. Eun	ction	al	
5.		sing any open sour			ing and		- i un	Stion	a	
10		rding and User Inte		dellina						
	1 010. 9 2 0 0			otal Labo	ratorv F	lours	30 ł	nours	5	
Text B	ook(s)				· · · · ·					
1.		rville, Software Eng	jineering, 10 th Ed	ition, Addi	son-We	sley, i	2015			
Refere	ence Books					. .				
1.	Roger S.	Pressman and Brue	ce R. Maxim, Sof	tware Eng	ineering	g: A P	ractiti	ioner	ſ'S	
		, 10 th edition, McGr								
2.	William E.	Lewis, Software Te	esting and Contin	uous Qua	lity Impr	ovem	ent, T	hird		
	Edition,									
		Publications, 2017								
		nent: Continuous a	,	Γ						
		/ Board of Studies	04-03-2022							
Approv	/ed by Acac	demic Council	No. 65	Date	17-03-	2022				

	Database Systems	_	ГР	С
) 0	3
Pre-requisite	NIL	Syllabu	is ver	sion
			1.0	
Course Objective	es			
	the concepts of File system and structure of the databa			
from the ER m	ship model for a real-life application and Mapping a c	latabas	e sch	iema
	e various normal forms, evaluate relational schemas fo	r dosia	n aua	litios
and optimize a		i uesiy	n qua	inue3
	le working methodologies of transaction managem	nent. ι	Inders	stand
	ontrol, recovery, indexing, access methods and fund			
	ata and its management.			
Course Outcome	S			
	this course, student should be able to:			
	the role of database management system in an organiz	ation a	nd de	esign
	nd operation of the relational data model.			
	atabase project depending on the business requirement	ents, c	onside	ering
various design				
	pts of indexing and accessing methods.	I		1
	ncept of a database transaction processing and compre		ie cor	icept
	cilities including concurrency control, backup and recover undamental view on unstructured data and describe		omo	raina
database tech		other	eme	ying
	nologies.			
Module:1 Datat	base Systems Concepts and tecture		4 h	ours
	ase systems – Characteristics of Database Approach			
		– Adv	antade	es of
LUSILIU UDIVIO 80	proach - Actors on the Database Management S			
	proach - Actors on the Database Management S assification of database management systems - Data M	Scene:	Data	base
Administrator - Cla	proach - Actors on the Database Management S assification of database management systems - Data M Fhree-Schema Architecture - The Database Syster	Scene: Iodels -	Data Sche	base emas
Administrator - Cla	assification of database management systems - Data M Three-Schema Architecture - The Database Syster	Scene: lodels - n Env	Data Sche ironm	base emas ent -
Administrator - Cla and Instances - Centralized and Database Manage	assification of database management systems - Data M Three-Schema Architecture - The Database Syster Client/Server Architectures for DBMSs – Overa ement Systems	Scene: lodels - n Env	Data Sche ironm	base emas ent -
Administrator - Cla and Instances - Centralized and Database Manage Module:2 Rela	assification of database management systems - Data M Three-Schema Architecture - The Database System Client/Server Architectures for DBMSs – Overa ement Systems tional Model and E-R Modeling	Scene: odels - n Env II Arch	Data Sche ironm itectur 6 h	base emas ent - re of ours
Administrator - Cla and Instances - Centralized and Database Manage Module:2 Rela Relational Model	Assification of database management systems - Data M Three-Schema Architecture - The Database System Client/Server Architectures for DBMSs – Overa ement Systems tional Model and E-R Modeling Candidate Keys, Primary Keys, Foreign Keys - Integ	Scene: lodels - n Env II Arch grity Cc	Data Sche ironm itectur 6 h onstrai	base emas ent - re of ours nts -
Administrator - Cla and Instances - Centralized and Database Manage Module:2 Rela Relational Model: Handling of Nulls	Assification of database management systems - Data M Three-Schema Architecture - The Database System Client/Server Architectures for DBMSs – Overa ement Systems tional Model and E-R Modeling Candidate Keys, Primary Keys, Foreign Keys - Integ s - Entity Relationship Model: Types of Attribute	Scene: lodels - n Env II Arch grity Cc	Data Sche ironm itectur 6 h onstrai ations	base emas ent - re of ours nts - hips,
Administrator - Cla and Instances - T Centralized and Database Manage Module:2 Rela Relational Model: Handling of Nulls Structural Constra	Assification of database management systems - Data M Three-Schema Architecture - The Database System Client/Server Architectures for DBMSs – Overa tement Systems tional Model and E-R Modeling Candidate Keys, Primary Keys, Foreign Keys - Integ s - Entity Relationship Model: Types of Attribute aints, Relational model Constraints – Mapping ER mod	Scene: lodels - m Env II Arch grity Cc es, Related to a	Data Sche ironm itectur 6 h onstrai ations	base emas ent - re of ours nts - hips,
Administrator - Cla and Instances - T Centralized and Database Manage Module:2 Rela Relational Model Handling of Nulls Structural Constra schema – Extende	Assification of database management systems - Data M Three-Schema Architecture - The Database System Client/Server Architectures for DBMSs – Overa ement Systems tional Model and E-R Modeling Candidate Keys, Primary Keys, Foreign Keys - Integ s - Entity Relationship Model: Types of Attribute aints, Relational model Constraints – Mapping ER mode ed ER Model - Generalization – Specialization – Aggregat	Scene: lodels - m Env II Arch grity Cc es, Related to a	Data Sche ironm itectur 6 h nstrai ations relat	base emas ent - re of ours nts - hips, ional
Administrator - Cla and Instances - T Centralized and Database Manage Module:2 Rela Relational Model: Handling of Nulls Structural Constra schema – Extende Module:3 Relat	Assification of database management systems - Data M Three-Schema Architecture - The Database System Client/Server Architectures for DBMSs – Overa ement Systems tional Model and E-R Modeling Candidate Keys, Primary Keys, Foreign Keys - Integ s - Entity Relationship Model: Types of Attribute aints, Relational model Constraints – Mapping ER mod ed ER Model - Generalization – Specialization – Aggregat ional Database Design	Scene: odels - m Env II Arch grity Cc es, Rela lel to a tions.	Data Sche ironm itectur 6 h nstrai ations relat 6 h	base emas ent - re of ours nts - hips, ional ours
Administrator - Cla and Instances - T Centralized and Database Manage Module:2 Rela Relational Model: Handling of Nulls Structural Constra schema – Extende Module:3 Relat Database Design	Assification of database management systems - Data M Three-Schema Architecture - The Database System Client/Server Architectures for DBMSs – Overa ement Systems tional Model and E-R Modeling Candidate Keys, Primary Keys, Foreign Keys - Integ s - Entity Relationship Model: Types of Attribute aints, Relational model Constraints – Mapping ER mod ed ER Model - Generalization – Specialization – Aggregat ional Database Design – Schema Refinement - Guidelines for Relational Sch	Scene: odels - n Env II Arch grity Cc es, Rela lel to a tions. ema -	Data Sche ironm itectur 6 h onstrai ations relat 6 h Funct	base emas ent - re of ours hips, ional ours ional
Administrator - Cla and Instances - T Centralized and Database Manage Module:2 Rela Relational Model: Handling of Nulls Structural Constra schema – Extende Module:3 Relat Database Design dependencies -	Assification of database management systems - Data M Three-Schema Architecture - The Database System Client/Server Architectures for DBMSs – Overa ement Systems tional Model and E-R Modeling Candidate Keys, Primary Keys, Foreign Keys - Integ s - Entity Relationship Model: Types of Attribute aints, Relational model Constraints – Mapping ER mode ed ER Model - Generalization – Specialization – Aggregational Database Design – Schema Refinement - Guidelines for Relational Sch Axioms on Functional Dependencies- Normalization: F	Scene: lodels - m Env II Arch grity Cc es, Rela lel to a tions. ema - first, Se	Data Sche ironmi itectur 6 h nstrai ations relat 6 h Funct	base ent - re of ours nts - hips, ional ours ional and
Administrator - Cla and Instances - T Centralized and Database Manage Module:2 Rela Relational Model: Handling of Nulls Structural Constra schema – Extende Module:3 Relat Database Design dependencies - Third Normal Form	Assification of database management systems - Data M Three-Schema Architecture - The Database System Client/Server Architectures for DBMSs – Overa ement Systems tional Model and E-R Modeling Candidate Keys, Primary Keys, Foreign Keys - Integ a - Entity Relationship Model: Types of Attribute aints, Relational model Constraints – Mapping ER model aints, Relational model Constraints – Mapping ER model a ER Model - Generalization – Specialization – Aggregational Database Design – Schema Refinement - Guidelines for Relational Sch Axioms on Functional Dependencies- Normalization: F ms - Boyce Codd Normal Form, Multi-valued depender	Scene: lodels - m Env II Arch grity Cc es, Rela lel to a tions. ema - first, Se	Data Sche ironmi itectur 6 h nstrai ations relat 6 h Funct	base ent - re of ours nts - hips, ional ours ional and
Administrator - Cla and Instances - T Centralized and Database Manage Module:2 Rela Relational Model: Handling of Nulls Structural Constra schema – Extende Module:3 Relat Database Design dependencies - Third Normal Form Normal form - Join	Assification of database management systems - Data M Three-Schema Architecture - The Database System Client/Server Architectures for DBMSs – Overa ement Systems tional Model and E-R Modeling Candidate Keys, Primary Keys, Foreign Keys - Integ s - Entity Relationship Model: Types of Attribute aints, Relational model Constraints – Mapping ER mode de ER Model - Generalization – Specialization – Aggregat ional Database Design – Schema Refinement - Guidelines for Relational Sch Axioms on Functional Dependencies- Normalization: F ms - Boyce Codd Normal Form, Multi-valued dependencies n dependency and Fifth Normal form	Scene: lodels - m Env II Arch grity Cc es, Rela lel to a tions. ema - first, Se	Data Sche ironm itectur 6 h nstrai ations relat 6 h Funct econd nd Fo	base emas ent - re of ours nts - hips, ional ours ional and ourth
Administrator - Cla and Instances - T Centralized and Database Manage Module:2 Rela Relational Model: Handling of Nulls Structural Constra schema – Extende Module:3 Relat Database Design dependencies - Third Normal Form Normal form - Join Module:4 Phys	Assification of database management systems - Data M Three-Schema Architecture - The Database System Client/Server Architectures for DBMSs – Overa ement Systems tional Model and E-R Modeling Candidate Keys, Primary Keys, Foreign Keys - Integent aints, Relational model Constraints – Mapping ER model aints, Relational Form, Multi-valued dependencies- n cal Database Design and Query	Scene: lodels - m Env II Arch grity Cc es, Rela lel to a tions. ema - first, Se	Data Sche ironm itectur 6 h nstrai ations relat 6 h Funct econd nd Fo	base ent - re of ours nts - hips, ional ours ional and
Administrator - Cla and Instances - T Centralized and Database Manage Module:2 Rela Relational Model: Handling of Nulls Structural Constra schema – Extende Module:3 Relat Database Design dependencies - Third Normal Form Normal form - Join Module:4 Phys Proce	Assification of database management systems - Data M Three-Schema Architecture - The Database System Client/Server Architectures for DBMSs – Overa ement Systems tional Model and E-R Modeling Candidate Keys, Primary Keys, Foreign Keys - Integ s - Entity Relationship Model: Types of Attribute aints, Relational model Constraints – Mapping ER mode de ER Model - Generalization – Specialization – Aggregat ional Database Design – Schema Refinement - Guidelines for Relational Sch Axioms on Functional Dependencies- Normalization: F ms - Boyce Codd Normal Form, Multi-valued dependencies n dependency and Fifth Normal form	Scene: odels - n Env II Arch grity Co es, Rela lel to a tions. ema -	Data Sche ironm itectur 6 h nstrai ations relat 6 h Funct econd nd Fo	base emas ent - re of ours nts - hips, ional ours ours ourth ours
Administrator - Cla and Instances - T Centralized and Database Manage Module:2 Rela Relational Model: Handling of Nulls Structural Constra schema – Extende Module:3 Relat Database Design dependencies - Third Normal Form Normal form - Joir Module:4 Phys Proce File Organization	Assification of database management systems - Data M Three-Schema Architecture - The Database System Client/Server Architectures for DBMSs – Overa ement Systems tional Model and E-R Modeling Candidate Keys, Primary Keys, Foreign Keys - Integ s - Entity Relationship Model: Types of Attribute aints, Relational model Constraints – Mapping ER mod ed ER Model - Generalization – Specialization – Aggregat ional Database Design – Schema Refinement - Guidelines for Relational Sch Axioms on Functional Dependencies- Normalization: F ms - Boyce Codd Normal Form, Multi-valued dependency in dependency and Fifth Normal form ical Database Design and Query essing	Scene: odels - n Env II Arch grity Cc es, Rela lel to a tions. ema - First, Se ency a dexing,	Data Sche ironm itectur 6 h nstrai ations relat 6 h Funct econd nd Fo 8 h	base emas ent - re of ours nts - hips, ional ours ional and ourth ours amic
Administrator - Cla and Instances - T Centralized and Database Manage Module:2 Rela Relational Model: Handling of Nulls Structural Constra schema – Extende Module:3 Relat Database Design dependencies - Third Normal Forn Normal form - Join Module:4 Phys Proce File Organization multilevel Indexing	Assification of database management systems - Data M Three-Schema Architecture - The Database System Client/Server Architectures for DBMSs – Overa ement Systems tional Model and E-R Modeling Candidate Keys, Primary Keys, Foreign Keys - Integ s - Entity Relationship Model: Types of Attribute aints, Relational model Constraints – Mapping ER model aints, Relational Dependencies for Relational Sch Axioms on Functional Dependencies- Normalization: F ms - Boyce Codd Normal Form, Multi-valued dependencies n dependency and Fifth Normal form ical Database Design and Query essing - Indexing: Single level indexing, multi-level indexing p - B+ Tree Indexing – Hashing Techniques: Static and I	Scene: odels - n Env II Arch grity Cc es, Rela lel to a tions. ema - First, Se ency a dexing,	Data Sche ironm itectur 6 h nstrai ations relat 6 h Funct econd nd Fo 8 h dyn ic Has	base emas ent - re of ours nts - hips, ional ours ional and ourth ours amic
Administrator - Cla and Instances - T Centralized and Database Manage Module:2 Rela Relational Model: Handling of Nulls Structural Constra schema – Extende Module:3 Relat Database Design dependencies - Third Normal Forr Normal form - Join Module:4 Phys Proce File Organization multilevel Indexing – Relational Alge	Assification of database management systems - Data M Three-Schema Architecture - The Database System Client/Server Architectures for DBMSs – Overa ement Systems tional Model and E-R Modeling Candidate Keys, Primary Keys, Foreign Keys - Integ s - Entity Relationship Model: Types of Attribute aints, Relational model Constraints – Mapping ER model aints, Relational Dependencies for Relational Sch Axioms on Functional Dependencies- Normalization: F ms - Boyce Codd Normal Form, Multi-valued dependencies n dependency and Fifth Normal form ical Database Design and Query essing - Indexing: Single level indexing, multi-level indexing g - B+ Tree Indexing – Hashing Techniques: Static and I	Scene: lodels - m Env II Arch grity Cc es, Rela lel to a tions. ema - First, Se ency a dexing, Dynam Algebra	Data Sche ironm itectur 6 h nstrai ations relat 6 h Funct econd nd Fo 8 h dyn ic Has - C	base emas ent - re of ours nts - hips, ional ours ional and ourth ours amic shing
Administrator - Cla and Instances - T Centralized and Database Manage Module:2 Rela Relational Model: Handling of Nulls Structural Constra schema – Extende Module:3 Relat Database Design dependencies - Third Normal Form Normal form - Join Module:4 Phys Proce File Organization multilevel Indexing – Relational Alge Processing – Q optimization Rule	Assification of database management systems - Data M Three-Schema Architecture - The Database System Client/Server Architectures for DBMSs – Overa ement Systems tional Model and E-R Modeling Candidate Keys, Primary Keys, Foreign Keys - Integ s - Entity Relationship Model: Types of Attribute aints, Relational model Constraints – Mapping ER model ed ER Model - Generalization – Specialization – Aggregational Database Design – Schema Refinement - Guidelines for Relational Sch Axioms on Functional Dependencies- Normalization: F ms - Boyce Codd Normal Form, Multi-valued dependencies n dependency and Fifth Normal form ical Database Design and Query essing - Indexing: Single level indexing, multi-level indexing g - B+ Tree Indexing – Hashing Techniques: Static and I bra - Translating SQL Queries into Relational A	Scene: lodels - m Env II Arch grity Cc es, Rela lel to a tions. ema - First, Se ency a dexing, Dynam Algebra Heuristi	Data Sche ironm itectur 6 h nstrai ations relat 6 h Funct econd nd Fo 8 h dyn ic Has - Q c q	base emas ent - re of ours nts - hips, ional ours ional and ourth ours amic shing uery juery
Administrator - Cla and Instances - T Centralized and Database Manage Module:2 Relat Relational Model: Handling of Nulls Structural Constra schema – Extende Module:3 Relat Database Design dependencies - Third Normal Form Normal form - Join Module:4 Phys Proce File Organization multilevel Indexing – Relational Alge Processing – G optimization Rule Calculus.	Assification of database management systems - Data M Three-Schema Architecture - The Database System Client/Server Architectures for DBMSs – Overa ement Systems tional Model and E-R Modeling Candidate Keys, Primary Keys, Foreign Keys - Integent aints, Relational model Constraints – Mapping ER model aints, Relational Dependencies – Normalization – Aggregational Database Design – Schema Refinement - Guidelines for Relational Sch Axioms on Functional Dependencies- Normalization: F ms - Boyce Codd Normal Form, Multi-valued dependent independency and Fifth Normal form ical Database Design and Query essing – Indexing: Single level indexing, multi-level indexing g - B+ Tree Indexing – Hashing Techniques: Static and I abra - Translating SQL Queries into Relational A puery Optimization: Algebraic Query Optimization, H	Scene: lodels - m Env II Arch grity Cc es, Rela lel to a tions. ema - First, Se ency a dexing, Dynam Algebra Heuristi	Data Sche ironm itectur 6 h nstrai ations relat 6 h Funct econd nd Fo 8 h dyn ic Has c o Relat	base emas ent - re of ours nts - hips, ional ours ional and ourth ours amic shing uery juery

Introduction to Transaction Processing - Transaction concepts: ACID Properties of Transactions, Transaction States - Serial and Serializable Schedules - Schedules based on recoverability - Schedules based on Serializability - Conflict Serializability - Recovery Concepts: Log Based Recovery Protocols, Recovery based on deferred update, Recovery techniques based on immediate update – Shadow Paging Algorithm

Module:6 Concurrency Control In Transaction 8 hours Processing

Concurrent Transactions - Lost Update Problem - Concurrency Control Techniques: Time Stamp Based Protocols, Thomas Write Rule, Lock Based Protocols, Lock Compatibility Matrix, - Two-Phase Locking Protocol - Lock Conversions - Graph Based Protocols for Concurrency Control - Tree Protocol for Concurrency Control – Deadlocks Based on Locks in Transactions - Deadlock Handling Techniques - Transaction Deadlock Detection Techniques – Transaction Deadlock Prevention Techniques – Multi-Granularity Locking for avoiding Transaction Deadlocks

Module:7 NOSQL Database Management 3 hours Introduction, Need of NoSQL, CAP Theorem, different NoSQL data bases: Key-value data stores, Columnar families, Document databases, Graph databases

Module:8	Contemporary Issues
----------	---------------------

2 Hours

Total Lecture hours:

45 hours

Tex	xt Book							
1.	R. Elmasri & S. B. Navathe, Funda Edition, 2016	mentals of Dat	tabase Sy	stems, Addison Wesley, 7 th				
Re	ference Books							
1.	A. Silberschatz, H. F. Korth & S. S 7 th Edition 2019.							
2.	Raghu Ramakrishnan, Database M	anagement S	ystems, N	lcgraw-Hill, 4 th Edition, 2018				
3.	C.J.Date, A.Kannan, S.Swamynath Eighth Edition, 2006.	an," An Introd	uction to [Database Systems", Pearson,				
4.	Gerardus Blokdyk, NoSQL Databas	ses A Complet	e Guide, s	5STARCooks, 2021				
Мо	de of Evaluation: CAT, Written assi	gnments, Quiz	z and FAT	- -				
Re	commended by Board of Studies	04-03-2022						
Ap	proved by Academic Council	No. 65	Date	17-03-2022				

BC	SE302P	Da	tabase System	ns Lab			L	Ρ	С
							0 0	2	1
Pre	e-requisite					Sylla	abus		ion
							1.	0	
	urse Objective								
	Designing an database sche	o understand the co Entity-Relationship arma from the ER mo arious normal forms	o model for a del.	real-life	applicatio	on an	d Ma	appin	ig a
۷.	optimize a que		, evaluate relat	IUTIAI SUITE	111111111111111111111111111111111111111	uesiyi	i yua	nues	anu
3.	Explain the w during a trans	vorking methodolog saction failure. Und xing, access metho	erstand the ba	asic conce	epts on c	concur	rency	/ cor	ntrol,
Со	urse Outcome								
1.	Design the str Examine the d	this course, student ucture and operatior ata requirements of	n of the relationa	al data mo		ase ma	anage	emer	nt
	system.								
Ind	licative Experi	ments							
1.		n and Data Manipula	ation Language						
2.	Constraints								
3.	Single row fur	nctions							
4.		d group functions							
5.	Sub query, vi								
6.	High Level La	nguage Extensions							
			То	tal Labor	atory Ho	urs 🛛	30 ho	urs	
	xt Book								th
1.	R. Elmasri & S Edition, 2016	S. B. Navathe, Fund	amentals of Da	tabase Sy	stems, A	ddison	i Wes	sley,	7"
Re	l ference Books	; ;							
1.	A. Silberscha 7 th Edition 20	tz, H. F. Korth & S. 19.	Sudarshan, Da	tabase Sy	stem Cor	ncepts	, McC	Graw	Hill,
2.	Raghu Rama	krishnan, Database	Management S	ystems, M	lcgraw-Hi	II, 4 th E	Editio	n, 20	18
3.		annan, S.Swamyna							
4.	Gerardus Blo	kdyk, NoSQL Datab	ases A Comple	te Guide, s	5STARCo	ooks, 2	2021		
Mo	de of assess	nent: Continuous as	sessments FA	т					
		Board of Studies	04-03-2022						
	proved by Acad		No. 65	Date	17-03-2	022			

BCSE303L	Operating Systems	L T	P C						
-		3 0	03						
Pre-requisite	NIL	Syllabus v							
Course Objective		1.0							
Course Objectiv									
	the operating system concepts, designs and provid	ie skills req	uirea t						
implement the									
	e trade-offs between conflicting objectives in large sca								
3. To develop the knowledge for application of the various design issues and services.									
Course Outcom									
Course Outcome									
	this course, student should be able to: evolution of OS functionality, structures, layers and ap	nly various	tunne						
	f various process states.	piy vanous	types t						
	uling algorithms to compute and compare various sche	dulina criteri	a						
	analyze communication between inter process a								
techniques	analyze communication between inter process a	ind Synome	mzatio						
	age replacement algorithms, memory manageme	ent probler	ns an						
segmentation		P.00.01							
	the file systems for applying different allocation,	access te	chniaue						
	rirtualization and providing protection and security to O		•						
U									
Module:1 Intro	duction		3 hour						
Introduction to (DS: Functionality of OS - OS design issues - S	Structuring i	method						
	ed, modular, micro-kernel models) - Abstractions, pro	cesses, res	ources						
Influence of secu	ity, networking, and multimedia.								
	rinciples		4 hour						
	stem/Application Call Interface – Protection: User/Kerne								
	ructures (Process Control Block, Ready List etc.)		creatior						
	nix – Threads: User level, kernel level threads and thre								
	eduling		9 hour						
	luling - CPU Scheduling: Pre-emptive, non-pre-empt								
	adlocks - Resource allocation and management -	Deadlock	handlin						
	vention, avoidance, detection, recovery.		<u></u>						
	currency		8 hour						
-	nmunication, Synchronization - Implementing synchronic	•							
	on, Bakery algorithm, synchronization hardware) - Sem								
	roblems, Monitors: Solution to Dining Philosophers pro	Joiem – IPC							
	nd Locking - Scalable Locks - Lock-free coordination.		7 hour						
	ory Management nanagement, Memory allocation strategies, Virtual		7 hour						
	memory (caching, TLB) – Paging - Segmentation - De								
	blacement -Thrashing - Working Set.	manu Fayini	y - ray						
	alization and File System		6 hour						
	agement								
	- Virtualization (Hardware/Software, Server, Service, N	etwork - Hvr	ervisor						
	alization - Cost of virtualization - File system interfac								
	es) - File system implementation (directory implement								
	ystem recovery - Journaling - Soft updates - Log-stru								
	Distributed file system.								
	age Management, Protection and		6 hour						
	d attachment – Disk scheduling algorithms (seek tim	e, rotational	latenc						
	hreats and security - Policy vs mechanism - Access								

System protection: Access matrix – Capability based systems - OS: performance, scaling, future directions in mobile OS.

Мо	dule:8	Contemporary Issues			2 hours			
			Total Lecture ho	ours:	45 hours			
Te>	kt Book			·				
1.	. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, "Operating System Concepts", 2018, 10 th Edition, Wiley, United States.							
Ref	ference	Books						
1.		v S. Tanenbaum, "Mod [.] Kingdom.	ern Operating S	ystems",	2016, 4 th Edition, Pearson,			
2.		n Stallings, "Operating S , Pearson, United Kingdo		s and Do	esign Principles", 2018, 9th			
Мо	de of E	valuation: CAT, Written A	Assignment, Quiz,	FAT				
Red	commer	nded by Board of Studies	04-03-2022					
Арр	proved b	y Academic Council	No. 65	Date	17-03-2022			

BC	SE303P	Ο	perating Syster	ns Lab			L	Т	Ρ	С
			<u> </u>				0	0	2	1
Pre	-requisite	Nil				Syl	labi	us v	versi	ion
	_							1.0		
Cοι	urse Objective	es								
1.		the operating syst	em concepts, o	designs	and provide	e ski	ills i	requ	uired	to
		e trade-offs betwee	en conflictina obi	ectives i	n large scale	e svs	tem	des	sian.	
		e knowledge for app								
	urse Outcome				0					
On	completion of	this course, student	t should be able	to:						
1.	Interpret the e	evolution of OS fun	ctionality, struct	ures, lay	ers and app	oly va	ario	us t	ypes	s of
		f various process st								
		uling algorithms to c								
		analyze communic	ation between	inter	process ar	nd s	sync	hro	nizat	tion
	techniques									
		age replacement	algorithms, m	nemory	manageme	nt j	prob	lem	IS a	and
	segmentation.	the file systems	for opplying d	ifforont	allocation	0000		too	hnia	
		virtualization and pro					-55	lec	nniq	ue,
	representing v		Soluting protectio							
Ind	icative Experi	ments								
1.		sic Linux Command	٩							
2.		our own bootloader		elos a co	mouter to be	oot a	in O	S		
3.		mming (I/O, Decisio						<u>.</u>		
4.		Id process using for						s cre	eatio	'n
5.		f CPU scheduling a								
6.		rocess synchroniza							/	
7.		f Banker s algorithn				is in	l saf	e st	ate	or
		eck whether additio								
8.		ead management us								
	using multi-t	hreading	-			-				
9.		emory allocation alg			, Worst-fit al	lgorit	thms	S		
10.		cement Algorithms I		Optimal						
11.		i file locking mechar								
12.	Virtualization	n Setup: Type-1, Ty								
			Тс	otal Lab	oratory Hou	ırs	30	hou	rs	
	t Book				and -					
1.		, "Linux with Opera	ting System Co	ncepts",	2022, 2 nd E	ditio	n, C	hap	mar	1
	and Hall/CRC									
	erence Books				4h - 4a - 4h - 1				: I.a	
1.	2013, 2 nd Edit	, "Linux System Pro tion, O'Reilly Media	, Inc, United Sta	tes.	-					
2.		perschatz, Peter B		Gagne,	"Operating	Syste	em	Cor	псер	ots",
		ition, Wiley, United		_						
		ment: Continuous A	•	ΔT						
		/ Board of Studies	04-03-2022							
App	proved by Acad	temic Council	No. 65	Date	17-03-20)22				

Image: Second	BCSE304L	Theory of Computation			L T	Ρ	C
1.0 Course Objectives 1. Types of grammars and models of automata. 2. Limitation of computation: What can be and what cannot be computed. 3. Establishing connections among grammars, automata and formal languages. Course Outcome On completion of this course, student should be able to: 1. Compare and analyse different computational models 2. Apply rigorously formal mathematical methods to prove properties of languages, grammars and automata. 3. Identify limitations of some computational models and possible methods of proving them. 4. Represent the abstract concepts mathematically with notations. Module:1 Introduction to Languages and Grammars 4 negas and Grammars - Alphabets - Strings - Operations on Languages, Overview or Automata Module:2 Finite State Automata Natumata 8 hours Finite Automata (FA) - Deterministic Finite Automata (DFA) - Non-deterministic Finite Automata (NFA) - NFA with epsilon transitions, conversion of NFA to DFA, Equivalence of NFA and DFA - minimization of DFA Module:3 Regular Expressions and Languages - Closure properties of regular languages Module:3 Regular Expressions - FA and Regular Expressions - Regular grammar and FA - Pumping lemma for regular languages - Closure properties of regular languages Module:3 Contexpree Grammar (CFG) - Derivations - Parse Trees - Ambig							3
Course Objectives 1. Types of grammars and models of automata. 2. Limitation of computation: What can be and what cannot be computed. 3. Establishing connections among grammars, automata and formal languages. Course Outcome On completion of this course, student should be able to: 1. Compare and analyse different computational models 2. Apply rigorously formal mathematical methods to prove properties of languages, grammars and automata. 3. Identify limitations of some computational models and possible methods of proving them. 4. Represent the abstract concepts mathematically with notations. Module:1 Introduction to Languages and Grammars 4 hours Recall on Proof techniques in Mathematics - Overview of a Computational Models - Languages and Grammars - Alphabets - Strings - Operations on Languages, Overview or Automata Module:2 Finite State Automata 8 hours Finite Automata (FA) - NFA with epsilon transitions – NFA without epsilon transition, conversion of NFA to DFA, Equivalence of NFA and DFA - minimization of DFA Module:3 Regular Expression and Languages 7 hours Context-Free Grammar (CFG) - Deterministic Finite Automata (NFA) - NFA and Regular Expressions: FA to regular enguages 7 hours Regular Expression of CFG - Elimination of Useless symbols, Unit productions, Nuit productions, Nuit productions, Nuit productions, Nuit produc	Pre-requisite	Nil		Sylla		ersio	on
1. Types of grammars and models of automata. 2. Limitation of computation: What can be and what cannot be computed. 3. Establishing connections among grammars, automata and formal languages. Course Outcome On completion of this course, student should be able to: 1. Compare and analyse different computational models 2. Apply rigorously formal mathematical methods to prove properties of languages, grammars and automata. 3. Identify limitations of some computational models and possible methods of proving them. 4. Represent the abstract concepts mathematically with notations. Module:1 Introduction to Languages and Grammars 4 hours Recall on Proof techniques in Mathematics - Overview of a Computational Models - Languages and Grammars - Alphabets - Strings - Operations on Languages, Overview or Automata Module:2 Finite State Automata 8 hours Finite Automata (FA) - Deterministic Finite Automata (DFA) - Non-deterministic Finite Automata (NFA) - NFA, with opsilon transitions - NFA without epsilon transition, conversion of NFA to DFA, Equivalence of NFA and DFA - minimization of DFA Module:3 Regular Expressions and Languages 7 hours Regular Expression - FA and Regular expressions - Regular grammar and FA - Pumping lemma for regular languages - Closure properties of regular languages 7 hours Module:4 Context Free Grammars 7 hours	0				1.0		
 2. Limitation of computation: What can be and what cannot be computed. 3. Establishing connections among grammars, automata and formal languages. Course Outcome Con completion of this course, student should be able to: 1. Compare and analyse different computational models Apply rigorously formal mathematical methods to prove properties of languages, grammars and automata. Identify limitations of some computational models and possible methods of proving them. Represent the abstract concepts mathematically with notations. Module:1 Introduction to Languages and Grammars A computational Models - Languages and Grammars - Alphabets - Strings - Operview of a Computational Models - Languages and Grammars - Alphabets - Strings - Operations on Languages, Overview of Natomata Module:2 Finite State Automata (FA) - Deterministic Finite Automata (DFA) - Non-deterministic Finite Automata (NFA) - NFA with opsilon transitions - NFA without epsilon transition, conversion of NFA to DFA, Equivalence of NFA and DFA – minimization of DFA Module:3 Regular Expressions and Languages / Thours Regular Expression - FA and Regular Expressions - Regular expression and regular expression - FA and Regular Expressions - Regular expression and regular expression - FA and Regular Expressions - Regular expressions - Regular expression - Vours (CFG) - Derivations - Parse Trees - Ambiguity in CFG - CYK algorithm - Simplification of CFG - Elimination of Useless symbols, Unit productions, Nul productions - Normal forms for CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL Module:5 Pushdown Automata - Languages of a Pushdown automata - Power of Non-Deterministic Pushdown Automata - Languages of a Pushdown automata - Shours Definition of the Pushdown automata - Languages of a Pushdown automata - Shours Pr							
3. Establishing connections among grammars, automata and formal languages. Course Outcome On completion of this course, student should be able to: 1. Compare and analyse different computational models 2. Apply rigorously formal mathematical methods to prove properties of languages, grammars and automata. 3. Identify limitations of some computational models and possible methods of proving them. 4. Represent the abstract concepts mathematically with notations. Module:1 Introduction to Languages and Grammars 4 hours Recall on Proof techniques in Mathematics - Overview of a Computational Models - Languages and Grammars - Alphabets - Strings - Operations on Languages, Overview or Automata 8 hours Finite Automata (FA) - Deterministic Finite Automata (DFA) - Non-deterministic Finite Automata (FA) - DFA equilan transitions – NFA without epsilon transition, conversion of NFA to DFA, Equivalence of NFA and DFA – minimization of DFA 7 hours Regular Expressions and Languages 7 hours 7 hours Regular Expression and Regular expressions - Regular grammar and FA - Pumping lemma for regular languages - Olosure properties of regular languages 7 hours Context-Free Grammar (CFG) - Derivations - Parse Trees - Ambiguity in CFG - CYK algorithm – Sinplification of CFG - Elimination of Useless symbols, Unit productions, Nuit productions, Nuit productions, Nuit productions, Nuit productions, Nuit productions of the Pushdown Automata and Deterministic pushdown automata - Dever of Non-Determini			mouto	4			
Course Outcome On completion of this course, student should be able to: 1. Compare and analyse different computational models 2. Apply rigorously formal mathematical methods to prove properties of languages, grammars and automata. 3. Identify limitations of some computational models and possible methods of proving them. 4. Represent the abstract concepts mathematically with notations. Module:1 Introduction to Languages and Grammars 4 hours Recall on Proof techniques in Mathematics - Overview of a Computational Models - Languages and Grammars - Alphabets - Strings - Operations on Languages, Overview of Automata 8 hours Finite Automata (FA) - Deterministic Finite Automata (DFA) - Non-deterministic Finite Automata (IPA) - Deterministic Finite Automata (DFA) - Non-deterministic Finite Automata (IPA) - Deterministic and regular expressions of DFA Module:3 Module:3 Regular Expressions and Languages - Thours 7 hours Regular Expression - FA and Regular Expressions: FA to regular expression and regular expression to FA - Pattern matching and regular expressions - Regular Ignuages Module:4 Context Free Grammars / Thours Module:4 Context Free Grammars 7 hours Thours Module:5 Pushdown Automata A play anguages - Closure properties of regular languages Moure Module:4 Context Free Grammars							
On completion of this course, student should be able to: 1. Compare and analyse different computational models 2. Apply rigorously formal mathematical methods to prove properties of languages, grammars and automata. 3. Identify limitations of some computational models and possible methods of proving them. 4. Represent the abstract concepts mathematically with notations. Module:1 Introduction to Languages and Grammars 4 hours Recall on Proof techniques in Mathematics - Overview of a Computational Models - Languages and Grammars - Alphabets - Strings - Operations on Languages, Overview or Automata Module:2 Finite Automata (FA) - Deterministic Finite Automata (DFA) - Non-deterministic Finite Automata (NFA) - NFA with epsilon transitions – NFA without epsilon transition, conversion of NFA to DFA, Equivalence of NFA and DFA – minimization of DFA Module:3 Regular Expressions and Languages 7 hours Regular Expression - FA and Regular Expressions - Regular expression and regular expression - FA and Regular Expressions - Regular anguages 7 hours Module:4 Context Free Grammars (CFG) - Derivations - Parse Trees - Ambiguity in CFG - CYK algorithm - Simplification of CFG - Elimination of Useless symbols, Unit productions, Nul productions - Normal forms for CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL 6 hours Module:5 Pushdown Automata and Deterministic pushdown automata - Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata -	5. Establishing d	onnections among grammars, automata and for	narian	guages	•		
On completion of this course, student should be able to: 1. Compare and analyse different computational models 2. Apply rigorously formal mathematical methods to prove properties of languages, grammars and automata. 3. Identify limitations of some computational models and possible methods of proving them. 4. Represent the abstract concepts mathematically with notations. Module:1 Introduction to Languages and Grammars 4 hours Recall on Proof techniques in Mathematics - Overview of a Computational Models - Languages and Grammars - Alphabets - Strings - Operations on Languages, Overview or Automata Module:2 Finite Automata (FA) - Deterministic Finite Automata (DFA) - Non-deterministic Finite Automata (NFA) - NFA with epsilon transitions – NFA without epsilon transition, conversion of NFA to DFA, Equivalence of NFA and DFA – minimization of DFA Module:3 Regular Expressions and Languages 7 hours Regular Expression - FA and Regular Expressions - Regular expression and regular expression - FA and Regular Expressions - Regular anguages 7 hours Module:4 Context Free Grammars (CFG) - Derivations - Parse Trees - Ambiguity in CFG - CYK algorithm - Simplification of CFG - Elimination of Useless symbols, Unit productions, Nul productions - Normal forms for CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL 6 hours Module:5 Pushdown Automata and Deterministic pushdown automata - Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata -	Course Outcom						
1. Compare and analyse different computational models 2. Apply rigorously formal mathematical methods to prove properties of languages, grammars and automata. 3. Identify limitations of some computational models and possible methods of proving them. 4. Represent the abstract concepts mathematically with notations. Module:1 Introduction to Languages and Grammars 4 hours Recall on Proof techniques in Mathematics - Overview of a Computational Models - Languages and Grammars - Alphabets - Strings - Operations on Languages, Overview or Automata 8 hours Module:2 Finite State Automata 8 hours Finite Automata (FA) - Deterministic Finite Automata (DFA) - Non-deterministic Finite Automata (FA) - Deterministic on S = NFA without epsilon transition, conversion of NFA to DFA, Equivalence of NFA and DFA – minimization of DFA 7 hours Module:3 Regular Expression - FA and Regular Expressions - Regular grammar and FA - Pumping lemma for regular languages - Closure properties of regular languages 7 hours Module:4 Context Free Grammars 7 hours 7 hours Context-Free Grammar (CFG) - D Erivations - Parse Trees - Ambiguity in CFG - CYK algorithm - Simplification of CFG - Elimination of Useless symbols, Unit productions, Nul productions - Normal forms for CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL Module:5 Pushdown Automata - Languages of a Pushdown automata - Power of On-Deterministic Pushdown automata - Languages of a Pushdown automata 6 h							
 2. Apply rigorously formal mathematical methods to prove properties of languages, grammars and automata. 3. Identify limitations of some computational models and possible methods of proving them. 4. Represent the abstract concepts mathematically with notations. Module:1 Introduction to Languages and Grammars 4 hours Recall on Proof techniques in Mathematics - Overview of a Computational Models - Languages and Grammars - Alphabets - Strings - Operations on Languages, Overview or Automata Module:2 Finite State Automata 5 hours Module:3 Finite Automata (FA) - Deterministic Finite Automata (DFA) - Non-deterministic Finite Automata (FA) - NFA with epsilon transitions - NFA without epsilon transition, conversion of NFA to DFA, Equivalence of NFA and DFA - minimization of DFA Module:3 Regular Expressions and Languages 7 hours Regular Expression - FA and Regular Expressions: FA to regular expression and regular expression to FA - Pattern matching and regular expression - Regular grammar and FA - Pumping lemma for regular languages - Closure properties of regular languages Module:4 Context Free Grammars 7 hours Context Free Grammars 7 hours for CFG - CKF and GNF - Pumping Lemma for CFL - Closure Properties of CFL Module:5 Pushdown Automata - Languages of a Pushdown automata - Power of Non-Deterministic Pushdown automata and Deterministic pushdown automata - Power of Non-Deterministic Pushdown automata and Deterministic pushdown automata Module:7 Intring Machine - The Halting problem - Turing-Church thesis Module:7 Computable functions - Chomsky Hierarchy - Undecidable problems - Posit's Correspondence Problem Module:7 Recursively Enumerable Languages, Language that is not Recursively Enumerable (RE) - computable functions - Chomsky Hierarchy - Undecidable problems - Posit's Correspondence Problem Module:8 Contempora							
grammars and automata. 3. Identify limitations of some computational models and possible methods of proving them. 4. Represent the abstract concepts mathematically with notations. Module:1 Introduction to Languages and Grammars 4 hours Recall on Proof techniques in Mathematics - Overview of a Computational Models - Languages and Grammars - Alphabets - Strings - Operations on Languages, Overview or Automata 8 hours Finite Automata (FA) - Deterministic Finite Automata (DFA) - Non-deterministic Finite Automata (NFA) - NFA with epsilon transitions – NFA without epsilon transition, conversion of NFA to DFA, Equivalence of NFA and DFA – minimization of DFA Module:3 Regular Expressions and Languages 7 hours Regular Expression - FA and Regular Expressions: FA to regular expression and regular expression to FA - Pattern matching and regular expressions - Regular grammar and FA - Pumping lemma for regular languages - Closure properties of regular languages Module:4 Context Free Grammars 7 hours Context-Free Grammar (CFG) – Derivations - Parse Trees - Ambiguity in CFG - CYK algorithm - Simplification of CFG - Elimination of Useless symbols, Unit productions, Nul productions - Normal forms for CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL Module:5 Pushdown Automata - Languages of a Pushdown automata - Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata - Power of Universal Turing Machine - The Haiting problem - Turing-Church thesis Module:7 Recursive and Recursively Enumerable (Recursive and Recursively Enumerable Context Free Grampary Languages, Languages, Language that is not Recursively Enumerable (RE) - computable functions - Chomsky Hierarchy – Undecidable problems - Post's Correspondence Problem Module:8 Contemporary Issues 2 total Context Free Grampary Power of Nodule:8 Contemporary Issues 2 total Context Free Grammary CFG - Chomsky Hierarchy – Undecidable problems - Post's Correspondence Problem Module:7 Regursively Enumerable Languages, Language that is not Recu			ties of	languag	des.		
3. Identify limitations of some computational models and possible methods of proving them. 4. Represent the abstract concepts mathematically with notations. Module:1 Introduction to Languages and Grammars 4 hours Recall on Proof techniques in Mathematics - Overview of a Computational Models - Languages and Grammars - Alphabets - Strings - Operations on Languages, Overview or Automata 8 hours Module:2 Finite State Automata 8 hours Finite Automata (FA) - Deterministic Finite Automata (DFA) - Non-deterministic Finite Automata (NFA) - NFA, equivalence of NFA and DFA - minimization of DFA Module:3 Regular Expression - FA and Regular Expressions: FA to DFA, Equivalence of NFA and DFA - minimization of DFA Thours Module:4 Context Free Grammars 7 hours Context-Free Grammar (CFG) - Derivations - Parse Trees - Ambiguity in CFG - CYK algorithm - Simplification of CFG - Elimination of Useless symbols, Unit productions, Nul productions - Normal forms for CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL Shours Module:5 Pushdown Automata - Languages of a Pushdown automata - Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata Module:5 Pushdown Automata - Languages of a Pushdown automata - Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata Mours Module:6 <t< td=""><td></td><td></td><td></td><td></td><td>j,</td><td></td><td></td></t<>					j ,		
4. Represent the abstract concepts mathematically with notations. Module:1 Introduction to Languages and Grammars 4 hours Recall on Proof techniques in Mathematics - Overview of a Computational Models - Languages and Grammars - Alphabets - Strings - Operations on Languages, Overview on Automata 8 hours Module:2 Finite State Automata 8 hours Finite Automata (FA) - Deterministic Finite Automata (DFA) - Non-deterministic Finite Automata (NFA) - NFA with epsilon transitions - NFA without epsilon transition, conversion of NFA to DFA, Equivalence of NFA and DFA - minimization of DFA Module:3 Regular Expressions and Languages 7 hours Regular Expression - FA and Regular Expressions: FA to regular expression and regular expression to FA - Pattern matching and regular expressions - Regular grammar and FA - Pumping lemma for regular languages - Closure properties of regular languages Module:4 Context Free Grammars 7 hours Context-Free Grammar (CFG) - Derivations - Parse Trees - Ambiguity in CFG - CYK algorithm - Simplification of CFG - Elimination of Useless symbols, Unit productions, Nul productions - Normal forms for CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL 6 hours Module:5 Pushdown Automata - Languages of a Pushdown automata - Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata Module:7 Recursive and Recursively Enumerable Langu	0		metho	ds of p	roving	ther	n.
Recall on Proof techniques in Mathematics - Overview of a Computational Models - Languages and Grammars - Alphabets - Strings - Operations on Languages, Overview or Automata Module:2 Finite State Automata 8 hours Finite Automata (FA) - Deterministic Finite Automata (DFA) - Non-deterministic Finite Automata (NFA) - NFA with epsilon transitions – NFA without epsilon transition, conversion of NFA to DFA, Equivalence of NFA and DFA – minimization of DFA Module:3 Regular Expressions and Languages 7 hours Regular Expression - FA and Regular Expressions: FA to regular expression and regular expression to FA - Pattern matching and regular expressions - Regular grammar and FA - Pumping lemma for regular languages - Closure properties of regular languages 7 hours Module:4 Context Free Grammars 7 hours Context-Free Grammar (CFG) – Derivations - Parse Trees - Ambiguity in CFG - CYK algorithm – Simplification of CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL 5 hours Module:5 Pushdown Automata - Languages of a Pushdown automata – Power of Non-Deterministic Pushdown automata and Deterministic pushdown automata – Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata – Recursively Enumerable (RE) – computable functions – Chomsky Hierarchy – Undecidable problems - Universal Turing Machine - The Halting problem - Turing-Church thesis 6 hours Module:6 Contemporary Issues 2 hours					Ŭ		
Recall on Proof techniques in Mathematics - Overview of a Computational Models - Languages and Grammars - Alphabets - Strings - Operations on Languages, Overview or Automata Module:2 Finite State Automata 8 hours Finite Automata (FA) - Deterministic Finite Automata (DFA) - Non-deterministic Finite Automata (NFA) - NFA with epsilon transitions – NFA without epsilon transition, conversion of NFA to DFA, Equivalence of NFA and DFA – minimization of DFA Module:3 Regular Expressions and Languages 7 hours Regular Expression - FA and Regular Expressions: FA to regular expression and regular expression to FA - Pattern matching and regular expressions - Regular grammar and FA - Pumping lemma for regular languages - Closure properties of regular languages 7 hours Module:4 Context Free Grammars 7 hours Context-Free Grammar (CFG) – Derivations - Parse Trees - Ambiguity in CFG - CYK algorithm – Simplification of CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL 5 hours Module:5 Pushdown Automata - Languages of a Pushdown automata – Power of Non-Deterministic Pushdown automata and Deterministic pushdown automata – Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata – Recursively Enumerable (RE) – computable functions – Chomsky Hierarchy – Undecidable problems - Universal Turing Machine - The Halting problem - Turing-Church thesis 6 hours Module:6 Contemporary Issues 2 hours	· ·						
Languages and Grammars - Alphabets - Strings - Operations on Languages, Overview on Automata Module:2 Finite State Automata 8 hours Finite Automata (FA) - Deterministic Finite Automata (DFA) - Non-deterministic Finite Automata (NFA) - NFA with epsilon transitions – NFA without epsilon transition, conversion of NFA to DFA, Equivalence of NFA and DFA – minimization of DFA 7 hours Module:3 Regular Expressions and Languages 7 hours Regular Expression + FA and Regular expressions - Regular expression and regular expressions on the A - Pattern matching and regular expressions - Regular grammar and FA - Pumping lemma for regular languages - Closure properties of regular languages 7 hours Context-Free Grammars 7 hours Context-Free Grammars for CFG - Elimination of Useless symbols, Unit productions, Null productions - Normal forms for CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL S hours Module:5 Pushdown Automata 2 hours Pring Machine - The Halting problem - Turing-Church thesis 6 hours Module:6 Turing Machine - The Halting problem - Turing-Church thesis 6 hours Module:7 Recursively Enumerable Languages, Language that is not Recursively Enumerable (RE) - computable functions - Chomsky Hierarchy – Undecidable problems - Post's Correspondence Problem 6 hours Module:8 Contemporary Issues 2 hours <							
Automata 8 hours Module:2 Finite State Automata 8 hours Finite Automata (FA) - Deterministic Finite Automata (DFA) - Non-deterministic Finite Automata (NFA) - NFA with epsilon transitions – NFA without epsilon transition, conversion of NFA to DFA, Equivalence of NFA and DFA – minimization of DFA Module:3 Regular Expressions and Languages 7 hours Regular Expression - FA and Regular Expressions: FA to regular expression and regular expression to FA - Pattern matching and regular expressions - Regular grammar and FA - Pumping lemma for regular languages - Closure properties of regular languages Module:4 Context Free Grammars 7 hours Context-Free Grammar (CFG) - Derivations - Parse Trees - Ambiguity in CFG - CYK algorithm - Simplification of CFG - Elimination of Useless symbols, Unit productions, Nul productions - Normal forms for CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL Module:5 Pushdown Automata 5 hours Definition of the Pushdown Automata and Deterministic pushdown automata - Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata 6 hours Turing Machine - The Halting problem - Turing-Church thesis Module:6 foruring Machine - The Halting problem - Turing-Church thesis Module:8 Contemporary Issues 2 hours Recursive and Recursively Enumerable Languages, Language that is not Recursively Enumerable (RE) - computable functions - Chomsky Hierarchy -							
Module:2 Finite State Automata 8 hours Finite Automata (FA) - Deterministic Finite Automata (DFA) - Non-deterministic Finite Automata (DFA) - NFA with epsilon transitions – NFA without epsilon transition, conversion of NFA to DFA, Equivalence of NFA and DFA – minimization of DFA Module:3 Regular Expressions and Languages 7 hours Regular Expression - FA and Regular Expressions: FA to regular expression and regular expression to FA - Pattern matching and regular expressions - Regular grammar and FA - Pumping lemma for regular languages - Closure properties of regular languages 7 hours Module:4 Context Free Grammars 7 hours Context-Free Grammar (CFG) – Derivations - Parse Trees - Ambiguity in CFG - CYK algorithm – Simplification of CFG – Elimination of Useless symbols, Unit productions, Nul productions - Normal forms for CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL 5 hours Module:5 Pushdown Automata - Languages of a Pushdown automata – Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata 6 hours Turing Machine - The Halting problem - Turing-Church thesis 6 hours 1 Recursively Enumerable Languages, Language that is not Recursively Enumerable (RE) – computable functions – Chomsky Hierarchy – Undecidable problem - Post's Correspondence Problem 45 hours Module:8 Context Free Grammar (LFG) 2 hours Module:9 Recursively Enumerable Languages,	0 0	Grammars - Alphabets - Strings - Operations of	on Lang	guages,	Over	view	on
Finite Automata (FA) - Deterministic Finite Automata (DFA) - Non-deterministic Finite Automata (NFA) - NFA with epsilon transitions – NFA without epsilon transition, conversion of NFA to DFA, Equivalence of NFA and DFA – minimization of DFA Module:3 Regular Expressions and Languages 7 hours Regular Expression - FA and Regular Expressions: FA to regular expression and regular expression to FA - Pattern matching and regular expressions - Regular grammar and FA - Pumping lemma for regular languages - Closure properties of regular languages 7 hours Context-Free Grammars 7 hours Context-Free Grammars 7 hours Context-Free Grammar (CFG) – Derivations - Parse Trees - Ambiguity in CFG - CYK algorithm - Simplification of CFG - Elimination of Useless symbols, Unit productions, Null productions - Normal forms for CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL 5 hours Module:5 Pushdown Automata 5 hours Module:6 Turing Machine 6 hours Turing Machine - The Halting problem - Turing-Church thesis 6 hours Module:7 Recursively Enumerable Languages, Language that is not Recursively Enumerable (RE) - computable functions – Chomsky Hierarchy – Undecidable problems - Post's Correspondence Problem 2 hours Module:8 Context Free and Recursively Enumerable Languages, Language that is not Recursively Enumerable (RE) - computable functions – Chomsky Hierarchy – Undecidable problems							
Automata (NFA) - NFA with epsilon transitions – NFA without epsilon transition, conversion of NFA to DFA, Equivalence of NFA and DFA – minimization of DFA Module:3 Regular Expressions and Languages 7 hours Regular Expression - FA and Regular Expressions: FA to regular expression to FA - Pattern matching and regular expressions - Regular grammar and FA - Pumping lemma for regular languages - Closure properties of regular languages 7 hours Module:4 Context Free Grammars 7 hours Context-Free Grammar (CFG) – Derivations - Parse Trees - Ambiguity in CFG - CYK algorithm – Simplification of CFG – Elimination of Useless symbols, Unit productions, Null productions - Normal forms for CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL Module:5 Pushdown Automata 5 hours Definition of the Pushdown automata - Languages of a Pushdown automata – Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata 6 hours Module:6 Turing Machine - The Halting problem - Turing-Church thesis 6 hours Module:7 Recursively and Recursively Enumerable Languages, Language that is not Recursively Enumerable (RE) – computable functions – Chomsky Hierarchy – Undecidable problems - Post's Correspondence Problem 2 hours Module:8 Contemporary Issues 2 hours Text Book 1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson Ed							
of NFA to DFA, Equivalence of NFA and DFA – minimization of DFA Module:3 Regular Expressions and Languages 7 hours Regular Expression - FA and Regular Expressions: FA to regular expression and regular expression to FA - Pattern matching and regular expressions - Regular grammar and FA - Pumping lemma for regular languages - Closure properties of regular languages Module:4 Context Free Grammars 7 hours Context-Free Grammars 7 hours Context-Free Grammars 7 hours Module:5 Pumping lemma for regular languages - Closure properties of regular languages 7 hours Context-Free Grammars 7 hours Context-Free Grammars for CFG - Derivations - Parse Trees - Ambiguity in CFG - CYK algorithm - Simplification of CFG - Elimination of Useless symbols, Unit productions, Nul productions - Normal forms for CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of FCL Module:5 Pushdown Automata Shours Definition of the Pushdown automata - Languages of a Pushdown automata - Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata Module: G Module:6 Turing Machine - The Halting problem - Turing-Church thesis 6 hours Module:7 Recursive and Recursively Enumerable Languages, Language that is not Recursively Enumerable Languages 2 hours R							
Module:3 Regular Expressions and Languages 7 hours Regular Expression - FA and Regular Expressions: FA to regular expression and regular expressions - Regular grammar and FA - Pumping lemma for regular languages - Closure properties of regular languages 7 hours Module:4 Context Free Grammars 7 hours Context-Free Grammar (CFG) - Derivations - Parse Trees - Ambiguity in CFG - CYK algorithm - Simplification of CFG - Elimination of Useless symbols, Unit productions, Nul productions - Normal forms for CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL Module:5 Pushdown Automata 5 hours Definition of the Pushdown automata - Languages of a Pushdown automata - Power of Non-Deterministic Pushdown automata and Deterministic pushdown automata 6 hours Turing Machine - The Halting problem - Turing-Church thesis 6 hours Module:7 Recursive and Recursively Enumerable Languages, Language that is not Recursively Enumerable (RE) - computable functions - Chomsky Hierarchy - Undecidable problems - Post's Correspondence Problem Module:8 Contemporary Issues 2 hours Text Book 1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson Education, India 2008. ISBN: 978-8131720479				ransitic	on, cor	nvers	sior
Regular Expression - FA and Regular Expressions: FA to regular expression and regular expression to FA - Pattern matching and regular expressions - Regular grammar and FA - Pumping lemma for regular languages - Closure properties of regular languages Module:4 Context Free Grammars 7 hours Context-Free Grammars 7 hours Properties of CFL Normal forms for CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL Fushdown Automata 5 hours Definition of the Pushdown automata - Languages of a Pushdown automata - Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata Module:5 Turing Machine 6 hours Gonurs Turing Machines as acceptor and transducer - Multi head and Multi tape Turing Machines - Turing Machines - Turing-Church thesis 6 hours Module:7 Recursively Enumerable Languages, Language that is not Recursively Enumerable (RE) - computable functions - Chomsky Hierarchy - Undecidable problems - Post's Correspondence Problem 2 hours Module:8 Contemporary Issues			DFA				
expression to FA - Pattern matching and regular expressions - Regular grammar and FA - Pumping lemma for regular languages - Closure properties of regular languages Module:4 Context Free Grammars 7 hours Context-Free Grammar (CFG) – Derivations - Parse Trees - Ambiguity in CFG - CYK algorithm – Simplification of CFG – Elimination of Useless symbols, Unit productions, Nul productions - Normal forms for CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL Module:5 Pushdown Automata 5 hours Definition of the Pushdown automata - Languages of a Pushdown automata – Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata Module:6 Turing Machine 6 hours Turing Machines as acceptor and transducer - Multi head and Multi tape Turing Machines - Universal Turing Machine - The Halting problem - Turing-Church thesis Module:7 Recursive and Recursively Enumerable Languages, Language that is not Recursively Enumerable (RE) – computable functions – Chomsky Hierarchy – Undecidable problems - Post's Correspondence Problem Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours 7 tanguages and Computation", Third Edition, Pearson Education, India 2008. ISBN: 978-8131720479							
Pumping lemma for regular languages - Closure properties of regular languages Module:4 Context Free Grammars 7 hours Context-Free Grammar (CFG) – Derivations - Parse Trees - Ambiguity in CFG - CYK algorithm – Simplification of CFG – Elimination of Useless symbols, Unit productions, Null productions - Normal forms for CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL Module:5 Pushdown Automata 5 hours Definition of the Pushdown automata - Languages of a Pushdown automata – Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata 6 hours Module:6 Turing Machine 6 hours Turing Machines as acceptor and transducer - Multi head and Multi tape Turing Machines - The Halting problem - Turing-Church thesis 6 hours Module:7 Recursive and Recursively Enumerable Languages, Language that is not Recursively Enumerable (RE) – computable functions – Chomsky Hierarchy – Undecidable problem - Post's Correspondence Problem 2 hours Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Book 1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson Education, India 2008. ISBN: 978-8131720479							
Module:4 Context Free Grammars 7 hours Context-Free Grammar (CFG) – Derivations - Parse Trees - Ambiguity in CFG - CYK algorithm – Simplification of CFG – Elimination of Useless symbols, Unit productions, Nul productions - Normal forms for CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL Module:5 Pushdown Automata 5 hours Definition of the Pushdown Automata - Languages of a Pushdown automata – Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata 6 hours Module:6 Turing Machine 6 hours Turing Machines as acceptor and transducer - Multi head and Multi tape Turing Machines - Universal Turing Machine - The Halting problem - Turing-Church thesis 6 hours Module:7 Recursive and Recursively Enumerable Languages, Language that is not Recursively Enumerable (RE) – computable functions – Chomsky Hierarchy – Undecidable problems - Post's Correspondence Problem 2 hours Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours Year Book 1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson Education, India 2008. ISBN: 978-8131720479						na F	·A -
Context-Free Grammar (CFG) – Derivations - Parse Trees - Ambiguity in CFG - CYK algorithm – Simplification of CFG – Elimination of Useless symbols, Unit productions, Nul productions - Normal forms for CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL Module:5 Pushdown Automata 5 hours Definition of the Pushdown automata - Languages of a Pushdown automata – Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata 6 hours Turing Machine 6 hours Turing Machine as acceptor and transducer - Multi head and Multi tape Turing Machines - Universal Turing Machine - The Halting problem - Turing-Church thesis 6 hours Module:7 Recursive and Recursively Enumerable Languages, Language that is not Recursively Enumerable (RE) – computable functions – Chomsky Hierarchy – Undecidable problems - Post's Correspondence Problem 2 hours Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours 1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson Education, India 2008. ISBN: 978-8131720479			jular la	nguage		7 6 6	
algorithm – Simplification of CFG – Elimination of Useless symbols, Unit productions, Null productions - Normal forms for CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL Module:5 Pushdown Automata State Sta			A rea la i				
productions - Normal forms for CFG: CNF and GNF - Pumping Lemma for CFL - Closure Properties of CFL Module:5 Pushdown Automata 5 hours Definition of the Pushdown automata - Languages of a Pushdown automata – Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata - Power of Automata Module:6 Turing Machine 6 hours Turing Machines as acceptor and transducer - Multi head and Multi tape Turing Machines - Universal Turing Machine - The Halting problem - Turing-Church thesis 6 hours Module:7 Recursive and Recursively Enumerable Languages, Language that is not Recursively Enumerable (RE) – computable functions – Chomsky Hierarchy – Undecidable problems - Post's Correspondence Problem 2 hours Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Book 1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson Education, India 2008. ISBN: 978-8131720479							
Properties of CFL Solution Module:5 Pushdown Automata Shours Definition of the Pushdown automata - Languages of a Pushdown automata - Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata Module:6 Turing Machine 6 hours Turing Machines as acceptor and transducer - Multi head and Multi tape Turing Machines - Universal Turing Machine - The Halting problem - Turing-Church thesis 6 hours Module:7 Recursive and Recursively Enumerable Languages, Language that is not Recursively Enumerable (RE) - computable functions - Chomsky Hierarchy - Undecidable problems - Post's Correspondence Problem 2 hours Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Book 1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson Education, India 2008. ISBN: 978-8131720479							
Module:5 Pushdown Automata 5 hours Definition of the Pushdown automata - Languages of a Pushdown automata - Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata Module:6 Turing Machine 6 hours Turing Machines as acceptor and transducer - Multi head and Multi tape Turing Machines - Universal Turing Machine - The Halting problem - Turing-Church thesis 6 hours Module:7 Recursive and Recursively Enumerable Languages 6 hours Recursive and Recursively Enumerable Languages, Language that is not Recursively Enumerable (RE) - computable functions - Chomsky Hierarchy - Undecidable problems - Post's Correspondence Problem 2 hours Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Book 1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson Education, India 2008. ISBN: 978-8131720479	•		J Lenin			0105	ure
Definition of the Pushdown automata - Languages of a Pushdown automata - Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata Power of Non-Deterministic Pushdown Automata and Deterministic pushdown automata Module:6 Turing Machine 6 hours Turing Machines as acceptor and transducer - Multi head and Multi tape Turing Machines - Universal Turing Machine - The Halting problem - Turing-Church thesis 6 hours Module:7 Recursive and Recursively Enumerable 6 hours Languages 6 hours 6 hours Recursive and Recursively Enumerable Languages, Language that is not Recursively 6 hours Post's Correspondence Problem - computable functions - Chomsky Hierarchy - Undecidable problems - Post's Correspondence Problem Module:8 Contemporary Issues 2 hours Text Book - Total Lecture hours: 45 hours 1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson Education, India 2008. ISBN: 978-8131720479						5 ho	ure
Non-Deterministic Pushdown Automata and Deterministic pushdown automata Module:6 Turing Machine 6 hours Turing Machines as acceptor and transducer - Multi head and Multi tape Turing Machines - Universal Turing Machine - The Halting problem - Turing-Church thesis 6 hours Module:7 Recursive and Recursively Enumerable Enumerable Languages, Language that is not Recursively Enumerable (RE) - computable functions - Chomsky Hierarchy - Undecidable problems - Post's Correspondence Problem 2 hours Module:8 Contemporary Issues 2 hours Text Book Total Lecture hours: 45 hours 1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson Education, India 2008. ISBN: 978-8131720479			down a	utomat			
Module:6 Turing Machine 6 hours Turing Machines as acceptor and transducer - Multi head and Multi tape Turing Machines - Universal Turing Machine - The Halting problem - Turing-Church thesis						0110	
Turing Machines as acceptor and transducer - Multi head and Multi tape Turing Machines - Universal Turing Machine - The Halting problem - Turing-Church thesis Module:7 Recursive and Recursively Enumerable Languages 6 hours Recursive and Recursively Enumerable Languages, Language that is not Recursively Enumerable (RE) - computable functions - Chomsky Hierarchy - Undecidable problems - Post's Correspondence Problem Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours 1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson Education, India 2008. ISBN: 978-8131720479						6 ho	urs
Universal Turing Machine - The Halting problem - Turing-Church thesis Module:7 Recursive and Recursively Enumerable Enumerable 6 hours Languages 6 6 6 6 Recursive and Recursively Enumerable Languages, Language that is not Recursively 6 6 6 Recursive and Recursively Enumerable Languages, Language that is not Recursively 6 6 6 Post's Correspondence Problem - Chomsky Hierarchy - Undecidable problems - 0 6 Module:8 Contemporary Issues 2 1 1 45 hours Text Book - - - - 45 hours 1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson Education, India 2008. ISBN: 978-8131720479		•	lulti tap	e Turin			
Module:7 Recursive and Recursively Enumerable Languages 6 hours Recursive and Recursively Enumerable Languages, Language that is not Recursively Enumerable (RE) – computable functions – Chomsky Hierarchy – Undecidable problems - Post's Correspondence Problem Undecidable problems - Undecidable problems - Undecidable problems - Dott's Correspondence Problem Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Book Image: Second text of the second text of					0		
Recursive and Recursively Enumerable Languages, Language that is not Recursively Enumerable (RE) – computable functions – Chomsky Hierarchy – Undecidable problems - Post's Correspondence Problem Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Book 1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson Education, India 2008. ISBN: 978-8131720479						6 ho	urs
Enumerable (RE) – computable functions – Chomsky Hierarchy – Undecidable problems - Post's Correspondence Problem Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Book 1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson Education, India 2008. ISBN: 978-8131720479	Lan	guages					
Post's Correspondence Problem 2 hours Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Book 45 hours 1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson Education, India 2008. ISBN: 978-8131720479		,					
Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Book 1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson Education, India 2008. ISBN: 978-8131720479			y — Un	decidab	le pro	blem	ıs -
Total Lecture hours: 45 hours Text Book 1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson Education, India 2008. ISBN: 978-8131720479							
Text Book 1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson Education, India 2008. ISBN: 978-8131720479	Module:8 Con	temporary Issues				2 ho	urs
Text Book 1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson Education, India 2008. ISBN: 978-8131720479		Total Lecture hours:			4	5 ho	ure
1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson Education, India 2008. ISBN: 978-8131720479					+	5 110	ui 3
Languages and Computation", Third Edition, Pearson Education, India 2008. ISBN: 978-8131720479		A D Mature and ID Illing Wet I I		A 1	1- T'		
978-8131720479	HODOR	M R Motwani and JD Ullman "Introductio	n to <i>i</i>	Automa	⊺o ih	eorv	,
	Languages	and Computation", Third Edition, Pearson Educ					

1. Peter Linz, "An Introduction to Formal Languages and Automata", Sixth Edition, Jones & Bartlett, 2016. ISBN: 978-9384323219

2. K. Krithivasan and R. Rama, "Introduction to Formal Languages, Automata and Computation", Pearson Education, 2009. ISBN: 978-8131723562

Mode of Evaluation: CAT, Assignment	, Quiz, FAT.		
Recommended by Board of Studies	04-03-2022	2	
Approved by Academic Council	No. 65	Date	17-03-2022

BCSE305L	Embedded Systems		L 7		2	C
N			3 0)	3
Pre-requisite	NIL	Syll	abus		SIO	'n
			1.0)		
Course Objectiv		· •				
	dents to various challenges and constraints of sp	pecial purpos	e com	iput	ing	j
	of resources and functional requirements.				_	_
	tudents to various components of typical embed					
	ata converters, UART etc., their interfacing, prog mart systems and various serial communication				101	
	facing and communication.		opun	a		
	ents understand the importance of program mod	elina ontimiz	ation			
	lebugging tools for product development and exp			ons	for	r
	ling issues in terms of resources and deadline.		Joint	0110	101	
Course Outcom	es					
	this course, students should be able to:					
	nallenges in designing an embedded system usi	ng various m	icroco	ntrc	lle	rs
and interface						
	es the functionality of any special purpose		ystem	, a	nd	t
	rt solutions to engineering challenges at the prot					
	he working principle and interface of typical emb			•		
	mme models, apply various optimization approa	cnes includir	ig sim	ulat	ion	ì
	and demonstration using debugging tools. he working principle of serial communication pro	tooolo and th	oir pr	<u></u>	r	~~
	analyze the benefits and drawbacks of real-time					
	d acceptable solutions for specific challenges.	soneduling	aigon	umn	30	II IX
Module:1 Intro	duction			5 ł	າວເ	Jr
Overview of En	nbedded Systems, Design challenges, Embed	ded process	or te	chno	olo	gy
	n, Micro-controller architecture -8051, PIC, and A					
Module:2 I/O I	nterfacing Techniques			8 ł	າວເ	Jrs
	ing, A/D, D/A, Timers, Watch-dog timer, Cou	nters, Encod	er &	Dec	cod	ler
	and actuators interfacing.					
	itecture of Special Purpose Computing			6 ł	າວເ	Jrs
Syst						
•	devices, Data Compressor, Image Capturing			cture	e s	ind
	hallenges & Constraints of special purpose com	puting syster	n.			
Module:4 Prog					<u>10</u>	
	bedded programming tools, Modelling program	s, Code opti	mizati	on,	Lo	gı
	amming environment.			0 1		
	Time Operating System			<u>18</u>		
	Real time system, Issues & challenges in F		me so	cheo	Jui	шí
	RMS & Hybrid techniques, eCOS, POSIX, Prototector edded Networking Protocols	meaus.		5 ł		
	Circuits (I2C), Controller Area Network, Emb	edded Ether	net C			
RS232, Bluetootl			net C	Joint		
	ications of Embedded Systems			4 ł	יחו	Ire
	embedded system applications using case stu	idies – Role	in A			
	tive electronics, Consumer Electronics, In					
Electronics.						50
	emporary Issues			2 ł	າດເ	ir

			Total Lectu	ire hours	: 45 hours					
Tex	t Book									
1.		Volf, Computers as Co Design, Fourth Edition, M			of Embedded Computing rs. 2016.					
Re	Reference Books									
1.		d Systems Architecture, ation, 3e, 2015.	, Programming	and Desi	gn, by Raj Kamal, McGraw					
2.		d System Design A Uni gis Tony, John Wiley &		Sofware Ir	ntroduction, by Vahid G Frank					
Мо	de of Eva	uation: CAT, written ass	signment, Quiz,	FAT.						
Re	commende	ed by Board of Studies	04-03-2022							
Ap	proved by <i>i</i>	Academic Council	No. 65	Date	17-03-2022					

BCSE306L	Artificial Intelligence		L	Т	Ρ	С
			3	0	0	3
Pre-requisite	NIL	Syl	labu	s ve	ersio	on
				1.0		
Course Objective	es					
2. To assess representa problems	artificial intelligence principles, techniques and its histo s the applicability, strengths, and weaknesses of th ation, problem solving, and learning methods in p intelligent systems by assembling solutions to con	ne ba solvir	ng e	engir	neer	ing
Course Outcome	25					
	this course, student should be able to:					
 Apply bas perception Demonstra solving rea 	Artificial Intelligence (AI) methods and describe their fou- ic principles of AI in solutions that require problem i, knowledge representation and learning. ate knowledge of reasoning, uncertainty, and knowledge al-world problems ind illustrate how search algorithms play a vital role in p	n-solv ge rej	ving, prese	infe enta	tion	
			-			
Module:1 Intro	duction			6	hou	urs
	olution of AI, State of Art -Different Types of A AI-Subfields of AI-Intelligent Agents- Structure of					
Module:2 Prob	em Solving based on Searching			6	hou	urs
Search Methods	roblem Solving by searching Methods-State Space – Uniform Cost Search, Breadth First Search- Depth rative deepening depth-first, Informed Search Methods	First	Sea	rch-	Dep	oth-
	I Search and Adversarial Search			5	hou	urs
Local Search algo Adversarial Searc	prithms – Hill-climbing search, Simulated annealing, Ge h: Game Trees and Minimax Evaluation, Elementary tv ax with Alpha-Beta Pruning.			orithr	n,	
Module:4 Logi	c and Reasoning				hou	
	gic and Reasoning -Propositional Logic-First Order Log cation, Forward Chaining, Backward Chaining, Resolut		feren	ice ii	n Fii	rst
	ertain Knowledge and Reasoning			5	hou	irs
	rtainty- Bayes Rule -Bayesian Belief Network- Appro	oxima	te Ir			
Module:6 Plan				7	ho	Ire
	g, Planning as State-space search, Forward search	ha				
Planning graphs,	Hierarchical Planning, Planning and acting in Nondeten ning, Multiagent planning					
	municating, Perceiving and Acting			6	hou	urs
	undamentals of Language -Probabilistic Language Pro tion Extraction-Perception-Image Formation- Object Re		•		mat	ion
	emporary Issues				hou	urs
	Total Lecture ho	ours:		45	hou	urs
Text Book			1			
	nd Norvig, P. 2015. Artificial Intelligence - A Modern Ap	proa	ch, 3	rd Ec	litior	٦,

Re	Reference Books					
1.	K. R. Chowdhary, Fundamentals of Artificial Intelligence, Springer, 2020.					
2	Alpaydin, E. 2010. Introduction to Machine Learning. 2 nd Edition, MIT Press.					
Mo	de of Evaluation: CAT, Assignme	nt, Quiz, FAT				
Re	Recommended by Board of Studies 04-03-2022					
Ар	Approved by Academic Council No. 65 Date 17-03-2022					

BCSE307L	Compiler Design		L	Т	Ρ	С
			3	0	0	3
Pre-requisite	NIL	Syl	llab	us \	/ers	ion
				1.0		-
Course Objectiv	es					
1. To provide fund	amental knowledge of various language translators.					
2. To make stude	nts familiar with lexical analysis and parsing techniques					
3. To understand the various actions carried out in semantic analysis.						
4. To make the students get familiar with how the intermediate code is generated.						
	the principles of code optimization techniques and code					

6. To provide foundation for study of high-performance compiler design.

Course Outcomes

1. Apply the skills on devising, selecting, and using tools and techniques towards compiler design

2. Develop language specifications using context free grammars (CFG).

3. Apply the ideas, the techniques, and the knowledge acquired for the purpose of developing software systems

developing software systems.

4. Constructing symbol tables and generating intermediate code.

5. Obtain insights on compiler optimization and code generation.

Module:1 INTRODUCTION TO COMPILATION AND LEXICAL ANALYSIS 7 hours

Introduction to LLVM - Structure and Phases of a Compiler-Design Issues-Patterns-Lexemes-Tokens-Attributes-Specification of Tokens-Extended Regular Expression- Regular expression to Deterministic Finite Automata (Direct method) - Lex - A Lexical Analyzer Generator.

Module:2	SYNTAX ANALYSIS	8 hours					
Role of Parser- Parse Tree - Elimination of Ambiguity – Top Down Parsing - Recursive							
Descent Parsing - LL (1) Grammars – Shift Reduce Parsers- Operator Precedence Parsing -							
LR Parsers, Construction of SLR Parser Tables and Parsing- CLR Parsing- LALR Parsing.							
Module:3	SEMANTICS ANALYSIS	5 hours					
Syntax Dire	Syntax Directed Definition – Evaluation Order - Applications of Syntax Directed Translation -						
Syntax Dire	ected Translation Schemes - Implementation of L-attributed Syntax D	Directed					
Definition.							
Module:4	INTERMEDIATE CODE GENERATION	5 hours					
Variants of	Variants of Syntax trees - Three Address Code- Types – Declarations - Procedures -						
Assignment Statements - Translation of Expressions - Control Flow - Back Patching- Switch							
Case State	ments.						
Module:5	CODE OPTIMIZATION	6 hours					
Loop optimizations- Principal Sources of Optimization -Introduction to Data Flow Analysis -							
	Basic Blocks - Optimization of Basic Blocks - Peephole Optimization- The DAG						
Representation of Basic Blocks -Loops in Flow Graphs - Machine Independent Optimization-							
Implementation of a naïve code generator for a virtual Machine- Security checking of virtual							
machine code.							
Module:6	CODE GENERATION	5 hours					
Issues in the design of a code generator- Target Machine- Next-Use Information - Register							
Allocation and Assignment- Runtime Organization- Activation Records.							
Module:7	7 hours						
Parallelization- Automatic Parallelization- Optimizations for Cache Locality and							
Vectorization- Domain Specific Languages-Compilation- Instruction Scheduling and							
Software Pipelining- Impact of Language Design and Architecture Evolution on Compilers-							
Static Single Assignment							
Module:8	Contemporary Issues	2 hours					

				Total L	ecture hours:	45 hours			
Text Book(s)									
1.	. A. V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman, Compilers: Principles,								
	techniques, & tools, 2007, Second Edition, Pearson Education, Boston.								
Reference Books									
1.	Watson, Des. A Practical Approach to Compiler Construction. Germany, Springer								
	International Publishing, 2017.								
Mode of Evaluation: CAT, Quiz, Written assignment and FAT									
Re	Recommended by Board of Studies 04-03-2022								
Ар	proved b	y Academic Council	No. 65	Date	17-03-2022				

BCS	E307P	C	ompiler Desig	n Lab		L	TP) C	
_						0	0 2		
Pre-r	equisite				S	yllabu		sion	
0							1.0		
	se Objectives		.	4					
		nental knowledge o familiar with phase		ige translat	ors.				
		ition for study of hig		compiler de	seian				
5.10		tion for study of hig	n-penormance		ssigit.				
Cour	se Outcome								
		devising, selecting	and using tools	and techn	iques towa	ards co	ompile	er	
desig		0, 0	0		•		•		
		e specifications usir							
		ne techniques, and t	the knowledge a	acquired for	r the purpo	ose of			
	loping softwar								
		ool tables and gene							
5. Ub	otain insights on	compiler optimizati	on and code ge	eneration.					
Indic	ative Experime	nts							
1.		ion of LEXR using L	LVM						
2.		ion of handwritten p		/M					
3.		code with the LLVM							
4.	V	ning a real programming language.							
5.		Write a recursive descent parser for the CFG language and implement it using							
	LLVM.	·		0 0	-			0	
6.		arser for the CFG la	anguage and im	plement it i	n the using	g LLVI	M.		
7.	Intro to Flex and Bison								
		Modify the scanner and parser so that terminating a statement with "; b" instead of ";"							
	results in the output being printed in binary.								
8.	Using LLVM-style RTTI for the AST and Generating IR from the AST. Converting types from an AST description to LLVM types.								
9.				VM types.					
10.	Emitting asse	embler text and obje		hall above	an Haur	20	h a		
Mode	of assessment		101	tal Laborat	ory nours	5 30	hours	5	
	Book(s)								
1		12: A beginner's g	uide to learnin	a LLVM o	ompiler to	ols ar	nd co	re	
•	libraries with C			9 111 0					
Refe	rence Books								
1.		A Practical Appro	ach to Compil	er Constru	ction. Gei	many	, Spri	nger	
		Publishing, 2017.				,		C	
	·								
	mmended by B		04-03-2022						
	oved by Acader	nic Council	No. 65	Date	17-03-202	2			

BCSE308L	Computer Networks		L T P C
			3 0 0 3
Pre-requisite	NIL	S	yllabus version
			1.0
Course Objective			
	iderstanding among students about the fundam	nental cond	cepts of computer
	otocols, architectures, and applications.		
	nts to acquire knowledge in design, implement	and analyz	e performance of
	IP based Architectures.		
	e suitable application layer protocols for sp	pecific app	blications and its
respective sec	curity mechanisms.		
Course Outcome			
	this course, student should be able to:		
	ifferent building blocks of Communication netwo	ork and its	architecture
	ent types of switching networks and analyze the		
	nalyze error and flow control mechanisms in dat		
	etting and analyze the performance of network		
protocols.	······		
•	ous congestion control mechanisms and identify	y appropria	ate transport layer
	al time applications with appropriate security me		
Module:1 Netw	orking Principles and Layered		6 hours
	itecture		e neure
Data Communicat	tions and Networking: A Communications Mode	el – Data C	ommunications -
	ork, Requirements, Applications, Network Topo		
	cols and Standards, Network Models (OSI, TCF		
Module:2 Circu	it and Packet Switching		7 hours
Switched Commu	nications Networks – Circuit Switching – Packe	t Switching	j – Comparison
of Circuit Switchin	g and Packet Switching – Implementing Netwo	rk Software	e, Networking
	mission Impairment, Data Rate and Performan	ce)	
	Link Layer		8 hours
	nd Correction – Hamming Code , CRC, Checks		
	ing Window Protocol - GoBack - N - Selective F		
	oha - CSMA, CSMA/CD – IEEE Standards(IEEI	E802.3 (Et	hernet),
	N))- RFID- Bluetooth Standards		0 h a
Module:4 Netw		a Addree	8 hours
	ace – Notations – Classful Addressing – Classle on – IPv6 Address Structure – IPv4 and IPv6 he		
	ing Protocols		6 hours
	e and Distance Vector Routing Protocols- Imple	mentation	
Analysis- Packet		mentation	
Module:6 Trans			5 hours
	ngestion Control-Effects of Congestion-Traffic I	Manageme	
	ol-Congestion Avoidance Mechanisms-Queuing		
Parameters		-	
Module:7 Appli	cation layer		3 hours
	Domain Name System-Case Study : FTP-HTTP	P-SMTP-SN	NMP
Module:8 Conte	emporary Issues		2 hours
1			
	Total Lecture hours:		45 hours
Text Book			
	Forouzan, Data communication and Networl	kina. 5th	Edition, 2017.
20.1002 /1			

	McGraw Hill Education.							
Ref	Reference Books							
1.	James F. Kurose and Keith W.R	loss, Computer N	letworking	g: A Top-Down Approach, 6th				
	Edition, 2017, Pearson Education	n.						
2.	William Stallings, "Data and Co	mputer Commur	nication",	10th Edition, 2017, Pearson,				
	United Kingdom.	-						
Мо	de of Evaluation: CAT, Written A	ssignment, Quiz,	FAT					
Red	Recommended by Board of Studies 04-03-2022							
Арр	Approved by Academic Council No. 65 Date 17-03-2022							

Image: Contrast of the second secon	BC	SE308P	Co	omputer Netwo	rks Lab		1	_ T	Ρ	С
Image: Course Objectives 1.0 1. To build an understanding among students about the fundamental concepts of computer networking, protocols, architectures, and applications. 1. To build an understanding among students about the fundamental concepts of computer networking, protocols, architectures, and applications. 2. To help students to acquire knowledge in design, implement and analyze performance or OSI and TCP-IP based Architectures. 3. To identify the suitable application layer protocols for specific applications and its respective security mechanisms Course Outcome 0 On completion of this course, student should be able to: 1. Interpret the different building blocks of Communication network and its architecture. 2. Contrast different types of switching networks and analyze the performance of network 3. Identify and analyze error and flow control mechanisms in data link layer. 4. Design sub-netting and analyze the performance of network layer with various routing protocols. 5. Compare various congestion control mechanisms and identify appropriate transport layer protocols for real time applications with appropriate security mechanism. 1. Study of Basic Network Commands, Demo session of all networking hardware and Functionalities 2. Error detection and correction mechanisms 3. Flow control mechanisms 4. IP addressing Classless addressing 5. Observing Packets across the network and Performance Analysis of Routing protocols				•			(0 0	2	1
Image: Course Objectives 1.0 1. To build an understanding among students about the fundamental concepts of computer networking, protocols, architectures, and applications. 1. 2. To help students to acquire knowledge in design, implement and analyze performance or OSI and TCP-IP based Architectures. 3. 3. To identify the suitable application layer protocols for specific applications and its respective security mechanisms 6 Course Outcome 7 On completion of this course, student should be able to: 1. 1. Interpret the different building blocks of Communication network and its architecture. 2. Course Outcome 7 On completion of this course, student should be able to: 1. 1. Interpret the different building blocks of Communication network and its architecture. 2. Contrast different building blocks of Communication network layer with various routing protocols. 5. Compare various congestion control mechanisms and identify appropriate transport layer protocols for real time applications with appropriate security mechanism. 1. Study of Basic Network Commands, Demo session of all networking hardware and Functionalities 2. Error detection and correction mechanisms 3. Flow control mechanisms 4. IP addressing Classless addressing 5.	Pre	e-requisite	NIL				Syllal	bus ve	rsio	'n
 To build an understanding among students about the fundamental concepts of computer networking, protocols, architectures, and applications. To help students to acquire knowledge in design, implement and analyze performance or OSI and TCP-IP based Architectures. To identify the suitable application layer protocols for specific applications and its respective security mechanisms Course Outcome On completion of this course, student should be able to: Interpret the different building blocks of Communication network and its architecture. Contrast different types of switching networks and analyze the performance of network Identify and analyze error and flow control mechanisms in data link layer. Design sub-netting and analyze the performance of network layer with various routing protocols. Compare various congestion control mechanisms and identify appropriate transport layer protocol for real time applications with appropriate security mechanism. Indicative Experiments Study of Basic Network Commands, Demo session of all networking hardware and Functionalities Error detection and correction mechanisms Flow control mechanisms IP addressing Classless addressing Observing Packets across the network and Performance Analysis of Routing protocols Simulation of ransport layer Protocols and analysis of congestion control techniques in network Develop a DNS client server to resolve the given host name or IP address Wrichard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. 		•					-			
networking, protocols, architectures, and applications. 2. To help students to acquire knowledge in design, implement and analyze performance or OSI and TCP-IP based Architectures. 3. To identify the suitable application layer protocols for specific applications and its respective security mechanisms Course Outcome On completion of this course, student should be able to: 1. Interpret the different building blocks of Communication network and its architecture. 2. Contrast different types of switching networks and analyze the performance of network 3. Identify and analyze error and flow control mechanisms in data link layer. 4. Design sub-netting and analyze the performance of network layer with various routing protocols. 5. Compare various congestion control mechanisms and identify appropriate transport layer protocol for real time applications with appropriate security mechanism. Indicative Experiments 1. Study of Basic Network Commands, Demo session of all networking hardware and Functionalities 2. Error detection and correction mechanisms 3. Flow control mechanisms 4. IP addressing Classless addressing 5. Observing Packets across the network and Performance Analysis of Routing protocols 6. Socket programming(TCP and UDP) - Some challenging experiments can be given on Socket programming 7. Simulation of Transport layer Proto	Со	urse Objectiv	es							
 2. To help students to acquire knowledge in design, implement and analyze performance or OSI and TCP-IP based Architectures. 3. To identify the suitable application layer protocols for specific applications and its respective security mechanisms Course Outcome On completion of this course, student should be able to: Interpret the different building blocks of Communication network and its architecture. Contrast different types of switching networks and analyze the performance of network Identify and analyze error and flow control mechanisms in data link layer. Design sub-netting and analyze the performance of network layer with various routing protocols. Compare various congestion control mechanisms and identify appropriate transport layer protocol for real time applications with appropriate security mechanism. Indicative Experiments Study of Basic Network Commands, Demo session of all networking hardware and Functionalities Error detection and correction mechanisms Flow control mechanisms Flow control mechanisms Paddressing Classless addressing Observing Packets across the network and Performance Analysis of Routing protocols Socket programming(TCP and UDP) - Some challenging experiments can be given on Socket programming Simulation of Transport layer Protocols and analysis of congestion control techniques in network Develop a DNS client server to resolve the given host name or IP address Total Laboratory Hours 30 hours Text book Wichard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. 	1.	To build an ur	iderstanding amon	g students abou	t the funda	amental	concept	s of co	ompu	uter
OSI and TCP-IP based Architectures. 3. To identify the suitable application layer protocols for specific applications and its respective security mechanisms Course Outcome On completion of this course, student should be able to: 1. Interpret the different building blocks of Communication network and its architecture. 2. Contrast different types of switching networks and analyze the performance of network 3. Identify and analyze error and flow control mechanisms in data link layer. 4. Design sub-netting and analyze the performance of network layer with various routing protocols. 5. Compare various congestion control mechanisms and identify appropriate transport layer protocol for real time applications with appropriate security mechanism. Indicative Experiments 1. Study of Basic Network Commands, Demo session of all networking hardware and Functionalities 2. Error detection and correction mechanisms 3. Flow control mechanisms 3. Flow control mechanisms 3. Flow control mechanisms 3. Socket programming(TCP and UDP) - Some challenging experiments can be given on Socket programming 7. Simulation of Unicast routing protocols 8. Simulation of Transport layer Protocols and analysis of congestion control techniques in network 9. Develop a DNS client server to resolve the given host name or IP address Total Laboratory Hours 30 hours										
 3. To identify the suitable application layer protocols for specific applications and its respective security mechanisms Course Outcome On completion of this course, student should be able to: Interpret the different building blocks of Communication network and its architecture. Contrast different types of switching networks and analyze the performance of network Identify and analyze error and flow control mechanisms in data link layer. Design sub-netting and analyze the performance of network layer with various routing protocols. Compare various congestion control mechanisms and identify appropriate transport layer protocol for real time applications with appropriate security mechanism. Indicative Experiments Study of Basic Network Commands, Demo session of all networking hardware and Functionalities Error detection and correction mechanisms Flow control mechanisms IP addressing Classless addressing Observing Packets across the network and Performance Analysis of Routing protocols Simulation of unicast routing protocols and analysis of congestion control techniques in network Develop a DNS client server to resolve the given host name or IP address Text book Writchard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. 	2.				implemen	it and ai	nalyze p	erform	ance	e of
respective security mechanisms Course Outcome On completion of this course, student should be able to: 1. Interpret the different building blocks of Communication network and its architecture. 2. Contrast different types of switching networks and analyze the performance of network Identify and analyze error and flow control mechanisms in data link layer. 4. Design sub-netting and analyze the performance of network layer with various routing protocols. 5. Compare various congestion control mechanisms and identify appropriate transport layer protocol for real time applications with appropriate security mechanism. Indicative Experiments 1. Study of Basic Network Commands, Demo session of all networking hardware and Functionalities 2. Error detection and correction mechanisms 3. Flow control mechanisms 4. IP addressing Classless addressing 5. Observing Packets across the network and Performance Analysis of Routing protocols 6. Socket programming(TCP and UDP) - Some challenging experiments can be given on Socket programming 7. Simulation of Unicast routing protocols 8. Simulation of Transport layer Protocols and analysis of congestion control techniques in network 9. Develop a DNS client server to resolve the given host name or IP address										
Course Outcome On completion of this course, student should be able to: 1. Interpret the different building blocks of Communication network and its architecture. 2. Contrast different types of switching networks and analyze the performance of network 3. Identify and analyze error and flow control mechanisms in data link layer. 4. Design sub-netting and analyze the performance of network layer with various routing protocols. 5. Compare various congestion control mechanisms and identify appropriate transport layer protocol for real time applications with appropriate security mechanism. Indicative Experiments 1. Study of Basic Network Commands, Demo session of all networking hardware and Functionalities 2. Error detection and correction mechanisms 3. Flow control mechanisms 4. IP addressing Classless addressing 5. Observing Packets across the network and Performance Analysis of Routing protocols 6. Socket programming(TCP and UDP) - Some challenging experiments can be given on Socket programming 7. Simulation of Transport layer Protocols and analysis of congestion control techniques in network 9. Develop a DNS client server to resolve the given host name or IP address Total Laboratory Hours 30 hours Text book <tr< td=""><td>3.</td><td></td><th></th><td>ation layer prote</td><td>ocols for</td><td>specific</td><td>applica</td><th>ations</th><td>and</td><td>its</td></tr<>	3.			ation layer prote	ocols for	specific	applica	ations	and	its
On completion of this course, student should be able to: 1. Interpret the different building blocks of Communication network and its architecture. 2. Contrast different types of switching networks and analyze the performance of network 3. Identify and analyze error and flow control mechanisms in data link layer. 4. Design sub-netting and analyze the performance of network layer with various routing protocols. 5. Compare various congestion control mechanisms and identify appropriate transport layer protocol for real time applications with appropriate security mechanism. 1. Study of Basic Network Commands, Demo session of all networking hardware and Functionalities 2. Error detection and correction mechanisms 3. Flow control mechanisms 4. IP addressing Classless addressing 5. Observing Packets across the network and Performance Analysis of Routing protocols 6. Socket programming(TCP and UDP) - Some challenging experiments can be given on Socket programming 7. Simulation of unicast routing protocols and analysis of congestion control techniques in network 9. Develop a DNS client server to resolve the given host name or IP address Total Laboratory Hours 30 hours Text book 1 W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015.										
 Interpret the different building blocks of Communication network and its architecture. Contrast different types of switching networks and analyze the performance of network Identify and analyze error and flow control mechanisms in data link layer. Design sub-netting and analyze the performance of network layer with various routing protocols. Compare various congestion control mechanisms and identify appropriate transport layer protocol for real time applications with appropriate security mechanism. Indicative Experiments Study of Basic Network Commands, Demo session of all networking hardware and Functionalities Error detection and correction mechanisms Flow control mechanisms IP addressing Classless addressing Observing Packets across the network and Performance Analysis of Routing protocols Simulation of unicast routing protocols Simulation of Transport layer Protocols and analysis of congestion control techniques in network Develop a DNS client server to resolve the given host name or IP address W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. 										
 Contrast different types of switching networks and analyze the performance of network Identify and analyze error and flow control mechanisms in data link layer. Design sub-netting and analyze the performance of network layer with various routing protocols. Compare various congestion control mechanisms and identify appropriate transport layer protocol for real time applications with appropriate security mechanism. Indicative Experiments Study of Basic Network Commands, Demo session of all networking hardware and Functionalities Error detection and correction mechanisms Flow control mechanisms IP addressing Classless addressing Observing Packets across the network and Performance Analysis of Routing protocols Socket programming(TCP and UDP) - Some challenging experiments can be given on Socket programming Simulation of unicast routing protocols and analysis of congestion control techniques in network Develop a DNS client server to resolve the given host name or IP address IV Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. 										
 Identify and analyze error and flow control mechanisms in data link layer. Design sub-netting and analyze the performance of network layer with various routing protocols. Compare various congestion control mechanisms and identify appropriate transport layer protocol for real time applications with appropriate security mechanism. Indicative Experiments Study of Basic Network Commands, Demo session of all networking hardware and Functionalities Error detection and correction mechanisms Flow control mechanisms IP addressing Classless addressing Observing Packets across the network and Performance Analysis of Routing protocols Socket programming(TCP and UDP) - Some challenging experiments can be given on Socket programming Simulation of unicast routing protocols Simulation of Transport layer Protocols and analysis of congestion control techniques in network Develop a DNS client server to resolve the given host name or IP address Total Laboratory Hours 30 hours W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. 										
 4. Design sub-netting and analyze the performance of network layer with various routing protocols. 5. Compare various congestion control mechanisms and identify appropriate transport layer protocol for real time applications with appropriate security mechanism. Indicative Experiments Study of Basic Network Commands, Demo session of all networking hardware and Functionalities Error detection and correction mechanisms Flow control mechanisms IP addressing Classless addressing Observing Packets across the network and Performance Analysis of Routing protocols Socket programming(TCP and UDP) - Some challenging experiments can be given on Socket programming Simulation of Transport layer Protocols and analysis of congestion control techniques in network Develop a DNS client server to resolve the given host name or IP address Text book 1 W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. 								e of net	work	<
protocols. 5. Compare various congestion control mechanisms and identify appropriate transport layer protocol for real time applications with appropriate security mechanism. Indicative Experiments 1. Study of Basic Network Commands, Demo session of all networking hardware and Functionalities 2. Error detection and correction mechanisms 3. Flow control mechanisms 4. IP addressing Classless addressing 5. Observing Packets across the network and Performance Analysis of Routing protocols 6. Socket programming(TCP and UDP) - Some challenging experiments can be given on Socket programming 7. Simulation of unicast routing protocols 8. Simulation of Transport layer Protocols and analysis of congestion control techniques in network 9. Develop a DNS client server to resolve the given host name or IP address Total Laboratory Hours 30 hours Text book 1 W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015.										
 5. Compare various congestion control mechanisms and identify appropriate transport layer protocol for real time applications with appropriate security mechanism. Indicative Experiments Study of Basic Network Commands, Demo session of all networking hardware and Functionalities Error detection and correction mechanisms Flow control mechanisms IP addressing Classless addressing Observing Packets across the network and Performance Analysis of Routing protocols Socket programming(TCP and UDP) - Some challenging experiments can be given on Socket programming Simulation of unicast routing protocols Simulation of Transport layer Protocols and analysis of congestion control techniques in network Develop a DNS client server to resolve the given host name or IP address Text book W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. 	4.		etting and analyze	the performance	e of netwo	огк тауе	r with v	arious	rout	ing
protocol for real time applications with appropriate security mechanism. Indicative Experiments 1. Study of Basic Network Commands, Demo session of all networking hardware and Functionalities 2. Error detection and correction mechanisms 3. Flow control mechanisms 4. IP addressing Classless addressing 5. Observing Packets across the network and Performance Analysis of Routing protocols 6. Socket programming(TCP and UDP) - Some challenging experiments can be given on Socket programming 7. Simulation of unicast routing protocols 8. Simulation of Transport layer Protocols and analysis of congestion control techniques in network 9. Develop a DNS client server to resolve the given host name or IP address Total Laboratory Hours 30 hours Text book 1 W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. Mode of assessment: Continuous assessment, FAT	5			tual use als avaianse	فمعما أماميم		a a viata t			
Indicative Experiments 1. Study of Basic Network Commands, Demo session of all networking hardware and Functionalities 2. Error detection and correction mechanisms 3. Flow control mechanisms 4. IP addressing Classless addressing 5. Observing Packets across the network and Performance Analysis of Routing protocols 6. Socket programming(TCP and UDP) - Some challenging experiments can be given on Socket programming 7. Simulation of unicast routing protocols 8. Simulation of Transport layer Protocols and analysis of congestion control techniques in network 9. Develop a DNS client server to resolve the given host name or IP address Total Laboratory Hours 30 hours Text book 1 W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015.	່ວ.							ranspo	on la	yer
 Study of Basic Network Commands, Demo session of all networking hardware and Functionalities Error detection and correction mechanisms Flow control mechanisms IP addressing Classless addressing Observing Packets across the network and Performance Analysis of Routing protocols Socket programming(TCP and UDP) - Some challenging experiments can be given on Socket programming Simulation of unicast routing protocols Simulation of Transport layer Protocols and analysis of congestion control techniques in network Develop a DNS client server to resolve the given host name or IP address Total Laboratory Hours 30 hours Text book W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. 		protocol for re			e security r	nechan	15111.			
 Study of Basic Network Commands, Demo session of all networking hardware and Functionalities Error detection and correction mechanisms Flow control mechanisms IP addressing Classless addressing Observing Packets across the network and Performance Analysis of Routing protocols Socket programming(TCP and UDP) - Some challenging experiments can be given on Socket programming Simulation of unicast routing protocols Simulation of Transport layer Protocols and analysis of congestion control techniques in network Develop a DNS client server to resolve the given host name or IP address Total Laboratory Hours 30 hours Text book W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. Mode of assessment: Continuous assessment, FAT 	L									
Functionalities 2. Error detection and correction mechanisms 3. Flow control mechanisms 4. IP addressing Classless addressing 5. Observing Packets across the network and Performance Analysis of Routing protocols 6. Socket programming(TCP and UDP) - Some challenging experiments can be given on Socket programming 7. Simulation of unicast routing protocols 8. Simulation of Transport layer Protocols and analysis of congestion control techniques in network 9. Develop a DNS client server to resolve the given host name or IP address Total Laboratory Hours 30 hours Text book 1 W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. Mode of assessment: Continuous assessment, FAT						1	· · · · · · · · · · · · · · · · · · ·		1	
 2. Error detection and correction mechanisms 3. Flow control mechanisms 4. IP addressing Classless addressing 5. Observing Packets across the network and Performance Analysis of Routing protocols 6. Socket programming(TCP and UDP) - Some challenging experiments can be given on Socket programming 7. Simulation of unicast routing protocols 8. Simulation of Transport layer Protocols and analysis of congestion control techniques in network 9. Develop a DNS client server to resolve the given host name or IP address Text book 1 W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. Mode of assessment: Continuous assessment, FAT 	1.			ands, Demo ses	sion of all r	network	ing nard	ware a	and	
 3. Flow control mechanisms 4. IP addressing Classless addressing 5. Observing Packets across the network and Performance Analysis of Routing protocols 6. Socket programming(TCP and UDP) - Some challenging experiments can be given on Socket programming 7. Simulation of unicast routing protocols 8. Simulation of Transport layer Protocols and analysis of congestion control techniques in network 9. Develop a DNS client server to resolve the given host name or IP address Total Laboratory Hours 30 hours 1 W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. Mode of assessment: Continuous assessment, FAT 	2.	Error detecti	on and correction r	nechanisms						
 5. Observing Packets across the network and Performance Analysis of Routing protocols 6. Socket programming(TCP and UDP) - Some challenging experiments can be given on Socket programming 7. Simulation of unicast routing protocols 8. Simulation of Transport layer Protocols and analysis of congestion control techniques in network 9. Develop a DNS client server to resolve the given host name or IP address Text book 1 W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. Mode of assessment: Continuous assessment, FAT 	3.	Flow control	mechanisms							
 6. Socket programming(TCP and UDP) - Some challenging experiments can be given on Socket programming 7. Simulation of unicast routing protocols 8. Simulation of Transport layer Protocols and analysis of congestion control techniques in network 9. Develop a DNS client server to resolve the given host name or IP address Text book 1 W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. Mode of assessment: Continuous assessment, FAT 	4.	IP addressir	g Classless addres	sing						
Socket programming 7. Simulation of unicast routing protocols 8. Simulation of Transport layer Protocols and analysis of congestion control techniques in network 9. Develop a DNS client server to resolve the given host name or IP address Total Laboratory Hours 30 hours Text book 1 W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. Mode of assessment: Continuous assessment, FAT	5.	Observing F	ackets across the r	network and Per	formance /	Analysis	of Rout	ting pro	otoco	ols
 7. Simulation of unicast routing protocols 8. Simulation of Transport layer Protocols and analysis of congestion control techniques in network 9. Develop a DNS client server to resolve the given host name or IP address Text book 1 W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. Mode of assessment: Continuous assessment, FAT 	6.	Socket prog	ramming(TCP and	UDP) - Some ch	allenging	experim	ents car	n be gi	ven o	on
 8. Simulation of Transport layer Protocols and analysis of congestion control techniques in network 9. Develop a DNS client server to resolve the given host name or IP address Total Laboratory Hours 30 hours Text book 1 W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. Mode of assessment: Continuous assessment, FAT 		Socket prog	ramming			-		_		
in network 9. Develop a DNS client server to resolve the given host name or IP address Total Laboratory Hours 30 hours Text book 1 W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. Mode of assessment: Continuous assessment, FAT	7.									
9. Develop a DNS client server to resolve the given host name or IP address Total Laboratory Hours 30 hours Text book 1 W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. Mode of assessment: Continuous assessment, FAT	8.	Simulation c	f Transport layer P	rotocols and ana	alysis of co	ngestio	n contro	l techn	ique	s
Total Laboratory Hours 30 hours Text book 30 hours 1 W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. Mode of assessment: Continuous assessment, FAT			-							
Text book 1 W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. Mode of assessment: Continuous assessment, FAT	9.	Develop a D	NS client server to							
1 W.Richard Stevens, Uix Network Programming, 2ndEdition, Pearson Education, 2015. Mode of assessment : Continuous assessment, FAT				Т	otal Labor	atory H	lours 🕄	30 hou	rs	
Mode of assessment: Continuous assessment, FAT										
						, Pears	on Educ	ation,	2015	5.
Recommended by Board of Studies 04-03-2022										
Approved by Academic Council No. 65 Date 17-03-2022	Ар	proved by Acad	demic Council	No. 65	Date	17-03	2022			

	Cryptography and Network Security	L	T	P	С
Due no muioite		3	0	0	3
Pre-requisite	NIL	Sylla	abus 1.0		on
Course Objective			1.0	,	
-	concepts of basic number theory and cryptographic tec	chnia	les		
	cept of Hash and Message Authentication, Digital Signa				
authentication			ana		
	, basics of transport layer security, Web Security and vari	ious t	ypes o	of	
System Secur					
Course Outcome	es this course, students should be able to:				
•	indamental mathematical concepts related to security.				
	I concept of various cryptographic techniques.				
	the authentication and integrity process of data for vario	ous a	polica	tions	
	amentals of Transport layer security, web security, E-Ma				>
Security					
	amentals of Number Theory			<u>5 ho</u>	
	Number Theory: Modular arithmetic, Euclidian Algorithm rs theorem, Chinese Reminder theorem, Discrete Logar			lestir	ig:
	netric Encryption Algorithms		5.	7 ho	urs
	ptographic techniques: Introduction to Stream cipher, B	Block	cipher		
	Cipher Operation, Random Bit Generation and RC4		olphiol		-,
	metric Encryption Algorithm and Key Exchange			8 ho	urs
	ryptographic techniques: principles, RSA, ElGamal, Ellip				
	nomorphic Encryption and Secret Sharing, Key distribut		nd Ke	y	
exchange protoco	ls, Diffie-Hellman Key Exchange, Man-in-the-Meddle At	tack			
Module:4 Mess	age Digest and Hash Functions			5 ho	urs
Requirements for	Hash Functions, Security of Hash Functions, Message I	Diges	st (MD	5),	
Secure Hash Fun	ction (SHA),Birthday Attack, HMAC				
Module:5 Digita	al Signature and Authentication Protocols				urs
				7 ho	
Authentication Re	quirements, Authentication Functions, Message Authen			des,	
Authentication Re Digital Signature	quirements, Authentication Functions, Message Authen Authentication, Authentication Protocols, Digital Signatur	re Sta	andaro	des, ds, RS	
Authentication Re Digital Signature / Digital Signature,	quirements, Authentication Functions, Message Authen Authentication, Authentication Protocols, Digital Signatur Elgamal based Digital Signature, Authentication Applica	re Sta	andaro	des, ds, RS	
Authentication Re Digital Signature Digital Signature, X.509 Authenticat	quirements, Authentication Functions, Message Authen Authentication, Authentication Protocols, Digital Signatu Elgamal based Digital Signature, Authentication Applica ion Service, Public Key Infrastructure (PKI)	re Sta	andaro	des, ds, RS beros,	
Authentication Re Digital Signature / Digital Signature, X.509 Authenticat Module:6 Trans	quirements, Authentication Functions, Message Authen Authentication, Authentication Protocols, Digital Signatur Elgamal based Digital Signature, Authentication Applica ion Service, Public Key Infrastructure (PKI) port Layer Security and IP Security	re Sta ations	andaro : Kerb	des, ds, RS beros, 4 ho i	urs
Authentication Re Digital Signature / Digital Signature, X.509 Authenticat Module:6 Trans Transport-Layer S	quirements, Authentication Functions, Message Authen Authentication, Authentication Protocols, Digital Signatur Elgamal based Digital Signature, Authentication Applica ion Service, Public Key Infrastructure (PKI) port Layer Security and IP Security ecurity, Secure Socket Layer(SSL),TLS, IP Security: Ov	re Sta ations	andaro : Kerb	des, ds, RS beros, 4 ho i	urs
Authentication Re Digital Signature / Digital Signature, X.509 Authenticat Module:6 Trans Transport-Layer S Architecture, Enca	quirements, Authentication Functions, Message Authen Authentication, Authentication Protocols, Digital Signatur Elgamal based Digital Signature, Authentication Applica ion Service, Public Key Infrastructure (PKI) port Layer Security and IP Security ecurity, Secure Socket Layer(SSL),TLS, IP Security: Ov apsulating Payload Security	re Sta ations	andaro : Kerb	des, ds, RS beros, 4 ho Secu	urs rity
Authentication Re Digital Signature / Digital Signature, X.509 Authenticat Module:6 Trans Transport-Layer S Architecture, Enca Module:7 E-ma	quirements, Authentication Functions, Message Authen Authentication, Authentication Protocols, Digital Signatur Elgamal based Digital Signature, Authentication Applica ion Service, Public Key Infrastructure (PKI) port Layer Security and IP Security security, Secure Socket Layer(SSL),TLS, IP Security: Ov apsulating Payload Security	re Stations	andaro : Kerb ew: IP	des, ds, RS beros, 4 ho Secu 7 ho	urs rity urs
Authentication Re Digital Signature / Digital Signature, X.509 Authenticat Module:6 Trans Transport-Layer S Architecture, Enca Module:7 E-ma Electronic Mail Se	quirements, Authentication Functions, Message Authen Authentication, Authentication Protocols, Digital Signatur Elgamal based Digital Signature, Authentication Applica ion Service, Public Key Infrastructure (PKI) port Layer Security and IP Security eccurity, Secure Socket Layer(SSL),TLS, IP Security: Ov apsulating Payload Security iI, Web and System Security curity, Pretty Good Privacy (PGP), S/MIME, Web Secur	re Stations	andaro : Kerb ew: IP	des, ds, RS beros, 4 ho Secu 7 ho	urs rity urs
Authentication Re Digital Signature / Digital Signature, X.509 Authenticat Module:6 Trans Transport-Layer S Architecture, Enca Module:7 E-ma Electronic Mail Se Considerations, S	quirements, Authentication Functions, Message Authen Authentication, Authentication Protocols, Digital Signatur Elgamal based Digital Signature, Authentication Application Service, Public Key Infrastructure (PKI) port Layer Security and IP Security Security, Secure Socket Layer(SSL),TLS, IP Security: Over apsulating Payload Security iI, Web and System Security curity, Pretty Good Privacy (PGP), S/MIME, Web Security ecure Electronic Transaction Protocol	re Sta ations vervie rity: V	andaro : Kerb ew: IP	des, ds, RS beros, 4 ho Secu 7 ho ecurit	urs rity urs y
Authentication Re Digital Signature / Digital Signature, X.509 Authenticat Module:6 Trans Transport-Layer S Architecture, Enca Module:7 E-ma Electronic Mail Se Considerations, S Intruders, Intrusio	quirements, Authentication Functions, Message Authen Authentication, Authentication Protocols, Digital Signatur Elgamal based Digital Signature, Authentication Applica ion Service, Public Key Infrastructure (PKI) port Layer Security and IP Security eccurity, Secure Socket Layer(SSL),TLS, IP Security: Ov apsulating Payload Security iI, Web and System Security curity, Pretty Good Privacy (PGP), S/MIME, Web Secur	re Sta ations vervie rity: V	andaro : Kerb ew: IP	des, ds, RS beros, 4 ho Secu 7 ho ecurit	urs rity urs y
Authentication Re Digital Signature / Digital Signature, X.509 Authenticat Module:6 Trans Transport-Layer S Architecture, Enca Module:7 E-ma Electronic Mail Se Considerations, S	quirements, Authentication Functions, Message Authen Authentication, Authentication Protocols, Digital Signatur Elgamal based Digital Signature, Authentication Applica- ion Service, Public Key Infrastructure (PKI) port Layer Security and IP Security ecurity, Secure Socket Layer(SSL),TLS, IP Security: Ov apsulating Payload Security iI, Web and System Security curity, Pretty Good Privacy (PGP), S/MIME, Web Secur ecure Electronic Transaction Protocol n Detection, Password Management, Firewalls: Firewall	re Sta ations vervie rity: V	andaro : Kerb ew: IP	des, ds, RS beros, 4 ho Secu 7 ho ecurit	urs rity urs y es,
Authentication Re Digital Signature / Digital Signature, X.509 Authenticat Module:6 Trans Transport-Layer S Architecture, Enca Module:7 E-ma Electronic Mail Se Considerations, S Intruders, Intrusio Trusted Systems.	quirements, Authentication Functions, Message Authen Authentication, Authentication Protocols, Digital Signatur Elgamal based Digital Signature, Authentication Applica ion Service, Public Key Infrastructure (PKI) port Layer Security and IP Security eccurity, Secure Socket Layer(SSL),TLS, IP Security: Ov apsulating Payload Security iI, Web and System Security curity, Pretty Good Privacy (PGP), S/MIME, Web Secur ecure Electronic Transaction Protocol n Detection, Password Management, Firewalls: Firewall	re Sta ations vervie rity: V	andaro : Kerb ew: IP Veb So gn Pri	des, ds, RS peros, 4 ho Secu Secu 7 ho ecurit <u></u> inciple 2 ho	urs rity urs y es, urs
Authentication Re Digital Signature / Digital Signature, X.509 Authenticat Module:6 Trans Transport-Layer S Architecture, Enca Module:7 E-ma Electronic Mail Se Considerations, S Intruders, Intrusio Trusted Systems.	quirements, Authentication Functions, Message Authen Authentication, Authentication Protocols, Digital Signatur Elgamal based Digital Signature, Authentication Applica- ion Service, Public Key Infrastructure (PKI) port Layer Security and IP Security ecurity, Secure Socket Layer(SSL),TLS, IP Security: Ov apsulating Payload Security iI, Web and System Security curity, Pretty Good Privacy (PGP), S/MIME, Web Secur ecure Electronic Transaction Protocol n Detection, Password Management, Firewalls: Firewall	re Sta ations vervie rity: V	andaro : Kerb ew: IP Veb So gn Pri	des, ds, RS beros, 4 ho Secu 7 ho ecurit	urs rity urs y es, urs
Authentication Re Digital Signature / Digital Signature, X.509 Authenticat Module:6 Trans Transport-Layer S Architecture, Enca Module:7 E-ma Electronic Mail Se Considerations, S Intruders, Intrusio Trusted Systems. Module:8 Conta	quirements, Authentication Functions, Message Authen Authentication, Authentication Protocols, Digital Signatur Elgamal based Digital Signature, Authentication Applica ion Service, Public Key Infrastructure (PKI) port Layer Security and IP Security eccurity, Secure Socket Layer(SSL),TLS, IP Security: Ov apsulating Payload Security iI, Web and System Security curity, Pretty Good Privacy (PGP), S/MIME, Web Secur ecure Electronic Transaction Protocol n Detection, Password Management, Firewalls: Firewall	re Sta ations vervie rity: W Desi	andaro : Kerb ew: IP Veb So gn Pri	des, ds, RS peros, 4 ho Secu 7 ho ecurity inciple 2 ho 15 ho	urs rity urs y es, urs

	William, published by Pearson, 2	2020			
	ference Books				
1.	Cryptography and Network Secu Mukhopadhyay, published by Mo	urity, 3 rd Edition, t	oy Behrou	z A Forouzan and Depdeep	
	Mukhopadhyay, published by Mo	GrawHill, 2015	-		
	de of Evaluation: CAT, written as				
Red	Recommended by Board of Studies 04-03-2022				
Арр	proved by Academic Council	No. 65	Date	17-03-2022	

BCSE309P	Cryptography and Network Security Lab	L T P C
		0 0 2 1
Pre-requisite	NIL	Syllabus version
		1.0
Course Objective	es a la companya de	
1. Understand va	rious Private and Public Key cryptographic algorithms.	
	t hash functions and digital signature algorithms	
3. Acquire knowl	edge in various network security models	
Course Outcome		
	this course, students should be able to:	
 Implement var functions 	ious cipher techniques without using standard cryptogr	aphic library
2. Develop the va	arious hash functions and digital signature algorithms for	or different
applications		
3. Develop vario	us secured networking-based application	
Indicative Experi		
	ender and receiver who need to exchange data confide	
-	cryption. Write program that implements DES encryption	on and decryption
	t key size and 64 bit block size	<u></u>
	ender and receiver who need to exchange data confide	
	cryption. Write program that implements AES encryption	on and decryption
	28/256 bits key size and 64 bit block size.	
	hipper scheme by using RSA	
	D5 hash algorithm that finds the Message Authenticati	
	ige Authentication Code (MAC) for given variable size i I SHA-256 Hash algorithm	message by using
	Time consumptions for varying message size for both 3	SUA 128 and SUA
256.	The consumptions for varying message size for both	SHA-120 and SHA-
	Digital Siganture standard(DSS)for verifying the legal c	ommunicating
parties		ommunicating
	e Hellman multiparty key exchange protocol and perfo	rm Man-in-the-
Middle Attack		
	 nple client and server application using SSL socket cor	mmunication
	nple client server model using telnet and capture the p	
	nalyze the pcap file and get the transmitted data (plair	
packet captu		····, ·····
	e above scenario using SSH and observe the data	
	b application that implements JSON web token	
· •	Total Laboratory Ho	ours 30 hours
Mode of assessm	nent: Continuous Assessment, FAT	
Recommended by		
Approved by Acad		2022

BCSE324L	FOUNDATIONS OF BLOCKCHAIN TE	CHNOLOG	Y	L	Т	Ρ	С
				3	0	0	3
Pre-requisite	NIL		Syll	labu	IS V	ersi	on
					1.0		
Course Objective	S						
1. To understand	building blocks of Blockchain.						
2. To significance	of Distributed Ledger Technology and Sr	nart Contrac	t.				
3. To exploit appli	cations of Blockchain in real world scenar	ios and their	r impa	acts.			
<u> </u>							
Course Outcomes							
Alter completion of	this course, the student shall be able to:						
1. Understand Blo	ockchain ecosystem and its services in rea	al world scer	ories				
	yze the requirement of Distributed Ledge				art		
Contract	yze the requirement of Distributed Ledger	reennology	, and	Onic	art		
• • • • • • • • •	monstrate end-to-end decentralized appli	cations					
	otocol and assess their computational rec						
Module:1 Foun	dations of Blockchain				7	' ho	urs
	cture – Challenges – Applications – Blo	ckchain De	sian F	Prin			
	stem - The consensus problem - Asyncl						
	its analysis - peer-to-peer network - Ab						
	of Work (PoW) - Proof of Stake (PoS) bas						
	ibuted Ledger Technology	_				6 ho	urs
	 Types and Features of Distributed Lect 	laer Techno	loav (DL1			
Consensus Mecha	nism - DLT Ecosystem - Distributed Ledg	er Implemen	tation	. — — 15 —	Blo	ckch	nain
	c and Private Ledgers – Registries – Le						
	gies, Transparency as a Strategic Risk						
	Multiple IDs - Zero Knowledge Proofs						
Private Blockchain		·					
Module:3 Smar	t Contracts				5	5 ho	urs
Anatomy of a Sma	rt Contracts - Life Cycle - Usage Patterns	- DLT-based	d sma	rt co	ontra	acts	-
Use Cases: Health	care Industry and Property Transfer.						
Module:4 Dece	ntralized Organization				5	5 ho	urs
Decentralization \	versus Distribution - Centralized-distril	outed (Ce-I	Di) o	rgar	niza	tions	s -
	ibuted (De-Di) organizations - Decentrali						
	, DAOhaus and Colony.						
	s of Blockchain Ecosystem				7	' ho	urs
	ystem - Joint Venture or Consortia Ecos	vstems - Re	egulat	orv			
	omponents in Blockchain Ecosystem:						
,	, Third-Party Service Providers - Governa						
	kchain Protocols					6 ho	
	- Augur - Golem - Understanding Ethe	ereum token	is - A	App			
	Blockchain Token Securities Law Frame						
sale structure - Eth							
	Performance Computing				7	' ho	urs
	Performance Systems - Data Provenar	nce - Cluste	er Co	nstr	ucti	on a	and
	ock Workload - Blockchain Software Eva						
Integrity Data.							
	emporary Issues				2	2 ho	urs
	Total Lecture hours:				45	5 ho	urs
Text Book							
	letcalf, D., and Hooper, M, Blockchain er	abled applie	ration	ົ່	017	10	t
		anica applic	Janon	з, Z	017	, 13	

	Edition, CA: Apress, Berkeley.									
Refe	erence Books									
1	Diedrich, H., Ethereum: Blockc	hains, digital as	sets, sma	rt contracts, decentralized						
'.	Diedrich, H., Ethereum: Blockc autonomous organizations, 2016	6, 1st Edition, Wi	ldfire pub	lishing, Sydney.						
	Wattenhofer, R. P, Distributed	Ledger Technolo	ogy: The	Science of the Blockchain						
2.	(Inverted Forest Publishing), 2	2017, 2 nd Editio	n, Create	espace Independent Pub,						
	Scotts Valley, California, US.									
Mod	le of Evaluation: CAT, written ass	signment, Quiz, F	AT							
Rec	Recommended by Board of Studies 04-03-2022									
App	roved by Academic Council	No. 65	Date	17-03-2022						

BCSE325L	INTRODUCTION TO BITCO	IN	L	Т	Ρ	С
			3	0	0	3
Pre-requisite	NIL		Sylla	bus	vers	ion
				1.0)	
Course Objectiv						
	process of Cryptocurrency.					
	the functionality of Bitcoin.					
	ecent developments on Bitcoin.					
Course Outcome						
After completion of	f this course, the student shall be able to:					
	fundamentals of On intermedia					
	fundamentals of Cryptography.	(nto ourro	201			
	e about various operations associated with Cry thods for verification and validation of Bitcoin					
•	ples, practices and policies associated with Bi					
	amentals of Cryptography		5111C55.		5 h	ours
	sh Functions - Hash Pointers and Data Stru	ictures -	Diaital	Siar	-	
	entities - A Simple Cryptocurrency.	iciules -	Digital	Olgi	atui	- 55
Module:2 Featu					6 h	ours
	ons - Bitcoin Scripts - Applications of Bitcoi	n Script	s - Rite	nin		
Bitcoin Network a			5 Ditt		Dioc	NO
	in Techniques				7 h	ours
	pre and Use Bitcoins - Hot and Cold Storage -	Splitting	and S	harin		
	d Exchanges - Payment Services - Transactio					.,.
Module:4 Bitco						ours
	ners - Mining Hardware - Energy Consumption	n and Ec	oloav -	Mini		
	s - Merkley Tree - hardness of mining - transa				5	
	in and Anonymity				5 ho	ours
	dentification of Bitcoin - Mixing and Decentra	lisation o	f Bitcoi	n - Z	Zero	coin
and Zero cash.	-					
Module:6 Mini	ng Strategies				5 ho	ours
Essential Puzzle	Requirements - Application Specific Integra	ated Circ	cuit Re	sista	nt(A	SIC)
Puzzles - Proof	f Volunteer computing - Non externalization	of Puzz	les - Pi	roof	of S	take
Virtual Mining.						
	in as a Platform					ours
	end-Only Log - Bitcoin as Smart Property - S					
	Randomness Source - Prediction Markets ar	nd Real-V	Vorld D	ata I		
Module:8 Cont	emporary Issues					ours
	Total Lecture ho	ours:		4	15 ho	ours
Text Book						
	., Bonneau, J., Miller, A., Felten, E., Na					
	cy Technologies, 2016, 1st edition, Princeto	on Unive	rsity P	ress,	Ne	W
Jersey.						
Reference Book					0.17	ond
edition, ORei	, A. M. Mastering Bitcoin: unlocking digital ly Media, Inc, United States.			es, 2	2017,	2"
	, The Basics Of Bitcoins and Blockchains: An			_		
	cies and The Technology That Powers Them.,	2018, 1 ^s	" editior	n, Ma	ango	
Media Inc., U						
	n: CAT / Assignment / Quiz / FAT					
	Board of Studies 04-03-2022					
A 11 A	lemic Council No. 65 Date	17-03-20	122			

BCSE326L	BLOCKCHAIN ARCHITECTURE D	FSIGN		<u> </u>	τİ	Р	С
DCGLJZUL	BEGORGHAIN ARCHITEGTORE B			_	0	0	3
Pre-requisite	NIL		Sylla	-	-	-	-
			oyna	1.			
Course Objectiv	es				•		
	knowledge on Blockchain architecture.						
-	the design of Blockchain transaction and sec	curitv issue	es.				
	various use Cases in Blockchain.						
Course Outcome							
After completion	of this course, the student shall be able to:						
	e requirements of the fundamentals of Blockc	hain.					
2. Identify and ap	ply the concept of Bitcoin.						
3. Recognize the	underlying technology of transactions, blocks	s and proo	f-of-wo	rk.			
4. Gain a deep in	sight into Bitcoin network, Bitcoin miners and	l Bitcoin tra	ansacti	ons.			
5. Design and exp	plore the applications of Blockchain.						
Module:1 Fund	amentals of Blockchain				6	ho	urs
Blockchain: Impo	rtance and features – Layers of Blockchai	n: applicat	tion lay	/er,	exe	ecut	ion
	layer, propagation layer, consensus laye						
Blockchain in pi	actical use today – Blockchain governar	nce challe	enges	– E	loc	kch	ain
technical challeng							
	kchain for Enterprise					ho	
Blockchain Comp	onents and Concepts - Block Header and Id	entifiers - I	Linking	j Blo	cks	s in	the
	ng and Consensus: Aggregating transactions		ks - Mir	ning	the	e Blo	ck
	ssembling of Blocks, Selecting Chains of Blo	ocks.					
	sactions and Bitcoin Network					ho	
Transactions: Lif	ecycle, Structure, Inputs and Outputs, Sta	andard Tra	ansacti	ons	-	Bitc	oin
	discovery for a new node, Block propagation	n.					
Module:4 Bitco						ho	
	coin: Proof of Work (PoW), Mining the Blo						
	ore: Bitcoin core application programming in		•				
	clients, libraries and toolkits - Bitcoin Addre	esses: Imp	lement	ting	Ke	ys a	and
Addresses in Pyth							
	rity and privacy practices					ho	
•	ure principles - Technical and inherent risks					-	
	y: Blockchain and non-blockchain based Att						
	er security best practices: physical bitcoi	•	, hard	ware	e v	valle	ets,
	versifying risk, multi signature and governanc	e.				-	
	kchain Architecture and				6	ho	Jrs
	ications	ahain -	alicat!			ا ج ا م	
	ology for blockchain applications: block						
	ation development – Ethereum – Solidity - D	epioying a	i samp	ie a	opii	cau	on:
	etting – Colored coins – Counterparty.				-	ha	
	kchain Use Cases					ho	
	nancial Software and Systems - Supply ch		•				•
	acking - Advertising insights - Blockchain imp						
	oublishing and selling - Digital Supply chain -		vecord	IVIA	nag	Jeill	CIIL
System Module:8 Cont	emporary Issues				2	ho	ire
	Total Lecture hours:					ho	
Text Book(s)					τJ	1101	113
1. Bikramaditya	Singhal, Gautam Dhameja, Priyansu A Beginner's Guide to Building Blockchair York					ginn editi	
	mbara, Paul R. Allen, Blockchain: a practical	I guide to c	develor	oina	bus	sine	SS.
		~		<u> </u>			

	law and technology solutions, 2018, 1 st edition, McGraw-Hill publication, New York.								
Ret	Reference Books								
1.	Swan Melanie, Blockchain: Blue	eprint for a nev	w econom	ny, 2015, 1 st edition, O'Reilly					
	Media, United States.								
Mo	de of Evaluation: CAT / written ass	ignment / Quiz	/ FAT						
Re	Recommended by Board of Studies 04-03-2022								
App	Approved by Academic Council No. 65 Date 17-03-2022								

BCSE327L	SMART CONTRACTS			T	P	С		
			2	0	0	2		
Pre-requisite	NIL	Sy	llabı		ersi	on		
Course Objectiv				1.0				
Course Objective								
	the Smart Contracts in Blockchain.	~ .						
2. To learn the tools and programming skills required to generate Smart Contracts.								
3. To assess the efficiency of the security issues.								
Course Outcome								
	of this course, the student shall be able to:	noin						
	basics and objectives of Smart Contracts in a Blockd		to Sr	mort				
Contracts.	rious functionalities and features in an Ethereum to ge	enera	le Si	nan				
-	alidity language in creation of a Smart Contracto							
	olidity language in creation of a Smart Contracts. art Contracts in decentralized applications.							
	urity issues and effectiveness of a Smart Contracts in	rooly	vorld	600	nori	00		
J. ASSESS INC SEC			vonu	300	man	05.		
Module:1 Fund	amentals of Smart Contracts			•	2 ho	lire		
	nologies - Cryptocurrency and Smart Contracts - Und	oretar	ading					
	kchain - Terminology, concepts and practices in Small					uai		
	reum Smart Contracts	1 001	mac		5 ho	lire		
	ereum - Prevalence of the Ethereum blockchain	in S	mar					
	thereum Virtual Machine (EVM) - Instances of work							
Contracts.		ling L		cun		an		
	ous Aspects in Application of			-	5 ho	ure		
	rt Contracts			•	5 110	uis		
	nd scientific innovation – Trust - Security, using Me	rkle	Tree	- 2	Fut	Ire-		
	es in Smart Contracts applications - Workflow of							
	tion environments in writing a Smart Contracts.	4010	lopin	.g c		iart		
	lity Language Basics			4	1 ho	urs		
	ty Source File - Structure of a contracts - Control str	ucture	- 25					
Scoping and decla	•	aotart		i an	000	10		
	lity with Contracts			4	1 ho	urs		
	s - Object-oriented high level language features - Vi	sibilit	v an					
Events - Abstract	, , , , , , , , , , , , , , , , , , , ,	enom.	<i>y</i>		01101	•		
	entralized Applications			4	1 ho	urs		
	blication Architecture - Connecting to the Blockchain a	nd Sr	nart					
Building dApps –	•							
	rity Issues			4	1 ho	urs		
	st-in-People to Trust-in-Code - Data permanence -	Selec	tive-					
Security counter r						,		
	emporary Issues			2	2 ho	urs		
	Total Lecture hours:) ho			
Text Book					-	-		
	, Longxiang Gao, Liqun Huang, Jian Guan, Ethere	um .s	Smar	t Co	ontra	acts		
	in Solidity, 2021, 1st Edition, Springer Singapore.		mai	. 0				
Reference Book	S							
1. Dannen, C., I	ntroducing Ethereum and solidity, 2017, (Vol. 318). Be	erkele	y: Sp	orino	ger.			
	Solidity Programming Essentials: A beginner's guide							
	Ethereum and Blockchain, 2018, Packt Publishing Ltd				lom.			
3. Arvind Naray	anan, Joseph Bonneau, Edward Felten, Andrew Miller	, Stev	/en C	Gold	fede	r,		
_								

Bitcoin and cryptocurrency technologies: a comprehensive introduction, 2016, Princeton University Press.						
Mode of Evaluation: CAT / written assig	gnment / Quiz /	FAT				
Recommended by Board of Studies 04-03-2022						
Approved by Academic Council	No. 65	Date	17-03-2022			

BCSE327P	SM/	ART CONTRAC	TS LAE			L	T P	С
						-	0 2	1
Pre-requisite	NIL				Syl	labus	vers	on
						1	.0	
Course Objectiv		<u> </u>						
	the Smart Contracts							
	ols and programming		to gene	rate Smar	t Cont	racts.		
3. To assess the	efficiency of the secu	urity issues.						
0								
Course Outcom		udant aball ba a	bla ta					
After completion	of this course, the st	udent shall be a	idie to:					
1 Evaluate the ve	arious functionalities	and features in	an Ethe	reum to a	enerat	e Sm	ərt	
Contracts.				i cum to g	chiciai	ic om	an	
-	curity issues and effe	ctiveness of a S	Smart Co	ontracts in	real w	orld o	cena	ios
2.7.00000 110 000								100.
Indicative Exper	iments							
	ereum network by us	ing Geth comm	and line	interface.				
	setting up a testnet,				e ethe	ers ca	n be ı	ised
as transaction.		·						
3. Transfer ethers	s from one account to	o another on an	Ethereu	ım testnet				
4. Constructing S	olidity code for a dec	centralized appl	ication w	here the o	owner	can c	reate	а
contracts (with a	tenant) which can be	e replicated to a	ll nodes.					
	ise setup with the ov				an sub	omit a	depos	sit
	's state changes on							
	ould be able to check	k the balance of	the con	tracts from	n any o	one of	f the	
nodes.								
	n the Solidity code to				contr	acts.		
	nd getter functions to							
	nds from a contracts		account	preferabl	y the c	owner	´s, wit	h
	security restrictions. contracts on an exter			Canaaha	and/a	r		
MyEtherwalllet, M			by using	Ganache	anu/o	I		
		То	tal I abo	ratory Ho	urs	30 ho	ours	
				<u></u>		•• …		
Text Book								
Text Book	, Longxiang Gao, I	_igun Huang, 、	Jian Gua	an, Ethere	um S	mart	Contr	acts
1. Gavin Zheng	, Longxiang Gao, I ∶in Solidity, 2021, 1s				eum S	Smart	Contr	acts
1. Gavin Zheng					eum S	Smart	Contr	acts
1. Gavin Zheng	in Solidity, 2021, 1s				eum S	Smart	Contr	acts
1. Gavin Zheng Development Reference Book	in Solidity, 2021, 1s	t Edition, Spring	ger Sing	apore.				acts
 Gavin Zheng Development Reference Book Modi, Ritesh. contracts for 	in Solidity, 2021, 1s s Solidity Programmir Ethereum and block	t Édition, Spring ng Essentials: A chain. 2018, Pa	ger Sing beginne ckt Publ	apore. er's guide t ishing Ltd,	to buil Unite	d sma ed Kin	art gdom.	
 Gavin Zheng Development Reference Book Modi, Ritesh. contracts for Arvind Naray 	in Solidity, 2021, 1s s Solidity Programmir Ethereum and block anan, Joseph Bonne	t Édition, Spring ng Essentials: A chain. 2018, Pa au, Edward Fe	ger Sing beginne ckt Publ Iten, And	apore. er's guide t ishing Ltd, Irew Miller	to buil Unite	d sma ed Kin en Go	art gdom. oldfede	er,
 Gavin Zheng Development Reference Book Modi, Ritesh. contracts for Arvind Naray Bitcoin and c 	s Solidity Programmir Ethereum and block anan, Joseph Bonne ryptocurrency techno	t Édition, Spring ng Essentials: A chain. 2018, Pa au, Edward Fe	ger Sing beginne ckt Publ Iten, And	apore. er's guide t ishing Ltd, Irew Miller	to buil Unite	d sma ed Kin en Go	art gdom. oldfede	er,
 Gavin Zheng Development Reference Book Modi, Ritesh. contracts for Arvind Naray Bitcoin and c University Press 	in Solidity, 2021, 1s s Solidity Programmir Ethereum and block anan, Joseph Bonne ryptocurrency techno ess.	t Édition, Spring ng Essentials: A chain. 2018, Pa eau, Edward Fe blogies: a comp	ger Sing beginne ckt Publ Iten, And	apore. er's guide t ishing Ltd, Irew Miller	to buil Unite	d sma ed Kin en Go	art gdom. oldfede	er,
 Gavin Zheng Development Reference Book Modi, Ritesh. contracts for Arvind Naray Bitcoin and c University Pro Mode of assessmitation 	in Solidity, 2021, 1s s Solidity Programmir Ethereum and block anan, Joseph Bonne ryptocurrency techno ess. hent: Continuous ass	t Édition, Spring ng Essentials: A chain. 2018, Pa eau, Edward Fe blogies: a comp	ger Sing beginne ckt Publ Iten, And	apore. er's guide t ishing Ltd, Irew Miller	to buil Unite	d sma ed Kin en Go	art gdom. oldfede	er,
 Gavin Zheng Development Reference Book Modi, Ritesh. contracts for Arvind Naray Bitcoin and c University Pro Mode of assessmitation 	in Solidity, 2021, 1s Solidity Programmir Ethereum and block anan, Joseph Bonne ryptocurrency techno ess. hent: Continuous ass y Board of Studies	t Édition, Spring ng Essentials: A chain. 2018, Pa eau, Edward Fe blogies: a comp	ger Sing beginne ckt Publ Iten, And	apore. er's guide t ishing Ltd, Irew Miller	to buil Unite , Stev tion, 2	d sma ed Kin en Go	art gdom. oldfede	er,

BCSE328L								
Pre-requisite	NIL	Syllabus version						
Course Objectiv	/es	1.0						
 To introduce the second /li>	ne cryptocurrency concepts and techniques used in bus lls and knowledge about operations and management i applied in large scale business. /n cryptocurrencies that meets the business and custor	in cryptocurrency						
Course Outcom								
After completion	of this course, the student shall be able to:							
 Assess existin needs. Implement cryptocurrencies Decide a suit primitives. 	able model to capture the business needs by interpr arious bitcoin related security and privacy issues	that meets business of generating owr reting different crypto						
Cryptocurrency Blockchain Struc	damentals of Cryptocurrency - Origin and Importance - Legal Status - Usage cture - Interaction between Blockchain and Cryptocur tocurrency - Hardware and Software requirements of I	rencies - Importance						
Module:2 Fund	ctional Aspects of Cryptocurrency	8 hours						
Bitcoin and oth Alternatives to E	er Cryptocurrencies - Distributed consensus and Bitcoin consensus - Alternative coins - Byzantine fau chain based cryptocurrency and its applications - Tech	atomic broadcast - It-tolerant consensus						
Module:3 Bitco	oin Scripting	5 hours						
Bitcoin scripting Segregated Witn	language and their uses - Transactions - Signatures - ess - Pay To Multi-signature - Storing Data - Timelocks ic Swaps - Payment Channels.							
Module:4 Cryp	to Primitives for Cryptocurrency	5 hours						
signatures - pub	Puzzle-friendly Hash - Collison resistant hash - Hash lic key crypto - verifiable random functions - Zero-k in - Interaction with the blockchain - Elliptic curve crypto	knowledge systems -						
	urity & Privacy Issues in otocurrency	4 hours						
Building a Secur Bitcoin from sou Securing Peer-to	e Bitcoin payment system - Building a Secure payment urce new cryptocurrency - Cloning Bitcoin - Reade -Peer Auctions in Ethereum - Applications of blockchai ding Own Cryptocurrency	er coin rebranding						
	DIOCULLENCY ON FINELENM - BUINDING FRU-20 TOKEN - IT	ntearity of information						
Coding Own Cry - E-Governance Myths vs. reality	ptocurrency on Ethereum - Building ERC-20 Token - Ir and other contract enforcement mechanisms - Limita of blockchain technology. Ire Directions of Cryptocurrency							

(Int	Smart Property - Efficient micro-payments - Coupling Transactions and Payment (Interdependent Transactions) - Public Randomness Source Prediction Markets - Escrow transactions - Green addresses - Auctions and Markets - Multi-party Lotteries.								
Мо	Module:8 Contemporary Issues 2 hours								
		То	tal Lecture ho	urs:	45 hours				
Tex	t Book			·					
1.					roduction to Cryptocurrencies:				
	The Cr	ypto Market Ecosystem, 20	020, 1 st Edition	, Routle	dge, New York.				
Ret	ference	Books							
1.	Grabo	wski, Mark. Cryptocurrend	cies: A Primer	on D	igital Money, 2019, 1 st Edition,				
	Routle	dge, New York.							
2.	2. Narayanan, Arvind, et al. Bitcoin and cryptocurrency technologies: a comprehensive								
	introduction, 2016, 1 st Edition, Princeton University Press, New Jersey.								
Mo	Mode of Evaluation: CAT / written assignment / Quiz / FAT								
Re	commer	nded by Board of Studies	04-03-2022						
Ар	proved b	by Academic Council	No. 65	Date	17-03-2022				

BCSE329L	BLOCKCHAIN AND DISTRIBUTED LEDGER TECHNOLOGY	L	Т	Ρ	С
		2	0	0	2
Pre-requisite	NIL	Sylla	bus	ver	sion
			1.	0	
Course Objective	es				
	Blockchain and Distributed Ledger Technologies.				
	velopment in Blockchain functionalities.				
•	ernative techniques to proof of work for Blockchain	proto	cols,	pro	of of
stake/space.					
Course Outcome					
After completion of	of this course, the student shall be able to:				
4.0 1 14					
	ne functionality of blockchain.				
	chain implementation based on real time scenario.				
	chniques for anonymity preservation.				
	Blockchain challenges. cases of distributed ledger technology.				
	ative blockchain and their applicability.				
Module:1 Block	chain and Distributed Ledger Fundamentals			4 k	ours
Blockchain - Dis	stributed Ledger - Cryptographic basics for cryptog	urrenc	V -		
schemes encrypt	ion schemes and elliptic curve cryptography - CAP the	orem -	y Cate	ador	ies of
	lic blockchain, Private blockchain, Permissioned				
	less blockchain, and Sidechains.	Loage	., .	ono	111200
	kchain Functionality			5 h	nours
	y: Public and private keys, Digital identification and wa	allets -	Dec		
	sioned distributed Ledger - Blockchain data structure				
	us - Sybil attacks - Block rewards and miners - Forks a				
	kchain Consensus - Limitation of proof-of-work - Alte				
Work.					
	kchain Implementation				nours
Bitcoin and Merk	e Root - Eventual Consistency and Bitcoin - Byzantii	ne Fau	lt To	olera	nce -
	re Hashing - Bitcoin block-size - Bitcoin Mining - Bloc			abo	rative
	Hyperledger, Corda - Ethereum's ERC 20 and token e	xplosic	n.		
	ntralization using Blockchain				nours
	Ill ecosystem decentralization: Smart contract, Decen			ono	mous
	0), Decentralized applications - Platforms for decentrali			4 1	
	Knowledge Proofs and Protocols in Blockch				nours
-	y vs. anonymity - Succinct non interactive argum				ledge
	on Elliptic curves – Zcash - Zk-SNARKS for anonymit	y prese	ervat		
	kchain Challenges			3 r	nours
Blockchain Gove	rnance Challenges: Bitcoin Blocksize Debate, The E	thereu	m D	AO	Fork,
	e to PoS and Scaling Challenges - Blockchain Te				
Denial-of-Service	Attacks, Security in Smart Contracts, Scaling, Sharding	g.			U
Modular7 Diete	radia, coounty in onlar contracto, county, charain				
	buted Ledger Technology in Alternative Blockchair			4 ł	nours
		n	/ork		
Kadena, Ripple, S	buted Ledger Technology in Alternative Blockchai	n	/ork	man	ager:
Kadena, Ripple, S	buted Ledger Technology in Alternative Blockchain Stellar, Rootstock, Drivechain, Quorum – Decentralize BigChainDB - Decentralized Cloud Storage: Storj. Semporary Issues	n d Netv		man	
Kadena, Ripple, S Tezos, Maidsafe, Module:8 Conte	buted Ledger Technology in Alternative Blockchai Stellar, Rootstock, Drivechain, Quorum – Decentralize BigChainDB - Decentralized Cloud Storage: Storj.	n d Netv		man 2 ł	ager:
Kadena, Ripple, S Tezos, Maidsafe, Module:8 Conte Text Book	buted Ledger Technology in Alternative Blockchain Stellar, Rootstock, Drivechain, Quorum – Decentralize BigChainDB - Decentralized Cloud Storage: Storj. Semporary Issues	n d Netw hours:		man 2 h 30 h	nager: nours nours

	Cryptocurrency Technologies, 20	16, 1 st editio	on, Prince	eton University Press, New					
	Jersey.			-					
Ret	Reference Books								
1.	1. Iyer, Kedar, et al. Blockchain: A Practical Guide to Developing Business, Law, and								
	Technology Solutions., 2018, 1st edition, McGraw-Hill Education, United Kingdom.								
2.	Wattenhofer, R. Distributed Ledger								
	2017, 1 st edition, CreateSpace Inde	ependent Pul	olishing P	latform, United States.					
Mo	Mode of Evaluation: CAT / written assignment / Quiz / FAT								
Re	Recommended by Board of Studies 04-03-2022								
Арр	Approved by Academic Council No. 65 Date 17-03-2022								

BC	SE329P	BLOCKCHAIN AND TECHNO	DISTRIBUTED DLOGY LAB	LEDGER		L	Т	Ρ	С
						0	0	2	1
Pre	e-requisite	NIL			Sy	llab	us v	vers	ion
							1.0		
	urse Objective			-					
		Blockchain and Distributed		ogies.					
		velopment in Blockchain fu							
J.	To identify alte	ernative techniques to pro	of of work for	BIOCKChair	n pro	IOC	ois,	proc	DT OT
รเล	ke/space.								
<u> </u>	urse Outcome								
		of this course, the student sl	nall he able to:						
ЛІ									
1	Implement a blo	ockchain for real time scena	ario						
		ative blockchain and their a							
	licative Experi								
1.		private blockchain over a r	network with Eth	ereum or F	Rust.				
2.	Implement the	e mining module of Bitcoin	client using Rus	t. The mini	ng m	odu	ile, c	or mi	ner,
	should produc	ce blocks that solve proof-of	f-work puzzle.		•				
	_		-						
3.	Compile and t Machine (EVN	test smart contracts on a tes M).	sting framework	using the I	Ether	eun	n Vir	tual	
4.	Deploy a chair	ncode using Hyperledger Fa	abric on a custor	n network.					
5.	Create a Hype	erledger Fabric Blockchain s	service on Cloud						
6.	Deploying a E	RC20 token on the Ethereu	um Testnet.						
7.	Launch your o	own token on alternative blo	ckchain such as	BigchainD)B				
			Total La	boratory H	lour	s [:	30 h	our	S
Te	xt Book								
1		S., Bonneau, J., Miller, A., F							
	1 21	ncy Technologies, 2016, 1 st	edition, Princeto	on Universi	ty Pr	ess	, Ne	W	
	Jersey.								
	ference Books								
1		et al. Blockchain: A Practic							d
		Solutions., 2018, 1st edition		ducation, l	Jnite	d Ki	ngd	om.	
		on: CAT / written assignmen							
		/ Board of Studies	04-03-2022						
Ар	proved by Acac		No. 65	Date		1	7-03	3-202	22

BCSE330L	PUBLIC KEY INFRASTRUCTURE AND TRUST MANAGEMENT		L	Т	Ρ	С
			3	0	0	3
Pre-requisite		Syl	lab		vers	ion
Course Objective	ae.			1.0)	
1. To provide th infrastructure. 2. To study about	e knowledge on Public Key Cryptography technique the Digital Certificates and the security challenges. the various trust models and the trust management syste			Puł	olic	Key
Course Outcome	:					
 Analyze and d Evaluate the c Design the Dig Identify the ac 	of this course, the student shall be able to: esign Public Key cryptographic algorithms. components of PKI and design & integrate PKI services gital Certificates with PKI considerations cess control mechanism and provide solution for the sec elect suitable trust model and manage with operational o	-	·		<u> </u>	S
Module:1 Public	c Key Cryptography Basics				5 hc	ours
key cryptography Authentication: R functions.	graphy: Secret key, Public key, public/private key pair, - RABIN Cryptosystem - ElGamal Cryptosystem - Mess andom Oracle model, message authentication, Cry	sage	e Int	tegr ohic	ity a : ha	nd Ish
	c Key Infrastructure					ours
authority, Certifica key update, Key Time stamping, interoperability, d Single CA, Hierar	architecture of fully functional Public key infrastructure(ite repository, Certificate revocation, Key backup and rea history management, Cross-certification, Support for Client software, Core PKI Services, PKI-Enabled eployment and assessment PKI data structures - F rchical PKI, Mesh PKI, Trust Lists, Bridge Certificatio ority (RA), Simple PKI (SPKI), PKI application : Smar	cové no Se PKI n A	ery, n-re ervic arc uthe	Aut epuo ces, hite ority	oma: diatio F cturo (C.	atic on, PKI es: A),
	I Certificates	<u> </u>				ours
Certificate Forma Certification Author	Digital Certificate - Certificate Structure and Seman ats - Certificate Policies - Object Identifiers - Pol prity - Key/Certificate Life Cycle Management - Certific ificates in terms of S-Expressions - Certificate Chain.	icy	Au	tho	rities	- :
	ss Control Mechanisms and Security Challenges					ours
Control (MAC) – Privacy issues - knowledge and b	Mechanisms: Discretionary Access Control (DAC) – M Role Based Access Control (RBAC) - Issues : Revoca Entity Authentication - Passwords and Challenge R bio-metrics - Key management - security key distribut greement - Public Key Distribution and Hi-jacking - Issu ivacy.	atior Resp tion	n-A ons - P	Anoi se - Kert	nymi - ze pero:	ity- ro- s -

Module:5 Trust Models	7 hours						
Distributed Trust Architecture - Mesh Configuration - Hub-and-Spoke Configuration - Four-							
Corner Trust Model - Web Model - User-Centric Trust - Cross-Certification - Entity Naming -							
Certificate Path Processing - Path Construction - Path Validation							
Considerations - Multiple Key Pairs - Key Pair Uses - Relationship betw							
Certificates.							
Module:6 Trust Management Systems	5 hours						
Social network based Trust Management System- Reputation based 1							
System (DMRep, EigenRep, P2Prep) - Framework for Trust Establishm							
on E-Commerce and E- Business: Information Risk and Technology Busi							
Module:7 Operational Considerations	5 hours						
Client-Side Software - Off-line Operations - Physical Security - Hardward	are Components -						
User Key Compromise - Disaster Preparation and Recovery - Relying F	Party Notification –						
Preparation – Recovery - Electronic Signature Legislation and Considera	tions.						
Module:8 Contemporary Issues	2 hours						
Total Lecture hours:	45 hours						
Text Book(s)							
1. John R. Vacca, Public Key Infrastructure: Building Trusted App	lications and Web						
Services, 2019, 1 st edition. Auerbach Publications, US.							
2. Carlisle Adams, Steve Lloyd, Understanding PKI: Concepts							
Deployment Considerations, 2011, 2nd Edition, Addison-Wesley, US							
Reference Books							
1. Buchmann J, Karatsiolis E, Wiesmaier A, Karatsiolis E., Introdu	ction to public key						
infrastructures, 2013, Berlin: Springer.							
Mode of Evaluation: CAT / written assignment / Quiz / FAT							
Recommended by Board of Studies 04-03-2022							
Approved by Academic Council No. 65 Date 17-03-20)22						