SCHOOL OF CHEMICAL ENGINEERING (SCHEME)

Vellore Institute of Technology Vellore 632014, Tamilnadu, INDIA

B.Tech Chemical Engineering (BCM)

Curriculum and Syllabus

[2022-2023 admitted students]

CONTENT

S.NO.	Title	Page No.
1	Vision and Mission Statement of Vellore Institute of	3
	Technology	3
2	Vision and Mission Statement of School of Chemical	4
	Engineering	т
3	Programme Educational Objectives (PEOs)	5
4	Programme Outcomes (POs)	5
5	Programme Specific Outcomes (PSOs)	7
6	Credit structure	8
7	List of Courses	9
	Syllabus	
8	Discipline-linked Engineering Sciences	13
9	Discipline Core	21
10	Discipline Elective	56
11	Projects and Internship	109
12	Non-graded Core Requirement	114
13	Short Syllabus	116

VISION AND MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

VISION

> Transforming life through excellence in education and research

MISSION

- ➤ World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.
- ➤ Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.
- ➤ Impactful People: Happy, accountable, caring and effective workforce and students.
- ➤ **Rewarding Co-creations**: Active collaboration with national & international industries & universities for productivity and economic development.
- > Service to Society: Service to the region and world through knowledge and compassion.

VISION AND MISSION STATEMENT OF SCHOOL OF CHEMICAL ENGINEERING

VISION

> To improve the quality of life through innovations in Chemical Engineering

MISSION

- ➤ To prepare the graduates for a rewarding career by providing quality education in Chemical Engineering in tune with evolving requirements of the society.
- ➤ To impart knowledge and develop technology through quality research in frontier areas of chemical and inter-disciplinary fields.
- > To produce practicing engineers with professional ethics to cater the contemporary needs of the society and environment.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems in Chemical engineering and allied disciplines.
- 2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in the industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies leading to careers in engineering, management, teaching and research.

PROGRAMME OUTCOMES (POs)

- 1. <u>Engineering Knowledge:</u> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
- 2. <u>Problem analysis:</u> Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. <u>Design/development of solutions</u>: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. <u>Conduct investigations of complex problems</u>: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

- 5. <u>Modern Tool Usage</u>: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 6. <u>The Engineer and Society</u>: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. <u>Environment and Sustainability</u>: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of need for sustainable development.
- 8. <u>Ethics</u>: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. <u>Individual and Team Work</u>: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. <u>Communication</u>: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12.<u>Life-long learning</u>: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

PROGRAMME SPECIFIC OUTCOMES (PSOs)

- 1. Analyze and solve complex problems in process and allied Industries by applying core and multidisciplinary competencies.
- 2. Design and develop efficient chemical processes/products considering economic, safety and environmental aspects.
- 3. Implement the modern practices in industrial/research settings to serve as practicing engineers with professional ethics.

SCHOOL OF CHEMICAL ENGINEERING (SCHEME)

B. Tech Chemical Engineering

CREDIT STRUCTURE

Category-wise Credit distribution

S.NO	Category	Credits
1	Foundation Core	54
2	Foundation Core - Non Graded	2
3	Discipline-linked Engineering Sciences	11
4	Discipline Core	52
5	Discipline Elective	15
6	Projects and Internship	9
7	Open Elective	12
8	Non-graded Core Requirement	11
	Total Credits	153

LIST OF COURSES

		Foundation	Core						
Sl.No	Course Code	Course Title	Course Type	Ver sion	L	T	P	J	Credits
1	BCHY101L	Engineering Chemistry	Theory Only	1.0	3	0	0	0	3.0
2	BCHY101P	Engineering Chemistry Lab	Lab Only	1.0	0	0	2	0	1.0
3	BCSE101E	Computer Programming: Python	Embedded Theory and Lab	1.0	1	0	4	0	3.0
4	BCSE103E	Computer Programming: Java	Embedded Theory and Lab	1.0	1	0	4	0	3.0
5	BEEE102L	Basic Electrical and Electronics Engineering	Theory Only	1.0	3	0	0	0	3.0
6	BEEE102P	Basic Electrical and Electronics Engineering Lab	Lab Only	1.0	0	0	2	0	1.0
7	BENG101L	Technical English Communication	Theory Only	1.0	2	0	0	0	2.0
8	BENG101P	Technical English Communication Lab	Lab Only	1.0	0	0	2	0	1.0
9	BENG201P	Technical Report Writing	Lab Only	1.0	0	0	2	0	1.0
10	BFLE200L	Foreign Language	Theory Only	1.0	2	0	0	0	2.0
11	BHSM200L	HSM Elective	Theory Only	1.0	3	0	0	0	3.0
12	BMAT101L	Calculus	Theory Only	1.0	3	0	0	0	3.0
13	BMAT101P	Calculus Lab	Lab Only	1.0	0	0	2	0	1.0
14	BMAT102L	Differential Equations and Transforms	Theory Only	1.0	3	1	0	0	4.0
15	BMAT201L	Complex Variables and Linear Algebra	Theory Only	1.0	3	1	0	0	4.0
16	BMAT202L	Probability and Statistics	Theory Only	1.0	3	0	0	0	3.0
17	BMAT202P	Probability and Statistics Lab	Lab Only	1.0	0	0	2	0	1.0
18	BMEE102P	Engineering Design Visualisation Lab	Lab Only	1.0	0	0	4	0	2.0
19	BMEE201L	Engineering Mechanics	Theory Only	1.0	2	1	0	0	3.0
20	BPHY101L	Engineering Physics	Theory Only	1.0	3	0	0	0	3.0
21	BPHY101P	Engineering Physics Lab	Lab Only	1.0	0	0	2	0	1.0
22	BSTS101P	Quantitative Skills Practice I	Soft Skill	1.0	0	0	3	0	1.5
23	BSTS102P	Quantitative Skills Practice II	Soft Skill	1.0	0	0	3	0	1.5
24	BSTS201P	Qualitative Skills Practice I	Soft Skill	1.0	0	0	3	0	1.5
25	BSTS202P	Qualitative Skills Practice II	Soft Skill	1.0	0	0	3	0	1.5

		Foundation Core - No	on Graded						
Sl.No	Course Code	Course Title	Course Type	Ver sion	L	Т	P	J	Credits
1	BENG101N	Effective English Communication	Lab Only	1.0	0	0	4	0	2.0

		Discipline-linked En Sciences	gineering						
Sl.No	Course Code	Course Title	Course Type	Ver sion	L	Т	P	J	Credits
1	BCHE201L	Computational Methods in Chemical Engineering	Theory Only	1.0	3	0	0	0	3.0
2	BCHE201P	Computational Methods in Chemical Engineering Lab	Lab Only	1.0	0	0	2	0	1.0
3	BCHE204L	Transport Phenomena	Theory Only	1.0	3	1	0	0	4.0
4	BCHE206L	Materials Science and Engineering	Theory Only	1.0	3	0	0	0	3.0

		Discipline Co	re						
Sl.No	Course Code	Course Title	Course Type	Ver sion	L	Т	P	J	Credits
1	BCHE202L	Chemical Engineering Thermodynamics	Theory Only	1.0	3	1	0	0	4.0
2	BCHE203L	Chemical Process Calculations	Theory Only	1.0	3	1	0	0	4.0
3	BCHE205L	Momentum Transfer	Theory Only	1.0	3	0	0	0	3.0
4	BCHE205P	Momentum Transfer Lab	Lab Only	1.0	0	0	2	0	1.0
5	BCHE207L	Mass Transfer I	Theory Only	1.0	2	1	0	0	3.0
6	BCHE208L	Heat Transfer	Theory Only	1.0	3	0	0	0	3.0
7	BCHE208P	Heat Transfer Lab	Lab Only	1.0	0	0	2	0	1.0
8	BCHE301L	Mechanical Operations	Theory Only	1.0	3	0	0	0	3.0
9	BCHE301P	Mechanical Operations Lab	Lab Only	1.0	0	0	2	0	1.0
10	BCHE302L	Mass Transfer II	Theory Only	1.0	3	0	0	0	3.0
11	BCHE302P	Mass Transfer Lab	Lab Only	1.0	0	0	2	0	1.0
12	BCHE303L	Chemical Reaction Engineering I	Theory Only	1.0	3	0	0	0	3.0
13	ВСНЕ303Р	Chemical Reaction Engineering Lab	Lab Only	1.0	0	0	2	0	1.0
14	BCHE304L	Chemical Process Technology and Economics	Theory Only	1.0	3	1	0	0	4.0
15	BCHE305L	Process Dynamics and Control	Theory Only	1.0	3	0	0	0	3.0
16	ВСНЕ305Р	Process Dynamics and Control Lab	Lab Only	1.0	0	0	2	0	1.0

17	BCHE306L	Chemical Reaction Engineering II	Theory Only	1.0	2	1	0	0	3.0
18	BCHE307L	Process Modelling and Simulation	Theory Only	1.0	2	0	0	0	2.0
19	ВСНЕ307Р	Process Modelling and Simulation Lab	Lab Only	1.0	0	0	2	0	1.0
20	BCHE308L	Chemical Process Equipment Design	Theory Only	1.0	3	0	0	0	3.0
21	ВСНЕ308Р	Chemical Process Equipment Design Lab	Lab Only	1.0	0	0	2	0	1.0
22	BCHE311L	Process Utilities and Pipeline Design	Theory Only	1.0	3	0	0	0	3.0

		Discipline Elec	tive						
Sl.No	Course Code	Course Title	Course Type	Ver sion	L	Т	P	J	Credits
1	BCHE309L	Membrane Separation Processes	Theory Only	1.0	3	0	0	0	3.0
2	BCHE310L	Polymer Technology	Theory Only	1.0	3	0	0	0	3.0
3	BCHE312L	Chemical Process Optimization	Theory Only	1.0	3	0	0	0	3.0
4	BCHE313L	Environmental Pollution Control	Theory Only	1.0	3	0	0	0	3.0
5	BCHE314L	Fuels and Combustion	Theory Only	1.0	3	0	0	0	3.0
6	BCHE315L	Biochemical Engineering	Theory Only	1.0	3	0	0	0	3.0
7	BCHE316L	Pharmaceutical Technology	Theory Only	1.0	3	0	0	0	3.0
8	BCHE317L	Petroleum Refining Technology	Theory Only	1.0	3	0	0	0	3.0
9	BCHE318L	Safety and Hazard Analysis	Theory Only	1.0	3	0	0	0	3.0
10	ВСНЕ319Е	Process Plant Design and Simulation	Embedded Theory and Lab	1.0	2	0	2	0	3.0
11	BCHE320L	Chemical Product Design	Theory Only	1.0	3	0	0	0	3.0
12	BCHE321L	Natural Gas Engineering	Theory Only	1.0	3	0	0	0	3.0
13	BCHE322L	Nanoscience and Nanotechnology	Theory Only	1.0	3	0	0	0	3.0
14	BCHE323L	Fertilizer Technology	Theory Only	1.0	3	0	0	0	3.0
15	BCHE324L	Fermentation Technology	Theory Only	1.0	3	0	0	0	3.0
16	BCHE391J	Technical Answers to Real Problems Project	Project	1.0	0	0	0	0	3.0
17	ВСНЕ392Ј	Design Project	Project	1.0	0	0	0	0	3.0
18	ВСНЕ393Ј	Laboratory Project	Project	1.0	0	0	0	0	3.0
19	ВСНЕ394Ј	Product Development Project	Project	1.0	0	0	0	0	3.0
20	BCHE395J	Computer Project	Project	1.0	0	0	0	0	3.0
21	ВСНЕ396Ј	Reading Course	Project	1.0	0	0	0	0	3.0
22	ВСНЕ397Ј	Special Project	Project	1.0	0	0	0	0	3.0

23	ВСНЕ398Ј	Simulation Project	Project	1.0	0	0	0	0	3.0
24	BCHE401L	Petrochemical Technology	Theory Only	1.0	3	0	0	0	3.0
25	BCHE402L	Food Process Engineering	Theory Only	1.0	3	0	0	0	3.0
26	BCHE403L	Process Intensification	Theory Only	1.0	3	0	0	0	3.0
27	BCHE404L	Colloids and Interfacial Science	Theory Only	1.0	3	0	0	0	3.0
28	BCHE405L	Fluidization Engineering	Theory Only	1.0	3	0	0	0	3.0
29	BCHE406L	AI in Chemical Engineering	Theory Only	1.0	3	0	0	0	3.0

		Projects and Inte	ernship						
Sl.No	Course Code	Course Title	Course Type	Ver sion	L	Т	P	J	Credits
1	ВСНЕ399Ј	Summer Industrial Internship	Project	1.0	0	0	0	0	1.0
2	ВСНЕ497Ј	Project - I	Project	1.0	0	0	0	0	3.0
3	BCHE498J	Project - II / Internship	Project	1.0	0	0	0	0	5.0
4	ВСНЕ499Ј	One Semester Internship	Project	1.0	0	0	0	0	14.0

Open Elective: 12 Credits

		Non-graded Core R	lequirement						
Sl.No	Course Code	Course Title	Course Type	Ver sion	L	Т	P	J	Credits
1	BCHE101N	Introduction to Engineering	Project	1.0	0	0	0	0	1.0
2	BCHY102N	Environmental Sciences	Online Course	1.0	0	0	0	0	2.0
3	BEXC100N	Extracurricular Activities	Project	1.0	0	0	0	0	2.0
4	BHUM101N	Ethics and Values	Online Course	1.0	0	0	0	0	2.0
5	BSSC101N	Essence of Traditional Knowledge	Project	1.0	0	0	0	0	2.0
6	BSSC102N	Indian Constitution	Project	1.0	0	0	0	0	2.0

DISCIPLINE LINKED ENGINEERING SCIENCE COURSES – 4 (11 CREDITS)

Course code	Course Title	L	T	P	C
BCHE201L	Computational Methods in Chemical Engineering	3	0	0	3
Pre-requisite			llabu	s ver	sion
			1	.0	

- 1. To formulate problems for roots of a function, solution of simultaneous equations, optimized value of a given function, numerical integration and differentiation, ODE and PDE.
- 2. To compute the roots of a function, solution of simultaneous equations, optimized value of a given function, numerical integration and differentiation, ODE and PDE.
- 3. To develop MATLAB algorithm for roots of a function, solution of simultaneous equations, optimized value of a given function, numerical integration and differentiation, ODE and PDE.

Course Outcomes:

- 1. Formulate mathematical model for solving engineering problems using computational methods.
- 2. Solve roots of a single and simultaneous equation using computational methods.
- 3. Select suitable numerical regression and interpolation techniques for data analysis.
- 4. Compute numerical integration and optimization.
- 5. Determine the numerical solution for ordinary and partial differential equations.

Module:1 | Single Algebraic and Transcendental Equations

6 hours

Computers and its components, approximation, and concept of error and error analysis, Mathematical models for solving engineering problems. Finding roots of a single equation- Direct methods (bisection, Regula falsi) and Indirect methods (Newton-Raphson, Secant method). Case study using MATLAB / MS Excel.

Module:2 | Linear and Nonlinear System of Equations

6 hours

Types of matrices and matrix operation rules, Solution for linear system of simultaneous equations – Direct methods (Gauss Elimination, Gauss Jordan), Iterative methods (Gauss-Jacobi and Gauss-Seidel). Overview of non-linear system of equations. Case study using MATLAB / MS Excel / Aspen Plus.

Module:3 Interpolation and Regression Analysis

6 hours

Newton's divided-difference interpolating polynomial – Linear, polynomial and quadratic rules, Lagrange interpolating polynomial, Linear and polynomial Regression. Case study using MATLAB / MS Excel.

Module:4 Optimization

7 hours

One-Dimensional Unconstrained Optimization – Golden section search and Newton's Method, Overview on multidimensional unconstrained optimization – gradient and non-gradient methods, Constrained optimization – Simplex method. Case study using MATLAB / MS Excel. Overview of optimization techniques in Aspen Plus – Design Spec and sensitivity analysis.

	T				
Module:5	Integration and Difference	rentiation			5 hours
	es Integration- Trapezoid m nd Central Difference n			•	
Module:6	Ordinary Differential	Equations			6 hours
	Problems – Euler, Predict hooting method and Centra		_		•
Module:7	Partial Differential E	quations			7 hours
parabolic eq	nce solutions of elliptic equuations — Crank-Nicolson asing MATLAB / MS Excel.	and implicit metho			
Module:8	Contemporary issues				2 hours
Guest lecture	from industry and R & D	organisations			
			To	tal Lecture hours:	45 hours
Text Book:					
	n C. Chapra and Raymond I aw Hill Publications, USA.	P. Canale, Numeric	cal Method	ls for Engineers, 201	6, 7 th ed.,
Reference B	ooks:				
1. Gupta	, S. K., "Numerical Metho	ods for Engineers,	2012, 3 rd	ed., New Academic	Science,
,	l I.M. Al-Malah, Aspen Plus Inc., USA.	us: Chemical Engir	neering A _l	oplications, 2016, Jo	hn Wiley
	luation: Assignment, Contin	nuous Assessment	Test (CAT	(7), Quiz, Final Asses	sment
Test (FAT).	ad by Doord of Childian	1	11 0	2 2022	
	ed by Board of Studies Academic Council	No.65	Date	2-2022 17-03-2022	
Approved by	Academic Council	110.03	Date	17-03-2022	

Course code	Course Title	L	T	P	C
BCHE201P Computational Methods in Chemical Engineering Lab		0	0	2	1
Pre-requisite Nil		Syllabus version			sion
		1.0			

- 1. To formulate, solve and analyses complex chemical engineering problems.
- 2. To apply numerical methods for their research to solve complex problems.
- 3. To establish the limitations, advantages, and disadvantages of numerical methods.

Course Outcomes:

- 1. Develop efficient MATLAB code with different programming construct
- 2. Construct effective reports of the engineering solutions
- 3. Use modern tools from commercial/open source software (example: MATLAB, MS Excel, ASPEN Plus) to solve Chemical Engineering problems

Indic	Indicative Experiments:							
1.	Develop MATLAB code for bisection / Regula falsi method.							
2.	Develop MATLAB code for New	ton Raphson / Se	ecant metho	d.				
3.	Develop MATLAB code for Gaus	ss Elimination / (Gauss Jorda	n method.				
4.	Develop MATLAB code for Gauss Jacobi / Gauss Seidel method.							
5.	5. Develop Aspen Plus simulation for solving simultaneous equations in distillation column.							
6.	Develop MATLAB code for Num	nerical Integratio	n					
7.	Develop MATLAB code for ODE	E: Euler / Modifi	ed Euler me	thod.				
8.	Develop MATLAB code for ODE	E: Runge-Kutta r	nethod.					
9.	Develop MATLAB code for PDE	:Liebmann's me	thod.					
10.	Develop Aspen Plus simulation/ N PDE.	MS Excel packag	ge to optimiz	ze a chemical pr	ocess involving			
	Total Laboratory Hours 30 hours							
Mode	Mode of assessment: Assignment, Final Assessment Test (FAT)							
Recor	mmended by Board of Studies		11-	02-2022				
Appro	Approved by Academic Council No.65 Date 17-03-2022							

Course code	Course title L		T	P	C
BCHE204L	Transport Phenomena	3	1	0	4
Pre-requisite	NIL	Syllabus versio		sion	
		1.0			

- 1. To emphasis the basic concepts of transport phenomena, the similarities of the governing relations of momentum, heat, and mass transfer
- 2. To illustrate the common mathematical structure of transport problems
- 3. To formulate appropriate differential equations to obtain velocity, temperature and concentration profiles of transport processes

Course Outcomes:

- 1. Understand transport properties of molecular transfer of momentum, energy, and mass transport.
- 2. Relate simultaneous heat, mass, and momentum transfer analysis.
- 3. Interpret one-dimensional steady state momentum, heat and mass transfer problems.
- 4. Apply Navier-Stokes equation to examine the problems related to fluid, heat, and mass transfer.
- 5. Develop industrial transport problems along with appropriate approximations and boundary conditions

Module:1 Introduction

7 hours

Concepts in Chemical Engineering - momentum transport, mass transport, and energy transport - level of analysis - molecular transport properties of gases and liquids - effect of pressure and temperature.

Module:2 | **Momentum Transport**

7 hours

Basics of momentum transport - Phenomenological laws; Newtonian and non-Newtonian fluids; Rheological models, Transport Coefficient, Dimensional analysis.

Module:3 Vector and Tensor analysis

6 hours

Basic concepts - Vector and Tensor Analysis - Coordinate system - tutorials

Module:4 1D Viscous Flow: Shell Balance

10 hours

Shell momentum balance, boundary conditions - rectilinear flow - curvilinear flow - momentum flux and velocity distribution, flow through pipes

Module:5 | Equations of Change

10 hours

Eulerian and Lagrangian viewpoint, laminar and turbulent flows, Equation of Motion and Continuity - Integral Conservation Equations - Navier-Stokes - Applications to isothermal flow of Newtonian and non-Newtonian fluids

Module:6 | Steady state Heat Transfer – Shell Balance

10 hours

Basics of energy transport, conductive, convective, and viscous dissipation energy fluxes - Steady state heat temperature distribution.

Module:7 | Mass Transfer- Shell Balance

8 hours

Basics of mass transport, mechanisms, mass and molar fluxes - Derivation of equation of continuity for a binary mixture and its application to convection diffusion problems.

Module:8 Contemporary issues			2 hours						
Gu	est lectur	e from industry and R&D o	organizations			1			
	Total Lecture hours: 60 hours								
Tex	xt Book:					ı			
1.	Bird R.	B., Stewart W. E., Lightfo	oot E. N., Transpo	rt Phenom	ena, 2012 2 nd ed., .	John Wiley			
	& Sons	Inc., Wiley Student Edition	n, India.						
Ref	ference I	Books:							
1.	Geanko	pplis C.J., Transport Proce	esses and Separa	tion Proce	ess Principles, 201	8, 5 th ed.,			
	Pearson	n Education India.							
2.	Willian	n M. Dean, Analysis of Tra	nsport Phenomena	a, 2013, 2 ⁿ	d ed., Oxford Unive	ersity Press,			
	India.	•	_			-			
3.	Plawsk	y Joel L, Transport Phenom	nena fundamentals	, 2020, 4 th	ed., CRC Press, US	SA.			
Mo	de of eva	aluation: Continuous Assess	sment Test, Quiz,	Assignme	nt, Final Assessmen	t Test			
Rec	commend	led by Board of Studies		11-(02-2022				
Ap	proved b	y Academic Council	No.65	Date	17-03-2022				

Course code	Course Title		T	P	C
BCHE206L Materials Science and Engineering		3	0	0	3
Pre-requisite	Pre-requisite BCHE201L, BCHE201P		labu	s vers	sion
			1	.0	

- 1. To outline the structure, properties, and applications of engineering materials
- 2. To recall the structure of solids and the various crystal imperfections
- 3. To understand the fundamental principles behind the material characterization methods

Course Outcomes:

- 1. Assess the fundamentals of materials and atomic interactions
- 2. Assess the crystal imperfections
- 3. Interpret the phase diagrams of the alloys, polymers, and ceramic materials
- 4. Analyse materials characterization techniques
- 5. Design the material manufacturing process and material property charts

Module:1 Basics of Materials and Structure

7 hours

Classification of materials: metals, alloys, ceramics, polymers and composites, atomic structure, crystal systems, Chemical Bonds, Intermolecular forces, forces of interaction – van der Waals and electrostatic interactions, aggregation, structures of metals, ceramics, polymers, and amorphous materials.

Module:2 | Crystal Systems

7 hours

Basics of crystal systems- space lattice- miller indices of atomic planes and directions, Bravais lattices, unit cells, primitive cells, crystallographic planes, and directions, crystal defects, 0-D, 1-D and 2-D defects; vacancies, interstitials, solid solutions in metals and ceramics, Frenkel and Schottky defects; dislocations; grain boundaries, twins, stacking faults, surfaces, and interfaces, and problems in crystallography.

Module:3 | Phase Diagrams of the engineering materials

7 hours

Chemical alloying, steps in polymerization, phase rules for metals, ceramics, polymers - equilibrium diagrams, solid solution, cooling curves of metals, alloys, polymers, non-equilibrium cooling, isomorphous- eutectic- peritectic and eutectoid reactions with examples

Module:4 | Evaluation of engineering materials

8 hours

Stress-strain response, corrosion, degradation of materials, methods of measuring piezo- and ferroelectric behaviour of metals and alloys, properties of materials, refractive index, electromagnetic materials

Module:5 | Characterization of materials

5 hours

Basics of the Microstructure, Fundamentals of the microscope, Bragg's law, X-ray diffraction-Metallography, preparation of the specimen, microstructure examination and application, spectroscopic techniques such as UV-Vis, IR, Fluorescence and Raman; optical microscopy, electron microscopy, composition analysis in electron microscopes.

Module:6 | Electrochemical Characterization of the materials

5 hours

Cyclic voltammetry, Linear sweep voltammetry, polarization curves, Tafel slope, Evans's diagram, Impedance spectroscopy, Problems in building polarization curve, Evaluation of electrochemical properties of the battery, fuel cells, electrolyzer, and capacitor materials

Module:7 Nano materials

Preparation of nano-materials, Heat treatment, sintering; thin film deposition: evaporation and sputtering techniques, and chemical vapour deposition, and thin-film growth phenomena.

Module 8 | Contemporary issues

2 hours

4 hours

Guest lecture from industry and R&D organizations

Total Lecture hours: 45 hours

Text Books:

- 1. W. D. Callister, Jr., "Materials Science and Engineering", 2003, 6th ed., Wiley India, India.
- 2. W. F. Smith, J. Hashemi, and R. Prakash, "Materials Science and Engineering", 2008, 4th ed., Tata Mc Graw Hill, India.

Reference Book:

1. David Michael Rowe, "Thermoelectric Handbook: Macro to Nano", 2006, CRC Press, USA.

Mode of Evaluation: Continuous Assessment Test, written assignment, Quiz, Final Assessment Test.

Recommended by Board of Studies		11-02-2022				
Approved by Academic Council		No.65	Date	17-03-2022		

DISCIPLINE CORE COURSES – 21 (49 CREDITS)

Course Code	Course Title	L	T	P	C
BCHE202L Chemical Engineering Thermodynamics				0	4
Pre-requisite	Nil	Syllabus Version		ersion	
		1.0			

- 1. Enhance the basic knowledge and intuitive understanding of the thermodynamics of physical and chemical systems.
- 2. Introduce the concepts of partial molar properties, fugacity, activity, and vapour-liquid equilibrium for ideal and real substances existing in more than one phase under equilibrium.
- 3. Generalize design thinking skills on property estimation relevant to chemical industries.

Course Outcomes:

- 1. Define and illustrate thermodynamic equilibrium state and equations of state.
- 2. Relate properties such as change in enthalpy, entropy, free energy, heat and work requirements for batch and flow processes occurring in chemical industries.
- 3. Construct and analyze phase equilibrium data, P-x-y, T-x-y diagrams for ideal, binary, miscible vapour-liquid systems.
- 4. Device methodologies for qualitative and quantitative analysis of VLE data for non-ideal, binary, miscible systems using van Laar, Margules, and property estimation models.
- 5. Estimate the feasibility of a chemical reaction and determine the equilibrium rate constant for chemical reactions.

Module:1 Fundamental Concepts and Definitions 6 hours

Introduction - definitions and basic concepts - classical and statistical thermodynamics - concept of continuum - thermodynamic steady state - equilibrium state process - Volumetric properties of pure fluids - P-V-T relationships - ideal gas - real gas - law of corresponding states.

Module:2 Laws of Thermodynamics 5 hours

First law – closed non-flow system – steady-state flow systems and their analysis - Second law - change in internal energy - enthalpy - entropy calculations - phase change - Heat effects - standard heat of reaction.

Module: 3 Thermodynamic Properties of Pure Fluids 7 hours

Gibbs free energy - Helmholtz free energy - exact differential equation - thermodynamic property relations - Maxwell's relations and applications - fugacity - activity of pure substances - determination of fugacity of pure gases, solids, and liquid-fugacity coefficient-activity coefficient.

Module: 4	Thermodynamic Properties of Solutions	7 hours
-----------	---------------------------------------	---------

Mixtures of pure fluids - partial molar properties - chemical potential - fugacity in solution - Ideal solutions - Raoult's law - Henry's law - Lewis Randall rule - Gibbs - Duhem equation - Residual properties - property changes of mixing for ideal and non-ideal solutions - excess property relations - Gibbs free energy calculations.

Module:5 Phase Equilibria

6 hours

Phase rule - criteria of phase equilibrium - single component - multiple components - Vapour-Liquid Equilibria for ideal solutions - phase diagram for binary systems using Aspen Plus - constant temperature equilibria - constant pressure equilibria - phase equilibrium curves.

Module:6 Vapour-Liquid Equilibria – Non-ideal Solutions

7 hours

Non-ideal solutions – azeotropic systems - minimum boiling – maximum boiling – VLE – P-x-y diagram and T-x-y diagram using Aspen Plus; Bubble point – dew point calculation methods – van Laar equation - Margules equation - Wilson equation - Multicomponent systems – flash vaporization - Consistency test for val VLE data.

Module:7 Chemical Reaction Equilibria

5 hours

Chemical reaction equilibria - reaction coordinates - criteria for chemical equilibrium - equilibrium constant - Gibbs free energy of a reaction - effect of temperature on equilibrium constant - equilibrium constant of homogeneous gas and liquid phase reactions.

Module:8 Contemporary Issues

2 hours

Guest lecture from industry and R & D organisations

Total Lecture Hours:

45 hours

Textbook:

Narayanan K.V., A Textbook of Chemical Engineering Thermodynamics, 2013, 2nd ed., Prentice Hall India Learning Private Limited, India.

Reference Books:

- 1. Smith J.M., Van Ness H.C., Abbott, M.M., Swihart M.T., Bhatt, B.I., Introduction to Chemical Engineering Thermodynamics, 2019, 8th ed., McGraw Hill India, India.
- 2. Matsoukas T., Fundamentals of Chemical Engineering Thermodynamics, 2012, 1st ed., Pearson Prentice Hall, USA.
- Dahm K.D., Visco D.P., Fundamentals of Chemical Engineering Thermodynamics, 2012, 1st ed., Cengage Learning India Private Limited, India.

Mode of Evaluation: Continuous Assessment Tests, Quizzes, Assignments, and Final Assessment Test.

Recommended by Board of Studies:	11-02-2022			
Approved by Academic Council:	No.65	Date:	17-03-2022	

Course code	Course title	L	T	P	C
BCHE203L Chemical Process Calculations		3	1	0	4
Pre-requisite	NIL	Syllabus versio		rsion	
		1.0			

- 1. To formulate material balances for compositions and flow rates of process streams
- 2. To solve single and multiple reactions involved in chemical processes
- 3. To perform material and energy balance calculations for various unit operations

Course Outcomes:

- 1. Apply mole concept and ideal gas equation to express the composition of mixtures
- 2. Understand the method of solving steady state material balances without chemical reactions
- 3. Estimate the extent of reaction in material balances for systems involving chemical reactions
- 4. Analyze the recycle and bypass processes involving chemical reactions
- 5. Apply simultaneous material and energy balance to industrial processes.

Module:1 Introduction to Basic Concepts

7 hours

Units and dimensions – conversion factors – mole concept –normality, molarity, and molality – density and specific gravity – methods of expressing composition of mixtures and solutions – weight fraction – mole fraction –volumetric composition – Ideal gas law – Dalton's law – Amagat's law

Module:2 Vapor pressure and Humidity calculations

8 hours

Vapor pressure of liquids - Clausius-Clapeyron equation - Antoine equation - vapor pressure of immiscible liquids and ideal solutions - Raoult's law - Henry's law - humidity and saturation - wet bulb and dry bulb temperature - relative and percentage saturation

Module:3 | Material Balance without Chemical Reaction

9 hours

General material balance equation for steady and unsteady state - typical steady state material balances in distillation - absorption - extraction - crystallization - agitated batch crystallization - vacuum crystallizer - Drying: tray dryer - drum dryer - spray dryer - vacuum dryer

Module:4 | Material balance with Chemical Reaction

9 hours

Stoichiometric equation – stoichiometric ratio – limiting reactant – excess reactant – percentage excess reactants – conversion – yield – selectivity – material balance with single and multiple chemical reactions.

Module:5 | Recycle and Bypass Operation

7 hours

Recycle, purge and bypass calculations in unit operations: single and multiple effect evaporators - distillation - drying.

Module:6 Combustion calculations

9 hours

Calorific value of fuels, flue gas analysis, Orsat analysis, air/ fuel ratio calculations - theoretical and excess air requirement for solid, liquid and gaseous fuels.

Mo	dule:7	Energy balance				9 hours			
reac	ction, hea	by state energy balance ext of combustion and Ca $_{\rm n}$, determination of $\Delta H_{\rm R}$	lorific values. He	at of solu	ution, heat of mix	ing, heat of			
EXC	zer 1001.								
Mo	dule:8	Contemporary issues				2 hours			
Gu	Guest lecture from industry and R & D organisations								
			Total L	ecture ho	urs:	60 hours			
Tex	xt Book:								
1.		palu DM Riggs JB "Bas ed., Pearson India Educat			ons in Chemical E	Engineering"			
Ref	ference B	ooks:							
1.		igen, K.M.Watson, R.A.R Balances", 2004, 2 nd ed., C	~		1	erial and			
2.	Rhatt R.I. Thakore S. R. Stoichiometry 2011 5th ed. Tata McGraw – Hill Book Company								
Mo	de of eval	uation: Continuous Assess	sment Test, Quiz,	Assignme	nt, Final Assessmen	nt Test			
Rec	commende	ed by Board of Studies	_	11-	02-2022				
Ap	proved by	Academic Council	No.65	Date	17-03-2022				

Course code	Course Title	L	T	P	C
BCHE205L	Momentum Transfer	3	0	0	3
Pre-requisite	Nil	Syl	Syllabus version		
		1.0			

- 1. To inculcate the fundamental laws governing the fluid flow.
- 2. To understand the importance and application of fluid mechanics.
- 3. To apply the physical and mathematical models to analyse the fluid flow phenomena in Engineering applications.

Course Outcomes:

- 1. Evaluate the fluid properties and hydrostatic pressure
- 2. Analyze fluid flow dynamics using governing equations
- 3. Measure the flow parameters and energy losses across pipe flow, packed and fluidized bed
- 4. Perform dimensional analysis
- 5. Explain the characteristics and problems related to pump

Module:1 | Basic Concept of Momentum Transfer

7 hours

Introduction and Significance of Momentum Transfer in Chemical Engineering. Definition of fluid- Classification of fluids – Newtonian and Non-newtonian Fluids – Characteristic properties of fluids – Fluid statics: Pascal's law and Hydrostatic law of equilibrium; Pressure and its measurement – Manometers

Module:2 | Fluid Flow Phenomena

7 hours

Kinematics of fluid flow, Dynamics of fluid flow – Basic equations governing fluid flow – types of fluid flow. Equation of Continuity and its application, Equation of motion – Derivation of Navier Stokes and Euler's equation, Bernoulli's equation and its application in fluid flow

Module:3 | Flow Measuring Devices

4 hours

Importance of metering – Classification flow measuring devices, Principle and working of Orifice meter, Venturi meter, Pitot tube, Variable area meters : Rotameter, Elbow meter

Module:4 | Flow through Pipes

6 hours

Flow of fluids in pipes –Velocity Profile, Shear Stress Distribution – Hagen - Poiseuille equation - Concept of average velocity –Turbulent flow- Kinetic energy correction factor - Fluid friction – Friction factor – Application of Moody's diagram - Minor losses and major losses

Module:5 | Dimensional and Model Analysis

5 hours

Dimensional homogeneity— Raleigh and Buckingham π theorems— Non-dimensional numbers - Model laws — model types - Similitude

Module:6 | Flow through Packed and Fluidized Bed

7 hours

Flow past immersed bodies - Concept of Drag, Drag Coefficients and Particle Reynolds number – Flow of fluids through packed beds – Packing and types of packing- Pressure drop across packed beds – Kozeny Carman equation – Ergun's equation- Loading and Flooding Packed Beds - Fluidization – Types of fluidization minimum fluidization velocity

Mo	dule:7	Transportation of Fluids				7 hours
Pip	es - Fitti	ings and Valves – Fluid M	Ioving Machinery	Pumps	Classification : Rec	ciprocating
and	Centrif	ugal pump – Pump Charac	teristics - Primin	g and Ca	vitation - Net Positi	ve Suction
Hea	ad - Stuf	fing Boxes, Mechanical Sea	ıls Factors Influ	encing se	lection of pump.	
Mo	dule:8	Contemporary issues				2 hours
Gue	est lectur	re from industry and R&D o	organizations			
				Т	otal Lecture hours:	45 hours
Tr	-4 D1					
rex	Congol	Y.A., Cimbala J.M., Fluid	Machanias (SIE)	Fundama	ntals and Application	2010 4th
1.	_	Graw Hill, New York.	Mechanics (SIE).	rundame	mais and Applications	8, 2019, 4
	-	e W.L., Smith J.C., Harriot	t P. Unit Operati	one of C	hemical Engineering	2017 7th
2		Graw Hill, New York.	i i ., Omi Operan	0113 01 C	inclinear Engineering,	, 2017, 7
Ref	ference l	·				
		W., McDonald A.T., Pirtch	nard P.J., Mitchell	J. W., Iı	ntroduction to Fluid N	Mechanics.
1.		oth ed., Wiley Publications, I				,
		n, B. R., Young, D.F., Okii		entals of	Fluid Mechanics, 20	15, 8 th ed.,
2.		Publications, Delhi.				
3.	R.K. B	ansal, A Textbook of Fluid	Mechanics and H	Iydraulic	Machines, 2015, 8th	ed., Laxmi
٥.	Publica	tions, New Delhi.				
Mo	de of Ev	valuation: Continuous Ass	essment Test, wri	tten assig	gnment, Quiz, Final A	Assessment
Tes						
		ded by Board of Studies			-02-2022	
App	proved b	y Academic Council	No.65	Date	17-03-2022	

Course code	Course Title	L	L T P		C
BCHE205P	Momentum Transfer Laboratory	0	0	2	1
Pre-requisite	Nil	Sy	Syllabus version		ion
			1.	.0	

- 1. To expose the student to various flow measuring devices
- 2. To impart knowledge about friction factor for fluid flow in pipe and packed bed
- 3. To understand the performance characteristics of centrifugal pump

Course Outcomes:

- 1. Evaluate the velocity in the pipe line using different flow measuring devices
- 2. Determine the energy losses and pressure drop in pipes
- 3. Estimate the minimum fluidization velocity

		•							
Indic	Indicative Experiments								
1.	Flow through Venturi meter								
2.	Flow through Orifice meter								
3.	Flow through circular pipe								
4.	Flow through non circular pipe								
5.	Determination of Minor losses								
6.	Reynolds Experiment								
7.	Verification of Bernoulli's theor	em							
8.	Characteristics of Centrifugal pu	ımp							
9.	Flow through Packed bed	_							
10.	Flow through Fluidized bed								
		,	Total Labo	ratory Hours	30 hours				
Mode	of assessment: Individual Experi	ment Assessmen	t, Final Ass	essment Test					
Reco	mmended by Board of Studies		11-	02-2022					
Appro	oved by Academic Council	No.65	Date	17-03-2022					

Course Code	Course Title	L	T	P	C
BCHE207L	Mass Transfer I	2	1	0	3
Pre-requisite	BCHE202L	Sylla	Syllabus version		ion
			1.	.0	

- 1. To understand the fundamentals of diffusion and the theories of mass transfer
- 2. To impart the knowledge of humidification, drying and crystallization
- 3. To solve application oriented problems using separation techniques

Course Outcomes:

- 1. Derive molecular diffusion in gases, liquids and solids
- 2. Compute the molecular diffusion in gases, liquids and solids
- 3. Compute mass transfer coefficient and flux for various mass transfer operations
- 4. Solve humidification/dehumidification by considering the aspects of design
- 5. Select suitable equipments used for mass transfer operations (humidification/dehumidification, Drier and crystallizers)

Module:1 Diffusion

6 hours

Introduction to Mass transfer operation, Fick's law of diffusion, Steady state molecular diffusion in fluids under stagnant and laminar flow conditions, Diffusion coefficient measurement and prediction

Module:2 | **Molecular diffusion in fluids**

6 hours

Molecular diffusion in gas and Liquids, Multicomponent diffusion, Diffusion through variable cross-sectional area, Diffusivity in solids and its applications

Module:3 | Mass transfer coefficients

6 hours

Introduction to mass transfer coefficient, Correlation for convective mass transfer coefficient, Correlation of mass transfer coefficients for single cylinder, Packed column, flow over a flat plate

Module:4 | Theories of Mass Transfer

6 hours

Penetration theory, Surface Renewal Theory, Interphase mass transfer, two film theory, Overall mass transfer coefficients

Module:5 | Humidification

7 hours

Basic concepts, Principles of Humidification –Definitions Wet Bulb Temperature &Adiabatic Saturation Temperatures –Air/Water System psychrometric and Psychrometric Charts – Utilisation of Psychrometric Charts – Dehumidification – Cooling Towers –Mechanical Draft Towers: forced draft towers and induced draft towers, Design calculations of cooling tower.

Module:6 | **Drying**

7 hours

Principles of Drying – Definitions of moisture and other terms on Drying –Classification of Drying operations - Rate of Drying – Constant and Falling Rate Drying – Moisture movement in solids - Through Circulation Drying - Rate of drying for Continuous Direct heat Driers. Types of Dryers used in practice and their operation – Batch and Continuous Dryers

Module:7 | Crystallization

5 hours

Crystal Geometry - Invariant Crystals - Principles of Crystallization- Super saturation Nucleation - Crystal growth - Material & Energy Balance applied to Crystallizers - Types of Crystallizers

use	d in prac	tice				
Mo	dule:8	Contemporary issues				2 hours
Gue	est lectur	e from industry and R&D o	organizations			l
				То	otal Lecture hours:	45 hours
Tex	kt Books					
1.	B.K. D	utta, Principles of Mass trar	sfer and Separation	on Process	es, 2010, 1 st ed., PH	II, India.
2.	R.E. Tı	reybal, Mass-Transfer Opera	ations, 2017, 3rd ed	d., McGrav	w-Hill Inc., USA.	
Ref	ference l	Books:				
1.		ssler, Diffusion: Mass Tran Jnited Kingdom.	sfer in Fluid Syste	ems, 2017,	3 rd ed., Cambridge	University
2.	Christic	e J, Geankoplis, Transport p vt. Ltd., India.	processes and Uni	t Operation	ns, 2003, 4 th ed., Pr	entice Hall
3.	N.Anar	ntharaman, K.M.Meera She e-Hall of India, New Delhi,	<i>O</i> ,	s transfer-	Theory and practice	, 2011,
Мо	l .	aluation: Continuous Assess		Assignmer	nt Final Assessmen	nt Test
		led by Board of Studies			2-2022	1000
		y Academic Council	No.65	Date	17-03-2022	

Course code	Course Title	L	T	P	C
BCHE208L	Heat Transfer	3	0	0	3
Pre-requisite	BMAT102L	Syllabus version			sion
			1	1.0	

- 1. Explain the fundamental principles of heat transfer and various modes of heat transfer
- 2. Solve heat transfer problems using the principles of heat transfer in different modes
- 3. Design and estimate heat loads for heat transfer equipment such as heat exchangers and evaporators

Course Outcomes:

- 1. Identify Classify the different modes of heat transfer with their significance for stady and unsteady state processes
- 2. Model and solve steady/unsteady state heat transfer problems
- 3. Compute the convective heat transfer parameters n fluids involving phase and no phase changes
- 4. Estimate radiative mode heat transfer with and without radiation shields through shape factor concept
- 5. Explain the performance of various types of heat exchangers and evaporators/condensers

Module:1 | Conduction

6 hours

Basic concepts – Conduction – Fourier's Law of Heat conduction – Concept of Thermal Conductivity – Generalized conduction equation in cartesian, cylindrical and spherical systems; Steady State Conduction – Heat transfer composite systems – Critical thickness of insulation – Conduction with heat Generation.

Module:2 | Extended Surfaces and Unsteady state conduction

5 hours

Extended surfaces - types and applications of fins - Fin efficiency and effectiveness - Fin performance - Unsteady state heat conduction - Lumped parameter system - Conduction through semi-infinite solids

Module:3 | Convection (without phase change)

7 hours

Fundamentals of Convection – Thermal boundary layer & Convective heat transfer coefficients – Convection correlations through Dimensional analysis; Laminar flow over a flat plate – Turbulent flow over a flat plate – Flow over cylinders – Internal flow through pipes – annular spaces – Natural convection in vertical - inclined and horizontal surfaces.

Module:4 | Convection (with phase change)

6 hours

Condensation and Boiling – Drop wise and Film wise condensation – Film condensation on a vertical plate; Boiling – Nucleate boiling and film boiling correlations – Critical flux

Module:5 Radiation

6 hours

Radiation heat transfer – Thermal radiation – Laws of radiation – Blackbody concepts – Emissive power – Radiation shape factor – Gray bodies – Radiation shields

Module:6 | **Heat Exchangers**

7 hours

Heat exchangers – Types and practical application –Concept of LMTD & Overall heat transfer coefficient; Effectiveness – NTU method for heat exchanger design - Fouling factor and estimation of Overall heat transfer coefficient - Special type of heat exchangers

Module:7 | **Evaporators**

6 hours

Introduction – Types of Evaporators – Capacity – Steam economy – Boiling point elevation (Duhring rule); Material and energy balance of single effect evaporator - multiple effect evaporators - Design of single and multiple effect evaporators

Module:8 | Contemporary issues

2 hours

Guest lecture from industry and R&D organizations

Total Lecture hours: 4

45 hours

Text Book:

1. Ghajar A.J., Cengel Y.A., Heat and Mass Transfer: A Practical Approach, 2015, 5th ed., McGraw-Hill, USA.

Reference Books:

- 1. Frank Kreith, Raj M Manglik, Principles of Heat Transfer, 2016, 8th ed., Cengage Learning, USA.
- 2. Donald Q. Kern, Process Heat Transfer, 2017, 2nd edition, McGraw Hill Education, USA.
- 3. B.K. Dutta, Heat Transfer Principles and Applications, 2000, 1st ed., PHI, India.

Mode of Evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test

Recommended by Board of Studies	11-02-2022		
Approved by Academic Council	No.65	Date	17-03-2022

Course code	Course title	L	T	P	C
BCHE208P	Heat Transfer Lab	0 0 2		1	
Pre-requisite	BMAT102L	Syllabus version		on	
		1.0			

- 1. To expose the students to various modes of heat transfer (Conduction, Convection and Radiation) and their application in process industries
- 2. To troubleshoot various heat transfer equipment by analysis the design parameters
- 3. To introduce advanced computer tools and software in designing heat exchange equipment

Course Outcomes:

- 1. Model and solve steady/unsteady state heat transfer problems
- 2. Analyze the heat transfer phenomena in fluids involving phase and no phase changes
- 3. Examine the radiative heat transfer with and without radiation shields

Indi	cative Experiments:						
1.	Measurement of thermal conductivity of metal rod and liquids						
2.	Analysis of Transient Heat Condu	uction					
3.	Analysis of Fin efficiency & effective effecti	ctiveness					
4.	Performance of Natural Convecti	on heat transfer					
5.	Performance of Forced Convection	on heat transfer					
6.	Emissivity measurement						
7.	Performance of Double Pipe Hea	t Exchanger					
8.	Performance of Plate type Heat E	xchanger					
9.	Performance of shell and tube He	eat Exchanger					
10.	Analysis of Heat Exchanger using	g Aspen Plus – EI	OR and PR	ROSIM software			
			Total La	boratory Hours	30 hours		
Mod	le of assessment: Individual Experi	iment Assessment	, Final As	sessment Test			
Reco	Recommended by Board of Studies 11-02-2022						
App	Approved by Academic Council No.65 Date 17-03-2022						

Course code	Course Title	L T P		P	C
BCHE301L	Mechanical Operations	3	3 0 0		3
Pre-requisite	Nil	Syll	Syllabus versi		on
			1.0	0	

- 1. To impart knowledge about size analysis, size reduction and solid handling adopted in process Industries
- 2. To understand mechanical separation aspects such as filtration, sedimentation, flotation
- 3. To choose the right separation technology for easy separation of chemical components

Course Outcomes:

- 1. Describe properties of particulate solids
- 2. Classify size reduction methods based on characteristics of the feed material
- 3. Understand the mechanical separation aspect of screening
- 4. Identify the suitable separation technique based on particle dynamics.
- 5. Explain the process of agitation, mixing and solids conveying.

Module:1 | Properties and Storage of Solids

7 hours

Particle shape and size, Mixed particle sizes, Average particle sizes. Solids in bulk – the angle of repose, angle of internal friction. Storage and transportation of bulk solids - Problems associated with the flow of bulk solids - Transportation equipment – Belt conveyors, Screw conveyors, Pipe conveyors, Apron conveyors, Flight conveyors, Bucket elevators.

Module:2 | Size reduction of Solids

6 hours

Principles of Comminution – Energy and Power Requirements in Comminution, Crushing Efficiency, Mechanical Efficiency. Laws of Crushing, Size Reduction Equipment – Crushers – Grinders – Cutting Machines. Open and Closed Circuit Operation, Feed Control, Mill Discharge, Energy Consumption, Removal of Heat.

Module:3 | Size separation of solids

6 hours

Screening, Screen analysis, Screen efficiency and capacity, Screening Equipment – Grizzlies - Trommels, Vibrating screen, Gyratory screen, Banana screen.

Module:4 | Separation of solids based on specific properties

6 hours

Gravity settling chamber, Wet scrubber, Elutriator, Electrostatic separation, Cyclone separation, Magnetic separation, Froth flotation, Jigging.

Module:5 | **Settling and Sedimentation**

5 hours

Particle dynamics – terminal settling velocity, free and hindered settling - Gravity sedimentation – Design of Equipment: Thickeners, Clarifiers, Centrifugal sedimentation.

Module:6 | **Filtration**

7 hours

Principles of Cake Filtration - Constant Pressure Filtration - Constant Rate Filtration - Compressible and Incompressible Filter Cakes - Specific Cake Resistance - Filter Medium Resistance - Continuous Filtration - Principles of Centrifugal Filtration - Washing of Filter Cake - Filtration Equipment — Plate and frame filter Press - Leaf Filter- Rotary drum filter - Filter Media - Filter Aids.

Module:7 | **Agitation and Mixing**

6 hours

Agitation and Mixing of Liquids - Principles of Agitation - Agitation Equipment - Impellers -

Flow Pattern in Agitated Vessel - Power Consumption in Agitated vessel. Calculation of power consumption - Mixing equipment for liquids and suspensions - Mixing of solids - Measurement of the extent of mixing – Mixing index - the rate of mixing - Mixing equipment for solids. Module:8 2 hours **Contemporary issues** Guest lecture from industry and R&D organizations **Total Lecture hours:** 45 hours **Text Books:** McCabe W., Smith J., Harriott P., Unit Operations of Chemical Engineering, 2017, 7th ed., McGraw Hill Education, New York. Anup K. Swain, G.K. Roy, Hemlata Patra, Mechanical Operations, 2017, 1st ed., McGraw Hill Education Pvt Ltd, New Delhi, India. **Reference Books:** C.M. Narayanan, B.C Bhattacharya, Mechanical Operations For Chemical Engineers, 2010, 3rd edition, Khanna Publishers, New Delhi, India. Christie J Geankoplis, Transport processes and Unit Operations, 2003, 4th ed. Prentice Hall India Pvt. Ltd, India. Coulson and Richardson's, Chemical Engineering, Vol.2A: particulate systems and particle technology, 2019, 6th ed., Butterworth Heinemann, USA. Mode of Evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test Recommended by Board of Studies 11-02-2022

No.65

Date

Approved by Academic Council

17-03-2022

Course code	Course Title	L	L T P		C
BCHE301P	Mechanical Operations Lab	0	0	2	1
Pre-requisite	NIL	Syll	Syllabus version		on
			1.0		
Course Objectives:					

- 1. To develop an understanding of size analysis and size reduction
- 2. To impart knowledge about solid-liquid, and gas-solid mechanical separation 3. To understand the importance of agitation in process industry

Course Outcomes:

- 1. Determine particle size distribution of a given sample
- 2. Estimate the energy requirement for size reduction of a given material
- 3. Choose suitable solid liquid separation equipment for a particular process

Indicative Experiments:							
1.	Determination of screen Effectiveness						
2.	Size reduction studies in Jaw crusher						
3.	Determination of critical speed Ball mill						
4.	Size reduction studies in Roll crusher						
5.	Determination of terminal settling velocity of a sphere						
6.	Filtration studies in plate and frame filter press						
7.	Filtration studies in Leaf filter						
8.	Determination of area of thickener						
9.	Solid separation using Cyclone separator						
10.	Effectiveness of mixing						
Total Laboratory Hours 30 hours							
Mode of assessment: Individual Experiment Assessment, Final Assessment Test							
Reco	Recommended by Board of Studies 11-02-2022						
Appr	oved by Academic Council	No.65	Date	17-03-2022			

_				
Page	36	Ot.	1	33

Course code	Course Title	L	T	P	C
BCHE302L	Mass Transfer II	3	0	0	3
Pre-requisite	BCHE207L	Syll	abus	vers	ion
			1.0)	

- 1. Design the principles of staged and continuous contact separation equipment involved in mass transfer operations
- 2. Calculate the number of stages in staged and continuous contact separation operations
- 3. Identify modern separation methods for high purity products widely used in separation operations

Course Outcomes:

- 1. Determine the number of stages in mass transfer operations
- 2. Estimate the number of transfer units and height of transfer units in mass transfer operations
- 3. Compute the separation efficiency of single and multi-staged mass transfer operations
- 4. Select suitable equipment/process used for mass transfer operations
- 5. Discuss modern separation techniques applied in industries

Module:1 Introduction to Equilibrium Staged Operations

6 hours

Introduction to various equilibrium staged operations: Distillation, absorption, Extraction, leaching and adsorption - Vapour–liquid Equilibria - Types of distillation - Differential, Equilibrium, Steam, Azeotropic and Extractive distillations - Develop VLE data using Aspen Plus.

Module:2 Distillation

8 hours

Distillation column: Types of contact – Tray and Packed Column - Derivation of operating line equation for different section and parts of distillation column: rectification section, stripping section, feed tray location, condenser, reboiler and efficiency of distillation column - Determination of theoretical trays for continuous binary distillation using McCabe-Thiele method and Ponchon-Savarit graphical method - Case study of Industrial distillation column for multicomponent separation using Aspen Plus.

Module:3 | **Absorption**

7 hours

Introduction to absorption, Continuous contact, co-current and counter-current multi-stage absorption (Tray absorber), Design of packed tower.

Module:4 Extraction

7 hours

Liquid-Liquid Equilibria – Determination of the number of theoretical stages in co-current, counter-current and cross-current contact operations - extraction equipment - Develop liquid-liquid equilibria using Aspen Plus.

Module:5 | Leaching

5 hours

General principles of leaching - Factors influencing the rate of leaching -Co-current, Countercurrent contact processes, Multi stage Processes, Equipment for leaching - Advanced industrial leaching processes

Module:6 | **Adsorption**

6 hours

Adsorption theory- Structure of adsorbents - Adsorption isotherms - Langmuir and Freundlich isotherms - cross-current, counter-current contact operations - Adsorption in fixed beds - Breakthrough Curves.

Mo	dule:7	Modern separation techn	niques				4 hours	
Me	mbrane	separation-microfiltration,	ultrafiltration,	nanofiltra	tion and	reverse	osmosis,	
Chi	romatogr	raphy techniques and other a	advanced separation	on techniqu	ies.			
Mo	dule:8	Contemporary issues					2 hours	
Gu	est lectui	e from industry and R&D o	organizations			<u>.</u>		
		•						
				Tota	al Lecture	hours:	45 hours	
Tex	kt Books	•						
1.	R.E. Tı	eybal, Mass-Transfer Opera	ations, 2017, 3 rd ed	d., McGrav	v-Hill Inc.,	USA		
2.	B.K. D	utta, Principles of Mass tran	nsfer and Separation	on Processo	es, 2010, 1 ^s	st ed., PH	I, India	
Ref	ference l	Books:						
1.	D. Sea	der, and E.J Henley and Γ	O.K. Roper, Separ	ation Proc	ess Princip	ples, 201	0, 3 rd ed.,	
		iley & Sons, USA.						
2.		e J, Geankoplis, Transport p	processes and Unit	Operation	ıs, 4 th ed.,	Prentice	Hall India	
	Pvt.Ltd	<u>, </u>						
3.		IcCabe, J.C. Smith, and P.	Harriott, Unit Ope	erations of	Chemical	Engineer	ring, 2005,	
	7 th ed.,	McGraw-Hill Inc., USA.						
		aluation: Continuous Asses	sment Test, Quiz,			ssessmen	t Test	
		ded by Board of Studies		11-0	2-2022			
Ap	pproved by Academic Council No.65 Date 17-03-2022							

Course code	ourse code Course title		T	P	C
BCHE302P	BCHE302P Mass Transfer Lab		0	2	1
Pre-requisite	BCHE207L	Syll	abus	versi	ion
			1.0)	

- 1. Understand the basic principles of staged and continuous contact separation equipments
- 2. Perform mass transfer experiments in teams
- 3. Study the performance of mass transfer equipment at lab scale

Course Outcomes:

- 1. Perform experiments of various equilibrium staged operations
- 2. Analyze mass transfer operations using simulation software such as Aspen Plus, MATLAB, PROSIM etc.
- 3. Write technical reports of performed experiments

Indicative Experiments:									
1.	Diffusion in gas phase	Diffusion in gas phase							
2.	Diffusion in liquid phase								
3.	Mass transfer studies in Wetted w	vall column							
4.	Simple distillation by Rayleigh ed	quation							
5.	Rate of drying in a tray dryer								
6.	Liquid-liquid Equilibria-Ternary	system							
7.	Liquid-liquid cross current Extra	ction							
8.	Continuous distillation (using As	pen Plus or PRO	SIM)						
9.	Adsorption (using Aspen Plus or	PROSIM)							
10.	Co-current Leaching								
			Total Lab	oratory Hours	30 hours				
Mod	Mode of assessment: Individual Experiment Assessment, Final Assessment Test								
Reco	Recommended by Board of Studies 11-02-2022								
App	Approved by Academic Council No.65 Date 17-03-2022								

Course code	Course Title	L	T	P	C
BCHE303L	Chemical Reaction Engineering I	3	0	0	3
Pre-requisite	BCHE202L	Syl	labus	vers	ion
			1.	0	

- 1. To impart the knowledge of chemical kinetics and reaction mechanisms
- 2. To explain isothermal and non-isothermal ideal reactors and their applications
- 3. To examine the problems related to multiple reactions and evaluate the selectivity, reactivity and yield

Course Outcomes:

- 1. Classify various reaction types and their applications
- 2. Apply the principles of reaction kinetics, formulate rate equations and analyse the batch reactor data
- 3. Compare and analyse ideal reactor designs (Batch, CSTR, PFR, recycle and autocatalytic) for simple chemical reaction schemes
- 4. Evaluate the choice of right reactor among single, multiple, recycle reactor, etc. with or without multiple reactions
- 5. Design non-isothermal reactors and explore steady-state multiplicity

Module:1 | Fundamental Concepts and Definitions

5 hours

Classification of reactions, rate and stoichiometry, rate law, rate equation, rate constant, variables affecting the rate of reaction, activation energy, reactions at equilibrium

Module:2 | Chemical Kinetics

6 hours

Interpretation of Batch Reactor Data - constant and variable volume batch reactor, Integral and Differential method of analysis - reaction mechanism, Half-life method, Analysis of data for Reversible and Irreversible Reactions

Module:3 Design of Isothermal Ideal Reactors

6 hours

Ideal Batch Reactor - space time, holding time and space velocity, Ideal Mixed Flow Reactor, Ideal Plug Flow Reactor for single reactions, Size comparison of single reactors for single reactions, Variable density systems

Module:4 | **Multiple Reactors**

6 hours

Multiple Reactor Systems - equal size mixed flow reactors in series, plug flow reactors in series and parallel - mixed flow reactors of different sizes in series, reactors of different types in series

Module:5 Design for Multiple Reactions

6 hours

Reactions in parallel (simultaneous reactions) for CSTR- PFR, Reactions in series (Consecutive Reactions) for CSTR-PFR, Combined series and parallel reactions

Module:6 | Special Reactors

6 hours

Semi batch reactor, Bio reactor, Recycle Reactor, Auto Catalytic Reactor

Mo	dule:7	Non-isothermal Reactors	5			8 hours		
Stea	Steady state non-isothermal reactors-CSTR, PFR, Material balance, Energy balance, Adiabatic							
reac	ctors – B	atch reactor, CSTR, PFR, N	Multiple steady sta	te, Multip	e chemical reaction	S		
Mo	dule:8	Contemporary issues				2 hours		
Gue	est lectur	re from industry and R&D o	organizations					
				To	tal Lecture hours	45 hours		
Tex	t Book:							
1.	O. Lev	enspiel, Chemical Reaction	Engineering, 200	6, 3 rd ed., V	Wiley Publications,	India		
Ref	erence l	Books:						
1.	H.S. F	ogler, Elements of Chemica	al Reaction Engin	eering, 20	16, 5 th ed., Prentice	Hall India		
	Pvt. Lte	d., New Delhi						
2.	G. F Fı	oment, K.B Bischoff and J.	D Wilde, "Chemic	cal Reactor	Analysis and Desi	gn", 2010,		
	Wiley	Publications, New York						
3.	J.M. Sı	nith, Chemical Engineering	Kinetics, 2014, 3	rd ed., McC	Graw-Hill, India			
Mod	de of Eva	luation: Continuous Assess	sment Test, Quiz,	Assignmer	nt, Final Assessmen	t Test		
Rec	ommen	ded by Board of Studies		11-0	2-2022			
App	proved b	y Academic Council	No.65	Date	17-03-2022			

Course code			T	P	C
BCHE303P	BCHE303P Chemical Reaction Engineering Lab (0	2	1
Pre-requisite	BCHE202L	Syll	abus	versi	ion
			1.0)	

- 1. To expose the students to various experiments for obtaining experimental data and to predict reaction kinetics using appropriate rate law models
- 2. To analyse the performance of ideal reactors such as Batch, Semi batch, CSTR and PFR
- 3. To impart knowledge about the behaviour of non-ideal reactors using Residence Time Distribution (RTD) analysis

Course Outcomes:

- 1. Apply the principles of reaction kinetics to formulate rate equations and analyse the reactor data
- 2. Design ideal reactors (Batch, Semi batch, CSTR, PFR) for simple chemical reaction schemes
- 3. Analyse the behaviour of non-ideal reactors for obtaining the RTD

Indi	Indicative Experiments:							
1.	Analysis of Batch reactor – equimolar constant volume							
2.	Analysis of Batch reactor - non-e	quimolar constant	t volume					
3.	Assessment of Adiabatic batch rea	actor performance	;					
4.	Performance of Plug flow reacto	r						
5.	Performance of Mixed flow reactor	or						
6.	Performance of Combined reactor	in series						
7.	Performance of packed bed reactor	or						
8.	RTD studies in Plug flow reactor	r						
9.	RTD studies in Mixed flow reactor	or						
10	RTD studies in packed bed reacto	r						
			Total Lab	oratory hours	30 hours			
Mod	Mode of assessment: Individual Experiment Assessment, Final Assessment Test							
Reco	Recommended by Board of Studies 11-02-2022							
App	Approved by Academic Council No.65 Date 17-03-2022							

Course code	Course title	L	T	P	C
BCHE304L	Chemical Process Technology and Economics	3	1	0	4
Pre-requisite	BCHE203L	Syll	abus	vers	ion
			1.	0	
Course Objecti					
-	nd unit operations concepts in the Chemical Process industrie	es.			
	appropriate process flow diagram				
3. To evaluate	he economic viability of process industry projects.				
Correge Outcom					
Course Outcon	nic and inorganic chemical processes in the industry.				
	nanufacture of industrial gases used in the chemical industry.				
-	nanufacturing processes in the fertilizer industry				
•	ar, Soap manufacturing and Petroleum refining.				
	ne economic evaluation concepts as applied in the Chemical l	Proces	ss Inc	dustri	es.
Module:1 Ch	loro-alkali and Cement Industries			10 ho	urs
Manufacture of	soda ash - caustic soda - sulphur - sulphuric acid - Portland co	ement	- gla	ass.	
	lustrial Gases			8 ho	
	carbon-di-oxide – hydrogen - oxygen and nitrogen – produc	er ga	1s - 5	Syn-g	as -
natural gas - Cle	an energy technologies.				
Madala 2 Es	492 T., J., .4.2			0 1	
l.	tilizer Industries			8 ho	
	nitric acid -Ammonia - Urea - phosphoric acid - Mono Am		um P	hospl	hate
– Dı-Ammonıuı	n Phosphate – Single super phosphate - Triple super phosphat	te.			
			Т		
Module:4 Ce	lulose, Sugar, Soap and Detergent Production Industries			6 ho	urs
Manufacture of	pulp and paper- sugar- Oil and Fats - soaps and detergents				
Module:5 Pe	roleum Industries			6 ho	urs
		20000	l .	0 110	
Petroleum reim	ng processes - cracking - reforming - secondary refining proc	<u>:esses</u>			
17.11.6			l .	101	
I	st Estimation		l	12 ho	
Cash flow for i	dustrial operations, financial sources, Equipment costs, mat Estimation of capital requirements and operating expenses.	erials	trans	sfer a	nd
nanding costs,	sommation of capital requirements and operating enponsess				
Module:7 Co	st accounting and Depreciation			8 ho	urs
	accounting, financial statements, Interest and Investment	t cost	s, Ta	axes	and
Insurance, Dep	reciation- Calculation methods				
_					
Module:8 Co	ntemporary Issues			2 ho	urs
	om industry and R & D organizations		I		
	Total Lecture ho	urs:	(60 ho	urs
Toyt Rooks			•		

Text Books:

1.	M. Gopala Rao and Marshall Sittig, Dryden's Outlines of Chemical Technology, 2010, 3 rd ed., East West Press, India.									
2.	James R Couper: Process Engineer	ring Economics, 20	003, Marc	cel Dekker Inc., USA.						
Ref	ference Book:									
1.	Austin G.T., Shreve's Chemical Pro	ocess Industries, 2	2017, 5 th e	d., McGraw Hill, USA.						
Mo	Mode of evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test									
Rec	Recommended by Board of Studies 11-02-2022									
Apı	Approved by Academic Council No.65 Date 17-03-2022									

Course code	Course title	L	T	P	C
BCHE305L	BCHE305L Process Dynamics and Control		0	0	3
Pre-requisite	BMAT102L	Sylla	abus	vers	ion
			1.0	0	

- 1. To introduce the fundamental concepts of control system and to understand the dynamic behaviour of the process
- 2. To impart knowledge on different modes of controllers, their general characteristics and analyse the stability of control systems
- 3. To develop basic understanding on advanced control strategies and implementation of computer control in industries

Course Outcomes:

- 1. Understand process measuring instruments and their operating principles
- 2. Apply the mathematical tools for modelling the dynamic behaviour of open loop process using different forcing functions
- 3. Identify the modes of control action required for closed loop control system and its stability in time domain
- 4. Analyze the stability of closed loop control system in frequency domain
- 5. Evaluate different advanced control schemes and various types of computer control in industries

Module:1 | Process Instrumentation

4 hours

Measuring instruments, Components, Performance characteristics - Static and Dynamic, Principal measuring instruments in process industries- Temperature, Pressure, Flow Rate, Liquid Level, pH and Concentration

Module:2 | Linear Open Loop Systems

8 hours

Introduction to Process Control, Laplace transformation - Transform of standard functions, Derivatives and integrals, Inversion theorems - Transfer functions - Forcing functions - step, pulse, impulse and sinusoidal - First order and Higher order system dynamics - First order systems in series, linearization of nonlinear systems, Transportation lag

Module:3 | Linear Closed Loop Systems

6 hours

Components of closed loop control system – Pneumatic and Electronic controllers - Final control elements, Types of control valve- sizing & characteristics - Development of Block diagram - block diagram reduction rules, overall transfer function

Module:4 | Transient Response and Stability Analysis

7 hours

 $Modes\ of\ control\ action-\ ON/OFF,\ P,\ PI,\ PD\ ,\ PID\ and\ their\ characteristics-offset\ -\ Transient\ response\ of\ closed\ loop\ control\ systems\ -\ stability\ of\ closed\ loop\ systems\ -\ Routh's\ test$

Module:	Frequency Domain Ar	nalysis			8 hours
Frequenc	y response analysis - sub	stitution rule, E	Bode diagra	ms- Bode stability cr	iteria, gain
margin, p	hase margin, Nyquist plo	t, Controller tu	ning using	Ziegler Nichols metho	od, Cohen-
Coon met	thod				
Module:	6 Advanced Process Cor	ntrol			6 hours
Advance	d control strategies - Casca	de control, Rat	io control,	Feed-Forward control,	Inferential
control, I	ntroduction to Multivariable	e Control, Conc	ept of Relat	ive Gain Array	
Module:	7 Computer Process Con	ntrol			4 hours
	r Process control and its in		Drogramma	ble Logic Controller	
	System, SCADA, Hardwar	e for computer	based cont	roi, interfacing compt	iter system
with proc	ess				
					1
Module:					2 hours
Guest lec	ture from industry and R &	D organization	S		
			,	T-4-1 I4 h	45 1
Torrt Doo	1			Total Lecture hours:	45 hours
1. Cous	ghanowr C. R., Koppel L.	M Droope Cy	otom Analy	sis and Control 2012	2rd ad
	raw Hill, New Delhi	M., Process Sy	stem Anary	sis and Condon, 2015,	3 " eu.,
IVICO	naw min, new benin				
Referenc	e Books:				
	hanopoulos G., Chemical Pr	rocess Control.	2015, 1 st ed	Pearson Education In	dia. New
Delh	-	,	,	,	,
2. Sebo	rg D.E., Edgar, T. F., Melli	champ D.A., Pr	ocess Dyna	mics and Control, 2013	3, 3 rd ed.,
	y India, New Delhi	1	•		
Mode of	evaluation: Continuous Ass	essment Test, Q	uiz, Assign	ment, Final Assessmer	nt Test
Recomme	ended by Board of Studies			11-02-2022	
Approved	l by Academic Council	No.65	Date	17-03-2022	

Course code	Course title	L	T	P	C
BCHE305P	CHE305P Process Dynamics and Control Lab				
Pre-requisite	BMAT102L	Syllabus version			on
		1.0			

- 1. To expose various types of controllers (ON/OFF, P, PI, PID) and their application in process industries
- 2. To explain different controller tuning methods
- 3. To introduce advanced control strategies and computer control employed in various control scenarios

Course Outcomes:

- 1. Identify appropriate modes of controller for a given process and apply right tuning method
- 2. Apply a suitable advanced control strategy appropriate for a given process
- 3. Compare the performance of controllers for a given process using PROSIM and DCS trainer

Indi	Indicative Experiments								
1.	Automatic temperature control loop in a heating tank								
2.	Automatic level control loop in a	cylindrical tank							
3.	Automatic flow control loop in a	pipe line							
4.	Automatic cascade control loop								
5.	Dynamics of non-interacting tanks/interacting tanks								
6.	Controller tuning using an open loop method (Cohen-Coon method) in Simulink								
7.	Controller tuning using a closed l	oop method (Zieg	ler–Nicho	ls me	thod) in Simulink				
8.	Control Valve Characteristics								
9.	Dynamics of Ratio control using	PROSIM							
10.	Process control using DCS trained	r							
		Total Labo	oratory H	ours	30 hours				
Mod	le of assessment: Individual Experi	ment Assessment	, Final Ass	sessm	ent Test				
Reco	ommended by Board of Studies		11-0	2-202	22				
App	Approved by Academic Council No.65 Date 17-03-2022								

Course code	Course Title	L	T	P	C
BCHE306L	Chemical Reaction Engineering II	2	1	0	3
Pre-requisite	BCHE303L, BCH303P	Sy	llabus	versi	on
			1.0)	

- 1. To introduce fundamentals of heterogeneous reactions
- 2. To facilitate understanding of non-ideal flow
- 3. To familiarize with critical parameters affecting the performance and design of heterogeneous and multi-phase reactors

Course Outcomes:

- 1. Predict the conversion in a non-ideal reactor using tracer information
- 2. Analyze the heterogeneous reaction systems in designing the reactors for fluid-solid reactions
- 3. Explain the role of catalyst in heterogeneous catalytic reactions
- 4. Characterize catalyst surface properties for better catalytic activity
- 5. Identify critical parameters affecting the performance and design of heterogeneous and multiphase reactors

Module:1 | Non-ideal Reactors

6 hours

Basics of non-ideal flow, Residence Time Distribution (RTD) - Relationship between C, E and F curves, Modelling of non-ideal reactors, one parameter and two parameter models - Conversion in real reactor systems.

Module:2 Introduction to Heterogeneous Reaction Engineering

6 hours

Introduction to heterogeneous reacting systems - Non-catalytic solid-fluid reactions - Sharp interface and volume reaction models, determination of rate-controlling steps and application to design of reactors.

Module:3 Introduction to Catalytic Reactions

5 hours

Definition and properties - Steps involved in catalytic reactions - Rate law mechanisms - Rate limiting step.

Module:4 | Transport Mechanisms in heterogeneous catalysis

8 hours

Transport effects in heterogeneous catalysis: Internal effectiveness, External transport limitations and overall effectiveness.

Module:5 | Catalysts Preparation, Characterization

5 hours

Definition and types of catalysts – Industrial catalysts – Preparation and characterization of the catalysts, Surface area and pore volume determination.

Module:6 | Catalyst Deactivation methods

5 hours

Types of catalyst deactivation – Determining the order of deactivation – Catalyst regeneration methods.

Module:7 Design of Reactors for Fluid-Solid and Fluid-Liquid reactions

8 hours

Reactor design fundamentals and methodology, rate data analysis - Overall view of Fluidized, Packed and Moving bed reactors- Fluid-liquid reactions: Film and Penetration theories - Fluid-solid catalytic reactions.

Mo	dule:8	ule:8 Contemporary Issues 2 hou									
Gu	Guest lecture from industry and R & D organisations										
				Tot	al Lecture hours:	45 hours					
Tex	kt Book:										
1.	H. Sco	tt Fogler, Elements of Ch	emical Reaction	Engineerir	ng, 2015, 4 th ed., I	Pearson,					
	India.										
Ref	ference I	Books:									
1.	G. T. M	Iiller, Chemical Reaction E	ngineering, 2016,	CBS Publ	ishers, India.						
2.	J.M. Sı	mith, Chemical Engineering	g Kinetics, 2014, 3	Brd ed., McG	Graw-Hill, India.						
3.	O. Leve	enspiel, Chemical Reaction	Engineering, 200	6, 3 rd ed., V	Wiley Publications,	India.					
Mo	de of eva	aluation: Continuous Assess	sment Test, Quiz,	Assignme	nt, Final Assessmen	t Test					
Rec	Recommended by Board of Studies 11-02-2022										
Ap	proved b	y Academic Council	No.65	Date	17-03-2022						

Course code	Course title	L	T	P	С
BCHE307L	BCHE307L Process Modelling and Simulation			0	2
Pre-requisite	BMAT201L	Sy	llabu	s ver	sion
			1	1.0	

- 1. To study the modelling & simulation techniques of chemical processes
- 2. To discuss the importance of modelling and economic analysis to science and engineering
- 3. To identify and explain different types of models and simulations for hypothesis testing

Course Outcomes:

- 1. Explain the different modelling approaches for chemical processes
- 2. Develop mathematical models for various chemical processes
- 3. Analyze physical and chemical phenomena involved in various processes
- 4. Interpret the results of models obtained from the simulation

Module:1 | Conservation Principles and Models

3 hours

Introduction to modelling and simulation, classification of mathematical models, Systematic approach to model building, Conservation principles, Constitutive relations

Module:2 | Steady State Lumped Systems

5 hours

Degree of freedom analysis, single and network of process units, systems yielding linear and non-linear algebraic equations

Module:3 | Flow Sheeting and Solution

4 hours

Flow sheeting, sequential modular and equation oriented approach, partitioning and precedence ordering, Simulation of steady state lumped systems including simultaneous solution, modular solution

Module:4 Unsteady State Lumped Systems

5 hours

Analysis of liquid level tank, gravity flow tank, jacketed stirred tank heater, Isothermal and Non-isothermal reactors, flash and distillation column

Module:5 | Dynamic Simulation of Unsteady State Lumped Systems

4 hours

Solution of ODE initial value problems, matrix differential equations, simulation of closed loop systems

Module:6 | Steady and unsteady State Distributed systems

3 hours

Analysis of compressible flow, heat exchanger, plug flow reactor, solution of ODE boundary value problems, sedimentation, heat conduction, heat transfer in packed bed, Diffusion.

Mo	dule:7	Artificial Neural Netv	vork			4 hours				
Dev	velopme	nt of ANN based mod	els-Architecture-io	dentificati	on of inputs-choice	ce of the				
architecture-training the ANNs-Performance of ANN Models-Learning methods- Over fitting and										
under fitting Networks.										
Mo	dule:8	Contemporary issues				2 hours				
Gue	est lectur	re from industry and R&D of	organizations							
				Tot	al Lecture hours:	30 hours				
Tex	tbooks:									
1.	Ashok	K., Process Modelling	and Simulation	n in Ch	emical, Biochemic	al and				
	Enviro	nmental Engineering, 2015,	1st ed., CRC press	, New Yo	rk.					
2	Simant	R.U., Process Modelling	And Simulation	for Chem	ical Engineers The	ory and				
	Practic	e, 2017, 1st ed., John Wiley	& sons Ltd, Chick	nester, UK	- 					
Ref	erence l	Books:								
1.	Jana A	.K., Chemical Process M	odelling and Cor	nputer Si	imulation, 2018, 3rd	d ed., PHI				
	Learnin	ng, Delhi.	-	-						
2.	Nayef	G., Modeling and Simulation	on of Chemical Pr	ocess Sys	tems, 2019,1st ed., 0	CRC press,				
	FL.	_				-				
Mo	de of eva	aluation: Continuous Assess	sment Test, Quiz,	Assignme	nt, Final Assessmen	t Test				
		led by Board of Studies			02-2022					
Apı	proved b	y Academic Council	No.65	Date	17-03-2022					

Course code	Course title	L	T	P	C
BCHE307P	0	0	2	1	
Pre-requisite	Pre-requisite BMAT201L				ion
			1	.0	

- 1. To study the modelling & simulation techniques of chemical processes
- 2. To discuss the importance of modelling to science and engineering and the cost
- 3. To identify different types of models and simulations and explain the use of models and simulations for hypothesis testing

Course Outcomes:

- 1. Explain modelling approaches
- 2. Illustrate the mathematical models for various chemical processes

Indi	Indicative Experiments					
1.	Solution of Algebraic equations					
2.	Two Interacting Tanks in Series					
3.	Jacketed stirred tank Heater					
4.	Van de Vusse Reaction Mechanism					
5.	Non-isothermal CSTRs in series					
6.	Biochemical Reactor					
7.	Mixing Tank					
8.	1 D unsteady state heat conduction equation					

9.	Elliptic PDE using PDE toolbox								
10.	Parabolic PDE using PDE toolbo	X							
		,	Total Lab	oratory Hours	30 hours				
Mod	le of assessment: Individual Experi	iment Assessment	, Final Ass	sessment Test					
Rec	Recommended by Board of Studies 11-02-2022								
App	Approved by Academic Council No.65 Date 17-03-2022								

Course code	Course title	L	T	P	C
BCHE308L	Chemical Process Equipment Design	3	0	0	3
Pre-requisite	BCHE302L, BCHE302P	Syl	labu	is ve	rsion
			1	1.0	

- 1. To summarize the concepts of unit operations and unit processes in chemical engineering.
- 2. To impart knowledge on the concepts of design of major equipment
- 3. To understand the energy requirements of the process and design network

Course Outcomes:

- 1. Understand flowcharts and ways to interpret the drawings
- 2. Explain the procedure practiced in the selection and design of fluid handling equipment, pressure vessels, heat transfer equipment
- 3. Use Standards and codes involved in the design process
- 4. Design separation equipment and ideal reactors using the fundamental principles
- 5. Apply Pinch Technology concept for energy recovery and design basic Heat Exchanger network

Module:1 | Introduction to Process Design

5 hours

Introduction -Types of flowchart – Preparation and reading of flowcharts - Design of Fluid handling equipment – Pumps and pipes – pipe standards - pipe schedule- Gauges

Module:2 | Pressure vessel

6 hours

Mechanical design of pressure vessel – Concept of structural stability – Types of pressure vessel – Codes and standards – selection procedure - supports – Storage vessels for liquids and gasses-

Module:3 | Heat transfer equipment

7 hours

Basic design equation of heat transfer – Design of double pipe heat exchanger - Shell and tube heat exchanger – TEMA classification – Kern's method – Condenser design

Module:4 | **Heat Exchanger Network**

7 hours

Introduction to Pinch Technology– Pinch point –Composite and Grand Composite curves - Heat exchanger network for simple processes

Module:5 | Separation process equipment

7 hours

Theory of distillation – McCabe –Thiele method - Design of separation column – Distillation and Absorbers– Plate type and Packed column

Module:6 | Reactor Design

6 hour

Concepts of the ideal reactor – reactor sizing with or without reaction – adiabatic and catalytic reactors - Reactor performance analysis

Module:7 | Simultaneous Heat and Mass transfer Equipment

5 hours

 $Introduction\ to\ heat\ and\ mass\ transfer\ operation-design\ of\ evaporators-single\ and\ multiple\ effect\ evaporators-design\ of\ dryer.$

Module:8 | Contemporary Issues

2 hours

Guest lecture from industry and R & D organizations

			Tot	al Lecture hours:	45 hours					
Tex	kt Books:									
1.	1. V.V. Mahajani and S.B. Umarji, Joshi's Process Equipment Design. Laxmi Publications, 2016, 5 th ed., India.									
2.	Coulson J.M., Richardson J.F., Chemical Engineering, Volume 6, 2005, 4 th ed., Butterworth – Heinemann Publishing Ltd., USA.									
Ref	ference Books:									
1.	Joshi. M.V., Mahajani. V.V., P Ltd., India.	rocess Equipment	Design, 20	000, 3 rd ed., Mc-M	illan India					
2.	Richard A. Turton, Richard C. Ba									
	Bhattacharyya - Analysis, Synthe	esis and Design of C	Chemical P	rocesses, 4th ed., Pro	entice					
	Hall, USA, 2014									
Mo	de of evaluation: Continuous Asse	ssment Test, Quiz,	Assignmei	nt, Final Assessmen	t Test					
Rec	commended by Board of Studies		11-0	02-2022						
Ap	proved by Academic Council	No.65	Date	17-03-2022						

Course co	de		Course title			L	T	P	С
BCHE308	P	Chemical Pro	cess Equipment	Design La	ıb	0	0	2	1
Pre-requis	ite	BCH	E302L, BCHE3	02P		Sy	llabus	versi	on
							1.	0	
Course Obje			1.01 1 . 0						
11 0	-	ots to generate and r		-					
		equipment to giver nd apply simulation		ng Sona we	OIKS				
3. To unders	and a	nd appry simulation	tools to design						
Course Outo	omes	•							
1. Under	stand	flowcharts and way	ys to interpret the	e drawings					
		draw major equipm		in process i	ndustri	es			
3. Apply	simu	lation software for	simple systems						
T 1' 4' E									
Indicative Ex 1. Basics			antinus						
		Odrawing and appli							
2. Extrus	ion o	surfaces and geom	etries						
3. Design	n and	drawing of Pressure	evessel						
4. Design	and	drawing of Shell an	d Tube heat Exc	hanger					
5. Design	and	drawing of Bubble	cap tray						
6. Design	and	drawing of Rotary I	Louvre dryer						
7. Analy	sis of	the performance of	Heat Exchanger	using Aspe	en plus				
8. Design	and	analysis of Distillat	ion Column usin	g Aspen pl	us				
9. Cost E	stima	tion of Distillation	Column using A	spen plus					
10. Dynar	nic sii	nulation on distillat	ion column usin	g Aspen Plı	us/Prosi	mulat	or		
				Total Labo	oratory	Hour	rs 30	hour	s
		nt: Individual Exper	iment Assessme				st		
		Board of Studies		- T	02-2022				
Approved by	Acad	emic Council	No.65	Date	17-03	3-2022	2		

DISCIPLINE ELECTIVE COURSES - 30 (15 CREDITS)

Course code	Course Course Title					
BCHE309L	BCHE309L Membrane Separation Processes					
Pre-requisite	NIL	Syl	labu	s ver	sion	
			1	.0		

- 1. To explain the basic membrane separation mechanisms, transport models, membrane materials and modules
- 2. To characterize and evaluate the membrane performance using membrane permeability parameters
- 3. To describe membrane fouling, cleaning and its applications

Course Outcomes:

- 1. Describe the membrane types, modules and membrane separation processes
- 2. Identify suitable techniques for membrane preparation and characterization
- 3. Derive various transport models for membranes
- 4. Compute flux, concentration polarization, fouling and operating parameters for various membranes
- 5. Examine the advanced membrane processes for a specific separation

Module:1 Overview, Classification and Membrane Materials

6 hours

Introduction, historical development, definition and types of membranes, basic principles of membrane separation, membrane processes and classifications, membrane materials - polymers used in membrane preparation and their properties, inorganic materials for membrane preparation, their advantages and disadvantages, membrane modules and selection, typical flow patterns.

Module:2 | Membrane Preparation and Characterization

7 hours

Membrane preparation – phase inversion process, track-etching, sol-gel peptization, template leaching, interfacial polymerization, wet, dry and melt spinning, sintering, dip and spin coating methods, membrane modification; membrane characterization – visual methods (SEM and TEM), Hydraulic permeability, bubble point, liquid displacement, mercury porosimetry, permporometry, thermporometry, gas adsorption-desorption, molecular weight cut-off (MWCO), microbial challenge test.

Module:3 | **Membrane Transport Theory**

6 hours

Description of transport process - passive and active, Transport through porous membrane and nonporous membrane, Membrane transport theory -solution-diffusion (SD) model, fouling model, concentration and gel polarization.

Module:4 Reverse Osmosis

6 hours

Concept of osmosis and reverse osmosis, Models for reverse osmosis transport - Kedem-Katchalsky, Spiegler-Kedem, Solution-Diffusion, Pore transport, Design and operating parameters, Design of RO module, Reverse osmosis for the non-aqueous system, Forward osmosis.

Module: 5 | Nanofiltration

5 hours

Principles of nanofiltration, transport mechanism in NF membranes, parameters affecting the performance of NF membranes, application of nanofiltration membranes.

Module:6 | Microfiltration and Ultrafiltration

7 hours

Basic principles, advantages of MF, cross-flow and dead-end MF, MF membranes and modules, Models for MF transport, plugging and throughput, fouling in MF, MF applications. Basic principles of UF, UF membranes and modules, UF configurations, Models for UF transport, mass transfer coefficient, membrane rejection and sieving coefficient, factors affecting UF performance, fouling & permeate flux enhancement, UF applications, Micellar-enhanced UF, affinity UF, UF based bio separation.

Module:7 | Other membrane Processes

6 hours

Pervaporation, gas separation, Liquid membranes, Ion exchange membranes, Dialysis and electrodialysis, Membrane contactor, Membrane distillation, Membrane chromatography, membrane bioreactors, membranes in bio-separation.

Module:8 Contemporary issues

2 hours

Guest lecture from industry and R & D organisations.

Total Lecture hours: 45 hours

Text Books:

1. Kaushik Nath, Membrane Separation Processes, 2016, 2nd ed., PHI Learning Private Limited, New Delhi, India.

Reference Books:

- 1. R.W. Baker, Membrane Technology and Application, 2012, John Wiley and Sons Ltd. USA.
- 2. B.K. Dutta, Mass Transfer and Separation Processes, 2007, 2nd ed., PHI Learning Private Limited, New Delhi, India.

Mode of evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment TestRecommended by Board of Studies11-02-2022Approved by Academic CouncilNo.65Date17-03-2022

Course code	Course title	L	T	P	С
BCHE310L			0	0	3
Pre-requisite	Nil	Syllabus version			1
			1.0		

- 1. To equip the students with the basic understanding of different types of polymers, preparation method and their applications.
- 2. To impart insights in relation to the structure and size of the polymers and their processing techniques.
- 3. To expose the students to different types of biopolymers and bio-nanocomposites and their applications.

Course Outcomes:

- 1. Explain the importance of different types of high polymeric systems and their applications.
- 2. Classify the different methods of polymerization processes and their mechanism.
- 3. Identify the different structures and sizes, and characterization of the polymers.
- 4. Summarize the rheological and morphological properties of different polymers.
- 5. Choose suitable polymer processing techniques for preparation of various polymers.

Module:1 | Basic Concepts of High Polymer Systems

4 hours

Introduction and Historical Background, Macromolecular Concept, Structural Features of a Polymer, Length to Diameter Ratio, Classification of Polymers, Structure—Property Relationship – molecular forces and chemical bonding on polymers.

Module:2 | Classification of Polymerization

6 hours

Functionality Principle, Types of Polymerization, Basic Characteristics of step-Growth Polymerization and addition polymerization, Relationship between Average Functionality, Extent of Reaction and Degree of Polymerization, Kinetics of Step-Growth Polymerization and chain polymerization, Comparison between Chain-growth and Step-growth Polymerization, Concept of Copolymerization

Module:3 | Polymer Characterization and properties of commercial polymers

Polymer Degradation, Concept of Average Molecular Weight, Polymer Fractionation and Molecular Weight Distribution, Crystallinity, Glass transition temperature and mechanical properties: testing of polymers, Gel Permeation Chromatography – PE- PP – PS – PVA – PMMA – PTFE – polyacrylamide – Nylon – PF – PU – Silicones.

Module:4 | Polymer Rheology and Morphology

7 hours

Introduction - Stress and Strain - Ideal Elastic Solid - Non-Newtonian Fluid - Apparent viscosity - Viscosity as a Function of Molecular Weight - Weissenberg Effects, Rheological properties of polymers - Viscoelastic Behaviour, Stress Relaxation, Relaxation or Strain Enhancement under Constant Stress - Hysteresis - Creep and Relaxation of Typical Plastics - Development of Crystallinity - Crystallization of Rubber on Cooling - Mechanism of Crystallization - Melting of rubber - Spherulites.

Module:5 | Polymer Processing Techniques

6 hours

Moulding techniques – compression – transfer moulding – injection moulding – reaction injection moulding – forming techniques – extrusion – spinning – calendaring – thermoforming – casting – slush – Roto moulding – powder coating – dip coating – friction coating.

Module:6 | Polymer Blends, Composites and Conducting Polymers

6 hours

Polyblends – Types - Properties - Glass Transition of Polyblends, Polymer Composites, Bionano-composites, Protein-based polymers, Conducting Polymers, Inherently Conducting Polymers, Photoconducting Polymers, Carbon Black/Carbon Fibre Reinforced Conductive Polymer Composites **Polymers in Wastes and their Environmental Impact** Module:7 6 hours Natural Resources Scenario, Waste Items, Classified Waste Materials, Power Scenario, Municipal Solid Wastes (MSW), Waste Management, Recovery and Recycling of Organic Wastes, Composting, Integrated Waste Management for Sustainable Development Module:8 2 hours **Contemporary issues** Guest lecture from industry/ R&D organizations Total Lecture hours: 45 hours **Text Book:** Ghosh P, Polymer Science and Technology: Plastics, Rubbers, Blends and Composites, 2017, 3rd ed, McGraw Hill, India **Reference Books:** Gowariker V.R., Viswanathan N.V., Jayadev S, Polymer Science, 2015, 2nd ed, New Age Publishers, India Young R.J., Lovell P.A., "Introduction to Polymers", 2011, 3rd ed, CRC Press, India. Mode of Evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test Recommended by Board of Studies 11-02-2022 Approved by Academic Council No.65 17-03-2022 Date

Course code	Course title	L	T	P	C
BCHE311L	Process Utilities and Pipeline Design	3	0	0	3
Pre-requisite	Nil	Syllabus version			sion
		1.0			

- 1. To equip the students with a basic understanding of different types of utilities.
- 2. To impart insights into the selection of different utilities and their optimum utilization in process industries.
- 3. To expose students to understand the piping design, layout and insulation in process industries.

Course Outcomes:

- 1. Understand the importance of optimum usage of utilities in process industries.
- 2. Assess the quality, effective utilization and distribution of water and steam.
- 3. Compare different types of equipment used for air treatment, conditioning, refrigeration and transportation of industrial gases.
- 4. Select a suitable type of piping design, materials and standards used in industries.
- 5. Design a suitable piping layout and insulation system used in process industries.

Module:1 Introduction to Process Plant Utilities

7 hours

Compressed air for industrial use - selection of blowers and compressors - Purification and transportation of air - duct design - air blending - exhaust ventilation - flare systems - inert gases - properties and uses.

Module:2 Process water treatment and recycling

5 hours

Water and its characteristics - conditioning and treatment for process - recycling aspects of water from blowdowns and rejects -Wastewater treatment and recycling.

Module:3 | Steam generation and distribution

7 hours

Steam generation and its application in chemical process plants – boiler types (Babcock Wilcox, Nestler, Cochran boilers) - boiler accessories - design of efficient steam heating systems - steam economy - condensate utilization - steam traps - steam distribution and waste heat utilization.

Module:4 | Humidification and refrigeration systems

6 hours

Design of refrigeration and air-conditioning system - types of refrigerants - factors affecting the refrigeration cycle - operation and maintenance of refrigeration systems - concept of cryogenics and its characteristics - industrial coolants - thermal fluid systems.

Module:5 Introduction to Piping Design

6 hours

Process Auxiliaries - basic considerations and flow diagrams in chemical engineering plant design - piping design - pipe sizes - working pressure - basic principles - piping drawings- pipe fittings - pipe joints.

Mo	dule:6	Piping Materials, Cod	es and Standar	ds		6 hours	
Mat	terial pro	operties of piping materials s and standards : ASME – I	– Metallic materia	ıls – Degra		terials in service.	
Mo	dule:7	Piping Installation and I	nsulation			6 hours	
		ations – Overhead installation					
	-	and cryogenic insulation -	-			ulation jackets –	
Insu	ılation n	naterials and their effect on	various materials	of equipme	ent piping.		
Mo	dule:8	Contemporary issues				2 hours	
Gue	est lectur	e from industry and R & D	organizations				
				Total Lec	ture hours:	45 hours	
Tex	t Book:						
1.	Brough U.K.	ton J., Process Utility Syst	ems, 2004, 3 rd ed	., Instituti	on of Chemic	cal Engineers,	
2.	McAlli Publica	ster E.W., Pipeline Rule	s of Thumb Ha	and Book,	2009, 7 th	edition, Gulf	
Ref	erence l	Books:					
1.	Mujaw India.	ar B.A., A Textbook of Pl	ant Utilities, 2007	7, 3 rd ed.,	Nirali Prakas	han Publication,	
2.		B.E., Prausnitz J.M., O'Cor w Hill, USA.	nnell J., The Prope	rties of Ga	ses and Liqui	d, 2008, 5th ed.,	
3.	3. Nayyar M. L., Piping Handbook, McGraw Hill, 7 th Edition, 2000						
Mo	Mode of evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test						
	Recommended by Board of Studies 11-02-2022						
App	Approved by Academic Council No.65 Date 17-03-2022						

Course code	Course title	L	Т	P	С
BCHE312L	Chemical Process Optimization	3	0	0	3
Pre-requisite	BCHE208L	Syl	labu	s ver	sion
	2 CALLEVOL		1.	0	

- 1. To provide an overview of state-of-the-art optimization algorithms
- 2. To impart the theoretical knowledge of Chemical Engineering principles that strengthens optimization techniques.
- 3. To enhance the modelling and formulation skills of practically relevant optimization problems in Chemical Engineering.

Course Outcomes:

- 1. Demonstrate the basic principles of Chemical Engineering Systems
- 2. Summarize the different types of optimization problems for process engineering
- 3. Evaluate single and multivariable optimization chemical engineering problems
- 4. Identify the different types of hypotheses for the model equations chemical system
- 5. Solve the optimization problems in real field applications.

Module:1 Formulation of Optimization Problems

6 hours

Nature and Organization of Optimization problem; Mathematical concepts of optimization; Gradient and Hessian matrix; Convex functions and sets; Degrees of freedom; Developing model for optimization; Constraints in the model; Fitting models to data, Method of least squares; Factorial experimental design

Module:2 | Single Variable Optimization – Unconstrained

6 hours

One-dimensional search - Methods requiring derivatives (Newton, Quasi Newton, Secant method); Region elimination methods (Interval halving, Fibonacci search and Golden section) Polynomial approximations (Lagrange's, quadratic & Cubic)

Module:3 Multivariable Optimization – Unconstrained

6 hours

Unconstrained multivariable optimization - Graphical visualization (contour plots, 3D plots); Gradient-based methods - Steepest descent, conjugate direction, and Newton methods

Module:4 Linear Programming

6 hours

Linear programming (LP) - Graphical solution - Simplex method; Test for optimality –Sensitivity analysis; Introduction to interior-point method

Module:5 Nonlinear Programming with constraints

6 hours

Nonlinear programming (NLP) with constraints; Lagrange multipliers - Graphical illustration of NLP problems - KKT necessary and sufficient conditions; Quadratic programming - Successive linear and quadratic programming; Branch and bound methods; Minimum cost routing problems - Solution of separable nonlinear programming problem

Mo	dule:6	Optimization of Chemical	l processes-I			6 hours	
		diameter- Minimum work of transmission network- Optim			operation of fixed	bed filter- Optimal	
Mo	dule:7	Optimization of Chemical	processes-II			7 hours	
reac	tors- Op	ign and operation of staged timum design of shell and of multistage evaporators usin	tube heat exchange	ger - optin			
Mod	Module: 8 Contemporary issues					2 hours hours	
Gue	est lecture	from industry and R & D org	ganizations				
				Tota	l Lecture hours:	45 hours	
Te	xt Book:						
1		F.F., Himmelblau D.M., Lasdov-Hill Education, India.	on L.S., Optimization	on of Chem	ical Processes, 2015	5, 2 nd ed.,	
Re	ference l	Books:					
1	Dutta S.	, Optimization in Chemical E	ngineering, 2016, 1	st ed., Camb	oridge University Pro	ess, India	
2	Rao S.S., Engineering Optimization: Theory and Practice, 2009, 4 th ed., John Wiley & Sons Ltd., USA.						
Mo	ode of eva	aluation: Continuous Assessm	ent Test, Quizzes, A	Assignments	s, Final Assessment	Test	
		led by Board of Studies			11-02-2022		
	Approved by Academic Council No.65 Date 17-03-2022						

Course code	Course title	L	T	P	С
BCHE313L	BCHE313L Environmental Pollution Control			0	3
Pre-requisite	NIL	Sy	L T 3 0	ıs ver	sion
			1	1.0	

- 1. To understand the different environmental standards related to air and water
- 2. To identify and design the equipments for air and water pollution control
- 3. To illustrate the effective methods of solid and hazardous waste management

Course Outcomes:

- 1. Understand basics of pollution parameters, standards and legislations on the environment
- 2. Apply the principles of process modification and use of alternative raw materials for pollution prevention
- 3. Design control equipments to meet appropriate requirement of environmental standards
- 4. Identify the techniques for solid and hazardous waste management
- 5. Analyze pollution control strategies in various process industries

Module:1 Introduction

5 hours

Environmental problems due to pollution - characterization of emission and effluents-Environmental standards (water standards for potable and agricultural streams, air standards)-MINAS.

Module:2 | **Pollution Prevention**

6 hours

Process modification, alternative raw material, recovery of by-products from industrial emission/ effluents, recycle and reuse of waste, energy recovery and waste utilization. Material and energy balance for pollution minimization- Life cycle assessment (basic concepts).

Module:3 | Air pollution control

8 hours

Principles and design of air pollution control equipments (particulate and gaseous pollutants) - gravity settling chamber – cyclone separator – electrostatic precipitators – fabric filters - wet scrubbers – adsorbers.

Module:4 | Water pollution control

10 hours

Selection, design and performance analysis of waste water treatment processes: preliminary, primary (sedimentation, coagulation and flocculation) and secondary treatment processes (activated sludge process and trickling filter) – sludge separation and drying - tertiary treatment process (qualitative treatment)

Module:5 | **Solid waste management**

5 hours

Classification of solid waste - collection, storage and transport of solid waste - 4R concept - waste disposal methods: composting, landfilling and incineration

Module:6 | **Hazardous** waste management

3 hours

Hazardous waste classification - treatment methods: physical, chemical, biological and thermal - biomedical and e-waste management

Module:7 | Pollution control in chemical process industries

6 hours

Sources - characteristics - pollution control strategies for selected industries: textile and

tanı	tanneries, electroplating, refineries and thermal power plants							
Mo	dule:8	Contemporary issues					2 hou	urs
Gue	est lectur	e from industry and R & I	O organization	S			•	
					Total	Lecture hours:	45 hou	ırs
Tex	xt Book:						•	
1.	Rao C	S.S., Environmental Poll	ution Contro	l Eng	gineering,	2018, 3 rd ed.,	New A	\ge
	Interna	tional Publishers, India.						
2.	Tchoba	noglous G., Theisen H.,	Vigil S.A., In	egrate	ed Solid V	Vaste Managemei	nt, 2014,	1 st
	ed., Me	cGraw Hill Education, Ind	lia.					
Ref	ference I	Books:						
1.	Bhatia	S.C., Environmental Pollu	tion and Cont	rol in	Chemical	Process Industrie	es, 2013, i	2^{nd}
	ed., Kh	anna publishers, India.						
2.	Pollutio	on Control Law Series: PC	CLS/02/2010, C	Centra	l Pollution	Control Board, 2	010, 6 th e	ed.,
	India.							
Mo	Mode of evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test							
Rec	Recommended by Board of Studies 11-02-2022							
Apı	proved b	y Academic Council	No.65		Date	17-03-2022		

Course code	Course title	L	T	P	C
BCHE314L	Fuels and Combustion	3	0	0	3
Pre-requisite	Nil	L 1 3 0	s ver	sion	
			1	1.0	

- 1. To introduce basic physical and chemical properties of fossil and alternative fuels.
- 2. To describe fuel characterization techniques for various types of fuels
- 3. To perform stoichiometric based combustion calculations

Course Outcomes:

- 1. Understand various types of fuels for firing in boilers and furnaces.
- 2. Select the right type of fuel based on availability, storage, handling, pollution and cost of fuel.
- 3. Describe the fuel properties for efficient use.
- 4. Analyse exhaust and flue gases.
- 5. Explain various combustion equipment.

Module:1 | Classification and Properties of Fuels

6 hours

Fuels – Types and characteristics of fuels – Determination of properties of fuels - Fuel analysis - Proximate and ultimate analysis - Calorific value (CV) – Gross and net calorific values (GCV, NCV) – Bomb Calorimetry – Boye's Calorimetry - Orsat apparatus - empirical equations for CV estimation.

Module:2 Solid fuels

6 hours

Origin of coal- Ranking of coal- Washing and cleaning of coal - applications of the coal-comparative study of solid-liquid and gaseous fuels-selection of coal for different industrial applications-carbonization of coal.

Module:3 | Liquid fuels

6 hours

Origin of crude oil- composition of crude petroleum - classification of crude petroleum - Desalting - Desulphurisation - processing of crude petroleum- Distillation - Cracking and Reforming.

Module:4 | Gaseous fuels

6 hours

Rich and lean gas – Wobbe index - Natural gas - Dry and wet natural gas -Foul and sweet NG - LPG - LNG – CNG – Methane - Producer Gas - Water gas – oil gas.

Module:5 | Combustion Calculations

7 hours

General principles of combustion – Flame and Flame dynamics-Types of combustion processes-combustion of solid, liquid and gaseous fuels - combustion calculations-air fuel ratio, Excess air calculations – emission and carbon Foot print calculation.

Module:6 | Combustion Equipment

6 hours

Combustion of solid fuels-grate firing and pulverized - fuel firing system-Fluidized bed combustion-Circulating fluidized bed boiler - Combustion equipment for liquid and gaseous fuels.

Module:7 | Alternative Fuels

6 hours

Bio fuels – Adsorbed Natural Gas (ANG) – Synthetic natural Gas (SNG) – Ethanol and Methanol

- H	- Hydrogen Gas – Nuclear Fuels – Waste to fuel.						
Мо	dule:8	Contemporary issues				2 hours	
Gue	Guest lecture from industry and R&D organizations						
				Tota	l Lecture hours:	45 hours	
Tex	ktbooks:						
1.	R.C. G	upta, Fuels, Furnaces and R	efractories, 2016,	Prentice-H	Hall Of India, India	•	
2.	James (G.Speight, The Chemistry a	nd Technology of	Coal, Thi	rd Edition, CRC Pr	ess. 2016.	
Ref	erence I	Books:					
1.	Samir S	Sarkar, Fuels and combustic	on, 3rd Edition, U	niversities	Press (India) Pvt. I	Ltd.(2009)	
2.	H. Josh	ua Phillips, "Fuels - solid, l	iquid and gases -	Their anal	ysis and valuation"	, General	
	Books,	2010.					
3.	Kennet	h K Kou, Principles of Com	bustion, Wiley &	Sons Publ	lications, 2012.		
Mo	de of eva	duation: Continuous Assess	sment Test, Quiz,	Assignme	nt, Final Assessmer	nt Test	
Rec	Recommended by Board of Studies 11-02-2022						
App	proved by	y Academic Council	No.65	Date	17-03-2022		

Course code	Course title	L	T	P	C
BCHE315L	BCHE315L Biochemical Engineering		3 0 0 3		
Pre-requisite	BCHE303L, BCHE303P	Syll	labu	s versi	on
			1	1.0	

- 1. Impart the basic knowledge and overview of biotechnology covering the principles of cell and kinetics, bioreactor design, sterilization agitation and aeration
- 2. Understand the physical processes involved in bio-systems
- 3. Apply the knowledge of chemical engineering principles to biological processes

Course Outcomes:

- 1. Describe the significance and scope of biochemical processes with their metabolic pathways
- 2. Understand basic principles of enzyme and microbial growth kinetics
- 3. Apply basics of Chemical Engineering transport processes in designing bioprocess systems
- 4. Analyze bioreactor performance and their transient characteristics
- 5. Demonstrate downstream processing methods to fulfill separation requirements

Module:1 Introduction to Biochemical Engineering

3 hours

An overview of industrial biochemical processes with typical examples - comparing Chemical and Biochemical processes – Development and scope of biochemical engineering as a discipline.

Module:2 | Basic Microbiology and Biochemistry

5 hours

Basics of Biology - overview of biotechnology - Diversity in microbial cells - Cell constituents - Chemicals for life - Examples of microbial synthesis - Major metabolic pathways - Bioenergetics - Glucose metabolism - Biosynthesis.

Module:3 | Enzymes & Enzyme kinetics

8 hours

Enzymes - Classification of enzymes - Mechanism of enzymatic reactions - Michaelis Menten kinetics - Enzyme inhibition - Inhibition kinetics - Enzyme denaturation and inactivation- Factors affecting the reaction rates - Enzyme immobilization - kinetics of immobilized enzymes - Mass transfer effects on immobilization.

Module:4 | Kinetics of Cell Growth

6 hours

Typical growth characteristics of microbial cells - Factors affecting growth - Unstructured models of microbial growth - Monod model - Modelling of batch and continuous cell growth - inhibition on cell growth - Immobilized whole cells and their characteristics.

Module:5 | Transport in Microbial Systems

7 hours

Rheological behaviour of broth - Agitation and mixing - Power consumption - gas/liquid transport in cells - Mass transfer coefficients and its measurement - Oxygen transfer -Factors affecting oxygen transfer rate - Heat transport in microbial systems - Thermal death kinetics of microorganism - batch and continuous sterilization - air and media sterilization.

Module:6 | **Bioreactors**

8 hours

Classification of bioreactors - Batch and continuous types - Fed-batch reactors - Free and immobilized whole-cell and enzyme reactors - Reactors in series with and without recycle - Transient behaviour of bioreactors - Design of reactors and scale up with examples.

Mo	dule:7	Downstream processes				6 hours	
Dif	ferent ur	nit operations in down stream	ning with special	reference t	o filtration - centri	fugation	
extr	extraction - membrane separations - crystallization - chromatographic techniques - drying - cell						
desi	ruption t	echnologies.	•		•		
	•						
Mo	dule:8	Contemporary issues				2 hours	
Gue	est lectur	re from industry and R & D	organizations				
				Tot	al Lecture hours:	45 hours	
Tex	t Book:						
1.	Rao D.	G., Introduction to Biochen	nical Engineering,	2012, 2 nd	ed., Tata McGraw H	Hill, India.	
2.	Harvey	W.Blanch and Douglas S.	Clark, Biochemic	al Enginee	ring, 1997, 2 nd ed.,	CRC Press,	
	USA.	_			_		
Ref	erence l	Books:					
1.	Doran	P.M., Bioprocess Engineering	ng Principles, 201	3, 3 rd ed., 2	Academic Press, Un	ited	
	Kingdo	om					
2	Bailey	J.B., Ollis D.F., Biochemic	al Engineering Fu	ındamenta	ls, 2010, 4th ed., M	cGraw Hill,	
	USA.						
Mode of evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test							
	Recommended by Board of Studies 11-02-2022						
		y Academic Council	No.65	Date	17-03-2022		

Course Code	Course Title			P	C
BCHE316L	Pharmaceutical Technology	3	0	0	3
Pre-requisite	Nil	Syllabus Version			
		1.0			

- 1. To explain the different techniques employed in the production of tablets and capsules.
- 2. To outline the different drug delivery systems.
- 3. To illustrate the various pharmaceutical packaging materials and their quality control.

Course Outcomes:

- 1. List the methods of tablet preparation and the types of tablet coating processes.
- 2. Classify the types of capsules, their quality control tests, and packaging.
- 3. Explain the different techniques of microencapsulation and the evaluation of microcapsules.
- 4. Describe the general manufacturing process of parenteral products and the relevant quality control tests.
- 5. Elucidate the different drug delivery systems and Categorize the various pharmaceutical packaging materials.

Module:1 | Tabletting Technology

8 hours

Introduction - types and classes of tablets - formulation of tablets - granulation - methods of tablet preparation - advances in granulation - operations involved in tablet manufacturing - tablet compression - auxiliary equipment - packaging - problems in tablet manufacturing - tablet coating - types of tablet coating processes - specialized coatings - tablet coating equipment - process parameters - problems and remedies for tablet coating - In Process Quality Control (IPQC) tests for tablets.

Module:2 | Capsules Technology

6 hours

Introduction - hard gelatin capsules (HGC) - soft gelatin capsules (SGC) - quality control tests for capsules - special types of hard gelatin and soft gelatin capsules - packaging - capsules manufacturing techniques

Module:3 | Microencapsulation

5 hours

Introduction - core materials - coating materials - techniques of microencapsulation - evaluation of microcapsules.

Module:4 | Parenteral Products

6 hours

Introduction - formulation requirements - general manufacturing process - freeze drying - quality control tests for parenteral products - packaging - tray drying - fluidised bed drying.

Module:5 | **Novel Drug Delivery Systems**

6 hours

Oral controlled release drug delivery systems - parenteral controlled drug delivery systems - targeted drug delivery systems - nanoparticles - transdermal drug delivery systems - wound healing systems.

Module:6 | Packaging Techniques

6 hours

Introduction - packaging and stability of products - containers for pharmaceutical use - pharmaceutical packaging materials - qualification and quality control of packaging components - packaging machinery.

Module:7 Packaging Technology					6 hours					
Intr	oduction	- BFS Technology - Anti-	Counterfeit Packa	aging Tecl	nnologies – Quality	Analysis -				
Pac	kaging d	lesigns				_				
Module:8 Contemporary Issues					2 hours					
Gue	Guest lecture from industry and R & D organizations									
				Tota	al Lecture Hours:	45 hours				
Text Books:										
1.	Kushw	hwaha P., Handbook of Pharmaceutical Technology, 2015, 1st ed., Jaypee Brothers								
	Medical Publishers Private Limited, India.									
2.	Prager	ager G, Practical Pharmaceutical Engineering, 2019, Ist ed., John Wiley and Sons, Inc.,								
	USA									
Ref	ference l	Books:								
1.	Bharath S., Pharmaceutical Technology: Concepts and Applications, 2013, 1st ed., Pearson									
	Educati	cation India, India.								
2.	Agarwa	Agarwal G., Kaushik A., Pharmaceutical Technology, Volume I, 2017, 1st ed., CBS								
	Publishers & Distributors, India.									
3.	Murthy	ny R.S.R., Kar A., Pharmaceutical Technology, Volume II, 2017, 2 nd ed., New Age								
	International Private Limited, India.									
Mode of Evaluation: Continuous Assessment Tests, Quizzes, Assignments, and Final Assessment										
Test.										
Rec	commend	led by Board of Studies:	11-02-2022							
App	proved b	y Academic Council:	No.65	Date:	17-03-2022					

Course code	Course Title	L	T	P	C
BCHE317L	Petroleum Refining Technology	3	0	0	3
Pre-requisite	Nil	Sy	llabus	vers	sion
			1	.0	

- 1. To understand the importance of crude oil as fuel and the operation of petroleum refinery
- 2. To interpret the challenges involved in crude oil refining from the viewpoint of feedstock properties, product specifications, economic considerations, and environmental regulations
- 3. To integrate chemical engineering principles in petroleum refining

Course Outcomes:

- 1. Explain the crude oil formation, exploration, extraction and classification
- 2. Illustrate various crude oil refining processes
- 3. Analyze safe, economic, and environment-friendly refinery operations
- 4. Evaluate the fuel additives for improvement of product quality
- 5. Choose the better purification and conversion of petroleum products for end-users application

Module: 1 Overview on crude oil and upstream processes

7 hours

Formation of crude oil - exploration practices - oil reservoir types - reservoir rock properties - oil extraction techniques - transportation of crude oil - crude oil composition - classification and constituents of petroleum - selection criteria for crude oil - list of petroleum products - properties of crude oil and petroleum products

Module: 2 Distillation

7 hours

Desalting-dehydration of crude oil - Pre-fractionation column - components of crude oil distillation column - various types of oil distillation units - ADU - VDU - factors influencing the performance of distillation column - crude distillation curves - uses of petroleum products

Module: 3 | Cracking, visbreaking and coking

8 hours

The necessity of cracking - Thermal cracking - Catalytic cracking - classification of catalytic cracking process based on catalyst mobility - Fixed bed catalytic cracking - fluid bed catalytic cracking- Steam Cracking - Hydrocracking - advantages and disadvantages of different types of cracking process – Visbreaking - Delayed coking - Flexi coking - uses of petroleum coke

Module: 4 | Quality improvement of light end petroleum products

7 hours

Knocking - causes of knocking - feedstock, catalyst, and products of different octane boosting techniques - Catalytic reforming – Polymerization - Hydrofluoric acid and Sulfuric acid Alkylation - Isomerization

Module: 5 | Purification of petroleum products

6 hours

Sweetening processes – Claus sulfur recovery - Merox treatment – Hydrodesulphurization – Hydrotreating - Dewaxing - Deasphalting - Lube oil processing - Hydrofinishing

Module: 6 | Fuel additives

4 hours

Types of oil additives - selection of additives based on fuel type - anti-oxidants - metal deactivators - corrosion inhibitors - anti-knocking agents/oxygenates – fuel dyes Liquid fuel storage and effluent treatment plant Module: 7 4 hours Storage and handling of liquid fuels - types of storage tanks - selection criteria of fuel storage tanks based on fuel types - overview of an effluent treatment plant Module: 8 2 hours **Contemporary issues** Guest lecture from industry/R&D organizations **Total Lecture hours:** 45 hours **Textbooks:** Kaiser M.J., Klerk A.D., Gary J.H., Handwerk G.E., Petroleum Refining: Technology, Economics, and Markets, 2019, 6th ed., CRC Press, USA. Bhaskara Rao B.K., Modern Petroleum Refining Processes, 2018, 6th ed., OXFORD & IBH Publishing, India. **Reference Books:** Meyers R. A., Handbook of Petroleum Refining Processes, 2016, 4th ed., McGraw-Hill Education, Europe. Gupta O.P, Elements of Petroleum Refinery Engineering, 2019,1st ed., Khanna Book Publishing, India. Mode of Evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test 11-02-2022 Recommended by Board of Studies Approved by Academic Council 17-03-2022 No.65 Date

Course code	Course Title	L	T	P	С
BCHE318L	Safety and Hazard Analysis	3	0	0	3
Pre-requisite	Nil	Syl	labu	s ver	sion
			1	.0	

- 1. To assess the significance of the chemical safety analysis
- 2. To identify the occupational hazards in the work environment
- 3. To determine the root cause of the failure events in the workplace

Course Outcomes:

- 1. Develop work safety protocols for the individual tasks
- 2. Implement safety framework at the workplace
- 3. Analyse the root cause of the work-related accidents using safety analysis
- 4. Apply Hazard and Operability Study (HAZOP) for Hard and Soft Industries
- 5. Identify hazard and conduct a safety audit

Module:1 Introduction to Safety in Industry

7 hours

Safety consciousness in the workplace - Hazard, Risk, Danger and Accident, Chemical safety, Industry safety, Safe operating conditions and drafting safety protocols for accidents, and Importance of the safety/communication training

Module:2 | Safety Programmes in Industry

7 hours

Safety Analysis in industries: Fault tree analysis, event tree analysis, and Reliability analysis, Elements of the safety program, Economic, Social Benefits from safety program, disaster management, occupational and industrial health hazards; and fail-safe systems.

Module:3 | Hazard analysis in the workplace

7 hours

Hazard identification, Hazop table, keyword in Hazop analysis, Creating HAZOP table for Chemical plants; High pressure and Temperature Operations; Dangerous and Toxic work environment; Routes of entry, layer of protection analysis, and personal protective equipment.

Module:4 | Risk Assessment

6 hours

Application of risk assessment, Difference in risk assessment, Identifying risk in radiation, vapour cloud explosions, and toxic work environment, chemical storage and security, safety in plant layout, Risk management, Emergency planning, On-site & offsite workplace emergency planning, and ISO certifications.

Module:5 | Safety Models and behaviour-based safety

7 hours

Occupational health and safety effects of toxicants and their elimination. Toxic release and dispersion models. Radioactive decay models, Gaussian plume models, What-if analysis, Vulnerability models, Resilience engineering models, FRAM models, Bayesian regression models, Safety audits, behaviour-based analysis for the workplaces, Involvement of Human factors and Errors, safety checklist, and use of regression methods in safety.

Module:6 | Safety in manufacturing and service industries

6 hours

Formulation of the safety committee, the legal framework in safety committee, Safe handling of high energy material; tools; machinery, ergonomic safety, and safety in workplaces

Mo	dule:7	Case studies				3 hours		
Dor	ninos' e	ffect, Worst case scenario, o	Chemical release,	and Natura	al disasters			
Mo	dule:8	Contemporary Issues				2 hours		
Gue	est lectur	re from industry and R & D	organizations		I.			
				Tot	al Lecture hours:	45 hours		
Tex	t Books	:			1			
1.	Ericson	n C.A., Hazard Analysis Tec	chniques for Syste	m Safety,	2015, 2 nd ed., Wiley	, USA.		
2.		arms-Ringdahl, Safety Anal Taylor and Francis.	ysis, Principles, a	nd practice	es in occupational sa	fety, 2001,		
Ref	erence l	Books:						
1.	Gupta .	A., Industrial Safety and En	vironment, 2015,	2 nd ed., La	xmi Publications, In	dia.		
2. Daniel A. Crowl and Joseph F. Louvar, Chemical Process Safety: Fundamentals with Applications, 2019, Pearson Education, India.								
Rec	ommen	ded by Board of Studies		11-(02-2022			
App	Approved by Academic Council No.65 Date 17-03-2022							

Course code	Course title	L	T	P	С
BCHE319E	Process Plant Design and Simulation	2	0	2	3
Pre-requisite	BCHE202L	Sy	llabu	s ver	sion
			1	1.0	

- 1. To emphasize the basic concepts of steady-state process plant simulation
- 2. To impart knowledge and awareness to understand the validity and physicochemical interpretation of thermodynamic models and their limitations
- 3. To develop skills for plant simulation and optimization, solve chemical engineering problems encountered in chemical industries using professional software's

Course Outcomes:

- 1. Explain the principles for developing a Process flow sheet and its execution
- 2. Illustrates the approaches to follow in plant simulation
- 3. Utilize commercial software's for a complete simulation of refineries
- 4. Interpret steady-state process plant simulation
- 5. Improve the debottleneck existing in the process plant and have maximum productivity

Module:1 Introduction

3 hours

Introduction to Process Synthesis, Flow sheeting & simulation, Degrees of freedom, Process flow sheet

Module:2 | Approaches to process simulation

4 hours

Sequential modular approach and Simultaneous modular approaches, Equation solving approach used in process plant simulation.

Module:3 | Equation solving Approach

4 hours

Partitioning, Decomposition, Probabilistic Transformation *Method (PTM)*, slow-wave structure(SWS), Steward, and Rudd-Algorithms, Direct Methods, Iterative methods, Block triangular form (BTF), Bordered block transformation (BTF), Block Back Substitution, Beecham-Titchener-Simpson (BTS).

Module:4 | **Decomposition of Networks**

5 hours

Tearing Algorithms in the decomposition of networks, digraph, signal flow graph, Boyer Moore (BM) Algorithm, Binary Tree Algorithm (BTA), Kennard-Stone (K&S) Algorithm, Metropolis-Hastings (M&H) Algorithms, and related problems.

Module:5 | Convergence promotion

4 hours

Linear equation – nonlinear equation, Convergence Promotion scheme Newton's method, Direct substitution, Wegstein's method, Dominant eigen value method, Quasi-Newton methods, Acceleration criterion.

Module:6 | Application of flow sheeting software

4 hours

Flow sheeting software: Aspen Plus-Steady state simulation, Aspen Hysys-dynamic simulation

Module:7 | Case studies: process plant simulation

4 hours

Process plant steady-state and dynamic simulation: Any process such as Ammonia plant, Biodiesel plant, NG liquefaction.

Module		Contemporary issues				2 hours
Guest le	cture	e from industry/ R&D orga	nizations			
				Tota	al Lecture hours:	45 hours
Textboo						•
1. Rol	oin S	., Chemical Process Design	n and Integration,	2016, 2 nd	ed., Wiley, USA	
2 Jan Del		K., Process Simulation and	Control using As	spen, 2012	e, 1st ed., PrenticeHa	all, New
Referen	ce B	ooks				
		h G.C, Chien H.C, Denny nemical Engineering Proce				
2 B.V	/.Bal	ou, Process Plant Simulation	on, 2004, Oxford U	Jniversity	Press, India	
Mode of	f eva	luation: Continuous Assess	sment Test, Quiz,	Assignme	nt, Final Assessmen	it Test
Indicati	ive E	experiments				
1.	Sim	ulation of Binary Distillation	on using Aspen pl	us/ Hysys		
2.	Sim	ulation of Heat Exchanger	using Aspen plus/	' Hysys		
3.	Sim	ulation of CSTR using Asp	en plus/ Hysys			
4.	Sim	ulation of PFR using Aspe	n plus/ Hysys			
5.	Sim	ulation of Adsorption proc	ess using Aspen p	lus/ Hysys	;	
6.	Sim	ulation of Absorption proc	ess using Aspen p	lus/ Hysys		
7.	Sim	ulation of Ammonia refrig	eration cycle using	g Aspen pl	us/ Hysys	
8.	Sim	ulation of Ammonia produ	ction process usin	g Aspen p	lus/ Hysys	
9.	Sim	ulation of NG liquefaction	process using Asp	pen plus/ F	Hysys	
10.	Sim	ulation of HEN analysis us	ing Aspen Energy	Analyser		
				Laborato	V	
		de of assessment: Individu	ual Experiment A		/	t Test
		ed by Board of Studies	N		02-2022	
Approve	ed by	Academic Council	No.65	Date	17-03-2022	

Course code	Course Title	L	T	P	C
BCHE320L	3	0	0	3	
Pre-requisite	Nil	Syllabus version			
		1.0			

- 1. To train the students in identifying the needs and converting needs to product specifications
- 2. To facilitate generation of innovative ideas for chemical products and select among the ideas
- 3. To familiarize the student with intellectual property issues and manufacture and design of speciality products

Course Outcomes:

- 1. Understand the needs of the customer
- 2. Apply engineering knowledge to convert the needs to product specifications
- 3. Generate innovative ideas for chemical products
- 4. Evaluate ideas to satisfy the product specifications
- 5. Analyze the implementation of ideas in practice for the manufacture of products

Module:1 Introduction

1 hour

Introduction to chemical product design - Product examples

Module:2 Needs of chemical product

6 hours

Customer needs - interviewing customers - lead users - interviews - alternatives to interviews - consumer products - needs examples

Module:3 | Needs to specifications

6 hours

Consumer assessments - simple comparison test - relative grading test - test for assessing ratios - Converting needs to specifications - revising product specifications - examples

Module:4 Ideas

8 hours

Human sources of ideas - brainstorming - problem-solving styles - chemical sources of ideas - natural product screening - random molecular assembly - combinatorial chemistry - sorting the ideas - screening the ideas - examples

Module:5 | **Selection of ideas**

8 hours

Selection using thermodynamics - ingredient substitutions - substitutions in consumer products - ingredient improvements - selection using kinetics - less objective criteria - risk in product selection - examples

Module:6 | Product manufacture

6 hours

Intellectual property - patents and trade secrets - requirements for patents - supplying missing information - final specifications - micro structured products - device manufacture - examples

Module:7 | Speciality chemical manufacture and Economic Concerns

8 hours

First steps towards production - extending laboratory results - reaction engineering - separations - heuristics for separations - speciality scale-up - Product versus process economics - Gantt chart - cash flow - time value of money - examples

Module:8 Contemporary Issues

2 hours

Guest Lecture from Industry and R&D Organizations							
				7	Total Lecture hours:	45hours	
Tex	t Book:						
1.	1. Cussler E.L., Moggridge G. D., Chemical Product Design, 2011, 2 nd ed., Cambridge University Press, UK.						
Ref	erence l	Books:					
1.		W.D., Seader J D., Lewin iley, USA.	D.R., Product ar	nd Process	Design Principles,	2016, 4 th	
2.							
Mo	de of eva	aluation: Continuous Assess	sment Test, Quiz,	Assignmer	nt, Final Assessment	Test	
Rec	Recommended by Board of Studies 11-02-2022						
App	proved b	y Academic Council	No.65	Date	17-03-2022		

Course code	Course Title	L	T	P	C
BCHE321L Natural Gas Engineering		3	0	0	3
Pre-requisite	Nil	Syllabus vers		vers	ion
		1.0			

- 1. To impart design experiences essential for graduates to enter the practice of Gas Engineering and pursue lifelong professional development
- 2. To summarize the necessary theory, application to case studies and engineering project design
- 3. To implement research that generates, communicates and applies new knowledge for the betterment of society

Course Outcomes:

- 1. Emphasize fundamentals of mathematics and integrates them in application to traditional Natural Gas Engineering to improve further needs
- 2. Recognize the changes and practices followed in offshore platforms
- 3. Develop an ability to revamp and retrofit a system, process to meet desired needs within realistic constraints such as environmental, health, safety, manufacturability and sustainability in the field of Natural Gas
- 4. Apply natural gas refining principles and practices for optimizing resource development and management
- 5. Evaluate project economics and resource valuation methods for design and decision making under conditions of risk and uncertainty

Module:1 Properties and Composition of Natural Gas

6 hours

Natural gas origin – Composition of Natural Gas – Source of Natural Gas – Thermodynamic properties – Compressibility factor for Natural Gas – Heating value and flammability limit of Natural Gas

Module:2 Natural Gas Extraction

5 hours

Onshore Extraction - Offshore Extraction- Techniques and Principles

Module:3 Natural Gas Offshore Production and Handling

6 hours

Drilling Deepwater Reservoir – Deepwater production systems – Mooring Systems – Gas Terminals

Module:4 Natural Gas Onshore Production and Handling

6 hours

Sucker rod pumping – separation, storage and transportation of Natural Gas

Module:5 Natural Gas Processing

8 hours

Dehydration – Desulphurization processes (Sour gases, Toxicity of H2S, Physical and Chemical Absorption process, Carbonate process, sulphur recovery) – Low-temperature processes (Joule Thompson effect, Turbo expander, Refrigeration, Low-temperature Heat Exchanger)

Module:6 Liquid Recovery

6 hours

Natura	l Gas Liquids(NGL), LPG, C ₃ and 0	C_2 fraction recover	y from Nat	tural Gas	
Modul	e:7 Economics of Natural Ga	as			6 hours
Curren	t status in India – Trade & selection	of port location –	Economics	s of gas process	sing
Modul	e:8 Contemporary issues				2 hours
Guest I	Lecture from Industry and R&D Org	ganizations			
			Total Le	cture hours:	45 hours
Text Bo	ooks:				
1.	Arthur J. Kidnay, William R. Part ed., Taylor and Francis, CRC Pres		s of Natura	l Gas Processii	ng, 2018, 5 th
2.	Alireza Bahadori, Natural Gas Pro Elsevier, Gulf Professional Publis		gy and Eng	gineering Desig	gn, 2014,
Refere	nce Books:				
1.	S. Mokhatab, William A. Poe, Januard Processing, 2014, 1st ed., Gulf				Transmission
2.	G. Ghalambor, Natural Gas Engin USA.	eering Handbook,	2014, 2 nd e	d., Gulf Publish	ning Company,
Mode o	of evaluation: Continuous Assessme	ent Test, Quizzes, A	Assignmen	ts, Final Assess	sment Test
Recom	Recommended by Board of Studies 11-02-2022				
A	approved by Academic Council	No.65	Date	17-03	3-2022

Course code	Course Title	L	T	P	C
BCHE322L	Nanoscience and Nanotechnology	3	0	0	3
Pre-requisite	Nil	Syll	abus	versi	ion
			1.0)	

- 1. To understand nanotechnology and nanoscience phenomena
- 2. To provide an insight into the chemical materials and fabrication techniques used in nanotechnology
- 3. To emphasize the design concepts and strategies to build molecular machines

Course Outcomes:

- 1. Distinguish between micro/nano systems based on their properties
- 2. Explain the nanoscale paradigm in terms of properties at the nanoscale dimension
- 3. Describe major top-down and bottom-up strategies in making the stable nanomaterials
- 4. Discuss various nanoscale device fabrication techniques
- 5. identify various characterization techniques for estimating the properties of nanomaterials

Module:1 Introduction

5 hours

Definition of Nano and history of nanotechnology, Scientific revolution-Atomic Structure and atomic size, the influence of nano over micro/macro, size effects and crystals, large surface to volume ratio, surface effects on the properties.

Module:2 Types of nanostructure and their properties

6 hours

One dimensional, Two dimensional and Three dimensional nanostructured materials, Quantum Dots shell structures, metal oxides, semiconductors, composites, mechanical-physical-chemical properties.

Module:3 | Synthesis and stability of nanomaterials

7 hours

Top-down and bottom-up methods, chemical methods, physical methods, electrostatic stabilization, steric stabilization, Depletion stabilization

Module:4 | Metal, semiconductor and magnetic nanoparticles

6 hours

Size, properties and shape control of metal, semiconductor and magnetic nanoparticles, Core-Shell structured and semiconductor nanoparticles – alloy nanostructure – Janus nanoparticles.

Module:5 Nano scale device fabrication

6 hours

Lithography techniques – Photo – UV – X-ray – inferometric techniques – inkjet printing – nano scale coating techniques – dip-coating – spin coating – spray coating – CVD – plasma coating – atomic layer deposition.

Module:6 Nano scale characterization techniques

7 hours

Optical properties – surface and bulk morphological properties – phase purity – surface characterization – nano mechanic properties – electromagnetic properties.

Module:7 | Application of nanomaterials

6 hours

Ferroelectric materials, molecular electronics and nanoelectronics, biological, environmental, membrane-based application, polymer-based application.

Mo	dule:8	Contemporary issues	_	•		2 hours
Gu	est lectui	re from industry and R & D	organizations			
				Tot	al Lecture hours:	45 hours
				101	al Lecture nours:	45 Hours
Tex	xt Book:					
1.	Chris I	Binns, Introduction To Nan	oscience And Na	notechno	logy, 2010, 1st edit	ion, John
	Wiley	& Sons Inc, USA.				
Ref	ference l	Books:				
1.	Sulabh	a K Kulkarni, Nanotechnol	ogy: Principles a	nd Practi	ces, 2019, 3rd edition	on, Springer
	Interna	tional Publishing, USA.				
2.	CNR F	Rao, Achim Müller and A	nthony K. Cheetl	nam , Th	e Chemistry of na	nomaterials:
	Synthe	sis, properties and application	ons, 2004, Wiley-	VCH Vei	lag GmbH & Co. K	GaA.
Mo	Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test					
Red	commen	ded by Board of Studies		11-	-02-2022	
Ap	proved b	y Academic Council	No.65	Date	17-03-2022	

Course code	Course Title I		T	P	C
BCHE323L	Fertilizer Technology	3	0	0	3
Pre-requisite	Nil	Syl	labus	versi	on
			1.0	0	

- 1. To introduce the production of various NPK fertilizers and their importance
- 2. To impart knowledge of bio fertilizers, fluid fertilizers and controlled release fertilizers
- 3. To identify pollutants in fertilizer industries and their controlling strategies

Course Outcomes:

- 1. Understand the role of essential elements for plant growth.
- 2. Identify reactions and unit operations involved in the manufacturing of various fertilizers
- 3. Categorize the major engineering problems associated with the fertilizer manufacturing processes
- 4. Explain the importance of bio fertilizers, fluid fertilizers and controlled release fertilizer
- 5. Analyse the impact of pollution from the fertilizer industry based on pollution standards

Module:1 Overview of Fertilizers

6 hours

Introduction - Plant Nutrients - Fertilizer grade - Terminology and Definitions - Status of fertilizer industry - Fertilizer production and consumption- Raw materials - Availability and Sources-Productivity and energy efficiency.

Module:2 | Nitrogenous Fertilizers

7 hours

Nitrogenous fertilizers – Ammonia - Nitric acid – Urea - Ammonium sulphate - Ammonium chloride – Ammonium nitrate - Methods of production - characteristics and specification - Storage and handling.

Module:3 | Phosphatic Fertilizers

7 hours

Phosphatic Fertilizers - Raw materials - phosphate rock, sulphur, pyrites etc. - Production of sulphuric and phosphoric acids - Ground rock phosphate - Bone meal - Single superphosphate - Triple superphosphate - Thermal phosphates - Methods of production - characteristics and specifications.

Module:4 Potassic Fertilizers

6 hours

Potassic fertilizers – Potassium Chloride - Potassium sulphate - Potassium magnesium sulphate - Potassium hydroxide - Potassium nitrate – Methods of production - characteristics and specifications.

Module:5 | Complex Fertilizers

6 hours

Complex fertilizers - Ammonium phosphate - Urea ammonium phosphate - Ammonium phosphate sulphate - Nitrophosphates - Calcium ammonium nitrate - Grades of complex fertilizers.

Module:6 Other Fertilizers

5 hours

Fertilizers and granulated mixtures – Biofertilizers - Fluid fertilizers - Granular fertilizers - Controlled-release fertilizers - Slow-release fertilizers - Statistics and economic analysis.

Module:7 | Pollution Control in Fertilizer industry

6 hours

 $\label{eq:controlling} Pollution \ from \ fertilizer \ industry - Solid, \ liquid \ and \ gaseous \ pollution - MINAS \ standards-Controlling \ techniques$

Mo	dule:8	Contemporary issues				2 hours
Gue	est lectur	e from industry and R & D	organizations			
		•				
				Tot	al Lecture hours:	45 hours
Tex	kt Book:					
1.	Austin	T.G., Shreve's Chemical	Process Industr	ries, 2017	, 5 th ed., Tata M	IcGraw-Hill
	Educati	on Pvt. Ltd, India.				
Ref	ference I	Books:				
1	Rao G.	, Sittig M., Dryden's Outlin	nes of Chemical T	echnology	, 2019, 3 rd ed., East	West Press,
	India.	-				
2.	Shukla	S.D., Pandey G.N., A To	ext Book of Che	mical Tec	chnology, 2018, 1st	ed., Vikas
	Publish	ing House Pvt. Ltd, India.				
3.	Fertiliz	er Manual, United Nations	s Industrial Devel	opment O	Organization, New '	York, 1967,
	United	Nations.		-		
4.	Handbo	ook of Fertilizer Technology	y, Fertilizer Assoc	iation of I	ndia, 1977, New De	lhi.
Mo	Mode of Evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test					
		led by Board of Studies			02-2022	
Apı	proved b	y Academic Council	No.65	Date	17-03-2022	

Course code	Course title	L	T	P	C
BCHE324L	Fermentation Technology	3	0	0	3
Pre-requisite	Nil	Sylla	bus	versi	on
		1.0			

- 1. To recognize the basics of the various aspects of microbiology and bio-systems
- 2. To impart experimental design thinking capability in relation to various fermenter configurations, modes of operation, growth kinetics and product recovery
- 3. To employ the design thinking skills to bio-related processes with a chemical engineering background

Course Outcomes:

- 1. Understand the fermentation processes as applied for various bio-transformations
- 2. Summarize kinetics prevalent in microbial processes
- 3. Recognize the classification of microorganisms to select and manage microorganisms from a natural source to fermentation
- 4. Apply the fermenter configuration for different types of cells and enzymes
- 5. Design downstream processing of fermentation products

Module:1 Introduction and history of fermentation processes

4 hours

Development of fermentation process – range of processes under fermentation, Types of fermentation

Module:2 | Microbial growth kinetics

6 hours

Microbial growth - Batch, Continuous and fed-batch - kinetics studies - structured and unstructured models of culture

Module:3 | Microbial Strain Management

5 hours

Industrial microorganisms – isolation - preservation of strains - Storage methods - improvement strategies

Module:4 | Media for industrial fermentations

5 hours

Media formulation – energy - carbon and nitrogen sources - micro nutrients - oxygen requirements; Other non-nutrient and functional components - Effects of media composition on penicillin production - Media optimization

Module:5 | Aseptic fermentation process

8 hours

Preparation of media and air for pure culture fermentation; Media sterilization - Batch and continuous sterilization; Sterilization of fibrous filters and design; Development of inocula - processes involving yeast, bacterial, fungi; Inoculation of plant fermentation.

Module:6 | Fermenters

8 hours

Basic functions – Aeration and agitation – process requirements and mechanical design - Maintenance of aseptic conditions - Foam control - Types and design of fermenters for industrial applications - stirred & sparred tanks fermenters, Tower fermenter, Packed tower, Air lift and rotating disc fermenters - Solid State fermentation.

Module:7 | Process technology for bulk products

7 hours

Downstream processing - Bulk products; Production of alcohols- organic acids-enzymes, and

anti	antibiotics – flow sheet and process description of modern processes.						
Mo	dule:8	Contemporary Issues				2 hours	
Gue	est lectur	e from industry and R & D	organizations				
				Total l	Lecture hours:	45 hours	
Tex	Text Books:						
1.		ry P.F., Whitaker A., Steve	H., Principles of l	Fermentati	on Technology, 2	2008, 3 rd ed.,	
	Butterworth-Heinemann, USA.						
2.		si E., Bryce C.F.A, Arno		A.R., Fei	mentation Micro	obiology and	
	Biotech	2007 , 2^{nd} ed., CRO	C Press, USA.				
Ref	ference I	Books:					
1.	Ashok	P, Christian L, Carlos R.S	S., Advances in F	Fermentatio	on Technology, 2	2008, 1 st ed.,	
	Asiatec	h Publishers Inc., India.					
2.	Rhodes	A and Pletcher. D.L: Prince	ciples of Industria	l Microbio	logy, 1977, 3 rd e	d., Pergamon	
	Press, UK.						
Mo	Mode of evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test						
Rec	commend	led by Board of Studies		11-0	2-2022		
App	proved b	y Academic Council	No.65	Date	17-03-2022		

Course code	Title of the course	L	T	P	C
BCHE391J	Technical Answers to Real Problems Project	0	0	0	3
Pre-requisite	Nil	Sy	llabu	s vers	sion
			1.	.0	

- 1. To gain an understanding of real-life issues faced by society.
- 2. To study appropriate technologies in order to find a solution to real-life issues.
- 3. Students will design system components intended to solve a real-life issue.

Expected Course Outcome:

- 1. Identify real-life issue(s) faced by society.
- 2. Apply appropriate technologies to suggest a solution to the identified issue(s).
- 3. Design the related system components/processes intended to provide a solution to the identified issue(s).

Module Content (Project duration: Two semesters)

Students are expected to perform a survey and interact with society to find real-life issues.

Logical steps with the application of appropriate technologies should be suggested to solve the identified issues.

Subsequently, the student should design the related system components or processes which is intended to provide the solution to the identified real-life issues.

General Guidelines:

- 1. Identification of real-life problems
- 2. Field visits can be arranged by the faculty concerned
- 3. 3-4 students can form a team (within the same/different discipline)
- 4. Minimum of eight hours on self-managed team activity
- 5. Appropriate scientific methodologies to be utilized to solve the identified issue
- 6. Solution should be in the form of fabrication/coding/modelling/product design/process design/relevant scientific methodologies
- 7. Consolidated report to be submitted for assessment
- 8. Participation, involvement, and contribution in group discussions during the contact hours will be used as the modalities for the continuous assessment of the theory component
- 9. Project outcome to be evaluated in terms of technical, economical, social, environmental, political and demographic feasibility
- 10. Contribution of each group member to be assessed
- 11. The project component to have three reviews with the weightage of 20:30:50

Recommended by Board of Studies	11-02-2022		
Approved by Academic Council	No.65	Date	17-03-2022

Course code	Title of the course	L	T	P	C
BCHE392J	Design Project	0	0	0	3
Pre-requisite	Nil	Syllabus version		sion	
		1.0			

- 1. Students will be able to upgrade a prototype to a design prototype.
- 2. Describe and demonstrate the techniques and skills necessary for the project.
- 3. Acquire knowledge and better understanding of design systems.

Expected Course Outcome:

- 1. Develop new skills and demonstrate the ability to upgrade a prototype to a design prototype or working model.
- 2. Utilize the techniques, skills, and modern tools necessary for the project.
- 3. Synthesize knowledge and use insight and creativity to better understand and improve design systems.

Module Content	(Project duration: one semester
----------------	---------------------------------

Students are expected to develop new skills and demonstrate the ability to develop prototypes to design prototypes or working models related to an engineering product or a process.

Recommended by Board of Studies	11-02-2022			
Approved by Academic Council	No.65	Date	17-03-2022	

Course code	Title of the course	L	T	P	C
BCHE393J	Laboratory Project	0	0	0	3
Pre-requisite	Nil	Sy	llabus	s vers	sion
			1.	.0	

- 1. The student will be able to conduct experiments on the concepts already learnt.
- 2. Analyse experimental data.
- 3. Present the results with appropriate interpretation.

Expected Course Outcome:

- 1. Design and conduct experiments in order to gain hands-on experience on the concepts already studied.
- 2. Analyse and interpret experimental data.
- 3. Write clear and concise technical reports and research articles

Module Content	(Project duration: one semester)
----------------	----------------------------------

Students are expected to perform experiments and gain hands-on experience on the theory courses they have already studied or registered in the ongoing semester. The theory course registered is not expected to have laboratory component and the student is expected to register with the same faculty who handled the theory course. This is mostly applicable to the elective courses. The nature of the laboratory experiments (wet lab / dry lab) is depended on the course.

Recommended by Board of Studies		11-0	02-2022
Approved by Academic Council	No.65	Date	17-03-2022

Course code	Title of the course	L	T	P	C
BCHE394J	Product Development Project	0	0	0	3
Pre-requisite	Nil	Syllabus version		sion	
			1.	.0	

- 1. Students will be able to translate a prototype to a useful product.
- 2. Apply relevant codes and standards during product development.
- 3. The student will be able to present his results by means of clear technical reports.

Expected Course Outcome:

- 1. Demonstrate the ability to translate the developed prototype/working model to a viable product useful to society/industry.
- 2. Apply the appropriate codes/regulations/standards during product development.
- 3. Write clear and concise technical reports and research articles

Module Content		(Pro	oject	duration	ı: ˈ	Two	semes	ters	;)
----------------	--	------	-------	----------	------	-----	-------	------	----

Students are expected to translate the developed prototypes/working models into a product that has application to society or industry. Evaluation involves periodic reviews by the faculty with whom the student has registered.

Recommended by Board of Studies	11-02-2022				
Approved by Academic Council	No.65	Date	17-03-2022		

Course code	Title of the course	L	T	P	C
BCHE395J	Computer Project	0	0	0	3
Pre-requisite	Nil	Syllabus version			ion
			1.	.0	

- 1. Students will be able to analyse complex engineering processes.
- 2. Describe the applications and limitations of a given engineering process.
- 3. Present the results in written reports and oral presentations.

Expected Course Outcome:

- 1. Utilize programming skills/modelling to analyse complex engineering processes/problems.
- 2. Demonstrate the ability to evaluate the applicability and limitations of the given engineering process.
- 3. Communicate effectively through written reports, oral presentations, and discussion.

Module Content (Project duration: One semester)

Students are expected to use programming skills or modelling to analyse complex engineering processes. The student should be able to evaluate the application and limitations of the said engineering processes. Evaluation involves periodic reviews by the faculty with whom the student has registered.

Recommended by Board of Studies	11-02-2022				
Approved by Academic Council	No.65	Date	17-03-2022		

Course code	Title of the course	L	T	P	C
BCHE396J	Reading Course	0	0	0	3
Pre-requisite	Nil	Syllabus version			sion
			1.	.0	

- 1. The student will be able to analyse and interpret published literature for information pertaining to niche areas.
- 2. Scrutinize technical literature and arrive at conclusions.
- 3. Use insight and creativity for a better understanding of the domain of interest.

Expected Course Outcome:

- 1. Retrieve, analyse, and interpret published literature/books providing information related to niche areas/focused domains.
- 2. Examine technical literature, resolve ambiguity, and develop conclusions.
- 3. Synthesize knowledge and use insight and creativity to better understand the domain of interest.

Module Content (Project duration: One semester)

This is oriented towards reading published literature or books related to niche areas or focused domains under the guidance of a faculty. It is expected to have at least 10 students to form a group and come up with a specific topic. Assessments will be as per the academic regulations slated for the theory course.

Recommended by Board of Studies	11-02-2022				
Approved by Academic Council	No.65	Date	17-03-2022		

Course code	Title of the course	L	T	P	C
BCHE397J	Special Project	0	0	0	3
Pre-requisite	Nil	Syllabus version		ion	
			1.	.0	

- 1. Students will be able to identify and solve problems in a time-bound manner.
- 2. Describe major approaches and findings in the area of interest.
- 3. Present the results in a clear and concise manner.

Expected Course Outcome:

- **1.** To identify, formulate, and solve problems using appropriate information and approaches in a time-bound manner.
- 2. To demonstrate an understanding of major approaches, concepts, and current research findings in the area of interest.
- 3. Write clear and concise research articles for publication in conference proceedings/peer-reviewed journals.

Module Content	(Project duration: not more than three
	semesters)

This is an open-ended course in which the student is expected to work on a time-bound research project under the supervision of a faculty. The result should be a tangible output in terms of publication of research articles in a conference proceeding or in a peer-reviewed Scopus indexed journal.

Recommended by Board of Studies	11-02-2022				
Approved by Academic Council	No.65	Date	17-03-2022		

Course code	Title of the course	L	T	P	C
BCHE398J	Simulation Project	0	0	0	3
Pre-requisite	Nil	Syllabus version			ion
		1.0			

- 1. Students will be able to simulate a real system.
- 2. Identify the variables which affect the system.
- 3. Describe the performance of a real system.

Expected Course Outcome:

- 1. Demonstrate the ability to simulate and critically analyse the working of a real system.
- 2. Identify and study the different variables which affect the system elaborately.
- 3. Evaluate the impact and performance of the real system.

Module Content (Project duration: one semester)

The student is expected to simulate and critically analyse the working of a real system. Role of different variables which affect the system has to be studied extensively such that the impact of each step in the process is understood, thereby the performance of each step of the engineering process is evaluated. Evaluation involves periodic reviews by the faculty with whom the student has registered.

Recommended by Board of Studies	11-02-2022				
Approved by Academic Council	No.65	Date	17-03-2022		

Course code	Course Title		T	P	C
BCHE401L	Petrochemical Technology	3	0	0	3
Pre-requisite	Nil	Syllabus version			ion
		1.0			

- 1. To outline the basics of organic synthesis and the processes that goes along with it
- 2. To distinguish between the various unit operations and unit processes involved in the polymerization of monomers
- 3. To interpret the analytical approaches used in different types of application-oriented challenges encountered in the chemical industry

Course Outcomes:

- 1. Demonstrate the basic methods for converting monomers to polymers
- 2. Compare different types of polymers for diverse applications
- 3. Develop an understanding of the major industrial polymerization processes
- 4. Summarize applications of plastics and fibres
- 5. Analyse the economics of the Petroleum industry

Module:1 Petrochemicals and Precursors

2 hours

Introduction – Precursors – Selection of precursors – properties – petrochemical from precursors

Module:2 Alkanes and Alkenes

7 hours

Introduction - Manufacture of Petrochemical Derivatives from C1, C2, C3, C4 compounds

Module:3 Aromatics

6 hours

Introduction - Manufacture of Petrochemical Derivatives from Benzene, Toluene, Xylene and Styrene.

Module:4 Petrochemical Derivatives

8 hours

Manufacture of vinyl chloride (VCM) by thermal cracking, Dimethyl Terephthalate, Poly TA, maleic anhydride, cumene, diphenylcarbonate.

Module:5 | Polymers

8 hours

Production of - poly butadiene rubber, Styrene-Butadiene Rubber (SBR), Styrene Acrylonitrile (SAN), Polyalkylene Terephthalate, Alpha Olefins(Linear), Octenes.

Module:6 Plastics and Fibres

7 hours

Production of Polyacrylonitrile resins – Melamine - Formaldehyde resins – Solidified Nitro Glycerine(SNG) – explosives.

Module:7 Economics of Petrochemical Industry

5 hours

Current status in India – Trade - Selection of Petrochemical products - Economics of Petrochemical derivatives.

Module:8 | Contemporary Issues

 $2\;hours\\$

Guest Lecture from Industry and R&D Organizations

Total Lecture hours: 45 hours

Tex	Text Books:						
1.	I. D. Mall, Petrochemical Process	Fechnology, 20	17, 2 nd ed., M	Iacmillan Publishers, India.			
2.	S. Maitra and O. P. Gupta, Ele Publishers, India.	ements of Per	rochemical	Engineering, 2018, Khanna			
Ref	Reference Books:						
1.	V. Patel, Advances in Petrochemicals, 2015, Intech Open Publications, India.						
2.	I.D. Mall, Petroleum Refining Technology, 2017, CBS Publishers, India.						
Mo	Mode of evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test						
Rec	commended by Board of Studies		11-0	02-2022			
App	proved by Academic Council	No.65	Date	17-03-2022			

Course code	Course title		T	P	C
BCHE402L	Food Process Engineering	3	0	0	3
Pre-requisite	Nil	Sylla	abus	vers	ion
		1.0)	

- 1. To familiarize with the constituents of food and importance of microorganisms and additives in food processing.
- 2. To emphasize on the basic concepts of unit operations in Chemical Engineering with an application to food processing.
- 3. To impart necessary knowledge required for food processing technology, food quality and packaging.

Course Outcomes

- 1. Explain the constituents and nutritive aspects of food and the importance of microorganisms and food additives.
- 2. Develop material and energy balances on unit operations involved in food processes.
- 3. Compare the unit operations involved in food processing and their integration to actual process design.
- 4. Identify the appropriate preservation techniques for various food items.
- 5. Explain different processing technology to produce quality food products and their packaging.

Module:1 Introduction to food

4 hours

Constituents of food - Carbohydrates, Proteins, Lipids, Enzymes, Vitamins and minerals, Water, role and functional properties in food, contribution to organoleptic and textural characteristics

Module:2 Food microbiology and food additives

4 hours

Importance of micro-organisms in foods, Food borne diseases and food spoilage Functional characteristics of additives in food processing; food colourants – natural and artificial; food flavours; enzymes as food processing aids.

Module:3 | Food process calculations

4 hours

Material balance calculations with and without reaction, recycle and bypass, Material and energy balances in food processing (mixing, evaporation and drying)

Module:4 Unit operations in food processing

10 hours

Concept of food rheology and viscoelastic foods; Size reduction – Equipments and energy and power requirements, Mixing and agitation – Agitated vessels – Impellers for high viscosity liquids; Mechanical separations – Filtration: Constant rate and constant pressure filtration – filtration equipments – filter press – rotary drum filters – sedimentation and centrifugal separations; Heat exchangers – types of heat exchangers – enthalpy balance; Evaporators – single and multiple-effect – evaporator economy – enthalpy balance of single-effect evaporator – multiple-effect evaporator – methods of feeding; Dryers – drying rate – types of dryers – fluidized bed – Spray drier – vacuum shelf dryer – freeze dryer

Module:5 | Food preservation techniques

10 hours

Heat and cold dehydration, irradiation, microwave heating, sterilization and pasteurization (thermal death curves of microorganisms)

Food canning technology (batch and continuous), application of infrared, microwaves, sterilization of canned food, canning procedures for fruits, vegetables, meats, poultry marine products.

Module:6 | Food processing and food quality

8 hours

Processing of Cereal grains, Vegetables, Spices, Bakery, Confectionary Products, Soft and Alcoholic Beverages, Dairy Products, Meat Products. Food quality parameters and their evaluation - FSSAI and safety concepts in food processing, Quality control and Food standard organizations Module:7 | Food packaging 3 hours Basic packaging materials, Types of packaging, Packaging design, packaging for different types of foods, retort pouch packing, costs of packaging and recycling of materials Module:8 2 hours **Contemporary issues** Guest lecture from industry and R&D organizations **Total Lecture hours:** 45 hours Text Book(s) Berk, Z., Food Process Engineering and Technology, 2018, 3rd ed., Academic press, USA. Sivasankar, B., Food Processing and Preservation, 2009, 1st ed., Prentice-Hall of India Pvt. Ltd. New Delhi. **Reference Books** Smith, P.G., Introduction to Food Process Engineering, 2011, 2nd ed., Springer, USA. Rao, D.G., Fundamentals of Food Engineering, 2010, 1st ed., PHI Learning Private Limited, New Delhi. Saravacos, G. D., Maroulis, Z.B., Food Process Engineering Operations, 2011, 1st ed., CRC press, USA. Mode of Evaluation: CAT, Quiz, Seminar, FAT Recommended by Board of Studies 11-02-2022 Approved by Academic Council No.65 17-03-2022 Date

Course code	Course title	L	T	P	C
BCHE403L	Process Intensification	3	0	0	3
Pre-requisite	BCHE208L, BCHE208P	Sy	llabu	s ver	sion
			1	1.0	

- 1. To understand the concept of process intensification.
- 2. To apply the techniques of intensification to chemical processes
- 3. To infer alternative solutions considering economic viability, environmental and social acceptance

Course Outcomes:

- 1. Explain the scientific background, techniques of intensification in the process industries
- 2. Apply process intensification in chemical processes
- 3. Classify the various methodologies adopted for process intensification
- 4. Identify scale up issues in the chemical processes
- 5. Evaluate the feasibility of the process intensification

Module:1 Introduction

6 hours

Techniques of Process Intensification (PI) - Applications, The philosophy and opportunities of Process Intensification, benefits from process intensification, Process intensifying Equipment, Process intensification toolbox

Module:2 Process intensification through micro reaction technology

6 hours

Effect of miniaturization on unit operations and reactions, Implementation of Micro reaction Technology, From basic Properties, Technical Design Rules, Inherent Process Restrictions in Miniaturized Devices and Their Potential Solutions, Microfabrication of Reaction and unit operation Devices - Wet and Dry Etching Processes.

Module:3 | Mixing and flow patterns

8 hours

Scales of mixing, Flow patterns in reactors, Mixing in stirred tanks: Scale up of mixing, Heat transfer, Mixing in intensified equipment, Chemical Processing in High-Gravity Fields Atomizer Ultrasound Atomization, High intensity inline mixers reactors Static mixers, Ejectors, Tee mixers, Impinging jets, Rotor stator mixers, Design Principles of static Mixers Applications of static mixers, Higee reactors.

Module:4 Combined chemical reactor with heat exchange and 6 hours reactor/separators

Principles of operation; Applications, Reactive absorption, Reactive distillation, Applications of RD Processes.

Module:5 | Compact heat exchangers

8 hours

Classification of compact heat exchangers, Plate heat exchangers, Spiral heat exchangers, Flow pattern, Heat transfer and pressure drop, Flat tube-and-fin heat exchangers, Microchannel heat exchangers, Phase-change heat transfer, Selection of heat exchanger technology, Feed/effluent heat exchangers, Integrated heat exchangers in separation processes, Design of compact heat exchanger - example.

Module:6 Enhanced fields

6 hours

Energy based intensifications in distillation, Sono-chemistry, Cavitation Reactors, Flow over a

	-	face, Hydrodynamic cavita			reactor design, N	usselt-flow
mo	del and r	nass transfer, Sono crystalli	zation, Reactive s	eparations		
		Case studies				3 hours
Rea	action s	eparation of Plastic/Bion	nass pyrolysis;	Petrochem	nicals and Fine	Chemicals,
Ref	ineries, l	Bulk Chemicals, Nuclear In	ndustry			
Mo	dule:8	Contemporary issues				2 hours
Gue	est lectur	re from industry/ R&D orga	nizations			
				Tota	al Lecture hours:	45 hours
Tex	ktbooks:					
1.		D, Ramshaw C, Harvey				Efficacy,
		ability and Flexibility, 2013				
2		ic C. Y.F, Halwagi-EI			tion and Integrat	ion for
	1	able Design, 2021, 1st ed., V	Wiley-VCH, USA	•		
	ference l					
1.	Hernán	dez S, Gabriel J, Petric	iolet B, Adrián.	, Process	Intensification in	Chemical
		ering Design Optimization			· ·	
2.		oo K, Harvey A., Proce			_	•
	Engine	ering Solutions for Sustaina	ble Chemical Pro	cessing, 20	013, 1 st ed., Wiley, U	J SA .
		aluation: Continuous Assess	sment Test, Quiz,	Assignmer	nt, Final Assessmen	t Test
Recommended by Board of Studies 11-02-2022						
Apj	proved b	y Academic Council	No.65	Date	17-03-2022	

Course code	Course Title	L	T	P	C
BCHE404L	Colloids and Interfacial Science	3	0	0	3
Pre-requisite	Nil	Syl	labus	versi	on
		1.0		0	

- 1. To describe the theories of colloids and interfacial phenomena
- 2. To explain solution thermodynamics, stability of colloids, light scattering, capillary effects
- 3. To expose the importance of colloidal phenomena through real-life examples

Course Outcomes:

- 1. Describe the concept of non-covalent colloidal forces
- 2. Explain different methods of measuring liquid surface tension and contact angle
- 3. Apply the knowledge of thermodynamics for micellization in surfactant solutions
- 4. Interpret the kinetic and thermodynamic stability of emulsions and interfaces
- 5. Calculate colloidal parameters using light scattering spectrum

Module:1 Introduction to Colloid & Interface Science

6 hours

Fundamentals of Colloid Science-Colloids definition-Van der Waals interactions-The Hamaker constant-Electrostatic Interactions in Colloids-The electrical double layer (EDL) theory-Zeta potential-Gibbs energy of electrostatic interactions

Module:2 | Surface Tension and Contact Angle

6 hours

Surface tension of liquids-definition-Lewis Acid-Base interactions-Surface tension & contact angle-Measuring contact angles – Du Noüy ring method – Wilhelmy plate method – effect of temperature on surface tension – Young – Laplace equation – Kelvin equation

Module:3 Interactions at Interfaces

5 hours

Surfactants Types – Cationic surfactant – Anionic surfactant: Zwitterionic, Gemini and Biosurfactants – Definitions - applications -thermodynamics - Surface excess, Micellization of surfactant - Hydrophilic-lipophilic balance (HLB).

Module:4 **Emulsions**

6 hours

Definitions and applications - Types of emulsions - Thermodynamics of emulsification-Emulsion stability - Ostwald ripening - phase inversion - micro emulsion - foams.

Module:5 **Design of Interfaces**

7 hours

Adsorption-Models of adsorption-Adsorption at the solid-liquid interface-Adsorption at the liquid-air interface-Adsorption at the solid-air interface – applications – calculation of free energy of adsorption.

Module:6 | Principles of Light Scattering

6 hours

Fundamentals of light scattering-Static light scattering-Dynamic light scattering – applications – Rayleigh scattering – polydispersity index – average particle size calculation.

Module:7Application ofColloidsand Interfacial phenomena7 hoursColloidal and interfacial phenomena treatment-Medicine-Tribology-Engineeringin biology- food technology- Photovoltaic - Water

Mo	dule:8	Contemporary issues				2 hours		
Gu	est lectur	e from industry and R&D o	organisations.					
				Tot	al Lecture hours:	45 hours		
Tex	Text Books:							
1.	Pallab	Ghosh, Colloid and Interfac	ce Science, 2009,	1 st edition,	PHI, India			
Ref	ference l	Books:						
1.	Hiemer	nz P.C., Rajagopalan R., Pr	inciples of Colloi	d and Surf	ace Chemistry, 199	7, 3rd ed.,		
	CRC P	ress, USA.						
2.	Wang (C., Leblanc R.M., Recent Pr	ogress in Colloid	and Surfac	e Chemistry, 2016,	1 st ed.,		
	Oxford University Press Inc., UK.							
Mo	de of eva	aluation: Continuous Assess	sment Test, Quiz,	Assignmen	nt, Final Assessmen	t Test		
Rec	commend	led by Board of Studies		11-0	2-2022			
Ap	proved b	y Academic Council	No.65	Date	17-03-2022			

Course code	Course title	L	T	P	C
BCHE405L	Fluidization Engineering	3	0	0	3
Pre-requisite	NiL	Sy	llabu	s ver	sion
			1	1.0	

- 1. To understand the physical and chemical aspects of the fluidization process
- 2. To identify the various fluidization regimes and describe their behaviour
- 3. To design the various types of fluidized bed widely used in industrial practice

Course Outcomes:

- 1. Identify the behavior of fluidization process under various operating conditions
- 2. Determine minimum fluidization velocity and terminal velocity in fluidized bed
- 3. Design suitable distributor for fluidized beds
- 4. Apply various models for designing the fluidized bed systems
- 5. Analyze the performance of fluidized bed reactor systems

Module:1 Introduction

5 hours

Concept of Fluidization - Special Features of Fluidization - Comparison with other Contacting Methods - Advantages and Disadvantages of Fluidized Beds - Industrial Applications of Fluidized Beds - Historical Highlights - Physical Operation - Chemical Operations.

Module:2 | Characteristics of solids

5 hours

Geldart Classifications of Particles - Flow characteristics and its outline in the different types of fluidizations - Gas-solid system - Liquid-solid system

Module:3 Characterization of Fluidization I

5 hours

Mapping of Fluidization Flow pattern – Transition regime - Behaviour of Fluidized Beds – Minimum and Terminal Velocities in Fluidized Beds

Module:4 | Characterization of Fluidization II

7 hours

Frictional pressure drop and its model – analysis - Solid movement, mixing, segregation and Staging - Gas distribution - small and large scale industries - Design of Distributors – Power Consumption

Module:5 | Entrainment and Elutriation

8 hours

Free Board Behaviour - Entrainment from Tall and Short Vessels - Constant Approach - Flow Pattern of Gases through Fluidized Beds - Solid Movement - Mixing, Segregation and Staging

Module:6 Heat Transfer in Fluidized Beds

6 hours

Fluid-solid heat transfer - Determination and Interpretation of Heat Transfer. Calculation of overall Heat Transfer coefficient

Module:7 | **Miscellaneous systems**

7 hours

 $\label{lem:conical_fluidized_bed} Conical\ fluidized\ bed\ -\ Draft\ tube\ systems;\ Semi\ fluidized\ bed\ systems\ -\ Design\ of\ fluidized\ bed\ reactors$

Module:8 | Contemporary issues

2 hours

Guest lecture from industry and R & D organizations

				Tota	l Lecture hours:	45 hours		
Tex	xtbook:							
1.	Kunii I	and Levenspiel O., Fluidiz	zation Engineering	g, 2013, 2 ⁿ	d ed., Butterworth I	Heinemann,		
	USA.							
Ref	Reference Books:							
1.	Yang W.C., Handbook of Fluidization and Fluid – Particle System, 2003, 1st ed., CRC Press,							
	USA.							
2.	Grace	J.R., Avidan A.A., Know	vlton T.M., Circ	ulating Fl	uidized Beds, 201	1, 1 st ed.,		
	Springe	er, USA.						
3.	John G	race, Xiaotao Bi, Naoko E	Illis, Essentials of	Fluidizati	on Technology, 20	20, Wiley-		
	VCH V	erlag GmbH & Co, German	ny					
Mo	de of eva	aluation: Continuous Assess	sment Test, Quiz,	Assignmen	nt, Final Assessmen	nt Test		
Recommended by Board of Studies				11-0	2-2022			
Ap	proved b	y Academic Council	No.65	Date	tion Technology, 2020, Wil			

Course code	Course title			P	C
BCHE406L	AI in Chemical Engineering	3	0	0	3
Pre-requisite	NIL	Sylla	abus	vers	ion
		1.0		0	

- 1. To introduce Artificial Intelligence (AI) as an advanced approach to automation in process to industries
- 2. To impart knowledge on various AI techniques employed to address complex chemical engineering problems
- 3. To analyse the issues and limitations of AI methods

Course Outcomes:

- 1. Understand the scope of Artificial Intelligence (AI) in simulating the human behaviour
- 2. Analyze the components of AI and its capability to address the nonlinear chemical processes
- 3. Apply AI approaches to model different chemical processes
- 4. Assess the suitability of various AI approaches to solve optimization problems
- 5. Develop AI-based models for fault detection and diagnosis in process plants and control systems

Module:1 | Artificial Intelligence in Chemical Engineering

2 hours

Scope of AI in Chemical Engineering - background - phases of AI - expert systems - neural network - deep learning and data science - merits and demerits.

Module:2 | Artificial Neural Networks (ANN)

6 hours

History of ANN - biological neuron - artificial neuron - activation function - neural network architecture - learning methods - single layer perceptron - multi layer perceptron - back propagation algorithm - applications - clustering - classification - function approximation and prediction - familiarize neural network tool box in MATLAB.

Module:3 Introduction to Fuzzy logic

6 hours

History of fuzzy logic- fuzzy sets and concepts - operation on fuzzy sets - fuzzy relations - fuzzification - defuzzification- fuzzy membership functions - Adaptive Neuro Fuzzy Inference System (ANFIS) - familiarization of fuzzy logic and ANFIS tool box in MATLAB

Module:4 | AI in Process Modelling

8 hours

Mathematical versus AI based process models - AI approaches to process modelling - ANN models - fuzzy logic models - hybrid models, case study - ANN modelling of wastewater treatment process

Module:5 | AI in Process Optimization

8 hours

Classical optimization approaches versus evolutionary algorithms - genetic algorithm - swarm

		of about all miner			
optimizatio	n, case study - optimization	of chemical proce	SS		
Module:6	AI in fault detection a	and diagnosis			8 hours
Fault detec	tion and diagnosis in proce	ess plants - metho	ods of fau	lt diagnosis - neur	al network
method - fu	zzy logic method, case stud	dy - fault diagnosis	s using gen	netic fuzzy system	
Module:7	AI in Process Control				5 hours
	al versus AI based process		- Fuzzy	logic – ANFIS, C	Case study:
Online gene	etic-ANFIS temperature con	trol in reactors			
Module:8	Contemporary issues				2 hours
Guest lectur	re from industry and R & D	organizations			
			Tot	al Lecture hours:	45 hours
Text Book					
	ille, T.E. and Liu, Y.A., Ar ademic Press, USA	tificial Intelligenc	e in Chem	ical Engineering, 1	991, 1 st
Reference :	Books:				
1. Acade	el L. Mavrovouniotis, Arti mic Press, USA	<u> </u>			
	rt, L., Krijgsman, A., Ving s Control, 1992, Pergamon l		Application	of Artificial Inte	lligence in
	Huaguang, Liu, Derong, ering, 2006, Birkahauser, S		ig and Fi	ızzy control serie	s: Control
Mode of ev	aluation: Continuous Assess	sment Test, Quiz,	Assignmer	nt, Final Assessmen	t Test
Recommen	ded by Board of Studies		11-0	2-2022	

PROJECTS AND INTERNSHIP COURSES-3 (9 CREDITS)

Course code	Title of the course			P	C
BCHE399J	Summer Industrial Internship		0	0	1
Pre-requisite Nil		Syl	llabus	vers	ion
		1.0			

The course is designed so as to expose the students to the industry environment and to take up onsite assignments as trainees or interns.

Expected Course Outcome:

- Demonstrate professional and ethical responsibility.
- Understand the impact of engineering solutions in a global, economic, environmental, and societal context
- Develop the ability to engage in research and to involve in lifelong learning
- Comprehend contemporary issues

Module Content 4 Weeks (28 days)

Four weeks of work at the industry site.

Supervised by an expert in the industry.

Mode of Evaluation: Continuous Assessment - Internship Report, Presentation and Project Review

Recommended by Board of Studies	11-02-2022				
Approved by Academic Council	No.65	Date	17-03-2022		

Course code	Title of the course		T	P	C
BCHE497J	Project - I	0	0	0	3
Pre-requisite	requisite Nil		llabus	vers	ion
			1.	.0	

To provide sufficient hands-on learning experience related to the design, development, and analysis of suitable product/process so as to enhance the technical skill sets in the chosen field.

Expected Course Outcome:

- 1. Demonstrate professional and ethical responsibility.
- 2. Evaluate evidence to determine and implement best practices.
- 3. Mentor and support peers to achieve excellence in the practice of the discipline.
- 4. Work in multi-disciplinary teams and provide solutions to problems that arise in multi-disciplinary work.

Module Content (Project duration: one semester)

The project may be a theoretical analysis, modelling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research, and any other related activities.

Can be individual work or a group project, with a maximum of 3 students.

In the case of group projects, the individual project report of each student should specify the individual's contribution to the group project.

Carried out inside or outside the university, in any relevant industry or research institution.

Publications in the peer reviewed journals / International Conferences will be an added advantage

Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. (No FAT) Continuous Assessment on the project – Mark weightage of 20:30:50 – project report to be submitted, presentation and project reviews

Recommended by Board of Studies		11-0	02-2022
Approved by Academic Council	No.65	Date	17-03-2022

Course code	Title of the course		T	P	C
BCHE498J	Project – II /Internship		0	0	5
Pre-requisite Nil		Syllabus version			
			1.	.0	

To provide sufficient hands-on learning experience related to the design, development, and analysis of suitable product / processes so as to enhance the technical skill sets in the chosen field.

Expected Course Outcome:

- 1. Formulate specific problem statements for ill-defined real-life problems with reasonable assumptions and constraints.
- 2. Perform literature search and/or patent search in the area of interest.
- 3. Conduct experiments / Design and Analysis/solution iterations and document the results.
- 4. Perform error analysis / benchmarking/costing
- 5. Synthesize the results and arrive at scientific conclusions/products/solution
- 6. Document the results in the form of a technical report/presentation

Module Content (Project duration: one semester)

- 1. Project may be a theoretical analysis, modelling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities.
- 2. Project can be for one or two semesters based on the completion of the required number of credits as per the academic regulations.
- 3. Can be individual work or a group project, with a maximum of 3 students.
- 4. In the case of group projects, the individual project report of each student should specify the individual's contribution to the group project.
- 5. Carried out inside or outside the university, in any relevant industry or research institution.
- 6. Publications in peer-reviewed journals / International Conferences will be an added advantage

Mode of Evaluation: Evaluation involves periodic reviews by the evaluation Team. (No FAT) Continuous Assessment on the project – Mark weightage of 20:30:50 – project report to be submitted, presentation and project reviews

Recommended by Board of Studies	11-02-2022			
Approved by Academic Council	No.65	Date	17-03-2022	

Course code	Title of the course		T	P	C
BCHE499J	One Semester Internship	0	0	0	14
Pre-requisite	Nil		llabus	vers	ion
		1.0		•	

To provide sufficient hands-on learning experience related to the design, development, and analysis of suitable product / processes so as to enhance the technical skill sets in the chosen field.

Expected Course Outcome:

- 1. Formulate specific problem statements for ill-defined real-life problems with reasonable assumptions and constraints.
- 2. Perform literature search and/or patent search in the area of interest.
- 3. Conduct experiments / Design and Analysis/solution iterations and document the results.
- 4. Perform error analysis / benchmarking/costing
- 5. Synthesize the results and arrive at scientific conclusions/products/solution
- 6. Document the results in the form of a technical report/presentation

Module Content (Project duration: one semester)

This is a capacity-linked opportunity during which the students are expected to take up research / industrial internship for a period of 5-6 months duration. These students are expected to complete all other academic commitments. The outcome is expected to be exceptional quality with tangible outcomes more than that expected of an undergraduate student. Evaluation will be either at the industry and / or by the school level committee constituted for this purpose. Student generally registers for the 5 credit internship and is escalated to 14 credits depending on the performance.

Mode of Evaluation: Evaluation involves periodic reviews by the evaluation Team. (No FAT) Continuous Assessment on the project – Mark weightage of 20:30:50 – project report to be submitted, presentation and project reviews

Recommended by Board of Studies		11-0	02-2022
Approved by Academic Council	No.65	Date	17-03-2022

NON GRADED DISCIPLINE CORE COURSE – 1 (1 CREDIT)

Course code	Course Title		T	P	C
BCHE101N	Introduction to Engineering		0	0	1
Pre-requisite Nil		Syl	labu	s vei	sion
			1	.0	

- 1. To make the student comfortable and get familiarized with the facilities available on campus
- 2. To make the student aware of the exciting opportunities and usefulness of engineering to society
- 3. To make the student understand the philosophy of engineering

Expected Course Outcome:

- 1. To know the infrastructure facilities available on campus
- 2. To rationally utilize the facilities during their term for their professional growth
- 3. To appreciate the engineering principles, involve in life-long learning and take up engineering practice as a service to society

General Guidelines

- 1. Student should observe and involve in the activities during the induction programme. Both general activities and those which are discipline-specific should be included here.
- 2. Student should get familiarized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website.
- 3. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering.
- 4. Activities under 'Do-it-Yourself' will be detailed by the School.
- 5. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation

General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used.

Mode of Evaluation: Evaluation of the submitted report and interaction with the students						
Recommended by Board of Studies yes						
Approved by Academic Council	No. 62	Date	15-07-2021			

SHORT SYLLABUS

SCHOOL OF CHEMICAL ENGINEERING - SCHEME

B.Tech in Chemical Engineering

<u>Discipline-Linked Engineering Sciences:</u>

BCHE201L Computational Methods in Chemical Engineering (3 - 0 - 0 - 3)

Single Algebraic and Transcendental Equations - Computers and error analysis, mathematical model formulation; Linear and Nonlinear System of Equations - solution for single and simultaneous equations; Interpolation and Regression Analysis - Interpolation and regression analysis; Optimization - unconstrained and constrained optimization; Integration and Differentiation - numerical integration and differentiation; Ordinary Differential Equations - Ordinary differential equations, Initial and boundary value problems; Partial Differential Equations - partial differential equations: Implicit and explicit methods.

BCHE201P Computational Methods in Chemical Engineering Lab (0 - 0 - 2 - 1)

Experiments related to computational methods - MATLAB code for bisection / Regula falsi method, Newton Raphson / Secant method, Gauss Elimination / Gauss Jordan method, Gauss Jacobi / Gauss Seidel method, Develop MATLAB code for ODE: Euler / Modified Euler method, ODE: Runge-Kutta method, Liebmann's method - Aspen Plus simulation/ MS Excel package.

BCHE204L Transport Phenomena (3 - 1 - 0 - 4)

Introduction - Concepts in chemical engineering, Transfer of momentum, mass, and energy; Momentum Transport - Phenomenological laws; Vector and Tensor analysis - Molecular and Convective Transport; 1D Viscous Flow: Shell Balance - viscous

Flow, shell Balance; Equations of Change - Equations of Change, Applications to isothermal flow of Newtonian and non-Newtonian fluids; Steady state Heat Transfer - Shell Balance - energy transport; Mass Transfer- Shell Balance - mass transport, mechanisms.

BCHE206L Materials Science and Engineering (3 - 0 - 0 - 3)

Basics of Materials and Structure – Classification of materials, atomic structure, chemical Bonds, structures of metals, ceramics, polymers, and amorphous materials; Crystal Systems - frenkel and schottky defects; Phase Diagrams of the engineering materials - chemical alloying; Evaluation of engineering materials – preparation of nano materials, microstructure; Characterization of materials - physicochemical properties; Electrochemical Characterization of the materials - evaluation of electrochemical, thermal and optical properties of materials, stress-strain response, polarization curves, electrolytic/electrochemical systems; Nano materials - Preparation of nano-materials, Heat treatment, sintering.

Discipline Core:

BCHE202L Chemical Engineering Thermodynamics (3-1-0-4)

Fundamental Concepts and Definitions - Volumetric properties of pure fluids, P-V-T relationships; Laws of Thermodynamics - first law of thermodynamics, second law of thermodynamics; Thermodynamic Properties of Pure Fluids - thermodynamic properties of pure fluids, Maxwell's relations, fugacity, activity; Thermodynamic Properties of Solutions - partial molar properties, residual properties , excess property relations; Phase Equilibria - Vapour-Liquid Equilibria for ideal solutions; Vapour-Liquid Equilibria - Non-ideal Solutions - azeotropic systems, P-x-y and T-x-y diagrams, consistency test for VLE data, Chemical Reaction Equilibria - criteria for chemical equilibrium, equilibrium constant.

BCHE203L Chemical Process Calculations (3-1-0-4)

Introduction to Basic Concepts - Unit conversion, mass and mole fractions; Vapor pressure and Humidity calculations - Vapor pressure of liquids, humidity and saturation; Material Balance without Chemical Reaction - steady state material balances for unit operations; Material balance with Chemical Reaction -

Stoichiometric equation, material balance with single and multiple chemical reactions; Recycle and Bypass Operation - Recycle, purge and bypass calculations in unit operations; Combustion calculations - theoretical and excess air requirement; Energy balance - steady state energy balance equation.

BCHE205L Momentum Transfer (3-0-0-3)

Basic Concept of Momentum Transfer - Characteristic properties of fluids; Fluid Flow Phenomena - Kinematics and Dynamics of fluid flow; Flow Measuring Devices - Classification and working principle; Flow through Pipes - Velocity Profile, Fluid friction; Dimensional and Model Analysis - Dimensional homogeneity, Similitude; Flow through Packed and Fluidized Bed - Flow past immersed bodies, Pressure drop across packed beds; Transportation of Fluids - Pumps, Pump Characteristics.

BCHE205P Momentum Transfer Lab (0-0-2-1)

Experiments related to Momentum Transfer - Flow through Venturi meter, Orifice meter, circular pipe, non-circular pipe, Reynolds Experiment, Bernoulli's theorem, Characteristics of Centrifugal pump, Packed bed, Fluidized bed.

BCHE207L Mass Transfer-1 (2-1-0-3)

Diffusion - Steady state molecular diffusion; Molecular diffusion in fluids - Diffusivity in solids and fluids; Mass transfer coefficients - Correlation for convective mass transfer coefficient; Theories of mass transfer - Penetration and surface theory; Humidification - Psychrometric Charts, Cooling Towers; Drying - Rate of Drying, Drying Equipment's; Crystallization - Super saturation, Types of Crystallizers used in practice.

BCHE208L Heat Transfer (3 - 0 - 0 - 3)

Conduction - Steady state and unsteady state conduction; Extended Surfaces and Unsteady state conduction - Fin efficiency and effectiveness, Lumped parameter system; Convection (without phase change) - Convective heat transfer coefficients; Convection (with phase change) - Drop wise and Film wise condensation, Boiling,

Condensation; Radiation - Blackbody concepts, Gray bodies; Heat Exchangers - LMTD, NTU, Effectiveness, Special type of heat exchangers; Evaporators - Design of single and multiple effect evaporators.

BCHE208P Heat Transfer Lab (0 - 0 - 2 -1)

Experiments related to Heat Transfer - Thermal conductivity of metal rod and liquids, Transient Heat Conduction, Fin efficiency & effectiveness, Natural Convection heat transfer, Forced Convection heat transfer, Emissivity, Double Pipe Heat Exchanger, Plate type Heat Exchanger, shell and tube Heat Exchanger, Aspen Plus – EDR and PROSIM software.

BCHE301L Mechanical Operations (3 - 0 - 0 - 3)

Properties and Storage of Solids - Storage and transportation of bulk solids; Size Reduction of Solids - Laws of Crushing, Size Reduction Equipment; Size separation of solids - Screen analysis; Separation of solids based on specific Properties - Wet scrubber, Elutriator; Settling and Sedimentation - free and hindered settling; Filtration - Constant Pressure Filtration, Constant Rate Filtration; Agitation and Mixing - Power Consumption in Agitated vessel, Mixing index.

BCHE301P Mechanical Operations Lab 0 0 2 1

Experiments related to mechanical operations- Screen Effectiveness, Size reduction studies in Jaw crusher, Ball mill, Size reduction studies in Roll crusher, terminal settling velocity of a sphere, Plate and frame filter press, Leaf filter, Determination of area of thickener, Cyclone separator, Effectiveness of mixing.

BCH302L Mass Transfer-II (3-0-0-3)

Introduction to Equilibrium Staged Operations - Vapour-liquid Equilibria, Types of distillation; Distillation - McCabe-Thiele and Ponchon - Savarit graphical method; Absorption - Continuous contact, co-current, counter-current; Extraction- Liquid - Liquid equilibria, extraction equipment; Leaching - rate of leaching, Equipment for leaching; Adsorption - isotherms, Breakthrough Curves; Modern separation

techniques - Membrane separation, Chromatography techniques.

BCH302P Mass Transfer Lab (0-0-2-1)

Experiments related to Mass Transfer - Diffusion in gas phase, liquid phase, Wetted wall column, Simple distillation, Tray dryer, Liquid-liquid Equilibria ternary system, cross current Extraction, Continuous distillation, Adsorption (using Aspen Plus or PROSIM), Leaching.

BCHE303L Chemical Reaction Engineering I (3-0-0-3)

Fundamental Concepts and Definitions - rate and stoichiometry; Chemical Kinetics - reaction mechanism, Half-life method; Design of Isothermal Ideal Reactors - Ideal Mixed Flow and plug flow reactor; Multiple Reactors - mixed flow and plug flow reactors in series and parallel; Design of Multiple reactions - simultaneous reactions, Consecutive Reactions; Special Reactors - Semi batch reactor, Bio reactor; Non-isothermal Reactors - Material balance, Energy balance, Adiabatic reactors.

BCHE303P Chemical Reaction Engineering Lab (0 - 0 - 2 - 1)

Experiments related to reaction Engineering - equimolar and non-equimolar constant volume batch reactor, Adiabatic batch reactor, Plug flow reactor, Mixed flow reactor, reactor in series, packed bed reactor, RTD studies in Mixed flow reactor, RTD studies in plug flow reactor, RTD studies in packed bed flow reactor.

BCHE304L Chemical Process Technology and Economics (3 – 1 – 0 - 4)

Chloro-alkali and Cement Industries - Manufacture of sulphur, sulphuric acid, Portland cement, glass; Industrial Gases - carbon-di-oxide, hydrogen, oxygen and nitrogen; Fertilizer Industries - NPK Fertilizers; Cellulose, Sugar, Soap and Detergent Production Industries - paper, sugar, soap; Petroleum Industries - Petroleum refining processes; Cost Estimation - Cash flow for industrial operations, financing sources, capital requirements estimation; Cost accounting and Depreciation - Cost and asset accounting, financial statements, Depreciation.

BCHE305L Process Dynamics and Control

(3-0-0-3)

Process Instrumentation - Principal measuring instruments in process industries; Linear Open Loop Systems - Forcing functions, first order and second order systems; Linear Closed Loop Systems - Development of Block diagram, controllers and final control elements; Transient Response and Stability Analysis - characteristics of controllers, offset, Routh's test; Frequency Domain Analysis - Bode stability criteria, Nyquist plot, Controller tuning; Advanced Process Control - Cascade control, Feed-Forward control; Computer Process Control - Distributed Control System, SCADA.

BCHE305P Process Dynamics and Control Lab (0-0-2-1)

Experiments related to process control - Temperature control system, level control system, flow control system, Cascade control loop, Non-interacting tanks/interacting tanks, controller tuning using cohen and coon, controller tuning Ziegler-Nichols method in Simulink, control Valve Characteristics, Ratio control using PROSIM, control using DCS trainer.

BCHE306L Chemical Reaction Engineering II

(2-1-0-3)

Non-ideal Reactors - Residence Time Distribution, C, E and F curves; Introduction to Heterogeneous Reaction Engineering - Non catalytic fluid-solid reactions, ratecontrolling steps; Introduction to Catalytic Reactions - Rate law mechanisms, Rate limiting step; Transport Mechanisms in heterogeneous catalysis - Internal effectiveness, External transport limitations; Catalyst preparation characterization - Surface area and pore volume determination; Catalyst Deactivation methods - order of deactivation, Catalyst regeneration; Design of Reactors for Fluid-Solid and Fluid-Liquid reactions - Overall view of Fluidized, Packed and Moving bed reactors.

BCHE307L Process Modelling and Simulation

(2-0-0-2)

Conservation Principles and Models - Mathematical models, Conservation principles, Constitutive relations; Steady state lumped systems - linear and non-linear algebraic equations; Flow Sheeting and Solution - partitioning and precedence ordering, simultaneous solution, modular solution; Unsteady State Lumped Systems - matrix differential equations, simulation of closed loop systems; Dynamic Simulation of Unsteady State Lumped Systems - matrix differential equations, simulation of closed loop systems; Steady and unsteady State Distributed systems - Analysis of compressible flow, ODE boundary value problems; Artificial Neural Network - development of ANN based models, Performance of ANN Models.

BCHE307P Process Modelling and Simulation Lab (0-0-2-1)

Experiments related to modeling and simulation - Solution of Algebraic equations, Interacting Tanks in Series, Jacketed stirred tank Heater, Van de Vusse Reaction Mechanism, Non-isothermal CSTRs in series, Biochemical Reactor, Mixing Tank, 1D unsteady state heat conduction, Elliptic PDE and Parabolic PDE using Matlab PDE toolbox.

BCHE308L Chemical Process Equipment Design (3 - 0 - 0 - 3)

Introduction to Process Design - Flowchart and interpretation; Pressure vessel - Codes and standards, mechanical design of pressure vessel, storage vessels; Heat transfer equipment - heat Exchanger design, Condenser design; Heat Exchanger Network - Pinch Technology, Heat exchanger with energy network design; Separation process equipment - Distillation and Absorbers design; Reactor Design - ideal and adiabatic reactors; Simultaneous Heat and Mass transfer Equipment - Design of evaporators and dryers.

BCHE308P Chemical Process Equipment Design Lab (0 - 0 - 2 - 1)

Experiments related process equipment design - 3D drawing and applications, surfaces and geometries, Design and drawing of Pressure vessel, Shell and Tube heat Exchanger, Bubble cap tray, Rotary Louvre dryer, performance of Heat Exchanger using Aspen plus, Distillation Column using Aspen plus, Cost Estimation of Distillation Column using Aspen plus, Dynamic simulation on distillation column using Aspen Plus/Prosimulator

Discipline Elective:

BCHE309L Membrane Separation Processes

(3 - 0 - 0 - 3)

Overview, Classification and Membrane Materials - classification, types of membrane processes, membrane material; Membrane Preparation and Characterization - phase inversion process, visual methods; Membrane Transport Theory - Transport through porous membrane and nonporous membrane, fouling model; Reverse Osmosis -Models for reverse osmosis transport, Design of RO module; Nanofiltration transport mechanism in NF membranes; Microfiltration and Ultrafiltration - MF and UF membranes and modules, membrane rejection and sieving coefficient; Other membrane Processes - Liquid membranes, membrane bioreactors.

BCHE310L Polymer Technology (3-0-0-3)

Basic Concepts of High Polymer Systems - Structural Features of a Polymer, Classification of Polymers; Classification of Polymerization-Polymerization, addition polymerization; Polymer Characterization and properties of commercial polymers - Polymer Fractionation, Molecular Weight Distribution, Crystallinity, testing of polymers; Polymer Rheology and Morphology - Stress and Strain, Rheological properties of polymers, Crystallization of Rubber on Cooling; Polymer Processing Techniques - Moulding technique, forming techniques; Polymer Blends, Composites and Conducting Polymers - Bio-nano-composites, Protein-based polymers; Polymers in Wastes and their Environmental Impact - Waste Management, Recovery and Recycling of Organic Wastes.

BCHE311L Process Utilities and Pipeline Design (3 - 0 - 0 - 3)

Introduction to process plant utilities - selection of blowers and compressors, Purification and transportation of air; Process water treatment and recycling recycling aspects of water from blowdowns and rejects; Steam generation and distribution - boiler types, boiler accessories, steam distribution and waste heat utilization; Humidification and refrigeration systems - types of refrigerants, concept of cryogenics and its characteristics; Introduction to Piping Design - Process Auxiliaries, piping drawings, pipe fittings, pipe joints; Piping Materials, Codes and Standards -Metallic materials, ASME – BIS – ISO standards; Piping Installation and Insulation -Overhead installations Weather proof and fire-resisting pipe insulation

BCHE312L Chemical Process Optimization

(3-0-0-3)

Formulation of Optimization Problems - Mathematical concepts of optimization; Single Variable Optimization - Unconstrained - Region elimination methods, Polynomial approximations; Multivariable Optimization - Unconstrained - Graphical visualization, Gradient-based methods; Linear Programming - Simplex method, Sensitivity analysis; Nonlinear Programming with constraints - Lagrange multipliers, Quadratic programming; Optimization of Chemical processes-I - Minimum work of gas compression, Optimum recovery of waste heat; Optimization of Chemical processes-II - optimization of heat exchanger networks, optimization of multistage evaporators using MATLAB/Excel.

BCHE313L Environmental Pollution Control

(3 - 0 - 0 - 3)

Introduction - Environmental standards, MINAS; Pollution Prevention - Process modification, alternative raw material, energy recovery and waste utilization; Air pollution control - Principles and design of air pollution control equipments; Water pollution control - Selection, design and performance analysis of waste water treatment processes; Solid waste management - Classification of solid waste, 4R concept, waste disposal methods; Hazardous waste management - Hazardous waste classification, e-waste management; Pollution control in chemical process industries - textile and tanneries, electroplating, refineries and thermal power plants.

BCHE314L Fuels and combustion (3-0-0-3)

Classification and Properties of Fuels – Types and characteristics of fuels, Calorific value (CV), Orsat apparatus; Solid fuels - Origin of coal, applications of the coal; Liquid fuels - classification of crude petroleum, processing of crude petroleum; Gaseous fuels - Dry and wet natural gas, LPG, LNG, CNG; Combustion Calculations - Flame and Flame dynamics, air fuel ratio, and carbon Foot print calculation; Combustion Equipment - fuel firing system, Fluidized bed combustion; Alternative Fuels - Adsorbed Natural Gas (ANG), Synthetic natural Gas (SNG), Waste to fuel.

BCHE315L Biochemical Engineering (3-0-0-3)

Introduction to Biochemical Engineering - Scope of biochemical engineering; Basic Microbiology and Biochemistry - overview of biotechnology, diversity in microbial

cells, Glucose metabolism; Enzymes & Enzyme kinetics- mechanism of enzymatic reactions, enzymes inhibition, enzyme immobilization; Kinetics of Cell Growth - growth characteristics of microbial cells, inhibition on cell growth; Transport in Microbial Systems - Newtonian and non-Newtonian behavior of broth, gas/liquid transport in cells, heat transport in microbial systems; Bio reactors – Design of bio reactor, Scale up studies; Downstream processes – centrifugation, extraction, membrane separations, cell desruption technologies.

BCHE316L Pharmaceutical Technology 3 0 0 3

Tabletting Technology - Types and classes of tablets, formulation of tablets, tablet coating; Capsules Technology - hard gelatin and soft gelatin capsules; Microencapsulation - core materials, coating materials, evaluation of microcapsules; Parenteral Products - general manufacturing process; Novel Drug Delivery Systems - targeted drug delivery systems, nanoparticles; Packaging Techniques - packaging and stability of products, packaging machinery; Packaging Technology - BFS Technology, Quality Analysis, Packaging designs.

BCHE317L Petroleum Refining Technology (3 - 0 - 0 - 3)

Overview on crude oil and upstream processes - exploration practices, crude oil composition, selection criteria for crude oil; Distillation - Desalting, ADU, VDU; Cracking, visbreaking and coking - Thermal cracking, Catalytic cracking, Hydrocracking; Quality improvement of light end petroleum products - Knocking, Catalytic reforming, Polymerization; Purification of petroleum products - Sweetening processes, Dewaxing , Deasphalting; Fuel additives - Types of oil additives, corrosion inhibitors, fuel dyes; Liquid fuel storage and effluent treatment plant - types of storage tanks , overview of an effluent treatment plant.

BCHE318L Safety and Hazard Analysis (3-0-0-3)

Introduction to Safety in Industry - Hazard, Risk, Danger and Accident, Chemical safety, Industry safety; Safety Programmes in Industry - Safety Analysis in industries, Economic, Social Benefits from safety program; Hazard analysis in the workplace - Hazard identification, Creating HAZOP table for Chemical plants, , Layer of Protection Analysis (LOPA); Risk Assessment - Difference in risk assessment, Risk management, Emergency planning; Safety Models and behaviour-based safety

- Gaussian plume models, What-if analysis, Vulnerability models, Safety audits, safety checklist; Safety in manufacturing and service industries - Formulation of the safety committee, ergonomic safety; Case studies - Dominos' effect, Chemical release.

BCHE319E Process Plant Design and Simulation (2-0-2-3)

Introduction - Process synthesis, flow sheeting & simulations; Approaches to process simulation - Equation solving approach used in process plant simulation; Equation solving approach - Partitioning, Decomposition, Direct Methods, Iterative methods; Decomposition of Networks - digraph, signal flow graph, Boyer Moore (BM) Algorithm; Convergence promotion - Linear equation, nonlinear equation, Convergence Promotion scheme Newton's method, Wegstein's method; Application of flow sheeting software - Aspen Plus-Steady state simulation, Aspen Hysysdynamic simulation; Case studies: Process plant steady-state and dynamic simulation.

BCHE320L Chemical Product Design (3 - 0 - 0 - 3)

Introduction - Introduction to chemical product design; Needs of chemical product - Customer needs, lead users, interviews; Needs to specifications - Consumer assessments, Converting needs to specifications; Ideas – brainstorming, Chemical sources of ideas, sorting the ideas, screening the ideas; Selection of ideas - ingredient substitutions, selection using kinetics, risk in product selection; Product manufacture - patents and trade secrets, supplying missing information, micro structured products; Speciality chemical manufacture and Economic Concerns - extending laboratory results, heuristics for separations, Product versus process economics, time value of money.

BCHE321L Natural Gas Engineering (3-0-0-3)

Properties and Composition of Natural Gas - Natural Gas origin, Thermodynamic properties; Natural Gas Extraction - Onshore Extraction, Offshore Extraction; Natural Gas Offshore Production and Handling - Drilling Deep-water Reservoir, Mooring Systems; Natural Gas Onshore Production and Handling- Sucker rod pumping; Natural Gas Processing – Dehydration, Desulphurization processes, Lowtemperature processes; Liquid Recovery – Natural Gas Liquids(NGL), LPG, C3 and

C2 fraction recovery from Natural Gas; Economics of Natural Gas - Trade & selection of port location, Economics of gas processing.

BCHE322L Nanoscience and Nanotechnology (3 - 0 - 0 - 3)

Introduction - Scientific revolution, influence of nano over micro/macro; Types of nanostructure and their properties - Quantum Dots shell structures, mechanical-physical-chemical properties; Synthesis and stability of nanomaterials - Top-down and bottom-up methods, electrostatic stabilization; Metal, semiconductor and magnetic nanoparticles - Core-Shell structured and semiconductor nanoparticles, Janus nanoparticles; Nano scale device fabrication - Lithography techniques, inferometric techniques, nano scale coating techniques; Nano scale characterization techniques - surface and bulk morphological properties, nano mechanic properties; Application of nanomaterials - molecular electronics and nanoelectronics, membrane-based application.

BCHE323L Fertilizer Technology (3-0-0-3)

Overview of Fertilizers - Plant Nutrients, Fertilizer production and consumption, Raw materials; Nitrogenous Fertilizers - Ammonium sulphate, Ammonium chloride, Ammonium nitrate; Phosphatic Fertilizers - Production of sulphuric and phosphoric acids, Single superphosphate, Triple superphosphate, Thermal phosphates; Potassic Fertilizers - Potassium Chloride, Potassium sulphate, Potassium magnesium sulphate; Complex Fertilizers - Urea ammonium phosphate, Ammonium phosphate sulphate; Other Fertilizers - Biofertilizers, Controlled release fertilizers; Pollution from fertilizer industry - Solid, liquid and gaseous pollution.

BCHE324L Fermentation Technology (3 - 0 - 0 - 3)

Introduction and history of fermentation processes - Development of fermentation process; Microbial growth kinetics - Batch, Continuous and fed-batch, structured and unstructured models of culture; Microbial Strain Management - Industrial microorganisms, isolation, preservation of strains; Media for industrial fermentations - Media formulation, oxygen requirements, Media optimization; Aseptic fermentation process - Media sterilization, Development of inocula; Fermenters - Aeration and agitation, Foam control, stirred & sparred tanks fermenters; Process technology for bulk products - Downstream processing, flow sheet and process description of modern processes.

BCHE391J Technical Answers to Real Problems Project (0-0-0-3)

Students are expected to perform a survey and interact with society to find out the real life issues. Logical steps with the application of appropriate technologies should be suggested to solve the identified issues. Subsequently the student should design the related system components or processes which is intended to provide the solution to the identified real-life issues.

BCHE392J Design Project (0-0-0-3)

Students are expected to develop new skills and demonstrate the ability to develop prototypes to design prototype or working models related to an engineering product or a process.

BCHE393J Laboratory Project (0-0-0-3)

Students are expected to perform experiments and gain hands-on experience on the theory courses they have already studied or registered in the ongoing semester. The theory course registered is not expected to have laboratory component and the student is expected to register with the same faculty who handled the theory course. This is mostly applicable to the elective courses. The nature of the laboratory experiments (wet lab / dry lab) is depended on the course

BCHE394J Product Development Project (0-0-0-3)

Students are expected to translate the developed prototypes / working models into a product which has application to society or industry. Evaluation involves periodic reviews by the faculty with whom the student has registered.

BCHE395J Computer Project (0-0-0-3)

Students are expected to use programming skills or modelling to analyse complex engineering processes. The student should be able to evaluate the application and limitations of the said engineering processes. Evaluation involves periodic reviews by the faculty with whom the student has registered.

$$(0-0-0-3)$$

This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty. It is expected to have at least 10 students to form a group and come up with a specific topic. Assessments will be as per the academic regulations slated for the theory course.

BCHE397J Special Project (0-0-0-3)

$$(0-0-0-3)$$

This is an open-ended courses in which the student is expected to work on a time bound research project under the supervision of a faculty. The result should be a tangible output in terms of publication of research articles in a conference proceeding or in a peer-reviewed Scopus indexed journal.

BCHE398J Simulation Project

$$(0-0-0-3)$$

The student is expected to simulate and critically analyse the working of a real system. Role of different variables which affect the system has to be studied extensively such that the impact of each step in the process is understood, thereby the performance of each step of the engineering process is evaluated. Evaluation involves periodic reviews by the faculty with whom the student has registered.

BCHE401L Petrochemical Technology (3-0-0-3)

$$(3-0-0-3)$$

Petrochemicals and Precursors - Selection of precursors; Alkanes and Alkenes -Manufacture of Petrochemical Derivatives from C1, C2, C3, C4 compounds; Aromatics - Manufacture of Petrochemical Derivatives from Benzene, Toluene, Xylene and Styrene; Petrochemical Derivatives - Dimethyl Terephthalate, cumene, diphenyl carbonate; Polymers - poly butadiene rubber, Styrene-Butadiene Rubber and Fibres - Melamine, Formaldehyde resins; Economics of (SBR); Plastics Petrochemical Industry - Selection of Petrochemical products, Economics of Petrochemical derivatives.

BCHE402L Food Process Engineering (3-0-0-3)

Introduction to food - Constituents of food, contribution to organoleptic and textural characteristics; Food microbiology and food additives - Food borne diseases and food spoilage, Functional characteristics of additives in food processing; Food process calculations - Material and energy balances in food processing; Unit operations in food processing - Concept of food rheology and viscoelastic foods, Mechanical separations, Heat exchangers, Evaporators, Dryers; Food preservation techniques - sterilization and pasteurization, Food canning technology, microwaves, sterilization of canned food; Food processing and food quality - Processing of Cereal grains, Vegetables, Food quality parameters and their evaluation; Food packaging - Types of packaging, Packaging design.

BCHE403L Process Intensification

(3-0-0-3)

Introduction - Techniques of Process Intensification (PI), Applications, benefits from process intensification; Process intensification through micro reaction technology - Implementation of Micro reaction Technology, Microfabrication of Reaction and unit operation Devices, Wet and Dry Etching Processes; Mixing and flow pattern - Scales of mixing, Flow patterns in reactors, Mixing in intensified equipment, Ultrasound Atomization, High intensity inline mixers reactors, Static mixers; Combined chemical reactor with heat exchange and reactor/separators - Reactive absorption, Reactive distillation; Compact heat exchangers - Plate heat exchangers, Spiral heat exchangers, Selection of heat exchanger technology; Enhanced fields - Cavitation Reactors, Sono crystallization; Case studies - Petrochemicals and Fine Chemicals, Nuclear Industry.

BCHE404L Colloids and Interfacial Science

(3-0-0-3)

Introduction to Colloid & Interface Science - Fundamentals of Colloid Science, Electrostatic Interactions in Colloids, The electrical double layer (EDL) theory; Surface Tension and Contact Angle - Lewis Acid-Base interactions, Du Noüy ring method, Wilhelmy plate method; Interactions at Interfaces - Surfactants Types, Micellization of surfactant, Hydrophilic-lipophilic balance (HLB); Emulsions - Thermodynamics of emulsification, micro emulsion, foams; Design of Interfaces - Models of adsorption, calculation of free energy of adsorption; Principles of Light Scattering - Static light scattering, Dynamic light scattering; Application of Colloids and Interfacial phenomena - Colloidal and interfacial phenomena in biology, Medicine, Tribology.

BCHE405L Fluidization Engineering

$$(3-0-0-3)$$

Introduction - Concept of Fluidization, Industrial Applications of Fluidized Beds; Characteristics of solids - Geldart Classifications of Particles, Gas-solid system, Liquid-solid system; Characterization of Fluidization I - Mapping of Fluidization Flow pattern, Behaviour of Fluidized Beds; Characterization of Fluidization II - Frictional pressure drop and its model, Design of Distributors; Entrainment and Elutriation -Entrainment from Tall and Short Vessels, Flow Pattern of Gases through Fluidized Beds: Heat Transfer in Fluidized Beds - Fluid-solid heat transfer, Determination and Interpretation of Heat Transfer; Miscellaneous systems - Conical fluidized bed, Inverse fluidized bed, Draft tube systems, Design of fluidized bed reactors.

BCHE406L Al in Chemical Engineering (3-0-0-3)

$$(3-0-0-3)$$

Artificial Intelligence in Chemical Engineering - phases of AI, expert systems, neural network; Artificial Neural Networks (ANN) - neural network architecture, learning methods, clustering, classification; Introduction to Fuzzy Logic - fuzzy sets and concepts, fuzzy relations, Adaptive Neuro Fuzzy Inference System (ANFIS); Al in Process Modelling - ANN models, fuzzy logic models, hybrid models; AI in Process Optimization - genetic algorithm, swarm optimization; Al in fault detection and diagnosis - neural network method, fuzzy logic method; Al in Process Control -Conventional versus AI based process control, ANN, Fuzzy logic, ANFIS.

Project and Internship:

BCHE399J Summer Industrial Internship

$$(0-0-0-1)$$

Four weeks of work at industry site. Supervised by an expert at the industry.

BCHE497J Project – I

$$(0-0-0-3)$$

Carried out inside or outside the university, in any relevant industry or research institution. Publications in peer-reviewed journals / International Conferences will be an added advantage

BCHE498J Project - II/Internship

(0-0-0-5)

Carried out inside or outside the university, in any relevant industry or research institution. Publications in peer-reviewed journals / International Conferences will be an added advantage

BCHE499J One Semester Internship

(0-0-0-14)

Carried out inside or outside the university, in any relevant industry or research institution. Publications in peer-reviewed journals / International Conferences will be an added advantage

Date: 21-02-2022

Chan 8 -

Signature Dean, SCHEME

Dean
School of Chemical Engineering (SCHEME)
Vellore Institute of Technology (VIT)
(Deemed to be University under section3 of the UGC Act, 1958)
Vellore — 632 014, TN, India