

SCHOOL OF CIVIL ENGINEERING

M. Tech. Structural Engineering

(M. Tech - MST)

Curriculum
(2023-2024 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF CIVIL ENGINEERING

• To be internationally recognized for ground-breaking contributions, exceptional leadership, strong commitment to creative problem-solving and professional integrity.

MISSION STATEMENT OF THE SCHOOL OF CIVIL ENGINEERING

- To Pioneer the emerging technology in Civil Engineering.
- To address the complex societal scale challenges in areas of resilient infrastructure, smart and sustainable cities, water and energy security, climate change, mobility of goods and people, and environmental protection.
- To inspire and nurture innovative leaders and entrepreneurs.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.
- 2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies in engineering or management.
- 6. Graduates will pursue career paths in teaching or research.

PROGRAMME OUTCOMES (POs)

- PO_01: An ability to independently carry out research /investigation and development work to solve practical problems.
- PO_02: An ability to write and present a substantial technical report/document.
- PO_03: Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M. Tech. (Structural Engineering) programme, graduates will be able to

- PSO_01: Analyse and design reinforced concrete structures and steel structures as per the standard design of codes.
- PSO_02: Address the societal needs by interdisciplinary approach through advanced courses and get exposed to the latest technologies to be industry ready or to pursue advanced research.
- PSO_03: Independently carry out research / investigation to solve practical problems and write / present a substantial technical report / document.

CREDIT STRUCTURE

Programme Credit Structure	Credits
Discipline Core Courses	24
Skill Enhancement Courses	05
Discipline Elective Courses	12
Open Elective Courses	03
Project/ Internship	26
Total Graded Credit Requirement	70

DETAILED CURRICULUM

Discipline core courses

24

S. No.	Course Code	Course Title	L	Т	P	C
1.	MMAT502L	Advanced Mathematical Methods	3	0	0	3
2.	MSTE501L	Theory of Elasticity and Plasticity	3	0	0	3
3.	MSTE502L	Design of Concrete Structural Systems	3	1	0	4
4.	MSTE503L	Structural Dynamics	3	1	0	4
5.	MSTE504L	Advanced Design of Steel Structures	2	1	0	3
6.	MSTE505L	Finite Element Analysis	2	1	0	3
7.	MSTE505P	Finite Element Analysis Lab	0	0	2	1
8.	MSTE506L	Prestressed Concrete Structures	2	1	0	3

Skill Enchantment Courses

05

S. No. Course Code		Course Title	L	T	P	C
1.	MENG501P	Technical Report Writing	0	0	4	2
2.	MSTS501P	Qualitative Skills Practice	0	0	3	1.5
3.	MSTS502P	Quantitative Skills practice	0	0	3	1.5

Discipline Elective Courses

12

Sl. No.	Course Code	Course Title		Т	P	С
1.	MSTE601L	Matrix Methods of Structural Analysis	2	1	0	3
2.	MSTE602L	Design of Bridges	2	1	0	3
3.	MSTE603L	Prefabricated Structures	2	1	0	3
4.	MSTE604L	Stability of Structures	2	1	0	3
5.	MSTE605L	Advanced Concrete Materials and Technology	2	1	0	3
6.	MSTE606L	Advanced Foundation Design	3	0	0	3
7.	MSTE607L	Earthquake Resistant Design	2	1	0	3
8.	MSTE608L	Analysis and Design of Tall Structures	2	1	0	3
9.	MSTE609L	Offshore Structures	2	1	0	3
10.	MSTE610L	Repair and Rehabilitation of Structures	3	0	0	3
11.	MSTE611L	Energy Efficient Buildings	3	0	0	3

Open Elective Courses

03

Engineering Disciplines / Social Sciences

Project and Internship

26

S. No.	Course Code	Course Title	L	T	P	C
1.	MSTE696J	Study Oriented Project				2
2.	MSTE697J	Design Project				2
3.	MSTE698J	Internship I / Dissertation I				10
4.	MSTE699J	Internship II / Dissertation II				12

Discipline core courses

MM A T 5021	MMAT502L ADVANCED MATHEMATICAL METHODS		T	P	C		
WIWIATSUZL	ADVANCED MATHEMATICAL METHODS	3	0	0	3		
Dra raquisita	Nil		Syllabus version				
Pre-requisite	Nil						

Course Objectives:

- 1. Provide the students with sufficient exposure to advanced mathematical methods and tools that are relevant to engineering research.
- 2. Improving the computational skills of students by giving sufficient knowledge of analytical and numerical techniques useful for solving problems arising in Mechanical Engineering.
- 3. Imparting the knowledge of real time applications of Autonomous systems, Non-linear systems of ordinary differential equations and partial differential equations.

Expected Course Outcomes:

At the end of the course students are able to

- 1. Distinguish and analyse a variety of tools for solving linear systems and finding eigenvalues of these systems.
- 2. Derive and use the numerical techniques needed for the solution of a given engineering problems
- 3. Understand and correlate the analytical and numerical methods
- 4. Demonstrate their ability to write coherent mathematical proofs and scientific arguments needed to communicate the results obtained from differential equation models.
- 5. Demonstrate the understanding of how physical phenomena are modelled by partial differential equations

Module: 1	Eige	envalu	e Problems			5 h	ours
Standard Ei	gen	value	problems-Eigenvalues	and	Eigenvectors-Gerscl	ngorin	Circles
theorem—Rutishauser method. Power method. Inverse Power method.							

Module: 2 Iteration Methods 6 hours Sturm sequence, Jacobi method, Given's method, Householder method, Deflation, Lanczo's method.

Module: 3	Calculus of Variations	9 hours

Euler-Lagrange's equation – Isoperimetric problems, Rayleigh–Ritz method - Galerkin method.

Module: 4System of First Order Ordinary Differential Equations6 hoursLinear Systems - Homogeneous linear systems with constant coefficients - Autonomous

systems - Phase Plane Phenomena - Critical Points - Stability for linear systems.

Module: 5	Nonlinear systems	6 hours
C:1	-1 - :	

Simple critical points of nonlinear systems-Stability by Liapunov's method – Non- Linear Mechanics: Conservative systems.

	(Deemed to be University under section 3 of UGC Act, 1956)					
Module: 6 Partial Differen	itial Equations		5 hours			
Classification of Second-Order Partial Differential Equations, Significance of						
characteristic curves, Canor	nical Form, Sturm-Lion	wille problems and	Eigen function			
expansions.						
Module: 7 Wave equation			6 hours			
Displacements in a long string	y − a long string under its	s weight – a bar with p	rescribed force			
on one end – free vibrations	of a string. Method of	Separation of variable	es, Solution by			
method of Laplace transforms						
Module: 8 Contemporary	Issues		2 hours			
Industry Expert Lecture						
		Total Lecture hours	45 hours			
Text Book(s)						
1 Differential Equations: T	heory, Technique and P	ractice, G.F. Simmons	s, S. G. Krantz,			
Tata Mc GrawHill Publisl	hing, 2007. (Topics from	Chapters 10, 11)				
2 Elements of Partial differ	rential equations, Ian N	. Sneddon, Dover Pub	olications, New			
York, 2006. (Topics from	Chapters 3, 5)					
3 Numerical Methods for S	cientific and Engineerir	ng Computation, M. K	. Jain, S. R. K.			
Iyengar, R. K. Jain, New	Age International publi	shers, 7th edition, Ne	w Delhi, 2019.			
(Topics from Chapter 3, 7)					
4 Introductory Methods of	Numerical Analysis, S.	S. Sastry, PHI Pvt. Lt	d., 5th Edition,			
New Delhi, 2015. (Topics	from Chapter 11)					
5 The Calculus of Variation	is, Bruce van Brunt, Spr	inger, 2004. (Topics fr	om Chapters 2,			
4, 5)						
Reference Books						
1 Differential Equations a	nd Dynamical Systems,	Lawrence Perko, 3rd	l ed., Springer-			
Verlag, 2001.						
2 An introduction to Ordin	•	ons, James C. Robins	on, Cambridge			
University Press, New Yo	, , ,					
3 Elementary Applied Part	ial Differential Equation	ns, Richard Haberman	, Prentice Hall			
International, 1998.						
4 Numerical Analysis, R. L	. Burden and J. D. Faires	s, 10 th Edition, Cenga	ge Learning,			
India edition, 2015.						
Mode of Evaluation: Continuous Assessment Tests, Final Assessment Test, Digital						
Assignments, Quizzes.						
•	Recommended by Board of Studies 05.07.2022					
Approved by Academic Cou	ncil	Date				

	(Deemed to be University under section 3 of UGC Act, 1956)							
MSTE501L	THEORY OF ELASTICITY AND PLASTICITY		T	P	C			
MISTESULE	THEORI OF ELASTICITY AND I LASTICITY	3	0	0	3			
Pre-requisite	Nil	Syllabus version						
rre-requisite	Nil							
Course Objectives:								
1. To Analyse the stresses and strains for two dimensional and three dimensional elements								
2. To Understand the equilibrium and compatibility condition								

- 3.To Understand the compatibility conditions in polar coordinates
- 4.To Solve the problems on Torsion for different shaped bars
- 5.To Understand the concept of plasticity

Expected Course Outcome:

At the end of the course, the student will be able to

- 1. Analyse the stresses and strains for elasticity approach.
- 2. Solve two dimensional elements problems in Cartesian coordinates
- 3. Understand the bending of cantilever beams and circular arc beams
- 4. Know the 3D problems in Cartesian coordinates
- 5. Understand the compatibility conditions in polar coordinates
- 6. Solve the problems on Torsion for different shaped bars.
- 7. Understand the concept of plastic analysis and yield criteria.

	Module: 1	Elasticity	6 hours
1	Analysis of S	tress and Strain - Elasticity approach - Definition and notation of str	ress – Components
	of stress and	strain – Generalized Hooke's law	

Module: 2 | **Elasticity Solutions**

5 hours

Plane stress and plain strain problems with practical examples - Equations of equilibrium and compatibility conditions in Cartesian coordinates - Two dimensional Problems in Cartesian Coordinates

Module: 3 | Cartesian Coordinates

6 hours

Airy's stress function - Bending of cantilever beams- Axi-symmetrical problems - Thick cylinder under uniform pressure - Circular arc beams subjected to pure bending.

Module: 4 **Elasticity 3D Solution**

8 hours

Principal stresses and strains for three dimensional element - Equations of equilibrium and compatibility conditions for 3D problems in Cartesian co-ordinates - Transformation of stresses and strains.

Module: 5 **Polar Co-ordinates**

6 hours

Equations of equilibrium and compatibility conditions in Polar coordinates- Axi-symmetrical problems-bending of curved bars

Module: 6 | Torsion-Non-Circular Sections

6 hours

Torsion - Torsion of various shaped bars - Pure torsion of prismatic bars - Prandtle's membrane analogy - Torsion of thin walled tubes and hollow shafts

Module: 7 | **Plasticity and Theory of Failure**

6 hours

Introduction to plasticity - Stress - Strain diagram - Plastic analysis - Yield criteria - St. Venant's theory – Von mises criterion – Plastic work – Strain hardening

Page 11 M.TECH. (MST)

Module: 8 Contemporary issues:					2 hours					
				Total Lec	ture hours	45 hours				
Tex	Text Book(s)									
1.	Timoshenko and Goodier, (2000), Theory of Elasticity, McGraw Hill Company, New York.									
Ref	Reference Books									
1.	Mendels	on, A., (2002), Plasticity: T	heory and Application	ations, Ma	c Millanand (Co., New York.				
2.	Sadhu Si	ingh, (2004), Theory of Pla	sticity, Dhanpat R	ai sons Pri	vate Limited,	, New Delhi.				
3.	Ansel. C	. Ugural and Saul. K. Fenst	ter, (2003), Advan	ced Streng	th and Applic	ed Elasticity,				
	Fourth E	dition, Prentice Hall Profes	ssional technical R	eference, l	New Jersey					
4.	Chakrab	arty. J, (2006), Theory of P	lasticity, Third Ed	ition, Else	vier Butterwo	orth - Heinmann –				
	UK.									
Mo	de of Ass	essment: Continuous Asses	ssment Test, Quiz	zes, Assign	nments, Final	Assessment Test				
Rec	commend	ed by Board of Studies	05.07.2022							
Ap	proved by	Academic Council		Date						

MSTE502L	DESIGN OF CONCRETE STRUCTURAL	L	T	P	C	
WISTESUZE	SYSTEMS	3	1	0	4	
Pre-requisite	Nil	Syllabus version				
1 re-requisite	IVII					

Course Objectives:

- 1. To know the elastic and inelastic behaviour of beam.
- 2. To analyze the frame for various loading conditions.
- 3. To give an exposure to the various structural systems like flat slab, Deep beam, corbels and shear wall.

Expected Course Outcome:

- 1. Analyse the beam for deflection and estimation of crack width.
- 2. Analyse the multistorey frame for various loading condition.
- 3. Evaluate the plastic moment capacity of continuous beam.
- 4. Design the deep beam and corbels.
- 5. Design the flat slab, spandrel beam.
- 6. Design the slender column using SP16.
- 7. Analyse the shear wall structure.

Module: 1	Basic Design Concepts	6 hours
Limit state m	ethod - Design of beams- Short-term and long-term deflection of r	einforced
concrete bear	ns and slab- Estimation of crack width in reinforced concrete mem	nbers
Module: 2	Frame Analysis and Design	6 hours
Static and dy	namic loading of structures	
Module: 3	Inelastic Behaviour of Concrete Beams	6 hours
Moment curv	ature relationship – plastic hinge formation-moment redistribution	n in continuous
beams		
Module: 4	Deep Beams and Corbels	6 hours
Strut and tie 1	method of analysis for corbels and deep beams, Design of corbels,	Design of deep
beams		
Module: 5	Flat Slab	7 hours
Design of flat	t slabs and flat plates according to IS method – Check for shear - I	Design of
spandrel bear	ns -Yield line theory and Hillerborg's strip method of design of sla	abs - Grid floor
Module: 6	Slender Columns	6 hours
Design of sle	nder columns subjected to combined bending moment and axial for	orce using IS
456-2000 and	1 SP 16	
Module: 7	Shear Wall	6 hours
Analysis and	design of shear wall framed buildings	
Module: 8	Contemporary issues:	2 hours
	Total Lecture hours	45 hours
	Tutorial Hours	15 hours

	(Deemed to be University under section 3 of OCC Act, 1930)									
Text	Book(s)									
1.	Subramanian. N., (2013), Design Of Reinforced Concrete Structures, Oxford									
	University Press, New Delhi.									
Refe	Reference Books									
1.	Gambhir. M. L., (2012), Design of Reinforced Concrete Structures, Prentice Hall of India,									
	New Delhi.									
2.	Varghese. P.C., (2011), Advanced Reinforced Concrete Design, PHI Learning Pvt. Ltd.,									
	New Delhi.									
3.	IS 456 Plain and Reinforced Concrete - Code of Practice									
4.	IS 13920 Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic Forces									
4.	-Code of Practice									
5.	IS 1893 Criteria for earthquake resistant design of structures-Code of Practice									
6.	SP 16- Design Aids for Reinforced Concrete									
Mod	Mode of Assessment: Continuous Assessment Test, Quizzes, Assignments, Final Assessment									
Test										
Reco	ommended by Board of Studies 05.07.2022									
App	roved by Academic Council Date									

	(Deemed to be University under section 3 of UGC Act, 1956)						
MSTE503L	STRUCTURAL DYNAMICS	L	T	P	C		
MISTESSE		3	1	0	4		
Pre-requisite	Nil	Syl	labu	s ver	sion		
Course Objective	s:	1					
1. To know variou	s dynamic forces acting on a building and their response.						
2. To obtain know	ledge on modes of failure and remedial solutions.						
3. To study the analysis procedure for calculating the response of structures.							
4. To understand the linear and no-linear behaviour of structures.							
Expected Course	Outcome:						
Upon completion of	of this course, the student will be able to						
1. Differentiate st	atic and dynamic behavior of structures and their physical pr	opert	ies.				
2. Identify and m	odel a single degree of freedom system subjected to dynamic	load.					
•	sponse of single storied building subjected to dynamic load.						
	odel a multi degree of freedom system subjected to dynamic	load.					
•	sponse of multi-storied building subjected to dynamic load.						
6. Evaluate the dy	ynamic behavior of beams.						
•	onlinearity of a system by various techniques.						
	roduction		6 ho	ours			
History of vibratio	n - Dynamic analysis and their importance to structural engin	neerin	g pro	blem	ıs -		
Ţ	m - D'Alembert's principle - Lagrange's equation - Simple h		• •				
	gle Degree of Freedom			ours			
Mathematical mod	el for SDOF systems - Free vibration - Undamped - Damped	d - Cr	itical	dam	ping		
- Measurement of	damping - Vibration measuring instruments.						
Module: 3 Res	ponse of SDOF Systems		6 ho	ours			
Response of SDC	OF system to Harmonic Loading, Periodic loading and	Impul	se L	oadii	ng -		
Transmissibility -	Fourier series - Duhamel's integral - Numerical integration.						
Module: 4 Mul	ti Degree of Freedom System		7 ho	ours			
	on - Free vibration - Undamped - Damped - Evaluation of	struc	tural	prop	erty		
	nape - Orthogonality relationship.						
Module: 5 Res	ponse of MDOF Systems		6 ho	ours			
Rayleigh's method	l - Rayleigh-Ritz method - Stodola's method - Stiffness meth	od - N	Mode				
superposition meth	nod.						
Module: 6 Con	tinuous Systems		6 ho	ours			
Differential equation	on of motion - Transverse vibration - Axial vibration - Natur	al free	quenc	cy an	d		
mode shape of sim	ple beams with different end conditions - Variable cross sec	tion b	eams	s -			
Orthogonality rela	tionship.						
35 3 3 5 5							

6 hours

Module: 7 Non-linear Numerical Techniques

Wilson Theta method - Newmark Beta method - Runge-Kutta method.

Mo	dule:8	Contemporary issues:				2 hours	
			To	Total Lecture hours		45 hours	
				Tutor	rial Hours	15 hours	
Miı	nimum of	three problems to be work	ed out by students in	n every to	utorial class.		
Tex	kt Book(s)					
1.	Mario P	az and William Leigh (2	010), Structural Dy	namics -	- Theory an	d Computation,	
	Springer						
Ref	ference B	ooks					
1.	Clough	and Penzien (2015), Dyna	mics of Structures,	CBS Pul	blishers and	Distributors, New	
1.	Delhi.						
2.	Chopra. A. K. (2011), Dynamics of Structures - Theory and Applications to Earthquake						
۷.	Engineering, 4 th edition, Prentice Hall, London.						
3.	Roy R.Craig, Jr. Andrew J. Kurdila (2011), Fundamentals of Structural Dynamics, John						
	Wiley an	nd Sons, London.					
Mo	de of ass	essment: Continuous Asse	essment Test, Quizze	es, Assign	nments, Fina	al Assessment Test	
Rec	commend	led by Board of Studies	05.07.2022	·			
Ap	proved by	y Academic Council	I	Date			

	Vellore Institute of Technology (Deemed to be University under section 3 of UGC Act, 1956)						
MSTE504L	ADVANCED DESIGN OF STEEL STRUCTURES	L	T	P	C		
W151E5U4L	ADVANCED DESIGN OF STEEL STRUCTURES	2	1	0	3		
			Syll	abus	,		
Pre-requisite	Nil		version				
Course Objectives	S:						
1. To classify the	structures and analyse the frame for wind loads.						
2. To design the v	velded connections and to give exposure to fatigue.						
3. To design light	gauge steel members, steel – concrete composite and hollow	secti	ons.				
Expected Course Outcome:							
Upon completion of	of this course, the student will be able to						
Classify the structures and wind load analysis for frames.							

- 2. Design the welded connections.
- 3. Understand the fatigue and the factors that influence fatigue.

Module: 7 Design of Steel Members with Hollow Sections

Design of structural steel hollow sections

Contemporary issues:

Module: 8

Text Book(s)

- 4. Analyse and design the beams and frames using plastic method.
- 5. Design the Light gauge structures.
- 6. Design the Steel- Concrete Composite sections.
- 7. Design the Hollow sections.

Module: 1	4 hours							
Classification	Classification of structures-wind load analysis							
Module: 2	Module: 2 Beam- column Connections/Semi Rigid Connections 4 hours							
Throat and Root Stresses in Fillet Welds – Seated Connections Unstiffened and Stiffened seated								
Connections	- Moment Resistant Connections - Clip angle Connections - Split bea	am Connections						
- Framed Co	nnections							
Module: 3	Fatigue	4 hours						
Types of fati	gue leading and failure- Fatigue test, endurance limit- S-N diagram-	Various failure						
relations- Fac	ctors influencing fatigue strength- Influence of stress concentration on	fatigue test						
Module: 4	Plastic Analysis and Design of Structures	4 hours						
Introduction - Shape factors - Mechanisms - Plastic hinge - Analysis of beams and portal frames -								
Introduction	- Shape factors - Mechanisms - Plastic hinge - Analysis of beams and	l portal frames -						
	- Shape factors - Mechanisms - Plastic hinge - Analysis of beams and ed and continuous beams.	l portal frames -						
Design of fix	-	d portal frames -						
Design of fix Module: 5	ed and continuous beams.	4 hours						
Design of fix Module: 5 Types of cross	ed and continuous beams. Design of Light Gauge Steel Structures	4 hours						
Module: 5 Types of cromembers - B	ned and continuous beams. Design of Light Gauge Steel Structures ss sections - Local buckling and lateral buckling - Design of compressions.	4 hours						
Design of fix Module: 5 Types of cromembers - B buildings- lo	Design of Light Gauge Steel Structures ss sections - Local buckling and lateral buckling - Design of compression eams - Deflection of beams- Cold formed steel structures-Pre-engineer	4 hours						

4 hours

2 hours

30 hours

15 hours

Total Lecture hours

Tutorial Hours

1.	GalyordandGalyord (2012), Design of Steel Structures, Tata McGraw Hill, Education								
Rei	Reference Books								
1.	Duggal.S.K., (2014), Limit State De	esign of Steel Str	uctures, Ta	nta McGraw-Hill Education,					
1.	New Delhi.								
2.	Subramanian. N., (2011), Design of Steel Structures, Oxford University Press, New Delhi.								
3.	Bhavikatti. S.S., (2012), Design of S	Bhavikatti. S.S., (2012), Design of Steel Structures, I.K. International Publishing House Pvt.							
3.	Ltd. New Delhi.								
4.	IS 800 General Construction in Stee	el — Codeof Prac	etice						
5.	IS 801Code of Practice for use of Co	old-Formed Ligh	t Gauge S	teel Structural Members in					
٥.	General Building Construction								
6.	IS 811Specification for Cold formed	d light gauge stru	ctural Stee	el sections					
7.	IS 11384 Code of practice for compe	osite construction	n in structı	ural steel and concrete					
Mo	ode of Assessment: Continuous Asses	ssment Test, Qui	zzes, Assię	gnments, Final As					
Rec	commended by Board of Studies	05.07.2022							
Ap	proved by Academic Council		Date						

	MSTE505L	FINITE ELEMENT ANALYSIS		T	P	C
	WISTESUSE	FINITE ELEMENT ANALISIS			0	3
Due ne anicite		MSTE501L Theory of Elasticity and Plasticity	Syll	abus	ver	sion
	Pre-requisite	MISTESULE THEORY OF Elasticity and Flasticity				

Course Objectives:

- 1. To have a detailed knowledge and understanding of the fundamental concepts of finite element methods
- 2. To introduce basic aspects of finite element technology, including domain discretization, polynomial interpolation, application of boundary conditions, assembly of global arrays, and solution of the resulting algebraic systems.
- 3. To develop proficiency in the application of the finite element methods (modeling, analysis, and interpretation of results) to realistic engineering problems

Expected Course Outcome:

Upon completing this course, the students will be able to:

- 1. Understand the fundamental theory of finite element methods
- 2. Develop the ability to generate the governing FE equations for systems governed by partial differential equation
- 3. Demonstrate the role and significance of shape functions in finite element formulations and use linear, quadratic, and cubic shape functions for interpolation
- 4. Acquire knowledge in direct and formal (basic energy and weighted residual) methods for deriving finite element equations
- 5. Have insights into the use of the basic finite elements for structural applications using truss, beam, frame, and plane elements
- 6. Identify appropriate space (planar (plane stress or strain), axisymmetric, or spatial), idealization (type of element), and modeling techniques
- 7. Understand the professional level finite element software to solve the engineering problems

Module: 1 Introduction 4 hours

Background – General description of the method – Analysis procedure - Principles of elasticity Stress and strain vectors – Strain displacement equations – Linear constitutive equations – Overall stiffness matrix – Overall load matrix

Module: 2 Theory of Finite Element 4 hours

Concept of an element – Various element shapes – Displacement models – Approximation displacements by polynomials – Convergence requirements – Shape functions – Element strains and stresses – Analysis of beams

Module: 3 Natural Coordinates 4 hours

Area and volume coordinates- Discretisation of a body or structure – Minimization of band width – Construction of stiffness matrix and loads for the assemblage – Boundary conditions – Mesh generation.

Module: 4 Two and Three Dimensional Problems 5 hours

Analysis of plane truss, space truss, plane frame and grid- Axisymmetric elements

			s and a sale Assi	(Deemed to be University under section 3 o	f UGC Act, 1956)				
M	odule: 5	Plane Stress	and Pl	ane Strain Condit	ions	5 hours			
CST, LST & QST elements - solutions of problems									
M	odule: 6	Isoparametri	c Formul	ation		4 hours			
Iso	Iso parametric Bar element - Plane bilinear isoparametric element - Plane stress element -								
Qua	adratic pla	ne elements - A	pplication	n of Gauss Quadrat	ure formulation –Lagrar	ige's and			
sere	endipity el	ements							
M	odule: 7	Introduction	to 3-D El	ements		2 hours			
Thr	ee dimens	ional elasticity-	-Governin	g differential equat	ions- Higher order Isopa	rametric solid			
elei	ments								
M	odule: 8	Contempora	ary issues	•		2 hours			
					Total Lecture hour	s 30 hours			
					Tutorial Hour	s 15 hours			
Tex	kt Book(s)	1							
1.	Krishnan	noorthy, C.S,	"Finite El	ement Analysis; T	heory and programmin	g", Tata McGraw			
	Hill Publ	lishing Co. Ltd.	, (2017)						
Ref	ference Bo	ooks							
1.	Cook R	D., Malkas D	.S. &Ple	sha M.E, "Concep	ots and applications of	Finite Element			
	Analysis	", John Wiley &	&Sons., (2	007)					
2.	Reddy,J,	"An Introduction	on to Fini	te Element Method	s", McGraw Hill Co., (2	013).			
3.	Zeinkeiw	vich O.C.,R.L.	Tayler "	The Finite Elem	nent Method for Solid	and Structural			
3.	Mechani	cs", Butterwort	h-Heinem	ann,(2013).					
Mo	de of Eva	luation: Contir	nuous Ass	essment Test, Quiz	zes, Assignments, Final	Assessment Test			
Mo	de of Ass	essment: Conti	nuous Ass	sessment Test, Ouiz	zzes, Assignments, Fina	Assessment			
Tes				, (, 6 ,				
Rec	commend	ed by Board of	Studies	05.07.2022					
Ap	proved by	Academic Co	uncil		Date				

MSTE505P	MSTE505P FINITE ELEMENT ANALYSIS LABORATORY		T	P	C	
W151 E3031	PINITE ELEMENT ANALISIS LABORATORI	0	0	2	1	
Pre-requisite	MSTE501L Theory of Elasticity and Plasticity	Syllabus version				
r re-requisite	MISTESULE THEORY OF Elasticity and Flasticity					

Course Objectives:

- 1. To have a detailed knowledge and understanding of the fundamental concepts of finite element methods
- 2. To introduce basic aspects of finite element technology, including domain discretization, polynomial interpolation, application of boundary conditions, assembly of global arrays, and solution of the resulting algebraic systems.
- 3. To develop proficiency in the application of the finite element methods (modelling, analysis, and interpretation of results) to realistic engineering problems

Expected Course Outcome:

Upon completing this course, the students will be able to:

- 1. Understand the fundamental theory of finite element methods
- 2. Develop the ability to generate the governing FE equations for systems governed by partial differential equation
- 3. Demonstrate the role and significance of shape functions in finite element formulations and use linear, quadratic, and cubic shape functions for interpolation
- 4. Acquire knowledge in direct and formal (basic energy and weighted residual) methods for deriving finite element equations
- 5. Have insights into the use of the basic finite elements for structural applications using truss, beam, frame, and plane elements
- 6. Identify appropriate space (planar (plane stress or strain), axisymmetric, or spatial), idealization (type of element), and modelling techniques
- 7. Understand the professional level finite element software to solve the engineering problems

of Experiments (Indicative)	3 hours
Discretisation of geometry	3 hours
Meshing a rectangular plate using 4 node elements	3 hours
Meshing a circular plate using 3 node and 4 node elements	3 hours
Analysis of a spring assembly using 1D elements	3 hours
Analysis of an assembly of bar elements	3 hours
Analysis of a stepped bar	3 hours
Analysis of a plane truss	2 hours
Analysis of a space truss	2 hours
Analysis of a fixed-fixed beam	2 hours
	Discretisation of geometry Meshing a rectangular plate using 4 node elements Meshing a circular plate using 3 node and 4 node elements Analysis of a spring assembly using 1D elements Analysis of an assembly of bar elements Analysis of a stepped bar Analysis of a plane truss Analysis of a space truss

10	Analysis of a 2D frame				2 hours
11	1 Analysis of a 3D frame				2 hours
12	12 Analysis of a grid				2 hours
		To	otal Laboratory H	ours 3	30 hours
Tex	kt Book(s)			- '	
1.	Krishnamoorthy, C.S, "Finite El	ement Analysis; Th	neory and program	ming", Ta	ta McGraw
	Hill Publishing Co. Ltd., (2017)				
Ref	ference Books				
1.	1. Cook R.D., Malkas D.S. &Plesha M.E, "Concepts and applications of Finite Element				
	Analysis", John Wiley &Sons., (2	007)			
2.	Reddy,J, "An Introduction to Fini	te Element Methods'	', McGraw Hill Co	., (2013).	
2	Zeinkeiwich O.C.,R.L.Tayler "	The Finite Eleme	ent Method for S	Solid and	Structural
3.	3. Mechanics", Butterworth-Heinemann, (2013).				
Mo	de of Evaluation: Continuous Ass	essment Test & Fina	l Assessment Test		
	commended by Board of	05.07.2022			
	dies		1		
Ap	proved by Academic Council	D	ate		

MSTE506L	PRESTRESSED CONCRETE STRUCTURES			P	C		
MISTESUOL	TRESTRESSED CONCRETE STRUCTURES		1	0	3		
Pre-requisite	MSTE502L Design of Concrete Structural systems		Syllabus version				
MSTES02L Design of Concrete Structural systems							
Course Objectives	s:						

- 1. To learn the principles, materials, methods and systems of prestressing
- 2. To know the different types of losses and deflection of prestressed members
- 3. To learn the design of prestressed concrete beams for flexural members

Expected Course Outcome:

Upon completion of this course, the student will be able to

- 1. Understand the concepts of pre-tensioning and post-tensioning members
- 2. Design a prestressed concrete beam accounting for losses
- 3. Evaluate the deflection and crack width of prestressed members
- 4. Design the member subjected to flexure and shear.
- 5. Design the member subjected to torsion.
- 6. Design the anchorage zone reinforcement
- 7. Analyse and design the indeterminate structures.

Module: 1	Introduction	3 hours
Introduction -	- Development of Pre-stressed Concrete, General Principles of Pre-	-stressed Concrete,
Classification strain charact	and types of pre-stressing, Stages of loading, Materials – Concret eristics.	e and Steel - stress,

Module: 2	Losses in Pre-stress	3 hours		
Significance	of loss of Pre-stress, Immediate losses and time dependent losses			
Module: 3	Deflections	7 hours		
Deflections-	calculation for short term/immediate and long term deflection			
Module: 4	Design for Flexure and Shear	4 hours		
Design For F	lexure and shear-Flexural analysis of beams for limit state of ser	viceability, design		
for simply supported beams for limit state of collapse – Shear and Diagonal tension in Un-cracked				
beams, Diago	onal cracking in shear, shear design for Limit state of collapse			
Module: 5	Design for Torsion	4 hours		
- · ·	m : 11 : 0 1	T : :		

Torsion in concrete structures – Torsional design for pre-stressed concrete structures – Limit State of Collapse

 Module: 6
 Design of End Anchorages
 3 hours

 Stress distribution in end block – design of anchorage zone reinforcement

 Module: 7
 Indeterminate Structures
 4 hours

Concept of concordant cable and profile – sketching of pressure lines for continuous beams.

Mo	dule: 8	Contemporary issues		2 hours
			Total Lecture hours	30 hours
			Tutorial hours	15 hours
Tex	xt Book(s)		
1.		Raju. N., (2014), Pre-strestors, Pvt. Ltd., New Delhi.	ssed Concrete - Problems and Solutions,	CBS Publishers and
Ref	ference B	ooks		
1.	Praveen Nagarajan, Advanced Concrete Design, Person, 2013			
2.	2. N. Rajagopalan., (2013), Prestressed Concrete – Second Edition, Narosa Publishers, New Delhi			
3.	IS: 1343	: Indian Standard code of	practice for Prestressed concrete, BIS, N	ew Delhi.
4.	4. IS: 3370-Indian Standard code of practice for concrete structures for storage of liquids, BIS, New Delhi.			ge of liquids, BIS,
Mo	Mode of Evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test			al Assessment Test
Rec	commend	led by Board of Studies	05.07.2022	
Ap	proved b	y Academic Council	Date	

Discipline Elective Courses

NACETY COAT	MATRIX METHODS OF STRUCTURAL		T	P	C	
MSTE601L	ANALYSIS	2	1	0	3	
Pre-requisite	Nil	Syllabus version				
	- V 					

Course Objectives:

- 1. To understand the significance of degrees of freedom and the concept of principle of superposition
- 2. To recognize the concept of strain energy and principle of virtual work
- 3. To learn the transformation of system matrices and element matrices for the determinate and indeterminate structures.
- 4. To analyse the forces in structures like continuous beam, truss and frames using stiffness and flexibility method.
- 5. To comprehend the behaviour of structures due to thermal expansion and lack of fit.

Expected Course Outcome:

On completion of the course, the students will be able to

- 1. Apply the basic concepts of matrix methods in structural analysis
- 2. Develop stiffness and flexibility matrices
- 3. Analyse the structures using flexibility and stiffness method
- 4. Analyse space truss and frame
- 5. Analyse grid structures
- 6. Compute the forces in various members due to lack of fit and thermal expansion

Module: 1	Energy Concepts	4 hours
Transformati	on of Coordinates - Basic assumptions - Types of loads - Com	patibility
conditions -	Static and kinematic indeterminacy - Principles of superposition	on - Strain energy -

conditions - Static and kinematic indeterminacy - Principles of superposition - Strain energy - Stiffness for beam element from strain energy

Module: 2 Matrix Methods 4 hours

1110ddict 2	THE IN THE CITY OF THE CONTROL OF TH	- Hours			
Properties of stiffness and flexibility matrices- solution of simple problems					
Module: 3	Flexibility Method	4 hours			
Flexibility n	Flexibility method applied to statically indeterminate structures - Analysis of continuous				
beam, plane truss and plane frame					
Module: 4	Stiffness Method	4 hours			
Stiffness method amiliad to kinematically indeterminate structures. Analysis of continuous					

Stiffness method applied to kinematically indeterminate structures - Analysis of continuous beam, plane truss and plane frame

Module: 5 | Space Truss | 4 hours

Analysis of space truss and space frame by stiffness matrix method

			(Deemed to be University under secti	on 5 of ode Act, 15	50)	
Mo	odule: 6	Grid Structures				4 hours
Ana	Analysis of grid by matrix methods- Special analysis procedures - static condensation and					
sub	structurii	ng - initial and thermal st	tresses.			
Mo	dule: 7	Special Conditions				4 hours
Effe	ects of te	mperature change and la	ick of fit. Related	numeric	al problems	by flexibility and
stif	fness met	hod				
Mo	odule: 8	Contemporary issues				2 hours
			Te	otal Lect	ure hours	30 hours
	Tutorial hours 15 hours				15 hours	
Tex	Text Book(s)					
1.	Bhavika	tti S S, (2011), Matrix M	lethods of Structu	ral Analy	sis, IK Pub	lishing, India
Ref	Reference Books					
1.	Natarajan C, Revathi P., (2014), Matrix Methods of Structural Analysis: Theory and				s: Theory and	
1.	Problem	s, PHI, Prentice Hall of I	ndia, New Delhi.			
2.	Godbole	P. N., Sonparote R. S.,	Dhote S. U., (201-	4), Matrix	Methods of	of Structural
2.	Analysis, PHI Learning Pvt. Ltd., New Delhi.					
Mode of Evaluation: Continuous Assessment Test, Quizzes, Assignments, Final						
Ass	sessment	Test				
Reco	Recommended by Board of Studies 05.07.2022					
Appı	roved by	Academic Council		Date		
Appı	roved by	Academic Council		Date		

MSTE602L	DESIGN OF BRIDGES	L	T	P	C
WISTEGGE	DESIGN OF BRIDGES	2	1	0	3
Pre-requisite	Nil	Syllabus version			
Course Objecti	ives:				
1. To understar	nd the basic concept of design of bridges				
2. To analyse b	pox culvert				
3. To design T	and I girders				
4. To analyse a	and design cable stayed and suspension bridges				
5. To design pi	iers and abutments				
6. To design pi	ile foundation and bearings				
Expected Cour					
• •	on of this course, the student will be able to				
•	different types of bridges.				
•	culvert and girder bridges by using different method.				
	rders, I girders and Box girder bridges by IRC method.				
•	design cable stayed and suspension bridges				
	s and abutments				
6. Design pile					
	ings and expansion joints.	1			
	eneral	<u> </u>	3 ho		
· · · · · · · · · · · · · · · · · · ·	ory, Different types (Permanent/Temporary), Classification base	d on n	nateria	ıl, spa	n,
	etc., Field Surveys and selection of site				
Module: 2 Bi	ridge Deck Analysis		4 ho	urs	

Courbon's method and Grillage method.- Introduction to other methods of analysis like Finite element, Finite strip method etc.,.

Module: 3	Design of Small Bridges & Culverts	5 hours
Design of bo	I girder and	
Introduction	to Box girder bridges by IRC method.	
Module: 4	Long span & Special type bridges	4 hours
Analysis &	design principles of continuous bridges, arch bridges, integral	bridges, cable stayed

bridges and suspension bridges. **Module: 5 Design of Substructure** 4 hours

Design of piers & abutments -Introduction to wing walls & returns and Reinforced Earth in flyover approaches.

Module: 6	Design Foundations 4				
Pile, Pile ca	Pile, Pile cap and well foundation				
Module: 7	Bridge Appurtenances	4 hours			
Design of Be	Design of Bearings, Expansion joints, Deck drainage, Crash barriers & handrails.				
Module: 8	Contemporary issues	2 hours			

		Tot	tal Lecture	hours	30 hours	
			Tutorial	Hours	15 hours	
Te	xt Book(s)			•		
1.	Johnson Victor. D., (2012), Essential	ls of Bridge Enginee	ering, Oxfo	rd Publish	ing Company, New	
	Delhi					
Re	ference Books					
1.	Jain and Jai Krishna.,(2007), Plain	and reinforced con	crete, Vol.	2.,Nem Cl	nand Brothers, New	
	Delhi.					
2.	Krishna Raju. N., (2014), Design of	Bridges, Oxford and	d IBH Publi	ishing Co.,	, New Delhi	
3.	Rakshit. K. S., (2010), Design and C	Construction of High	nway Bridg	es, New ce	entral Book Agency,	
	New Delhi.					
3	Standard specifications and code of	practice for road br	ridges, (200	05) – IRC	section I, II, III and	
	IV.					
4	Ponnuswamy (2008), Bridge Engine	ering, McGraw-Hill	Education	(India) Pv	rt Limited	
Mo	Mode of Evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test					
Re	Recommended by Board of Studies 05.07.2022					
Ap	proved by Academic Council		Date			

		Vellore Institute of Technology (Deemed to be University under section 3 of UGC Act, 1956)					
MSTE603	SL.	PREFABRICATED STRUCTURES	L 2	T 1	P 0	C 3	
Pre-requis	ite	Nil	_	labus	•		
Course Obje	ctives	S:					
		he design principles related to prefabrication.					
2. To u	inders	tand the concepts of precast floors, beams etc.,					
Expected Co	urse	Outcome:					
Upon comple	tion o	of this course, the student will be able to					
1. Under	rstand	the principles behind prefabricated structure					
2. Desig	n the	precast concrete floor					
3. Under	rstand	the composite and non-composite precast beam					
4. Desig	n the j	precast column and walls					
5. Under	rstand	the principles of joint mechanism					
6. Under	rstand	the various connection between the precast structural elem-	ents				
7. Identi	fy the	machinery and equipment for precast manufacturing					
Module: 1	Desi	gn Principles		3	hou	rs	
prefabrication Components	General Civil Engineering requirements, specific requirements for planning and layout of prefabrication plant. IS Code specifications. Types of foundation - Modular co-ordination - Components - Prefabrication systems and structural schemes - Design considerations - Economy of prefabrication- assessment of handling and erection spaces						
Module: 2	Prec	ast Concrete Floors		3	hou	rs	
	Precast flooring options-flooring arrangements-design of individual units-design of composite floors- Beams and roof elements						
Module: 3 Precast Concrete Beams 4 hours					rs		
Types of com	posite	es -non composite-reinforced beam -pre stressed beam		•			
Module: 4	Colu	ımns and Shear Wall		6	hou	rs	
Precast colun	nn des	sign -precast shear walls- infill walls-cantilever walls -distr	ibutio	n of	horiz	ontal	
forces							

Pin jointed connection-moment resisting connections- beam to column- column foundation

5 hours

5 hours

2 hours

Module: 5

connections

Module: 7

Joints

Connections

Basic mechanism-compression joint-shear joint - tension joint

Machinery and Equipment

Plant machinery, casting yard- casting and stacking

Mo	dule: 8	Contemporary issues				2 hours
				Tota	l Lecture hours	30 hours
					Tutorial Hours	15 hours
Tex	xt Book(s))			·	
1.	Kims S.	Elliot (2017), Precast Cor	ncrete Structures, C	RC Press,	Taylor & Francis	
Ref	ference B	ooks				
1.	Handboo	ok of Precast Concrete Bu	ildings (2016) ICI	publicatio	ns	
2.	"	Smith, (2010), Prefab Arc ley and Sons. Inc. London		to Modul	ar Design and Con	struction,
3.	3. Hubert Bachmann, Alfred Steinle, (2011), Precast Concrete Structures, Ernst & Sohn, Wiley Publication					hn, Wiley
Mo	Mode of Evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test					
Rec	Recommended by Board of Studies 05.07.2022					
Ap	proved by	y Academic Council		Date		

MSTE604L	4L STABILITY OF STRUCTURES		T	P	C	
WISTEOU4L	STABILITY OF STRUCTURES	2	1	0	3	
Pre-requisite	Nil	Syllabus version				
1 re-requisite	NII					

Course Objectives:

- 1. To understand the difference between stability and instability.
- 2. To evaluate the structural stability of columns
- 3. To analyse the stability of beam column
- 4. To analyse stability of frames
- 5. To understand deformation characteristics of torsional buckling
- 6. To identify the differential equation of buckling of plates and shells

Expected Course Outcome:

Upon completion of this course, the student will be able to

- 1. Understand the difference between stability and instability.
- 2. Evaluate the structural stability of columns
- 3. Analyse the stability of beam column
- 4. Analyse stability of frames
- 5. Understand deformation characteristics of torsional buckling
- 6. Identify the differential equation of buckling of plates and shells

Module: 1	Introduction	3 hours		
Static equilibr	rium – Governing equation for columns – Analysis for various bou	ındary		
conditions.				
Module: 2	Analysis of Column	4 hours		
Eccentrically	loaded column and Initial Imperfect column -Numerical Problems			
Module:3	Beam column	5 hours		
Theory of Be	eam column - Stability analysis of beam column with different	types of loads -		
Failure of bea	am columns.			
Module: 4	Analysis and Stability of Frames	5 hours		
Various Bour	ndary Conditions – Differential equations – Slope Deflection method	od		
Module: 5	Torsional Buckling	5 hours		
Torsional loa	ad-Deformation characteristics of structural members- strain energ	y of torsion –		
Torsional an	d flexural torsional buckling of columns			
Module: 6	Buckling of Plates	3 hours		
Differential	Equation of plate buckling –linear theory – critical load of a plate	uniformly		
compressed	in one direction.			
Module: 7	Buckling of Shells	3 hours		
Differential equation – Analysis – Application				
Module: 8	Contemporary issues	2 hours		
	Total Lecture hours	30 hours		

			Tuto	rial Hours	15 hours		
Tex	Text Book(s)						
1.	1. Iyengar. N.G.R., (2007), Elastic Stability of Structural Elements, McMillan, New Delhi						
Ref	ference Books						
1	Galambos. T.V., Surovek A. E(200	08), Structural Sta	bility of St	eel: Concepts	s and		
1.	Applications for Structural Engine	ers, Wiley, Londo	n				
Mo	de of Evaluation: Continuous Ass	sessment Test, Qu	iizzes, Ass	signments, Fi	nal Assessment		
Test	t						
Rec	commended by Board of Studies	05.07.2022					
Ap	proved by Academic Council		Date				

MSTE605L	ADVANCED CONCRETE MATERIALS AND	L	T	P	С		
WISTEOUSE	TECHNOLOGY	2	1	0	3		
Pre-requisite	Nil		Syllabus version				
11c-requisite							

Course Objective:

- 1. To study the roles of concrete constituent materials, the requirements and properties of the materials and their effects on concrete.
- 2. To understand the behaviour of fresh and hardened of concrete with and without admixtures.
- 3. To study the concrete mix design using different methods.
- 4. To study the mechanical properties and durability of concrete.
- 5. To study the testing procedure of different non-destructive testing methods.
- 6. To study the different types of special concrete and concreting methods.

Expected Course Outcome:

Upon completion of this course, the student will be able to

- 1. Identify and explain the role of ingredients of concrete and their effect on concrete properties.
- 2. Explain the behaviour of fresh and hardened properties of concrete.
- 3. Design of concrete mix using different methods.
- 4. Apply the destructive and non-destructive testing methods to assess the hardened properties of concrete.
- 5. Describe testing procedures for durability properties of concrete.
- 6. Explain the different types of special concretes

Module: 1 Concrete Materials and Admixtures		4 hours			
Cement, Fin	Cement, Fine and Coarse aggregates –Mineral and Chemical Admixtures – Properties and				
applications					

Module: 2 | Behaviour of Fresh Concrete and Hardened Concrete 4 hours

Behaviour of Concrete with and without admixtures - Modern trends in concrete manufacture and placement techniques - Ready mix concrete - Rheological behaviour of fresh concrete and hardened concrete.

Module: 3	Concrete Mix Design	4 hours			
Methods of mix design-Design of concrete mixes by using IS code method and ACI method					
Module: 4	Module: 4 Mechanical Properties of Concrete 4 hours				
Compressive strength test- Split tensile strength test-Flexural test- Modulus of elasticity of					
concrete-Sta	concrete-Static modulus -Stress-strain characteristics- Dynamic modulus- Factors affecting				
4 41 C					

strength of concrete. Madula 5 Non destructive Testing of Concrete

Module: 3	Non-destructive resting of Concrete	3 Hours				
Rebound ha	Rebound hammer test – UPV test – Half cell Potential test – Thermography – Pull out test.					
Module: 6	Durability Properties of Concrete	4 hours				

Rapid chloride permeability test- Water absorption test – Resistance against sulphate attack, acid attack, alkaline attack- Effect of elevated temperature.

M	11.7								
	Module: 7 Special Concrete and Concreting Methods 5 hours								
Hi	gh perfor	mance concrete- Lightweight co	oncrete – H	igh densit	y concrete -	Polymer concrete -			
Fib	ore reinfo	rced concrete - Self compactin	g concrete	- Cold w	eather concre	eting - Hot weather			
coı	ncreting -	Pre-packed concrete - Vacuum c	oncrete						
M	odule: 8	Contemporary issues				2 hours			
				Total Lec	ture hours	30 hours			
				Tuto	orial Hours	15 hours			
Te	xt Book(s	<u> </u>							
1.	Metha.I Delhi.	P.K, (2005), Concrete: Microstru	cture, Propo	erties and	Materials, M	cGraw-Hill, New			
Re	ference I	Books							
1.	Neville.	A.M., Brooks. J.J., (2008), Concr	ete Technol	ogy, Pears	on Education	n, New Delhi.			
2.	Gambir	.M.L., (2009), Concrete Technol	ogy, Tata N	Ic-Graw H	lill-Education	n, New Delhi.			
3.	Shetty.N	M.S.,(2017), Concrete Technolog	gy, S. Chand	d and Com	pany Ltd, Ne	w Delhi.			
4.	IS: 122	69, Specification for 53 grade or	dinary Port	land Ceme	ent, BIS, New	Delhi			
5.	IS: 383	, Specification for Coarse and fin	ne natural so	ources for	Concrete, BI	S, New Delhi			
6.	IS:1026	2, Concrete Mix Proportioning -	Guidelines						
7.	7. ACI 211.1-91 Reapproved 2009, Standard Practice for selecting Proportions for Normal, Heavyweight, and Mass Concrete.								
	Mode of Evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test								
		ded by Board of Studies	05.07.2022	2	T				
Ap	proved b	y Academic Council		Date					

	(Deemed to be University under section 3 of UGC Act, 1956)	L	Т	P	С		
MSTE606I	ADVANCED FOUNDATION DESIGN	3	0	0	3		
Pre-requisit	e Nil		Syllabus version				
Course Obje	etives:						
To im	part the knowledge in the area of analysis and design of foundation	ons a	nd ea	rth			
retaini	ng structures.						
Expected Co	urse Outcome:						
Upon complet	ion of this course, the student will be able to:						
1. Estima	te bearing capacity of raft foundation						
	nine safe load carrying capacity of pile for a given site condition						
•	a reinforced earth wall and analyse its stability						
•	se sheet pile and find embedment depth						
	guish f piled-raft and load sharing between raft and pile						
	te stability of well foundation						
	y suitable type of cofferdam for a given construction problem						
Module: 1	Raft Foundations			hou			
	ity of rafts; Rafts on clays and sands; Compensated raft; Flexibl	le an	d rigio	d rafts	s (IS:		
•	nent analysis of rafts (under embankment loading).						
Module: 2	Pile Foundations			hou			
	α of piles in sands and clays; α - method; Brom's analysis; Lay of piles; Pile group capacity; Pile load test. Analysis of stress w		•		•		
Module: 3	Piled Rafts		7	hou	rs		
_	piled raft - Examples, definitions and terminology; Piled and Advantages of piled rafts; Performance and design of a piled rafty.			_			
Module: 4	Well Foundations		6	hou	rs		
Well Founda construction	tions - Types of wells or caissons - Drilled shafts and cais	ssons	s - D	esign	and		
	Deep Excavation Protection Systems		6	hou			
Module: 5	zeep zaeu vaeion zrotetton zystems				rs		
Sheeting and	bracing systems in shallow and deep open cuts in different so achored sheet piles; Stability and design of braced supports. Diap		pes -	Canti			
Sheeting and	bracing systems in shallow and deep open cuts in different so		pes - m wa	Canti	lever		
Sheeting and sheet piles, A Module: 6 Types of Coff	bracing systems in shallow and deep open cuts in different some achored sheet piles; Stability and design of braced supports. Diap Coffer Dams For dams, merits and demerits; Design of single wall coffer dams	ohrag	pes - m wa	Canti lls hou	lever		
Sheeting and sheet piles, A Module: 6 Types of Coff	bracing systems in shallow and deep open cuts in different somehored sheet piles; Stability and design of braced supports. Diap Coffer Dams	ohrag	pes - m wa 5 ability	Canti lls hou	rs ects,		
Sheeting and sheet piles, And Module: 6 Types of Coff TVA method Module: 7	bracing systems in shallow and deep open cuts in different some nethored sheet piles; Stability and design of braced supports. Diap Coffer Dams For dams, merits and demerits; Design of single wall coffer dams and Cumming's method.	ohrag s; St	pes - m wa 5 ability	Canti lls hour aspe	rs ects,		

Mo	dule: 8	Contemporary issues				3 hours		
				7	Total Lecture hours	45 hours		
Tex	Text Book(s)							
1.		Bowles, J. E., (2011), Foundation Analysis and Design, 7th Edition, McGraw Hill Book Co., New York.						
2.	Das. B.	M., (2010), Principles of Foun	dation En	gineering	, CL Engineering.			
Ref	ference B	ooks						
1.	Fang. H.	Y.,(2012), Foundation Engine	ering Har	dbook, S	pringer Science and B	usiness Media.		
2.	Varghes New De	e. P. C., (2009), Design of Rei lhi.	nforced C	Concrete F	Foundations, Prentice I	Hall of India,		
3.	Murthy. Delhi.	V. N. S., (2009), Soil Mechan	ics and Fo	oundation	Engineering - CBS P	ublications,		
4.	Swami S Pvt Ltd.	Saran ., (2010), Reinforced Soi	l and Its I	Engineerii	ng Applications., I. K.	International		
5.		Saran., (2006), Analysis and Dolishing Company Pvt. Limited	_	ubstructu	res: Limit State Desig	n, Oxford &		
6.		on M and Woodward J. (2008) nd Francis.). Pile Des	sign and (Construction Practice"	5 th Edition.		
7.	_	K, Weltman A, Randolph M and Francis.	and Elson	K (2009)	. Piling Engineering. 3	3 rd Edition.		
8.	K. R. Ar	ora., (2011) Soil Mechanics as	nd Founda	ation Eng	ineering, Standard pub	olishers		
Mo	de of Eva	aluation: Continuous Assessm	nent Test,	Final As	ssessment Test, Quiz,	Assignments		
Rec	commend	led by Board of Studies	05.07.20	22				
Ap	Approved by Academic Council Date							

MCTE (071	E A DTHOUAVE DECICTANT DECICN	L	T	P	C	
MSTE607L	EARTHQUAKE RESISTANT DESIGN	2	1	0	3	
Pre-requisite	MSTE503L Structural Dynamics	Syllabus version				
110 requisite	Mas a Ecolo E structur ar E y numics					

Course Objectives:

- 1. To study the basic concepts of engineering seismology and ground motion characteristics.
- 2. To understand the strength and capacity design principles of earthquake resistant design.
- 3. To study the behavior of various types of buildings under static and dynamic forces.
- 4. To study the elastic and inelastic deformations and significance of ductility in beam-column joints.
- 5. To study the seismic behavior of masonry and concrete shear wall systems.
- 6. To study the significance of energy dissipating devices in seismic resistant design.

Expected Course Outcome:

Upon completion of this course, the student will be able to

- 1. Identify the characteristics of seismic waves and its measures.
- 2. Understand the principles of earthquake resistant design and response spectrum.
- 3. Analyze and design the various types of structures under static and dynamic loading conditions.
- 4. Design various beam-column joints as per ductility requirements.
- 5. Analyze and design unreinforced and reinforced masonry and concrete shear wall structures.
- 6. Explain the types of dampers and base isolation systems and its importance in seismic resistant design.

Module: 1 | **Seismology and Earthquake**

6 hours

Internal structure of the earth, continental drift and plate tectonics, Faults, Elastic rebound theory, seismic waves and characteristics, earthquake size, strong ground motion, seismic zoning map of India, Seismic hazard assessment.

Module: 2 | Principles of Earthquake Resistant Design

3 hours

Seismic design philosophy - Principles of earthquake resistant design - Response spectrum theory - Application of response spectrum theory to seismic design of structures - Capacity - Design Principles - Design criteria for strength - Stiffness and ductility.

Module: 3 | Seismic Analysis of Moment Resisting Frames

5 hours

Determination of design lateral forces as per IS: 1893-2016 – equivalent static force and dynamic analysis procedure. Effect of infill stiffness on analysis of frames – Equivalent diagonal strut.

Module: 4 | **Modelling, Analysis and Design of Structures**

3 hours

Seismic analysis and design of RC structures using software - static and dynamic methods – equivalent static, response spectrum and time history methods.

Module: 5 Design of Beam Column Junctions

5 hours

Elastic and Inelastic deformations of structures – ductility of the composite system - design of axial and flexural members – beam column junction detailing – strong column – weak beam effects as per IS: 13920: 2016.

Module: 6 Design of Shear Walls

3 hours

Unreinforced and reinforced masonry shear walls – analysis and design of reinforced concrete shear walls.

	(Deemied to be University unioer section 3 of UGC Act, 1950)						
Mo	odule: 7	le: 7 Vibration Control Techniques			3 hours		
	Vibration control – energy dissipating devices – principles and application, basic concept of base isolation – various systems - case studies.						
Mo	odule: 8	Contemporary issues				2 hours	
				Total Lec	ture hours	30 hours	
				Tuto	orial Hours	15 hours	
Tex	kt Book(s))					
1.		Agarwal and Manish Shrik -Hall India Pvt. Ltd., New		rthquake r	esistant desig	gn of structures,	
Ref	ference B	ooks					
1.		nd Priestly. (1992), Seism nd Sons, London.	ic design of reinfo	rced conci	rete and maso	onry buildings, John	
2.		behle (2015), Seismic Desi on, New Delhi.	gn of Reinforced (Concrete B	Buildings, Mc	Graw-Hill	
3.	IS: 1893	:2016 (Part 1), Criteria for	r earthquake resista	ant design	of structures		
4.	IS: 1392	0: 2016, Ductile detailing	of reinforced conc	rete struct	ures subjecte	ed to seismic forces.	
Mo	de of Eva	aluation: Continuous Asse	essment Test, Quiz	zes, Assig	nments, Fina	l Assessment Test	
Rec	commend	led by Board of Studies	05.07.2022				
Ap	Approved by Academic Council Date						

MCTECOO	ANALYSIS AND DESIGN OF TALL STRUCTURES	L	T	P	C
MSTE608	8L ANALYSIS AND DESIGN OF TALL STRUCTURES		1	0	3
Pre-requisite	MSTE504L Advanced Design of Steel Structures	Syl	labus	vers	ion
Course Object	ctives:				
1. To und	derstand the behaviour of tall structures subjected to dynamic loads				
2. To stu	dy the behaviour of different types of tall structural systems				
Expected Co	urse Outcome:				
Upon complet	tion of this course, the student will be able to				
1. Analys	se the tall structure for gravity and lateral loads				
	nate the structural systems in tall buildings				
3. Under	stand the behaviour of various structural systems under gravity and la	teral l	oadir	ng	
4. Exami	ne different types of outrigger system				
5. Unde	rstand shear wall systems				
	fy the importance of infilled frames				
7. Exami	ne three dimensional analysis of floors				
Module: 1	Types of Buildings and Loads Calculations		5 ho		
	of buildings according to NBC - Wind load - Seismic load - Quasi	static	appr	oach-	-
combination of	of loading				
Module: 2	Rigid frame		4 ho		
_	behaviour- analysis of gravity loading-Substitute frame method for				
	is of horizontal loading- Portal - Cantilever and factor methods	- K	ani's	met	nod-
	me method- Diaphragm openings	1			
Module: 3	Braced Frame		4 h	ours	
Types of brac	ing- behaviour of bracing- methods of analysis- member force analysis	is- dri	ft ar	nalysi	S
Module:4	Core and Outrigger System		4 ho	ours	
Behaviour- of	ptimum location of single outrigger- optimum location of two out	trigge	r- fra	med	tube
systems					
Module:5	Shear Wall System		5 ho	ours	
Behaviour and	d analysis of shear wall- coupled shear wall				
Module:6	In-filled Frame Systems		3 ho	ours	
Importance -	- Methods of analysis – Equivalent truss and frame method – Force-di	isplac	emen	t	
method – Eff	fect of perforation in the in-filled frame.				
Module:7	Three Dimensional Analysis	3 hours			
Basic principl	es – Centre of rotation of a rigid floor, Force displacement method				

2 hours

30 hours

15 hours

Total Lecture hours

Tutorial Hours

Module:8

Contemporary issues

Tex	Text Book(s)							
1.	B.S. Taranath (2011), Structural ana	B.S. Taranath (2011), Structural analysis and design of tall building, CRC Press						
Ref	Reference Books							
1.	1. Ghali.A., Neville.A.M and Brown.T.G, (2003), Structural Analysis – A unified classical and Matrix Approach (Fifth Edition), Span press							
2.	IS 13920 Ductile detailing of reinfor	orced concrete stru	actures, Bl	S, India				
3.	IS 1893 Criteria for earthquake resis	stant design BIS,	India					
4.	IS 875 Code of practice for design le	oadsBIS, India						
Mo	ode of Evaluation: Continuous Asses	ssment Test, Quiz	zes, Assig	nments, Final Assessment Test				
Rec	commended by Board of Studies	05.07.2022						
Ap	proved by Academic Council		Date					

MSTE609L	OFFSHORE STRUCTURES	L	T	P	С		
MISTEOUSE	OFFSHORE STRUCTURES	2	1	0	3		
Pre-requisite	Nil	Syll	labus	vers	ion		
Course Objectives	s:	· ·					
1. To learn the	e types and functions of offshore structure.						
2. To study th	2. To study the behavior of structures subjected to hydrodynamic loads						
3. To study d	3. To study different analysis procedures for different offshore structures and also study the						
wave structure interaction.							

Expected Course Outcome:

Upon completion of this course, the student will be able to

- 1. Understand the types and functions of offshore structure
- 2. Evaluate the loads experienced by offshore structure
- 3. Understand the concept of fixed offshore structures
- 4. Understand the wave hydrodynamics
- 5. Evaluate the wave forces on offshore structures
- 6. Design the framed structure in offshore.
- 7. Analyse the offshore structures subjected to dynamic loads.

7. Anaiy	se the offshore structures subjected to dynamic loads.						
Module: 1	Introduction	4 hours					
• •	Types of Offshore Structures-Types of Offshore Platforms -Functions of offshore structures-						
Components	of a Typical Offshore Structure						
Module: 2	Loads on Offshore Structures	4 hours					
Gravity Load	s-Wind Load- Offshore Loads- Fatigue Load-Seismic Loads.						
Module:3	Concepts of Fixed Platform Jacket and Deck	4 hours					
Jacket conc	epts-redundant framing arrangement-Launch and Lift ja	ckets-Simple Deck					
configuration	s for Lift and float- Over installations- In-service and Pre-service	Loads and analysis.					
Module: 4	Wave Theories	4 hours					
Wave genera	tion and Propagation - Small and finite amplitude wave theories	s - Wave energy and					
pressure distr	ibution						
Module: 5	Wave force on Offshore Structures	4 hours					
	tical Cylindrical Members-Linearization of Nonlinear Wave Drag						
	rbitrarily Oriented Cylindrical Members - Wave Forces on Large	Diameter					
Structures							
Module: 6	Fundamental Considerations for Framed Offshore	4 hours					
	Structural Analysis						
	eristics and Modelling Procedures for Analysis-Hydrostatic Press						
Buoyancy-F	inite Element Applications for Framed Offshore Structural Analy	/sis					
Module: 7	Considerations for Dynamic Analysis	4 hours					
Characterizat	ion of Offshore Structure as an SDOF System-SDOF Models in G	Offshore Structures-					
MDOF Systems							
Module: 8	Contemporary issues	2 hours					
	Total Lecture hours	30 hours					
	Tutorial Hours	15 hours					

Tex	Text Book(s)					
1.	D.V. Reddy, A. S. J. Swamidas(2014), Essentials of Offshore Structures, CRC Press, Taylor & Francis Group					
Reference Books						
1.	Mohamed A. El-Reedy (2012), Offshore Structure, Design, Construction and Maintenance, Gulf Professional Publishing,					
2.	API (2014), Recommended Practice for Planning, designing and Construction, Fixed offshore					
۷.	platform, American Petroleum Institute publication, RP2A, Dallas, Texas.					
3.	Günther Clauss, Eike Lehmann, Carsten Östergaard, M.J. Shields (2012), Offshore					
] 3.	Structures: Volume I: Conceptual Design and Hydromechanics: 1, Springer- Verlag.					
4.	Eugenio Fortaleza (2012), Active Control of Offshore Structures, Lambert Academic					
4.	Publication.					
Mo	de of Evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test					
Rec	commended by Board of Studies 05.07.2022					
Ap	Approved by Academic Council Date					

MSTE610L	REPAIR AND REHABILITATION OF STRUCTURES			P	C		
MISTEUIUL	RELAIR AND REHABILITATION OF STRUCTURES	3	0	0	3		
Dro roquisito	Nil		Syllabus version				
Pre-requisite							

Course Objectives:

- 1. To impart broad knowledge in the area of repair and rehabilitation of structures
- 2. To understand about various causes of deterioration of structures
- 3. To obtain the knowledge about corrosion of structures
- 4. To understand the properties of repair materials
- 5. To know various repair techniques and strengthening methods

Expected Course Outcome:

Upon completion of this course, the student will be able to

- 1. Identify the role of the maintenance engineer
- 2. Understand the causes of deterioration of structures
- 3. Identify the effect of corrosion on structures
- 4. Apply the NDT techniques to assess the condition of the structures
- 5. Evaluate various properties and applications of repair materials
- 6. Assessing the techniques for repairing
- 7. Apply the strengthening techniques for distressed buildings

Module: 1 Introduction 5 hours

Importance of maintenance - Types of maintenance - Decay of structures- Role of the Maintenance Engineer - Quality Assurance for concrete construction - Design and construction errors.

Module: 2 | **Deterioration of Structures**

6 hours

Causes of deterioration of concrete, steel, masonry and timber structures - surface deterioration - efflorescence - Causes and preventive measures.

Module: 3 | Corrosion of Structures

6 hours

Corrosion mechanism - Effects of cover thickness and cracking - Methods of corrosion protection – Inhibitors - Coatings - Cathodic protection for reinforcements.

Module: 4 Inspection and Assessment of Distressed structures

6 hours

Visual inspection – Non-destructive tests –Ultrasonic pulse velocity method – Rebound hammer technique– Pullout tests – Core test.

Module: 5 | **Materials for Repair**

6 hours

Special concretes and mortar - Concrete chemicals - Special elements for accelerated strength gain - Expansive cement- Polymer concrete - Ferro cement, Fibre reinforced concrete - Fibre reinforced plastics.

Module: 6 | Techniques for Repair

6 hours

Techniques for repairing of spalling and disintegration of structures - Grouting –Autogenous healing-Pre-packed concrete- Protective surface coating.

Me	odule: 7	Strengthening of distre	ssed buildings			6 hours	
Rep	Repairs to overcome low member strength – Deflection - Chemical disruption - Weathering wear -						
Fire	e leakage -	- Marine exposure- Use of	FRP- NDT tests				
Me	odule: 8	Contemporary issues				4 hours	
	,			To	tal Lecture hours	45 hours	
Tex	kt Book(s)						
1.	Modi, P.	I., Patel, C.N. (2016). Rep	oair and Rehabilitation	on of Co	ncrete Structures, Pl	HI India, New	
1.	Delhi.						
Ref	ference B	ooks					
1.	IABSE, (2010). Case Studies of Rehabilitation, Repair, Retrofitting, and Strengthening of						
1.	Structure	Structures, Volume 12, Structural Engineering Documents (SED), Switzerland.					
2.	Varghes	e, P.C. (2014), Maintenar	nce, Repair & Reha	bilitation	and Minor Works	of Buildings,	
2.	PHI India, New Delhi.						
3.	Bhattacharjee, J. (2017), Concrete Structures Repair Rehabilitation And Retrofitting, CBS						
3.	Publishe	rs & Distributors, New De	elhi.				
Mo	de of Eva	luation: Continuous Asse	essment Test, Quizze	es, Assig	nments, Final Asses	ssment Test	
Rec	commend	ed by Board of Studies	05.07.2022				
Ap	Approved by Academic Council Date						

MSTE611L	ENERGY EFFICIENT BUILDINGS	L	T	P	C	
MISTEOTIL	ENERGI EFFICIENI BUILDINGS	3	0	0	3	
Pre-requisite	Nil	Syllabus version				
1 re-requisite	1411					

Course Objectives:

- 1. To understand the concept of reduction in energy consumption through low energy building design
- 2. To Understand the sources of Renewable Energy
- 3. To Highlight strategies to integrate daylighting and low energy heating/cooling in buildings
- 4. To Model air flow and Ventilation
- 5. To know illumination requirements artificial lighting and factors affecting day lighting
- 6. To Design for climatic zones

Expected Course Outcome:

On completion of this course, the students will be able to:

- 1. Understand the concept of reduction in energy consumption through low energy building design
- 2. Understand the sources of renewable Energy
- 3. Examine strategies to integrate day lighting and low energy heating / cooling in buildings
- 4. Understand model air flow and Ventilation
- 5. Know illumination requirements artificial lighting and factors affecting day lighting
- 6. Design for climatic zones

Module: 1 | Green Buildings, Energy and Environment

6 hours

Green Buildings within the Indian Context, Types of Energy, Energy Efficiency and Rebound Effect, Pollution, Better Buildings, Reducing energy consumption, Low energy design.

Module: 2 | **Renewable Energy sources**

7 hours

Solar energy, Passive Solar Heating, Passive Solar collection, Wind and other renewables. A passive solar strategy: Direct gain - Trombe wall, convective air loop, Photovoltaics, Climate and Energy, Macro and Microclimate - Indian Examples.

Module: 3 | **Heating and Cooling**

8 hours

Building Form Surface area and Fabric Heat Loss, utilizing natural energy, Internal Planning, Grouping of buildings – Robin's Spatial Proportion – Orientation of building –Heat transmission through buildings –Thermal properties of building materials – Thermal Comfort –Psychrometric Chart –Heat transfer – Cosine Effect - Insulation - Cooling buildings, passive cooling, and mechanical cooling – Measurement of heating and cooling loads.

Module: 4 | **Ventilation and Infiltration**

8 hours

Natural ventilation and forced ventilation in commercial buildings, passive cooling, modelling air flow and ventilation – stack effect - ventilation calculation – Mass effect

Module: 5 Day lighting and Artificial Lighting

8 hours

Illumination requirements - Concepts of daylight factors and day lighting, daylight assessment, sky dome - sun path diagram, sky exposure angle, sun protection, shading coefficient, visualizing day lighting: Source-Path-Target and apparent size, illuminance calculation, penetration and spread of sky component, artificial lighting, efficacy, Radiant barriers - new light sources —luminaries - light

(Deemed to be University under section 3 of UGC Act, 1956)								
shelves - Supplementary artificial lighting design – light distribution – electric lighting control								
Module: 6		S .			3 hours			
Energy efficient building strategies for various climatic zones – cold and cloudy – cold and sunny								
- composite - warm and humid - moderate - hot and dry - case studies.								
Module: 7		EnergyAssessment and Compliances Procedures				3 hours		
Energy awareness, monitoring energy consumption, Building Environmental Assessment-								
environmental criteria – embodied energy of building materials - assessment methods - assessment								
tools (e.g. GRIHA, LEED) - Ecohomes - Sustainable architecture and urban design - principles of								
environmental architecture.								
Module: 8		Contemporary issues			2 hours			
Total Lecture hours						45 hours		
Text Book(s)								
1.	Satyajit Ghosh and Abhinav Dhaka (2015), Green Structures: Energy Efficient Buildings, Ane							
	Books.							
Reference Books								
1.	Charles Eley (2016), Design Professional's Guide to Zero Net Energy Buildings, Island Press.							
2.		hapiro (2016), Energy Au	dits and Improvem	ents for C	ommercial E	Building	gs, John	
		Wiley & Sons.						
3.	Moncef Krarti (2016), Energy Audit of Building Systems: An Engineering Approach, Second							
	Edition.							
4.	EngHwa Yap., (2017), Energy Efficient Building, Published by InTech., Crotia.							
5.	Lal Jayamaha (2006), Energy-Efficient Building Systems: Green Strategies for Operation and							
	Maintenance, McGraw Hill Professional.							
Mode of Evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test								
Recommended by Board of Studies 05.07.2022								
Ap	proved by	Academic Council		Date				