

SCHOOL OF ADVANCED SCIENCES DEPARTMENT OF CHEMISTRY

M.Sc Chemistry (MSH)

Curriculum & Syllabi (2024-2025 Admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

- World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.
- Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.
- * Impactful People: Happy, accountable, caring and effective workforce and students.
- Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.
- Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF SCHOOL OF ADVANCED SCIENCES

To be an internationally renowned science school in research and innovation by imparting futuristic education relevant to the society.

MISSION STATEMENT OF SCHOOL OF ADVANCED SCIENCES

- To nurture students from India and abroad by providing quality education and training to become scientists, technologists, entrepreneurs and global leaders with ethical values for a sustainable future.
- ✤ To enrich knowledge through innovative research in niche areas.
- ✤ To ignite passion for science and provide solutions for national and global challenges.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be practitioners and leaders in their chosen field.
- 2. Graduates will function in their profession with social awareness and responsibility.
- 3. Graduates will interact with their peers in other disciplines in their work place and society and contribute to the economic growth of the country.
- 4. Graduates will be successful in pursuing higher studies in their chosen field.
- 5. Graduates will pursue career paths in teaching or research.

PROGRAMME OUTCOMES (POs)

- PO_01: Having a clear understanding of the subject related concepts and of contemporary issues.
- PO_02: Having problem solving ability to address social issues.
- PO_03: Having a clear understanding of professional and ethical responsibility.
- PO_04: Having cross cultural competency exhibited by working in teams.
- PO_05: Having a good working knowledge of communicating in English.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of M.Sc. Chemistry programme, graduates will be able to

PSO1: Apply advanced concepts of organic, analytical, physical and inorganic chemistry to solve complex problems to improve human life.

PSO2: Design experiments, analyze, synthesize and interpret data to provide solutions to different industrial problems by working in the pure, inter and multi-disciplinary areas of chemical sciences.

PSO3: Able to independently carry out research / investigation to solve practical problems and write / present a substantial technical report/document.

CREDIT STRUCTURE

Category-wise Credit distribution

S. No.	Description	Credit	Maximum Credit
1	DC – Discipline Core	28	28
2	DE – Discipline Elective	21	21
3	PI – Projects and Internship	20	20
4	OE – Open Elective	06	06
5	SE – Skill Enhancement	05	05
	Total credits	80	

DETAILED CURRICULUM

	Discipline Core											
S.No	Course Code	Course Title	Course Type	Version	L	Т	Р	J	Credit			
1	PCHY501L	Physical Chemistry	Theory Only	1.0	3	1	0	0	4.0			
2	PCHY501P	Physical Chemistry Lab-I	Lab Only	1.0	0	0	4	0	2.0			
3	PCHY502L	Inorganic Chemistry	Theory Only	1.0	3	1	0	0	4.0			
4	PCHY502P	Inorganic Chemistry Lab-I	Lab Only	1.0	0	0	4	0	2.0			
5	PCHY503L	Organic Chemistry	Theory Only	1.0	3	1	0	0	4.0			
6	PCHY503P	Organic Chemistry Lab-I	Lab Only	1.0	0	0	4	0	2.0			
7		Group Theory and Molecular Spectroscopy	Theory Only	1.0	3	1	0	0	4.0			
8		Organic Synthesis and Methodologies	Theory Only	1.0	3	0	0	0	3.0			
9	PCHY506L	Organometallics and Industrial Applications	Theory Only	1.0	3	0	0	0	3.0			

		Discipline I	Elective						
S.No	Course Code	Course Title	Course Type	Version	L	Т	Р	J	Credit
1	PCHY601L	Analytical Chemistry	Theory Only	1.0	3	0	0	0	3.0
2	PCHY602L	Advanced Organic Chemistry	Theory Only	1.0	3	1	0	0	4.0
3	PCHY603L	Chemistry of Heterocyclic Compounds	Theory Only	1.0	3	0	0	0	3.0
4	PCHY604L	Chemistry of Natural Products	Theory Only	1.0	3	0	0	0	3.0
5	PCHY605L	Photochemistry and Pericyclic Reactions	Theory Only	1.0	4	0	0	0	4.0
6	PCHY606P	Organic Chemistry Lab-II	Lab Only	1.0	0	0	4	0	2.0
7	PCHY607P	Organic Chemistry Lab-III	Lab Only	1.0	0	0	4	0	2.0
8	PCHY608L	Electroanalytical and Separation Techniques	Theory Only	1.0	3	1	0	0	4.0
9	PCHY609L	Environmental and Industrial Analytical Chemistry	Theory Only	1.0	3	1	0	0	4.0
10	PCHY610L	Bioanalytical and Forensic Analysis	Theory Only	1.0	3	0	0	0	3.0
11	PCHY611L	Analytical Quality Assurance for Process Industry	Theory Only	heory Only 1.0		0	0	0	3.0
12	PCHY612P	Analytical / Physical Chemistry Lab-II	Lab Only	ly 1.0		0	4	0	2.0
13	PCHY613P	Analytical Chemistry Lab-III	Lab Only 1.0		0	0	4	0	2.0
14	PCHY614L	Advanced Inorganic Chemistry	Theory Only	1.0	3	1	0	0	4.0
15	PCHY615L	Materials Chemistry	Theory Only	1.0	3	0	0	0	3.0
16	PCHY616L	Nanomaterials and Characterization Techniques	Theory Only	1.0	3	0	0	0	3.0
17	PCHY617L	Inorganic Photochemistry	Theory Only	1.0	4	0	0	0	4.0
18	PCHY618P	Inorganic Chemistry Specialization Lab-II	Lab Only	1.0	0	0	4	0	2.0
19	PCHY619P	Inorganic Chemistry Specialization Lab-III	Lab Only	1.0	0	0	4	0	2.0
20	PCHY620L	Process Chemistry in Pharmaceutical Industry	Theory Only	1.0	3	1	0	0	4.0
21	PCHY621L	Pharmacognosy and Phytochemistry	Theory Only	1.0	3	1	0	0	4.0
22	PCHY621P	Pharmacognosy and Phytochemistry Lab	Lab Only	1.0	0	0	4	0	2.0
23	PCHY622L	Pharmaceutical Quality Control and Qaulity Assurance	Theory Only	1.0	3	0	0	0	3.0
24	PCHY623L	Medicinal Chemistry	Theory Only	1.0	3	0	0	0	3.0
25	PCHY623P	Medicinal Chemistry Lab	Lab Only	1.0	0	0	4	0	2.0
26	PCHY624L	Advanced Physical Chemistry	Theory Only	1.0	3	0	0	0	3.0
27	PCHY625P	General Organic and Inorganic Chemistry Lab	Lab Only	1.0	0	0	4	0	2.0
28	PCHY626P	Analytical Chemistry Practical I	Lab Only	1.0	0	0	4	0	2.0

	Projects and Internship								
S.No	Course Code	Course Title	Course Type	Version	L	Т	Р	J	Credit
1	PCHY698J	Internship I/ Dissertation I	Project	1.0	0	0	0	0	4.0
2	PCHY699J	Internship II/ Dissertation II	Project	1.0	0	0	0	0	12.0
3	PSET695J	Project Work	Project	1.0	0	0	0	0	4.0

	Open Elective										
S.No	Course Code	Course Title	Course Type	Version	L	Т	Р	J	Credit		
1	PCHY627L	Drug Design	Theory Only	1.0	3	0	0	0	3.0		
2	PCHY628L	Polymer Chemistry	Theory Only	1.0	3	0	0	0	3.0		
3	PCHY629L	Biophysical Chemistry	Theory Only	1.0	3	0	0	0	3.0		
4	PCHY630L	Computational Chemistry	Theory Only	1.0	3	0	0	0	3.0		
5	PCHY631L	NMR, EPR and Mass Spectrometry	Theory Only	1.0	3	0	0	0	3.0		
6	PCHY632L	Bioorganic Chemistry	Theory Only	1.0	3	0	0	0	3.0		
7	PCHY633L	Nanomaterials	Theory Only	1.0	3	0	0	0	3.0		
8	PCHY634L	Green Chemistry	Theory Only	1.0	3	0	0	0	3.0		

	Skill Enhancement								
S.No	Course Code	Course Title	Course Type	Version	L	Т	Р	J	Credit
1	PENG501P	Technical Report Writing	Lab Only	1.0	0	0	4	0	2.0
2	PSTS501P	Qualitative Skills Practice	Soft Skill	1.0	0	0	3	0	1.5
3	PSTS502P	Quantitative Skills Practice	Soft Skill	1.0	0	0	3	0	1.5

Discipline Core

Course Code Course Title L T P										
PCHY501L	Physical Chemistry	3	1	0	4					
Pre-requisite	NIL	Syl	labus	s vers	sion					
		1.0								
Course Objectiv										
1. Enriching the understanding of the significance of laws of thermodynamics										
	and the calculations of absolute entropy and fuga	•								
	the significance of the kinetics of complex r									
of unimoleculargaseous reactions, homogeneous and heterogeneous catalysis										
and enzyme	•									
3. Understandi	c	emist	ry a	nd t	heir					
applications.		امراده			° ⁴					
•	Nernst equation and understand Debye-I			•						
•	conductance, Kohlrausch's law and understatic tric and potentiometric titrations.	and	ine i	neory	/ 01					
Course Outcom										
	oncepts of a Carnot theorem for heat engines.									
	ems related to thermodynamic properties of idea	& rc	an lea		and					
entropy of a		i a ic	ai yo							
	etics of complex, unimolecular and chain reaction	s								
	equirements of quantum mechanics for chemical		ms.							
	t equation, Debye-Huckel theory and Kohlrausch	•								
	ctronically excited state dynamics and kinetic be			chemi	cal					
systems.	, , , , , , , , , , , , , , , , , , ,									
7. Recall the c	concepts on adsorption isotherms, kinetics and	the	rmod	ynam	ics					
of surface re	eactions.									
8. Explain prop	perties of surface active agents and their th	iermo	odyna	mics	of					
micellazation	۱.									
Module:1 Clas	sical Thermodynamics I			5 hc	ours					
	of thermodynamics- Carnot cycle, Efficiency			-						
	calculations - Free energy, criteria for spontane	•								
	perature and Pressure. Chemical potential –	-	-		-					
	plications of free energy. 3 rd law of thermodyr	namic	s – /	Absol	ute					
entropy.										
	mical Kinetics I			7 hc						
•	aws and temperature dependence; complex read		•							
••	letermination of reaction mechanisms; collision a									
	constants - Lindemann and Rice-Ramsperge			-	-					
	actions; Kinetics of parallel – opposing reactions	s - Cr	iam f	eacil	มาร					
(hydrogen-halogo Catalysis-Homog	,	2071/m		cataly	/sic					
	geneous catalysis-heterogeneous catalysis-e n kinetics, salt effects – Inhibition effects - Auto	•								
	$\frac{1}{2}$	naial	y313.(Jaidiy	313-					

Homogeneous catalysis- heterogeneous catalysis-enzyme catalysis Menton kinetics, salt effects – Inhibition effects - Autocatalysis.	-Michaelis-						
Module:3 Quantum Chemistry I	6 hours						
Wave-particle dualism, Uncertainty principle. Operators for dynamic v							
Eigen values and Eigen functions; Postulatory basis of quantum i							
Schrödinger wave equation.	,						
Module:4 Quantum Chemistry II	7 hours						
Particle in a box, one and three-dimensional, quantum numbers, zero poi	nt energy,						
orthogonalisation and normality, finite potential barrier – tunneling.	•••						
Rotator, One Dimensional Harmonic Oscillator, Solutions to hydrogen atom.							
Variation theorem – Time dependent wave function.							
Module:5 Electrochemistry I	5 hours						
Nernst equation, redox systems, electrochemical cells; Debye-Huckel	theory;						
Electrolytic conductance - Kohlrausch's law and its applications; ionic	equilibria;						
conductometric andpotentiometric titrations.	• •						
Module:6 Photophysical Chemistry I	7 hours						
Review of concepts and laws of photochemistry- Brief review of	electronic						
transition, Frank- Condon principle, selection rules, construction of							
diagram, electronic transitions and intensity of absorption bands;							
Excited state kinetics, quantum yield expressions, excimer and exciplex,	kinetics of						
luminescence quenching: Phosphorescence, fluorescence quenching: co	ncentration						
quenching, static and dynamic, deviation from Stern-Volmer kinetics.							
Module:7 Surface Chemistry and Colloids	6 hours						
Surface tension, adsorption on solids, Thermodynamics of surface	es, Gibbs						
Adsorption Isotherm, Heat and Entropy of adsorption. Study of s	urfaces –						
Freundlich, Langmuir and BET adsorption isotherms - study of kinetics	of surface						
reactions.							
Properties and stability of colloids, surface active agents, reverse micel	lles, critical						
micellar concentration (CMC), factors affecting CMC of surfactants, therm	nodynamics						
of micellazation, microemulsions.							
Module:8 Contemporary Issues	2 hours						
Industry Expert Lecture							
Total Lecture hours:	45 hours						
Total Tutorial hours:	15 hours						
Text Book(s)							
1. P. W. Atkins and Julio de Paula, Atkins' Physical Chemistry,	, 2018,						
International 11 th Edition, Oxford University Press, United Kingdom.							
 International 11th Edition,Oxford University Press, United Kingdom. Ira N. Levine, Quantum Chemistry, 7th Edition, 2014, Pearson Prenti 	ce Hall,						
 Ira N. Levine, Quantum Chemistry, 7th Edition, 2014, Pearson Prenti London. 	ce Hall,						
 Ira N. Levine, Quantum Chemistry, 7th Edition, 2014, Pearson Prenti London. Reference Books 							
 Ira N. Levine, Quantum Chemistry, 7th Edition, 2014, Pearson Prenti London. Reference Books K. J. Laidler, Chemical Kinetics, 1987, 3rd Edition, Harper & Row, New 	v York.						
 Ira N. Levine, Quantum Chemistry, 7th Edition, 2014, Pearson Prenti London. Reference Books 	v York.						

3.	R. S. Berry, S. A. Rice and J Ross, Physical Chemistry, 2001, 3 rd Edition, Wiley,							
	New York.							
4.	A.K. Chandra, Quantum Chemistry, 4 th edition, McGraw Hill Education, 2017,							
	India.							
Mo	de of Evaluation: CAT, Written Assig	gnment, Qu	uiz, FAT a	and Seminar				
Red	commended by Board of Studies	26-02-2024						
Арр	proved by Academic Council	No. 73	Date	14-03-2024				

Cour	rse Code	Course Title	L	Т	Ρ	С	
PCH	Y501P	Physical Chemistry Lab-I	0	0	4	2	
Pre-r	requisite	NIL	Syll	abus	s vers	ion	
				1	.0		
	rse Objective						
	• ·	ating different instruments used in the analysis	of va	rious	chem	ical	
Cc	onstituents.						
	rse Outcomes						
		th potentiometry, conductometry, fluorimetr	y, co	olorim	netry,		
		romatography.					
2. A	pply concepts	of physical and analytical chemistry through e	xperir	ment	S.		
	·· - ·						
	cative Experiment				<u>c</u> h		
1.		Ferrous ion by Potentiometry				ours ours	
2.	Construction of phase diagram of three component system.						
3.	Conductometric titration of mixture of acids against a strong base.						
4.	Adsorption of acetic acid on charcoal - Verification of Freundlich						
5.	Evaluation of Arrhenius parameters: Activation Energy and						
	Frequency					ours	
6.		netics of oxidation of lodide by Persulphate.					
7.							
	different immiscible solvents.						
8.		n of concentrations of potassium and calciun	n in r	eal	6 h	ours	
		g Flame Photometry			0.1		
9.		chlorophyll in leaves by colorimetry				ours	
10.		n of quinine by Fluorimetry and comparison of			2 h	ours	
	quantum effic				4.1		
11.		n of stoichiometry of metal complexes using			4 no	ours	
10	· · ·	metry (Job's method)	- 6	4-1	4 1-		
12.	•	f (a) mixture of Azo dyes by TLC (b) mixture	or me	atal	4 NG	ours	
	IONS by Fape	r chromatography (demo)			60 ha		
Text	Book(s)	Total Laborator	γ ΠΟΙ	115	60 hc	urs	
1.	\ /	hysical Chemistry Practical Guide, Charu	Arora	. Su	mantr	а	
		, Bentham Science Publishers, 2022.		,			
		,					
2.	Vogel's Quar	ntitative Chemical Analysis, Arthur Israel Vo	jel, J.	Mei	ndharr	١,	
	•	, J. D. Barnes, M.J.K. Thomas, R. C. Den					
		Edition, Prentice Hall, 2000.	, , -	-			
		. ,					
Refe	rence Books						
1.		vsical Chemistry, B. Viswanathan, P. S. Rag	hava	n, Vi	va Bo	oks	
	Private Limite						

2.	Analytical Chemistry, International			D. Christian, Purnendu K.			
	Dasgupta, Kevin A. Schug, 7 th Edition, Wiley, 2020.						
		•					
Мос	le of Evaluation: CAT, Written Assign	nment, Quiz	z, and FA	ΑT			
	ommended by Board of Studies	26-02-2024					
Арр	roved by Academic Council	No. 73	Date	14-03-2024			

Course Code	Course Title	L	Т	Ρ	С			
PCHY502L	Inorganic Chemistry	3	1	0	4			
Pre-requisite	NIL	Syl	labus	s vers	sion			
			1.0					
Course Object	Ves							
1. Explaining	structure, bonding and reaction mechanism	invo	olved	in				
•	olids and metal complexes.							
	ncepts of inorganic chemistry in research and dev	elopr	nent.					
Course Outcor								
 Compare the trends in the properties of main group elements and discuss thechemistry of Si, B, C- based compounds. Explain the structural arrangement in metals, ionic, covalent compounds and inorganic solids. Discuss theories of coordination chemistry. Interpret the reaction mechanism in metal complexes. Outline the concepts of organometallics. Justify the importance of nuclear chemistry in energy generation. 								
-	emistry of p-block elements	011.		6 hc	ours			
	riodic trends- Silicones, silicates, silanes, phosp	haze	nes.					
Synthesis, bond	ding and structure. Carboranes and borazines. S (CN)x,Boron Carbon Nitride (BCN)x, HSAB Theor	Sulfur						
Module:2 Str	ucture and bonding			6 hc	ours			
Close packing:	Types of close packing in metals, packing in i	onic	cryst	als. I	onic			
	's rules for ionic crystals - ionic radii and co	valen	it rac	dii. M	letal			
	ic bonding and Hydrogen bonding.							
	rganic solids			5 hc				
Ionic solids - Na	aCl, CsCl, TiO ₂ , CaF ₂ and ZnS – 3D structure -po	olyhe	dral a	ppro	ach.			
•	al: Frenkel, Schottky and other defects.							
	led compounds - CdI_2 , NiAs, MoS ₂ .							
	ordination chemistry-l				ours			
	T: splitting of d orbitals under various geometrie				-			
	ochemical series – Jahn-Teller distortion - appl			•				
	T. Ligand Field Theory and MO theory: types of c			- sigr	na -			
	mplexes, back bonding(carbonyls) - Nephelauxeti	c effe	ects.					
	ordination chemistry-II			6 hc				
	anisms: Labile and inert complexes - ligand displac							
	square planar complexes. Trans effect: theory		a app	nicati	ons.			
Electron transfer reactions: Innersphere and outer sphere process.								
	janometallic Chemistry	-1		6 hc				
Types of ligands in organometallic compounds - eighteen Electron rule, alkyl compounds, metalcarbonyls, isolobal concepts. Metallocenes: Ferrocene.								
	clear chemistry	nuce		5 hc				
	ical viicillisu y			5 110	Jul 2			

Stability of nuclides, nuclear energy, isotope separation (specific to U), Types of decay, radioactive equilibrium, different types of nuclear reactions, q value and nuclear reaction cross section, neutronactivation analysis.

Module:8 Contemporary Issues						2 hours	
Ind	ustry Ex	pert Lecture					
				Fotal Lec	ture hours:	45 hours	
Total Tutorial hours: 15 hou							
.		(-)					
	kt Book						
1.		hriver and P.W. Atkins, Inc	organic Che	emistry, C	Oxford Univer	sity Press,	
		tion, 2010.					
2.		ee, Concise Inorganic Che	emistry, Ox	ford Uni	versity Press,	5th Edition,	
	2014.						
3.	F.A. C	otton and G. Wilkinson Ad	vanced ino	rganic C	hemistry, Joh	n Wiley &	
	Sons, 6	6th Ed.,1999.					
Ref	ference	Books					
1.	J.E. H	uheey, E.A. Kelter and R.	L. Kelter, F	Principles	of structure	and	
	reactivi	ty, Inorganic Chemistry, Ha	arper Collin	s Colleg	e Publishers,	4th	
	Edition	, 2011.					
2.	C.N.R.	Rao, Muller and A. K. Che	eetham, Ch	emistry o	of Nanomater	ials,	
	Vol. I 8	II, WileyVCH Verlag GmbH	HKGaA, 20	14.			
3.	Lesley	E. Smart, Elaine A. Moore,	Solid State	Chemist	ry: An Introdu	iction,	
	-	ress, 4thEdition, 2012.					
4.	Walter	D. Loveland, David J. Mo	orrissey, G	enn T. S	Seaborg, Mo	dern Nuclear	
		stry, Wiley-Interscience, 1st	•		0		
Мо		aluation: CAT, Written Assig			and Seminar		
		ded by Board of Studies	26-02-202				
		y Academic Council	No. 73	Date	14-03-2024		
		<u>,</u>					

Cou	Irse Code	Cours	se Title			L	Т	Ρ	С
	IY502P	Inorganic Ch	nemistry	Lab I		0	0	4	2
Pre-	requisite	NIL				Sy	llabu	s ver	sion
							1	.0	
	irse Objectiv								
1		the concepts of qualitation	ative and	quantita	ative ar	alys	es of	inorg	anic
	samples								
	-	g skills for synthesis an	d charact	erization	n of inor	gani	c mat	erials	
	Irse Outcom			f = = f === !					
		apply the principle of a	•		xture.				
		he metal content in allo	• •						
	•	ne skill of nanomaterial							
		hodologies for real time	e sample	anaiysis					
	cative Exper		ootiono	Somin	aioro au	ualita	tivo	20 ho	
1.		analysis of inorganic	cations -	Semi-n	nicro qu	iaiita	uve	30 ho	urs
	analysis of	faalta aantaining two s	ommon	nationa (Ca	64		
		f salts containing two c							
		Co, Ni, Mn, Zn, Ba, Sr, M			non cai	10115	(• • ,		
2.		Th, Zr, V, Li): simple s		62					
۷.		Analysis of Inorganic N		allov				6 hou	ro
		nation of copper and nic neous spectrometric of		•	chromi			6 hou	
		ese in an alloysteel.	letennina		CHIOIII	um	anu	onou	15
3.		nd Characterization of							
5.	1. Prussiar							6 hou	re
		anoparticles						6 hou	-
4.	Challenging							onou	15
т.		a chalcogenide or oxid	e hased	nhosnho	or mater	ial u	sed	6 hou	rs
	in displays.	a chaloogonhao or oxia	0 50000	phoophe	n mator		000	oniou	10
		the composition by ap	propriate	techniau	les				
		ne phosphorescence of		-					
	() · · · · · · · · · · · · · · · · · ·	r		otal Lal	borator	v Ho	urs	60 hc	ours
Tex	t Book(s)								
1.	Vogel's Qua	alitative Inorganic Analy	/sis, G. S	vehla ar	nd B. Si	vasa	nkar,	7 th	
	edition, Pea	rson, 2012.							
Refe	erence Book								
1.	-	antitative Chemical Ana	•		-				
		D. Barnes, M.J.K. Tho	mas, R. (C. Denne	ey, and	М. J	I.K. T	homa	s 6 th
		ntice Hall, 2000.							
		on: CAT, Written Assig			FAT				
Rec	ommended b	y Board of Studies	26-02-2	024					
Арр	roved by Aca	demic Council	No. 73	Date	14-03-	2024	1		

Course Code	Course Title	L	Т	Ρ	С				
PCHY503L	Organic Chemistry	3	1	0	4				
Pre-requisite	NIL	Syl	labus	s vers	sion				
•				.0					
Course Objectiv	es								
	1. Explaining the basic concepts on organic reactions and mechanism including								
stereochemic	al and conformational aspects.								
2. Application	of spectroscopic techniques for characteriz	ation	of	orga	nic				
compounds.									
Course Outcome	es								
1. Recall the fur	ndamental principles of organic reactions and me	chan	ism.						
2. Illustrate nom	enclature, isomerism and stereochemistry in org	anic	mole	cules.					
3. Analyze the s	tereochemistry of products in organic reactions.								
•	oselectivity, regioselectivity and enantioselectivity	ctivity	for	org	anic				
reactions of i	ndustrial significance.								
	e influence of the substituents on substrate mole	cules	and	natur	e of				
solvent.									
6. Interpret the	structure of organic molecules using spectroscor	ov.							
•	f arrow pushing and reactive intermediates	,		9 hc	ours				
	- electron source (nucleophile) and electron	sink	(elect	trophi	le),				
	bond breaking. Common mistakes in arrow pu			-					
-	n arrow, hyper valency, mixed media error, cons	-							
-	nd delocalization. General aspects, structure, s				-				
	s and chemical reactions involving classical		-						
	banions, free radicals, carbenes, nitrenes and ar				•••				
	duction to Stereochemistry and conformation	-	<u> </u>	9 hc	ours				
analy	-			• ···•					
	configuration at chiral centers - one & two ch	niral (cente	r, <i>me</i>	so				
compounds. Illust	rations of erythro and threo nomenclature.								
-	in sp ² and sp ³ carbons with specific example.	Rad	emic	; mixt	ure,				
optical purity - e	enantiomeric excess, Cis-Trans geometrical is	omer	ism a	and E	E, Z				
	uction to akamptisomerism. Conformational a								
	d bicyclic system: simple 1,2 disubstituted e								
=	no, di and tri-substituted cyclohexane, cis and t								
-	rmations in butadiene.								
	stitution and elimination reactions			8 hc	ours				
	ect of substrate, nucleophile and solvents on - S	ν1. S	₀2. S						
	ons with specific examples. Aromatic Nucleo								
	s mechanism – Nucleophilic substitution involvir								
	reaction-Von-Richter rearrangement. Elimination	-							
	lytic–eliminations- E1, E1cB, E2 mechanism, st								
	zeff vs. Hoffmann elimination.		2010	y					
-	rophilic and nucleophilic addition reaction to	<u>, C-C</u>		5 hc	lire				
	le bond	, <u> </u>		5 110	-ui 3				

		lianaa thiala hudraaan a	romida hiar		niona and h	
		lienes, thiols, hydrogen cy				
		of alkenes to diols (Ma	anganese,	Osmium	based), Prev	vost reaction
		vard modification.				
		Aromatic Electrophilic su				5 hours
	•	c substitution in mono and		ited arol	matic systems	s : Initration,
		and Friedel Crafts reaction				
		Addition to carbon-heter				5 hours
		Knoevenagel reactions and				
		, Mannich reaction, Perkin			-	-
		ctions, Claisen ester cond				
		ter condensation, Reforma	atsky react	ion, Mcl	Murry coupling	g, Michael
		d Robinson annulation.				
Мо	dule:7		using spe	ectrosc	opic	7 hours
		techniques	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ania taal		a diaguagadu
		al principles of the following		-		
		R, NMR and Mass spectr			n of these s	pectroscopic
	•	in problem solving for orga	anicmolecu	les.		
		Contemporary Issues				2 hours
mu	usity Ex	pert Lecture	•	Total La	cture hours:	45 hours
					clure nours.	45 11001 5
			-	Total Tu	torial hours:	15 hours
Tex	kt Book	(s)				
1.	Ernest	L.Eliel, Stereochemistry of	carbon cor	npounds	, Tata McGra	whill Edition,
	2001.					
2.	J. Mar	ch and M. B. Smith, Ma	arch's Adva	anced C	rganic Chem	istry:
	Reaction	ons, Mechanisms, andStruc	ture, 6th Ed	lition, Wi	ley, 2013.	-
3.	Peter	Sykes, A Guidebook to M	lechanism	in Orga	nic Chemistry	/, 6 th
		, Pearson EducationLtd., Er		-	-	
Re	ference		0			
1.	I. L. Fir	nar, Organic Chemistry Vol.	I & Vol. II, L	ongmar	n (Cambridge)	, 2011.
2.		rruthares, Iain coldham, M				
		dition, Cambridge University			• •	
3.		Carey and R. J. Sundberg				Part A & B:
		on and Synthesis, Springer,		-	. . ,	
4.		Silverstein, G. C. Bassler,			ctrometric ide	ntification of
		cCompounds, John Wiley &		-		
Mo		aluation: CAT, Written Assig			and Seminar	
1110				, i /∖i (
	common	ded by Roard of Studies	26-02-202	4		
Re		ded by Board of Studies y Academic Council	26-02-202 No. 73	4 Date	14-03-2024	

Cou	Irse Code	Course Title	L	Т	Ρ	С
PCH	IY503P	Organic Chemistry Lab I	0	0	4	2
Pre-	requisite	NIL	Sy	llabu	s vers	sion
				1	.0	
	irse Objectiv					
		tills in organic synthesis				,
		wledge in separation, analysis and spectrosco	pic ir	nterpr	etatio	n of
	organic comp					
Cou	Irse Outcom	es				
1 A	Analyze orga	nic mixtures and functional groups of molec	ules i	Isina	vario	us
	eagents.			.onig	Tarre	0.0
	•	duct distribution based on reaction conditions	s and	spe	ctrosc	opic
	echniques.			-1		-1
Indi	cative Exper	iments				
1.		and qualitative Organic analysis of binary mixtu	re I		6hour	'S
2.	Separation	and qualitative Organic analysis of binary mixtu	re II		6hour	'S
3.	Separation	and qualitative Organic analysis of binary mixtu	re III		6hour	'S
4.	Separation a	and qualitative Organic analysis of binary mixtu	re IV		6hours	
5.	Separation a	and qualitative Organic analysis of binary mixtu	re V		6hours	
6.	Training on	separation/purification techniques (TLC, col	umn a	and	6hour	'S
	distillation)					
7.	Training or	n separation/purification techniques (recrysta	allizati	on,	6hour	S
	extraction, S	Soxhlet extraction, etc.)				
8.	Synthesis	and characterization of Endo-cis-1,4- endo	xo -2	2,3-	6hour	S
	dicarboxylic	acid (IR , UV , GCMS, NMR).				
9.	Synthesis	and characterization of 3-Pyridyl-4(3H) qui	nazolo	one	4hour	S
	(IR, UV, GC	:MS, NMR).				
10.	Synthesis	and characterization of Flavone using	Bak	ker-	4 hou	rs
		an Synthesis(IR, UV, GCMS, NMR).				
11.		and characterization of Anthracene-Maleic a	nhydr	ide	4 hou	rs
	adduct (IR,	UV, GCMS, NMR).				
		Total Laboratory H	ours	6	0 hou	rs
Taxa	t Book(s)					
1.		tbook of Practical Organic Chemistry, B.S. Fur	nice /		Janna	ford
1.	-	th and A.R. Tatchell, Pearson India; 5th edition				oru,
2.		sive practical organic chemistry, V.K. Ahluwal			Annar	wal
۲.	University p				, iggai	wai,
Ref	erence Book					
1.		S Manual of Organic Chemistry, R.K. Bansal, N	ew Ac	ie Int	ernati	onal
	Private Limi	-		,	2.1.00	2.101

2.	The Systematic Identification of Hermann, T. C. Morrill, D. Y. Cur	Organic C	Compou	nds, R. L. Shriner, C. K. F.
	Hermann, T. C. Morrill, D. Y. Cur	tin, and R.	C. Fuso	on, 7 th edition, John Wiley &
	Sons, New York, 1997			
Moc	le of Evaluation: CAT, Written Assi	ignment, Q	uiz, and	IFAT
Rec	ommended by Board of Studies	26-02-2	024	
App	roved by Academic Council	No. 73	Date	14-03-2024

Course Code	Course Title	L	Т	Р	С
PCHY504L	Group Theory and Molecular Spectroscopy	3	1	0	4
Pre-requisite	NIL	Syl	labus	s vers	sion
•				.0	
Course Objecti	ves				
1. Applying pra	actical aspects of quantum chemistry, spectroso	сору,	sym	metry	΄,
and group th	eory indifferent research problems.				
2. Explaining	he concepts of rotational, vibrational, electr	onic	and	NMF	२
spectroscop	/.				
Course Outcom					
•	etry and symmetry operations in molecules.				
	group theory in molecular spectroscopy.				
	the practical implementation of quantum chemist	•	•		
	antum chemistry, group theory and molecular sp	ectro	scop	y to s	oive
real world pro					
5. Outline the ba	asic physical aspects of NMR spectroscopy.				
Madula 1 Euro	domontolo of Croup Theory			6 ha	
	damentals of Group Theory ents and symmetry operations-group multiplications	ation	table	<u>6 hc</u>	Jurs
	larity transformations and classes- identificat				otrv
operations and	-			rreduc	•
•	Mullikan symbols.	5 ai		Teuu	
	lications of Group Theory			7 hc	hire
	eorem and its consequences - construction of	chara	acter		
	I, N2) and non- linear molecules (H2O, CH4, Xe				
	ation of representations of vibrational modes in lin				
molecules.					ou.
	ted linear combinations, symmetry aspects of N	ЛОth	neorv	. siar	na-
• • •	n AB4(tetrahedral) molecule.		,	, 3	
	tion rules of infra-red and Raman spectra - a	solia	ation	of a	auo
• •	ectronic spectra of ethylene and formaldehyde.			- 3	1
	damentals of molecular spectroscopy			6 hc	ours
	sorption and emission of radiation by molecular	spe	cies,	the w	/ave
properties of th	e light, the quantum theory of light, quantum	the	ory c	of ma	tter,
molecular ener	gies and the Born Oppenheimer approxima	tion,	the	types	s of
molecular motion	n and spectroscopy associated with each.				
Module:4 Rota	ational Spectroscopy			6 hc	ours
Classical descri	ption of molecular rotation, quantum mechan	ics o	of me	olecul	ar
motion, rotation	al spectra, determination of the bond length	n fro	m rc	otatior	nal
constants, vibrat	ional stretching and vibrational satellites, no-rigio	d roto	or, cei	ntrifug	jal
distortion, deger	neracies and intensities, Stark effect, selection	rule	s, ro	otatior	nal
spectra of polyat	omic molecules.				
Module:5 Vibr	ational Spectroscopy			6 hc	ours

Inte	eraction of Electromagnetic radiation with matter - The Vibratin	ng Diatomic
	plecule - harmonic and anharmonic oscillators- Diatomic Vibrating	•
	prations of polyatomic molecules-Molecular vibrations, types of	
	prations. Fundamentals, overtones, combination bands and Fermi	resonance,
	gerprint region. Application of IR - characteristic group frequencies	
	plecules and metal carbonyls.	s in organic
	odule:6 Electronic Spectra of molecules	6 hours
	e Born-Oppenheimer Approximation, Vibrational Coarse structure: Pro	
	ensity of vibrational-Electronic spectra: Franck-Condon Principle, [-
En	nergy, Dissociation Products and Predissociation. The Woodward Fis	sher rules –
cal	Iculation of λ_{max} for dienes, enones and polyenes – Use of UV spect	troscopy in
dis	stinguishing geometrical isomers. Effect of solvents on	spectra -
sol	Ivatochromism. Applications of electronic spectra.	-
Мо	odule:7 Magnetic resonance spectroscopy	6 hours
	uclear Spin Origins, Spin and Magnetic Properties, Nuclear Sp	oin Angular
Mo	omentum and Quantum Numbers, Magnetic Moment of a Nucleus Nuc	clear Energy
Le	evels in a Magnetic Field, Classical Description of the NMR Experim	ent and the
	inciple, Experimental Verification of Quantized Angular Momentum	
•	esonance Equation, Types of NMR spectroscopy, applications.	
	odule:8 Contemporary Issues	2 hours
	dustry Expert Lecture	
	Total Lecture hours:	45 hours
	Total Tutorial hours:	15 hours
Те		15 hours
Te :	ext Book(s)	
	ext Book(s) Colin N Banwell, Elaine M. McCash, Fundamentals of M	lolecular
1.	ext Book(s) Colin N Banwell, Elaine M. McCash, Fundamentals of M Spectroscopy, Tata McGraw-HillPublishing Co. Ltd., 5th Edition, 2013	Aolecular 3.
	ext Book(s) Colin N Banwell, Elaine M. McCash, Fundamentals of M Spectroscopy, Tata McGraw-HillPublishing Co. Ltd., 5th Edition, 201 P. W. Atkins and Julio de Paula, Atkins' Physical Chemis	Aolecular 3. stry,
1.	 Ext Book(s) Colin N Banwell, Elaine M. McCash, Fundamentals of M Spectroscopy, Tata McGraw-HillPublishing Co. Ltd., 5th Edition, 2013 P. W. Atkins and Julio de Paula, Atkins' Physical Chemis International 11th Edition, Oxford University Press, United Kingdo 	Aolecular 3. stry,
1. 2.	 Ext Book(s) Colin N Banwell, Elaine M. McCash, Fundamentals of M Spectroscopy, Tata McGraw-HillPublishing Co. Ltd., 5th Edition, 2013 P. W. Atkins and Julio de Paula, Atkins' Physical Chemis International 11th Edition, Oxford University Press, United Kingdo 2018. 	Aolecular 3. stry, om,
1.	 Ext Book(s) Colin N Banwell, Elaine M. McCash, Fundamentals of M Spectroscopy, Tata McGraw-HillPublishing Co. Ltd., 5th Edition, 2013 P. W. Atkins and Julio de Paula, Atkins' Physical Chemis International 11th Edition, Oxford University Press, United Kingdo 	Aolecular 3. stry, om,
1. 2.	 Ext Book(s) Colin N Banwell, Elaine M. McCash, Fundamentals of M Spectroscopy, Tata McGraw-HillPublishing Co. Ltd., 5th Edition, 2013 P. W. Atkins and Julio de Paula, Atkins' Physical Chemis International 11th Edition, Oxford University Press, United Kingdo 2018. Understanding NMR Spectroscopy, James Keeler, Wiley India Pvt I 	Aolecular 3. stry, om, Ltd; Second
1. 2. 3.	 Ext Book(s) Colin N Banwell, Elaine M. McCash, Fundamentals of M Spectroscopy, Tata McGraw-HillPublishing Co. Ltd., 5th Edition, 2013 P. W. Atkins and Julio de Paula, Atkins' Physical Chemiss International 11th Edition, Oxford University Press, United Kingdo 2018. Understanding NMR Spectroscopy, James Keeler, Wiley India Pvt I edition, 2013. 	Aolecular 3. stry, om, Ltd; Second
1. 2. 3. 4.	 Ext Book(s) Colin N Banwell, Elaine M. McCash, Fundamentals of M Spectroscopy, Tata McGraw-HillPublishing Co. Ltd., 5th Edition, 2013 P. W. Atkins and Julio de Paula, Atkins' Physical Chemis International 11th Edition, Oxford University Press, United Kingdo 2018. Understanding NMR Spectroscopy, James Keeler, Wiley India Pvt I edition, 2013. F.A. Cotton, Chemical Applications of Group Theory, 3rd Edition, Edition, 2009. 	Aolecular 3. stry, om, Ltd; Second
1. 2. 3. 4.	 Ext Book(s) Colin N Banwell, Elaine M. McCash, Fundamentals of M Spectroscopy, Tata McGraw-HillPublishing Co. Ltd., 5th Edition, 2013 P. W. Atkins and Julio de Paula, Atkins' Physical Chemis International 11th Edition, Oxford University Press, United Kingdo 2018. Understanding NMR Spectroscopy, James Keeler, Wiley India Pvt I edition, 2013. F.A. Cotton, Chemical Applications of Group Theory, 3rd Edition, Edition, 2009. 	Aolecular 3. stry, om, Ltd; Second Wiley India
1. 2. 3. 4.	 Ext Book(s) Colin N Banwell, Elaine M. McCash, Fundamentals of M Spectroscopy, Tata McGraw-HillPublishing Co. Ltd., 5th Edition, 2013 P. W. Atkins and Julio de Paula, Atkins' Physical Chemis International 11th Edition, Oxford University Press, United Kingdo 2018. Understanding NMR Spectroscopy, James Keeler, Wiley India Pvt I edition, 2013. F.A. Cotton, Chemical Applications of Group Theory, 3rd Edition, Edition, 2009. 	Aolecular 3. stry, om, Ltd; Second Wiley India
1. 2. 3. 4. Re	 Ext Book(s) Colin N Banwell, Elaine M. McCash, Fundamentals of M Spectroscopy, Tata McGraw-HillPublishing Co. Ltd., 5th Edition, 2013 P. W. Atkins and Julio de Paula, Atkins' Physical Chemis International 11th Edition, Oxford University Press, United Kingdo 2018. Understanding NMR Spectroscopy, James Keeler, Wiley India Pvt I edition, 2013. F.A. Cotton, Chemical Applications of Group Theory, 3rd Edition, Edition, 2009. 	Aolecular 3. stry, om, Ltd; Second Wiley India
1. 2. 3. 4. Re	 Ext Book(s) Colin N Banwell, Elaine M. McCash, Fundamentals of M Spectroscopy, Tata McGraw-HillPublishing Co. Ltd., 5th Edition, 2013 P. W. Atkins and Julio de Paula, Atkins' Physical Chemis International 11th Edition, Oxford University Press, United Kingdo 2018. Understanding NMR Spectroscopy, James Keeler, Wiley India Pvt I edition, 2013. F.A. Cotton, Chemical Applications of Group Theory, 3rd Edition, Edition, 2009. Eference Books D. A. McQuarrie, Quantum Chemistry, 2nd Edition, University Sciel 	Aolecular 3. stry, om, Ltd; Second Wiley India ence Books,
1. 2. 3. 4. Re 1.	 Ext Book(s) Colin N Banwell, Elaine M. McCash, Fundamentals of M Spectroscopy, Tata McGraw-HillPublishing Co. Ltd., 5th Edition, 2013 P. W. Atkins and Julio de Paula, Atkins' Physical Chemis International 11th Edition, Oxford University Press, United Kingdo 2018. Understanding NMR Spectroscopy, James Keeler, Wiley India Pvt I edition, 2013. F.A. Cotton, Chemical Applications of Group Theory, 3rd Edition, Edition, 2009. Eference Books D. A. McQuarrie, Quantum Chemistry, 2rd Edition, University Scie 2008. 	Aolecular 3. stry, om, Ltd; Second Wiley India ence Books,
1. 2. 3. 4. Re 1.	Ext Book(s) Colin N Banwell, Elaine M. McCash, Fundamentals of M Spectroscopy, Tata McGraw-HillPublishing Co. Ltd., 5th Edition, 2013 P. W. Atkins and Julio de Paula, Atkins' Physical Chemis International 11 th Edition, Oxford University Press, United Kingdo 2018. Understanding NMR Spectroscopy, James Keeler, Wiley India Pvt I edition, 2013. F.A. Cotton, Chemical Applications of Group Theory, 3 rd Edition, Edition, 2009. Eference Books D. A. McQuarrie, Quantum Chemistry, 2 nd Edition, University Scie 2008. Hollas J. Michael Hollas, Modern Spectroscopy, John Wiley & Scie Edition, 2003.	Aolecular 3. etry, om, Ltd; Second Wiley India ence Books, ons Inc. 4th
1. 2. 3. 4. 1. 2.	Ext Book(s) Colin N Banwell, Elaine M. McCash, Fundamentals of M Spectroscopy, Tata McGraw-HillPublishing Co. Ltd., 5th Edition, 2013 P. W. Atkins and Julio de Paula, Atkins' Physical Chemis International 11 th Edition, Oxford University Press, United Kingdo 2018. Understanding NMR Spectroscopy, James Keeler, Wiley India Pvt I edition, 2013. F.A. Cotton, Chemical Applications of Group Theory, 3 rd Edition, Edition, 2009. Eference Books D. A. McQuarrie, Quantum Chemistry, 2 nd Edition, University Scie 2008. Hollas J. Michael Hollas, Modern Spectroscopy, John Wiley & Scie Edition, 2003. A.K. Chandra, Introduction to Quantum Chemistry, Tata Mc Graw Hi	Aolecular 3. etry, om, Ltd; Second Wiley India ence Books, ons Inc. 4th
1. 2. 3. 4. 1. 2. 3.	 Colin N Banwell, Elaine M. McCash, Fundamentals of M Spectroscopy, Tata McGraw-HillPublishing Co. Ltd., 5th Edition, 2013 P. W. Atkins and Julio de Paula, Atkins' Physical Chemis International 11th Edition, Oxford University Press, United Kingdo 2018. Understanding NMR Spectroscopy, James Keeler, Wiley India Pvt I edition, 2013. F.A. Cotton, Chemical Applications of Group Theory, 3rd Edition, Edition, 2009. Eference Books D. A. McQuarrie, Quantum Chemistry, 2nd Edition, University Scie 2008. Hollas J. Michael Hollas, Modern Spectroscopy, John Wiley & Sci Edition, 2003. A.K. Chandra, Introduction to Quantum Chemistry, Tata Mc Graw Hi Company, New Delhi, 4th Edition, 2009. 	Aolecular 3. stry, om, Ltd; Second Wiley India ence Books, ons Inc. 4th
1. 2. 3. 4. 1. 2.	Ext Book(s) Colin N Banwell, Elaine M. McCash, Fundamentals of M Spectroscopy, Tata McGraw-HillPublishing Co. Ltd., 5th Edition, 2013 P. W. Atkins and Julio de Paula, Atkins' Physical Chemis International 11 th Edition, Oxford University Press, United Kingdo 2018. Understanding NMR Spectroscopy, James Keeler, Wiley India Pvt I edition, 2013. F.A. Cotton, Chemical Applications of Group Theory, 3 rd Edition, Edition, 2009. Eference Books D. A. McQuarrie, Quantum Chemistry, 2 nd Edition, University Scie 2008. Hollas J. Michael Hollas, Modern Spectroscopy, John Wiley & Scie Edition, 2003. A.K. Chandra, Introduction to Quantum Chemistry, Tata Mc Graw Hi	Aolecular 3. stry, om, Ltd; Second Wiley India ence Books, ons Inc. 4th

5.	F. Hammer, Inorganic Spectrosc	Inorganic Spectroscopy and Related Topics, Sarup & Sons, 1 st					
	Edition, 2008.						
6.	P. K Bhattacharya, Group theory	and its ap	plications	s, 3 rd Edition, Himalaya			
	Publishing House, 2007.						
Mo	de of Evaluation: CAT, Written Assi	gnment, Qi	uiz, FAT a	and Seminar			
Red	Recommended by Board of Studies 26-02-2024						
Арр	Approved by Academic Council No. 73 Date 14-03-2024						

Course Code	Course Title	L	Т	Ρ	С
PCHY505L	Organic Synthesis and Methodologies	3	0	0	3
Pre-requisite	NIL	Sylla	abus	vers	ion
			1.	0	
Course Objectiv					
	arious methodologies used in organic synthesis				ne
	nk different possible ways to synthesis an organi				
-	ous metallic reagents used in chemical trans	sforma	tions	in tl	ne
production na	tural and synthetic drugs and materials.				
Course Outcom					
	damental principles of organic reactions.				
2.Outline the c	concepts related to synthesis, mechanisms an	d the	funct	tions	of
various reage	nts.				
3.Apply their	understanding about the retrosynthetic appro	aches	invo	lved	in
organic react	ons of industrial significance.				
4.Analyze the	product distribution and the stereochemistry	of var	ous	orgar	nic
products thro	ugh spectroscopic data.				
5.Evaluate the	organic reactions and methodologies based on t	the infl	uenc	e of tl	he
substituents	on substrate molecules and nature of solvent a	and the	e par	amet	ric
conditions.					
6.Propose nev	v organic reactions to achieve the required	d retro	o- sy	rnthes	sis
products.					
Module:1 C-C	& C-X Disconnection approach			3 ho	urs
An introduction	to synthons and synthetic equivalents, discon	nectio	n app	oroac	h,
functionalgroup	nter conversions. One group and two group C-X	(disco	nnec	tions	in
1,2-, 1,3-, 1,4- ;	and 1,5-difunctional compounds. One group a	nd two	grou	up C-	C
Disconnections;	Alcohols and carbonyl compounds regiosele	ctivity,	Diel	s-Ald	er
	unctional compounds.				
	ning and execution of retrosynthesis			5 ho	
•	of alkenes, acetylenes, nitro and amine comp		s with	n spe	cific
	esis of simple molecule for each functional grou				
	tegies of alcohols and carbonyl disconnection			4 ho	
	arbonyl compounds with specific example to	synthe	esis o	of sin	nple
	n functional group				
	o-synthesis of carbonyl and heterocyclic			5 ho	urs
	pounds			N 4: - I	
	rbonyl compounds, control in carbonyl cond				
	inson annulation. Retro synthesis of aromatic h	eteroc	ycies	015	and
6 membered ring					
	es of Asymmetric synthesis	والمعطون		6 ho	
	hesis – Substrate, auxiliary, reagent, catalyst co	ntrolle	u me	INOOS	•
(organo and met					
	erocycles with fused 6 membered rings	ine (Defe	7 ho	
	odiimide (DCC), EDCI, DDQ, Organoz	•		rmats	
reaction), Organ	o lithium (Shapiro reaction, LDA), Organocoppe	r (Gillr	nan r	eage	nt,

LIIIn	nann) (organopalladium (Sonoga	shira and	Stille) or	ganosilicon	(Peterson's
	,.	organotin (tributyl tinhydrid			ganosiicon	
		Protection, deprotection		synthesi	8	10 hours
		cid, amine, ketone and a				
		and Cubane – chemose	•			in provide integra
	•	Contemporary Issues				2 hours
		pert Lecture				
				Total Lect	ture hours:	45 hours
Тех	t Book					
1.		Warren and Paul Wyatt, O	rganic syntl	nesis, the o	disconnectio	n approach,
		ion,Wiley, 2012.				
2.		k Li, E. J. Corey, Total Syr			ducts: At the	Frontiers
)	inicChemistry, First Edition				
3.		Mahrwald, Enantioselectiv		atalyzed R	eactions, 32	2 & 386
		1stEdition, Springer, 2011				
4.		icolaou, E. J. Sorensen-Cl	assics in to	tal synthes	sis- 4 th edition	n, Wiley-VCH
	(1996)					
5.	Michae	I B Smith, Organic synthes	is, 4 th Editio	on, Acader	nic Press (20	016)
	erence					
1.		har, Organic Chemistry Vol.		•		
2.		ruthares, Lain Coldham, N				nesis South
		dition,Cambridge University				
3.	Michae	'		0	Chemistry:	Reactions,
		nisms, andStructure.7 th Ed				
4.		Starkey, Introduction to Str	•	•	synthesis. N	/iley & Sons,
		boken, New Jersey and C				
		aluation: CAT, Written Ass	<u> </u>		nd Seminar	
		ded by Board of Studies	26-02-202		1	
Арр	proved b	y Academic Council	No. 73	Date	14-03-2024	ŀ

Course Co	de	Course Title	L	Т	Р	С
PCHY506L		Organometallics and Industrial	3	0	0	3
		Applications				
Pre-requisi	te	NIL	Syl		s vers	sion
				1	.0	
Course Ob						
		e basic concepts of organometallics, their reac	tions	and	react	ion
mechar		u de des la sus liss (inno sé unions sus sus talli				
-	-	owledge on applications of various organometalli	c rea	gents	•	
Course Ou						
-	-	esis, mechanism and functions of organometalli	c rea	gents	and	
catalyst						
		the importance of organometallic compounds.				
		spectral data of organometallic compounds.				
Module:1		duction				ours
	-	Lability & Reactivity aspects of main grou	-	-		
		sition metal compounds – The 18 valence				
		organometallic compounds, Significance of met	ai - 0	carbo	n dor	las
in catalysis.						
		aration methods, stability		d on		ours
_	-	synthesis and reactivity of sigma-bonded alky		-		
-	-	i-bonded organic ligands such as alkenes, a	икупе	es, a	liyis,	and
arenes, app					E ha	
		 I carbonyls, metallocenes, carbenes and carbon – Preparation methods, Properties, important 				ours
	-	yl metal hydrides; Metallocenes and other sand				
half- sand					ylider	
		leophilic and electrophilic carbene complexes.	nes	(air	yildei	ies,
		n complexes, homoalkene and heteroa	Ikon		5 h	ours
wodule.4		plexes	ikene	•	5 NC	Juis
		$I C_5H_5$ – ligands – Cyclopentadienyl metal carl			lidoc	and
			-			
-	• •	olications; Multi metal clusters – Formation ar	iu ci	liena	101	IVI-IVI
bonds; isolo		<i></i>			0 h	
Module:5		ortant synthetic routes and properties	of n	latinu		ours
		organoboranes and organometallic complexes				
		Pd, Os, Ir and Pt), β -Hydride elimination,				
		ation, ligand substitution, migratory insertion				
•		k on the ligand. Agostic interactions in organo			•	xes;
-		olymers – synthesis, important properties and ap	plica	uons.		
		Coupling reactions	Tin			ours
		ss-coupling reactions; Boron- Suzuki reaction;				
	•	esium- Kumada coupling; Zinc- Negishi reaction			•	
		Sonogashira reaction; Heck Reaction. Activation	IOLIU	ncuo	naliza	non
or sp, sp ⁻ a	na sp`	³ hybridized molecules (CO, CO ₂ and CH ₄).				

Мо	dule:7	Structural elucidation				5 hours			
Stru	uctural e	lucidation of organometallic	complexes	, fluxiona	al molecules.				
Мо	dule:8	Contemporary Issues			2 hours				
Ind	ustry Ex	pert Lecture							
			٦	Fotal Leo	ture hours:	45 hours			
Тех	t Book	(s)							
1.	Basic Organometallic Chemistry: Concepts, Syntheses, and Applications of Transition Metals, B.D. Gupta, Anil J. Elias, Universities Press, 2 nd edition, 2013.								
2.	WILEY	ext Book on Organometallics, Christoph Elschenbroich, 3 rd revised edition, _EY- VCH, Germany, 2006.							
3.		The Organometallic Chemistry of the Transition Metals Robert H. Crabtree, 6 th edition, John Wiley & Sons, Inc., 2014.							
Ref	erence	Books							
1.	Organic Synthesis Using Transition Metals, Roderick Bates, 2 nd Edition, John Wiley & Sons, Ltd., 2012								
2.	Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Four Volumes, Boy Cornils, Wolfgang A. Herrmann, Matthias Beller, Rocco Paciello (Eds), Wiley-VCH Verlag GmbH & Co. KGaA, 2017.								
Mo	de of Ev	aluation: CAT, Written Assig	gnment, Qu	iiz, FAT a	and Seminar				
Red	commen	ded by Board of Studies	26-02-202	24					
App	proved b	y Academic Council	No. 73	Date	14-03-2024				

Discipline Elective

Course Code	Course Title	L	т	Ρ	С		
PCHY601L	Analytical Chemistry	3	0	0	3		
Pre-requisite	NIL	Syllabus version					
-			1	.0			
Course Objectiv							
 Making students understand the insights of statistical methods in qualitative and quantitative analysis and usage of different analytical instruments for chemical analysis. Realizing the importance of thermal analysis, absorption and emission spectroscopy, surface analytical, electroanalytical, and chromatographic techniques. 							
Course Outcom	AS						
	es rent errors using statistical methods in Chemical	anal	vsis				
 Evaluate errors in chemical analysis through statistical treatment of data through F- test, T-test and Q-test. Relate thermal behavior of different organic and inorganic materials using TGA, DTA and DSC Apply absorption and emission techniques for trace element analysis from different matrices. Utilize diffraction and microscopic techniques to characterize nanomaterials. Analyze electroactive species using different voltammetric techniques. Make use of TLC and Paper chromatographic techniques for monitoring and detection of important organic and inorganic materials. Determine organic compounds using GC and HPLC techniques. 							
Module:1 Erro	rs and Statistical treatment			8 hc	ours		
additive and pro median, average determine signific limit, correlation of and T-test. Reject calibration graph	cal analysis. Classification of errors- system portional, absolute and relative. Accuracy and deviation and standard deviation. Significant fig cant figures. Calculations involving significant f coefficient and regression analysis. Comparison ction of data based on Q-test. Least squares m . Fitting of data to hypothesis. moanalytical methods	prea gures igures of me	cisior and s. Co ethod	n. Me rules nfider ls: F-t	an, to nce est ing		
Types – Thermogravimetric Analysis (TGA) – Factors influencing TGA –							
and polymers. D applications in fo	of TGA - Applications of TGA for analysis of ind ifferential thermal analysis (DTA) – Theory - i ood and pharmaceutical industry. Differential So - instrumentation and applications in polymer a	nstrui annir	menta ng Ca	ation alorim	and etry		
coup	nic Absorption, Flame Emission and Induct bled plasma Analysis	-		5 hc	ours		
Atomic Absorpti	on spectroscopy and Flame Emission Spe	ctros	сору	- B	Basic		

principles– Instrumentation – analytical applications. ICP-MS/OES - Basic principles- sources of radiation – instrumentation – analytical applications.								
DUDCIDIES = SOURCES OF FACIATION = INSTRUMENTATION = ADAI/VICAL ADDI/CATIONS								
Module:4Material Characterization Techniques6 hours								
XRD, SEM, TEM, EDAX, AFM - Basic Principles, instrumentation and their utility in								
characterization of nanomaterials								
Module:5Electroanalytical Techniques6 hoursPolarography - Introduction, Dropping mercury electrode (DME), Instrumentation,								
Ilkovic equation and its verification, Determination of half wave potential,								
applications.								
Voltammetry – A three electrode system concept – diffusion-controlled and								
adsorption-controlled electron-transfer reactions; Single sweep voltammetry, cyclic								
voltammetry - Randles-Sevcik equation, Criteria for reversible and irreversible								
processes - applications.								
Module:6Basics of TLC and Paper Chromatography6 hours								
Thin-layer chromatography (TLC): Principle, methodology selection of stationary								
and mobile phases- preparation of plates, spotting, development, identification and								
detection, measurement of RF values, Qualitative and quantitative applications.								
Paper chromatography (PC): Theory and principle; techniques: one, two-								
dimensional and circular PC, mechanism of separation, structure of cellulose and								
types of paper, methodology, sample preparation, choice of solvents, location of								
spots and measurement of RF value, factors affecting RF values, advantages and								
applications								
Module:7 Introduction to HPLC and GC 6 hours								
Gas chromatography (GC): Principle, instrumentation columns - packed and tubular,								
factors affectingseparation, applications.								
High pressure liquid chromatography (HPLC): Apparatus, pumps, column packing,								
detectors-UV, IRand fluorescence detectors, advantages and applications.								
detectors-UV, IRand fluorescence detectors, advantages and applications.Module:8Contemporary Issues2 hours								
detectors-UV, IRand fluorescence detectors, advantages and applications.								
detectors-UV, IRand fluorescence detectors, advantages and applications.Module:8Contemporary Issues2 hours								
detectors-UV, IRand fluorescence detectors, advantages and applications. Module:8 Contemporary Issues 2 hours Industry Expert Lecture Total Lecture hours: 45 hours								
detectors-UV, IRand fluorescence detectors, advantages and applications. Module:8 Contemporary Issues 2 hours Industry Expert Lecture Total Lecture hours: 45 hours Text Book(s)								
detectors-UV, IRand fluorescence detectors, advantages and applications. Module:8 Contemporary Issues 2 hours Industry Expert Lecture Total Lecture hours: 45 hours Text Book(s) 1. Gary D. Christian, Purnendu (Sandy) Dasgupta, Kevin Schug, Analytical								
detectors-UV, IRand fluorescence detectors, advantages and applications. Module:8 Contemporary Issues 2 hours Industry Expert Lecture Total Lecture hours: 45 hours Text Book(s) 45 hours 1. Gary D. Christian, Purnendu (Sandy) Dasgupta, Kevin Schug, Analytical Chemistry, Wiley & sons, 7 th Edition, 2013.								
detectors-UV, IRand fluorescence detectors, advantages and applications. Module:8 Contemporary Issues 2 hours Industry Expert Lecture Total Lecture hours: 45 hours Text Book(s) 45 hours 1. Gary D. Christian, Purnendu (Sandy) Dasgupta, Kevin Schug, Analytical Chemistry, Wiley & sons, 7 th Edition, 2013. Analytical 2. Douglas A Skoog, Donald M West, F James Holler, Stanley R.Crouch,								
detectors-UV, IRand fluorescence detectors, advantages and applications. Module:8 Contemporary Issues 2 hours Industry Expert Lecture Total Lecture hours: 45 hours Text Book(s) 45 hours 1. Gary D. Christian, Purnendu (Sandy) Dasgupta, Kevin Schug, Analytical Chemistry, Wiley & sons, 7 th Edition, 2013. Chemistry, Wiley & sons, 7 th Edition, 2013. 2. Douglas A Skoog, Donald M West, F James Holler, Stanley R.Crouch, Fundamentals of Analytical Chemistry, Wadsworth Publishing Co Inc., 9th								
detectors-UV, IRand fluorescence detectors, advantages and applications. Module:8 Contemporary Issues 2 hours Industry Expert Lecture Total Lecture hours: 45 hours Text Book(s) 45 hours 1. Gary D. Christian, Purnendu (Sandy) Dasgupta, Kevin Schug, Analytical Chemistry, Wiley & sons, 7 th Edition, 2013. 2. 2. Douglas A Skoog, Donald M West, F James Holler, Stanley R.Crouch, Fundamentals of Analytical Chemistry, Wadsworth Publishing Co Inc., 9th Edition, 2014.								
detectors-UV, IRand fluorescence detectors, advantages and applications. Module:8 Contemporary Issues 2 hours Industry Expert Lecture Total Lecture hours: 45 hours Text Book(s) 45 hours 1. Gary D. Christian, Purnendu (Sandy) Dasgupta, Kevin Schug, Analytical Chemistry, Wiley & sons, 7 th Edition, 2013. Analytical Chemistry, Wiley & sons, 7 th Edition, 2013. 2. Douglas A Skoog, Donald M West, F James Holler, Stanley R.Crouch, Fundamentals of Analytical Chemistry, Wadsworth Publishing Co Inc., 9th Edition, 2014. 3. H.A. Willard, L.L.Merrit, J.A. Dean, Von Nostrand, Instrumental Methods of								
detectors-UV, IRand fluorescence detectors, advantages and applications. Module:8 Contemporary Issues 2 hours Industry Expert Lecture Total Lecture hours: 45 hours Text Book(s) 45 hours 1. Gary D. Christian, Purnendu (Sandy) Dasgupta, Kevin Schug, Analytical Chemistry, Wiley & sons, 7 th Edition, 2013. 2. 2. Douglas A Skoog, Donald M West, F James Holler, Stanley R.Crouch, Fundamentals of Analytical Chemistry, Wadsworth Publishing Co Inc., 9th Edition, 2014.								
detectors-UV, IRand fluorescence detectors, advantages and applications. Module:8 Contemporary Issues 2 hours Industry Expert Lecture Total Lecture hours: 45 hours Text Book(s) 45 hours 1. Gary D. Christian, Purnendu (Sandy) Dasgupta, Kevin Schug, Analytical Chemistry, Wiley & sons,7 th Edition, 2013. 2. 2. Douglas A Skoog, Donald M West, F James Holler, Stanley R.Crouch, Fundamentals of Analytical Chemistry, Wadsworth Publishing Co Inc., 9th Edition, 2014. 3. H.A. Willard, L.L.Merrit, J.A. Dean, Von Nostrand, Instrumental Methods of Analysis, 7th Edition, CBS Publishers, 1986.								
detectors-UV, IRand fluorescence detectors, advantages and applications. Module:8 Contemporary Issues 2 hours Industry Expert Lecture Total Lecture hours: 45 hours Text Book(s) 1. Gary D. Christian, Purnendu (Sandy) Dasgupta, Kevin Schug, Analytical Chemistry, Wiley & sons,7 th Edition, 2013. 2. Douglas A Skoog, Donald M West, F James Holler, Stanley R.Crouch, Fundamentals of Analytical Chemistry, Wadsworth Publishing Co Inc., 9th Edition, 2014. 3. H.A. Willard, L.L.Merrit, J.A. Dean, Von Nostrand, Instrumental Methods of Analysis, 7th Edition, CBS Publishers, 1986. Reference Books								
detectors-UV, IRand fluorescence detectors, advantages and applications. Module:8 Contemporary Issues 2 hours Industry Expert Lecture Total Lecture hours: 45 hours Text Book(s) 45 hours 1. Gary D. Christian, Purnendu (Sandy) Dasgupta, Kevin Schug, Analytical Chemistry, Wiley & sons,7 th Edition, 2013. 2. 2. Douglas A Skoog, Donald M West, F James Holler, Stanley R.Crouch, Fundamentals of Analytical Chemistry, Wadsworth Publishing Co Inc., 9th Edition, 2014. 3. H.A. Willard, L.L.Merrit, J.A. Dean, Von Nostrand, Instrumental Methods of Analysis, 7th Edition, CBS Publishers, 1986.								

2.	J. Basset, R.C. Denny, C.H. Jaffery and J. Mendhan, Vogel's Text Book of								
	Quantitative Chemical Analysis, ELBS, Longman Group Publishers, 6 ^h Edition,								
	2009.								
Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar									
Red	commended by Board of Studies	26-02-202	24						
Арр	proved by Academic Council	No. 73	Date	14-03-2024					

Course Code	Course Title	L	Т	Р	С			
PCHY602L	3	1	0	4				
Pre-requisite	Advanced Organic Chemistry NIL	Sylla	abus	versi	on			
			1.	0				
Course Objectives								
1. Explaining the basic concepts on organic reactions and mechanism								
including stereochemical and conformational aspects.								
2. Application of spectroscopic techniques for characterization of organic								
compounds.								
Course Outcom								
	fundamental concepts related to organic reaction				_			
	nthesis, mechanism and the functions of reager			arysis	<i>.</i>			
	organic reactions to make industrially important							
	product distribution and stereochemistry o	i proc	JUCIS	usir	ig			
spectrosco		امميام	<u> </u>	turo	of			
	e influence of substituents on substrate mo	lecules	s, 11a	lure	01			
	d reaction parameters. rganic reactions to achieve the required produc	to						
	sical to modern oxidation methods	lS.		7 ho				
	ohols - Chromium, Manganese, Aluminum,	Silver	Rut					
	rtinperiodinane and TEMPO based reagents, N							
	to epoxides - Sharpless, Jacobsen and Shi e							
Ketones to ester		pond	ation	(01111	<i></i>			
	ative cleavage and addition			6 ho	urs			
	ge of alkenes - Manganese, Osmium, Ruthenium	n, Lea	d, Oz					
	on of alkenes - hydroboration, Wacker o				um,			
Chromium based	-							
Module:3 Redu	uction by metals			8 ho	urs			
	- Palladium/Platinum/Rhodium/Nickel Homog	jeneou	is: V	Vilkins	son;			
Noyori asymmeti	ric hydrogenation Reduction by alkali metals	– Li	/ Na	in lio	quid			
ammonia – Birc	h reduction Reduction by transition metals:	Zinc	and	Titan	ium			
reagents, SmI2 (Acyloin formation, dehalogenation and deoxyg	enatio	ns) F	Reduc	tion			
by metal catalyst	- Meerwein-Pondorff-Verley reduction Enantios	electiv	/e rec	ductio	ns -			
Chiral Boranes, C	Corey-Bakshi-Shibata reduction							
	uction by metal hydrides			6 ho				
Reduction by me	etal hydrides - NaBH4, triacetoxyborohydride,	LiAIH4	., L-s	electr	ide,			
K-selectride, Lu	che reduction; DIBAL-H, and Red-Al,	Trialky	lsilar	nes	and			
Trialkylstannane								
Module:5 Rear	rangement reactions			5 ho	urs			
Carbocation - Pinacol-pinacalone, Wagner Meerwin, Demjanov Carbanion -								
Favorskii (5-9 membered ring systems), Stevens, Neber Carbene – Wolff								
rearrangement; Nitrene - Hoffman, Curtius, Schmidt. N-Heterocyclic Carbenes in								
	nd organo catalysis.							
Module:6 Carb	ohydrates and peptides in organic synthesis	6		7 ho	urs			

Reactivity at carbon center - reactions at anomeric carbon and epimeric carbons, ring expansions and contractions. Protection and deprotection methods in carbohydrate.

Chemical and enzymatic glycosylations to oligosaccharides - Modification of sugars into carbocycles and heterocycles and their applications in medicinal chemistry (one example each).Peptides: Synthesis of peptides, protection and deprotection methods in peptide synthesis.

Module:7Modern Synthetic Methods4 hoursBaylis-Hillman reaction, Henry reaction, Sakurai reaction, Tishchenko reaction and
Ugi reaction. Tebbe olefination. Metal mediated C-C and C-X coupling reactions:
Heck, Suzuki, Negishi4 hours

Мо	Module:8 Contemporary Issues 2 hours							
		pert Lecture						
				Fotal Lec	ture hours:	45 hours		
			1	otal Tut	orial hours:	15 hours		
Text Book(s)								
1.		F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry Part B:						
	Reaction	eaction and Synthesis,Springer, 5 th Edition, 2010.						
2.	J. March and M. B. Smith, March's Advanced Organic Chemistry: Reactions,							
	Mecha	nisms, and structure, 6th Ed	lition, Wiley	, 2013.				
3.	L. Kue	rti and B. Czako, Strategic /	Applications	s of name	ed Reactions	in Organic		
	Synthe	sis,Elsevier Academic Pres	s, 2005.					
Ref	erence	Books						
1.	I. L. Finar, Organic Chemistry Vol. I & Vol. II, Longman (Cambridge), 2011.							
2.	W. Ca	W. Carruthares, Iain coldham, Modern Methods of Organic Synthesis						
	South <i>i</i>	outh Asia Edition, Cambridge University Press, Fourth Edition, 2015.						
3.	F. A.	F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry Part B:						
	Reaction	Reaction and Synthesis, Springer, 5 th Edition, 2010.						
4.	R.M.	Silverstein, G. C. Bassle	er, T. C.	Morril, S	Spectrometric			
	identification of OrganicCompounds, John Wiley & Sons, Inc, 2010.							
5.	Nolan,	S. P. N-Heterocyclic Car	benes in S	Synthesis	; Wiley-VCH	; Weinheim,		
	2006.				•			
Mo	de of Ev	aluation: CAT, Written Assig	gnment, Qu	iz, FAT a	nd Seminar			
Red	commen	ided by Board of Studies	26-02-202	4				
Approved by Academic Council No. 73 Date 14-03-2024								

Course Code Course Title L T P C								
PCHY603L	Chemistry of Heterocyclic Compounds	3		0	3			
Pre-requisite	NIL	Syl	Syllabus version					
			1	.0				
Course Objectives								
1. Explaining synthesis methods, and applications of heterocyclic compounds.								
2. Learning the physical and chemical behaviour of heterocyclic compounds and								
their reaction mechanisms.								
	Course Outcomes							
	1. Recall fundamental aspects of heterocyclic compounds.							
2.Explain nom	enclature, structure, reaction mechanisms	and	func	tions	of			
heterocyclic co	ompounds.							
3.Make use of a	organic reactions to synthesize heterocyclic mo	lecule	es of	indus	strial			
importance.								
4.Analyze proc	duct distribution and stereochemistry of	hete	rocy	clic				
derivatives ung	spectroscopic tools.							
5.Relate the int	fluence of substituents on substrate molecule	es, na	ature	of				
solvent and re	action parameters.							
Module:1 Syste	ematic nomenclature of heterocycles			3 hc	ours			
Hantzsch-Widma	n system for monocyclic, fused and bridged hete	erocyc	les					
-	natic and carbocylic aromatic heterocyclic pounds			8 hc	ours			
Carbocyclic aromatic system-six members and fused, tautomerism in heterocycles-								
spectroscopicpro	perties of heterocyclic systems (any two).			-				
Three-membered	and four-membered heterocycles-synthesis	and	rea	ctions	s of			
aziridines, oxiran	es, oxetanes, thietanes. Corey-Chaykovsky e	ooxida	ation.	Dar	zen,			
	lensation, DeKimpe - thiranes, azetidines.							
Module:3 Five	membered Heterocyles			5 hc	ours			
Synthesis and re	actions of Furans: Fiest Benary furan synthes	is, Kr	norr a	and P	'aal-			
Knorr pyrrolesyn	thesis, Pyrroles and pyrrolidines-Barton. Zard	react	ion. I	Hofma	ann-			
Loffler-Freytag re	eaction.							
Thiophenes-Hins	berg synthesis of thiophene derivatives	. O	xazol	es	and			
isoxazoles- Rob	pinson- Gabrial ring closure. Cornforth rear	range	ment	. La	rock			
synthesis.								
Module:4 Six a	nd Large Membered Heterocycles			8 hc	ours			
Pyridines- Hantz	sch (Dihydro)-pyridine synthesis, Doebner v	on N	1iller	react	tion,			
pyrimidines- Bigi	inelli reaction, Chichibabin (Tschitschibabin)	pyrid	ine s	synthe	esis.			
Synthesis and re	actions of azepines, oxepines, thiepines, diaze	oines	(1,2	and '	1,4),			
thiazepines, azocines.(any four)								
Module:5 Hete	rocycles with fused 5 membered rings			6 hc	ours			
Synthesis and re	actions of heterocycles with fused 5 membered	ring l	penzo	pyrrc	oles,			
benzofurans and benzothiophenes, Indoles: Fischer, Madelung, Nenitzescu								
syntheses.								
Module:6 Hete	rocycles with fused 6 membered rings			7 hc	ours			

Napieralski reaction. Friedlander synthesis. Meth-Cohn quinolone synthesis. Pfitzinger quinoline synthesis. Skraup synthesis. Coumarins. chromones Module:7 Industrial and Medicinal Applications of Heterocyclic Compounds 6 hours PEDOT and polypyrroles as conducting polymers, Bipyridine in dye sensitized solar cells (DSC). Nicotinic acid (Lipid modulating drug), 3,5-pyrazolidinedione (anti- inflammatory drug), Captopril (anti-hypertensive agent) and Ciprofloxacin (antibiotic). Module:8 Contemporary Issues 2 hours Industry Expert Lecture 7total Lecture hours: 45 hours Industry Expert Lecture 45 hours Intercocyclic Chemistry At A Glance, John A. Joule, Keith Mills, 2 nd revised edition Wiley-Blackwell, 2012. 45 hours 1. Heterocyclic Chemistry of Heterocycles, Theophil Eicher, Siegfried Hauptmann, 3 rd edition, Wiley-VCH, Weinheim, 2012. 3. 3. An Introduction to the Chemistry of Heterocyclic Compounds, Acheson, R. M. 3rd Edition, WileyIndia Pvt Ltd, 2008. 4. 4. Heterocyclic Chemistry, Gilchrist, T. L. , 3 rd Edition, Prentice Hall, 2005. 7. 7. Organic Chemistry, Jonathan Clayden, Nick Greeves, and Stuart Warren, Oxford University Press, 2014. 2. 2. The essence of Heterocyclic Chemistry, Arun R Parikh	Heterocycles with fused 6 membered ring Quinolines and isoquinolines	s- Bischler-	
Pfitzinger quinoline synthesis., Skraup synthesis, Coumarins, chromones. quinolizinium ions Module:7 Industrial and Medicinal Applications of Heterocyclic Compounds PEDOT and polypyrroles as conducting polymers, Bipyridine in dye sensitized solat cells (DSC). Nicotinic acid (Lipid modulating drug), 3,5-pyrazolidinedione (anti-inflammatory drug),Captopril (anti-hypertensive agent) and Ciprofloxacin (antibiotic). Module:8 Contemporary Issues 2 hours Industry Expert Lecture Total Lecture hours: 45 hours Text Book(s) 1. Heterocyclic Chemistry At A Glance, John A. Joule, Keith Mills, 2 nd revised edition Wiley-Blackwell, 2012. 2. 2. The Chemistry of Heterocycles, Theophil Eicher, Siegfried Hauptmann, 3 rd edition, Wiley-VCH, Weinheim, 2012. 3. 3. An Introduction to the Chemistry of Heterocyclic Compounds, Acheson, R. M. 3rd Edition, WileyIndia Pvt Ltd, 2008. 4. 4. Heterocyclic Chemistry, Gilchrist, T. L. , 3 rd Edition, Prentice Hall, 2005. Reference Books 1. Organic Chemistry, Jonathan Clayden, Nick Greeves, and Stuart Warren, Oxford University Press, 2014. 2. 2. The essence of Heterocyclic Chemistry, Arun R Parikh, Hansa Parikh and Ranjan Khunt, New Age International, 2017. 3. 3. Heterocyclic Chemistry, V. K. Ahluwalia, Alpha Science International, 2012. 4.			
quinolizinium ions Industrial and Medicinal Applications of Heterocyclic Compounds 6 hours PEDOT and polypyroles as conducting polymers, Bipyridine in dye sensitized solar cells (DSC). Nicotinic acid (Lipid modulating drug), 3,5-pyrazolidinedione (anti-inflammatory drug), Captopril (anti-hypertensive agent) and Ciprofloxacin (antibiotic). 6 hours Module:8 Contemporary Issues 2 hours Industry Expert Lecture Total Lecture hours: 45 hours Text Book(s) 1. Heterocyclic Chemistry At A Glance, John A. Joule, Keith Mills, 2 nd revised edition Wiley-Blackwell, 2012. 45 hours 2. The Chemistry of Heterocycles, Theophil Eicher, Siegfried Hauptmann, 3 rd edition, Wiley-VCH, Weinheim, 2012. 3. 3. An Introduction to the Chemistry of Heterocyclic Compounds, Acheson, R. M. 3rd Edition, WileyIndia Pvt Ltd, 2008. 4. 1. Organic Chemistry, Jonathan Clayden, Nick Greeves, and Stuart Warren, Oxford University Press, 2014. 7. 2. The essence of Heterocyclic Chemistry, Arun R Parikh, Hansa Parikh and Ranjan Khunt, New Age International, 2017. 48. 3. Heterocyclic Chemistry. V. K. Ahluwalia, Alpha Science International, 2012. 4. 4. Advanced Organic Chemistry: Structure and Mechanisms (Part A & 8.). Frances A Carey and Richard J Sundberg, Springer, 2015. 5. 5. Heterocycli		•	
Module:7 Industrial and Medicinal Applications of Heterocyclic Compounds 6 hours PEDOT and polypyrroles as conducting polymers, Bipyridine in dye sensitized solar cells (DSC). Nicotinic acid (Lipid modulating drug), 3,5-pyrazolidinedione (anti- inflammatory drug), Captopril (anti-hypertensive agent) and Ciprofloxacin (antibiotic). Module:8 Contemporary Issues 2 hours Industry Expert Lecture Total Lecture hours: 45 hours Text Book(s) 1. Heterocyclic Chemistry At A Glance, John A. Joule, Keith Mills, 2 nd revised edition Wiley-Blackwell, 2012. 2. 2. The Chemistry of Heterocycles, Theophil Eicher, Siegfried Hauptmann, 3 rd edition, Wiley-VCH, Weinheim, 2012. 3. 3. An Introduction to the Chemistry of Heterocyclic Compounds, Acheson, R. M. 3rd Edition, WileyIndia Pvt Ltd, 2008. 4. 4. Heterocyclic Chemistry, Gilchrist, T. L., 3 rd Edition, Prentice Hall, 2005. Reference Books 1. Organic Chemistry, Jonathan Clayden, Nick Greeves, and Stuart Warren, Oxford University Press, 2014. 2. 2. The essence of Heterocyclic Chemistry. Structure and Mechanisms (Part A & B). Frances A Carey and Richard J Sundberg, Springer, 2015. 5. 3. Heterocyclic chemistry, R. K. Bansal, 5 th edition, New Age International Private Limited, 2017. 6. 4. Name reaction		Sinomonoo,	
Compounds PEDOT and polypyrroles as conducting polymers, Bipyridine in dye sensitized solar cells (DSC). Nicotinic acid (Lipid modulating drug), 3,5-pyrazolidinedione (anti-inflammatory drug), Captopril (anti-hypertensive agent) and Ciprofloxacin (antibiotic). Module:8 Contemporary Issues 2 hours Industry Expert Lecture Total Lecture hours: 45 hours Industry Expert Lecture Total Lecture hours: 45 hours Industry Expert Lecture Total Lecture hours: 45 hours Industry Expert Lecture addition Wiley-Blackwell, 2012. 45 hours 2. The Chemistry of Heterocycles, Theophil Eicher, Siegfried Hauptmann, 3 rd edition, Wiley-VCH, Weinheim, 2012. 3. 3. An Introduction to the Chemistry of Heterocyclic Compounds, Acheson, R. M. 3rd Edition, WileyIndia Pvt Ltd, 2008. 4. 4. Heterocyclic Chemistry, Gilchrist, T. L. , 3 rd Edition, Prentice Hall, 2005. Reference Books 1. Organic Chemistry, Jonathan Clayden, Nick Greeves, and Stuart Warren, Oxford University Press, 2014. 2. 2. The essence of Heterocyclic Chemistry, Arun R Parikh, Hansa Parikh and Ranjan Khunt, New Age International, 2017. 3. 3. Heterocyclic Chemistry, V. K. Ahluwalia, Alpha Science International, 2012. 4. 4. Advanced Organic Chemistry. Structure and Mechanisms (Pa		6 hours	
cells (DSC). Nicotinic acid (Lipid modulating drug), 3,5-pyrazolidinedione (anti- inflammatory drug), Captopril (anti-hypertensive agent) and Ciprofloxacin (antibiotic). Module:8 Contemporary Issues 2 hours Industry Expert Lecture Total Lecture hours: 45 hours Text Book(s) 1. Heterocyclic Chemistry At A Glance, John A. Joule, Keith Mills, 2 nd revised edition Wiley-Blackwell, 2012. 45 hours 2. The Chemistry of Heterocycles, Theophil Eicher, Siegfried Hauptmann, 3 rd edition, Wiley-VCH, Weinheim, 2012. 3. 3. An Introduction to the Chemistry of Heterocyclic Compounds, Acheson, R. M. 3rd Edition, WileyIndia Pvt Ltd, 2008. 4. 4. Heterocyclic Chemistry, Gilchrist, T. L. , 3 rd Edition, Prentice Hall, 2005. 7. 7. Organic Chemistry, Jonathan Clayden, Nick Greeves, and Stuart Warren, Oxford University Press, 2014. 7. 3. Heterocyclic Chemistry, V. K. Ahluwalia, Alpha Science International, 2012. 7. 4. Heterocyclic Chemistry, V. K. Ahluwalia, Alpha Science International, 2012. 7. 5. Heterocyclic chemistry, R. K. Bansal, 5 th edition, New Age International Private Limited, 2017. 7. 6. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar 7.		0 nours	
inflammatory drug), Captopril (anti-hypertensive agent) and Ciprofloxacin (antibiotic). Module:8 Contemporary Issues 2 hours Industry Expert Lecture Total Lecture hours: 45 hours Total Lecture hours: <td colspa<="" td=""><td>PEDOT and polypyrroles as conducting polymers, Bipyridine in dye sens</td><td>sitized solar</td></td>	<td>PEDOT and polypyrroles as conducting polymers, Bipyridine in dye sens</td> <td>sitized solar</td>	PEDOT and polypyrroles as conducting polymers, Bipyridine in dye sens	sitized solar
Module:8 Contemporary Issues 2 hours Industry Expert Lecture Total Lecture hours: 45 hours Text Book(s) 1. Heterocyclic Chemistry At A Glance, John A. Joule, Keith Mills, 2 nd revised edition Wiley-Blackwell, 2012. 2. The Chemistry of Heterocycles, Theophil Eicher, Siegfried Hauptmann, 3 rd edition, Wiley-VCH, Weinheim, 2012. 3. An Introduction to the Chemistry of Heterocyclic Compounds, Acheson, R. M. 3rd Edition, WileyIndia Pvt Ltd, 2008. 4. Heterocyclic Chemistry, Gilchrist, T. L. , 3 rd Edition, Prentice Hall, 2005. Reference Books 1. 1. Organic Chemistry, Jonathan Clayden, Nick Greeves, and Stuart Warren, Oxford University Press, 2014. 2. The essence of Heterocyclic Chemistry, Arun R Parikh, Hansa Parikh and Ranjan Khunt, New Age International, 2017. 3. Heterocyclic Chemistry, V. K. Ahluwalia, Alpha Science International, 2012. 4. Advanced Organic Chemistry: Structure and Mechanisms (Part A & 8B). Frances A Carey and Richard J Sundberg, Springer, 2015. 5. Heterocyclic chemistry, R. K. Bansal, 5 th edition, New Age International Private Limited, 2017. 6. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar 26-02-2024	cells (DSC). Nicotinic acid (Lipid modulating drug), 3,5-pyrazolidinedic	one (anti-	
Total Lecture hours: 45 hours Total Lecture hours: 45 hours Text Book(s) 1. Heterocyclic Chemistry At A Glance, John A. Joule, Keith Mills, 2 nd revised edition Wiley-Blackwell, 2012. 3. 2. The Chemistry of Heterocycles, Theophil Eicher, Siegfried Hauptmann, 3 rd edition, Wiley-VCH, Weinheim, 2012. 3. 3. An Introduction to the Chemistry of Heterocyclic Compounds, Acheson, R. M. 3rd Edition, WileyIndia Pvt Ltd, 2008. 4. 4. Heterocyclic Chemistry, Gilchrist, T. L. , 3 rd Edition, Prentice Hall, 2005. Reference Books 1. Organic Chemistry, Jonathan Clayden, Nick Greeves, and Stuart Warren, Oxford University Press, 2014. 2. 2. The essence of Heterocyclic Chemistry, Arun R Parikh, Hansa Parikh and Ranjan Khunt, New Age International, 2017. 3. 3. Heterocyclic Chemistry, V. K. Ahluwalia, Alpha Science International, 2012. 4. 4. Advanced Organic Chemistry: Structure and Mechanisms (Part A & &B). Frances A Carey and Richard J Sundberg, Springer, 2015. 5. 5. Heterocyclic chemistry, R. K. Bansal, 5 th edition, New Age International Private Limited, 2017. 6. 6. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment,	inflammatory drug), Captopril (anti-hypertensive agent) and Ciprofloxacin (a	antibiotic).	
Total Lecture hours: 45 hours Text Book(s) 45 hours 1. Heterocyclic Chemistry At A Glance, John A. Joule, Keith Mills, 2 nd revised edition Wiley-Blackwell, 2012. revised 2. The Chemistry of Heterocycles, Theophil Eicher, Siegfried Hauptmann, 3 rd edition, Wiley-VCH, Weinheim, 2012. an Introduction to the Chemistry of Heterocyclic Compounds, Acheson, R. M. 3rd Edition, WileyIndia Pvt Ltd, 2008. 4. Heterocyclic Chemistry, Gilchrist, T. L. , 3 rd Edition, Prentice Hall, 2005. Reference Books 1. Organic Chemistry, Jonathan Clayden, Nick Greeves, and Stuart Warren, Oxford University Press, 2014. Oxford University Press, 2014. 2. The essence of Heterocyclic Chemistry, Arun R Parikh, Hansa Parikh and Ranjan Khunt, New Age International, 2017. 3. Heterocyclic Chemistry. V. K. Ahluwalia, Alpha Science International, 2012. 4. Advanced Organic Chemistry: Structure and Mechanisms (Part A & B). Frances A Carey and Richard J Sundberg, Springer, 2015. 5. Heterocyclic chemistry, R. K. Bansal, 5 th edition, New Age International Private Limited, 2017. 6. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar Recommended by Board of Studies	Module:8 Contemporary Issues	2 hours	
 Text Book(s) 1. Heterocyclic Chemistry At A Glance, John A. Joule, Keith Mills, 2nd revised edition Wiley-Blackwell, 2012. 2. The Chemistry of Heterocycles, Theophil Eicher, Siegfried Hauptmann, 3rd edition, Wiley-VCH, Weinheim, 2012. 3. An Introduction to the Chemistry of Heterocyclic Compounds, Acheson, R. M. 3rd Edition, WileyIndia Pvt Ltd, 2008. 4. Heterocyclic Chemistry, Gilchrist, T. L., 3rd Edition, Prentice Hall, 2005. Reference Books 1. Organic Chemistry, Jonathan Clayden, Nick Greeves, and Stuart Warren, Oxford University Press, 2014. 2. The essence of Heterocyclic Chemistry, Arun R Parikh, Hansa Parikh and Ranjan Khunt, New Age International, 2017. 3. Heterocyclic Chemistry: Structure and Mechanisms (Part A & &B). Frances A Carey and Richard J Sundberg, Springer, 2015. 5. Heterocyclic chemistry, R. K. Bansal, 5th edition, New Age International Private Limited, 2017. 6. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar Recommended by Board of Studies 	Industry Expert Lecture		
 Text Book(s) 1. Heterocyclic Chemistry At A Glance, John A. Joule, Keith Mills, 2nd revised edition Wiley-Blackwell, 2012. 2. The Chemistry of Heterocycles, Theophil Eicher, Siegfried Hauptmann, 3rd edition, Wiley-VCH, Weinheim, 2012. 3. An Introduction to the Chemistry of Heterocyclic Compounds, Acheson, R. M. 3rd Edition, WileyIndia Pvt Ltd, 2008. 4. Heterocyclic Chemistry, Gilchrist, T. L., 3rd Edition, Prentice Hall, 2005. Reference Books 1. Organic Chemistry, Jonathan Clayden, Nick Greeves, and Stuart Warren, Oxford University Press, 2014. 2. The essence of Heterocyclic Chemistry, Arun R Parikh, Hansa Parikh and Ranjan Khunt, New Age International, 2017. 3. Heterocyclic Chemistry: Structure and Mechanisms (Part A & &B). Frances A Carey and Richard J Sundberg, Springer, 2015. 5. Heterocyclic chemistry, R. K. Bansal, 5th edition, New Age International Private Limited, 2017. 6. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar Recommended by Board of Studies 			
 Heterocyclic Chemistry At A Glance, John A. Joule, Keith Mills, 2nd revised edition Wiley-Blackwell, 2012. The Chemistry of Heterocycles, Theophil Eicher, Siegfried Hauptmann, 3rd edition, Wiley-VCH, Weinheim, 2012. An Introduction to the Chemistry of Heterocyclic Compounds, Acheson, R. M. 3rd Edition, WileyIndia Pvt Ltd, 2008. Heterocyclic Chemistry, Gilchrist, T. L., 3rd Edition, Prentice Hall, 2005. Reference Books Organic Chemistry, Jonathan Clayden, Nick Greeves, and Stuart Warren, Oxford University Press, 2014. The essence of Heterocyclic Chemistry, Arun R Parikh, Hansa Parikh and Ranjan Khunt, New Age International, 2017. Heterocyclic Chemistry, V. K. Ahluwalia, Alpha Science International, 2012. Advanced Organic Chemistry: Structure and Mechanisms (Part A &B). Frances A Carey and Richard J Sundberg, Springer, 2015. Heterocyclic chemistry, R. K. Bansal, 5th edition, New Age International Private Limited, 2017. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar Recommended by Board of Studies 26-02-2024 	Total Lecture hours:	45 hours	
 Heterocyclic Chemistry At A Glance, John A. Joule, Keith Mills, 2nd revised edition Wiley-Blackwell, 2012. The Chemistry of Heterocycles, Theophil Eicher, Siegfried Hauptmann, 3rd edition, Wiley-VCH, Weinheim, 2012. An Introduction to the Chemistry of Heterocyclic Compounds, Acheson, R. M. 3rd Edition, WileyIndia Pvt Ltd, 2008. Heterocyclic Chemistry, Gilchrist, T. L., 3rd Edition, Prentice Hall, 2005. Reference Books Organic Chemistry, Jonathan Clayden, Nick Greeves, and Stuart Warren, Oxford University Press, 2014. The essence of Heterocyclic Chemistry, Arun R Parikh, Hansa Parikh and Ranjan Khunt, New Age International, 2017. Heterocyclic Chemistry, V. K. Ahluwalia, Alpha Science International, 2012. Advanced Organic Chemistry: Structure and Mechanisms (Part A &B). Frances A Carey and Richard J Sundberg, Springer, 2015. Heterocyclic chemistry, R. K. Bansal, 5th edition, New Age International Private Limited, 2017. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar Recommended by Board of Studies 26-02-2024 	Text Book(s)		
 edition Wiley-Blackwell, 2012. 2. The Chemistry of Heterocycles, Theophil Eicher, Siegfried Hauptmann, 3rd edition, Wiley-VCH, Weinheim, 2012. 3. An Introduction to the Chemistry of Heterocyclic Compounds, Acheson, R. M. 3rd Edition, WileyIndia Pvt Ltd, 2008. 4. Heterocyclic Chemistry, Gilchrist, T. L., 3rd Edition, Prentice Hall, 2005. Reference Books Organic Chemistry, Jonathan Clayden, Nick Greeves, and Stuart Warren, Oxford University Press, 2014. 2. The essence of Heterocyclic Chemistry, Arun R Parikh, Hansa Parikh and Ranjan Khunt, New Age International, 2017. 3. Heterocyclic Chemistry, V. K. Ahluwalia, Alpha Science International, 2012. 4. Advanced Organic Chemistry: Structure and Mechanisms (Part A & &B). Frances A Carey and Richard J Sundberg, Springer, 2015. 5. Heterocyclic chemistry, R. K. Bansal, 5th edition, New Age International Private Limited, 2017. 6. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar Recommended by Board of Studies 		revised	
 The Chemistry of Heterocycles, Theophil Eicher, Siegfried Hauptmann, 3rd edition, Wiley-VCH, Weinheim, 2012. An Introduction to the Chemistry of Heterocyclic Compounds, Acheson, R. M. 3rd Edition, WileyIndia Pvt Ltd, 2008. Heterocyclic Chemistry, Gilchrist, T. L., 3rd Edition, Prentice Hall, 2005. Reference Books Organic Chemistry, Jonathan Clayden, Nick Greeves, and Stuart Warren, Oxford University Press, 2014. The essence of Heterocyclic Chemistry, Arun R Parikh, Hansa Parikh and Ranjan Khunt, New Age International, 2017. Heterocyclic Chemistry, V. K. Ahluwalia, Alpha Science International, 2012. Advanced Organic Chemistry: Structure and Mechanisms (Part A & B). Frances A Carey and Richard J Sundberg, Springer, 2015. Heterocyclic chemistry, R. K. Bansal, 5th edition, New Age International Private Limited, 2017. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar Recommended by Board of Studies 26-02-2024 			
 edition, Wiley-VCH, Weinheim, 2012. An Introduction to the Chemistry of Heterocyclic Compounds, Acheson, R. M. 3rd Edition, WileyIndia Pvt Ltd, 2008. Heterocyclic Chemistry, Gilchrist, T. L., 3rd Edition, Prentice Hall, 2005. Reference Books Organic Chemistry, Jonathan Clayden, Nick Greeves, and Stuart Warren, Oxford University Press, 2014. The essence of Heterocyclic Chemistry, Arun R Parikh, Hansa Parikh and Ranjan Khunt, New Age International, 2017. Heterocyclic Chemistry, V. K. Ahluwalia, Alpha Science International, 2012. Advanced Organic Chemistry: Structure and Mechanisms (Part A &B). Frances A Carey and Richard J Sundberg, Springer, 2015. Heterocyclic chemistry, R. K. Bansal, 5th edition, New Age International Private Limited, 2017. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar Recommended by Board of Studies 26-02-2024 		mann 3 rd	
 An Introduction to the Chemistry of Heterocyclic Compounds, Acheson, R. M. 3rd Edition, WileyIndia Pvt Ltd, 2008. Heterocyclic Chemistry, Gilchrist, T. L., 3rd Edition, Prentice Hall, 2005. Reference Books Organic Chemistry, Jonathan Clayden, Nick Greeves, and Stuart Warren, Oxford University Press, 2014. The essence of Heterocyclic Chemistry, Arun R Parikh, Hansa Parikh and Ranjan Khunt, New Age International, 2017. Heterocyclic Chemistry, V. K. Ahluwalia, Alpha Science International, 2012. Advanced Organic Chemistry: Structure and Mechanisms (Part A &B). Frances A Carey and Richard J Sundberg, Springer, 2015. Heterocyclic chemistry, R. K. Bansal, 5th edition, New Age International Private Limited, 2017. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar Recommended by Board of Studies 26-02-2024 		mann, o	
 3rd Edition, WileyIndia Pvt Ltd, 2008. Heterocyclic Chemistry, Gilchrist, T. L. , 3rd Edition, Prentice Hall, 2005. Reference Books Organic Chemistry, Jonathan Clayden, Nick Greeves, and Stuart Warren, Oxford University Press, 2014. The essence of Heterocyclic Chemistry, Arun R Parikh, Hansa Parikh and Ranjan Khunt, New Age International, 2017. Heterocyclic Chemistry, V. K. Ahluwalia, Alpha Science International, 2012. Advanced Organic Chemistry: Structure and Mechanisms (Part A &B). Frances A Carey and Richard J Sundberg, Springer, 2015. Heterocyclic chemistry, R. K. Bansal, 5th edition, New Age International Private Limited, 2017. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar Recommended by Board of Studies 26-02-2024 		n. R. M.	
 4. Heterocyclic Chemistry, Gilchrist, T. L., 3rd Edition, Prentice Hall, 2005. Reference Books Organic Chemistry, Jonathan Clayden, Nick Greeves, and Stuart Warren, Oxford University Press, 2014. 2. The essence of Heterocyclic Chemistry, Arun R Parikh, Hansa Parikh and Ranjan Khunt, New Age International, 2017. 3. Heterocyclic Chemistry, V. K. Ahluwalia, Alpha Science International, 2012. 4. Advanced Organic Chemistry: Structure and Mechanisms (Part A & B). Frances A Carey and Richard J Sundberg, Springer, 2015. 5. Heterocyclic chemistry, R. K. Bansal, 5th edition, New Age International Private Limited, 2017. 6. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar Recommended by Board of Studies 26-02-2024 		,	
Reference Books 1. Organic Chemistry, Jonathan Clayden, Nick Greeves, and Stuart Warren, Oxford University Press, 2014. 2. The essence of Heterocyclic Chemistry, Arun R Parikh, Hansa Parikh and Ranjan Khunt, New Age International, 2017. 3. Heterocyclic Chemistry, V. K. Ahluwalia, Alpha Science International, 2012. 4. Advanced Organic Chemistry: Structure and Mechanisms (Part A &B). Frances A Carey and Richard J Sundberg, Springer, 2015. 5. Heterocyclic chemistry, R. K. Bansal, 5 th edition, New Age International Private Limited, 2017. 6. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar Recommended by Board of Studies 26-02-2024		5.	
 Oxford University Press, 2014. 2. The essence of Heterocyclic Chemistry, Arun R Parikh, Hansa Parikh and Ranjan Khunt, New Age International, 2017. 3. Heterocyclic Chemistry, V. K. Ahluwalia, Alpha Science International, 2012. 4. Advanced Organic Chemistry: Structure and Mechanisms (Part A & &B). Frances A Carey and Richard J Sundberg, Springer, 2015. 5. Heterocyclic chemistry, R. K. Bansal, 5th edition, New Age International Private Limited, 2017. 6. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar Recommended by Board of Studies 26-02-2024 		-	
 Oxford University Press, 2014. 2. The essence of Heterocyclic Chemistry, Arun R Parikh, Hansa Parikh and Ranjan Khunt, New Age International, 2017. 3. Heterocyclic Chemistry, V. K. Ahluwalia, Alpha Science International, 2012. 4. Advanced Organic Chemistry: Structure and Mechanisms (Part A & &B). Frances A Carey and Richard J Sundberg, Springer, 2015. 5. Heterocyclic chemistry, R. K. Bansal, 5th edition, New Age International Private Limited, 2017. 6. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar Recommended by Board of Studies 26-02-2024 	1. Organic Chemistry, Jonathan Clayden, Nick Greeves, and Stuart	Warren,	
 Ranjan Khunt, New Age International, 2017. 3. Heterocyclic Chemistry, V. K. Ahluwalia, Alpha Science International, 2012. 4. Advanced Organic Chemistry: Structure and Mechanisms (Part A & B). Frances A Carey and Richard J Sundberg, Springer, 2015. 5. Heterocyclic chemistry, R. K. Bansal, 5th edition, New Age International Private Limited, 2017. 6. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar Recommended by Board of Studies 26-02-2024 			
 Heterocyclic Chemistry, V. K. Ahluwalia, Alpha Science International, 2012. Advanced Organic Chemistry: Structure and Mechanisms (Part A &B). Frances A Carey and Richard J Sundberg, Springer, 2015. Heterocyclic chemistry, R. K. Bansal, 5th edition, New Age International Private Limited, 2017. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar Recommended by Board of Studies 	2. The essence of Heterocyclic Chemistry, Arun R Parikh, Hansa F	Parikh and	
 4. Advanced Organic Chemistry: Structure and Mechanisms (Part A &B). Frances A Carey and Richard J Sundberg, Springer, 2015. 5. Heterocyclic chemistry, R. K. Bansal, 5th edition, New Age International Private Limited, 2017. 6. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar Recommended by Board of Studies 26-02-2024 	Ranjan Khunt, New Age International, 2017.		
 &B). Frances A Carey and Richard J Sundberg, Springer, 2015. 5. Heterocyclic chemistry, R. K. Bansal, 5th edition, New Age International Private Limited, 2017. 6. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar Recommended by Board of Studies 26-02-2024 	3. Heterocyclic Chemistry, V. K. Ahluwalia, Alpha Science International,	2012.	
 5. Heterocyclic chemistry, R. K. Bansal, 5th edition, New Age International Private Limited, 2017. 6. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012. Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar Recommended by Board of Studies 26-02-2024 	4. Advanced Organic Chemistry: Structure and Mechanisms (Part A		
Limited, 2017.6.Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012.Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and SeminarRecommended by Board of Studies26-02-2024	&B). Frances A Carey and Richard J Sundberg, Springer, 2015.		
6.Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt Ltd, 2012.Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and SeminarRecommended by Board of Studies26-02-2024	5. Heterocyclic chemistry, R. K. Bansal, 5 th edition, New Age Internatio	onal Private	
Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and SeminarRecommended by Board of Studies26-02-2024	Limited, 2017.		
Recommended by Board of Studies 26-02-2024	6. Name reactions in heterocyclic chemistry, Jie Jack Li, Wiley India Pvt	Ltd, 2012.	
	Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar		
Approved by Academic Council No. 73 Date 14-03-2024	Recommended by Board of Studies 26-02-2024		
	Approved by Academic Council No. 73 Date 14-03-2024		

Course Code	Course Title	L	Т	Ρ	С
PCHY604L	Chemistry of Natural Products	3	0	0	3
Pre-requisite	NIL	Syl	labus	s vers	sion
			1	.0	
Course Objectiv					
	nthesis, properties, medicinal applications, meta	bolic	activ	ities a	and
biological fund	ctions of natural products.				
Acquainting the	ne students with steroids and their biological fund	ctions	•		
Course Outcom	es				
1. Relate the st	ructural difference between different natural produ	ucts.			
2. Outline chen	nical synthesis and biosynthesis of natural pro	ducts	ike like	sterc	oids,
alkaloids, ter	penoids, flavonoids and pigments.				
3. Determine th	e structure of natural products using structural e	lucida	ation	metho	ods.
4. Demonstrate	the importance of natural products based on the	eir bio	activ	ities.	
Module:1 Stere	· · · · · · · · · · · · · · · · · · ·			5 hc	ours
Classification, ge	eneral structural elucidation and identification	tes	ts- S		
structuralelucidat	ion, stereo chemistry and conformational aspects	s of c	noles	terol.	
	hesis of Steroids			5 hc	
Synthesis and s	tructural elucidation of oestrone. Conversion of	of cho	oleste	erol ir	nto
androsterone,tes	tosterone, progesterone and bile acids.				
Module:3 Alka				9 hc	
Classification, g	eneral structural elucidation and identification	on te	ests-S	Structu	Jral
elucidation and c	hemistry of the following alkaloids: quinine, me	orphir	ne, re	eserpi	ne,
mosembrine.					
Module:4 Terp	enoids			5 hc	ours
Classification, me	evalonic lactose, structural elucidation and synth	nesis	of bi	sabole	ene,
longifoleneand ca	aryophyllene.				
Module:5 Flava	anoids and Pigments			9 hc	ours
Anthocyanins an	d anthocyanidines, general methods of synthe	sis. S	Synth	esis	
and structure offla	avonols, isoflavonols, isoflavones.				
Introduction to pig	ments, classification, isolation and synthesis of	apige	nin, d	querc	etin,
diadzein, cyanidir	and cyanin.			-	
Module:6 Vitar				5 hc	ours
Chemistry and sy	nthesis of Vitamin B complexes, Vitamin C and V	/itam	in D		
	ohydrates			5 hc	ours
	anose forms of aldohexose and ketohexose – m	etho	ls us		
•	ring size - conformation of aldohexopyranos				
	ose, lactose, sucrose and cellobiose – A brief				
cellulose.	,,	J			
	temporary Issues			2 hc	ours
Industry Expert L					
	Total Lecture h	ours	:	45 hc	ours
Text Book(s)					

1	Natural Products in the Chamic		/ Bornd	Schoofer and ed	
1.	Natural Products in the Chemic	a muusir	у, венна	Schaeler, zhu eu.	
	Springer,New York, 2014.				
2.	Organic Chemistry, Vol II, Stere	eochemistry	and th	e Chemistry of Natural	
	Products, I. L. Finar, 5th edition, Pe	earson, 200)9.		
Ref	Reference Books				
1.	Advanced Organic Chemistry, P	Part-A and	B, F. /	A. Carey and R. J.	
	Sundberg, 5 th edition, Springer, 20	08.			
2.	Strategies and Tactics in Organ	nic Synthe	sis, Mich	nael Harmate, I st Edition,	
	Elsevier, 2013.				
3.	Organic Chemistry of Natural Prod	lucts, Volur	ne II, O.	P. Aggarwal, 38 th	
	edition,Krishna Prakashan Media (P) Ltd, 2014.				
4.	Medicinal Natural Products, P. M. I	Dewick, 3 rd	edition, .	John Wiley, 2011.	
5.	Chemistry of Natural Products, S	Sujata V.	Bhat, Bh	nimsen A. Nagasampagi,	
	MeenakshiSivakumar, Narosa Pub	olishing Hou	use, 2013	3.	
Mo	de of Evaluation: CAT, Written Assig	gnment, Qu	iiz, FAT a	and Seminar	
Red	commended by Board of Studies	26-02-202	24		
Арр	proved by Academic Council	No. 73	Date	14-03-2024	

Course Code	Course Title	L	Т	Ρ	С
PCHY605L	Photochemistry and Pericyclic Reactions	4	0	0	4
Pre-requisite I	NIL	Syl	labus	vers	ion
			1.	0	
Course Objectiv					
	owledge on theory and applications of pl	notocł	nemis	try a	nd
pericyclic read					
	echanisms of reactions involved in organi	c syr	nthesi	s us	ing
cycloaddition a	and photochemistry.				
Course Outcom					
	damental principles of photochemical reactions.				
2.Relate the co	oncepts related to light induced organic synth	iesis,	mec	hanisi	ms
and functions	of reagents.				
3. Apply photo	chemical reactions for synthesising mole	cules	of	indus	strial
significance.					
4. Analyse prod	luct distribution and stereochemistry of prod	ucts	deriv	ed fro	om
photochemica	Il reactions.				
5. Evaluate the p	photochemical reactions based on the influence	of the	e sub	stitue	nts
on substrate r	nolecules.				
6. Propose photo	ochemical reactions to achieve the required pro-	ducts.			
Module:1 Prince	ciples of photochemical reactions			11 ho	ours
Molecular energies and Jablonski diagram. Photochemical reactions and their					
applications in	organic synthesis; Hund's and Frank	Con	don	princ	iple,
Photochemistry of	of carbonyl compounds, Paterno- Buchi reac	tion,	Norris	sh ty	oe I
and II reaction,	Photoreduction, Photochemistry of α , β unsat	iturate	ed co	mpou	nds,
olefins and isome	erization.				
	o rearrangements				ours
Di- π -methane, of	xa di-π-and aza di-π-methane, aromatic hydr	ocarb	ons,	Wolf	and
Friesrearrangeme					
	ificant photoreactions			11 ho	
Photocycloadditic	on, Photochemical aromatic substitution reac	tion;	React	ions	with
singlet oxygen, e	ne reactions (ene with oxygen, alkenes, carbo	nyl, a	lkyne	s, am	ines
etc.); Photochem	nical methods for protection and deprotection	Barto	n rea	ction	and
Hoffman-Loffler-F	Freytag reactions, The mechanisms of reac	tions	invol	ving	free
radicals- Sandma	ayer, Gomberg- Bachmann, Pschorr and Hu	nsdie	cker	reacti	ons.
Photo-elimination	n reactions				
Module:4 Aron	naticity and cross-conjugated Systems			6 ho	ours
Aromaticity in be	enzenoid and non-benzenoid compounds. Huc	:kel's	(4n+2	2) an	d 4n
rules, annulen	es, anti-aromaticity and homo-aromatic	city.	Ann	ulenc	nes,
Annulenequinone	es, Fulvenes. Polycyclic Systems-Cyclopropeny	/I Aro	matic	Syste	əms-
Pentalenes, H	eptalenes, Azulenes, Other Systems-C	yclob	utadie	ene	and
cyclooctateraene					
Module:5 Mole	cular orbital symmetry			<u>7</u> hc	ours
Frontier orbital of	f ethylene, 1,3-butadiene, 1,3,5-hexatriene and	allyl	syste	m, W	ood-

wa	rd Hoffr	nan correlation diagram	ns, FMO	and PMO	approach,	electrocyclic
rea	ctions, -	conrotatory and dis rotato	rymotions	s, 4n , 4n+2 a	and allyl syste	ems
		Sigma-tropic rearrange				7 hours
Su	pra and	antarafacial shifts of H S	Sigmatropi	c shifts invo	lving carbon	moieties,3,3
and	d 5,5 sig	gmatropic rearrangement	and Clai	sen and Co	pe,Oxa ar	nd Aza Cope
rea	rrangem	ent- HOMO-LUMO orbital	symmetr	y analysis. C	heletropic Re	eactions
Мо	dule:7	Cycloaddition				11 hours
Su	pra and	antra facial additions, 4n	and 4n+2	2 systems, 2	+2 additions	of ketenes,
1,3	-dipolaro	cycloaddition and chelotro	pic reaction	ons. Ene rea	ction.	
Die	els-Alde	r reactions: retro Diels-A	Ider reac	tion- FMO r	nechanism fo	or endo- and
exc	o-selectiv	vity, stereochemistry, inte	er- and	intramolecul	ar reactions	. Correlation
dia	grams a	ind FMO method, Allowe	ed and fo	orbidden rea	ctions. Naza	arov and Iso
Na	zarov rea	actions				
Мо	dule:8	Contemporary Issues				2 hours
Ind	ustry Ex	pert Lecture				
				Total Lec	ture hours:	60 hours
Те	xt Book	(s)				I
1.	Orbital	interactions in chemistry,	Thomas	A Albright, .	leremy Burde	ett, Myung
	–Hwan	Whangbo, 2 nd edition, Jol	hn Wiley &	& Sons, Inc.,	2013	
2.	Pericyc	lic reactions-A Textboo	k: Reacti	ons Applica	ations and	Theory, S.
	Sankar	araman, Wiley-VCH, 2018	5.			
3.	Organi	c Photochemistry and	Pericyclic	Reactions,	S. Kalaiva	nai, MJP
	Publish	iers, 2011.				
Re	ference	Books				
1.	Pericyc	lic reactions, Sunil Kumar	, Vinod K	umar, S.P. S	ingh, Elsevie	r, 2016.
Мо	de of Ev	aluation: CAT, Written As	signment,	Quiz, FAT a	nd Seminar	
Re	commen	ded by Board of Studies	26-02-20)24		
Ар	proved b	y Academic Council	No. 73	Date	14-03-2024	

Cou	Irse Code	Course Title	L	Т	Ρ	С		
PCH	1Y606P	Organic Chemistry Lab-II	0	0	4	2		
Pre-	requisite	NIL	Syl	labu	s vers	sion		
			1.0					
	irse Objectiv							
		ining in analysis of organic compounds us	sing	chem	nical	and		
	nstrumental n							
		ills in organic synthesis.						
		g the importance of different instrumental me	ethod	s in	chem	lical		
	analysis of ma							
	Irse Outcom							
	•	tic utility of organic molecules and reagents.	- 4					
	•	eparation methods of organic molecules and real						
	•	structure of synthesized organic molecules ar	na th	eir a	erivat	ives		
		al analysis and spectroscopic tools.						
1.	cative Exper				3 houi	re		
2.	Estimation of				5 houi			
2. 3.	Estimation of				5 houi			
3. 4.					6 hours			
4. 5.		of Methyl Ketone	orbo					
э.		of carbonyl group (percentage purity of c	arboi		3 houi	S		
6.	compound)	characterization of phenytoin from benzoin- tv	vo ct	<u>on (</u>	3 houi			
0.	-	characterization of phenytoin from benzoin- to R, UV, GCMS, NMR)	VU 51	eh	Shou	5		
7.	,	characterization of 2,3-diphenyl quinoxaline (from	hon	zil) (5 houi	re		
1.	(IR,UV, GCI				J HOUI	3		
8.		haracterization of 2-phenylindole from acetophe	none	(3 houi	re		
0.		ctions (IR, UV, GCMS, NMR)			Jiloui	3		
9.	Synthesis,		fro	om (3 houi	rs		
0.	· ·	one-(Fischer Indolization) (IR, UV, GCMS, NMR)			5 noui	0		
10.	-	characterization of methyl cinnamate from malo		cid (3 houi	rs		
10.	-	amic acid two step reactions (IR, UV, GCMS, N			5 noui	0		
	anoughonn	Total Laboratory F		s 60	hour	'S		
Text	t Book(s)					<u> </u>		
1.	Vogel's Tex	tbook of Practical Organic Chemistry, B.S. Furni	iss, A	.J. H	annaf	ord,		
	P.W.G. Smi	th and A.R. Tatchell, Pearson India; 5th edition, 2	2003.					
2.	Comprehen	sive practical organic chemistry, V.K. Ahluwalia	a and	R. /	Aggar	wal,		
	University p	ress, 2000.						
3.	An advance	ed course in practical chemistry, Nad A. K.,	Maha	apatra	аB,	and		
	Ghoshal A.	New Central Book Agency (P) Ltd, 2011.						
4.	Instrumenta	I techniques for Analytical Chemistry, Fra	nk S	Settle	,			
	Prentice Ha	II PTR, New Jersey, USA, 1997.						
Refe	erence Book							
1.	Techniques	and Experiments for Organic Chemistry, Addis	son A	ult, I	Jnive	rsity		

	Science Book, USA, 1998.			
2.	The Systematic Identification of Organic Compounds, R. L. Shriner, C. K. F.			
	Hermann, T. C. Morrill, D. Y. Curtin, and R. C. Fuson, 7th edition, John Wiley &			
	Sons, New York, 1997			
Mod	le of Evaluation: CAT, Written Assig	nment, Qui	z, and FA	AT
Rec	ommended by Board of Studies	26-02-202	24	
Арр	roved by Academic Council	No. 73	Date	14-03-2024

Cou	rse Code	Course Title	L	Т	Ρ	С
PCH	IY607P	Organic Chemistry Lab-III	0	0	4	2
Pre-	requisite	NIL	Syl		s vers	sion
_				1	.0	
	rse Objectiv					
		kills in organic synthesis.		_		
		g the art of extraction and separation of organic r				-
		ining in analysis of organic compounds us	sing	chem	nical	and
	nstrumental r					
	rse Outcom					
		synthesis mythologies to prepare important organic		ecule	es.	
		preparation methods, functions of various reag	ents			
_	and reaction r					
	•	luct distribution and the influence of reaction	cond	dition	s in	
te	erms ofyields	5.				
		properties of synthesized molecules and their de	rivativ	ves u	sing	
	pectroscopic					
1	cative Exper					
1.	-	characterization of methyl salicylate from salicyli	c ac	id: 6	6 hour	S
		, UV, GCMS, NMR)				
2.	Synthesis, c	characterization of methyl red from anthranilic aci	d: tw	'o- 6	6 hour	'S
	step proces	s(IR, UV, GCMS, NMR)				
3.	Synthesis,	characterization of α , β -Unsaturated acid	l fro	om 6	6 hour	S
	anisaldehyd	le – two stepKnoevenagel condensation/hydrolyst	sis (I	R,		
	UV, GCMS,	NMR)				
4.	Synthesis,	characterization of Poly Halo-arene (1-iodo)-2,4 ,	6- 6	6 hour	S
	tribromo bei	nzenefrom aniline) – two step (IR, UV, GCMS, N	MR)			
5.	Synthesis, o	characterization of trimethylquinoline from p-tolu	uiden	e- 6	6 hour	S
	two step(IR,	, UV, GCMS, NMR)				
6.	Multi ste	p synthesis: 2-aminobenzophenone-2-me	ethyl-	3- 6	6 hour	S
	aceylquinoli	ne-2-methylquinoline chalcone				
7.	Multi step	synthesis: Cinnamaldehyde- cinnmamyl a	lcoh	ol- 6	hour	S
	cinnamylbro	omide – allylaryl ether				
8.	Extraction a	nd characterization of Lactose from Milk		5	i hour	S
9.	Extraction a	nd characterization of Lycopene from Tomatoes		5	i hour	S
10.		of binary mixture by column chromatography	- no	n- 8	hour	S
	-	blarcompounds				
	· ·	Total Laboratory H	ours	6 6	0 hou	ırs
Text	t Book(s)					
1.		tbook of Practical Organic Chemistry, B.S. Furni	ss, A	.J. H	anna	ford,
	P.W.G. Smi	th and A.R. Tatchell, Pearson India; 5th edition, 2	2003			
2.	Comprehen	sive practical organic chemistry, V.K. Ahluwalia	a and	1 R. /	Aggar	wal,
	University p	ress, 2000.				
4.		d course in practical chemistry, Nad A. K., Mal	napa	tra B,	and	

	Ghoshal A. New CentralBook Age	ncy (P) Ltd	, 2011.		
5.	. Instrumental techniques for Analytical Chemistry, Frank Settle, Prentice Hall				
	PTR, New Jersey, USA, 1997.				
Refe	Reference Books				
1.	Techniques and Experiments for	Organic Cl	nemistry,	, Addison Ault, University	
	Science Book, USA, 1998.				
2.	The Systematic Identification of (Organic Co	mpound	s, R. L. Shriner, C. K. F.	
	Hermann, T. C. Morrill, D. Y. Curt	in, and R. (C. Fuson	, 7 th edition, John Wiley &	
	Sons, New York, 1997.				
Mod	le of Evaluation: CAT, Written Assig	jnment, Qu	iz, and F	AT	
Rec	ommended by Board of Studies	26-02-202	24		
App	roved by Academic Council	No. 73	Date	14-03-2024	

Course Code	Course Title	L	Т	Р	C
PCHY608L	Electroanalytical and Separation	3	1	0	4
	Techniques	-			
Pre-requisite	NIL	Sylla	abus	vers	ion
		1.0			
Course Objecti					
	ht into advanced voltammetric and amperom	etric	techn	ique	in
analysis of el	ectroactive species.				
2.Understandir	ng the working principle and applications of ion-se	elective	e elec	ctrode	es.
3.Explaining th	neoretical principles and practical applications	of ch	roma	togra	phic
techniques.					
Course Outcon	nes				
1. Apply advance	ced voltammetric techniques.				
2. Analyse toxic	c metal ions and anions using ion selective electro	odes.			
3. Make use of	GC and GC-MS techniques for the analysis of	f volat	tile o	ganio	b
compounds.				0	
·	erent chiral and bio molecules by separating the	hem u	Isina	HPL	С.
UPLC and L			g		-,
5. Apply super critical fluid chromatography for extraction.					
	aration of biological molecules using affinity chroma	atoara	nhv		
	nciples of capillary electrophoresis for biological a	-			
	vanced Voltammetric Techniques	ipplice			ours
	voltammetry, Differential pulse voltammet	rv S	Squar		/ave
•	•	•	Jyuu	0 11	
voltammetry & Stair casevoltammetry – Principle, procedure and applications.					
Strinning voltam			catio	ns.	
	metry – Anodic & Cathodic stripping – Application	าร.			
Amperometry:	metry – Anodic & Cathodic stripping – Application Basic principles, instrumentation, nature of ti	าร.			
Amperometry: analytical applic	metry – Anodic & Cathodic stripping – Applicatior Basic principles, instrumentation, nature of ti- ations.	าร.		ves,	and
Amperometry: analytical applic Module:2 Ion	metry – Anodic & Cathodic stripping – Application Basic principles, instrumentation, nature of tra ations. Selective Electrodes	ns. tration	cur	ves, 6 hc	and
Amperometry: analytical applic Module:2 Ion Working princip	metry – Anodic & Cathodic stripping – Application Basic principles, instrumentation, nature of ti- ations. Selective Electrodes les and applications– theoretical consideration	ns. tration	cur	ves, <u>6 hc</u> of i	and ours on-
Amperometry: analytical applic Module:2 Ion Working princip selective electro	metry – Anodic & Cathodic stripping – Application Basic principles, instrumentation, nature of ti- ations. Selective Electrodes les and applications– theoretical consideration odes – properties of ion-selective electrodes – s	ns. tration ns - 1 source	types	ves, <u>6 hc</u> of i error	and ours on- s –
Amperometry: analytical applic Module:2 Ion Working princip selective electro construction an	metry – Anodic & Cathodic stripping – Application Basic principles, instrumentation, nature of ti- ations. Selective Electrodes Des and applications– theoretical consideration odes – properties of ion-selective electrodes – s d working of cation specific electrodes for and	ns. tration ns - 1 source alysis	types of c	ves, 6 hc of i error admiu	and Durs on- s – um,
Amperometry: analytical applic Module:2 Ion Working princip selective electro construction an lead, arsenic ar	metry – Anodic & Cathodic stripping – Application Basic principles, instrumentation, nature of ti- ations. Selective Electrodes bles and applications– theoretical consideration odes – properties of ion-selective electrodes – s d working of cation specific electrodes for ana and anion specific electrodes for fluoride, chloride	ns. tration ns - 1 source alysis	types of c	ves, <u>6 hc</u> of i error admiu	and ours on- s – um, ns.
Amperometry: analytical applic Module:2 Ion Working princip selective electro construction an lead, arsenic ar Module:3 Gas	metry – Anodic & Cathodic stripping – Application Basic principles, instrumentation, nature of ti- ations. Selective Electrodes eles and applications– theoretical consideration edes – properties of ion-selective electrodes – s d working of cation specific electrodes for ana and anion specific electrodes for fluoride, chloride s Chromatography	ns. tration ns - t source alysis e and s	types of of casulphi	ves, 6 hc of i error admiu de io 7 hc	and on- s – um, ns.
Amperometry: analytical applic Module:2 Ion Working princip selective electro construction and lead, arsenic and Module:3 Gas Instrumentation	metry – Anodic & Cathodic stripping – Application Basic principles, instrumentation, nature of ti- ations. Selective Electrodes oles and applications– theoretical consideration odes – properties of ion-selective electrodes – s d working of cation specific electrodes for ana and anion specific electrodes for fluoride, chloride s Chromatography - Carrier Gas – Packed and Capillary Column, T	ns. tration ns - f source alysis and s	types of casulphi of St	ves, <u>6 hc</u> of i error admiu ide io <u>7 hc</u> ation	and ours on- s – um, ns. ours ary
Amperometry: analytical applic Module:2 Ion Working princip selective electro construction and lead, arsenic ar Module:3 Gas Instrumentation Phases and Co	metry – Anodic & Cathodic stripping – Application Basic principles, instrumentation, nature of ti- ations. Selective Electrodes bles and applications– theoretical consideration odes – properties of ion-selective electrodes – s d working of cation specific electrodes for ana and anion specific electrodes for fluoride, chloride s Chromatography - Carrier Gas – Packed and Capillary Column, lumn Selection). Injection Methods (On-column,	ns. tration ns - f source alysis and s and s Split/S	types of casulphi of Sti Split-I	ves, 6 hc of i error admiu ide io 7 hc ation ess a	and on- s – um, ns. ours ary and
Amperometry: analytical applic Module:2 Ion Working princip selective electro construction an lead, arsenic ar Module:3 Gas Instrumentation Phases and Co Programmed T	metry – Anodic & Cathodic stripping – Application Basic principles, instrumentation, nature of ti- ations. Selective Electrodes oles and applications– theoretical consideration odes – properties of ion-selective electrodes – s d working of cation specific electrodes for ana and anion specific electrodes for fluoride, chloride s Chromatography - Carrier Gas – Packed and Capillary Column, T	ns. tration ns - f source alysis and s and s Split/S	types of casulphi of Sti Split-I	ves, 6 hc of i error admiu ide io 7 hc ation ess a	and on- s – um, ns. ours ary and
Amperometry: analytical applic Module:2 Ion Working princip selective electro construction and lead, arsenic an Module:3 Gas Instrumentation Phases and Co Programmed To systems.	metry – Anodic & Cathodic stripping – Application Basic principles, instrumentation, nature of tra ations. Selective Electrodes bles and applications– theoretical consideration odes – properties of ion-selective electrodes – s d working of cation specific electrodes for ana ad anion specific electrodes for fluoride, chloride s Chromatography - Carrier Gas – Packed and Capillary Column, lumn Selection). Injection Methods (On-column, emperature Vaporizer) Temperature Control -	ns. tration ns - f source alysis and s and s Split/s Com	types of casulphi of Sti Split-I mon	ves, 6 hc of i error admit de io 7 hc ation ess a detec	and on- s – um, ns. Durs ary and ctor
Amperometry: analytical applic Module:2 Ion Working princip selective electro construction and lead, arsenic ar Module:3 Gas Instrumentation Phases and Co Programmed To systems. Sampling Metho	metry – Anodic & Cathodic stripping – Application Basic principles, instrumentation, nature of ti- ations. Selective Electrodes oles and applications– theoretical consideration odes – properties of ion-selective electrodes – s d working of cation specific electrodes for ana ad anion specific electrodes for fluoride, chloride s Chromatography - Carrier Gas – Packed and Capillary Column, T lumn Selection). Injection Methods (On-column, emperature Vaporizer) Temperature Control -	ns. tration ns - f source alysis and s Split/S Comr ction	cur types of ca sulphi of St Split-I mon	ves, 6 hc of i error admit ide io 7 hc ation ess a detec	and ours on- s – um, ns. ours ary and ctor
Amperometry: analytical applic Module:2 Ion Working princip selective electro construction and lead, arsenic an Module:3 Gas Instrumentation Phases and Co Programmed To systems. Sampling Metho Development -	metry – Anodic & Cathodic stripping – Application Basic principles, instrumentation, nature of tra ations. Selective Electrodes les and applications– theoretical consideration odes – properties of ion-selective electrodes – se d working of cation specific electrodes for ana ad anion specific electrodes for fluoride, chloride s Chromatography - Carrier Gas – Packed and Capillary Column, lumn Selection). Injection Methods (On-column, emperature Vaporizer) Temperature Control - ods - Sample Selection & Preparation and Inje Troubleshooting - Quantitative and Qualitation	ns. tration ns - f source alysis and s Split/S Comr ction	cur types of ca sulphi of St Split-I mon	ves, 6 hc of i error admit ide io 7 hc ation ess a detec	and ours on- s – um, ns. ours ary and ctor
Amperometry: analytical applic Module:2 Ion Working princip selective electro construction an lead, arsenic ar Module:3 Gas Instrumentation Phases and Co Programmed To systems. Sampling Metho Development - Hyphenated Sys	 metry – Anodic & Cathodic stripping – Application Basic principles, instrumentation, nature of trations. Selective Electrodes oles and applications – theoretical consideration odes – properties of ion-selective electrodes – sed working of cation specific electrodes for fluoride, chloride Chromatography Carrier Gas – Packed and Capillary Column, Tolumn Selection). Injection Methods (On-column, emperature Vaporizer) Temperature Control - ods - Sample Selection & Preparation and Inje Troubleshooting - Quantitative and Qualitation 	ns. tration ns - f source alysis and s Split/S Comr ction	cur types of ca sulphi of St Split-I mon	ves, 6 hc of i error admit de io 7 hc ation ess a detec	and on- s – um, ns. ours and ctor thod s –
Amperometry: analytical applic Module:2 Ion Working princip selective electro construction and lead, arsenic an Module:3 Gas Instrumentation Phases and Co Programmed To systems. Sampling Metho Development - Hyphenated Systems	metry – Anodic & Cathodic stripping – Application Basic principles, instrumentation, nature of tra- ations. Selective Electrodes bles and applications – theoretical consideration odes – properties of ion-selective electrodes – s d working of cation specific electrodes for ana and anion specific electrodes for fluoride, chloride <u>5 Chromatography</u> - Carrier Gas – Packed and Capillary Column, T lumn Selection). Injection Methods (On-column, emperature Vaporizer) Temperature Control - ods - Sample Selection & Preparation and Inje Troubleshooting - Quantitative and Qualitation stems (GC/MS).	ns. tration ns - f source alysis and s and s Split/S Com tive A	i cur types of ca sulphi of St Split-I mon GC	ves, 6 hc of i error admiu ide io 7 hc admiu ess a detec c Met ation 8 hc	and on- s – um, ns. ours and ctor thod s – ours
Amperometry: analytical applic Module:2 Ion Working princip selective electro construction and lead, arsenic an Module:3 Gas Instrumentation Phases and Co Programmed To systems. Sampling Metho Development - Hyphenated Sys Module:4 Liqu HPLC Columns	 metry – Anodic & Cathodic stripping – Application Basic principles, instrumentation, nature of trations. Selective Electrodes oles and applications – theoretical consideration odes – properties of ion-selective electrodes – sed working of cation specific electrodes for anard anion specific electrodes for fluoride, chloride Chromatography Carrier Gas – Packed and Capillary Column, Tolumn Selection). Injection Methods (On-column, emperature Vaporizer) Temperature Control - ods - Sample Selection & Preparation and Inje Troubleshooting - Quantitative and Qualitation otdes (GC/MS). uid Chromatography Types, Packing Characteristics and Modern 	ns. tration ns - f source alysis and s and s Split/S Com ction tive A	of Standard	ves, 6 hc of i error admin ide io 7 hc admin ess a detec C Met ation 8 hc rend	and ours on- s – um, ns. ours ary and ctor thod s – ours s of
Amperometry: analytical applic Module:2 Ion Working princip selective electro construction and lead, arsenic and Instrumentation Phases and Co Programmed To systems. Sampling Metho Development - Hyphenated Sys Module:4 Liqu HPLC Columns	metry – Anodic & Cathodic stripping – Application Basic principles, instrumentation, nature of tra- ations. Selective Electrodes bles and applications – theoretical consideration odes – properties of ion-selective electrodes – s d working of cation specific electrodes for ana and anion specific electrodes for fluoride, chloride <u>5 Chromatography</u> - Carrier Gas – Packed and Capillary Column, T lumn Selection). Injection Methods (On-column, emperature Vaporizer) Temperature Control - ods - Sample Selection & Preparation and Inje Troubleshooting - Quantitative and Qualitation stems (GC/MS).	ns. tration ns - f source alysis and s and s Split/S Com tive A ction tive A	i cur types es of of ca sulphi of St Split-I mon GC Applic mn 1 n). S	ves, 6 hc of i error admit ide io 7 hc admit ide io 7 hc admit	and on- s – um, ns. ours and ctor thod s – ours s of nary

hod De	ind Gradient Elution) - Sample Preparation and Introduc					
	Walanmant Drangrativa HDL(- Traublachaating ()ug					
intative	evelopment – Preparative HPLC - Troubleshooting – Qua					
	Applications – Hyphenated Systems (LC/MS).	71				
	UPLC and Super critical fluid chromatography	7 hours				
	ra performance liquid chromatography, stationary phases					
-	plications. Supercritical Fluid chromatography: Principle - s	-				
-	operties of supercritical fluids- Instrumentation, detecto	-				
•	, pressure restrictors, specific applications. Ion Chromatograp	hy: principle,				
lication	s in qualitative and quantitative analysis.					
	Affinity Chromatography	4 hours				
nitions	, separation mechanism-matrices, matrix activation, role of	spacer arms				
applica	ations inpurification of biological molecules.					
Jule:7	Capillary Electrophoresis	5 hours				
rview,	types, the basis for electrphoretic separations, migration	n rates and				
e heig	hts, electroosmotic flow, instrumentation, capillary zone ele	ctrophoresis,				
llary g	gel electrophoresis, capillary isoelectrophoresis, capillary	isoelectric				
ising, a	pplications.					
dule:8		2 hours				
	pert Lecture					
	<u>'</u>					
	Total Lecture hours:	45 hours				
	Total Tutorial hours:	15 hours				
t Book	(\$)					
	d G. Compton and Craig E. Banks, Understanding Voltamme	etrv. 2 nd				
	ed Edn., WorldScientific Publishers, 2011.	,				
	antin N. Mikhelson, Ion-Selective Electrodes, Springer-Verlag,	2013				
	D. Christian, Purnendu K. Dasgupta and Kevin A. Schug, Ana					
	stry, 7 th edition, John Wiley & Sons, Inc., 2014.	ary trocar				
	C. Harris and Chucky Lucy, Quantitative Chemical Analysis	e O th				
	N.H. Freeman,2015.	5, 9				
		ohn Wilov P				
	F. Vitha, Chromatoraphy: Principles and Instrumentation, J					
	Inc., 2017.					
	aithwaite and F.J. Smith, Chromatographic Methods, 5th	Edition,				
Blackie	e Academic & Professional (Chapman & Hall), 2009.					
Danilo		s, 2011.				
	oole, Gas Chromatography, Elsevier Inc., 2012.					
	 C.F. Poole, Gas Chromatography, Elsevier Inc., 2012. Yuki Saito and Takumi Kikuchi, Voltammetry – Theory, Types and 					
	Saito and Takumi Kikuchi, Voltammetry – Theory, Type	es and				
Yuki 🕄		es and				
Yuki S Applica	Saito and Takumi Kikuchi, Voltammetry – Theory, Type					
Blackie erence	e Academic & Professional (Chapman & Hall), 2009. Books Corradini, Handbook of HPLC, CRC Press Taylor and Francis	s, 2011.				

ience,					
ience,					
and					
uction,					
Wiley, 2003.					

Course Code	Course Title	L	Т	Ρ	С				
PCHY609L	Environmental and Industrial Analytical	3	1	0	4				
Chemistry Syllabus version									
Pre-requisite	Syl			sion					
1.0									
Course Objectiv									
	g soil analysis and waste management.								
Ŭ	effects of pollutants in water, air and food and the			•					
	e different industrial pollutants and prevention me	thods	5.						
Course Outcom									
	e elements in soil by chemical analysis.			_					
	ameters to be controlled in solid waste and add	pt m	ethoc	ls					
	and recycling of solid waste.								
	er quality through different analytical methods.								
	otion and emission spectroscopy and chemical and	alysis	for						
water polluta		utonto							
	uality and adopt methods for reduction of air pollu ustrial pollutants, understand their effects and a		5.						
methods to r	•	Jopt							
	taminants present in food and water such	as							
pesticides ar	•	uo							
	mical analysis of soil			5 ho	ours				
	nalysis: a brief idea of chemistry of soil. Trace	eleme	ent a						
	e, Mn, Mo, Zn, Pb. Standard specifications for se								
	based Waste Management			5 h	ours				
	nent: waste management approaches - waste r	educ	tion.						
-	gement of hazardous wastes, household was			-	-				
	-collection, transportation and disposal options.	,							
	er quality assessment			6 ho	ours				
	pH, EC, TDS, DO, colour, turbidity, total solids, of	condu	uctivit						
	ss, chloride, fluoride, sulphate, nitrite, nitrate,								
•	ganic),BOD, COD, TOC, pesticides.	p	P	(
0	er pollutants & their Impact			6 ha	ours				
	r pollution - domestic, industrial, agricultural, se	oil ar	nd rad						
	es of pollution. Contamination by inorganic and								
parameters for analysis. Impact of heavy metal pollution- Assessment of toxic									
	ater; Impact of organic pollutants - Assessment								
organic pollutant		oru	yes a		nei				
<u> </u>				6 h					
	quality monitoring Analysis: atmospheric pollution, classification	of	air r		ours				
Air quality; Air Analysis: atmospheric pollution, classification of air pollutants,									
sources of air pollution and methods of control, sampling of aerosols, sampling of gaseous pollutants, analysis of SO2, NO2, CO-CO2, hydrocarbons, particulates,									
	llutants on animals, ozone layer, chlorofluorocar	bons	, acio	l rain	and				
greenhouse effe									
	strial pollutants and prevention				ours				
Pollutants from	Pigment and paint, textile industries, ta	anner	у, с	osme	tics,				

ceramics and glass, chemical and pharmaceutical, explosives, electroplating industries, food processing industries. Pollution prevention strategies in industrial processes.

Module:7Food ingredients, additives and contaminants8 hoursWater in food, crude protein and amino acids - functional properties; lipids -
classification and use of lipids in food - physical and chemical properties, nutritive
value; carbohydrates-functional properties in food; minerals, vitamins, ash content.
Pesticide analysis in food products. Food additives; chemistry, role and application
of preservatives; emulsifying, stabilizing, buffering, bleaching, maturing agents and
starch modifiers, food color, flavors, anti-caking agents. Common adulterants in
food, contamination of food stuffs.

Module:8	Contemporary Issues		2 hours					
Industry Ex	Industry Expert Lecture							

Text Book	(5)	
	Total Tutorial hours:	15 hours
	Total Lecture hours:	45 hours

L		
	1.	Pradyot Patnaik, Handbook of Environmental Analysis: Chemical Pollutants in
		Air, Water, Soil and Solid Wastes, 3rd Edition, CRC Press, Taylor & Francis
		Group, Boca Raton, FL, 2018.

2.	Timothy J. Sullivan, Alan T. Herlihy and James R. Webb, Air Pollution										
	and Freshwater Ecosystems: Sampling, Analysis, and Quality										
	Assurance, CRC Press, Boca Raton, FL, Taylor & Francis Group, LLC,										
	2015.										

Reference Books

- Eugene W. Rice, Rodger B. Baird, Andrew D. Eaton, Lenore S. Clesceri, Standard Methods for Examination of Water and Wastewater, 22nd Edition, American Public Health Association, 2012.
- 2. Leo M.L. Nollet, Leen S. P. De Gelder, Handbook of Water Analysis, 3rd Edition CRC Press, Taylor & Francis Group, Boca Raton, FL, 2013.
- 3. Leo M.L. Nollet and Fidel Toldra, Handbook of Analysis of Active Compounds in Functional Foods, CRC Press, Boca Raton, FL, Taylor & Francis Group, 2012.
- 4. Sadhana Chaurasia, Anand Dev Gupta, Hand Book of Water, Air and Soil Analysis, International E- Publication, 2014.
- 5. Bernie Goldman, Air Pollution and Environmental Analysis, Callisto Reference, 2017.
- 6. Paul Mac Berthouex, Linfield C. Brown, Chemical Processes for Pollution Prevention and Control, 1st Edition, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2018.

Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and SeminarRecommended by Board of Studies26-02-2024Approved by Academic CouncilNo. 73Date14-03-2024

Course CodeCourse TitleLTPC										
PCHY610L Bioanalytical and Forensic Analysis	0	0	4							
Pre-requisite NIL	Syl	labus	s vers	sion						
Course Objectives										
1. Understanding the principles of antigen-antibody interactions	, imm	unoa	nalyti	cal						
techniques, Immunodiffusion and immunofluorescent assays.										
2. Getting insight into forensic toxicology and biochemical, physical and chemical										
methods of forensic analysis.										
Course Outcomes										
1. Demonstrate Antigen-Antibody interactions and apply the	nem	in b	iologi	cal						
analysis.										
2. Analyze samples using immunodiffusion and electrophoresis	techr	iques	6							
3. Apply radioisotope dilution techniques in tracer analysis.										
4. Evaluate biological samples through ELISA, ELISPOT and	We	stern	Blott	ing						
techniques										
5. Analyze biological samples using fluorescent immunoassa	ys us	sing	DELF	ΊΑ,						
SLFIA, FACS and PACIA techniques.										
6. Demonstrate fundamental aspects of forensic toxicology.										
7. Analyze narcotics, stimulants, depressants, hallucinogens, al	coho	l, me	taboli	tes						
in blood and other matrices.										
Module:1 Antigen-Antibody/Protein-ligand Interactions:			10 hc	ours						
Principles and Applications										
Structure and characteristics of antibodies, polyclonal and mono										
Concepts and applications of Antigen-Antibody Interaction										
Characteristics of Antigen - Antibody Interaction; Zone of Eq significance in analysis- Antibodies and Enzymes as analytical										
Reactivity - quantitative and qualitative analysis of antigens.	ieaų	jenis	. 010	33-						
Module:2 Immunoanalytical Techniques			8 hc	hire						
The principle of single and double immunodiffusion. Electrophy	nresi	× - C								
PAGE, Immuno and Capillary. Isotope dilution techniques										
applications- radioisotope dilution techniques - Use of radioisotop										
in biochemical experiments and their detection.										
Module:3 Immunodiffusion and Immunoassays			6 hc	ours						
Principles of Enzyme-linked immunoassays – types - direct, indirect, sandwich and										
competitive ELIS techniques - use of Chemiluminescence in ELISA - ELISPOT										
Assay; Western blotting – principles, procedures and applications										
Module:4 Fluorescence Immunoassays			6 hc	ours						
Principles of fluorescence immunoassays - substrate labelled fluorescent										
immunoassay (SLFIA) - delayed enhanced lanthanide fluoresce			noass	say						
(DELFIA)- flow cytofluorimetry and fluorescence-activated cell sorting (FACS) -										
particle counting immunoassays (PACIA).										

Toxicology								
Introduction to forensic science, role of a forensic scientist, theory of forensic								
analysis: comparative analysis, Classification of poisons based on physical states;								
study of common poison; mode of action, chemical properties; methods of								
administration and their action in the body. Analysis of drug of abuse: opiates,								
hallucinogens, depressants, stimulants and club drugs; breath testing of alcohol,								
collection and preservation of drug evidence, qualitative and quantitative analysis by								
colour tests, microcrystalline tests. Simultaneous analysis of multianalytes.								
Module:6Forensic Analysis of Biological Samples8 hours								
Analysis of biological samples (Qualitative and Quantitative): Blood, semen, urine								
and saliva. Blood spatter analysis, DNA analysis. Hairs and fiber analysis,								
fingerprint analysis; Isolation, sample preparation.								
Module:7 Physical and Chemical Methods of Analysis in Forensic 10 hours								
Science								
Forensic analysis of explosives and gunshot residues, paints, arsons, and								
questioned documents. Lie detection – introduction, process, merits and demerits.								
Application of mass, GC-MS, FT-IR, SEM in forensic analysis. Applications of non-								
destructive testing probes including radiography, Xera- radiography Surface								
penetrations methods (SEM and Laser Probes), application of spectroscopic,								
chromatographic techniques such as GC-MS, FT-IR, UV-Visible spectroscopy,								
Atomic absorption spectroscopy for forensic sample analysis.								
Module:8Contemporary Issues2 hours								
Industry Expert Lecture								
Total Lecture hours: 60 hours								
Text Book(s)								
1. Howard Harris, Henry C Lee, Introduction to forensic science and criminalistics, Second edition, 2019, CRC Press.								
2. Anil K Sharma, Immunology: An Introductory Textbook, 2019, Pan Stanford								
Publishing Ltd.								
Reference Books								
1. A Lucas, Forensic Chemistry, 2017, Forgotten Books.								
2. Max M. Houck, Forensic Chemistry (Advanced Forensic Science Series), 2015								
Academic Press.								
3. Richard Saferstein, Criminalistics: An Introduction to Forensic Sciences, 2015,								
Pearson Education.								
4. Judith A. Owen, Jenni Punt, Sharon A. Stranford, Patricia P. Jones, Kuby								
4. Judith A. Owen, Jenni Punt, Sharon A. Stranford, Patricia P. Jones, Kuby								
Immunology, 7 edition, 2013), W H Freeman & Co.								
Immunology, 7 edition, 2013), W H Freeman & Co.								

Course Code	Course Title	L	Т	Ρ	С				
PCHY611L	Analytical Quality Assurance for Process	3	0	0	3				
Industry									
Pre-requisite NIL Syllabus versio									
1.0									
Course Objectiv									
	ng the importance of different methods that are	usea							
•	qualityin different process industries.								
2. Getting inputs on existing Quality Assurance methods used in different									
processindustries including good manufacturing practices.									
_	significance of Quality assurance in automated								
process indu									
Course Outcom									
	e parameters to be maintained to achieve co	onsis	tent	qualit	y in				
process indu									
	nciples of ISO 9000 for management of quality in		•						
3. Compose SC	OPs and GLPs in setting up Quality Management	Syste	em						
4. Propose app	ropriate sampling methods for chemical analysis.								
5. Apply Statist	ical Quality control methods to solve quality issue	s in i	ndust	ry.					
6. Create flow s	sheets for automated processes and quality assur	rance							
	c concepts of Quality Assurance				ours				
Basic concepts,	Principles or prescription; Needs, requirements	and	expe	ctatic	ons;				
The characterist	ics of quality; Achieving, sustaining and improvi	ng q	uality	; Qua	ality				
dimensions and	costs of quality.								
Module:2 Qua	lity Assurance			6 ho	ours				
Elements of qua	lity Assurance, Quality Management System Q	uality	' mar	nagen	nent				
	nciples: ISO 9001:2000								
QMS Case stud	es on ISO 9001: 2000 in chemical industries. IS	SO 14	4000	Serie	es of				
Standards									
Module:3 TQN	l and Six sigma			8 hc	ours				
TQM in Chemica	al Industry. Six Sigma Approach to Quality: App	lying	Six S	Sigma	a to				
chemical Industr	ies Good Laboratory Practices: Principles of G	ilP, (GMP	in Dr	ugs				
and Pharmaceut	ical Industries - Standard operating procedure (SOP)	Accr	edita	tion				
of QC laboratories: Requirements of QMS; Establishing a QMS; Validation of									
methods and rel	methods and related case studies. Tools and Mechanisms ICH Guidelines on Drug								
substances and Products.									
Module:4 Sam	pling			5 ho	ours				
Measurement, analysis and methods of improvement; Basics of sampling; Sampling									
procedures; Sampling based on physical state and hazards in sampling pre-									
concentration methods.									
Module:5 Stat	istical Quality Control			6 hc	ours				
	y Control Techniques: Statistical treatment of d	ata. (Contr	ol ch	arts,				
Performance Ev	aluation uncertainties in measurement. Valid	lation	of	analy	tical				
	f SQC in QCQA ofprocess industry.								

Мо	dule:6	Industrial QA				6 hours		
Outlines of QA in chemical industries; Flow sheet preparations; Principles of process								
selection and unit operation. Outlines of QA in chemical industries; Flow sheet								
pre	paratior	s; Principles of process sele	ection and u	init opera	ition.			
Мо	dule:7	Quality Assurance and	Automati	ion		7 hours		
Aut	omated	and Automatic Process	control; A	Automatio	on in chemi	ical process		
ind	ustry; N	lethods of automation: Flo	ow injection	and Se	quential Injec	ction; Quality		
ass	urance	through automation.						
Мо	dule:8	Contemporary Issues				2 hours		
Ind	ustry Ex	pert Lecture						
			1	Fotal Leo	ture hours:	45 hours		
Te	t Book	(s)						
1.		nerselvam, Production and		s Manag	ement. Prenti	ce Hall India		
		ng Pvt. Ltd3 rd Edition, 2012.	•	o manag				
2.		et Savsar, Quality Assuranc		agement	InTech-Croat	tia 2012		
3.				-				
0.	3. D.C. Montgomery, Statistical Quality Control, John Wiley & Sons, 5th edition, 2005.							
4.		Starr, Production and Opera	tions Manar	noment l	Riztantra Dell	ni 2004		
ч . 5.		hah, QA Manual, Business	-			11, 2004.		
5. 6.					d M Posto	rfield Seare		
0.		esterfield, C. Besterfield-Mi QualityManagement, Pearso						
	Total C	ualitymanagement, Pearso		1, 1110., 31				
Po	ference	Books						
1.		onieczka and Jack Namies	nik Quality	Assuran	ce and Qualit	v Control in		
••		alytical Chemical Laborato	•			•		
	press 2		<i>ny</i> . // 1100					
2.	•	Hoyle, ISO 9000 Quality Sv	vstems Har	ndbook F	Fifth Edition	Rutterworth-		
۷.		nann-Elsevier, New York, 2				Satterworth		
3.				Quality	Assurance ir	Analytical		
5.	3. Elizabeth Prichard and Victoria Barwick, Quality Assurance in Analytical Chemistry, John Wiley& Sons, 2007.							
4.								
PharmaceuticalIndustry, Pharma Book Syndicate, 2005.								
5.	5. A. K. Chakraborty, P. K. Basu, S.C. Chakravarty, Guide to ISO 9001: 2000,							
6		Books Pvt. Ltd.,2005.		too (Eda				
6.		Venclawiak, M.Koch and I	•	as (Eas	.), Quality As	ssurance in		
		cal Chemistry, Springer, 20		·				
		aluation: CAT, Written Assi	-		ind Seminar			
		ded by Board of Studies	26-02-202		11.00.0001			
Ар	proved t	y Academic Council	No. 73	Date	14-03-2024			

Cou	rse Code		Cours	e Title			L	Т	Ρ	С	
	IY612P	Analytical 8	& Physi	cal Chem	istry Lab) II	0	0	4	2	
Pre-	Pre-requisite NIL Syllabu										
0		•						1	.0		
	rse Object		tituonta		trumanta	ltaaba	iaua				
	rse Outcor	ous chemical cons	sinuents	s using ins	trumenta	rtechn	iques	5 .			
		ard addition metho	d in titr	imetric an	alveie						
					•	io mot	oriola				
	• •	periments for analy	•	U	0						
	•	stituents in materi		•		•		•	ues.		
		ochemical method	ls for ar	alysis of e	electroact	ive sp	ecies				
	cative Expe						. ,		<u></u>		
1.		addition method	for est	imation of	Ascorbi	c acid	in fr	uit	6 hou	ſS	
0	juice					1 1 -			0 -		
2.		n of chromium in st		1 7 1	•				6 hou		
3.		tion of sodium car			<u> </u>	, ,	tratio		6 hou	-	
4.		tion of Indicator co							6 hou		
5.		tion of dissociatio		· · /			•		6 hou	ſS	
		n of Debye-Huc	kel Or	nsager e	quation	using	stro	ng			
0	electrolyte			·	••••••				0.1		
6.								6 hours			
7.			mer co	onstant of	ioaine (quenci	ning	by	6 hou	ſS	
8.	fluorimetry Cyclic Volt								6 hou		
o. 9.		ition of ascorbic a	acid in	roal sam			oroni		6 hou	-	
э.		ammetry and com			•	iy Dili	ereni		onou	3	
10.		tion of protein con	1 0			s moth	nod	_	6 hou	rs	
10.	Determina		loontiat	ion using i	Diadioia	Smea	lou		onou	5	
				Tota	al Labora	tory H	lours	60) hour	'S	
Text	t Book(s)										
1.		Physical Chemi	istry P	ractical G	iuide, Cl	naru A	Arora	, Su	mantr	a	
	Bhattacharya, Bentham Science Publishers, 2022.										
2.	Kissinger, Laboratory Techniques in Electroanalytical Chemistry, Second										
		RC Press, 2016.									
	erence Boo										
1.		Experimental E	lectrocl	nemistry:	A Labor	atory	Text	book	, Sec	ond	
	edition, W	iley-VCH, 2019.									
Mad		tion OAT Muitter	Accie	mont Or		<u>^</u>					
		tion: CAT, Written				41					
		by Board of Studi	es	26-02-202	1	14.00	2 000	1			
Аррі	rovea by Ac	cademic Council		No. 73	Date	14-03	3-202	.4			

Pre-requisite NIL Syllabus versice Course Objectives 1.0 Course Objectives 1.0 Course Objectives 1.0 Course Outcomes 1.10 1. Understanding analysis of different contaminants in water and other matrices Course Outcomes 1.10 1. Propose experiments for determination of metals in different matrices usi instrumental methods. 2. Analyze real samples and effluent samples for knowing the levels of different contaminants. 3. Evaluate drugs and soft drinks using different titrimetric and instrument methods of analysis. Indicative Experiments 1. Isolation and estimation of chromium from waste water by 6 hours spectrophotometry 2. Analysis of oils and fats - Saponification and acid value 3. Determination of nitrate in different soil and water samples by 6 hours spectrophotometry 4. Extraction and estimation of benzoic acid in fruit juices 6. Study of degradation of organic dyes by hydrogen peroxide 7. Determination of caffeine in soft drinks by HPLC 6. Study of degradation of organic dyes by hydrogen peroxide 7. Determination of caffeine in soft drinks by HPLC 6. Study of degradation and Iron in tablet formulations by 6 hours spectrophotometric determination 9. Analysis of wate	Cou	rse Code		Cours	se Title			L	Т	Ρ	С	
Course Objectives 1.0 1. Understanding analysis of organic and inorganic compounds present in real I samples by instrumental methods. 2. Demonstrating analysis of different contaminants in water and other matrices Course Outcomes 1. Propose experiments for determination of metals in different matrices usi instrumental methods. 2. Analyze real samples and effluent samples for knowing the levels of different contaminants. 3. Evaluate drugs and soft drinks using different titrimetric and instrument methods of analysis. Indicative Experiments 1. 1. Isolation and estimation of chromium from waste water by spectrophotometry 6 hours 2. Analysis of oils and fats - Saponification and acid value 6 hours 3. Determination of nitrate in different soil and water samples by 6 hours 6 hours 5. Heavy metal analysis in textiles and textile dyes by AAS 6 hours 6. Study of degradation of organic dyes by hydrogen peroxide catalyzed by copper and iron nanoparticles 6 hours 7. Determination of caffeine in soft drinks by HPLC 6 hours 8. Extraction of copper by diethyl dithiocarbomate and its 6 hours 6 hours 9. Analysis of water quality through COD, DO, BOD measurements 6 hours 9. Analysis of water quality through COD, DO, BOD measurements 6 hours 9. Analysis of water quality through COD, DO, BOD measurements 6 hours<	PCH	IY613P	An	alytical Cl	hemistry L	ab III		0	0	4	2	
Course Objectives 1. Understanding analysis of organic and inorganic compounds present in real lisamples by instrumental methods. 2. Demonstrating analysis of different contaminants in water and other matrices usi instrumental methods. 1. Propose experiments for determination of metals in different matrices usi instrumental methods. 2. Analyze real samples and effluent samples for knowing the levels of differencentaminants. 3. Evaluate drugs and soft drinks using different titrimetric and instrumental methods of analysis. Indicative Experiments 1. Isolation and estimation of chromium from waste water by spectrophotometry 2. Analysis of oils and fats - Saponification and acid value 3. Determination of nitrate in different soil and water samples by 6 hours spectrophotometry 4. Extraction and estimation of benzoic acid in fruit juices 6 hours 5. Heavy metal analysis in textiles and textile dyes by AAS 6 hours 6. Study of degradation of organic dyes by hydrogen peroxide 6 hours spectrophotometry 6 hours 7. Determination of cafferine in soft drinks by HPLC 6 hours 8. Extraction of copper by diethyl dithiocarbomate and its 6 hours spectrophotometric determination 9 9. Analysis of water quality through COD, DO, BOD measurements 6 hours 10. Assay of Riboflavin and Iron in tablet formulations by 6 hours spectrophotometry 6 hours	Pre-	requisite	NIL					Syll	abus version			
1. Understanding analysis of organic and inorganic compounds present in real is samples by instrumental methods. 2. Demonstrating analysis of different contaminants in water and other matrices Course Outcomes 1. Propose experiments for determination of metals in different matrices usi instrumental methods. 2. Analyze real samples and effluent samples for knowing the levels of different contaminants. 3. Evaluate drugs and soft drinks using different titrimetric and instrument methods of analysis. Indicative Experiments 1. Isolation and estimation of chromium from waste water by spectrophotometry 2. Analysis of oils and fats - Saponification and acid value 3. Determination of nitrate in different soil and water samples by 6 hours spectrophotometry 4. Extraction and estimation of benzoic acid in fruit juices 6 hours 5. Heavy metal analysis in textiles and textile dyes by AAS 6 hours catalyzed by copperand iron nanoparticles 7. Determination of caffeine in soft drinks by HPLC 6 hours spectrophotometric determination 9. Analysis of water quality through COD, DO, BOD measurements 6 hours spectrophotometry 10. Assay of Riboflavin and Iron in tablet formulations by 6 hours spectrophotometry 6 hours 11. Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000. <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1.</th> <th>.0</th> <th></th>									1.	.0		
 samples by instrumental methods. Demonstrating analysis of different contaminants in water and other matrices Course Outcomes Propose experiments for determination of metals in different matrices usi instrumental methods. Analyze real samples and effluent samples for knowing the levels of differencentaminants. Evaluate drugs and soft drinks using different titrimetric and instrument methods of analysis. Indicative Experiments Isolation and estimation of chromium from waste water by 6 hours spectrophotometry Analysis of oils and fats - Saponification and acid value 6 hours spectrophotometry Analysis of oils and fats - Saponification and acid value 6 hours spectrophotometry Extraction and estimation of benzoic acid in fruit juices 6 hours Study of degradation of organic dyes by hydrogen peroxide 6 hours catalyzed by copperand iron nanoparticles Determination of caffeine in soft drinks by HPLC 6 hours spectrophotometric determination Analysis of water quality through COD, DO, BOD measurements 6 hours spectrophotometry Assay of Riboflavin and Iron in tablet formulations by 6 hours spectrophotometry Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000. 												
 Demonstrating analysis of different contaminants in water and other matrices Course Outcomes Propose experiments for determination of metals in different matrices usi instrumental methods. Analyze real samples and effluent samples for knowing the levels of differencent contaminants. Evaluate drugs and soft drinks using different titrimetric and instrument methods of analysis. Indicative Experiments Isolation and estimation of chromium from waste water by 6 hours spectrophotometry Analysis of oils and fats - Saponification and acid value Botermination of nitrate in different soil and water samples by 6 hours spectrophotometry Extraction and estimation of benzoic acid in fruit juices Heavy metal analysis in textiles and textile dyes by AAS Study of degradation of organic dyes by hydrogen peroxide 6 hours catalyzed by copper and iron nanoparticles Determination of caffeine in soft drinks by HPLC Analysis of water quality through COD, DO, BOD measurements Analysis of water quality through COD, DO, BOD measurements Analysis of water quality through COD, DO, BOD measurements Analysis of water quality through COD, DO, BOD measurements Analysis of water quality through COD, DO, BOD measurements Analysis of water quality through COD, DO, BOD measurements Anours spectrophotometry Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000. 			• ·	-	and inorgar	nic comp	ounds	s pres	ent i	n rea	l life	
Course Outcomes 1. Propose experiments for determination of metals in different matrices usi instrumental methods. 2. Analyze real samples and effluent samples for knowing the levels of differe contaminants. 3. Evaluate drugs and soft drinks using different titrimetric and instrumen methods of analysis. Indicative Experiments 1. Isolation and estimation of chromium from waste water by spectrophotometry 2. Analysis of oils and fats - Saponification and acid value 6 hours 3. Determination of nitrate in different soil and water samples by 6 hours spectrophotometry 6 hours 4. Extraction and estimation of benzoic acid in fruit juices 6 hours 5. Heavy metal analysis in textiles and textile dyes by AAS 6 hours 6. Study of degradation of organic dyes by hydrogen peroxide catalyzed by copper and iron nanoparticles 6 hours 7. Determination of caffeine in soft drinks by HPLC 6 hours 8. Extraction of copper by diethyl dithiocarbomate and its spectrophotometric determination 9 9. Analysis of water quality through COD, DO, BOD measurements 6 hours 10. Assay of Riboflavin and Iron in tablet formulations by 6 hours spectrophotometry 60 hours 11. Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000. </td <td></td> <td></td> <th></th> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
1. Propose experiments for determination of metals in different matrices usi instrumental methods. 2. Analyze real samples and effluent samples for knowing the levels of different contaminants. 3. Evaluate drugs and soft drinks using different titrimetric and instrumen methods of analysis. Indicative Experiments 1. Isolation and estimation of chromium from waste water by spectrophotometry 2. Analysis of oils and fats - Saponification and acid value 3. Determination of nitrate in different soil and water samples by 6 hours spectrophotometry 4. Extraction and estimation of benzoic acid in fruit juices 5. Heavy metal analysis in textiles and textile dyes by AAS 6. Nours catalyzed by copperand iron nanoparticles 7. Determination of copper by diethyl dithiocarbomate and its spectrophotometry 8. Extraction of copper by diethyl dithiocarbomate and its spectrophotometry determination 9. Analysis of water quality through COD, DO, BOD measurements 6 hours spectrophotometry 9. Analysis of Riboflavin and Iron in tablet formulations by 6 hours spectrophotometry 10. Assay of Riboflavin and Iron in tablet formulations by 6 hours spectrophotometry 11. Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000.				fdifferent	contaminar	its in wat	ter and	d othe	r ma	trices		
 instrumental methods. Analyze real samples and effluent samples for knowing the levels of different contaminants. Evaluate drugs and soft drinks using different titrimetric and instrumen methods of analysis. Indicative Experiments Isolation and estimation of chromium from waste water by 6 hours spectrophotometry Analysis of oils and fats - Saponification and acid value 6 hours spectrophotometry Determination of nitrate in different soil and water samples by 6 hours spectrophotometry Extraction and estimation of benzoic acid in fruit juices Heavy metal analysis in textiles and textile dyes by AAS Study of degradation of organic dyes by hydrogen peroxide 6 hours catalyzed by copper by diethyl dithiocarbomate and its 6 hours Extraction of copper by diethyl dithiocarbomate and its 6 hours spectrophotometry Analysis of water quality through COD, DO, BOD measurements 6 hours spectrophotometry Analysis of water quality through COD, DO, BOD measurements 6 hours spectrophotometry Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000. 												
 Analyze real samples and effluent samples for knowing the levels of different contaminants. Evaluate drugs and soft drinks using different titrimetric and instrumene methods of analysis. Indicative Experiments Isolation and estimation of chromium from waste water by 6 hours spectrophotometry Analysis of oils and fats - Saponification and acid value betermination of nitrate in different soil and water samples by 6 hours spectrophotometry Extraction and estimation of benzoic acid in fruit juices Heavy metal analysis in textiles and textile dyes by AAS boury of degradation of organic dyes by hydrogen peroxide 6 hours catalyzed by copper and iron nanoparticles Determination of caffeine in soft drinks by HPLC Bextraction of copper by diethyl dithiocarbomate and its 6 hours spectrophotometry Analysis of water quality through COD, DO, BOD measurements 6 hours spectrophotometry Assay of Riboflavin and Iron in tablet formulations by 6 hours spectrophotometry Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000. 				r determir	nation of m	netals in	diffe	rent r	natrio	ces i	ising	
contaminants. 3. Evaluate drugs and soft drinks using different titrimetric and instrumen methods of analysis. Indicative Experiments 1. Isolation and estimation of chromium from waste water by spectrophotometry 2. Analysis of oils and fats - Saponification and acid value 6 hours 3. Determination of nitrate in different soil and water samples by spectrophotometry 6 hours 4. Extraction and estimation of benzoic acid in fruit juices 6 hours 5. Heavy metal analysis in textiles and textile dyes by AAS 6 hours 6. Study of degradation of organic dyes by hydrogen peroxide catalyzed by copperand iron nanoparticles 6 hours 7. Determination of caffeine in soft drinks by HPLC 6 hours 8. Extraction of copper by diethyl dithiocarbomate and its 6 hours spectrophotometric determination 6 hours 9. Analysis of water quality through COD, DO, BOD measurements 6 hours spectrophotometry 6 hours 10. Assay of Riboflavin and Iron in tablet formulations by 6 hours spectrophotometry 60 hours 11. Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000.												
3. Evaluate drugs and soft drinks using different titrimetric and instrumenmethods of analysis. Indicative Experiments 1. Isolation and estimation of chromium from waste water by spectrophotometry 2. Analysis of oils and fats - Saponification and acid value 3. Determination of nitrate in different soil and water samples by spectrophotometry 4. Extraction and estimation of benzoic acid in fruit juices 5. Heavy metal analysis in textiles and textile dyes by AAS 6. Study of degradation of organic dyes by hydrogen peroxide catalyzed by copperand iron nanoparticles 7. Determination of caffeine in soft drinks by HPLC 6 hours 8. Extraction of copper by diethyl dithiocarbomate and its spectrophotometric determination 6 hours 9. Analysis of water quality through COD, DO, BOD measurements 6 hours 10. Assay of Riboflavin and Iron in tablet formulations by spectrophotometry 6 hours 11. Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000.		-	•	id effluent	samples f	or know	ing th	e leve	els o	t ditte	erent	
methods of analysis. Indicative Experiments 1. Isolation and estimation of chromium from waste water by spectrophotometry 6 hours 2. Analysis of oils and fats - Saponification and acid value 6 hours 3. Determination of nitrate in different soil and water samples by spectrophotometry 6 hours 4. Extraction and estimation of benzoic acid in fruit juices 6 hours 5. Heavy metal analysis in textiles and textile dyes by AAS 6 hours 6. Study of degradation of organic dyes by hydrogen peroxide catalyzed by copperand iron nanoparticles 6 hours 7. Determination of caffeine in soft drinks by HPLC 6 hours 8. Extraction of copper by diethyl dithiocarbomate and its spectrophotometric determination 6 hours 9. Analysis of water quality through COD, DO, BOD measurements 6 hours 10. Assay of Riboflavin and Iron in tablet formulations by spectrophotometry 6 hours 11. Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000.						_	_					
Indicative Experiments 1. Isolation and estimation of chromium from waste water by 6 hours spectrophotometry 2. Analysis of oils and fats - Saponification and acid value 6 hours 3. Determination of nitrate in different soil and water samples by 6 hours spectrophotometry 6 hours 4. Extraction and estimation of benzoic acid in fruit juices 6 hours 5. Heavy metal analysis in textiles and textile dyes by AAS 6 hours 6. Study of degradation of organic dyes by hydrogen peroxide catalyzed by copperand iron nanoparticles 6 hours 7. Determination of caffeine in soft drinks by HPLC 6 hours 8. Extraction of copper by diethyl dithiocarbomate and its 6 hours spectrophotometric determination 6 hours 9. Analysis of water quality through COD, DO, BOD measurements 6 hours spectrophotometry 6 hours 10. Assay of Riboflavin and Iron in tablet formulations by 6 hours spectrophotometry 60 hours 11. Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000. 1.			-	ft drinks	using diffe	erent titr	imetri	c and	d ins	strum	ental	
1. Isolation and estimation of chromium from waste water by spectrophotometry 6 hours 2. Analysis of oils and fats - Saponification and acid value 6 hours 3. Determination of nitrate in different soil and water samples by spectrophotometry 6 hours 4. Extraction and estimation of benzoic acid in fruit juices 6 hours 5. Heavy metal analysis in textiles and textile dyes by AAS 6 hours 6. Study of degradation of organic dyes by hydrogen peroxide catalyzed by copperand iron nanoparticles 6 hours 7. Determination of caffeine in soft drinks by HPLC 6 hours 8. Extraction of copper by diethyl dithiocarbomate and its spectrophotometric determination 6 hours 9. Analysis of water quality through COD, DO, BOD measurements formulations by spectrophotometry 6 hours 10. Assay of Riboflavin and Iron in tablet formulations by formulations by spectrophotometry 6 hours 11. Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000. 1.												
spectrophotometry 6 hours Analysis of oils and fats - Saponification and acid value 6 hours Determination of nitrate in different soil and water samples by spectrophotometry 6 hours Extraction and estimation of benzoic acid in fruit juices 6 hours Heavy metal analysis in textiles and textile dyes by AAS 6 hours Study of degradation of organic dyes by hydrogen peroxide catalyzed by copperand iron nanoparticles 6 hours Determination of caffeine in soft drinks by HPLC 6 hours Extraction of copper by diethyl dithiocarbomate and its spectrophotometric determination 6 hours Analysis of water quality through COD, DO, BOD measurements 6 hours 10. Assay of Riboflavin and Iron in tablet formulations by spectrophotometry 60 hours Text Book(s) 1 Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000. 1	1				. ,							
2. Analysis of oils and fats - Saponification and acid value 6 hours 3. Determination of nitrate in different soil and water samples by spectrophotometry 6 hours 4. Extraction and estimation of benzoic acid in fruit juices 6 hours 5. Heavy metal analysis in textiles and textile dyes by AAS 6 hours 6. Study of degradation of organic dyes by hydrogen peroxide catalyzed by copperand iron nanoparticles 6 hours 7. Determination of caffeine in soft drinks by HPLC 6 hours 8. Extraction of copper by diethyl dithiocarbomate and its spectrophotometric determination 6 hours 9. Analysis of water quality through COD, DO, BOD measurements 6 hours 10. Assay of Riboflavin and Iron in tablet formulations by spectrophotometry 6 hours Total Laboratory Hours 60 hours 11. Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000. 1.	1.			on of ch	romium fro	om was	te wa	ater t	by 6	5 houi	ſS	
3. Determination of nitrate in different soil and water samples by spectrophotometry 6 hours 4. Extraction and estimation of benzoic acid in fruit juices 6 hours 5. Heavy metal analysis in textiles and textile dyes by AAS 6 hours 6. Study of degradation of organic dyes by hydrogen peroxide catalyzed by copperand iron nanoparticles 6 hours 7. Determination of caffeine in soft drinks by HPLC 6 hours 8. Extraction of copper by diethyl dithiocarbomate and its spectrophotometric determination 6 hours 9. Analysis of water quality through COD, DO, BOD measurements 6 hours 10. Assay of Riboflavin and Iron in tablet formulations by spectrophotometry 6 hours 11. Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000. 1.	_	•										
spectrophotometry 6 hours 4. Extraction and estimation of benzoic acid in fruit juices 6 hours 5. Heavy metal analysis in textiles and textile dyes by AAS 6 hours 6. Study of degradation of organic dyes by hydrogen peroxide catalyzed by copperand iron nanoparticles 6 hours 7. Determination of caffeine in soft drinks by HPLC 6 hours 8. Extraction of copper by diethyl dithiocarbomate and its spectrophotometric determination 6 hours 9. Analysis of water quality through COD, DO, BOD measurements formulations by spectrophotometry 6 hours 10. Assay of Riboflavin and Iron in tablet formulations by spectrophotometry 6 hours 11. Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000. 1.												
 4. Extraction and estimation of benzoic acid in fruit juices 5. Heavy metal analysis in textiles and textile dyes by AAS 6 hours 6. Study of degradation of organic dyes by hydrogen peroxide catalyzed by copperand iron nanoparticles 7. Determination of caffeine in soft drinks by HPLC 8. Extraction of copper by diethyl dithiocarbomate and its spectrophotometric determination 9. Analysis of water quality through COD, DO, BOD measurements 9. Analysis of water quality through COD, DO, BOD measurements 10. Assay of Riboflavin and Iron in tablet formulations by 6 hours spectrophotometry 7. Total Laboratory Hours 1. Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000. 	3.			e in differ	ent soil ar	nd water	sam	ples b	by 6	6 houi	ſS	
5. Heavy metal analysis in textiles and textile dyes by AAS 6 hours 6. Study of degradation of organic dyes by hydrogen peroxide catalyzed by copperand iron nanoparticles 6 hours 7. Determination of caffeine in soft drinks by HPLC 6 hours 8. Extraction of copper by diethyl dithiocarbomate and its spectrophotometric determination 6 hours 9. Analysis of water quality through COD, DO, BOD measurements 6 hours 10. Assay of Riboflavin and Iron in tablet formulations by spectrophotometry 6 hours Total Laboratory Hours 60 hours 11. Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000. 1.		•										
6. Study of degradation of organic dyes by hydrogen peroxide catalyzed by copperand iron nanoparticles 6 hours 7. Determination of caffeine in soft drinks by HPLC 6 hours 8. Extraction of copper by diethyl dithiocarbomate and its spectrophotometric determination 6 hours 9. Analysis of water quality through COD, DO, BOD measurements 6 hours 10. Assay of Riboflavin and Iron in tablet formulations by spectrophotometry 6 hours Total Laboratory Hours 60 hour Text Book(s) 1. Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000.	4.								6	S hou	ſS	
catalyzed by copperand iron nanoparticles 6 hours 7. Determination of caffeine in soft drinks by HPLC 6 hours 8. Extraction of copper by diethyl dithiocarbomate and its spectrophotometric determination 6 hours 9. Analysis of water quality through COD, DO, BOD measurements 6 hours 10. Assay of Riboflavin and Iron in tablet formulations by spectrophotometry 6 hours 10. Assay of Riboflavin and Iron in tablet formulations by spectrophotometry 6 hours 11. Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000. 1.	5.	Heavy metal analysis in textiles and textile dyes by AAS							6	6 houi	rs	
 7. Determination of caffeine in soft drinks by HPLC 8. Extraction of copper by diethyl dithiocarbomate and its 6 hours spectrophotometric determination 9. Analysis of water quality through COD, DO, BOD measurements 6 hours 10. Assay of Riboflavin and Iron in tablet formulations by 6 hours spectrophotometry 60 hours Total Laboratory Hours 60 hours 7. Total Sock(s) 1. Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000. 	6.	Study of	degradation	of organi	c dyes by	/ hydrog	gen p	eroxic	de 6	S houi	rs	
 8. Extraction of copper by diethyl dithiocarbomate and its 6 hours spectrophotometric determination 9. Analysis of water quality through COD, DO, BOD measurements 6 hours 10. Assay of Riboflavin and Iron in tablet formulations by 6 hours spectrophotometry Total Laboratory Hours 60 hour Text Book(s) 1. Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000. 		catalyzed	by copperand	iron nano	particles							
spectrophotometric determination 9. Analysis of water quality through COD, DO, BOD measurements 6 hours 10. Assay of Riboflavin and Iron in tablet formulations by spectrophotometry 6 hours Total Laboratory Hours 60 hours Total Laboratory Hours Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000.	7.	Determina	tion of caffein	e in soft dr	inks by HPI	LC			6	6 houi	rs	
9. Analysis of water quality through COD, DO, BOD measurements 6 hours 10. Assay of Riboflavin and Iron in tablet formulations by spectrophotometry 6 hours Total Laboratory Hours 60 hours Total Laboratory Hours 60 hours Total Laboratory Hours 60 hours Image: Sectrophotometry	8.	Extraction	of copper	by die	thyl dithio	carboma	ate a	ind i	ts 6	6 hou	ſS	
10. Assay of Riboflavin and Iron in tablet formulations by spectrophotometry 6 hours Total Laboratory Hours 60 hour Text Book(s) 1. Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000.		spectroph	otometric dete	rmination								
spectrophotometry Total Laboratory Hours 60 hour Text Book(s) 1. Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000.	9.	Analysis o	f water quality	through (COD, DO, I	BOD me	asure	ments	6	6 houi	rs	
spectrophotometry Total Laboratory Hours 60 hour Text Book(s) 1. Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000.	10.	Assay of	Riboflavin	and Iro	n in tabl	let forn	nulatio	ons t	by 6	6 hou	rs	
Total Laboratory Hours 60 hour Text Book(s) 60 hour 1. Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000.		•							-			
Text Book(s)1.Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000.												
 Vogel's Quantitative Chemical Analysis, Arthur Israel Vogel, J. Mendham, R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000. 					Tota	Labora	tory H	lours	6	0 hoi	urs	
R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th Edition, Prentice Hall, 2000.												
Thomas 6th Edition, Prentice Hall, 2000.	1.	Vogel's Q	uantitative Ch	emical Ar	nalysis, Art	hur Israe	el Vog	gel, J.	Mer	ndhar	n,	
	R.C. Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K.											
		Thomas 6	th Edition, Pre	ntice Hall,	2000.							
Reference Books			-									
1. Analytical Chemistry, International Adaptation, Gary D. Christian, Purnendu	1.											
Dasgupta, Kevin A. Schug, 7 th Edition, Wiley, 2020.		•••		-	-							
Mode of Evaluation: CAT, Written Assignment, Quiz, and FAT				-	inment, Qui	z, and F	AT					
Recommended by Board of Studies 26-02-2024	Reco	ommended	by Board of S	tudies	26-02-202	24						
Approved by Academic Council No. 73 Date 14-03-2024	Appr	roved by Ac	cademic Coun	cil	No. 73	Date	14-0	3-202	4			

Course CodeCourse TitleLTPCPCHY614LAdvanced Inorganic Chemistry3104										
PCHY614L	1	0	4							
Pre-requisite	labus	s vers	sion							
1.0										
Course Objectiv										
	g structure, bonding and reactivity of transitior	n me	tals,	rare						
	and organometallics.									
	tudents realize the importance of bio-inorganic	; and	inor	ganic						
photochemist	5									
	emistry and applications of advanced materials									
Course Outcom			dinat							
	onic structure, bonding, and reactivity of	COOL	ainat	ion						
complexes.	and atability of transition motal argonomatalli		بمامير	~ ~						
	esis and stability of transition metal organometallic	c con	ipiex	es.						
-	ytic pathways leading to desired products.	a in i	undor	atand	ina					
	ciples of transition metal coordination complexes	sinu	inder	stanu	ing					
	ological systems.	00	and	maar	ontio					
5. Propose materials for energy generation, energy storage and magnetic										
applications.	ochemical and electronic properties of coordination		mnlo	VOC						
	criptive chemistry of transition metals and rar			6 hc						
earth		5		0 110	Juis					
	- comparison of periodic properties by electr	onic	conf	igurat	tion.					
	-chemistry of various oxidation states, stabi			-						
	Heavier transition elements. Chemistry of uran									
uranium and their	r chemical properties.									
Module:2 Inorg	ganic –Clusters and polyacids			5 hc	ours					
Isopoly and heter	ropoly acids. Clusters - Polynuclear carbonyls- s	ynthe	esis,	reacti	vity,					
molecularStructu	re, stereochemical non-rigidity and Polyhedral Sk	eleta	l Ele	ctron-	Pair					
Theory (PSPET).										
	nometallic Catalysis			6 hc						
• •	oxidative addition and reductive elimination.		•							
olefins - hydroformylation of olefins - Fischer - Tropsch process - polymerisation of										
alkenes - Ziegler-Natta Catalyst - mechanistic Studies - Single-Site Catalysts -										
	onmetallocene Catalysts -olefin metathesis									
	norganic systems			7 hc	ours					
Porphyrin systems: Dioxygen Transport - Hemoglobin, Hemerythrin and										
Hemocyanin. Cooperativity in O2 binding, O2 and CO discrimination. Inorganic										
model compounds. Oxygen Metabolism - Oxygen atom transfer by cytochromes-										
P450 - Nitrogenases - Carbonic anhydrase - Carboxypeptidase - Alcohol										
dehydrogenase -										
Module:5 Medi	icinal applications of bioinorganic compound	S		5 hc						
		~								
•	in medicine- Cisplatin and its mode of action. Irugs - Metal complexes as probes of nucleic a									

ger	netic regulations, metal DNAand RNA interaction – Potential binding	sites.
Мо	dule:6 Advanced materials	8 hours
2D	Layered advanced Materials - Graphene, Graphene Oxide, MXen	es, MoS ₂ , BN,
BC	N – synthesis, structural features, characterization, selected a	applications –
	ctronic devices, watersplitting - photocatalysis - energy storage.	
	ovskite – Structure - Oxide to Halide Perovskites – Types of inorg	anic – organic
per	ovskite solar cells – Stability; Manganese-doped cadmium selen	ide / cadmium
sul	phide quantum dots/nanocrystals - Photomagnetic effects.	
Мо	dule:7 Inorganic Photochemistry	6 hours
Pho	ptochemistry of Ru(II) and Cr(III) complexes - Porphyrin-based ph	notosensitizers
for	photodynamic therapy - Photoactivation of small molecules like (CO ₂ and H ₂ O
by '	transition metalcomplexes	
Мо	dule:8 Contemporary Issues	2 hours
Ind	ustry Expert Lecture	
	Total Lecture hours	: 45 hours
	Total Tutorial hours	: 15 hours
Tex	kt Book(s)	
1.	Inorganic Chemistry, D. F. Shriver and P.W. Atkins, Oxford Un	iversity Press,
	5th Ed., 2010.	-
2.	Concise Inorganic Chemistry, J. D. Lee, Oxford University Press,	5th Edition,
	2014.	
3.	Bioinorganic Chemistry: An Introduction, Dieter Rehder, Oxford Ur	niversity Press,
	1st Ed., 2014.	
4.	Homogeneous Catalysis - Mechanisms and Industrial Applications	s, S. Bhaduri,
	D. Mukesh, 2 nd Edition, Wiley, 2014.	
5.	Spectral Methods in Transition Metal Complexes, K. Sridhara	n, 1 st Edition,
	Elsevier, 2016.	
6.	X-ray photoelectron spectroscopy: An Introduction to Princip	les and
	Practices, Paul van der Heide, Wiley-Blackwell, 1 st Edition, 2012.	
Re	erence Books	
1.	Principles of structure and reactivity, Inorganic Chemistry, J.E. H	luheey, E. A.
	Kelter and R.L. Kelter, Harper Collins College Publishers, 4th Editi	on, 2011.
2.	C.N.R. Rao, Muller and A. K. Cheetham, Chemistry of Nanomater	ials, Vol. I & II,
	C.N.R. Rao, Muller and A. K. Cheetham, WileyVCH Verlag GmbH	KGaA, 2014.
3.	Bioinorganic chemistry, D. Rehder, E. Nordlander, Oxford Univers	ity Press India,
	2014.	
4.	Inorganic Photochemistry, Van Eldik, Grazyna Stochel, Academic	Press, 2011.
5.	2D Inorganic materials beyond Graphene, Editors: C. N. R.	Rao & U.V.
	Waghmare, WorldScientific Publishing Company, 2017.	
6.	2D Metal Carbides and Nitrides (MXenes) Structure, Pl	roperties and
	Applications, Editors:Babak Anasori & Yury Gogotsi, Springer, Cha	am, 2019.
7.	Light-Induced Spontaneous Magnetization in Doped Colloidal Qua	

	325, 973-976.					
8.	Review of recent progress in chemical stability of perovskite solar cells, G. Niu,					
	X. Guo, L. Wang, J. Mater. Chem. A, 2015, 3, 8970-8980					
Mo	de of Evaluation: CAT, Written Assig	gnment, Qu	iiz, FAT a	and Seminar		
Recommended by Board of Studies 26-02-2024						
Арр	proved by Academic Council	No. 73	Date	14-03-2024		

Course Code	Course Title	L	Т	Р	С	
PCHY615L	Materials Chemistry	3	0	0	3	
Pre-requisite	NIL	Syl	labus	s vers	sion	
			1	.0		
Course Objectiv						
1. Understanding the basic aspects of structure types of solids, polymers,						
•	terials and materials synthesis.					
•	e structure and property of materials for transp	ort, c	optica			
and dielectric						
Course Outcome						
	d recognize structure types of solids.					
	different methods of materials synthesis.					
	ite materials for achieving required properties f	or dif	teren	t		
applications.						
	eason for functioning of a given material.					
	opriate material for a given application in o	condu	icting	,		
•	cal, and dielectric applications.					
	using suitable material for practical application			<u> </u>		
	metry and structural aspects of solids				ours	
	nts - point groups, space groups. Fundamentals					
•	indexing of cubic system. AB2 -pyrite, cuprit					
) and rare- earth oxides, AB3 - ReO3, pe					
	ores), AB2O4 (Spinels), Zeolites. Alloys-Cu-Ni,	Cu-z	Zn, ar	norph	lous	
and glass materia						
-	arative Strategies Basics				ours	
-	solid state synthesis – thermodynamic and kin		-	-		
	olids. Techniques high temperature solid sta					
	ecursor, sol-gel, combustion, intercalation, c					
•	owave, electrochemical, sonochemical, hyc	irothe	ermai	- 1	lign	
	high-pressure synthesis.					
	mers and Composite Materials	uctur			ours	
	e - chain structure - micro structure - crystal str					
	crystallinity, size and orientation of crystalli		-		-	
	configuration. Composite materials - metal materials	IX, CE	eranni	C -ma	aurix,	
	- properties and applications.		-	0 6	ours	
Module:4 Trans	y: Preliminary aspects, Defects in solids: Stoic	hiom	otric			
	ects – point defects – Schottky and Frenkel defects					
	ectronic conductors – metals, semiconductors,		•	•		
	– fast ion conductors, solid electrolytes,	•				
	two and four probe measurements, impedance r				.013-	
	netic Properties	neas			ours	
J	ies- Dia, para, ferro, anti-ferro and ferri mag	netis	m-sp			
	ments-magnetic moment and magnetic suscepti				2.1.0	
gameto medoulei		Sincy.				

Мо	dule:6	Optical and Dielectric Pro	operties			6 hours
Opt	ical pro	perties- Optical absorption	n and bar	nd gaps	- luminesce	nce- lasers:
prin	ciple, c	haracteristics and materials	s, Dielectric	c properti	es- ferro, ant	i-ferro, piezo
and	pyro el	ectric properties- relationshi	p andappli	cations.		
Мо	dule:7	Thermoelectric and Batte	ery materia	ls		4 hours
The	rmoeleo	ctric materials- intermetalli	cs and ox	ides. Lit	nium battery	materials -
		nd electrolyte materials. Sol	id Oxide F	uel Cells-	material aspe	ects.
		Contemporary Issues				2 hours
Indu	ustry Ex	pert Lecture				
			-	Total Lec	ture hours:	45 hours
Toy	t Book					
1.			miatry and i	ta Applia	stions 2 nd Ed	
••		y R. West, Solid State Cher	nistry and i	its Applica	alions, Z Eu	., John wiley
0		s, 2014.				
2.	Bradle	/ D. Fahlman, Materials Che	emistry, Z	Ea., Spri	nger, 2011.	
Def		Deelee				
	erence		0 11 1 0			th th
1.	-	E. Smart and Elaine A. Mod			nistry-An Intro	bauction, 4"
-		RC Press, Taylor and Franci				
2.		d J. D. Tilley, Understandir	ng Solids:	The Scie	nce of Mater	als, 2 ^m Ed.,
-	Wiley,					
3.		a K Krishnan, Composite M	laterials -S	science a	nd Engineerir	ng, Springer,
	2012.			<u> </u>		
4.		J. Young and Peter A. Lo	ovell, Introd	duction to	Polymers, 3	B rd Ed., CRC
	Press, 2011.					
		aluation: CAT, Written Assig	· ·		and Seminar	
		ded by Board of Studies	26-02-202	24		
Арр	proved b	y Academic Council	No. 73	Date	14-03-2024	

Course Code	Course Code Course Title L					С
PCHY616L	Nanomaterials and Characterization		3	0	0	3
	Techniques					
Pre-requisite	NIL		Syl		s ver	sion
				1	.0	
Course Obje						
	ding different types of nanomaterials,	their	Sy	nthe	ses	and
characteri						
	anomaterials for technological applications					
Course Outo						
	erent types of nanomaterials based on dimension	onality	and	struc	cture.	
	reparation methods for different nanomaterials.					
•	anomaterials using characterization techniques.					
•	e structural and chemical properties of carbon-b					
-	nanomaterials for specific optical, electroni	c an	d e	nergy	y sto	rage
applicatior	S.					
6.Relate stru	cture of nanomaterials with their properties.					
Module:1 Z	ero-Dimensional Nanostructures				6 ho	ours
Quantum dot	s and hollow spheres: uniform and heterogened	ous pa	articl	e arra	ays, c	ore-
shell quantur	n dots and hollow spheres - synthesis and ch	aracte	eristi	cs. L	ED, s	solar
cell and laser	applications.					
Module:2	Dne-Dimensional Nanostructures				6 ho	ours
Carbon	nanotubes (CNTs), nanowires and	nano	fiber	s:	synth	esis
and characte	ristics, functionalization of CNTs, role of 1D	nanc	stru	cture	as i	nter-
connects in e	lectronics.					
Module:3 T	wo-Dimensional Nanostructures				6 ho	ours
Thin films, na	nosheets and nanodisks: preparation and chara	acteris	stics	Role	e of a	spin
coater innanc	scale film formation, 2D nanostructures as tem	plates	5.			
Module:4 T	hree-Dimensional Nanostructures				6 ho	ours
Dendrites,	nanopillers, nanoflowers and core-shell	mater	ials:	pr	epara	ation
methods and	characteristics, applications as catalysts ar	nd ele	ctro	de m	ateria	al in
batteries.						
Module:5 E	nergy Conversion and Storage Materials				6 ho	ours
Fuel cells: H	ydrogen storage cells, Piezoelectric materials	s: prir	nciple	e and	d wor	king
mechanism. I	Fabrication of a piezoelectric sensor using elect	rospu	n na	nofibe	er we	b.
	lanomaterials Characterization – 1					ours
Powder X-Ra	y diffraction- peak broadening and particle size	analy	sis, l	N_2 ad	sorpt	ion -
surface area,	pore size analysis, thermal analysis using TGA	and D	DTA.			
Module:7	anomaterials Characterization – 2				7 ho	ours
UV-Vis spec	roscopy- surface plasmon resonance, morph	ology	and	d pai	ticle	size
	M, AFM and HR-TEM, Raman spectroscopy					
nanomaterial						
Module:8	Contemporary Issues				2 ho	ours
Industry Expe	• •					

Тех	xt Book(s)			
1.	Nanomaterials: An Introduction to	Synthesis	s, Propei	rties and Applications, D.
	Vollath (Ed), 2 nd edition, Wiley VCH,	, 2013.		
2.	Nanomaterials, Nanotechnologies	and Des	ign, Micl	hael F. Ashby, Paulo J.
	Ferreira and Daniel L. Schodek, But	tterworth-H	leinemai	nn, 2009.
3.	Textbook of Nanoscience and Nano	otechnolog	y, B.S. N	lurty , P. Shankar , Baldev
	Raj, B B Rath, James Murday, Uni	iversities F	Press (Inc	dia) Pvt. Limited, 2013.
Ref	ference Books			
1.	Essentials in Nanoscience and I	Nanotechr	nology,	Narendra Kumar, Sunita
	Kumbhat, John Wiley & Sons, Inc., 2	2016.		
2.	Materials Chemistry, Bradley D. Fah	hlman, 3 rd	edition, S	Springer Nature B.V. 2018
3.	Piezoelectric polymer and piezo	ocapacitive	e nanov	veb based sensors for
	monitoring vital signals and energy	gy expen	diture in	smart textiles, J. Fiber
	Bioeng. Inform. 6, 369, 2013.			
Mo	de of Evaluation: CAT, Written Assigr	nment, Qu	iiz, FAT a	and Seminar
Red	commended by Board of Studies	26-02-202	4	
Арр	proved by Academic Council	No. 73	Date	14-03-2024

Course Code	Course Title	L	Т	Ρ	С
PCHY617L	Inorganic Photochemistry	4	0	0	4
Pre-requisite	NIL	Syl	labus	s vers	sion
			1	.0	
Course Objectiv					
	principles of photochemistry in photosynthe	SIS,	solar		
•••	sion medical photochemistry.				
	ne devices based on photochemistry for sol	ar ei	hergy		
	d medicalapplications.				
Course Outcom					
•	echanism of photochemical and photophysical pr	oces	ses.		
	hysical processes for versatile applications.				
-	nterpret photoredox reactions.				
	classify photochemical reactions in coordination	comp	lexes	5.	
	ar energy conversion devices.				
	apeutic techniques based on photochemical prin	ciple	S.		
Module:1 Phot				5 hc	
	/s Thermal reactions, Laws of photochemis	•			
	cited states, Electronic Structure - Types of E				
	itions - Absorption and Emission Bands - J			-	
-	nosphorescence and delayed fluorescence,	-			
	e, bioluminescence internal conversion, inte	rsyste	em d	crossi	ng,
	ns in inorganic complexes.				
	clear Photophysical Process	h a 100		9 hc	
	and experimental determination, numerical pro			-	
-	ching of excited states, fluorescence life t				
	nism of quenching - heavy atom quenching, excir		na ex	-	
Module:3 Appl Proc	ications of Photophysical and Photochemica ess	1		7 hc	ours
	and inorganic practical applications of 1	luore	scen	ce a	and
	e, Photochemical Reactivity - Electrochen				-
Polynuclear Meta	al Complexes, Explanation of incidents - P	hotos	synthe	esis	in
	mical smog, atmospheric ozone layer, vi				sin,
formation of vita	amin D in sunlight, photodegradation of pla	stics	and	orga	nic
pollutants.				-	
Module:4 Inorg	ganic Photochemistry			8 hc	ours
	tions of Cobalt(III), models of photoredox syst	ems-	-radio	cal pa	air
model, photored	lox reactions of Iron(III) complexes, photoche	mist	ry of	meta	ıl-
carbonyl comple	xes.				
Module:5 Liga	nd Field Photochemistry			9 hc	ours
Photosubstitution	– photoisomerisation, photoracemization	n, I	ohoto	aqua	tion,
rearrangement	eactions Photochemistry of Chromium – p	hoto	lysis	rule	s —
stereochemistry	photoisomerisation photoracemization	٦,	Pho	otonat	ion,
Photoactive exci	ted states, Cobalt(III) complex in photosensitiz	atior	۱.		
Module:6 Sola	r Energy Conversion			10 hc	ours

Solar energy conversion – Introduction to three generations of solar cells - photovoltaic p-n junctionsolar cell - importance of silicon - single crystal, polycrystal and amorphous - Si wafer preparation; Heterojunction – photoelectrochemical-liquid junction solar cell, multiple junction solar cell, dye- sensitized solar cell; Perovskite solar cells.

Module:7Medical Photochemistry10 hoursIntroduction,Cells,Tissues and Light,Historical aspects,importance andapplicationsofPhotosensitization,photophysics andphotochemistry ofPDT,Type Iand Type IIMechanism,Singlet oxygen,Generations ofPDT,Cancer photodetection,Porphyrin photosensitizers forPDT.

Мо	dule:8	Contemporary Issues				2 hours			
Ind	ustry Ex	pert Lecture							
	Total Lecture hours: 60 hours								
Tex	xt Book	(s)							
1.	Inorga	nic photochemistry, Julia A	Vienstein, S	Springer,	2013.				
2.	Photoc	hemistry of Transition Meta	I Complexe	s, Torn B	litterley, Elsev	ier, 2011.			
Re	ference	Books							
1.	Applied	d photochemistry, Rachel	C Evans,	Peter [Douglas, Hug	h D Buren,			
	Spring	er, 2013.							
2.	Photoc	hemistry of Inorganic an	d Organor	netallic	complexes, E	3.J. Palmer,			
	Elsevie	er, 2012.							
Мо	Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar								
Re	commer	ded by Board of Studies	26-02-202	24					
Ар	Approved by Academic Council No. 73 Date 14-03-2024								

Cou	Irse Code	Cour	se Title			L	Т	Ρ	С
PCH	HY618P	Inorganic Chemist	ry Speciali	zation La	ab II	0	0	4	2
Pre	-requisite	NIL				Sylla	abus	vers	ion
							1.	0	
	Irse Objectiv						· .		
	-	tudents in synthesis of	-	•					
		chemical and instrur	mental me	ethods (of ana	alysis	OT	inorg	anic
	complexes ar								
	Irse Outcom	es synthesis methodologie	e to make	inorganio	comr				
		erent methods of mater		-					
		nciple of redox chemist	•						
		prepared materials	-				ntal	analv	tical
	echniques.		using one	inour un		lanic	intai	anary	lioui
	cative Expe	riments							
1.		ion and Analysis of		kes (UV	-Visib	le an	d 2	4 hou	irs
	FTIR) Meta	•	•	·					
	-	ntaamminecobalt (III) ch	nloride, [Co	(NH ₃) ₅ Cl					
	-	eazinc(II)sulphate, Zn(S	_						
		n bisoxalatocuprate(II)d		0	D₄)₂]. 2	H₂O			
		nductance of $[Co(NH_3)_6]$				2			
2.		s of Oxides (Phase pu				RD):	2	4 hou	irs
	-	by ceramic method				,			-
	-	by sol-gel method							
	-	precipitation method							
		combustion method							
3.		Redox Reactions					8	hour	s
	1. Hydroge	n intercalation in tungs	ten trioxide	9					
			Tota	l Labora	tory H	ours	6	0 hou	irs
	t Book(s)								
1.		of Inorganic Materials	Synthesis,	C.N.R. I	Rao, K	lanish	nka E	Biswas	3,
		& Sons, Inc., 2015.	<u> </u>			<u> </u>	<u> </u>		
2.		organic Chemistry –	•	-		and I	nstru	menta	al
		eoffrey Pass, Haydn Su	utcliffe, Spi	ringer, 20)13.				
1.	erence Book	s on Synthesis Strate	aion for	Advana	od M	otorio		Value	
١.		and Fundamentals,	-						
		ture Singapore Pte. Ltc		iyi, itayi	numan	ii, O.	T NILLÝ	Juliou	am,
Moo		on: CAT, Written Assig		iz and E	ΔΤ				
		by Board of Studies	26-02-202						
		idemic Council	No. 73	Date	14-03	2-202	1		
жүр			110.73	Dale	14-03	o-2024	+		

Course Code	Course	e Title			L	Т	Ρ	С
PCHY619P	Inorganic Chemistry	v Specializ	ation La	ıb III	0	0	4	2
Pre-requisite	NIL				Sylla	abus	vers	ion
						1.	0	
Course Object						<u> </u>		
-	ynthesis of inorganic mate						-	
	ng the importance of d	lifferent in	nstrumen	ital me	ethod	s in	chem	nical
analysis of n								
Course Outcor			<u></u>	•				
	the principle of powder X-	-		-				
	basic concepts of various							
	r X-ray diffraction techniq	-		nalysis	-			
	ucture property relationshi	ip of mate	rials.					
Indicative Exp							<u> </u>	
	ions of powder X-ray dif					1	6 hou	rs
-	of XRD data of inorganic	material						
i) Phase id								
<i>'</i> '	arameters calculation and	•						
	ical Density calculation fro							
-	s law verification and cryst	tallite size	calculat	tion		1	6 hou	rs
	on of Vegard's law							
a. Ba1-xSr	xTiO3							
b. Ca1-xSr	xTiO3							
ii) Crystalli	e size calculation using S	Scherrer fo	rmula					
II. II. Physica	I property measurement	ts				2	8 hou	rs
1. Resistiv	ty measurement – Four p	orobe meth	nod – Si I	band g	jap			
2. Determi	nation of magnetic parame	eters using	g Hyster	esis Lo	оор			
3. Photoca	talysis (dye degradation)							
4. Measure	ement of dielectric constar	nt						
5. Oxide S	emiconductor band gap –	DRS – Ta	auc's plo	t				
		Total	Labora	tory H	ours	60) hou	rs
Text Book(s)	reation A Dreatical Array	raach O	<u></u>		- N4	Ores	4 N	
-	raction - A Practical Appr	ioach, C.	Suryana	irayana	a, IVI.	Gran	i inor	ion,
Springer N								
Reference Boo		Dronarati		otiona		inc	-	ntel
	norganic Chemistry –	-			and	ins	irume	ntal
· · · · ·	Geoffrey Pass, Haydn Sut	•	<u> </u>					
	tion: CAT, Written Assign			AI				
	1	26-02-202		14.00	2 202	1		
Approved by Ac		No. 73	Date	14-03	o-2024	+		

Course Code Course Title L T P							
PCHY620L	Process Chemistry in Pharmaceutical	3	1	0	4		
	Industry						
Pre-requisite							
			1	.0			
Course Objectiv		Lin du	- 1				
1. Gaining the knowledge of process chemistry in pharmaceutical industry							
2. Understanding scale up of process in pharmaceutical industry.							
	e skills to improve the existing methods into a	cost e	effecti	ive gi	reen		
methods							
Course Outcom							
	portance of process chemistry.						
2. Explain the ro industry.	le of solvents and importance of solvent free re	actio	ns in	proc	ƏSS		
3. Assess the re	action conditions in laboratory and its scale up ir	n proc	cess i	ndust	try		
4. Outline safety minimization.	in process industry, including catalyst selection	on a	nd	impu	rity		
	validate of scale up process and finished produc	ts.					
	ess scale up process for reactions and tools		purif	icatio	n of		
finished produ			pum	loallo			
	ductory level of Process Chemistry			6 h	ours		
•	ocess chemistry approaches to process develo	opme	nt. Pr				
	nent, Route Selection, expedient and cost-effect	-		-			
	selection, alternatives to solvents, Water as as				-		
	tions regularlyperformed in process chemistry la			ii vai	.00.0		
•	ction of Solvents and solvent free reactions	<u> </u>		6 ha	ours		
	ction, assessing operating conditions for the	abor	atorv.				
•	election of reaction conditions, Example of var		•				
	n is processchemistry lab.						
	ction of Reactions			6 ha	ours		
	ction, assessing operating conditions for the la	abora	torv.				
	election of reaction conditions.		, ,				
	strial Safety Studies			6 ha	ours		
	oducts; tools and techniques - crystallization a	nd re	slurr				
	plymorphs. Validation of finished products,						
	Solvent washing, HPLC (use of chiral						
•	Plate layer Column chromatography.	0010	····· <i>)</i> ,	001	ann		
	ocess Control (IPC)			6 h	ours		
	trol (IPC) - importance, selection of IPC,	Repr	oduci				
•	ninimizing impurities, optimization of catalytic re	•					
reaction.			, ៴	u u			
	ication Tools and Identification Techniques			6 h	ours		
	roducts; tools and techniques – crystallization	n. ch	roma				
	rrying, final product form, polymorphs, Identif			-	-		
oopurution, roolu		iouit		1 1110	,nou		

nro	duct by	instrumental techniques.						
		Scale Up Process and va	lidation of	Finishe	d products	7 hours		
	Batch reactions, Continuous and Semi-continuous reactions, Continuous reactors							
		o of the process- Static mix						
	•	cal reactors. Validation as p						
	Module:8 Contemporary Issues 2 hours							
Indu	ustry Ex	pert Lecture						
				Total Leo	cture hours:	45 hours		
				Total Tut	orial hours:	15 hours		
	t Book	A /			_	nd		
1.		al Process research and I nicPress, 2012.	Developme	ent, Neal	G. Anderson	2 nd Edition,		
2.		mentals of Analytical Chen		•	•			
		Holler, Stanley R.Crouch,	9th Editic	on, Wads	worth Publish	ning Co Inc.,		
Def	2012.	Deeke						
1.	terence	t of Drug Synthesis, Doug		ncon lic		n Wilov and		
1.			185 S. JUII	IISOII, JIE	JACK LI, JUI	in whey and		
2	Sons, 2		oution In		ator L Duan	Androw		
2.		Chemistry in the Pharmad		-	eler J. Dunn	, Anarew		
	Wells, Michael T. Williams, John Wiley & Sons, 2010.							
	Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar							
	Recommended by Board of Studies 26-02-2024							
Арр	proved b	y Academic Council	No. 73	Date	14-03-2024			

Course Code	Course Title	L	Т	Р	С
PCHY621L	Pharmacognosy and Phytochemistry	3	1	0	4
Pre-requisite	NIL	Syl	labus	s vers	sion
	1.0				
Course Objectiv					
	biological functions and pharmacological uses of		ral pr	oduct	s.
	orimary and secondary metabolites and their sou				
	g the concepts of isolation methods and sepa	aratio	n of	bioad	ctive
compounds.					
• •	rmacognostical analysis of the bioactive compour	nds			
Course Outcom					
	irces of natural medicines and analysis of crude of	•			
	ds of evaluation of natural products based on vario	ous pa	aram	eters.	
=	olated drugs as per ICH guidelines.				
	ues to discover new alternative medicines.				
5. Evaluate the is	solated drugs for various pharmacological activiti	es.			
	ods to synthesize new drugs based on natural/is	olate	d dru	gs.	
	macognosy			6 hc	
	inition, history, scope, development and class				
	I, marine, mineral and plant tissue cultures a				-
•	macognostic studies of a crude drug. Biosynth		Shik	imic	acid
pathway and ace	tate pathway. Systematic analysis of Crudedrugs	S.			
	dardization of herbal drugs			6 hc	
WHO guidelines, Sampling of crude drug, Methods of drug evaluation.					
Determination of foreign matter, moisture, LOD, Ash value. Extractable values,					
Determination	G	their	sig	nifica	nce.
	vestigations: General chemical tests.				
	action techniques			<u>6 hc</u>	
	ls of extraction, types – maceration, Deco				
Immersion and 70oxhlet extraction. Advanced techniques- counter current, steam					
•	critical gases, sonication, microwaves assisted	extra	ction	. Fac	tors
	ce of extraction process				
	is containing terpenoids and volatile oils			6 hc	
•	ssification, Isoprene rule, Isolation and sepa				
	es Camphor, Menthol, Eucalyptol. Volatile Oils				
Method of Preparations, Classifications of Volatile oils, Camphor oil, Geranium oil,					
Citral- Structure, uses. Pentacyclic triterpenoids: amyrines; taraxasterol: Structure					
and pharmacolog					
	is containing alkaloids	- l' 1		5 hc	
Occurrence, function of alkaloids in plants, pharmaceutical applications. Isolation					
	Qualitative tests and general properties. General methods of structural elucidation.				
				ucidat	
Morphine, Reser	pine, Papaverine-structure, chemical properties a				
Morphine, Reser	oine, Papaverine-structure, chemical properties a		ses.	9 hc 9 ualita	ours

analysis. Pharmacological activity of Senna glycosides, Cardiac glycosides-Digoxin, digitoxin, strophanthidin, Steroidal saponins glycosides- Diosgenin, hecogenin. Plant pigments: Occurrence, nomenclature, and general methods of structure determination, isolation and synthesis of quercetin and cyanidin.

Module:7Marine drugs5 hoursSelectedDrugMolecules:Cardiovascularactivesubstances,Cytotoxiccompounds,antimicrobialcompounds,Antibioticcompounds,Anti-inflammatoryagents.Marine toxins.Marine toxins.Marine toxins.Marine toxins.

Module:8Contemporary Issues2 hoursIndustry Expert Lecture

Total Lecture hours: 45 hour

Total Tutorial hours: 15 hours

Text Book(s)

- 1. Gurdeep R Chatwal (2016), Organic chemistry of Natural products, Volume I&II, 5th edition, Himalaya publishing House.
- 2. S.V.Bhat, B.A. Nagasampagi, M.Sivakumar (2014), Chemistry of Natural Products, Revisededition, Narosa Publishers.

Reference Books

- 1. Jeffrey B. Harborne (2012), Phytochemical methods: A Guide to Modern Techniques of PlantAnalysis, 4th edition, Indian reprint, Springer.
- Ashutoshkar (2007), Pharmacognosy and Pharmacobiotechnology, 2nd edition, New ageinternational (P) limited, New Delhi.

Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar

Recommended by Board of Studies	26-02-2024				
Approved by Academic Council	No. 73	Date	14-03-2024		

Cou	rse Code	Course Title	L	Т	Ρ	С	
PCH	IY621P	Pharmacognosy and Phytochemistry Lab	0	0	4	2	
Pre-			abus	us version			
				1	.0		
Course Objectives							
	-	chemistry behind development and activity of pha					
	•	knowledge of mechanism of action and adverse ef	fects	of dr	ugs.		
3. L	Inderstandi	ng the need of judicial usage of antibiotics.					
0							
	rse Outcor	nes position and importance of phytoconstituents.					
	•	ill of extraction and isolation of phytoconstituents.					
		purity of the extracted or isolated phytoconstituents					
		rious parameters of isolated drugs and check th		ndard	10 20	nor	
	CH guidelin		ie stai	luar	15 05	pei	
	Cri guideiiri	es.					
Indi	cative Expe	priments					
1.		Isolation and Characterization (UV/IR/NMR/MS)	of th	ne (3 hou	rs	
		he phytoconstituents from the Natural products					
2.	Starch from Potatoes		(6 hours			
3.	Caffeine from Tea Leaves/Tea Dust Powder		(6 hours			
4.	Lycopene from Tomato		(6 hours			
5.	Lawsone from Henna Powder/Leaves		(6 hours			
6.	Curcumin	Curcumin from Turmeric Powder		(6 hours		
7.	Extraction	and detection of volatile oils by Clevenger's	Metho	d 4	4 hours		
		tillation method).					
8.	Determina	tion of Extractive Values of some crude Drugs.		4	4 hours		
9.	Determina	tion of Extractive Values of some crude Drugs.			4 hours		
10.	Estimation of Caffeine from Tea by Spectrophotometric/HPTLC		.C 4	1 hou	rs		
	Method						
11.	Determina	tion of Saponification and Acid value of the Fat a	nd Oil	S 4	1 hou	rs	
	bytaking any real sample						
12.	Estimation of Ascorbic acid from Citrus Fruits (Vitamin C)		4	4 hours			
	Total Laboratory Hours		60	60 hours			
–							
	t Book(s)	bormoognoou and Dhytachemistry Ouchilly and		ا م ما د		4	
1.		Pharmacognosy and Phytochemistry, Sushilkumar	A. 51	inde	, N. N	/1.	
2.	-	st Edition, Vallabh Prakashan Publisher, 2023.	hand		K C	>	
∠.		Pharmacognosy, Techniques and Experiment, K ashan, 2006.	Inditue	ann al	rx. F	١,	
	INITAL FIAK	ashan, 2000.					
Rofe	erence Boo	ke					
1.			of P	lant	Analy	vsie	
۰.	Phytochemical Methods: A Guide to Modern techniques of Plant Analysis, Jeffreey B. Harborne, 4th Edition, Indian Reprint, Springer, 2012.						
	Jenneey D. Harbonne, 4th Edition, Indian Rephint, Opiniger, 2012.						

2.	Natural Products: A Laboratory	Guide,	Raphael	and	lkan,	2nd	Edition,			
	Academic Press, 2013.									
Mod	Mode of Evaluation: CAT, Written Assignment, Quiz, and FAT									
Rec	Recommended by Board of Studies 26-02-2024									
Арр	Approved by Academic Council No. 73 Date 14-03-2024									

Course Code	Course Title	L	Т	Р	С		
PCHY622L	Pharmaceutical Quality Control and	3	0	0	3		
	Quality Assurance						
Pre-requisite	NIL	Syl	labus	s vers	sion		
			1	.0			
Course Object							
•	the quality of the finished pharmaceutical	pro	duct	and	its		
	facilitate its market launch.						
-	knowledge about ICH guidelines, i.e., the orga	anizat	tion t	hat s	ets		
-	thelaws and rules for all the quality tests.						
3. Controlling	the quality of the formulation and assuring the	ne c	ompli	ance	of		
standards.							
Course Outcor	nes						
1. Recall the ir	nportance and methods of quality assurance in	the p	oharm	naceu	tical		
industry.							
2. Outline audi	ting, quality of auditing, and personal responsi	bilitie	s inv	olved	in		
quality contro	ol of an organization.						
3. Analyze the	e documentations associated with manufactu	uring,	ma	ster			
formula, dist	ribution, returned goods and recovered materials.						
4. Apply valida	tion process at different levels, including persona	al, eo	luipm	ent, a	and		
regulatory as	pects.						
5. Evaluate the	e quality process and factors influencing the sta	ability	of p	orodu	cts,		
and quality of	packaging materials.	-					
6. Propose qua	ality assurance and control measures for docum	nenta	tion I	based	d on		
	pharmaceutical industry.						
	ncept and Philosophy			7 hc	ours		
	Management (TQM), Good Laboratory Pract	ice ((GLP)		bod		
Manufacturing F							
Module:2 Qua				6 hc	ours		
	Standard Operating Procedure (SOP), Interna	ationa	al Co				
Harmonization	(ICH), ISO-9000, ISO14000, WHO specifications,	USF	DA g	guidel	ines		
and ICMR.							
Module:3 Org	anization and personnel responsibilities			6 hc	ours		
	ene, Premises: Location, Design, Plant lay	out,	Cons	structi	on,		
	nd Sanitations. Environmental control, Sterile						
contamination.							
Module:4 Do	cumentation & Handling			5 ho	ours		
	documents, Master Formula, batch formula Re	cord,	Dist				
of records, Hand	lling of returned goods, Recovered materials and	Repr	ocess	sing.			
	gulatory aspects of Pharmaceuticals	<u> </u>		•	ours		
	ersonnel, Equipment and Cleaning methods, Re	gulat	ory a				
	New Drug Approval Process: Investigational New						
•	ns (NDA) andits approval, Drugs and Cosmetic Ac		•				
Module:6 Quality process 7 hours							
	lity control on various dosage forms, Sterile	and	d noi				
	,						

-									
operations. Factors affecting stability of formulations and shelf – life prediction,									
tech	nniques	to determine and improve a	shelf life.						
Mo	dule:7	Quality control of package	ging materi	als		5 hours			
Тур	Types of plastics, primary and secondary packaging materials (glass, closures,								
cart	tons, blis	ster andtheir control).							
Mo	dule:8	Contemporary Issues				2 hours			
Indu	ustry Ex	pert Lecture							
			1	Total Lec	ture hours:	45 hours			
	t Book					46			
1.	-	Assurance of Aseptic P	•						
	edition,	Alison M Beaney, Roya	al Pharma	ceutical	Society and	the NHS			
	Pharma	aceutical Quality Assurance	Committee	e, 2016.					
2.	Manag	ing for quality and performa	ance excell	ence nin	th edition Jan	nes R.Every,			
	William	M.Lindsay South-western C	Cengage lea	arning, 20	014.				
Ref	erence	Books							
1.	Sed m	tiazhaider. (2011), Pharma	ceutical Ma	aster Vali	dation Plan:	The Ultimate			
	Guide	o FDA							
2.	Ira R. I	Berry, Robert A Nash (201	3), Pharma	ceutical	process valid	ation, 3rd			
	Rev Ec	lition, Marcel Dekker.							
Mod	de of Ev	aluation: CAT, Written Assig	gnment, Qu	iiz, FAT a	and Seminar				
Rec	Recommended by Board of Studies 26-02-2024								
Арр	proved b	y Academic Council	No. 73	Date	14-03-2024				
L									

Course Code	Course Title	L	Т	Ρ	С				
PCHY623L	Medicinal Chemistry	3	0	0	3				
Pre-requisite	NIL	Syl	labu	s vers	sion				
			1	.0					
Course Objectiv									
1. Understanding the chemistry behind the development and activity of									
pharmaceutic									
2. Imparting the	knowledge of mechanism of action and adverse	effect	s of o	drugs	•				
Acquainting t	he mechanism of action of antibiotics and their a	dvers	e eff	ects u	ipon				
erratic usage									
Course Outcom	es								
1. Relate drug's	properties with its structure.								
2. Explain the fa	actors affecting absorption, distribution, metabolis	sm, a	nd e>	cretic	n				
of drugs and	hence the considerations to be made in drug des	ign.							
3. Outline the	relationship between drug's chemical structur	e ar	nd th	erape	eutic				
properties.									
4. Apply the kn	owledge of different theories of drug actions at	mole	ecula	r leve	el to				
identifydiffere	nt targets for the development of new drugs								
Module:1 Intro	oduction to receptors			6 hc	ours				
	gets, Agonist, antagonist, partial agonist Recepto	rs, R	ecep	tor ty	pes,				
Theories of D	rug -receptor interaction, Drug synergism,	Dru	g re	esista	nce,				
physicochemical	factors influencingdrug action. Isosterism and bio	bisost	erisn	n					
	biotics			9 hc	ours				
Introduction, Tar	gets of antibiotics action, classification of antibio	tics, e	enzyr	ne-ba	ised				
mechanism of a	action, SAR of penicllins and tetracyclins, clir	nical	appli	cation	ר of				
penicillins, ceph	alosporin, Betalactamase inhibitors, tetracyclines	s, Cu	rrent	trenc	ls in				
antibiotic therapy	-								
Module:3 Anti	hypertensive agents and diuretics			6 hc	ours				
	cardiovascular agents, introduction to hypertens	ion, ε	tiolo	gy, ty	pes,				
classification of	antihypertensive agents, classification and mecl	hanis	m of	actio	n of				
diuretics, Furose	mide, Hydrochlorothiazide, Amiloride.								
Module:4 Drug	gs for Tuberculosis			5 hc	ours				
	nechanism of action of drugs employed for	the	trea	tmen	t of				
Tuberculosis Cu	rrenttreatment strategy for tuberculosis.								
Module:5 Ana	Igesics, Antipyretics and Anti-inflammatory D	rugs		6 hc	ours				
Introduction, Me	chanism of inflammation, classification and mec	hanis	m of	actio	n of				
NSAIDs and SA	R of paracetamol, Ibuprofen, Diclofenac, napro	xen,	indo	metha	acin,				
phenylbutazone	andmeperidine								
Module:6 Med	icinal Chemistry of Antidiabetic Agents			6 hc	ours				
	pes of diabetics, Drugs used for the treatme	ent, c	hem						
	AR, Mechanism of action, Study the treatmen								
	Chemistry of insulin, sulfonyl ureas		27						
	gs for malaria			5 hc	ours				
	nechanism of action of drugs employed for	the	trea						
, .									

ma	malaria. Current treatment strategy for malaria.										
Мо	dule:8	Contemporary Issues				2 hours					
Ind	ustry Ex	pert Lecture									
	Total Lecture hours: 45 hours										
Тех	t Book	(S)									
1.	Wilson	and Gisvold's textbook	of organi	c medic	inal and pha	armaceutical					
	chemis	stry, Wilson, Charles Owe	ens,;Beale,	John N	larlowe ;Bloc	k, John H,					
	Lipinco	ott William, 12 th edition, 2011									
2.	An Intr	oduction to Medicinal Cher	nistry - Gra	aham L. I	Patrick, 5 th ed	ition, Oxford					
	Univer	sityPress, 2013.									
Ref	erence	Books									
1.	Foye's	Princles of Medicinal Ch	emistry, Li	pincott V	Villiams, Seve	enth Edition,					
	2012										
2.	Burger	's Medicinal Chemistry, Dru	ug Discove	ry and D	evelopment, D	Donald J.					
	Abraha	am, David P.Rotella, Alfred I	Burger, Aca	ademic p	ress, 2010.						
Mo	de of Ev	aluation: CAT, Written Assig	gnment, Qu	uiz, FAT a	and Seminar						
Red	commen	ided by Board of Studies	26-02-202	24							
App	proved b	y Academic Council	No. 73	Date	14-03-2024						

Course CodeCourse TitleLT										
PCH	Y623P	Medicinal Chemistry Lab	0	0	4	2				
Pre-	requisite	NIL	Sylla	abus	vers	ion				
				1.	0					
	rse Object									
	-	s on training in synthesis of some drug molecule	es and	l esti	matio	n of				
-		ted to drug designing.								
	rse Outcor									
		the practical aspects of drug synthesis.								
		ill to synthesize and purify the drug molecules.	nrooo	duro	a lika	IСЦ				
		quality of the commercial product as per standard	proce	aure	siike					
•	uidelines.	nalution, tachniques, ta actimata various, parama	toro r	oloto	d to d	Arua				
	esigning	nalytical techniques to estimate various parame		elate		liug				
	cative Expe	arimonto								
1.		of medicinally active compounds (Any two) fr	om th		hour	<u>د</u>				
۰.	•	jivencompounds- Phenytoin, Benzocaine, Barbitu			nour	5				
	and Pheno	• •								
2.		of medicinally active compound; Phenytoi	n fro	m 6	hour	\$				
۷.	-	Step One:Benzoin to Benzil			nour	5				
3.		of medicinally active compound: Phenytoin		6	hour	\$				
0.	spectrosco				nour	5				
4.	•	of medicinally active compounds – Benzocair	ne Ste	en 6	hour	\$				
ч.	•	robenzoic acid to p-amino benzoic acid		, p 0	nour	5				
5.	•	of medicinally active compounds – Benzocaine	Ster	6	hour	s				
0.	•	ninobenzoic acid to Benzocaine Purification by c	-		ine an					
	crystallizat		eranni	,						
	•	zation by spectroscopic methods								
6.		tion of active substance in commercial products	: Assa	av 6	hour	S				
_		dTablets IP		.,		-				
7.	Quantifica	tion of active substance in commercial products	: Assa	v 4	hour	S				
		amol Tablets IP		5						
8.	Quantifica	tion of active substance in commercial products	: Assa	av 4	hour	S				
	of AspirinT	•		- ,						
9.		tion of active substance in commercial products	- Assa	av 4	hour	S				
		ilamide Tablets IP		.,		-				
10.	•	tion of active substance in commercial products	- Assa	av 4	hour	S				
		phenichol Capsules IP		· .						
11.		It effects of groups in medicinally active molecules	3	4	hour	S				
12.		ioxidant studies by hydrogen peroxide method	-		hour					
						-				
		Total Laboratory	Hours	60	hour	'S				
Text	Book(s)					-				
1.		book of practical organic chemistry, Brian S. F	urniss	, An	tony	J.				

	Hannaford, Peter W. G. Smith, Austin R. Tatchell, 5 th Edition, Longman Scientific & Technical Publishers Ltd., 2011.							
2.	Indian Pharmacopoeia 1996, The Controller of Publications, Civil Lines,							
	Delhi – 110054.							
Refe	erence Books							
1.	Burger's Medicinal Chemistry, D	rug Discov	ery and	Development, Donald J.				
	Abraham, David P. Rotella, Alfred	Burger, Ac	ademic p	oress, 2010.				
Mod	e of Evaluation: CAT, Written Assig	inment, Qui	iz, and F	AT				
Reco	Recommended by Board of Studies 26-02-2024							
Аррі	Approved by Academic Council No. 73 Date 14-03-2024							

Course Code	Course Title	L	Т	Ρ	С
PCHY624L	Advanced Physical Chemistry	3	0	0	3
Pre-requisite	NIL	Syl	labus	s vers	sion
			1	.0	
Course Objectiv			<u> </u>		
	g thermodynamics of chemical equilibrium, kin	etics	of fa	ast	
	electrode kinetics.				
2. Enriching kno reactions.	owledge about photoinduced electron transfer	and	phot	ocata	lytic
3. Understanding	g the principles and applications statistical thermo	odyna	mics		
4. Getting insigh	t into electric properties of molecules and their in	terac	tions		
Course Outcom					
1. Evaluate the	thermodynamics of equilibrium and relati	onshi	p b	etwee	n
equilibrium wi	th temperature and pressure.				
2. Analyze the ki	inetics of fast reactions using instrumentation tec	hniqu	es.		
3. Apply theorie	s in electrochemistry to analyze electrode kin	etics	thro	ugh	
Butler-Volmer	andTafel equations.			-	
4. Explain photo	pinduced electron transfer and analyze phot	ocata	alytic		
	udinghydrogen generation reactions.				
5. Analyze most	probable distributions of a system among the er	nergy	level	s usir	ng
-	of statistical thermodynamics.	0,			U
6. Summarize B	oltzmann, Bose-Einstein and Fermi-Dirac statis	stics	and e	evalua	ate
different partit	ionfunctions for diatomic molecules.				
7. Analyze the e	lectric properties of molecules and their interaction	ons.			
	nical Equilibrium			7 hc	ours
	emical reactions: The Gibb's energy minimum -	a) re	eactio	on Gib	obs
energy, b) Exerg	gonic and endergonic reactions; Description o	f equ	uilibriu	um –	a)
Perfect gas equ	uilibria, b) The general case of a reaction,	c) (alcul	ation	of
equilibrium const	ant, d) The relation between equilibrium const	ants,	e) N	lolecu	ular
interpretation of t	he equilibrium constant, f) Equilibria in biological	syste	ems;		
Response of ed	quilibria to conditions: Change in equilibria	with	cha	nges	in
pressure, temper	ature; Value of equilibrium constant at different to	empe	ratur	es.	
Module:2 Cher	nical Kinetics-II			5 hc	ours
Study of kinetic	cs of fast reactions-stopped flow technique,	relax	ation	met	nod,
processinstrumer	ntation, methodologies and applications.				
Module:3 Elec	trochemistry-II			5 hc	ours
Electrical Double	e layer: Theories of Double-Layer structure,	diffus	e-doi	uple-la	ayer
theory of Gouyar	nd Chapman, the Stern Model; electrode kinetion	cs-de	rivatio	on of	the
fundamental equ	ation of electrode kinetics. Butler-Volmer equ	ation	low	field	and
high field approx	kimations-Tafelequation.				
	ophysical Chemistry II				ours
	ectron transfer: Reaction rates, free energy depe				
transfer on rate	e, Photoinduced energy transfer - FRET, ra	ite a	nd e	efficie	ncy

calculation of FRET - Absorption of light and nature of electronic spectra.
Semiconductor as photo catalysts in photolysis reactions: Generation of
hydrogen by photo catalysts - photo catalytic break down of water and harnessing
solar energy - photocatalytic degradation of dyes - environmental applications.
Module:5 Statistical Thermodynamics I 6 hours
Concepts of distribution, thermodynamic probability and most probable
distribution. Ensemble averaging, postulates of ensemble averaging. Canonical and
microcanonical ensembles.
Module:6 Statistical Thermodynamics II 6 hours
Thermodynamics and entropy, Maxwell - Boltzmann, Bose - Einstein and Fermi -
Dirac statistics, partition function - rotational, translational, vibrational and
electronic partitionfunctions for diatomic molecules. Heat capacity of solids.
Module:7 Molecular Interactions 7 hours
Electric Properties of molecules - Electric dipole moments, Polarizabilities,
Polarization, Relative permittivities; Interactions between molecules: Interactions
between dipoles – a) Potential energy interaction,b) Dipole-dipole interaction, c)
Dipole-induced-dipole interactions, d) Induced-dipole-induced-dipole interactions,
e)hydrogen bonding, f) hydrophobic interaction g) Repulsive and totalinteractions.
Module:8 Contemporary Issues 2 hours
Industry Expert Lecture
Total Lecture hours: 45 hours
Tayt Baak(a)
Text Book(s)1.P. W. Atkins and Julio de Paula, Atkins' Physical Chemistry, 2018,
International 11th Edition, Oxford University Press, United Kingdom.
2. B. R. Puri, L. R. Sharma, M. S. Pathania, principles of physical chemistry, 47 th
Edition, VishalPublishing Co., 2017.
3. Allen J. Bard and Larry R. Faulkner, Electrochemical Methods: Fundamentals
and Applications, John Wiley and Sons Inc. 2001.
Reference Books
1. N. Levine, Physical Chemistry, 6 th Edition, McGraw Hill, New York, 2011.
2. K. J. Laidler, Chemical Kinetics, 3 rd Edition, Harper & Row, New York, 2013.
Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar
Recommended by Board of Studies 26-02-2024
Approved by Academic Council No. 73 Date 14-03-2024

Cou	Irse Code	Course Title	L	Т	Ρ	С
PCH	IY625P	General Organic and Inorganic Chemistry	0	0	4	2
Dre	requisite	Lab		lahu		
Pre-	-requisite	NIL	Sy	1.	s ver	sion
Соц	Irse Objectiv	les		- 1.	U	
		ills in synthesis of organic molecules and inc	rganic	con	nplexe	es &
	materials.	.,	5			
2.	Analyzing th	e synthesized materials using instrumental r	nethoo	ls of	cher	nical
	analysis.					
	irse Outcom	es				
		given organic compounds using quantitative an	alysis.			
		of synthesis methodologies for drug molec	-	and	inorg	anic
	complexes.	, , , , , , , , , , , , , , , , , , , ,			0	
	•	extraction of natural products.				
4. A	Apply prepara	ation methods for getting the given inorganic oxid	es of ir	nport	tance.	
		products obtained using characterization technic		•		
		C C				
Indi	cative Expe	riments				
1.	Estimation of	of the following:			12 ho	urs
	a) Estima	tion of Glucose				
	b) Estima	tion of Methyl Ketone				
2.	Synthesis of	f the following drug molecules:			12 ho	urs
	a) Synthesi	is of phenytoin				
	b) Synthes	is of 2,3-diphenyl quinoxaline				
	c) Synthes	is of 2-phenylindole				
3.	Extraction o	f natural products:			12 ho	urs
	a) Caffeine	from Tea leaves				
	b) Piperine	from Black pepper				
4.	Coordination	n Complexes:			12 ho	urs
	a) Preparat	tion of Chloropentaammine cobalt(III)	chlori	de,		
	[Co(NH3	3)5CI]Cl2				
	b) Preparat		lihydra	ite,		
	K2[Cu(C	2O4)2].2H2O				
5.	Synthesis o	f oxides:			12 ho	urs
	a) YBa2Cu	307 by ceramic method				
	b) SnO2 by	y precipitation method				
	c) Ruby by	combustion method				
	, , , , , , , , , , , , , , , , , , ,	Total Laboratory	Hours	s 60) hou	rs
Tex	t Book(s)					
1.	Comprehen	sive practical organic chemistry, V.K. Ahluwalia	and F	R. Ag	garwa	al,
	University p	ress, 2000.				
2.	Practical In	organic Chemistry – Preparations, reactions	and	instru	iment	al
	methods, G	eoffrey Pass, Haydn Sutcliffe, Springer, 2013.				

3.	Essentials of Inorganic Materials Synthesis, C.N.R. Rao, Kanishka Biswas,								
	John Wiley & Sons, Inc., 2015.								
Ref	erence Books								
1.	Vogel's Quantitative Chemical Ana	alysis, Arthu	ur Israel	Vogel, J. Mendham, R.C.					
	Denney, J. D. Barnes, M.J.K. Thomas, R. C. Denney, and M. J.K. Thomas 6th								
	Edition, Prentice Hall, 2000.								
Мос	de of Evaluation: CAT, Written Assig	nment, Qui	z, and F	AT					
Rec	Recommended by Board of Studies 26-02-2024								
Арр	Approved by Academic Council No. 73 Date 14-03-2024								

Cou	rse Code	Cou	rse Title			L	т	Ρ	С
	Y626P	Analytical	Chemistry L	_ab I		0	0	4	2
Pre-	requisite	NIL				Syl		s vers	sion
							1	.0	
	rse Object								
		aimed at Imparting the		perating d	ifferer	nt ins	trum	ents u	sed
		of various chemical con	stituents.						
	rse Outcor								
	-	omatographic and titrim					•		
	-	ferent constituents thro	-				-		
3.	Evaluate di	fferent contaminants ir	n materials u	sing turbi	dimet	ry ar	nd co	nduct	ivity
	measureme	ents							
Indic	cative Expe								
1.	Determina conducton		y precipita	tion titra	ation	usi	ng	10 ho	urs
2.		of phosphate in waste	water using	colorimet	rv.			10 ho	urs
3.		and iodometric estima				ovs.		10 ho	urs
4.	Estimation			nenonthro		usi		10 ho	
	spectroph		.,						
5.		tion of Sulphate Ion by	Turbidimetry	1				10 hours	
6.		sition of Diacetone alco			nd			10 ho	
7.	-	tion of specific rota				tice		10 ho	
7.		of sucrose in normal su	• •	•			01		SIL
8.	Determina cell	tion of solubility produc	t by potentic	ometry – c	concer	ntrati	on	10 ho	Jrs
9.	Gas chron	natography assay of fla	vour chemic	als.				10 ho	urs
10.		zation of Functional Gr			scop	/.		10 ho	urs
				I Laborat			s 6	i0 hou	ırs
Text	: Book(s)								
1.	Advanced	Physical Chemistry	Practical G	uide, Cha	aru A	rora	, Su	mantr	а
	Bhattacha	rya, Bentham Science	Publishers, 2	2022.					
2.		Laboratory Technique	es in Electro	oanalytica	al Che	emist	try, S	Secon	d
Defe	•	RC Press, 2016.							
1.	P Holzo		obomietr <i>u</i>	A Loboro	tory	Tovi		800	ond
1.		Experimental Electro	chennistry. /		nory	IEXU	JUUK	, 360	unu
		iley-VCH, 2019.							
		tion: CAT, Written Assi	0		. I				
		by Board of Studies	26-02-202						
Appr	roved by Ac	ademic Council	No. 73	Date	14-03	-202	:4		

Open Elective

Course Code	Course Title	L	Т	Ρ	С			
PCHY627L	Drug Design	3	0	0	3			
Pre-requisite	NIL	Sylla	abus	vers	ion			
			1.	0				
Course Objectiv								
•	principles and applications of drug design and o		•					
	computational skills for understanding mech							
forces in drug	g actions and quantitative measurement of biolo	ogical r	espo	nses.				
	Course Outcomes							
1. Demonstrate the steps involved in the drug discovery and design process.								
	2. Summarize the screening methods in the design of drugs.							
3. Predict the functional groups involved in drug action and modifications								
required for a	betterbiological response.							
4. Choose ideal	targets in drug design.							
5. Outline pharmacophore and perform conformational searching.								
	formulate various QSAR models.							
Module:1 Fund	lamentals of drug design			7 hc	ours			
	rugs, agonist, antagonist, inhibitors-differ		types	•	ead			
molecule, lead	discovery, random screening, non-random	scre	enin	g, D	rug			
metabolism stud	dies, clinical observations, drug targeting wit	thout	lead,	natu	ural			
products as lea	d molecules, existing drugs as lead. Drug-L	ikenes	ss ar	nd ot	her			
compound filter n	nechanism							
Module:2 Lead					ours			
	ne active site, pharmacophore, functional group	o mod	ificati	on, S	AR,			
Scaffolds, Dru	.	mologa			hain			
elongation/brancl	ning, ring chain transformation, bioisosterims	s, Fra	gmer	tatior	ר of			
	ochemistry and Drug Action							
	ets in drug Design			6 hc				
	design: various targets in drug action, Specie	-		-				
	mbrane drug targets, RNA, DNA, Proteins valio	dation	of the	e targ	jets,			
•	cture forstructure based drug design.							
	macophore and pharmacophore mapping			6 hc				
Pharmacophore,			Data		ases			
	DB) searching, conformational search, rand			rmatio	onal			
search, methods		/lappin	ıg.					
	cular interaction	<u> </u>		<u>6 hc</u>				
•	tual screening, Structure-Based Virtual Sc		- ·	n sil				
-	Docking, Scoring Functions for Protein-Ligand		-					
•	ture-BasedVirtual Screening, The Prediction of	ADME	:T, P	roper	ties,			
Toxicity Prediction								
	cular descriptors		<u> </u>	6 hc				
	ameters, Measurement of partition coeffi		and		ated			
•	culation of partition coefficient, electronic	•						
parameters. Po	larizability, parameters, Indicator variables,	Othe	r pa	rame	ters			

involved topological features								
Module:7 Basics of Quantitative Models in QSAR Approaches 6 hours								
Hansch Analysis, Free Wilson analysis, The Relationships between Hansch and								
Free Wilson Analysis, Nonlinear relationship, Dissociation and Ionization of Acids								
and Bases, Other QSAR Approaches, Applications of Hansch analysis, Free Wilson								
analysis.								
Module:8 Contemporary Issues 2 hours								
Industrial invited lectures on Molecular modelling, Tools involved in molecular								
modelling and bioinformatics. Methods involved in drug Design.								
Total Lecture hours: 45 hours								
Text Book(s)								
1. Textbook of Drug Design and Discovery, Kristian Stromgaard, Povl Krogsgaard-								
Larsen, 4 th Edition, CRC Press, 2010.								
2. The organic chemistry of drug design and drug action, Richard B Silverman, 3 rd								
edition,Elsevier Publishers, 2014.								
3. QSAR: Hansch Analysis and Related Approaches, Vol.1, Hugo Kubinyi, VCH								
Publishers, 2006.								
Reference Books								
1. Drug Design: Structure- and Ligand- Based Approaches, Kenneth M. Merz, Jr,								
Dagmar Ringe, Charles H. Reynolds, Cambridge University Press, 2010.								
2. Textbook of Drug Design and Discovery, Tommy Liljefors, Povl Krogsgaard-								
Larsen, Ulf Madsen, 3 rd edition, CRC Press, 2006.								
3. Recent Advances in QSAR Studies: Methods and Applications, Tomasz Puzyn,								
Jerzy Leszczynski, Mark T. Cronin, Springer, 2010.								
4. Burger's Medicinal Chemistry, Drug Discovery and Development, Donald J.								
Abraham, David P. Rotella, Alfred Burger, Academic press, 2010								
Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar								
Recommended by Board of Studies 26-02-2024								
Approved by Academic CouncilNo. 73Date14-03-2024								

PCHY628L Polymer Chemistry 3 0 0 Pre-requisite NIL Syllabus version Course Objectives 1.0 1.0 Course Objectives 3 0 0 1. Understanding the basic concepts about polymers/macromolecules polymerization techniques 2. Knowing structure of polymers, tacticity and reactivity ratios. 3. Make use of instrumental techniques for characterizing polymers Course Outcomes Strumental techniques for characterizing polymers Strumental techniques for characterizing polymers	
Course Objectives 1.0 1. Understanding the basic concepts about polymers/macromolecules polymerization techniques 2. Knowing structure of polymers, tacticity and reactivity ratios. 3. Make use of instrumental techniques for characterizing polymers	
 Course Objectives 1. Understanding the basic concepts about polymers/macromolecules polymerization techniques 2. Knowing structure of polymers, tacticity and reactivity ratios. 3. Make use of instrumental techniques for characterizing polymers 	and
 Understanding the basic concepts about polymers/macromolecules polymerization techniques Knowing structure of polymers, tacticity and reactivity ratios. Make use of instrumental techniques for characterizing polymers 	and
polymerization techniques 2. Knowing structure of polymers, tacticity and reactivity ratios. 3. Make use of instrumental techniques for characterizing polymers	and
 2. Knowing structure of polymers, tacticity and reactivity ratios. 3. Make use of instrumental techniques for characterizing polymers 	
3. Make use of instrumental techniques for characterizing polymers	
Course Outcomes	
1. Recall the importance of macromolecules/polymers in day-to-day life	
and sustainable development.	
2. Apply instrumental techniques for polymer characterization.	
3. Develop macromolecules for specific applications and requirements in industr	ſy.
Module:1 Concept of Polymer 7 ho	ours
Definition, nomenclature, Molecular weight (Mn, Mw), PDI. DP, Tg,	Tm.
Polymerization Techniques: Bulk, Suspension, Emulsion Polymerization	and
Interfacial Polycondensation	
Module:2 Chain Polymerization 8 ho	ours
Radical, cationic, anionic and coordination polymerization (Initiation - propagation	on –
transfer- termination- processing kinetics - termination - living / controll	
Metathesis polymerization, metallocene and Non-metallocene Step Polymerizat	
Functionality monomers (monomers of type (XX + YY), XY type monom	
monomers of type (XX + YYY), examples)	·
Module:3 Characterization 6 ho	ours
Methods for the characterization of Polymers: Molecular weight (Mn, Mw)	and
Polydispersity index (PDI) By size exclusion chromatography (GPC), Chain	
analysis, Thermal analysis of polymers by DSC, TGA, TGDTA. Determination	
branching	
Module:4 Stereoselectivity in polymers 5 ho	ours
Stereospecific polymerization: Stereoselective polymerization using single-	
catalysts.	
Module:5Evolution in polymer chemistry5 ho	ours
From multisite to single site polymerization. Metathesis polymerization, ROP (
openingpolymerization).	
Module:6 Controlled/Living polymerization 7 ho	ours
Polymerization techniques such as NMP (nitroxy mediated polymerization), (
(group transfer polymerization), ATRP (atom transfer radical	
polymerization), RAFT (reversible addition fragmentation and chain tran	sfer
polymerization), metallocene and non-metallocene polymerizationtechniques	
Module:7 Copolymers 5 ho	ours
Block copolymers, alternative and random block copolymers. Reactivity rate	
Synthesis-Applications	
Module:8 Contemporary Issues 2 ho	ours

Industry Expert Lecture								
	Tota	I Lecture hours:	45 hours					
Tex	ext Book(s)							
1.	Principles of Polymerization, George Odian, 4th I	Edition, Wiley, 200)4.					
2.	Polymer Science and Technology, Joel R. Fried, 3 rd Edition, Prentice Hall,							
	2014.							
Ref	eference Books							
1.	High Performance Polymers, Johannes Karl Fink	k, 2 nd Edition, Else	vier, 2014.					
2.	Handbook of Polymer Synthesis, Characterizatio	on, and Processing	g, Enrique					
	Saldivar-Guerraand Eduardo Vivaldo-Lima, Wile	y-Blackwell, 2013						
3.	Applications of Ionic Liquids in Polymer Science a	and Technology, [David					
	Mecerreyes, Spirger, 2015.							
4.	Introduction to Polymer Science and Chemistry:	A Problem-Solving	g					
	Approach, Manas Chanda, 2 nd Edition, CRC Pre	ess, 2013.						
5.	Chemical and physical chemistry of polymers, M.	. Fontanille and Y.	Gnanou,					
	Wiely, 2008.							
Мо	ode of Evaluation: CAT, Written Assignment, Quiz,	FAT and Semina	r					
Re	ecommended by Board of Studies 26-02-2024							
Арр	pproved by Academic Council No. 73 D	ate 14-03-202	4					

Course Code	Course Title	L	Т	Ρ	С		
PCHY629L	Biophysical Chemistry	3	0	0	3		
Pre-requisite	NIL	Syl		s vers	sion		
			1	.0			
Course Object							
	ing the fundamental principles and underlying		play	betw	een		
	enomena and the physical properties of biomolecu			_			
		nique	s an	d			
	ular analysis.						
3. Performing biochemical assays using various biophysical methods.							
Course Outcor							
	cteristics and classifications of amino acids.						
2. Outline the	methods of quantitative and qualitative ana	lysis	of	biolog	jical		
molecules.							
3. Explain prote	ein-protein and protein-nucleic acid interactions.						
	ermolecular interactions			7 ho			
Hydrogen bond	ling, hydrophobic interactions and water as u	nivers	sal s	olven	t in		
biological syste	ems; Disruption of hydrophobic interactions b	y ure	ea a	nd o	ther		
denaturants; lor	nic interactions, hydrophobic versus ionic interaction	ons; [Disulf	ide bo	ond,		
formation of spe	ecific disulfide link.						
Module:2 Str	ucture of biomolecules			8 ho	ours		
Conformational	properties of amino acids and peptides; Primary,	seco	ondar	y, tert	iary		
and quaternary	structures; Structural features and prediction of	prote	ein s	tructu	res;		
Structural featu	res of nucleic acids- Ramachandran plot, Centr	al Do	gma	(DNA	\rightarrow		
$RNA \rightarrow Protein$).						
Module:3 The	ermodynamics of biomolecules			5 ho	ours		
Two state mode	el of protein stability, chemical denaturation and s	tabiliz	zatior	n, surf	ace		
denaturation; Pr	inciples of ionization equilibrium ionization of side	chai	n, eq	uilibri	a in		
proteins.							
Module:4 Pro	perties of Amino Acids			7 ho	ours		
Predicting prop	erties from amino acid composition, unusual am	nino a	acids	; Prin	nary		
structure, Secor	ndary structure, Tertiary structure, Quaternary structure	ucture	e; Ho	molog	gies		
in proteins.							
	physical Analysis: Optical and Spectroscopic hniques			5 ho	ours		
	ectroscopic techniques for nucleic acid and pro	tein	quan	tificat	ion.		
•	ary structure determination, biomolecular modific		•				
•	copy, Fluorescence spectroscopy, IR, NMR and N						
MALDI, ORD ar					·[-],		
	physical Analysis: Microscopic Techniques			6 ho	ours		
	r size determination, Microscopic techniques, Prote	ein ao	larea				
	Surface morphology, etc, by Light microscopy; Flue						
	omic force microscope, Electron microscope, Scan						
	ansmission electron microscope.	· ····y ·	51000	511			
писиосору, Па	מושרוושטוטו בובטנוטון וווטוטשטטאב.						

Мо	dule:7	Biophysical Analysis: Chromatographic Techniques & Ultracentrifugation	5 hours					
Pro	tein pu	rification by size exclusion, GPC and ion exchange chror	matographic					
	•	6	equilibrium-					
det	determination of molecular weights.							
Мо	dule:8	Contemporary Issues	2 hours					
Ind	ustry Ex	pert Lecture						
		Total Lecture hours:	45 hours					
	t Book							
1.		ooper, Biophysical Chemistry, 2 nd Edition, RSC Publishing, UK	-, -,					
	2011.							
	erence							
1.	Cantor	and Schimmel, Biophysical Chemistry, Vols. I - III, W. H. Free	eman & Co.,					
	USA, 2	2008.						
2.	J. L. G	urth and A. Gurth, Biophysical Chemistry, 9 th Edition, Pragati	Prakashan,					
	Meerut	t,India, 2015.						
3.	P Na	rayanan, Essentials of Biophysics, 2 nd Edition, New	Age					
	International, New Delhi, India, 2016.							
Mo	Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar							
Red	commen	nded by Board of Studies 26-02-2024						
Арр	proved b	by Academic Council No. 73 Date 14-03-2024						

Course Code	L	Т	Ρ	С			
PCHY630L		3	0	0	3		
Pre-requisite		-	-	s vers	-		
		- ,	1				
Course Objectiv	es						
1. Providing	essential theoretical background of computationa	al ch	iemi	stry a	ind		
practical a	nd programming skills to perform scientific compu	utati	ons	to so	lve		
chemical p	problems.						
2. Exposing	the students to a variety of computational to	ols	in c	chemi	cal		
science.							
Course Outcom	es						
1. Assess a	pplicability of computational methods to speci	fic	prob	lems	in		
chemistry.							
2. Apply appl	ropriate computational techniques to study molecul	les.					
3. Make use	of computational chemistry software and h	igh-	perfo	ormar	nce		
computer l	hardware for solving molecular structural problems						
	duction to Computational Chemistry			4 ho			
The promise of c	omputational chemistry, Potential Energy Surfaces	s, Co	omp	utatio	nal		
Strategies- Coord	dinate systems, Geometry optimization, Local and	d Glo	bal	minin	na,		
Conformational A	Analysis, Transition State Optimization, saddle p	point	i, vil	oratio	nal		
frequencies, and	d normal mode analysis, Intrinsic Reaction C	coor	dinat	e (IR	RC)		
analysis.							
	putational Chemistry Methods-I			6 ho			
Molecular Mecha	anics-Force field methods, Semi-empirical mether	hods	s, V	ariatio	onal		
	an-Hall equations, self-consistent field approach,		tron	spin	and		
• •	ntisymmetric wave functions and Slater determinan	ts.					
	putational Chemistry Methods-II			6 ho			
Ab initio method	ls- Basis sets, Slater and Gaussian functions,	pola	rizat	tion a	and		
diffuse functions	split-valence sets, correlation-consistent sets, Bo	rn-C)ppe	nhein	ner		
approximation, H	lartree-Fock theory, electron correlation proble	m,	Pert	urbat	ion		
theory, Koopman	is theorem. Density Functional Theory (DFT) and r	meth	nods	-			
	ecular Dynamics Simulations			5 ho			
Basic principles-	Equations of motion, force calculations, integ	grati	on s	schen	nes,		
boundary conditi	ons, phase space and distribution functions, tim	ne s	tep	and t	time		
scale considerati	ons, stability, Practical aspects of simulations, a	b in	<i>iti</i> o r	nolec	ular		
dynamics. Struct	ural and dielectric properties of a polarmedium, S	SCF	read	ction 1	field		
(SCRF), implicit and explicit solvation, solvent Models.							
Module:5 Hybr	id Methods and Relativistic Methods			5 ho	ours		
Combined meth	ods, like the combination of quantum chemic	al r	neth	ods	and		
Combined methods, like the combination of quantum chemical methods and molecular mechanics (QM/MM) or ONIOM for the description of biochemical							
molecular mech	anics (QM/MM) or ONIOM for the description	n of	bic	chem	nical		
	anics (QM/MM) or ONIOM for the description ample the interaction of a drug and a receptor, re						

Module:6	Introduction to Scientific Co	omputing	g with F	ORTRAN	8 hours			
Basic eler	nents of Modern FORTRAN p	rogramm	ing and	its application	ns in solving			
computati	onal problems. Writing program	n for invo	olving sir	nple formula	e in organic,			
inorganic	inorganic and physical chemistry, developing the algorithm for numerical							
computati	computation of chemical problems of interest.							
	Computational Chemistry				9 hours			
Geometric	Geometrical Parameters, understanding of electrostatic, van der Waals and							
hydrophol	bic interactions, Hydrogen b	onding,	Ground	state, Exci	ted States,			
Transition	States - Exploring the energy I	landscape	e and its	s minima, cha	arge density			
and elect	on density; Frontier Molecular	r orbital /	Analysis,	Binding ene	rgy, stability			
constant,	Wave function analysis. Struc	ture-Activ	vity Rela	tionships, De	escriptors of			
chemical I	eactivity and selectivity, DFT rea	activity de	escriptor	S.				
	Contemporary Issues				2 hours			
Industry E	xpert Lecture							
		Т	otal Lec	ture hours:	45 hours			
Text Boo	((s)							
	nsen, Introduction to Computations Ltd, UK, 2017.	onal Che	mistry, 3	rd Edition, Jol	nn Wiley			
2. Norm	an S. Clerman and Walter Sp	oector, M	lodern F	ortran: Style	and Usage,			
Camb	ridge University Press, New Yo	ork, USA,	2012.					
Referenc	Books							
1. A. S	abo and N. S. Ostlund, Mo	dern Qua	antum C	hemistry: In	troduction to			
Adva	nced ElectronicStructure Theory	y, Dover I	Publicatio	ons, New Yor	k, 2012.			
2. Errol	G. Lewars, Computational Cl	hemistry:	Introdu	ction to the	Theory and			
Applie	ations of Molecular and Quantu	ım Mecha	nics, 2 nd	Edition, Sprin	nger, 2011.			
3. Steph	en Wilson, Chemistry by Comp	outer: An	Overviev	w of the Appl	ications of			
Comp	uters inChemistry, Springer, 20	011.						
Mode of E	valuation: CAT, Written Assignr	ment, Qu	iz, FAT a	nd Seminar				
Recomme	nded by Board of Studies 26	6-02-202	4					
	-	lo. 73	Date	14-03-2024				
- •	•							

Course Code	Course Title	L	Т	Р	С	
PCHY631L	NMR, EPR and Mass Spectrometry	3	0	0	3	
Pre-requisite	NIL	Syl	labus	s vers	sion	
			1	.0		
Course Objectiv			1			
	g the basic principles, theory and instrumentatio		'H NI	MR,		
	NMR, solid state NMR, EPR and Mass spectrom	-				
Imparting kno	wledge in applications of these spectroscopic tec	chniq	Jes			
Course Outcom						
1. Interpret NMR	R, EPR and Mass spectra of organic molecules					
2. Apply spectro	scopic techniques to understand structure and	stere	eoche	mistr	У	
of organic mo	lecules					
	on NMR			6 ho		
	rumentation: Continuous wave method, Freque	-				
pulse technique-	Rotating frame of reference-FT NMR-Chemic	ally	equiv	alent	and	
	protons- variable temperature spectra-first ord					
order spectra-sin	nplification of complex spectra- NOE effects-shift	reag	jents.	chen	nical	
shift-relaxation p	rocesses-spin-spin coupling-coupling constant-	he e	ffect	of pr	oton	
exchange reaction	ons- variable temperature spectra-first order sp	ectra	, sec	ond o	rder	
spectra-simplifica	ation of complex spectra- NOE effects-shift reage	nts.				
Module:2 ¹³ C N	IMR			5 ho	ours	
History-and Prob	lem areas-theory and experiment-sensitivity-Ins	trum	entati	on –	FT-	
	nique-Behavior of magnetization subjected to RF	pulse	э.			
	IMR applications			9 ho		
•	n-lattice and dipole-dipole relaxation and of					
	nts- theoretical aspects of nuclear shieldin	-				
-				nagne		
	tors affecting the Chemical shift-Coupling consta					
& ¹³ C and coupl	ing with other nuclei- ¹ H decoupling and de	coupl	ing n	netho	ds-	
empirical relation	nships and empirical additivity rules- chemic	al sl	hift r	eager	nts,	
solvent effect-che	emical shift and structure elucidations. DEPT me	thods	5.			
	ications of two dimensional NMR			6 ho		
	applications of 2D NMR techniques such as					
	OSY, MQF-COSY, TOCSY, NOESY, ROESY	/, HS	SQC	to s	mall	
molecules.						
	d state NMR			5 ho		
-	in-Basic principles and methods of high-resolutic					
• • •	nning- Interactions in the solid state-MAS-CP	met	hod	and i	ts	
advantages.			-			
	s spectrometry			8 ho		
	rumentation-Advanced Ionization techniques s					
MALDI, Field desorption-mass analyzers such as Quadrupole Analyzer, ion trap,						
	alyzer- Applications of mass spectra to elucidate				nula	

Мо	dule:7	ESR Basic Principles and	Applicati	ons		4 hours		
		zeeman effect – ESR spect			om (first order			
		Hyperfine constants - int	-	-				
-		n the transition metal ion		-	-			
degeneracy – anisotropy in the hyperfine coupling constant – nuclear quadrupole								
-	-	- ESR of organic radic	-	-				
inst	rumenta	ation.						
Мо	Module:8 Contemporary Issues 2 hours							
Ind	ustry Ex	pert Lecture						
			1	fotal Leo	ture hours:	45 hours		
Тех	t Book	(s)						
1.	Unders	tanding NMR Spectroscop	y, James K	eeler, W	iley India Pvt	Ltd; Second		
	edition	, 2013.						
2.	Organi	c Spectroscopy through	Solved F	Problems	, Kali Shai	nkar		
	Mukhe	rjee BodhisattwaMukhopad	hyay, First I	Edition, 2	2013.			
3.	Organi	c Spectroscopy Principle	es, Proble	ems an	d Their S	olutions,		
	Jaggda	amba Singh and JayaSingh,	A Pragadh	i Edition,	2016.			
4.	Elemer	ntary Organic Spectros	copy, Pri	nciples	and Chen	nical		
	Applica	ations, S.Chand andCompar	ny, Fifth Re	vised Ed	ition, 2013.			
5.		ction to Magnetic Resona	•					
	-	narayana, IK Internationa	l Publishing	g House	Pvt. Ltd; 2n	nd edition,		
	2013.							
	erence			0 14 1	·			
1.		oscopy of Organic Compo	unds by P.	S. Kals	si, New Age	International		
		ners,17 th edition, 2016.				0.1		
2.		ometric Identification of C						
		X.Webster, David J. Kieml						
3.		les of NMR Spectroscopy,	David Gold	enberg,	University Sci	ence Books;		
N/-		lition, 2016.		:-				
		aluation: CAT, Written Assig			ina Seminar			
		ded by Board of Studies	26-02-202		11.02.0001			
Арр	Approved by Academic Council No. 73 Date 14-03-2024							

Course Code Course Title L T P C								
PCHY632L	Bioorganic Chemistry	3	0	0	3			
Pre-requisite	NIL	Syl	labus	s vers	sion			
			1	.0				
Course Objectiv								
	g classifications of enzymes and their functions							
-	wledge on synthesis and structure of nucleic	acids	, pro	teins	and			
enzymes								
3. Familiarizing the basic concepts of bioorganic chemistry and biochemical models								
	lications in organic synthesis and industry.							
Course Outcom								
	nes and explain their properties.							
	e of biocatalysts in organic synthesis.							
	talysts for specific organic transformations.							
	he concepts of bioorganic chemistry for drug de	sign	and t	o exp	olain			
drug action.								
	atalysts in organic synthesis				ours			
•	es and Nomenclature, Classification of enzyme	•						
•	hanistic Aspects, Coenzymes, Enzyme Sou			mobil	ized			
	risons between the homo and heterogeneous bio	ocatal	ysts					
	nic transformations using biocatalysts-I			6 hc	ours			
-	rmations using biocatalysts: Hydrolysis of	este		amide				
	tides, nitriles-Oxidations of alcohols	•		ehyde	es,			
	eyer-Villiger oxidation, Dihydroxylation of Aromat	ic Co	mpou	unds				
•	nic transformations using biocatalysts-II				ours			
	C, aldehydes, ketones- Formation of C-C bond			-				
Benzoin, Machae	Addition and Elimination Reactions by biocata	lysts	Суа	nohyo	drin			
Formation, Addit	ion of Water and Ammonia - Group Transf	er R	eactio	ons (eg.			
glycosyl and ami	no transfer) – Halogenation and De-halogenatio	n rea	ctions	5,				
	mes in organic synthesis				ours			
	rs, Lactones, amides, peptides, peracid, medium	engi	neeri	<u> </u>				
	cs of concepts in bioorganic chemistry				ours			
	ons, proximity effects in organic chemistry, mole		ada	otatio	n-			
Bio-isosterism,mo	plecular recognition at the supra molecular level.							
	elopments in crown ether chemistry - I				ours			
•	crown ether chemistry- Aza crown ethers-Laria	•		•				
cyclic, tri cyclic	(monoaza, bi-aza, tri-aza), pH regulation and i	on-se	lectiv	ity. H	ost-			
Guest complexation chemistry, membrane chemistry-micelles. Bis and Photo								
responsive crown ethers. Regulation of membrane transport phenomenon.								
Module:7 Deve	elopments in crown ether chemistry-ll			7 hc	ours			
Cyclodextrines, e	enzyme design using steroid template, Remote	e fun	ctiona	alizati	on,			
biomemetic polye	biomemetic polyene cyclisation. Chemical mutations and site directed mutagenesis.							
Chemical mutations and semi synthetic enzymes- Molecular recognition and drug								
design.								

Мо	dule:8	Contemporary Issues				2 hours
Ind	ustry Ex	pert Lecture				
				Fotal Leo	cture hours:	45 hours
Tax	t Deela					
1ex 1.	t Book	(s) nsformations in Organic C	homistry Ku	rt Eabar	7 th adition Sp	ringor 2011
1. 2.		roduction to Medicinal C	•			-
Ζ.	Oxford		nemistry, Gr		Famor, 5 e	
3.		's Medicinal Chemistry a	& Drug Disc	overy, D	Donald J. Ab	oraham, 15 th
	edition,					
4.	•	anic, Bioinorganic and Su	•		stry, P. S. Ka	isi and J. P.
		New Age Publications, 3 rd	edition, 2017			
	erence					
1.		rganic Chemistry of Biolog	gical Pathway	/s, John	E. McMurry a	nd Tadhg P.
	•••	, 2 nd edition, 2015.				
2.	-	anic Chemistry, Harish		d Parm	jit S. Panes	ar, Narosa
		ningHouse Pvt. Ltd., New				
3.	-	Principles of Medicinal C	hemistry, Tho	omas L.	Lemke, David	A. Williams,
	7 th Edit	ion, 2012.				
4.	Biocata	alysts: An Industrial Perspe	ective, Gonza	alo de G	onzalo; Pablo	Domínguez
	de Mar	ría, RSC Publishers, 2017.				
Mo	de of Ev	aluation: CAT, Written As	signment, Qu	liz, FAT a	and Seminar	
Red	commen	ded by Board of Studies	26-02-202	24		
Арр	proved b	y Academic Council	No. 73	Date	14-03-2024	

Course Code	Course Title	L	Т	Ρ	С
PCHY633L	Nanomaterials	3	0	0	3
Pre-requisite	NIL	Syl	labus	s vers	ion
			1.	.0	
Course Objectiv					
	ng synthesis, characterization, properties ar	nd a	pplica	ations	of
nanomateria					
11,5,8	omaterials for technological applications.				
Course Outcom					
	etic techniques for nanomaterials preparation.				
	erization techniques to understand the structur	e and	d pro	pertie	s of
nanomaterials					
3. Explain the ch	emistry and structure of carbon nanomaterials.				
4. Propose appro	priate nanocomposite materials for different appli	catior	IS.		
5. Assess therma	al, magnetic, optical, and mechanical properties	of nar	noma	terials	3.
6. Fabricate nan	odevices for various applications.				
Module:1 Synt	hesis of nanomaterials			6 ho	urs
Synthesis: Top-o	down processes: physical processes- millin	g, lit	hogra	aphic	
processes, mad	chining, vapour phase condensation, pla	sma	ass	isted	
deposition; Botto	m– up processes; micro emulsion technique.				
Module:2 Char	acterization of nanomaterials			6 ho	urs
UV – Visible spe	ectroscopy- particle size calculation, particle size	e an	alyze	r – b	asic
principles - applic	ation to selected nanomaterials; Powder XRD	– pea	ık bro	baden	ing,
Scherer's equation	n.				
Module:3 Carb				6 ho	
Graphene, Fuller	ene, SWNT, MWNT, Functionalised CNT – pre	parati	ion, p	proper	ties
andapplications.					
Module:4 Nand				6 ho	urs
•	 Metal Matrix nanocomposites, 				atrix
nanocomposites,	Polymer matrix nanocomposites, metal	chal	coge	nides	_
	perties and applications.				
	erties of Nanomaterials			6 ho	
_	Electrical transport properties, Thermal tra	anspo	rt pi	ropert	ies,
• ·	ies, Optical Properties, Mechanical properties.				
	odevice fabrication			7 ho	
	introduction- template fabrication, polycarbo				
•	cation of anodized alumina membrane			ation	of
	the templates; electrodeposition, sol-gel, CVD n	netho	ds.		
	ications of Nanomaterials			6 ho	
-	etic, thermal and biological – application with a	and a	n exa	ample	for
each category.					
	temporary Issues			2 ho	urs
Industry Expert L	ecture				

		٦	Total Leo	ture hours:	45 hours		
t Book	(s)						
1. Nanomaterials: An Introduction to Synthesis, Properties and Applications, D. Vollath (Ed), 2 nd edition, Wiley VCH, 2013.							
		-			, Paulo J.		
. Textbook of Nanoscience and Nanotechnology, B.S. Murty, P. Shankar, Baldev Raj, B B Rath, James Murday, Universities Press (India) Pvt. Limited, 2013.							
ference	Books						
				Narendra Kur	mar,		
	• •	Fahlman, 3	Brd editic	n, Springer N	Nature		
3. NANO: The Essentials: Understanding Nanoscience and Nanotechnology, T. Pradeep (Ed.), McGraw Hill Education, 2017.							
de of Ev	aluation: CAT, Written Assig	gnment, Qu	iiz, FAT a	and Seminar			
commen	ded by Board of Studies	26-02-202	24				
proved b	y Academic Council	No. 73	Date	14-03-2024			
	Nanom Vollath Nanom Ferreira Textbo Baldev 2013. Ference Essent Sunita Materia B.V. 20 NANO: Pradee de of Ev	Vollath (Ed), 2 nd edition, Wiley VCH Nanomaterials, Nanotechnologies Ferreira and Daniel L. Schodek, Bu Textbook of Nanoscience and N Baldev Raj, B B Rath , James Mur 2013. Ference Books Essentials in Nanoscience and Sunita Kumbhat, John Wiley & Sor Materials Chemistry, Bradley D. B.V. 2018 NANO: The Essentials: Understar Pradeep (Ed.), McGraw Hill Educa	Anomaterials: An Introduction to Synthesis Vollath (Ed), 2 nd edition, Wiley VCH, 2013. Nanomaterials, Nanotechnologies and Desig Ferreira and Daniel L. Schodek, Butterworth-H Textbook of Nanoscience and Nanotechno Baldev Raj, B B Rath , James Murday, Unive 2013. Ferreirals in Nanoscience and Nanotechno Serence Books Essentials in Nanoscience and Nanotechno Sunita Kumbhat, John Wiley & Sons, Inc., 207 Materials Chemistry, Bradley D. Fahlman, 3 B.V. 2018 NANO: The Essentials: Understanding Nano Pradeep (Ed.), McGraw Hill Education, 2017. de of Evaluation: CAT, Written Assignment, Qu commended by Board of Studies	At Book(s)Nanomaterials: An Introduction to Synthesis, Proper Vollath (Ed), 2 nd edition, Wiley VCH, 2013.Nanomaterials, Nanotechnologies and Design, Micha Ferreira and Daniel L. Schodek, Butterworth-Heineman Textbook of Nanoscience and Nanotechnology, B. Baldev Raj, B B Rath , James Murday, Universities Pr 2013.Ference BooksEssentials in Nanoscience and Nanotechnology, N Sunita Kumbhat, John Wiley & Sons, Inc., 2016.Materials Chemistry, Bradley D. Fahlman, 3rd editio B.V. 2018NANO: The Essentials: Understanding Nanoscience and Pradeep (Ed.), McGraw Hill Education, 2017.de of Evaluation: CAT, Written Assignment, Quiz, FAT a commended by Board of Studies	Nanomaterials: An Introduction to Synthesis, Properties and App Vollath (Ed), 2 nd edition, Wiley VCH, 2013.Nanomaterials, Nanotechnologies and Design, Michael F. Ashby Ferreira and Daniel L. Schodek, Butterworth-Heinemann, 2009.Textbook of Nanoscience and Nanotechnology, B.S. Murty, P. Baldev Raj, B B Rath , James Murday, Universities Press (India) Pv 2013.Ference BooksEssentials in Nanoscience and Nanotechnology, Narendra Kur Sunita Kumbhat, John Wiley & Sons, Inc., 2016.Materials Chemistry, Bradley D. Fahlman, 3rd edition, Springer N B.V. 2018NANO: The Essentials: Understanding Nanoscience and Nanotech Pradeep (Ed.), McGraw Hill Education, 2017.de of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar commended by Board of Studies		

Course Code PCHY634L Pre-requisite	Course Title	L	Т	Ρ	С		
Pre-requisite	Green Chemistry	3	0	0	3		
	NIL	Syl	abus	s vers	sion		
				.0			
Course Objective	?S						
1. Providing ecofriendly methodologies for organic synthesis.							
2. Knowing solvent-less and aqueous phase reactions and ultrasound and							
microwave methodologies.							
3. Understanding the application of biocatalysts in organic synthesis							
4. Design green processes that reduce or eliminate the use and generation of							
hazardous sub	stances.						
Course Outcome	S						
1. Define green c	hemistry principles.						
2. Make use of	green synthetic methods to reduce waste and	d haz	zardo	us			
materials.							
3. Apply phase tr	ansfer catalysts, solid phase synthesis and gree	en ex	tracti	on			
methods.							
Module:1 Green	n Chemistry Principles			5 ho	ours		
	ffects of chemistry. Definition, tools and p	rincip	les	of gr	een		
-	ninimization, solvent-free and aqueous phase re	-		Ū			
	Chemical Approach in Conventional Synthe			6 hc	ours		
Introduction-Diels			d r	educt	ion-		
photochemical rea	actions. Alternative solvents- designing a green s	ynth	esis.	Indus	trial		
	nesis of Ibuprofen, Sertraline and Adipic acid.	5					
	Chemical Approach Under sonication			5 ho	ours		
	Introduction, types of sonochemical reactions	, a	few				
applications - sub	stitution, addition, elimination, hydrolysis, esteri	ficati	on, o	xidati	on,		
reduction.							
Module:4 Phas	e Transfer Catalysts			3 ho	ours		
	nisms, reaction, preparation, advantages and typ	es o	f PTC				
Module:5 Green with I	n Chemical Approach in Conventional Synthe PTC	sis		7 ho	ours		
Synthesis of nitril	es, alkyl halides, elimination reactions, C-alkyl	ation	, N-a	alkylat	ion,		
oxidation usinghy	drogen peroxide, dihalocarbenes, heterocyclic sy	/nthe	sis, (3-lacta	ams		
synthesis, crown e	ethers.		-				
Module:6 Green	n Approach in Solid Phase			11 ho	ours		
	I phase organic synthesis without using any solv	vent-	halo	genat	ion,		
Micheal addition,	aldol condensation, Grignard reagent, Refe	orma	tsky	react	ion,		
Witting reaction, aromatic substitution reactions-nuclear bromination and nitration by							
vvitting reaction. a	Green synthetic methods. Biochemical oxidations-biochemical reduction-enzyme						
•							
Green synthetic		rou	JCTIO	n-enzy	yme		
Green synthetic catalyzed reaction	s in organic synthesis			_			
Green synthetic catalyzed reaction Module:7 Green	s in organic synthesis Approach in Extraction Process			6 ho	ours		
Green synthetic catalyzed reaction Module:7 Green Extraction and se	s in organic synthesis	wet	stear	6 hc n and	ours dry		

sim	simulated moving bed technology.								
Mo	dule:8	Contemporary Issues				2 hours			
Ind	ustry Ex	pert Lecture							
	Total Lecture hours: 45 hour								
	t Book	A /							
1.	New T	rends in Green Chemistry, \	/. K. Ahluw	valia and N	M. Kidwai, An	amaya			
	Publish	ners, NewDelhi, 2012.							
2.	Green	Chemistry: An Introductory	/ Text, Mil	ke Lancas	ster, 3 rd editio	n, The			
	Royal	Society of Chemistry, 2017.							
3.	Introd	uction to Green Chemistry, A	Albert S. M	latlack, CF	RC press, 201	0.			
Ref	erence	Books							
1.	Alterna	itive Energy Sources, Mic	chaelides,	Efstathio	s E. (Stathis	s), Springer,			
	Germa	ny, 2012.							
2.	Alterna	tive Solvents for Natural Pro	oducts Ext	traction, F	arid Chemat,				
	Marylir	ne Abert Vian, Springer Berl	in, 2014.						
3.	Green	Chemistry in 21st Century	and Beyor	nd, Sunita	Dhingra & V	K Ahluwalia,			
	Manak	in Press,2017.							
Mo	de of Ev	aluation: CAT, Written Assig	gnment, Q	uiz, FAT a	and Seminar				
Red	commer	ded by Board of Studies	26-02-20	24					
Арр	proved b	y Academic Council	No. 73	Date	14-03-2024				

Skill Enhancement

Cou	rse Code	Course Title	L	Т	Р	С
	G501P	Technical Report Writing	0	0	4	2
Pre-	requisite	NIL	Syll	abus	vers	ion
	•			1.		
Cou	rse Objectiv	/es				
		p writing skills for preparing technical reports				
2	. To analyz	e and evaluate general and complex technical	inform	natior	า	
	•	proficiency in drafting and presenting reports				
Cou	rse Outcom	les				
		e course, the student will be able to				
1		error free sentences using appropriate gramn	nar, vo	ocabu	ulary	and
_	style					
		advanced rules of grammar for proofreading re-	eports			
		nformation and concepts in preparing reports				
		ate the structure and function of technical repo	orts			
5	. Improve t	he ability of presenting technical reports				
Indic	cative Expe					
1.		Technical Communication				
1.		nd Technical communication, communication, communication, Levels of communication				
		y& Editing				
2.		je: confusing words, Phrasal verbs				
		n and Proof reading				
	Advanced					
3.	Shifts: Voi	ce, Tense, Person, Number				
		noun reference, Misplace and unclear modifiers	5			
		of Technical writing				
4.		g paragraphs, Eliminating unnecessary words,	Avoid	ing cl	ichés	;
	and slang					
		clarity and combining				
5		condensation				
5.		fective precis writing, ing and summarizing				
6.	Technical	Reports: Meaning, Objectives, Characteristics	and (Cateo	ories	
		f reports and Prewriting: purpose, audience,		0		
7.		n, organizing the material	55010	55 01		
0	Data Visu					
8.		g Data Graphs - Tables – Charts - Imagery -	Info c	graph	ics	
	Systemati	zation of Information: Preparing Questionnai	re			
9.		s to Converge Objective-Oriented data in	Dive	rse 7	Гесhr	nical
	Reports					
		and Analyses:				
10.	Reference	5		-		
11		ze Technical Details from Magazines, Articles a	and e-	conte	ent	
11	Structure	of Reports				

	Title – Preface – Acknowledgement - Abstract/Summary – Introduction - Materials and Methods – Results – Discussion - Conclusion - Suggestions/Recommendations				
12.	Writing the Report: First draft, Revising, Thesis statement, Developing unity and coherence				
13.	Writing scientific abstracts: Parts of the abstract, Revising the abstract Avoiding Plagiarism, Best practices for writers				
14.	Supplementary Texts Appendix – Index – Glossary – References – Bibliography - Notes				
15	Presentation Presenting Technical Reports Planning, creating and digital presentation of reports				
	Total Laboratory hours : 60 hours				
Text	Book(s)				
1.	Raman, Meenakshi and Sangeeta Sharma, (2015).Technical Communication: Principles and Practice, Third edition, Oxford University Press, New Delhi.				
Refe	erence Books				
1.	Aruna, Koneru, (2020). English Language Skills for Engineers. McGraw Hill Education, Noida.				
2.	Rizvi,M. Ashraf (2018)Effective Technical Communication Second Edition. McGraw Hill Education, Chennai.				
3.	Kumar, Sanjay and Pushpalatha, (2018). English Language and Communication Skills for Engineers, Oxford University Press.				
4.	Elizabeth Tebeaux and Sam Dragga, (2020). The Essentials of Technical Communication, Fifth Edition, Oxford University Press.				
Asse	e of Evaluation : Continuous Assessment Tests, Quizzes, Assignment, Final				
	ommended by Board of Studies 19-05-2022				
Appr	oved by Academic Council No. 70 Date 24-06-2023				

Course Co	ode	Course Title	L	Т	Ρ	С
PSTS501	Р	Qualitative Skills Practice	0	0		
Pre-requis	site	NIL	Syllabu			ion
	-			1.0)	
Course Obje						
		the quantitative ability for solving basic level pr		•		
2. To in	nprove	the verbal and professional communication skills				
Course Out						
		course, the student will be able to				
	•	propriate analytical skills	ility			
		ems pertaining to quantitative and reasoning ab	inty			
		r vocabulary for workplace communication	a o lat			
4. Dem	onstra	e appropriate behavior in an organized environr	nent			
I	Rusi	ness Etiquette: Social and Cultural Etiquette;				
Module:1		ng Company Blogs; Internal Communication			9 hc	
wodule: I		ning: Writing press release and meeting note			9 10	Jurs
Value Man		Netiquette, Customs, Language, Tradition,			blo	
				~		~
		message, FAQs', Assessing Competition, Op			-	
		wo way dialogue, Understanding the audie			•	~
•		tion, Analysis, Determining, Selecting plan,	•			
• •	•	Write a short, catchy headline, Get to the Point		anz	e yo	u
-		paragraph., Body– Make it relevant to your audi	ence.	1	hai	
		lanagement Skills			hοι	
		astination, Scheduling, Multitasking, Monitorin	g, Worl	king	und	ler
•		ring to deadlines				
F	Preser	ntation skills – Preparing presentation;				
Module:3	Organ	izing materials; Maintaining and preparing			7 ho	ours
\ \	visual	aids; Dealing with questions				
10 Tips to p	orepar	e PowerPoint presentation, Outlining the cont	ent, Pa	issir	ng th	ıe
Elevator Tes	t, Blue	sky thinking, Introduction, body and conclusion	, Use of	For	nt, Us	se
of Color, Stra	ategic	presentation, Importance and types of visual a	aids, Ar	nima	ition	to
captivate you	ur audi	ence, Design of posters, Setting out the ground r	ules, D	ealiı	ng wi	ith
interruptions,	, Stayi	ng in control of the questions, Handling difficult	questio	ns	-	
		itativeAbility-L1–Number properties; Averag	es;	1	1 hc	ours
	•	essions; Percentages; Ratios	voitio:-		رم ما: ا	ait
		Factorials, Remainder Theorem, Unit digit po				-
	•	s, Weighted Average, Arithmetic Progres				
•		onic Progression, Increase & Decrease or suc	cessive	INC	reas	e,
Types of rati						
Module: 5	Reaso	oning Ability – L1 – Analytical Reasoning		8	8 ho	urs

Data Arrangement (Linear and circular & Cross Variable Relationship), Blood Relations, Ordering / ranking / grouping, Puzzle test, Selection Decision table

Module: 6Verbal Ability – L1 – Vocabulary Building7 hoursSynonyms & Antonyms, One word substitutes, Word Pairs, Spellings, Idioms,
Sentence completion, Analogies7 hours

	Total Lecture hours: 45 hours						
Ref	erence Books						
1	Kerry Patterson, Joseph Grenny, Ron Mcmillan and Al Switzler, (2017), 2 nd Edition, Crucial conversatins: Tools for Talking when stakesare High McGraw-Hill contemporary, Bangalore.						
2.	Dale Carnegie, (2016). How to Win Friends and Influence People. Gallery Books, New York.						
3.	Scott Peck. M, (2003). Road Less Travelled. Bantam Press, New York City.						
4.	SMART, (2018). Place Mentor, 1 st edition. Oxford University Press, Chennai.						
5.	FACE, (2016). Aptipedia Aptitude Encyclopedia. Wiley publications, Delhi.						
6.	ETHNUS, (2013). Aptimithra. McGraw – Hill Education Pvt .Ltd, Bangalore.						
Wel	osites:						
1.	www.chalkstreet.com						
2.	www.skillsyouneed.com						
3.	www.mindtools.com						
4.	www.thebalance.com						
5.	www.eguru.ooo						
	le of Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final essment Test						
Rec	commended by Board of Studies ^{[19-05-2022}						
Арр	proved by Academic Council No.70 Date 24-06-2023						

Course Code	Course Title	L	Т	Р	С
PSTS502P	Quantitative Skill Practice	0	0	3	1.5
Pre-requisite	NIL	Syl	abus	s vers	sion
			1	.0	
Course Objective					
•	the students' advanced problem solving skill	S			
2. To enhanc	e critical thinking and innovative skills				
Course Outcome					
	ourse, the student will be able to tive impression during official conversations a	and in	tervie	2///2	
	e comprehending skills of various texts				
	vanced level thinking ability in general aptitude	a			
	notional stability to tackle difficult circumstance				
Resur	ne skills – Resume Template; Use of powe	r			
iiviocitiie: L	Types of resume; Customizing resume	•		2 h	ours
	dard resume, Content, color, font, Introduction	ı to P	ower	verb	sand
	types of resume, Frequent mistakes in c				
	ding different company's requirement, Digitizi			-	
•	ew skills – Types of Interview; Use of power verb	•		•	ours
	me; Customizing resume	•, ·) r			
Structured and	unstructured interview orientation, Closed	aue	stion	s ar	id
	ions, Interviewers' perspective, Questions to a	•			
51 1	o interview, Recorded feedback, Phone inter				0
	preparation for personal interview, Practice ro				,
	onal Intelligence - L1 – Transactional Anal				
	storming; Psychometric Analysis; SWOT	,		12 h	ours
analys					
Introduction, Conti	acting, ego states, Life positions, Individual E	Brains	torm	ing, C	iroup
	tepladder Technique, Brain writing, Crav			-	
approach, Revers	e brainstorming, Star bursting, Charlette pro	cedur	e,Ro	ound	robin
brainstorming, Ski	Il Test, Personality Test, More than one an	swer,	Uni	que v	vays,
SWOT analysis					
Quan	titative Ability - L3–Permutation - Combinat	ions;			
	bility; Geometry and menstruation;			14 h	ours
Irigo	nometry; Logarithms; Functions; Quadratio	;			ours
	: ions; Set Theory ng, Linear Arrangement, Circular Arrang€	mont		`ondit	ional
	endent and Dependent Events, Properties o	-	-		
-	olumes, Heights and distances, Simple trigo				
0	arithms, Basic rules of logarithms, Introductio				
	, Understanding Quadratic Equations, Rule ns, Basic concepts of Venn Diagram	3 0	hion	abilitite	55 UI
	ns, basic concepts of venin blayrann				

Module	Analysis and Interpretation	hours
Syllogis	ns, Binary logic, Sequential output tracing, Crypto arithmetic, Da	ata
	cy, Data interpretation-Advanced, Interpretation tables, pie charts & I	bar
chats		
Madul		
Module	reasoning	hours
	comprehension, Para Jumbles, Critical Reasoning (a) Premise a	
Conclu Argume	on,(b) Assumption & Inference, (c) Strengthening & Weakening nt	an
	Total Lecture hours: 45	hours
Refere	ce Books	
Mi	hael Farra and JIST Editors, (2011). Quick Resume & Cover Letter Book:	
	te and Use an Effective Resume in Just One Day. Jist Works, Saint II, Minnesota.	
2	ge Daniel E, (2003).The Art of Questioning: An Introduction to Critical nking. Pearson, London.	
	vid Allen, (2015).Getting Things done: The Art of Stress-Free ductivity. Penguin Books, New York City.	
4. SN	ART, (2018). Place Mentor 1 st edition. Oxford University Press, Chennai.	
5. FA	CE, (2016).Aptipedia Aptitude Encyclopedia. Wileypublications, Delhi.	
	INUS, (2013).Aptimithra. McGraw-Hill Education Pvt Ltd, Bangalore.	
Websit		
1. <u>wv</u>	<u>w.chalkstreet.com</u>	
2. <u>w</u>	w.skillsyouneed.com	
3. <u>w</u> v	w.mindtools.com	
4. <u>wv</u>	w.thebalance.com	
	w.eguru.ooo	
	Evaluation: Continuous Assessment Tests, Quizzes, Assignment, Final nent Test	
	mended by Board of Studies 19-05-2022	
Appro	ed by Academic Council No.70 Date 24-06-2023	