SCHOOL OF CHEMICAL ENGINEERING (SCHEME) Vellore Institute of Technology Vellore 632014, Tamilnadu, INDIA

B.Tech Chemical Engineering (BCM)

Curriculum and Syllabus

[2021-2022 admitted students]

CONTENT

S.NO.	Title	Page No.
1	Vision and Mission Statement of Vellore Institute of	2
	Technology	3
2	Vision and Mission Statement of School of Chemical	Δ
	Engineering	-
3	Programme Educational Objectives (PEOs)	5
4	Programme Outcomes (POs)	5
5	Programme Specific Outcomes (PSOs)	7
6	Credit structure	8
7	List of Courses	9
	Syllabus	
8	Discipline-linked Engineering Sciences	13
9	Discipline Core	21
10	Discipline Elective	56
11	Projects and Internship	109
12	Non-graded Core Requirement	114
13	Short Syllabus	116

VISION AND MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

VISION

Transforming life through excellence in education and research

MISSION

- World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.
- Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.
- Impactful People: Happy, accountable, caring and effective workforce and students.
- Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.
- Service to Society: Service to the region and world through knowledge and compassion.

VISION AND MISSION STATEMENT OF SCHOOL OF CHEMICAL ENGINEERING

VISION

> To improve the quality of life through innovations in Chemical Engineering

MISSION

- To prepare the graduates for a rewarding career by providing quality education in Chemical Engineering in tune with evolving requirements of the society.
- To impart knowledge and develop technology through quality research in frontier areas of chemical and inter-disciplinary fields.
- ➤ To produce practicing engineers with professional ethics to cater the contemporary needs of the society and environment.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems in Chemical engineering and allied disciplines.
- 2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in the industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies leading to careers in engineering, management, teaching and research.

PROGRAMME OUTCOMES (POs)

- 1. <u>Engineering Knowledge:</u> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation to the solution of complex engineering problems.
- 2. <u>Problem analysis:</u> Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. <u>Design/development of solutions</u>: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. <u>Conduct investigations of complex problems</u>: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

- 5. <u>Modern Tool Usage</u>: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 6. <u>The Engineer and Society</u>: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. <u>Environment and Sustainability</u>: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of need for sustainable development.
- 8. <u>Ethics</u>: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. <u>Individual and Team Work</u>: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10.<u>Communication</u>: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11.<u>Project Management and Finance:</u> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12.<u>Life-long learning</u>: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

PROGRAMME SPECIFIC OUTCOMES (PSOs)

- 1. Analyze and solve complex problems in process and allied Industries by applying core and multidisciplinary competencies.
- 2. Design and develop efficient chemical processes/products considering economic, safety and environmental aspects.
- 3. Implement the modern practices in industrial/research settings to serve as practicing engineers with professional ethics.

SCHOOL OF CHEMICAL ENGINEERING (SCHEME)

B. Tech Chemical Engineering

CREDIT STRUCTURE

Category-wise Credit distribution

S.NO	Category	Credits
1	Foundation Core	56
2	Foundation Core - Non Graded	2
3	Discipline-linked Engineering Sciences	11
4	Discipline Core	49
5	Discipline Elective	15
6	Projects and Internship	9
7	Open Elective	12
8	Non-graded Core Requirement	11
	Total Credits	152

LIST OF COURSES

		Foundation	Core						
Sl.No	Course Code	Course Title	Course Type	Ver sion	L	Т	Р	J	Credits
1	BCHY101L	Engineering Chemistry	Theory Only	1.0	3	0	0	0	3.0
2	BCHY101P	Engineering Chemistry Lab	Lab Only	1.0	0	0	2	0	1.0
3	BCSE101E	Computer Programming: Python	Embedded Theory and Lab	1.0	1	0	4	0	3.0
4	BCSE103E	Computer Programming: Java	Embedded Theory and Lab	1.0	1	0	4	0	3.0
5	BECE101L	Basic Electronics	Theory Only	1.0	2	0	0	0	2.0
6	BECE101P	Basic Electronics Lab	Lab Only	1.0	0	0	2	0	1.0
7	BEEE101L	Basic Electrical Engineering	Theory Only	1.0	2	0	0	0	2.0
8	BEEE101P	Basic Electrical Engineering Lab	Lab Only	1.0	0	0	2	0	1.0
9	BENG101L	Technical English Communication	Theory Only	1.0	2	0	0	0	2.0
10	BENG101P	Technical English Communication Lab	Lab Only	1.0	0	0	2	0	1.0
11	BENG201P	Technical Report Writing	Lab Only	1.0	0	0	2	0	1.0
12	BFLE200L	Foreign Language	Theory Only	1.0	2	0	0	0	2.0
13	BHSM200L	HSM Elective	Theory Only	1.0	3	0	0	0	3.0
14	BMAT101L	Calculus	Theory Only	1.0	3	0	0	0	3.0
15	BMAT101P	Calculus Lab	Lab Only	1.0	0	0	2	0	1.0
16	BMAT102L	Differential Equations and Transforms	Theory Only	1.0	3	1	0	0	4.0
17	BMAT201L	Complex Variables and Linear Algebra	Theory Only	1.0	3	1	0	0	4.0
18	BMAT202L	Probability and Statistics	Theory Only	1.0	3	0	0	0	3.0
19	BMAT202P	Probability and Statistics Lab	Lab Only	1.0	0	0	2	0	1.0
20	BMEE102P	Engineering Design Visualisation Lab	Lab Only	1.0	0	0	4	0	2.0
21	BMEE201L	Engineering Mechanics	Theory Only	1.0	2	1	0	0	3.0
22	BPHY101L	Engineering Physics	Theory Only	1.0	3	0	0	0	3.0
23	BPHY101P	Engineering Physics Lab	Lab Only	1.0	0	0	2	0	1.0
24	BSTS101P	Quantitative Skills Practice I	Soft Skill	1.0	0	0	3	0	1.5
25	BSTS102P	Quantitative Skills Practice II	Soft Skill	1.0	0	0	3	0	1.5
26	BSTS201P	Qualitative Skills Practice I	Soft Skill	1.0	0	0	3	0	1.5
27	BSTS202P	Qualitative Skills Practice II	Soft Skill	1.0	0	0	3	0	1.5

		Foundation Core - No	on Graded						
Sl.No	Course Code	Course Title	Course Type	Ver sion	L	Т	Р	J	Credits
1	BENG101N	Effective English Communication	Lab Only	1.0	0	0	4	0	2.0

		Discipline-linked En Sciences	gineering						
Sl.No	Course Code	Course Title	Course Type	Ver sion	L	Т	Р	J	Credits
1	BCHE201L	Computational Methods in Chemical Engineering	Theory Only	1.0	3	0	0	0	3.0
2	BCHE201P	Computational Methods in Chemical Engineering Lab	Lab Only	1.0	0	0	2	0	1.0
3	BCHE204L	Transport Phenomena	Theory Only	1.0	3	1	0	0	4.0
4	BCHE206L	Materials Science and Engineering	Theory Only	1.0	3	0	0	0	3.0

		Discipline Co	re						
Sl.No	Course Code	Course Title	Course Type	Ver sion	L	Т	Р	J	Credits
1	BCHE202L	Chemical Engineering Thermodynamics	Theory Only	1.0	3	1	0	0	4.0
2	BCHE203L	Chemical Process Calculations	Theory Only	1.0	3	1	0	0	4.0
3	BCHE205L	Momentum Transfer	Theory Only	1.0	3	0	0	0	3.0
4	BCHE205P	Momentum Transfer Lab	Lab Only	1.0	0	0	2	0	1.0
5	BCHE207L	Mass Transfer I	Theory Only	1.0	2	1	0	0	3.0
6	BCHE208L	Heat Transfer	Theory Only	1.0	3	0	0	0	3.0
7	BCHE208P	Heat Transfer Lab	Lab Only	1.0	0	0	2	0	1.0
8	BCHE301L	Mechanical Operations	Theory Only	1.0	3	0	0	0	3.0
9	BCHE301P	Mechanical Operations Lab	Lab Only	1.0	0	0	2	0	1.0
10	BCHE302L	Mass Transfer II	Theory Only	1.0	3	0	0	0	3.0
11	BCHE302P	Mass Transfer Lab	Lab Only	1.0	0	0	2	0	1.0
12	BCHE303L	Chemical Reaction Engineering I	Theory Only	1.0	3	0	0	0	3.0
13	BCHE303P	Chemical Reaction Engineering Lab	Lab Only	1.0	0	0	2	0	1.0
14	BCHE304L	Chemical Process Technology and Economics	Theory Only	1.0	3	1	0	0	4.0
15	BCHE305L	Process Dynamics and Control	Theory Only	1.0	3	0	0	0	3.0
16	BCHE305P	Process Dynamics and Control Lab	Lab Only	1.0	0	0	2	0	1.0
17	BCHE306L	Chemical Reaction Engineering II	Theory Only	1.0	2	1	0	0	3.0

18	BCHE307L	Process Modelling and Simulation	Theory Only	1.0	2	0	0	0	2.0
19	BCHE307P	Process Modelling and Simulation Lab	Lab Only	1.0	0	0	2	0	1.0
20	BCHE308L	Chemical Process Equipment Design	Theory Only	1.0	3	0	0	0	3.0
21	BCHE308P	Chemical Process Equipment Design Lab	Lab Only	1.0	0	0	2	0	1.0

		Discipline Elec	tive						
Sl.No	Course Code	Course Title	Course Type	Ver sion	L	Т	Р	J	Credits
1	BCHE309L	Membrane Separation Processes	Theory Only	1.0	3	0	0	0	3.0
2	BCHE310L	Polymer Technology	Theory Only	1.0	3	0	0	0	3.0
3	BCHE311L	Process Utilities and Pipeline Design	Theory Only	1.0	3	0	0	0	3.0
4	BCHE312L	Chemical Process Optimization	Theory Only	1.0	3	0	0	0	3.0
5	BCHE313L	Environmental Pollution Control	Theory Only	1.0	3	0	0	0	3.0
6	BCHE314L	Fuels and Combustion	Theory Only	1.0	3	0	0	0	3.0
7	BCHE315L	Biochemical Engineering	Theory Only	1.0	3	0	0	0	3.0
8	BCHE316L	Pharmaceutical Technology	Theory Only	1.0	3	0	0	0	3.0
9	BCHE317L	Petroleum Refining Technology	Theory Only	1.0	3	0	0	0	3.0
10	BCHE318L	Safety and Hazard Analysis	Theory Only	1.0	3	0	0	0	3.0
11	BCHE319E	Process Plant Design and Simulation	Embedded Theory and Lab	1.0	2	0	2	0	3.0
12	BCHE320L	Chemical Product Design	Theory Only	1.0	3	0	0	0	3.0
13	BCHE321L	Natural Gas Engineering	Theory Only	1.0	3	0	0	0	3.0
14	BCHE322L	Nanoscience and Nanotechnology	Theory Only	1.0	3	0	0	0	3.0
15	BCHE323L	Fertilizer Technology	Theory Only	1.0	3	0	0	0	3.0
16	BCHE324L	Fermentation Technology	Theory Only	1.0	3	0	0	0	3.0
17	BCHE391J	Technical Answers to Real Problems Project	Project	1.0	0	0	0	0	3.0
18	BCHE392J	Design Project	Project	1.0	0	0	0	0	3.0
19	BCHE393J	Laboratory Project	Project	1.0	0	0	0	0	3.0
20	BCHE394J	Product Development Project	Project	1.0	0	0	0	0	3.0
21	BCHE395J	Computer Project	Project	1.0	0	0	0	0	3.0
22	BCHE396J	Reading Course	Project	1.0	0	0	0	0	3.0
23	BCHE397J	Special Project	Project	1.0	0	0	0	0	3.0
24	BCHE398J	Simulation Project	Project	1.0	0	0	0	0	3.0
25	BCHE401L	Petrochemical Technology	Theory Only	1.0	3	0	0	0	3.0

26	BCHE402L	Food Process Engineering	Theory Only	1.0	3	0	0	0	3.0
27	BCHE403L	Process Intensification	Theory Only	1.0	3	0	0	0	3.0
28	BCHE404L	Colloids and Interfacial Science	Theory Only	1.0	3	0	0	0	3.0
29	BCHE405L	Fluidization Engineering	Theory Only	1.0	3	0	0	0	3.0
30	BCHE406L	AI in Chemical Engineering	Theory Only	1.0	3	0	0	0	3.0

		Projects and Inte	rnship						
Sl.No	Course Code	Course Title	Course Type	Ver sion	L	Т	Р	J	Credits
1	BCHE399J	Summer Industrial Internship	Project	1.0	0	0	0	0	1.0
2	BCHE497J	Project - I	Project	1.0	0	0	0	0	3.0
3	BCHE498J	Project - II / Internship	Project	1.0	0	0	0	0	5.0
4	BCHE499J	One Semester Internship	Project	1.0	0	0	0	0	14.0

Open Elective: 12 Credits

		Non-graded Core Re	quirement						
Sl.No	Course Code	Course Title	Course Type	Ver sion	L	Т	Р	J	Credits
1	BCHE101N	Introduction to Engineering	Project	1.0	0	0	0	0	1.0
2	BCHY102N	Environmental Sciences	Project	1.0	0	0	0	0	2.0
3	BEXC100N	Extracurricular Activities	Project	1.0	0	0	0	0	2.0
4	BHUM101N	Ethics and Values	Online Course	1.0	0	0	0	0	2.0
5	BSSC101N	Essence of Traditional Knowledge	Project	1.0	0	0	0	0	2.0
6	BSSC102N	Indian Constitution	Project	1.0	0	0	0	0	2.0

DISCIPLINE LINKED ENGINEERING SCIENCE COURSES – 4 (11 CREDITS)

Course code Course Title	L	Т	Р	С
BCHE201L Computational Methods in Chemical Engineering	3	0	0	3
Pre-requisite Nil	Syl	labus	s ver	sion
		1	.0	

- 1. To formulate problems for roots of a function, solution of simultaneous equations, optimized value of a given function, numerical integration and differentiation, ODE and PDE.
- 2. To compute the roots of a function, solution of simultaneous equations, optimized value of a given function, numerical integration and differentiation, ODE and PDE.
- 3. To develop MATLAB algorithm for roots of a function, solution of simultaneous equations, optimized value of a given function, numerical integration and differentiation, ODE and PDE.

Course Outcomes:

- 1. Formulate mathematical model for solving engineering problems using computational methods.
- 2. Solve roots of a single and simultaneous equation using computational methods.
- 3. Select suitable numerical regression and interpolation techniques for data analysis.
- 4. Compute numerical integration and optimization.
- 5. Determine the numerical solution for ordinary and partial differential equations.

Module:1 Single Algebraic and Transcendental Equations

6 hours

6 hours

Computers and its components, approximation, and concept of error and error analysis, Mathematical models for solving engineering problems. Finding roots of a single equation- Direct methods (bisection, Regula falsi) and Indirect methods (Newton-Raphson, Secant method). Case study using MATLAB / MS Excel.

Module:2	Linear and Nonlinear System of Equations	6 hours
----------	--	---------

Types of matrices and matrix operation rules, Solution for linear system of simultaneous equations – Direct methods (Gauss Elimination, Gauss Jordan), Iterative methods (Gauss-Jacobi and Gauss-Seidel). Overview of non-linear system of equations. Case study using MATLAB / MS Excel / Aspen Plus.

Module:3	Interpolation and Regression Analysis	
----------	---------------------------------------	--

Newton's divided-difference interpolating polynomial – Linear, polynomial and quadratic rules, Lagrange interpolating polynomial, Linear and polynomial Regression. Case study using MATLAB / MS Excel.

Module:4	Optimization		7 hours
----------	--------------	--	---------

One-Dimensional Unconstrained Optimization – Golden section search and Newton's Method, Overview on multidimensional unconstrained optimization – gradient and non-gradient methods, Constrained optimization – Simplex method. Case study using MATLAB / MS Excel. Overview of optimization techniques in Aspen Plus – Design Spec and sensitivity analysis.

Modu	le:5	Integration and Differ	rentiation			5 hours
Newton Cotes Integration- Trapezoid method, Simpson's 1/3 rd and Simpson's 3/8 th rule, Forward, Backward and Central Difference methods, Richardson Extrapolation. Case study using MATLAB.						
Modu	le:6	Ordinary Differential	Equations			6 hours
Initial Proble	Value ems – S	Problems – Euler, Predict hooting method and Central	or-corrector and l l difference metho	Runge-Ku d. Case st	utta methods, Bounda tudy using MATLAB	ry Value
Module:7 Partial Differential Equations					7 hours	
Finite difference solutions of elliptic equations – Liebmann's method, finite difference solutions of parabolic equations – Crank-Nicolson and implicit methods, Overview of hyperbolic equations. Case study using MATLAB / MS Excel.						
Modu	le:8	Contemporary issues				2 hours
Guest	lecture	from industry and R & D o	rganisations			
						1
				Т	otal Lecture hours:	45 hours
Text l	Book:					
1.	Stever McGra	C. Chapra and Raymond P w Hill Publications, USA.	P. Canale, Numerio	cal Metho	ods for Engineers, 201	6, 7 th ed.,
Refer	ence Bo	ooks:				
1.	Gupta UK.	S. K., "Numerical Metho	ds for Engineers,	2012, 3 rd	¹ ed., New Academic	Science,
2.	2. Kamal I.M. Al-Malah, Aspen Plus: Chemical Engineering Applications, 2016, John Wiley & Sons Inc., USA.					
Mode Test (of Eval	uation: Assignment, Contin	nuous Assessment	Test (CA	T), Quiz, Final Asses	sment
Recon	nmende	d by Board of Studies		11-	02-2022	
Appro	oved by	Academic Council	No.65	Date	17-03-2022	

Course code	Course Title	L	Т	Р	С
BCHE201P	BCHE201P Computational Methods in Chemical Engineering Lab				1
Pre-requisite	Nil	Syllabus version			sion
		1.0			

- 1. To formulate, solve and analyses complex chemical engineering problems.
- 2. To apply numerical methods for their research to solve complex problems.
- 3. To establish the limitations, advantages, and disadvantages of numerical methods.

Course Outcomes:

- 1. Develop efficient MATLAB code with different programming construct
- 2. Construct effective reports of the engineering solutions
- 3. Use modern tools from commercial/open source software (example: MATLAB, MS Excel, ASPEN Plus) to solve Chemical Engineering problems

Indic	Indicative Experiments.						
1	1 Develop MATLAD and for biggetion / Develo falsi method						
1.	Develop WATLAB code for bised	non / Regula lais	i memou.				
2.	Develop MATLAB code for New	ton Raphson / Sec	cant metho	od.			
3.	Develop MATLAB code for Gaus	ss Elimination / G	auss Jorda	an method.			
4.	Develop MATLAB code for Gaus	ss Jacobi / Gauss S	Seidel met	thod.			
5.	Develop Aspen Plus simulation for	or solving simulta	neous equ	ations in distillat	ion column.		
6.	Develop MATLAB code for Num	erical Integration					
7.	Develop MATLAB code for ODE	E: Euler / Modified	d Euler me	ethod.			
8.	Develop MATLAB code for ODE	2: Runge-Kutta m	ethod.				
9.	Develop MATLAB code for PDE	:Liebmann's metl	nod.				
10.	Develop Aspen Plus simulation/ M PDE.	AS Excel package	to optimi	ze a chemical pr	ocess involving		
]	Fotal Lab	oratory Hours	30 hours		
Mode of assessment: Assignment, Final Assessment Test (FAT)							
Recor	nmended by Board of Studies		11-	-02-2022			
Appro	oved by Academic Council	No.65	Approved by Academic CouncilNo.65Date17-03-2022				

(Course code	Course title	L	Т	P	С	
BCHE204L		Transport Phenomena	3	1	0	4	
I	Pre-requisite	NIL	Sy	llabu	s ver	sion	
				1	.0		
Co	urse Objecti	es:					
1.	To emphasis relations of r	the basic concepts of transport phenomena, the similarities of comentum, heat, and mass transfer	the	gover	ming		
2.	To illustrate	he common mathematical structure of transport problems					
3	To formulate	appropriate differential equations to obtain velocity temperat	ture	and			
	concentration	profiles of transport processes					
	concentration						
Co	urse Outcom	DC •					
1	Understand	ransport properties of molecular transfer of momentum	ene	rav	and	mass	
1.	transport	ransport properties of molecular transfer of molecular,	CIIC	igy,	and	mass	
2	Doloto simul	anaous haat mass and momentum transfer analysis					
$\frac{2}{2}$	Internet on a	dimensional standy state momentum heat and mass transfer a	anah	lama			
⊃. ₄	A sub-	annensional steady state momentum, heat and mass transfer j	21001 : 1 1	lems.	1		
4.	Apply Navie	r-stokes equation to examine the problems related to flu	1a, r	ieat,	and	mass	
_	transfer.					1	
5.	Develop ind	strial transport problems along with appropriate approxima	tions	and	bour	idary	
	conditions						
	I						
M	odule:1 Int	oduction			7 h	ours	
Co	ncepts in Che	nical Engineering - momentum transport, mass transport, and	d ene	ergy t	transp	oort -	
lev	el of analysis	- molecular transport properties of gases and liquids - effe	ect c	of pre	essure	e and	
ten	nperature.						
				<u> </u>			
M	odule:2 Mo	nentum Transport			<u>7 h</u>	ours	
Ba	sics of mome	tum transport - Phenomenological laws; Newtonian and nor	1-Ne	wton	ian fl	uids;	
Rh	eological mod	els, Transport Coefficient, Dimensional analysis.					
Mo	odule:3 Veo	tor and Tensor analysis			6 h	ours	
Ва	sic concepts -	Vector and Tensor Analysis –Coordinate system - tutorials					
				<u> </u>	40.1		
Mo	odule:4 ID	Viscous Flow: Shell Balance			10 h	ours	
Sh	ell momentun	balance, boundary conditions - rectilinear flow - curvilinear	tlov	<i>w</i> - m	nome	ntum	
TIU	x and velocity	distribution, flow through pipes					
ъл				<u> </u>	101		
	paule:5 Eq	ations of Change		<u> </u>	<u>10 n</u>	ours	
Eu	lerian and La	grangian viewpoint, laminar and turbulent flows, Equation	on c		otion	and	
	nunuity - Inte	grai Conservation Equations - Navier-Stokes - Applications to) 180	.nerm	iai ne	0W 01	
INC	wtoman and r	on-newtonian fluids					
ЪЛ	adulas St-	dy state Heat Transfor Shall Palares			10 1		
	Information Steady state freat fransfer – Siten Balance IU nours Design of an angest transfer – siten balance C C C						
Ба oto	sics of energy	nansport, conductive, convective, and viscous dissipation energy	лgy	nuxe	8 - 21	eauy	
sta	te neat temper						
ЪЛ		a Trongfor Shall Polores		<u> </u>	01		
	vios of moss	transport machanisms mass and malar fluxes. Derived	ion			ours	
Ба	sics of mass	inary mixture and its application to convection diffusion and		or eq	Juatic	01 01	
	minunty for a l	mary mixture and its application to convection diffusion proc	neins	s			

Mo	dule:8	Contemporary issues				2 hours	
Gue	est lectur	e from industry and R&D o	organizations				
	Total Lecture hours:		60 hours				
Tey	xt Book:						
1.	Bird R.	B., Stewart W. E., Lightfo	oot E. N., Transpo	rt Phenom	ena, 2012 2 nd ed., J	John Wiley	
	& Sons	Inc., Wiley Student Edition	n, India.				
Ref	ference I	Books:					
1.	Geanko	plis C.J., Transport Proce	esses and Separa	tion Proce	ess Principles, 201	8, 5 th ed.,	
	Pearson	n Education India.					
2.	Willian	n M. Dean, Analysis of Tra	nsport Phenomena	a, 2013, 2 nd	¹ ed., Oxford Unive	rsity Press,	
	India.	-	-			-	
3.	Plawsk	y Joel L, Transport Phenom	ena fundamentals	, 2020, 4 th	ed., CRC Press, US	SA.	
Mode of evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test							
Rec	commend	led by Board of Studies		11-0	02-2022		
Ap	proved b	y Academic Council	No.65	Date	17-03-2022		

Course code	Course Title	L	Т	P	C
BCHE206L Materials Science and Engineering		3	0	0	3
Pre-requisite	BCHE201L, BCHE201P	Syl	labu	s vers	sion

- 1. To outline the structure, properties, and applications of engineering materials
- 2. To recall the structure of solids and the various crystal imperfections
- 3. To understand the fundamental principles behind the material characterization methods

Course Outcomes:

- 1. Assess the fundamentals of materials and atomic interactions
- 2. Assess the crystal imperfections
- 3. Interpret the phase diagrams of the alloys, polymers, and ceramic materials
- 4. Analyse materials characterization techniques
- 5. Design the material manufacturing process and material property charts

Module:1 | Basics of Materials and Structure

Classification of materials: metals, alloys, ceramics, polymers and composites, atomic structure, crystal systems, Chemical Bonds, Intermolecular forces, forces of interaction – van der Waals and electrostatic interactions, aggregation, structures of metals, ceramics, polymers, and amorphous materials.

Module:2 Crystal Systems

Basics of crystal systems- space lattice- miller indices of atomic planes and directions, Bravais lattices, unit cells, primitive cells, crystallographic planes, and directions, crystal defects, 0-D, 1-D and 2-D defects; vacancies, interstitials, solid solutions in metals and ceramics, Frenkel and Schottky defects; dislocations; grain boundaries, twins, stacking faults, surfaces, and interfaces, and problems in crystallography.

Module:3 Phase Diagrams of the engineering materials

Chemical alloying, steps in polymerization, phase rules for metals, ceramics, polymers - equilibrium diagrams, solid solution, cooling curves of metals, alloys, polymers, non-equilibrium cooling, isomorphous- eutectic- peritectic and eutectoid reactions with examples

Module:4 Evaluation of engineering materials

Stress-strain response, corrosion, degradation of materials, methods of measuring piezo- and ferroelectric behaviour of metals and alloys, properties of materials, refractive index, electromagnetic materials

Module:5 Characterization of materials

Basics of the Microstructure, Fundamentals of the microscope, Bragg's law, X-ray diffraction-Metallography, preparation of the specimen, microstructure examination and application, spectroscopic techniques such as UV-Vis, IR, Fluorescence and Raman; optical microscopy, electron microscopy, composition analysis in electron microscopes.

Module:6 E	Electrochemical Characterization of the materials	5 hours
------------	---	---------

7 hours

8 hours

5 hours

7 hours

7 hours

1.0

Cyclic voltammetry, Linear sweep voltammetry, polarization curves, Tafel slope, Evans's diagram, Impedance spectroscopy, Problems in building polarization curve, Evaluation of electrochemical properties of the battery, fuel cells, electrolyzer, and capacitor materials						
Mod	lule:7	Nano materials				4 hours
Prep	oaration	of nano-materials, Heat th	reatment, sintering	g; thin fil	m deposition: evapo	oration and
sput	tering te	chniques, and chemical vap	pour deposition, ar	nd thin-filr	n growth phenomena	l.
Mod	lule 8	Contemporary issues				2 hours
Gue	st lectur	e from industry and R&D o	organizations			
				To	otal Lecture hours:	45 hours
Text	t Books	:				•
1.	W. D. 0	Callister, Jr., "Materials Sci	ence and Engineer	ing", 2003	, 6 th ed., Wiley India	, India.
2.	W. F. S	Smith, J. Hashemi, and R. P	rakash, "Materials	Science a	and Engineering", 20	08, 4 th ed.,
	Tata M	c Graw Hill, India.				
Refe	erence l	Book:				
1.	David I	Michael Rowe, "Thermoele	ctric Handbook: M	facro to N	ano", 2006, CRC Pr	ess, USA.
Mod	Mode of Evaluation: Continuous Assessment Test, written assignment, Quiz, Final Assessment					
Test.						
Reco	Recommended by Board of Studies 11-02-2022					
App	roved b	y Academic Council	No.65	Date	17-03-2022	

DISCIPLINE CORE COURSES – 21 (49 CREDITS)

Course Code	Course Title	L	Т	Р	С			
BCHE202L	Chemical Engineering Thermodynamics	3	1	0	4			
Pre-requisite	Nil	S	Syllabus Version					
				1.0				
Course Objecti	/es:							
1. Enhance	the basic knowledge and intuitive understanding of the therm	odyr	namic	s of j	physical			
and chem	ical systems.							
2. Introduce	the concepts of partial molar properties, fugacity, activ	ity, a	and v	vapou	ır-liquid			
equilibri	m for ideal and real substances existing in more than one pha	ise ui	nder e	equili	brium.			
3. Generaliz	e design thinking skills on property estimation relevant to ch	emic	al inc	lustri	es.			
Course Outcom	es:							
1 Define a	d illustrate thermodynamic equilibrium state and equations of	fstat	ρ					
2. Relate p	roperties such as change in enthalpy, entropy, free en	ergy.	hea	t an	d work			
requirem	ents for batch and flow processes occurring in chemical indus	tries	•					
3. Construc	and analyze phase equilibrium data, P-x-y, T-x-y diagram	ams	for i	deal,	binary,			
miscible	vapour-liquid systems.							
4. Device n	istible systems using your Lear. Margulas, and property estimates	LE d	lata f	or no	m-ideal,			
5 Estimate	the feasibility of a chemical reaction and determine the equi	ilibi	ium	rate d	constant			
for chem	cal reactions.	annoi	Tunn	i ute	Jonstant			
				-				
Module:1 Fu	ndamental Concepts and Definitions			6 h	ours			
Introduction - de continuum - the fluids - P-V-T re	finitions and basic concepts - classical and statistical thermo- modynamic steady state - equilibrium state process - Volum lationships - ideal gas - real gas - law of corresponding states	odyna etric	amics prope	- con erties	ncept of of pure			
				1				
Module:2 La	ws of Thermodynamics			5 h	ours			
First law – closed non-flow system – steady-state flow systems and their analysis - Second law - change in internal energy - enthalpy - entropy calculations - phase change - Heat effects - standard heat of reaction.								
Module: 3 Thermodynamic Properties of Pure Fluids 7 hours								
Wibuule. 5	termouynamic r roperties of r ure rituds			/ 11	.0015			
Gibbs free energy - Helmholtz free energy - exact differential equation - thermodynamic property relations – Maxwell's relations and applications - fugacity - activity of pure substances - determination of fugacity of pure gases, solids, and liquid-fugacity coefficient-activity coefficient.								
				_				
Module: 4 Tl	ermodynamic Properties of Solutions			7 h	ours			

Mixtures of solutions - R properties - p - Gibbs free	pure fluids - partial molar aoult's law - Henry's law property changes of mixing energy calculations.	properties - chem - Lewis Randall g for ideal and nor	nical poter rule - Gil n-ideal sol	ntial - fugacity in so obs - Duhem equation utions - excess prop	lution - Ideal on - Residual erty relations		
Module:5	Phase Equilibria				6 hours		
Phase rule - criteria of phase equilibrium - single component - multiple components - Vapour- Liquid Equilibria for ideal solutions - phase diagram for binary systems using Aspen Plus - constant temperature equilibria - constant pressure equilibria - phase equilibrium curves.							
Module:6	Vapour-Liquid Equilib	ria – Non-ideal S	olutions		7 hours		
Non-ideal so diagram and Laar equation vaporization	Non-ideal solutions – azeotropic systems - minimum boiling – maximum boiling – VLE – P-x-y diagram and T-x-y diagram using Aspen Plus; Bubble point – dew point calculation methods – van Laar equation - Margules equation - Wilson equation - Multicomponent systems – flash vaporization - Consistency test for VLE data.						
Module:7	Chemical Reaction Equ	ilibria			5 hours		
Chemical rea constant - C equilibrium c Module:8	Action equilibria - reaction Bibbs free energy of a re- constant of homogeneous g Contemporary Issues	coordinates - crit eaction - effect o gas and liquid phas	eria for ch of tempera se reaction	emical equilibrium ature on equilibriur s.	- equilibrium n constant - 2 hours		
Guest lecture	from industry and R & D	organisations					
		Total Lectur	re Hours:		45 hours		
Textbook:					,		
1. Narayan Prentice	an K.V., A Textbook o Hall India Learning Priva	f Chemical Engi te Limited, India.	neering T	hermodynamics, 20)13, $2^{n\alpha}$ ed.,		
Reference B	ooks:						
1. Smith J. Enginee	M., Van Ness H.C., Abbo ring Thermodynamics, 201	tt, M.M., Swihart 19, 8 th ed., McGrav	M.T., Bha w Hill Ind	tt, B.I., Introduction ia, India.	to Chemical		
2. Matsouk Prentice	as T., Fundamentals of Cl Hall, USA.	nemical Engineeri	ng Thermo	odynamics, 2012, 1 st	ed., Pearson		
3. Dahm K ed., Cen	L.D., Visco D.P., Fundam gage Learning India Privat	entals of Chemica e Limited, India.	al Enginee	ring Thermodynami	ics, 2012, 1 st		
Mode of Eva Test.	aluation: Continuous Asse	ssment Tests, Qu	izzes, Ass	ignments, and Final	Assessment		
Recommende	ed by Board of Studies:		11	-02-2022			
Approved by	Academic Council:	No.65	Date:	17-03-2022			

Course codeCourse titleLTPC					С				
BCHE203	L	Chemical Process Calculations	3	1	0	4			
Pre-requis	ite	NIL	Sy	llabu	is ver	sion			
			·		1.0				
Course Obje	ctives	:							
 To formulate material balances for compositions and flow rates of process streams To solve single and multiple reactions involved in chemical processes To perform material and energy balance calculations for various unit operations 									
Course Outc	Course Outcomes:								
 Apply mole concept and ideal gas equation to express the composition of mixtures Understand the method of solving steady state material balances without chemical reactions Estimate the extent of reaction in material balances for systems involving chemical reactions Analyze the recycle and bypass processes involving chemical reactions Apply simultaneous material and energy balance to industrial processes. 									
Module:1	Intro	duction to Basic Concepts			7 hou	urs			
Units and dir density and s weight fraction Amagat's law	Units and dimensions – conversion factors – mole concept –normality, molarity, and molality – density and specific gravity – methods of expressing composition of mixtures and solutions – weight fraction – mole fraction –volumetric composition – Ideal gas law – Dalton's law – Amagat's law								
Module:2	Vapo	or pressure and Humidity calculations			8 hou	urs			
Vapor pressu immiscible li wet bulb and	re of quids dry bu	liquids – Clausius-Clapeyron equation - Antoine equation and ideal solutions – Raoult's law – Henry's law - humic alb temperature - relative and percentage saturation	ı - v dity	apor and s	press	ure of tion –			
Module:3	Mate	erial Balance without Chemical Reaction			9 hou	urs			
General mate balances in di vacuum cryst	erial b istillat allizer	alance equation for steady and unsteady state - typical s ion – absorption – extraction – crystallization – agitated b – Drying: tray dryer – drum dryer – spray dryer – vacuum	steac atch drye	ly sta cryst er	te ma alliza	aterial tion –			
Module:4	Mate	erial balance with Chemical Reaction			9 hou	urs			
Stoichiometri excess reacta chemical reac	c equants – ctions.	ation – stoichiometric ratio – limiting reactant – excess r conversion – yield – selectivity – material balance with	eacta sing	ant – gle ar	percend mu	entage ultiple			
Module:5	Recy	cle and Bypass Operation			7 hou	urs			
Recycle, purg distillation - c	ge and lrying	bypass calculations in unit operations: single and multiple	e eff	ect ev	apora	ators -			
Module:6	Com	bustion calculations			9 hou	urs			
Calorific valu and excess air	Indule:6 Combustion calculations 9 hours alorific value of fuels, flue gas analysis, Orsat analysis, air/ fuel ratio calculations - theoretical and excess air requirement for solid, liquid and gaseous fuels. 9 hours								

Mo	dule:7	Energy balance				9 hours	
General steady state energy balance equation, heat capacity, enthalpy, heat of formation, heat of reaction, heat of combustion and Calorific values. Heat of solution, heat of mixing, heat of crystallization, determination of ΔH_R at standard and elevated temperatures. Calculations using Excel tool.							
Mo	dule:8	Contemporary issues				2 hours	
Gu	est lecture	from industry and R & D	organisations				
	Total Lecture hours: 60 hours						
Tey	kt Book:						
1.	Himmell 2015, 8 th	balu DM Riggs JB "Bas ed., Pearson India Educat	ic Principles and ional Services, In-	Calculati dia.	ons in Chemical E	Engineering"	
Ref	ference Bo	ooks:					
1.	O.A.Hou Energy B	lgen, K.M.Watson, R.A.R Balances", 2004, 2 nd ed., C	agatz, "Chemical BS Publishers, N	Process Pr ew Delhi,	inciples Part-I: Mat India.	erial and	
2.	Bhatt B. New Del	., Thakore S. B., Stoichio hi, India.	metry, 2011, 5 th e	d., Tata M	lcGraw – Hill Book	Company,	
Mo	de of eval	uation: Continuous Assess	sment Test, Quiz,	Assignme	nt, Final Assessmen	it Test	
Rec	commende	d by Board of Studies		11-	02-2022		
Ap	proved by	Academic Council	No.65	Date	17-03-2022		

locity Profile, Shear Stress Distribution – Hagen - Poiseuille equation -	
y –Turbulent flow- Kinetic energy correction factor - Fluid friction –	
n of Moody's diagram - Minor losses and major losses	

Page 26 of 133

Course code	Course Title	L	Т	Р	С
BCHE205L	Momentum Transfer	3	0	0	3
Pre-requisite	Nil	Syl	Syllabus versio		
			1.	0	

Course Objectives:

- 1. To inculcate the fundamental laws governing the fluid flow.
- 2. To understand the importance and application of fluid mechanics.
- 3. To apply the physical and mathematical models to analyse the fluid flow phenomena in Engineering applications.

Course Outcomes:

- 1. Evaluate the fluid properties and hydrostatic pressure
- 2. Analyze fluid flow dynamics using governing equations
- 3. Measure the flow parameters and energy losses across pipe flow, packed and fluidized bed
- 4. Perform dimensional analysis
- 5. Explain the characteristics and problems related to pump

Module:1 **Basic Concept of Momentum Transfer**

Introduction and Significance of Momentum Transfer in Chemical Engineering. Definition of fluid- Classification of fluids - Newtonian and Non-newtonian Fluids - Characteristic properties of fluids - Fluid statics: Pascal's law and Hydrostatic law of equilibrium; Pressure and its measurement – Manometers

Module:2 | Fluid Flow Phenomena

Kinematics of fluid flow, Dynamics of fluid flow - Basic equations governing fluid flow - types of fluid flow. Equation of Continuity and its application, Equation of motion - Derivation of Navier Stokes and Euler's equation, Bernoulli's equation and its application in fluid flow

Module:3 | Flow Measuring Devices

Importance of metering - Classification flow measuring devices, Principle and working of Orifice meter, Venturi meter, Pitot tube, Variable area meters : Rotameter, Elbow meter

Module:4 | Flow through Pipes

Flow of fluids in pipes -Vel Concept of average velocity Friction factor - Application

Module:5 Dimensional and Model Analysis

Dimensional homogeneity- Raleigh and Buckingham π theorems- Non-dimensional numbers -Model laws – model types - Similitude

Module:6 | Flow through Packed and Fluidized Bed

Flow past immersed bodies - Concept of Drag, Drag Coefficients and Particle Reynolds number -Flow of fluids through packed beds - Packing and types of packing- Pressure drop across packed beds -Kozeny Carman equation - Ergun's equation- Loading and Flooding Packed Beds Fluidization –Types of fluidization minimum fluidization velocity

7 hours

7 hours

6 hours

4 hours

7 hours

5 hours

Module:7 Transportation of Fluids 7 hours Pipes - Fittings and Valves - Fluid Moving Machinery: Pumps - Classification : Reciprocating and Centrifugal pump - Pump Characteristics - Priming and Cavitation - Net Positive Suction Head - Stuffing Boxes, Mechanical Seals - Factors Influencing selection of pump. Module:8 Contemporary issues 2 hours Guest lecture from industry and R&D organizations 2 hours Total Lecture hours: 45 hours I. Cengel Y.A., Cimbala J.M., Fluid Mechanics (SIE): Fundamentals and Applications, 2019, 4 th ed., McGraw Hill, New York. 2 McCabe W.L., Smith J.C., Harriott P., Unit Operations of Chemical Engineering, 2017, 7 th ed., McGraw Hill, New York. 1. Fox R.W., McDonald A.T., Pirtchard P.J., Mitchell J. W., Introduction to Fluid Mechanics, 2015, 9 th ed., Wiley Publications, Delhi. 2. Munson, B. R., Young, D.F., Okiishi, T.H., Fundamentals of Fluid Mechanics, 2015, 8 th ed., Laxmi Publications, Delhi. 3. R.K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, 2015, 8 th ed., Laxmi Publications, New Delhi. 3. R.K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, 2015, 8 th ed., Laxmi Publications, New Delhi.									
Pipes - Fittings and Valves – Fluid Moving Machinery: Pumps – Classification : Reciprocating and Centrifugal pump – Pump Characteristics – Priming and Cavitation - Net Positive Suction Head - Stuffing Boxes, Mechanical Seals – Factors Influencing selection of pump. Module:8 Contemporary issues 2 hours Guest lecture from industry and R&D organizations 2 hours Total Lecture hours: 45 hours I. Cengel Y.A., Cimbala J.M., Fluid Mechanics (SIE): Fundamentals and Applications, 2019, 4 th ed., McGraw Hill, New York. 2 McCabe W.L., Smith J.C., Harriott P., Unit Operations of Chemical Engineering, 2017, 7 th ed., McGraw Hill, New York. 8 Ference Books: 1. Fox R.W., McDonald A.T., Pirtchard P.J., Mitchell J. W., Introduction to Fluid Mechanics, 2015, 9 th ed., Wiley Publications, Delhi. 2. Munson, B. R., Young, D.F., Okiishi, T.H., Fundamentals of Fluid Mechanics, 2015, 8 th ed., Wiley Publications, Delhi. 3. R.K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, 2015, 8 th ed., Laxmi Publications, New Delhi. Mode of Evaluation: Continuous Assessment Test, written assignment, Quiz, Final Assessment Test.	Mo	dule:7	Transportation of Fluids				7 hours		
and Centrifugal pump – Pump Characteristics – Priming and Cavitation - Net Positive Suction Head - Stuffing Boxes, Mechanical Seals Factors Influencing selection of pump. Module:8 Contemporary issues 2 hours Guest lecture from industry and R&D organizations 2 hours: Total Lecture hours: 45 hours I. Cengel Y.A., Cimbala J.M., Fluid Mechanics (SIE): Fundamentals and Applications, 2019, 4 th ed., McGraw Hill, New York. 2 McCabe W.L., Smith J.C., Harriott P., Unit Operations of Chemical Engineering, 2017, 7 th ed., McGraw Hill, New York. Reference Books: 1. 1. Fox R.W., McDonald A.T., Pirtchard P.J., Mitchell J. W., Introduction to Fluid Mechanics, 2015, 9 th ed., Wiley Publications, Delhi. 2. Munson, B. R., Young, D.F., Okiishi, T.H., Fundamentals of Fluid Mechanics, 2015, 8 th ed., Wiley Publications, Delhi. 3. R.K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, 2015, 8 th ed., Laxmi Publications, New Delhi. Mode of Evaluation: Continuous Assessment Test, written assignment, Quiz, Final Assessment Test.	Pip	es - Fitti	ings and Valves – Fluid M	loving Machinery	: Pumps –	- Classification : Red	ciprocating		
Head - Stuffing Boxes, Mechanical Seals Factors Influencing selection of pump. Module:8 Contemporary issues 2 hours Guest lecture from industry and R&D organizations 2 hours Total Lecture hours: 45 hours Total Lecture hours: 45 hours Image: Second S	and	and Centrifugal pump – Pump Characteristics – Priming and Cavitation - Net Positive Suction							
Module:8 Contemporary issues 2 hours Guest lecture from industry and R&D organizations 45 hours Total Lecture hours: 45 hours MacGraw Hill, New York. Contemporations, Colspan="2">Contemporations, 2019, 4 th dimension of Chemical Engineering, 2017, 7 th ed., McGraw Hill, New York. Reference Books: 1. Fox R.W., McDonald A.T., Pirtchard P.J., Mitchell J. W., Introduction to Fluid Mechanics, 2015, 9 th ed., Wiley Publications, Delhi. 2. Munson, B. R., Young, D.F., Okiishi, T.H., Fundamentals of Fluid Mechanics, 2015, 8 th ed., Laxmi Publications, New Delhi. Activation: Continuous Assessment Test, written assignment, Quiz, Final Assessment Test.	Hea	nd - Stuff	fing Boxes, Mechanical Sea	ls Factors Influ	encing sel	ection of pump.			
Module:8 Contemporary issues 2 hours Guest lecture from industry and R&D organizations 45 hours Total Lecture hours: 45 hours Total Lecture hours: 45 hours Text Books: 1. Cengel Y.A., Cimbala J.M., Fluid Mechanics (SIE): Fundamentals and Applications, 2019, 4 th ed., McGraw Hill, New York. 2 McCabe W.L., Smith J.C., Harriott P., Unit Operations of Chemical Engineering, 2017, 7 th ed., McGraw Hill, New York. Reference Books: 1. Fox R.W., McDonald A.T., Pirtchard P.J., Mitchell J. W., Introduction to Fluid Mechanics, 2015, 9 th ed., Wiley Publications, Delhi. 2. Munson, B. R., Young, D.F., Okiishi, T.H., Fundamentals of Fluid Mechanics, 2015, 8 th ed., Wiley Publications, Delhi. 3. R.K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, 2015, 8 th ed., Laxmi Publications, New Delhi. Mode of Evaluation: Continuous Assessment Test, written assignment, Quiz, Final Assessment Test.									
Guest lecture from industry and R&D organizations Total Lecture hours: 45 hours Total Lecture hours: 45 hours: Text Books: 1. Cengel Y.A., Cimbala J.M., Fluid Mechanics (SIE): Fundamentals and Applications, 2019, 4 th ed., McGraw Hill, New York. 2 McCabe W.L., Smith J.C., Harriott P., Unit Operations of Chemical Engineering, 2017, 7 th ed., McGraw Hill, New York. Reference Books: 1. Fox R.W., McDonald A.T., Pirtchard P.J., Mitchell J. W., Introduction to Fluid Mechanics, 2015, 9 th ed., Wiley Publications, Delhi. 2. Munson, B. R., Young, D.F., Okiishi, T.H., Fundamentals of Fluid Mechanics, 2015, 8 th ed., Wiley Publications, Delhi. 3. R.K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, 2015, 8 th ed., Laxmi Publications, New Delhi. Mode of Evaluation: Continuous Assessment Test, written assignment, Quiz, Final Assessment Test.	Module:8 Contemporary issues					2 hours			
Total Lecture hours: 45 hours Text Books: 45 hours: 1. Cengel Y.A., Cimbala J.M., Fluid Mechanics (SIE): Fundamentals and Applications, 2019, 4 th ed., McGraw Hill, New York. 2 McCabe W.L., Smith J.C., Harriott P., Unit Operations of Chemical Engineering, 2017, 7 th ed., McGraw Hill, New York. 8 Ference Books: 1. Fox R.W., McDonald A.T., Pirtchard P.J., Mitchell J. W., Introduction to Fluid Mechanics, 2015, 9 th ed., Wiley Publications, Delhi. 2. Munson, B. R., Young, D.F., Okiishi, T.H., Fundamentals of Fluid Mechanics, 2015, 8 th ed., Laxmi Publications, Delhi. 3. R.K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, 2015, 8 th ed., Laxmi Publications, New Delhi. Mode of Evaluation: Continuous Assessment Test, written assignment, Quiz, Final Assessment Test.	Gue	est lectur	re from industry and R&D o	organizations					
Total Lecture hours: 45 hours Text Books: 1. Cengel Y.A., Cimbala J.M., Fluid Mechanics (SIE): Fundamentals and Applications, 2019, 4 th ed., McGraw Hill, New York. McCabe W.L., Smith J.C., Harriott P., Unit Operations of Chemical Engineering, 2017, 7 th ed., McGraw Hill, New York. Reference Books: 1. Fox R.W., McDonald A.T., Pirtchard P.J., Mitchell J. W., Introduction to Fluid Mechanics, 2015, 9 th ed., Wiley Publications, Delhi. 2. Munson, B. R., Young, D.F., Okiishi, T.H., Fundamentals of Fluid Mechanics, 2015, 8 th ed., Wiley Publications, Delhi. 3. R.K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, 2015, 8 th ed., Laxmi Publications, New Delhi. Mode of Evaluation: Continuous Assessment Test, written assignment, Quiz, Final Assessment Test.									
Text Books: 1. Cengel Y.A., Cimbala J.M., Fluid Mechanics (SIE): Fundamentals and Applications, 2019, 4 th ed., McGraw Hill, New York. 2 McCabe W.L., Smith J.C., Harriott P., Unit Operations of Chemical Engineering, 2017, 7 th ed., McGraw Hill, New York. Reference Books: 1. 1. Fox R.W., McDonald A.T., Pirtchard P.J., Mitchell J. W., Introduction to Fluid Mechanics, 2015, 9 th ed., Wiley Publications, Delhi. 2. Munson, B. R., Young, D.F., Okiishi, T.H., Fundamentals of Fluid Mechanics, 2015, 8 th ed., Wiley Publications, Delhi. 3. R.K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, 2015, 8 th ed., Laxmi Publications, New Delhi. Mode of Evaluation: Continuous Assessment Test, written assignment, Quiz, Final Assessment Test.					Та	otal Lecture hours:	45 hours		
 Cengel Y.A., Cimbala J.M., Fluid Mechanics (SIE): Fundamentals and Applications, 2019, 4th ed., McGraw Hill, New York. McCabe W.L., Smith J.C., Harriott P., Unit Operations of Chemical Engineering, 2017, 7th ed., McGraw Hill, New York. Reference Books: Fox R.W., McDonald A.T., Pirtchard P.J., Mitchell J. W., Introduction to Fluid Mechanics, 2015, 9th ed., Wiley Publications, Delhi. Munson, B. R., Young, D.F., Okiishi, T.H., Fundamentals of Fluid Mechanics, 2015, 8th ed., Wiley Publications, Delhi. R.K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, 2015, 8th ed., Laxmi Publications, New Delhi. Mode of Evaluation: Continuous Assessment Test, written assignment, Quiz, Final Assessment Test. 	Tex	kt Books	:						
 ed., McGraw Hill, New York. McCabe W.L., Smith J.C., Harriott P., Unit Operations of Chemical Engineering, 2017, 7th ed., McGraw Hill, New York. Reference Books: Fox R.W., McDonald A.T., Pirtchard P.J., Mitchell J. W., Introduction to Fluid Mechanics, 2015, 9th ed., Wiley Publications, Delhi. Munson, B. R., Young, D.F., Okiishi, T.H., Fundamentals of Fluid Mechanics, 2015, 8th ed., Wiley Publications, Delhi. R.K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, 2015, 8th ed., Laxmi Publications, New Delhi. Mode of Evaluation: Continuous Assessment Test, written assignment, Quiz, Final Assessment Test. 	1	Cengel	Y.A., Cimbala J.M., Fluid	Mechanics (SIE):	Fundamen	tals and Applications	s, 2019, 4 th		
 McCabe W.L., Smith J.C., Harriott P., Unit Operations of Chemical Engineering, 2017, 7th ed., McGraw Hill, New York. Reference Books: Fox R.W., McDonald A.T., Pirtchard P.J., Mitchell J. W., Introduction to Fluid Mechanics, 2015, 9th ed., Wiley Publications, Delhi. Munson, B. R., Young, D.F., Okiishi, T.H., Fundamentals of Fluid Mechanics, 2015, 8th ed., Wiley Publications, Delhi. R.K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, 2015, 8th ed., Laxmi Publications, New Delhi. Mode of Evaluation: Continuous Assessment Test, written assignment, Quiz, Final Assessment Test. 	1.	ed., Mc	Graw Hill, New York.						
 ² ed., McGraw Hill, New York. Reference Books: Fox R.W., McDonald A.T., Pirtchard P.J., Mitchell J. W., Introduction to Fluid Mechanics, 2015, 9th ed., Wiley Publications, Delhi. Munson, B. R., Young, D.F., Okiishi, T.H., Fundamentals of Fluid Mechanics, 2015, 8th ed., Wiley Publications, Delhi. R.K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, 2015, 8th ed., Laxmi Publications, New Delhi. Mode of Evaluation: Continuous Assessment Test, written assignment, Quiz, Final Assessment Test. 	2	McCab	McCabe W.L., Smith J.C., Harriott P., Unit Operations of Chemical Engineering, 2017, 7th						
Reference Books: 1. Fox R.W., McDonald A.T., Pirtchard P.J., Mitchell J. W., Introduction to Fluid Mechanics, 2015, 9 th ed., Wiley Publications, Delhi. 2. Munson, B. R., Young, D.F., Okiishi, T.H., Fundamentals of Fluid Mechanics, 2015, 8 th ed., Wiley Publications, Delhi. 3. R.K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, 2015, 8 th ed., Laxmi Publications, New Delhi. Mode of Evaluation: Continuous Assessment Test, written assignment, Quiz, Final Assessment Test.	2	ed., Mc	Graw Hill, New York.						
 Fox R.W., McDonald A.T., Pirtchard P.J., Mitchell J. W., Introduction to Fluid Mechanics, 2015, 9th ed., Wiley Publications, Delhi. Munson, B. R., Young, D.F., Okiishi, T.H., Fundamentals of Fluid Mechanics, 2015, 8th ed., Wiley Publications, Delhi. R.K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, 2015, 8th ed., Laxmi Publications, New Delhi. Mode of Evaluation: Continuous Assessment Test, written assignment, Quiz, Final Assessment Test. 	Ref	ference I	Books:						
 2015, 9th ed., Wiley Publications, Delhi. Munson, B. R., Young, D.F., Okiishi, T.H., Fundamentals of Fluid Mechanics, 2015, 8th ed., Wiley Publications, Delhi. R.K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, 2015, 8th ed., Laxmi Publications, New Delhi. Mode of Evaluation: Continuous Assessment Test, written assignment, Quiz, Final Assessment Test. 	1	Fox R.	W., McDonald A.T., Pirtch	nard P.J., Mitchell	J. W., In	troduction to Fluid N	Mechanics,		
 Munson, B. R., Young, D.F., Okiishi, T.H., Fundamentals of Fluid Mechanics, 2015, 8th ed., Wiley Publications, Delhi. R.K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, 2015, 8th ed., Laxmi Publications, New Delhi. Mode of Evaluation: Continuous Assessment Test, written assignment, Quiz, Final Assessment Test. 	1.	2015, 9	th ed., Wiley Publications, I	Delhi.					
 ^{2.} Wiley Publications, Delhi. 3. R.K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, 2015, 8th ed., Laxmi Publications, New Delhi. Mode of Evaluation: Continuous Assessment Test, written assignment, Quiz, Final Assessment Test. 	2	Munsor	n, B. R., Young, D.F., Okii	shi, T.H., Fundan	nentals of	Fluid Mechanics, 20	15, 8 th ed.,		
 R.K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, 2015, 8th ed., Laxmi Publications, New Delhi. Mode of Evaluation: Continuous Assessment Test, written assignment, Quiz, Final Assessment Test. 	۷.	Wiley I	Publications, Delhi.						
 Publications, New Delhi. Mode of Evaluation: Continuous Assessment Test, written assignment, Quiz, Final Assessment Test. 	3	R.K. B	ansal, A Textbook of Fluid	Mechanics and H	Iydraulic 1	Machines, 2015, 8 th	ed., Laxmi		
Mode of Evaluation: Continuous Assessment Test, written assignment, Quiz, Final Assessment Test.	5.	Publica	tions, New Delhi.						
Test.	Mo	de of Ev	valuation: Continuous Ass	essment Test, wri	tten assigi	nment, Quiz, Final A	Assessment		
	Tes	t							
Recommended by Board of Studies 11-02-2022	Rec	commend	led by Board of Studies		11-	02-2022			
Approved by Academic CouncilNo.65Date17-03-2022	App	proved b	y Academic Council	No.65	Date	17-03-2022			

Cou	irse code		Course Title			L	Т	Р	С		
BC	HE205P	Momen	tum Transfer La	boratory		0	0	2	1		
Pre-	requisite		Nil			Syllabus versior					
							1.0				
Cours	e Objectives	3:									
1. To e	expose the stu	udent to various flow	v measuring device	es							
2. To i	2. To impart knowledge about friction factor for fluid flow in pipe and packed bed										
3. To ı	understand th	e performance chara	cteristics of centri	fugal pum	ıр						
Cours	e Outcomes	•									
1. Eva	luate the velo	ocity in the pipe line	using different flo	w measur	ing devices						
2. Dete	ermine the er	nergy losses and pres	sure drop in pipes								
3. Esti	mate the min	imum fluidization v	elocity								
Indica	tive Experir	nents									
1.	Flow throug	h Venturi meter									
2.	Flow throug	h Orifice meter									
3.	Flow throug	h circular pipe									
4.	Flow throug	h non circular pipe									
5.	Determination	on of Minor losses									
6.	Reynolds Ex	xperiment									
7.	Verification	of Bernoulli's theor	em								
8.	Characterist	ics of Centrifugal pu	mp								
9.	Flow throug	h Packed bed									
10.	Flow throug	h Fluidized bed									
			Т	otal Labo	ratory Hou	rs 3	30 hou	ırs			
Mode	of assessmen	t: Individual Experiment	ment Assessment,	Final Asso	essment Test	t					
Recom	nmended by I	Board of Studies		11-	02-2022						
Appro	ved by Acade	emic Council	No.65	Date	17-03-2022	2					

Course Code	Course Title	L	Т	Р	C
BCHE207L	Mass Transfer I	2	1	0	3
Pre-requisite	BCHE202L	Sylla	bus	versi	on
•		- V	1.	0	
Course Objectives	:				
1. To understand th	ne fundamentals of diffusion and the theories of mass trans	fer			
2. To impart the kr	owledge of humidification, drying and crystallization				
3. To solve applic	ation oriented problems using separation techniques				
Course Outcomes					
1. Derive molecula	r diffusion in gases, liquids and solids				
2. Compute the mo	lecular diffusion in gases, liquids and solids				
3. Compute mass t	ransfer coefficient and flux for various mass transfer operat	ions			
4. Solve humidific	ation/dehumidification by considering the aspects of design				
5. Select suita	ble equipments used for mass trans	sfer	01	perati	ons
(humidification/	dehumidification, Drier and crystallizers)			L	
X X					
Module:1 Diffus	ion			6 ho	urs
Introduction to Ma	ss transfer operation, Fick's law of diffusion, Steady state i	molecu	ılar	diffus	sion
in fluids under sta	gnant and laminar flow conditions, Diffusion coefficient	meas	uren	nent	and
prediction					
1					
Module:2 Molec	ular diffusion in fluids			6 ho	urs
Molecular diffusio	n in gas and Liquids. Multicomponent diffusion. Diffusion	on thro	ugh	varia	able
cross-sectional area	Diffusivity in solids and its applications		0		
	,,, _,, _				
Module:3 Mass	transfer coefficients			6 ho	urs
Module:3 Mass Introduction to ma	transfer coefficients ss transfer coefficient. Correlation for convective mass t	ransfe	r co	6 ho effici	urs ent.
Module:3MassIntroduction to mayCorrelation of mass	transfer coefficients ss transfer coefficient, Correlation for convective mass t ss transfer coefficients for single cylinder. Packed column	ransfe n. flov	r co	6 ho effici ver a	urs ent, flat
Module:3 Mass Introduction to ma Correlation of mas plate	transfer coefficients ss transfer coefficient, Correlation for convective mass t ss transfer coefficients for single cylinder, Packed column	ransfe n, flov	r co v ov	6 ho effici ver a	urs ent, flat
Module:3MassIntroduction to maCorrelation of massplate	transfer coefficients ss transfer coefficient, Correlation for convective mass t ss transfer coefficients for single cylinder, Packed column	ransfe n, flov	r co w ov	6 ho effici ver a	urs ent, flat
Module:3MassIntroduction to maCorrelation of massplateModule:4	transfer coefficients ss transfer coefficient, Correlation for convective mass t ss transfer coefficients for single cylinder, Packed column ries of Mass Transfer	ransfe n, flov	r co v ov	6 ho effici ver a 6 ho	urs ent, flat urs
Module:3MassIntroduction to may Correlation of mass plateModule:4Theo Penetration theory,	transfer coefficients ss transfer coefficient, Correlation for convective mass t ss transfer coefficients for single cylinder, Packed column ries of Mass Transfer Surface Renewal Theory, Interphase mass transfer, two fi	ransfe n, flov ilm th	r co v ov	6 ho effici ver a 6 ho , Ove	urs ent, flat urs erall
Module:3MassIntroductionto mayCorrelationof massplateModule:4TheoPenetrationtheory,masstransfercoeff	transfer coefficients ss transfer coefficient, Correlation for convective mass t ss transfer coefficients for single cylinder, Packed column ries of Mass Transfer Surface Renewal Theory, Interphase mass transfer, two fraction	ransfe n, flov	r co w ov	6 ho effici er a 6 ho , Ove	urs ent, flat urs erall
Module:3MassIntroductionto mayCorrelationof massplatemassModule:4TheoPenetrationtheory,masstransfercoeff	transfer coefficients ss transfer coefficient, Correlation for convective mass t ss transfer coefficients for single cylinder, Packed column ries of Mass Transfer Surface Renewal Theory, Interphase mass transfer, two fraction to the fraction of the second secon	ransfe n, flov ilm th	r co v ov	6 ho effici ver a 6 ho , Ove	urs ent, flat urs erall
Module:3MassIntroductionto mayCorrelationof massplatemodule:4Module:4TheoPenetrationtheory,mass transfer coeffModule:5Humin	transfer coefficients ss transfer coefficient, Correlation for convective mass t as transfer coefficients for single cylinder, Packed column ries of Mass Transfer Surface Renewal Theory, Interphase mass transfer, two fraction	ransfe n, flov	r co w ov eory	6 ho effici ver a 6 ho , Ove 7 ho	urs ent, flat urs erall urs
Module:3MassIntroductionto mayCorrelationof massplatemodule:4Module:4TheoPenetrationtheory,masstransferModule:5HumiBasicconcepts,PressPress	transfer coefficients ss transfer coefficient, Correlation for convective mass t ss transfer coefficients for single cylinder, Packed column ries of Mass Transfer Surface Renewal Theory, Interphase mass transfer, two frictions dification inciples of Humidification –Definitions Wet Bulb Tempo	ransfe n, flov ilm th	r co w ov eory	6 ho effici /er a 6 ho , Ove 7 ho Adiab	urs ent, flat urs erall urs atic
Module:3MassIntroductionto mayCorrelationof massplatemodule:4Module:4TheoPenetrationtheory,masstransferModule:5HumiBasicconcepts, PrSaturationTempe	transfer coefficients ss transfer coefficient, Correlation for convective mass t as transfer coefficients for single cylinder, Packed column ries of Mass Transfer Surface Renewal Theory, Interphase mass transfer, two fricients diffication inciples of Humidification –Definitions Wet Bulb Tempo ratures –Air/Water System psychrometric and Psychr	ransfe n, flov ilm th erature	r co w ov eory	6 ho effici ver a 6 ho , Ove 7 ho Adiab	urs ent, flat urs erall urs atic
Module:3MassIntroductionto mayCorrelationof massplatemodule:4Module:4TheoPenetrationtheory,masstransferModule:5HumiBasicconcepts, PrSaturationTempeUtilisationof Psyce	transfer coefficients ss transfer coefficient, Correlation for convective mass t as transfer coefficients for single cylinder, Packed column ries of Mass Transfer Surface Renewal Theory, Interphase mass transfer, two fractions diffication inciples of Humidification –Definitions Wet Bulb Tempor ratures –Air/Water System psychrometric and Psychr hrometric Charts – Dehumidification – Cooling Towers	ransfe n, flov ilm th erature ometr –Mecl	r co w ov eory	6 ho effici ver a 6 ho , Ove 7 ho Adiab Charts cal D	urs ent, flat urs erall urs atic s – raft
Module:3MassIntroductionto mayCorrelationof massplatemodule:4Module:4TheoPenetrationtheory,masstransferModule:5HumiBasicconcepts, PrSaturationTempeUtilisationof PsycTowers:forced drain	transfer coefficients ss transfer coefficient, Correlation for convective mass t as transfer coefficients for single cylinder, Packed column ries of Mass Transfer Surface Renewal Theory, Interphase mass transfer, two fractions dification inciples of Humidification –Definitions Wet Bulb Temporatures –Air/Water System psychrometric and Psychr hrometric Charts – Dehumidification – Cooling Towers ft towers and induced draft towers, Design calculations of c	ransfe n, flov ilm th erature ometr –Mecl ooling	r co v ov eory eory	6 ho effici ver a 6 ho , Ove 7 ho Adiab Charts cal D ver.	urs ent, flat urs erall urs atic s – raft
Module:3MassIntroductionto mayCorrelationof massplatemodule:4Module:4TheoPenetrationtheory,mass transfer coeffmodule:5Module:5HumiBasic concepts, PrSaturationTempeUtilisationof PsyceTowers: forced drawners	transfer coefficients ss transfer coefficient, Correlation for convective mass t is transfer coefficients for single cylinder, Packed column ries of Mass Transfer Surface Renewal Theory, Interphase mass transfer, two fricients dification inciples of Humidification –Definitions Wet Bulb Tempe ratures –Air/Water System psychrometric and Psychr hrometric Charts – Dehumidification – Cooling Towers ft towers and induced draft towers, Design calculations of c	ransfe n, flov ilm th erature ometr –Mecl ooling	r co v ov eory e & A ic (hania	6 ho effici ver a 6 ho , Ove 7 ho Adiab Charts cal D ver.	urs ent, flat urs erall urs atic s – raft
Module:3MassIntroductionto mayCorrelationof massplatemodule:4Module:4TheoPenetrationtheory,masstransferModule:5HumiBasicconcepts, PrSaturationTempeUtilisationof PsyceTowers:forced drawnModule:6Dryin	transfer coefficients ss transfer coefficient, Correlation for convective mass t as transfer coefficients for single cylinder, Packed column ries of Mass Transfer Surface Renewal Theory, Interphase mass transfer, two fractions diffication inciples of Humidification –Definitions Wet Bulb Tempor ratures –Air/Water System psychrometric and Psychr hrometric Charts – Dehumidification – Cooling Towers ft towers and induced draft towers, Design calculations of c	ransfe n, flov ilm th erature ometr –Mecl ooling	r co w ov eory ic C hanid g tow	6 ho effici ver a 6 ho , Ove 7 ho Adiab Charts cal D ver. 7 ho	urs ent, flat urs erall urs atic s – raft urs
Module:3MassIntroductionto mayCorrelationof massplatemodule:4Module:4TheoPenetrationtheory,mass transfercoeffModule:5HumiBasicconcepts, PrSaturationTempeUtilisationof PsycTowers:forced drawnModule:6DryinPrinciplesof Dryin	transfer coefficients ss transfer coefficient, Correlation for convective mass t as transfer coefficients for single cylinder, Packed column ries of Mass Transfer Surface Renewal Theory, Interphase mass transfer, two frictients dification inciples of Humidification –Definitions Wet Bulb Temper ratures –Air/Water System psychrometric and Psychr hrometric Charts – Dehumidification – Cooling Towers ft towers and induced draft towers, Design calculations of c ng – Definitions of moisture and other terms on Drying	ransfe n, flov ilm th erature ometr –Mecl ooling	r co v ov eory e & A ic (hanio g tow	6 ho effici ver a 6 ho , Ove 7 ho Adiab Charts cal D ver. 7 ho cation	urs ent, flat urs erall urs atic s – raft urs urs
Module:3MassIntroductionto mayCorrelationof massplatemodule:4Module:4TheoPenetrationtheory,mass transfer coeffModule:5HumiBasic concepts, PrSaturationTempeUtilisationof PsyceTowers: forced draModule:6DryinPrinciplesof Dryin	<pre>transfer coefficients ss transfer coefficient, Correlation for convective mass t ss transfer coefficients for single cylinder, Packed column ries of Mass Transfer Surface Renewal Theory, Interphase mass transfer, two frictients dification inciples of Humidification –Definitions Wet Bulb Temper ratures –Air/Water System psychrometric and Psychr hrometric Charts – Dehumidification – Cooling Towers ft towers and induced draft towers, Design calculations of c g ng – Definitions of moisture and other terms on Drying Rate of Drying – Constant and Falling Rate Drying – Mo </pre>	ransfe n, flov ilm th erature ometr –Mecl ooling –Cla: isture	r co v ov eory e & A ic (hania ssifia mov	6 ho effici ver a 6 ho , Ove 7 ho Adiab Charts cal D ver. 7 ho cation	urs ent, flat urs erall urs atic s – raft urs a of t in
Module:3MassIntroductionto mayCorrelationof massplateTheoModule:4TheoPenetrationtheory,masstransferModule:5HumiBasicconcepts, PrSaturationTempeUtilisationof PsyceTowers:forced draModule:6DryinPrinciplesof DryinDryingoperationssolids - Through Carrier	<pre>transfer coefficients ss transfer coefficient, Correlation for convective mass t ss transfer coefficients for single cylinder, Packed column ries of Mass Transfer Surface Renewal Theory, Interphase mass transfer, two fricients dification inciples of Humidification –Definitions Wet Bulb Tempe ratures –Air/Water System psychrometric and Psychr hrometric Charts – Dehumidification – Cooling Towers ft towers and induced draft towers, Design calculations of c ng – Definitions of moisture and other terms on Drying Rate of Drying – Constant and Falling Rate Drying – Moi rculation Drying - Rate of drying for Continuous Direct he </pre>	ransfe n, flov ilm th erature ooling –Clas isture eat Dri	r co w ov eory e & A ic (hanid stow mov ers.	6 ho effici ver a 6 ho , Ove 7 ho Adiab Charts cal D ver. 7 ho cation emen Type	urs ent, flat urs erall urs atic s – raft urs n of tt in s of
Module:3MassIntroductionto mayCorrelationof massplateIntroductionModule:4TheoPenetrationtheory,mass transfer coeffIntroductionModule:5HumiBasic concepts, PrSaturationTempeUtilisationof PsyceTowers: forced drationModule:6DryinPrinciplesof DryinDrying operationssolids - Through CoDryers used in prace	transfer coefficients ss transfer coefficient, Correlation for convective mass t is transfer coefficients for single cylinder, Packed column ries of Mass Transfer Surface Renewal Theory, Interphase mass transfer, two fractions dification inciples of Humidification –Definitions Wet Bulb Temporatures –Air/Water System psychrometric and Psychr hrometric Charts – Dehumidification – Cooling Towers ft towers and induced draft towers, Design calculations of c ng – Definitions of moisture and other terms on Drying Rate of Drying – Constant and Falling Rate Drying – Mo irculation Drying - Rate of drying for Continuous Direct he tice and their operation – Batch and Continuous Dryers	ransfe n, flov ilm th erature cometr –Mecl ooling –Clas isture eat Dri	r co v ov eory eory kanid g tow ers.	6 ho effici ver a 6 ho , Ove 7 ho Adiab Charts cal D ver. 7 ho cation emen Types	urs ent, flat urs erall urs atic s – raft urs i of it in s of
Module:3MassIntroductionto mayCorrelationof massplateTheoModule:4TheoPenetrationtheory,mass transfer coeffModule:5Module:5HumiBasic concepts, PrSaturationTempeUtilisationof PsyceTowers: forced draModule:6DryinPrinciplesOryinDrying operationssolids - Through CaDryers used in prace	transfer coefficients ss transfer coefficient, Correlation for convective mass t is transfer coefficients for single cylinder, Packed column ries of Mass Transfer Surface Renewal Theory, Interphase mass transfer, two fri- cients dification inciples of Humidification –Definitions Wet Bulb Temperatures –Air/Water System psychrometric and Psychr hrometric Charts – Dehumidification – Cooling Towers ft towers and induced draft towers, Design calculations of c ng – Definitions of moisture and other terms on Drying Rate of Drying – Constant and Falling Rate Drying – Mo irculation Drying - Rate of drying for Continuous Direct he tice and their operation – Batch and Continuous Dryers	ransfe n, flov ilm th erature ometr –Mecl ooling –Clas isture eat Dri	r co w ov eory eory ic (hanid sssifid mov ers.	6 ho effici yer a 6 ho , Ove 7 ho Adiab Charts cal D yer. 7 ho cation emen Type	urs ent, flat urs erall urs atic s – raft urs a of t in s of
Module:3MassIntroductionto mayCorrelationof massplateTheoModule:4TheoPenetrationtheory,mass transfercoeffModule:5HumiBasicconcepts, PrSaturationTemperUtilisationof PsyceTowers:forced drainModule:6DryinPrinciplesof DryinDryingoperationssolidsThrough CaDryersused in praceModule:7Cryst	transfer coefficients ss transfer coefficients for single cylinder, Packed column ries of Mass Transfer Surface Renewal Theory, Interphase mass transfer, two frictions diffication inciples of Humidification –Definitions Wet Bulb Temperatures –Air/Water System psychrometric and Psychr hrometric Charts – Dehumidification – Cooling Towers ft towers and induced draft towers, Design calculations of c ng – Definitions of moisture and other terms on Drying Rate of Drying – Constant and Falling Rate Drying – Mo irculation Drying - Rate of drying for Continuous Direct he tice and their operation – Batch and Continuous Dryers	ransfe n, flov ilm th erature cometr –Mecl ooling –Cla: isture eat Dri	r co w ov eory e & A ic C hanid ; tow ers.	6 ho effici ver a 6 ho , Ove 7 ho Adiab Charts cal D ver. 7 ho cation Types 5 ho	urs ent, flat urs erall urs atic s – raft urs t in s of urs
Module:3MassIntroductionto mayIntroductionto mayCorrelationof massplateTheoModule:4TheoPenetrationtheory,mass transfer coeffModule:5Module:5HumiBasic concepts, PrSaturationTempeUtilisationof PsyceTowers: forced draModule:6DryinPrinciplesof DryinDrying operationssolids - Through CDryers used in praceModule:7CrystalCrystal Geometry	transfer coefficients ss transfer coefficients for single cylinder, Packed column st transfer coefficients for single cylinder, Packed column ries of Mass Transfer Surface Renewal Theory, Interphase mass transfer, two fricients diffication inciples of Humidification –Definitions Wet Bulb Temperatures –Air/Water System psychrometric and Psychr hrometric Charts – Dehumidification – Cooling Towers ft towers and induced draft towers, Design calculations of c ng ng – Definitions of moisture and other terms on Drying Rate of Drying – Constant and Falling Rate Drying – Mo inculation Drying - Rate of drying for Continuous Direct he tice and their operation – Batch and Continuous Dryers fallization Invariant Crystals - Principles of Crystallization- Super sa	ransfe n, flov ilm th erature ometr –Mecl ooling –Cla: isture eat Dri turatic	r co v ov eory eory e & A ic C hanid sssifid mov ers.	6 ho effici yer a 6 ho , Ove 7 ho Adiab Charts cal D yer. 7 ho cation emen Type 5 ho ucleat	urs ent, flat urs erall urs atic s – raft urs t of t in s of urs tion

use	used in practice							
Mo	dule:8	Contemporary issues				2 hours		
Gue	est lectur	e from industry and R&D c	organizations					
				То	otal Lecture hours:	45 hours		
Tex	kt Books	:						
1.	B.K. D	utta, Principles of Mass trar	sfer and Separation	on Process	es, 2010, 1 st ed., PH	I, India.		
2. R.E. Treybal, Mass-Transfer Operations, 2017, 3 rd ed., McGraw-Hill Inc., USA.								
Ref	erence l	Books:						
1.	E.L.Cu	ssler, Diffusion: Mass Tran	sfer in Fluid Syste	ems, 2017,	3 rd ed., Cambridge	University		
	Press, U	United Kingdom.						
2.	Christie	e J, Geankoplis, Transport p	processes and Uni	t Operation	ns, 2003, 4 th ed., Pr	entice Hall		
	India P	vt. Ltd., India.						
3.	N.Anar	ntharaman, K.M.Meera She	riffa Begum, Mass	s transfer-7	Theory and practice	, 2011,		
	Prentic	e-Hall of India, New Delhi,	India.					
Mo	de of eva	aluation: Continuous Assess	sment Test, Quiz,	Assignmer	nt, Final Assessmen	t Test		
Rec	comment	led by Board of Studies		11-0	2-2022			
Ap	proved b	y Academic Council	No.65	Date	17-03-2022			

Course code	Course Title	L	Τ	Р	С
BCHE208L	Heat Transfer	3	0	0	3
Pre-requisite	BMAT102L	Syllabus version			
		1.0			

- 1. Explain the fundamental principles of heat transfer and various modes of heat transfer
- 2. Solve heat transfer problems using the principles of heat transfer in different modes
- 3. Design and estimate heat loads for heat transfer equipment such as heat exchangers and evaporators

Course Outcomes:

- 1. Identify Classify the different modes of heat transfer with their significance for stady and unsteady state processes
- 2. Model and solve steady/unsteady state heat transfer problems
- 3. Compute the convective heat transfer parameters n fluids involving phase and no phase changes
- 4. Estimate radiative mode heat transfer with and without radiation shields through shape factor concept
- 5. Explain the performance of various types of heat exchangers and evaporators/condensers

Module:1 Conduction

Basic concepts - Conduction - Fourier's Law of Heat conduction - Concept of Thermal Conductivity – Generalized conduction equation in cartesian, cylindrical and spherical systems; Steady State Conduction - Heat transfer composite systems - Critical thickness of insulation - Conduction with heat Generation.

Module:2 Extended Surfaces and Unsteady state conduction

Extended surfaces - types and applications of fins - Fin efficiency and effectiveness - Fin performance - Unsteady state heat conduction - Lumped parameter system - Conduction through semi-infinite solids

Module:3 | Convection (without phase change)

Fundamentals of Convection - Thermal boundary layer & Convective heat transfer coefficients -Convection correlations through Dimensional analysis; Laminar flow over a flat plate -Turbulent flow over a flat plate - Flow over cylinders - Internal flow through pipes - annular spaces - Natural convection in vertical - inclined and horizontal surfaces.

Module:4 | Convection (with phase change)

Condensation and Boiling - Drop wise and Film wise condensation - Film condensation on a vertical plate; Boiling – Nucleate boiling and film boiling correlations – Critical flux

Module:5 | Radiation

Radiation heat transfer - Thermal radiation - Laws of radiation - Blackbody concepts - Emissive power – Radiation shape factor – Gray bodies – Radiation shields

Module:6 | Heat Exchangers

6 hours

6 hours

6 hours

7 hours

7 hours

5 hours

Heat exchangers – Types and practical application –Concept of LMTD & Overall heat transfer coefficient; Effectiveness – NTU method for heat exchanger design - Fouling factor and estimation of Overall heat transfer coefficient - Special type of heat exchangers

Mo	dule:7	Evaporators				6 hours
Introduction – Types of Evaporators – Capacity – Steam economy – Boiling point elevation (Duhring rule); Material and energy balance of single effect evaporator - multiple effect evaporators - Design of single and multiple effect evaporators						
Mo	dule:8	Contemporary issues				2 hours
Gue	est lectur	e from industry and R&D o	rganizations			
				Τα	tal Lecture hours:	45 hours
Tex	t Book:					
1.	Ghajar McGra	A.J., Cengel Y.A., Heat a w-Hill, USA.	and Mass Transfe	er: A Prac	tical Approach, 201	5, 5 th ed.,
Ref	erence l	Books:				
1.	Frank H USA.	Kreith, Raj M Manglik, Pri	nciples of Heat T	ransfer, 20	16, 8 th ed., Cengage	Learning,
2.	Donald	Q. Kern, Process Heat Tran	nsfer, 2017, 2 nd ed	ition, McC	Fraw Hill Education,	USA.
3.	B.K. D	utta, Heat Transfer Principle	es and Application	1^{s} ,2000, 1^{s}	^t ed., PHI, India.	
Mo	de of Ev	aluation: Continuous Asses	sment Test, Quiz,	Assignme	nt, Final Assessment	Test
Rec	ommend	led by Board of Studies		11-(02-2022	
App	proved b	y Academic Council	No.65	Date	17-03-2022	

C	ourse code		Course title			L	Т	P	C	
B	CHE208P	Н	eat Transfer Lab)		0	0	2	1	
Pr	e-requisite		BMAT102L			Sylla	ibus v	versio	n	
							1.0			
Cou	rse Objectives	s:								
1.	Γο expose the	students to variou	s modes of heat	transfer (Conduct	ion, Co	onvect	tion a	and	
	Radiation) and their application in process industries									
2. 3 7	To introduce ac	various neat transf ivanced computer to	ols and software i	narysis me in designin	o heat e	parame xchange	ers equi	nmer	nt	
5.				in designin	ig neur er	iteriang.	e equi	piner		
Cou	rse Outcomes	:								
1. l	Model and solv	ve steady/unsteady st	tate heat transfer p	oroblems						
2.	Analyze the hea	at transfer phenome	na in fluids involv	ing phase	and no p	hase ch	anges	5		
3. 1	Examine the ra	diative heat transfer	with and without	radiation s	shields					
Indi	cative Experi	ments:								
1.	Measurement	t of thermal conduct	ivity of metal rod	and liquid	S					
2.	Analysis of T	ransient Heat Condu	uction							
3.	Analysis of F	in efficiency & effe	ctiveness							
4.	Performance	of Natural Convecti	on heat transfer							
5.	Performance	of Forced Convection	on heat transfer							
6.	Emissivity me	easurement								
7.	Performance	of Double Pipe Hea	t Exchanger							
8.	Performance	of Plate type Heat E	xchanger							
9.	Performance	of shell and tube He	at Exchanger							
10.	Analysis of H	leat Exchanger using	g Aspen Plus – ED	OR and PR	OSIM so	oftware				
				Total Lal	ooratory	Hours	30	hour	'S	
Mod	le of assessmer	nt: Individual Experi	iment Assessment	, Final Ass	sessment	Test	·			
Reco	ommended by	Board of Studies		11-0	2-2022					
App	roved by Acad	emic Council	No.65	Date	17-03-2	2022				

Course code	Course Title	L	Т	P	С				
BCHE301L	Mechanical Operations		0	0	3				
Pre-requisite	Nil	Sylla	Syllabus version						
•	1.0								
Course Objectives:									
1. To impart knowledge about size analysis, size reduction and solid handling adopted in									
process Indu	stries		-	-					
2. To understar	d mechanical separation aspects such as filtration, sedimentat	tion, f	lotatic	on					
3. To choose the right separation technology for easy separation of chemical components									
Course Outcom	25:								
1. Describe pro	perties of particulate solids								
2. Classify size	reduction methods based on characteristics of the feed materi	ial							
3. Understand	he mechanical separation aspect of screening								
4. Identify the	uitable separation technique based on particle dynamics.								
5. Explain the	process of agitation, mixing and solids conveying.								
Module:1 Pro	perties and Storage of Solids		,	7 hor	urs				
Particle shape an	d size, Mixed particle sizes, Average particle sizes. Solids in	bulk -	- the a	angle	e of				
repose, angle of	nternal friction. Storage and transportation of bulk solids - P	robler	ns ass	socia	ted				
with the flow of	bulk solids - Transportation equipment - Belt conveyors,	Scre	w con	iveyo	ors,				
Pipe conveyors, A	Apron conveyors, Flight conveyors, Bucket elevators.			2					
Module:2 Size	reduction of Solids		6	hou	rs				
Principles of C	omminution – Energy and Power Requirements in Comm	ninuti	on, C	rush	ing				
Efficiency, Mech	anical Efficiency. Laws of Crushing, Size Reduction Equip	ment	– Cru	isher	s –				
Grinders – Cuttin	g Machines. Open and Closed Circuit Operation, Feed Contr	ol, M	ill Dis	schar	ge,				
Energy Consump	tion, Removal of Heat.				0				
Module:3 Size	e separation of solids			6 hoi	urs				
Screening, Scree	n analysis, Screen efficiency and capacity, Screening Equipt	ment -	– Gri	zzlie	es -				
Trommels, Vibra	ting screen, Gyratory screen, Banana screen.								
Module:4 Sep	aration of solids based on specific properties			<u>6 ho</u> i	urs				
Gravity settling	hamber, Wet scrubber, Elutriator, Electrostatic separation, G	Cyclor	ne sep	arati	on,				
Magnetic separat	ion, Froth flotation, Jigging.								
Module:5 Set	ling and Sedimentation			5 hou	urs				
Particle dynamics – terminal settling velocity, free and hindered settling - Gravity sedimentation									
– Design of Equipment: Thickeners, Clarifiers, Centrifugal sedimentation.									
Module:6 Filt	ration		,	7 hou	urs				
Principles of Cake Filtration- Constant Pressure Filtration - Constant Rate Filtration -									
Compressible and Incompressible Filter Cakes - Specific Cake Resistance - Filter Medium									
Resistance - Continuous Filtration - Principles of Centrifugal Filtration - Washing of Filter Cake									
- Filtration Equipment – Plate and frame filter Press - Leaf Filter- Rotary drum filter - Filter									
Media - Filter Ai	ds.								
Module:7 Agi	tation and Mixing			6 hoi	urs				

Agitation and Mixing of Liquids – Principles of Agitation – Agitation Equipment – Impellers –

Flow Pattern in Agitated Vessel - Power Consumption in Agitated vessel. Calculation of power consumption - Mixing equipment for liquids and suspensions - Mixing of solids - Measurement							
01 L	ne exten	t of mixing – Mixing index	- the rate of mixin	ig - Mixing	g equipment for som	ds.	
Module:8 Contemporary issues					2 hours		
Gue	est lectur	e from industry and R&D o	organizations				
				Tot	al Lecture hours:	45 hours	
Tex	xt Books	:					
1.	McCab	e W., Smith J., Harriott P.,	Unit Operations	of Chemic	cal Engineering, 20	17, 7 th ed.,	
	McGraw Hill Education, New York.						
2.	Anup I	Anup K. Swain, G.K. Roy, Hemlata Patra, Mechanical Operations, 2017, 1 st ed., McGraw					
	Hill Education Pvt Ltd, New Delhi, India.						
Reference Books:							
1.	C.M. Narayanan, B.C Bhattacharya, Mechanical Operations For Chemical Engineers, 2010,						
	3 rd edition, Khanna Publishers, New Delhi, India.						
2.	Christie J Geankoplis, Transport processes and Unit Operations, 2003, 4 th ed. Prentice Hall						
	India Pvt. Ltd, India.						
3.	Coulson and Richardson's, Chemical Engineering, Vol.2A: particulate systems and particle						
technology, 2019, 6 th ed., Butterworth Heinemann, USA.							
Mode of Evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test							
Recommended by Board of Studies 11-02-2022							
Approved by Academic Council			No.65	Date	17-03-2022		

Cours	e code	Course Title		L	Τ	P	С				
BCHE	E301P	Mech	anical Operation	ıs Lab		0 0		2	1		
Pre-re	equisite		NIL			Syllabus version			on		
						1.0					
Course Objectives:											
1. To develop an understanding of size analysis and size reduction											
2. To impart knowledge about solid-liquid, and gas-solid mechanical separation											
3. To understand the importance of agitation in process industry											
Course Outcomes:											
1. Dete	1. Determine particle size distribution of a given sample										
2. Estimate the energy requirement for size reduction of a given material											
3. Cho	ose suitable	solid liquid separation	on equipment for a	n particular	r process						
Indicative Experiments:											
1.	Determination of screen Effectiveness										
2.	Size reduction studies in Jaw crusher										
3.	Determination of critical speed Ball mill										
4.	Size reduction studies in Roll crusher										
5.	Determination of terminal settling velocity of a sphere										
6.	Filtration studies in plate and frame filter press										
7.	Filtration studies in Leaf filter										
8.	Determination of area of thickener										
9.	Solid separation using Cyclone separator										
10.	Effectivenes	ss of mixing									
Total Laboratory Hours 30 hours											
Mode of assessment: Individual Experiment Assessment, Final Assessment Test											
Recommended by Board of Studies				11-0	02-2022						
Approved by Academic Council			No.65	Date	17-03-20	22					
Course code	Course Title	L	Т	Р	С						
---------------	------------------	-------	------	-------	-----						
BCHE302L	Mass Transfer II	3	0	0	3						
Pre-requisite	BCHE207L	Sylla	abus	versi	ion						
			1.0								

- 1. Design the principles of staged and continuous contact separation equipment involved in mass transfer operations
- 2. Calculate the number of stages in staged and continuous contact separation operations
- 3. Identify modern separation methods for high purity products widely used in separation operations

Course Outcomes:

- 1. Determine the number of stages in mass transfer operations
- 2. Estimate the number of transfer units and height of transfer units in mass transfer operations
- 3. Compute the separation efficiency of single and multi-staged mass transfer operations
- 4. Select suitable equipment/process used for mass transfer operations
- 5. Discuss modern separation techniques applied in industries

Module:1 | Introduction to Equilibrium Staged Operations

Introduction to various equilibrium staged operations: Distillation, absorption, Extraction, leaching and adsorption - Vapour-liquid Equilibria - Types of distillation - Differential, Equilibrium, Steam, Azeotropic and Extractive distillations - Develop VLE data using Aspen Plus.

Module:2 Distillation

Distillation column: Types of contact – Tray and Packed Column - Derivation of operating line equation for different section and parts of distillation column: rectification section, stripping section, feed tray location, condenser, reboiler and efficiency of distillation column Determination of theoretical trays for continuous binary distillation using McCabe-Thiele method and Ponchon-Savarit graphical method - Case study of Industrial distillation column for multicomponent separation using Aspen Plus.

Module:3 Absorption

Introduction to absorption, Continuous contact, co-current and counter-current multi-stage absorption (Tray absorber), Design of packed tower.

Module:4 Extraction

Liquid-Liquid Equilibria - Determination of the number of theoretical stages in co-current, counter-current and cross-current contact operations - extraction equipment - Develop liquidliquid equilibria using Aspen Plus.

Module:5 | Leaching

General principles of leaching - Factors influencing the rate of leaching -Co-current, Countercurrent contact processes, Multi stage Processes, Equipment for leaching – Advanced industrial leaching processes

Module:6 Adsorption

Adsorption theory- Structure of adsorbents - Adsorption isotherms - Langmuir and Freundlich isotherms - cross-current, counter-current contact operations -Adsorption in fixed beds Breakthrough Curves.

8 hours

6 hours

7 hours

7 hours

5 hours

Мо	dule:7	Modern separation techn	niques			4 hours	
Me	mbrane	separation-microfiltration,	ultrafiltration,	nanofiltra	tion and reverse	osmosis,	
Chromatography techniques and other advanced separation techniques.							
Mo	dule:8	Contemporary issues				2 hours	
Guest lecture from industry and R&D organizations							
				Tot	al Lecture hours:	45 hours	
Text Books:							
1.	R.E. Tr	eybal, Mass-Transfer Opera	ations, 2017, 3 rd ed	d., McGrav	v-Hill Inc., USA		
2.	B.K. D	utta, Principles of Mass trar	nsfer and Separation	on Process	es, 2010, 1 st ed., PH	I, India	
Ref	erence l	Books:					
1.	D. Sea	der, and E.J Henley and I	D.K. Roper, Separ	ation Proc	ess Principles, 201	$0, 3^{rd}$ ed.,	
	John W	'iley & Sons, USA.					
2.	Christie	e J, Geankoplis, Transport p	processes and Unit	t Operatior	ns, 4 th ed., Prentice	Hall India	
	Pvt.Ltd	, 2003					
3.	W.L. N	IcCabe, J.C. Smith, and P.	Harriott, Unit Ope	erations of	Chemical Engineer	ring, 2005,	
	7 th ed.,	McGraw-Hill Inc., USA.					
Mo	de of Ev	aluation: Continuous Asses	sment Test, Quiz,	Assignme	nt, Final Assessmen	t Test	
Rec	commend	led by Board of Studies		11-0	2-2022		
App	proved b	y Academic Council	No.65	Date	17-03-2022		

Г

C	ourse code		Course title			L	Т	P	С
B	CHE302P	Ν	Iass Transfer La	b		0 0 2			1
Pr	e-requisite		BCHE207L			Syllabus version			
							1.0)	
Cou	Course Objectives:								
1. U	Inderstand the	basic principles of s	taged and continu	ous contac	t separatio	on equ	ipmeı	nts	
2. P	erform mass tr	ansfer experiments i	in teams						
3. S	tudy the perfor	rmance of mass trans	sfer equipment at	lab scale					
Cou	rse Outcomes	:							
1. P	erform experim	nents of various equ	ilibrium staged op	perations		Ы			
2. A	analyze mass ti	ransfer operations u	sing simulation so	oftware su	ch as Aspe	en Plu	is, MA	ATL/	4 Β,
2 V	KOSIWI elc.	reports of performed	devneriments						
5. 1	vince teeninear	reports of performed	d'experiments						
Indi	icative Experi	ments:							
1.	Diffusion in g	gas phase							
2.	Diffusion in l	liquid phase							
3.	Mass transfer	studies in Wetted w	all column						
4.	Simple distill	ation by Rayleigh ec	quation						
5.	Rate of drying	g in a tray dryer							
6.	Liquid-liquid	Equilibria-Ternary	system						
7.	Liquid-liquid	cross current Extrac	ction						
8.	Continuous d	istillation (using As	pen Plus or PROS	IM)					
9.	Adsorption (u	using Aspen Plus or	PROSIM)						
10.	Co-current Le	eaching							
			r	Fotal Lab	oratory H	ours	30 h	ours	;
Mod	Mode of assessment: Individual Experiment Assessment, Final Assessment Test								
Reco	ommended by	Board of Studies		11-0	2-2022				
App	Approved by Academic Council No.65 Date 17-03-2022								

Course c	ode	Course Title	L	Т	P	С
BCHE30)3L	Chemical Reaction Engineering I	3	0	0	3
Pre-requi	isite	BCHE202L	Syl	abus	s version	
			~	1.0)	
Course Ob	jectives	:	I			
1. To impa	rt the k	nowledge of chemical kinetics and reaction mechanisms				
2. To expla	ain isotl	hermal and non-isothermal ideal reactors and their applica	tions			
3. To exan	nine the	problems related to multiple reactions and evaluate the	selecti	vity, 1	react	ivity
and viel	d			, s		
Course Out	tcomes					
1. Classify	variou	s reaction types and their applications				
2. Apply t	he prin	ciples of reaction kinetics, formulate rate equations ar	nd ana	lyse t	he b	atch
reactor o	lata			-		
3. Compar	e and a	nalyse ideal reactor designs (Batch, CSTR, PFR, recycle a	and au	tocata	lytic) for
simple c	hemica	l reaction schemes		,	•,	1
4. Evaluate	e the cl	noice of right reactor among single, multiple, recycle	reacto	r, etc.	W1t	h or
5 Design 1	non-iso	thermal reactors and explore steady-state multiplicity				
J. Designi	1011 150	inclinal reactors and explore steady state multiplicity				
Module:1	Funda	amental Concepts and Definitions			5 h	ours
Classificatio	on of 1	eactions, rate and stoichiometry, rate law, rate equ	ation,	rate	cons	tant,
variables af	fecting	the rate of reaction, activation energy, reactions at equilib	rium			,
	0					
Module:2	Chem	ical Kinetics			6 h	ours
Interpretatio	on of B	atch Reactor Data - constant and variable volume batch	reacto	or, Inte	egral	and
Differential	metho	d of analysis - reaction mechanism, Half-life method,	Analy	sis of	data	a for
Reversible a	and Irre	versible Reactions	•			
Module:3	Desig	n of Isothermal Ideal Reactors			6 h	ours
Ideal Batch	Reacto	or - space time, holding time and space velocity, Ideal N	Mixed	Flow	Rea	ctor,
Ideal Plug	Flow H	Reactor for single reactions, Size comparison of single	e reac	tors f	or si	ngle
reactions, V	ariable	density systems				0
,						
Module:4	Multi	ple Reactors			6 h	ours
Multiple Re	actor S	ystems - equal size mixed flow reactors in series, plug fl	ow re	actors	in s	eries
and parallel	- mixe	d flow reactors of different sizes in series, reactors of diffe	erent t	ypes in	n ser	ies
-				-		
Module:5	Desig	n for Multiple Reactions			6 h	ours
Reactions in	n parall	el (simultaneous reactions) for CSTR- PFR, Reactions in	1 serie	s (Co	nsecu	utive
Reactions) f	for CST	R-PFR, Combined series and parallel reactions				
Module:6	Specia	al Reactors			6 h	ours
Semi batch	reactor,	Bio reactor, Recycle Reactor, Auto Catalytic Reactor		1		

Мо	dule:7	Non-isothermal Reactors	5			8 hours	
Stea	Steady state non-isothermal reactors-CSTR, PFR, Material balance, Energy balance, Adiabatic						
read	reactors – Batch reactor, CSTR, PFR, Multiple steady state, Multiple chemical reactions						
Module:8 Contemporary issues			2 hours				
Gue	est lectur	e from industry and R&D o	organizations				
				To	tal Lecture hours	45 hours	
Tex	t Book:						
1.	O. Leve	enspiel, Chemical Reaction	Engineering, 200	6, 3 rd ed., V	Wiley Publications,	India	
Ref	erence l	Books:					
1.	H.S. F	ogler, Elements of Chemica	al Reaction Engin	eering, 202	16, 5 th ed., Prentice	Hall India	
	Pvt. Lto	l., New Delhi					
2.	G. F Fr	oment, K.B Bischoff and J.	D Wilde, "Chemi	cal Reactor	Analysis and Desi	gn", 2010,	
	Wiley l	Publications, New York					
3.	J.M. Sr	nith, Chemical Engineering	Kinetics, 2014, 3	rd ed., McC	Graw-Hill, India		
Mod	de of Eva	luation: Continuous Assess	sment Test, Quiz,	Assignmer	nt, Final Assessmen	t Test	
Rec	ommend	led by Board of Studies		11-0	2-2022		
App	proved b	y Academic Council	No.65	Date	17-03-2022		

ſ

Course code	e		Course title			L	Τ	P	С
BCHE303P	•	Chemical	Reaction Engine	eering Lab)	0	0	2	1
Pre-requisit	e		BCHE202L			Syllab			on
			1.0)	
Course Object	Course Objectives:								
1. To expose	the s	students to various e	experiments for ob	otaining ex	perimental	data a	and to	prec	lict
reaction kin	netic	s using appropriate i	rate law models						
2. To analyse	the	performance of idea	l reactors such as	Batch, Sen	ni batch ,C	STR a	nd PF	R	
3. To impart	kno	wledge about the	behaviour of nor	n-ideal rea	actors usin	g Res	sidenc	e Ti	me
Distribution	n (R	TD) analysis							
Course Outco	mes								
1. Apply the	prine	ciples of reaction ki	netics to formulat	e rate equ	ations and	analy	se the	reac	ctor
data						1			
2. Design idea	al re	actors (Batch, Semi	batch, CSTR, PFF	() for simp	le chemica	I react	tion so	chem	es
3. Analyse the	e bel	naviour of non-ideal	reactors for obtain	ning the R	ID				
Indicativa Evr	ori	nonts							
Indicative Exp	Jein	nents.							
1. Analysis	of I	Batch reactor – equir	nolar constant vol	ume					
2. Analysis	of I	Batch reactor - non-e	quimolar constant	t volume					
3. Assessme	ent o	f Adiabatic batch rea	actor performance	;					
4. Performa	nce	of Plug flow reacto	r						
5. Performa	nce	of Mixed flow reacted	or						
6. Performa	nce	of Combined reactor	in series						
7. Performa	nce	of packed bed reacto	or						
8. RTD stuc	lies i	in Plug flow reactor	r						
9. RTD stud	lies i	in Mixed flow reacto	or						
10 RTD stud	lies i	in packed bed reacto	r						
I				Total Lab	ooratory h	ours	30 h	ours	
Mode of assess	mer	t: Individual Experi	ment Assessment,	Final Ass	essment Te	est			
Recommended	Recommended by Board of Studies 11-02-2022								
Approved by Academic CouncilNo.65Date17-03-2022									

Course c	ode	Course title	L	Τ	Р	С	
BCHE30)4L	Chemical Process Technology and Economics	3	1	0	4	
Pre-requi	isite	BCHE203L	Sylla	abus	versi	ion	
				1.	0		
Course Obj	jectives						
1. To comprehend unit operations concepts in the Chemical Process industries.							
2. To define	e the ap	propriate process flow diagram					
5. To evalu	ate the	economic viability of process industry projects.					
Course Outcomes:							
1. Outline organic and inorganic chemical processes in the industry.							
2. Explain t	the man	ufacture of industrial gases used in the chemical industry.					
3. Identify	the man	ufacturing processes in the fertilizer industry					
4. Describe	Sugar,	Soap manufacturing and Petroleum refining.	-	-			
5. Understa	and the	economic evaluation concepts as applied in the Chemical	Proces	s Inc	lustrie	es.	
Module 1	Chlor	o-alkali and Coment Industries			<u>10 ho</u>	urc	
Manufacture	e of sod	a ash - caustic soda - sulphur - sulphuric acid - Portland c	ement	- <u></u>		uis	
Wandfactury	e or sou	a asir eaustie sour sulphir sulphirle acid Tornand e	ement	510	.55.		
Module:2	Indus	trial Gases			8 ho	urs	
Manufacture	e of car	bon-di-oxide – hydrogen - oxygen and nitrogen – produc	er ga	$\overline{s-s}$	yn-g	as -	
natural gas -	- Clean	energy technologies.	U				
Module:3	Fertili	izer Industries			8 ho	urs	
Manufacture of nitric acid –Ammonia – Urea - phosphoric acid - Mono Ammonium Phosphate							
– Di-Ammo	onium P	hosphate – Single super phosphate - Triple super phosphat	e.				
Module:4	Cellul	ose, Sugar, Soap and Detergent Production Industries			6 ho	urs	
Manufactur	e of pul	p and paper- sugar- Oil and Fats - soaps and detergents					
Module:5	Petrol	leum Industries			6 ho	urs	
Petroleum r	efining	processes - cracking - reforming - secondary refining proc	Pesses				
	cinnig	processes - cracking - reforming - secondary remning proc					
Modulo:6	Cost I	Estimation			12 ho	ure	
Coch flow f		estrial exercisions financial courses Equipment costs mot	ani a1a		<u>12 110</u>		
handling co	sts, Est	imation of capital requirements and operating expenses.	erials	trans	ler af	10	
	1						
Module:7	Cost a	accounting and Depreciation			<u>8 ho</u>	urs	
Cost and as	sset acc	counting, financial statements, Interest and Investmen	t cost	s, Ta	axes a	and	
Insurance, I	Depreci	ation- Calculation methods					
Madular					<u> </u>		
wioaule:8	Conte	emporary Issues			2 110	urs	
Guest lectur	re from	industry and R & D organizations					
		Total Lecture ho	ours:	(50 ho	urs	
Text Books							

1.	M. Gopala Rao and Marshall Sittig, Dryden's Outlines of Chemical Technology, 2010, 3 rd ed., East West Press, India.							
2.	James R Couper: Process Engineering Economics, 2003, Marcel Dekker Inc., USA.							
Reference Book:								
1.	Austin G.T., Shreve's Chemical Pro	ocess Industries, 2	017, 5^{th} eo	l., McGraw Hill, USA.				
Mo	de of evaluation: Continuous Assess	sment Test, Quiz, A	Assignme	nt, Final Assessment Test				
Rec	Recommended by Board of Studies 11-02-2022							
Ap	Approved by Academic CouncilNo.65Date17-03-2022							

Course code	Course title	L	Т	Р	С			
BCHE305L	Process Dynamics and Control	3	0	0	3			
Pre-requisite BMAT102L			Syllabus version					
				0				
Course Objectives:								

- 1. To introduce the fundamental concepts of control system and to understand the dynamic behaviour of the process
- 2. To impart knowledge on different modes of controllers, their general characteristics and analyse the stability of control systems
- 3. To develop basic understanding on advanced control strategies and implementation of computer control in industries

Course Outcomes:

- 1. Understand process measuring instruments and their operating principles
- 2. Apply the mathematical tools for modelling the dynamic behaviour of open loop process using different forcing functions
- 3. Identify the modes of control action required for closed loop control system and its stability in time domain
- 4. Analyze the stability of closed loop control system in frequency domain
- 5. Evaluate different advanced control schemes and various types of computer control in industries

Module:1 Process Instrumentation

Measuring instruments, Components, Performance characteristics - Static and Dynamic, Principal measuring instruments in process industries- Temperature, Pressure, Flow Rate, Liquid Level, pH and Concentration

Module:2 | Linear Open Loop Systems

Introduction to Process Control, Laplace transformation - Transform of standard functions, Derivatives and integrals, Inversion theorems - Transfer functions - Forcing functions - step, pulse, impulse and sinusoidal - First order and Higher order system dynamics - First order systems in series, linearization of nonlinear systems, Transportation lag

Module:3 | Linear Closed Loop Systems

Components of closed loop control system – Pneumatic and Electronic controllers - Final control elements, Types of control valve- sizing & characteristics - Development of Block diagram - block diagram reduction rules, overall transfer function

Module:4 | Transient Response and Stability Analysis

7 hours

6 hours

4 hours

8 hours

Modes of control action- ON/OFF, P, PI, PD, PID and their characteristics – offset - Transient response of closed loop control systems - stability of closed loop systems - Routh's test

Modu	le:5	Frequency Domain An	alysis			8 hours
Frequency response analysis - substitution rule, Bode diagrams- Bode stability criteria, gain						
margin, phase margin, Nyquist plot, Controller tuning using Ziegler Nichols method, Cohen-						
Coon 1	metho	d				
Modu	le:6	Advanced Process Cor	ntrol			6 hours
Advar	nced c	ontrol strategies - Casca	de control, Rati	o control, Feed-Forv	ward control,	Inferential
contro	ol, Intro	oduction to Multivariable	e Control, Conce	pt of Relative Gain A	Array	
Modu	le:7	Computer Process Con	ntrol			4 hours
Compu	uter P	rocess control and its in	nplementation- I	Programmable Logic	Controller, I	Distributed
Contro	ol Sys	tem, SCADA, Hardward	e for computer	based control, Interf	facing compu	ter system
with p	process	5				
Modu	le:8	Contemporary issues				2 hours
Guest	lectur	e from industry and R &	D organizations			
				T () 1	<u> </u>	451
Toyt D	Pook			Total Lec	cture hours:	45 hours
1 C	ougha	nowr C R Konnel I	M Process Sys	tem Analysis and C	ontrol 2013	3 rd ed
1. C	IcGrav	w Hill, New Delhi	WI., 1100035 Dys		011101, 2013,	5 Cu.,
		,				
Refere	ence I	Books:				
1. St	tephar	opoulos G., Chemical Pr	rocess Control, 2	2015, 1 st ed., Pearson	Education In	dia, New
D	Delhi					- #d
 Seborg D.E., Edgar, T. F., Mellichamp D.A., Process Dynamics and Control, 2013, 3rd ed., Wiley India, New Delhi 						
Mode	Mode of evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test					
Recom	nmenc	led by Board of Studies		11-	02-2022	
Appro	oved by	y Academic Council	No.65	Date	17-03-2022	

Course code	Course title	L	Т	Р	С
BCHE305P	Process Dynamics and Control Lab	0	0	2	1
Pre-requisite	Pre-requisite BMAT102L			versi	0 n
		1.0			

- 1. To expose various types of controllers (ON/OFF, P, PI, PID) and their application in process industries
- 2. To explain different controller tuning methods
- 3. To introduce advanced control strategies and computer control employed in various control scenarios

Course Outcomes:

- 1. Identify appropriate modes of controller for a given process and apply right tuning method
- 2. Apply a suitable advanced control strategy appropriate for a given process
- 3. Compare the performance of controllers for a given process using PROSIM and DCS trainer

Indicative Experiments						
Automatic temperature control loop in a heating tank						
Automatic level control loop in a	cylindrical tank					
Automatic flow control loop in a	pipe line					
Automatic cascade control loop						
Dynamics of non-interacting tank	s/interacting tank	S				
Controller tuning using an open loop method (Cohen-Coon method) in Simulink						
Controller tuning using a closed loop method (Ziegler–Nichols method) in Simulink						
Control Valve Characteristics						
Dynamics of Ratio control using	PROSIM					
Process control using DCS trainer	r					
	Total Labo	oratory He	ours	30 hours		
le of assessment: Individual Experi	iment Assessment	, Final Ass	sessm	ent Test		
Recommended by Board of Studies 11-02-2022						
roved by Academic Council	No.65	Date	17-0	03-2022		
	cative Experiments Automatic temperature control lo Automatic level control loop in a Automatic flow control loop in a Automatic cascade control loop Dynamics of non-interacting tank Controller tuning using an open lo Controller tuning using a closed l Control Valve Characteristics Dynamics of Ratio control using Process control using DCS trained le of assessment: Individual Experi- pommended by Board of Studies roved by Academic Council	cative Experiments Automatic temperature control loop in a heating tan Automatic level control loop in a cylindrical tank Automatic flow control loop in a pipe line Automatic cascade control loop Dynamics of non-interacting tanks/interacting tank Controller tuning using an open loop method (Cohe Controller tuning using a closed loop method (Zieg Control Valve Characteristics Dynamics of Ratio control using PROSIM Process control using DCS trainer Total Labo le of assessment: Individual Experiment Assessment ommended by Board of Studies roved by Academic Council No.65	cative Experiments Automatic temperature control loop in a heating tank Automatic level control loop in a cylindrical tank Automatic flow control loop in a pipe line Automatic cascade control loop Dynamics of non-interacting tanks/interacting tanks Controller tuning using an open loop method (Cohen-Coon method Cohen-Coon method (Ziegler–Nicho Control Valve Characteristics Dynamics of Ratio control using PROSIM Process control using DCS trainer Total Laboratory Hete of assessment: Individual Experiment Assessment, Final Assestmented by Board of Studies Ommended by Academic Council No.65	cative Experiments Automatic temperature control loop in a heating tank Automatic level control loop in a cylindrical tank Automatic flow control loop in a pipe line Automatic cascade control loop Dynamics of non-interacting tanks/interacting tanks Controller tuning using an open loop method (Cohen-Coon method Controller tuning using a closed loop method (Ziegler–Nichols me Control Valve Characteristics Dynamics of Ratio control using PROSIM Process control using DCS trainer Total Laboratory Hours le of assessment: Individual Experiment Assessment, Final Assessm ommended by Board of Studies 11-02-202 roved by Academic Council No.65 Date 17-0		

Course code Course Title L T					
BCHE306L	Chemical Reaction Engineering II	2	1	0	3
Pre-requisite	BCHE303L, BCH303P	Sy	llabus v	versi	on
			1.0		
Course Objectives					
1. To introduce fu	indamentals of heterogeneous reactions				
2. To facilitate un	derstanding of non-ideal flow		C		
3. To familiarize	with critical parameters affecting the performance and de	esign	of		
neterogeneous	and multi-phase reactors				
Course Outcomes	•				
1 Predict the conv	• ersion in a non-ideal reactor using tracer information				
2 Analyze the hete	progeneous reaction systems in designing the reactors for	r fluid	-solid r	eacti	ons
3. Explain the role	of catalyst in heterogeneous catalytic reactions	11010	50114 1	Dueti	0115
4. Characterize cat	alvst surface properties for better catalytic activity				
5. Identify critical	parameters affecting the performance and design of hete	eroger	eous ar	ıd mi	ulti-
phase reactors					
F					
				<u> </u>	
Module:1 Non-i	deal Reactors			<u>6 h</u>	ours
Basics of non-idea	I flow, Residence Time Distribution (RTD) - Relationsh	ip bet	ween C	, E a	nd F
curves, Modelling	of non-ideal reactors, one parameter and two parameter	r mod	els - Co	onver	sion
in real reactor syste	ems.				
Modulo:2 Intro	Justian to Hataraganaous Paastian Engineering			6 h	ours
Introduction to be	terogeneous reacting systems - Non-catalytic solid-fl	uid re	actions	- 5	harn
interface and volur	ne reaction models determination of rate-controlling st	ens ar	nd appli	catic	n to
design of reactors.	the reaction models, determination of face controlling st	eps a	ia appi	curio	n to
6					
Module:3 Intro	duction to Catalytic Reactions			5 h	ours
Definition and pro-	perties - Steps involved in catalytic reactions - Rate la	w me	chanisn	ns - I	Rate
limiting step.					
Module:4 Trans	port Mechanisms in heterogeneous catalysis	1		<u>8 h</u>	ours
Transport effects in	heterogeneous catalysis: Internal effectiveness, Externa	l trans	sport lir	nitati	ions
and overall effectiv	eness.				
Madula 5 Catal	rate Droporation Characterization			5 h	011100
Definition and typ	as of antalysts Industrial antalysts Propagation and	aharac	torizoti	<u>5 II</u>	f the
catalysts Surface a	rea and nore volume determination	llala	lenzau		i ine
catarysts, Surface a	tea and pore volume determination.				
Module:6 Catal	vst Deactivation methods			5 h	ours
Types of catalyst of	leactivation – Determining the order of deactivation –	Catal	vst reg	enera	ation
methods.			<i>j~</i> 8		
Module:7 Design	n of Reactors for Fluid-Solid and Fluid-Liquid reaction	ons		8 h	ours
Reactor design fun	damentals and methodology, rate data analysis - Over	all vi	ew of H	luidi	ized,
Packed and Moving bed reactors- Fluid-liquid reactions: Film and Penetration theories - Fluid-					
solid catalytic react	ions.				

Mo	dule:8	Contemporary Issues	es					
Gue	est lectur	e from industry and R & D	organisations					
				Tot	al Lecture hours:	45 hours		
Tex	Text Book:							
1.	1. H. Scott Fogler, Elements of Chemical Reaction Engineering, 2015, 4 th ed., Pearson,							
	India.							
Ref	erence I	Books:						
1.	G. T. M	Iiller, Chemical Reaction E	ngineering, 2016,	CBS Publi	ishers, India.			
2.	J.M. Sı	nith, Chemical Engineering	Kinetics, 2014, 3	rd ed., Mc	Graw-Hill, India.			
3.	O. Leve	enspiel, Chemical Reaction	Engineering, 200	6, 3 rd ed., V	Wiley Publications,	India.		
Mo	de of eva	aluation: Continuous Assess	sment Test, Quiz,	Assignmen	nt, Final Assessment	t Test		
Rec	commend	led by Board of Studies		11-0	2-2022			
App	proved b	y Academic Council	No.65	Date	17-03-2022			

 To study the modelling & simulation techniques of chemical processes To discuss the importance of modelling and economic analysis to science and engineering To identify and explain different types of models and simulations for hypothesis testing 					
Course Ou	tcomes:				
 Explain t Develop Analyze Interpret 	he different modelling approaches for chemical processes mathematical models for various chemical processes physical and chemical phenomena involved in various processes the results of models obtained from the simulation				
Module 1	Conservation Principles and Models	3 hours			
Introductio	n to modelling and simulation classification of mathematical models.	<u>stematic</u>			
approach to	model building Conservation principles Constitutive relations	ystematic			
upprouento	inoder bundning, conservation principies, constitutive relations				
Module:2	Steady State Lumped Systems	5 hours			
Degree of f	reedom analysis, single and network of process units, systems yielding linear	and non-			
linear algeb	raic equations				
Module:3	Flow Sheeting and Solution	4 hours			
Flow sheet	ng, sequential modular and equation oriented approach, partitioning and pr	ecedence			
ordering, S solution	imulation of steady state lumped systems including simultaneous solution,	modular			
Module:4	Unsteady State Lumped Systems	5 hours			
Analysis of	liquid level tank, gravity flow tank, jacketed stirred tank heater, Isothermal and	nd Non-			
isothermal 1	eactors, flash and distillation column				
	1				
Module:5	Dynamic Simulation of Unsteady State Lumped Systems	4 hours			
Solution of	ODE initial value problems, matrix differential equations, simulation of clo	osed loop			
systems					
		21			
Module:6	Steady and unsteady State Distributed systems	3 nours			
Analysis of compressible flow, neat exchanger, plug flow reactor, solution of ODE boundary					
value proble	sins, seumentation, neat conduction, neat transfer in packed bed, Diffusion.				

Course title

Process Modelling and Simulation

BMAT201L

Course code

BCHE307L

Pre-requisite

Course Objectives:

С

2

L

2

Т

0

Р

0

Syllabus version 1.0

Module:7	Artificial Neural Netw	vork			4 hours			
Developme	ent of ANN based mode	els-Architecture-io	lentificati	ion of inputs-choic	e of the			
architectur	e-training the ANNs-Perforn	nance of ANN Mo	dels-Leai	rning methods- Over	fitting and			
under fittin	under fitting Networks.							
	~							
Module:8	Contemporary issues				2 hours			
Guest lectu	re from industry and R&D c	organizations						
			Tot	al Lecture hours:	30 hours			
Textbooks	:							
1. Ashok	. Ashok K., Process Modelling and Simulation in Chemical, Biochemical and							
Enviro	Environmental Engineering, 2015,1 st ed., CRC press, New York.							
2 Siman	t R.U., Process Modelling	And Simulation	for Chem	nical Engineers Theo	ory and			
Practio	ce, 2017, 1 st ed., John Wiley	& sons Ltd, Chicl	nester, UK	Χ.				
Reference	Books:							
1. Jana	A.K., Chemical Process M	odelling and Con	mputer S	imulation, 2018, 3 rd	ed., PHI			
Learn	ng, Delhi.							
2. Nayef	G., Modeling and Simulation	on of Chemical Pr	ocess Sys	stems, 2019,1 st ed., C	CRC press,			
FL.								
Mode of ev	valuation: Continuous Assess	sment Test, Quiz,	Assignme	ent, Final Assessment	Test			
Recommer	ded by Board of Studies		11-	02-2022				
Approved by Academic Council No.65 Date 17-03-2022								
	*			•				

C	ourse code		Course title			L T P C				
B	CHE307P	Process Mo	delling and Sim	lation La	b	0 0 2			1	
Pr	e-requisite		BMAT201L			Syllabus version				
							1.	.0		
Cou	rse Objectives	S:								
1. To	1. To study the modelling & simulation techniques of chemical processes									
2. To	o discuss the ir	nportance of modell	ing to science and	engineeri	ng and the	cost		_		
3. To	o identify diffe	rent types of models	s and simulations a	and explain	n the use c	of moo	lels a	and		
S11	mulations for r	sypotnesis testing								
G	0.1									
Cou	rse Outcomes	•								
1. E	xplain modelli	ng approaches								
2. II	lustrate the ma	thematical models for	or various chemica	al processe	es					
Indi	cative Experi	ments								
1.	Solution of A	lgebraic equations								
2.	Two Interacti	ng Tanks in Series								
3.	Jacketed stirr	ed tank Heater								
4.	Van de Vusse	e Reaction Mechanis	sm							
5.	Non-isotherm	nal CSTRs in series								
6.	Biochemical	Reactor								
7.	Mixing Tank									
8.	1 D unsteady	state heat conduction	on equation							
9.	Elliptic PDE	using PDE toolbox								
10.	Parabolic PD	E using PDE toolbox	X							
			r	Fotal Lab	oratory H	lours	30	hours	3	
Mod	le of assessmer	nt: Individual Experi	iment Assessment	, Final Ass	sessment T	Test				
Reco	ommended by	Board of Studies		11-0	2-2022					
Approved by Academic CouncilNo.65Date17-03-2022										

Course code		Course title	L	Τ	Р	C
BCHE308L	Chen	nical Process Equipment Design	3	0	0	3
Pre-requisite		BCHE302L, BCHE302P	Svl	labu	s ve	rsion
			~ J -]	1.0	
Course Object	es:					
1. To summar	e the concepts of	f unit operations and unit processes in cher	nical e	engir	leeri	ng.
2. To impart l	owledge on the c	concepts of design of major equipment	_			
3. To understa	d the energy requ	uirements of the process and design network	rk			
Course Outeer						
Lunderst	s: d floweberts and	I wave to interpret the drawings				
2. Explain the procedure practiced in the selection and design of fluid handling equipment						
Dressure	essels, heat trans	sfer equipment	mana	ing i	equi	jinent,
3. Use Star	ards and codes in	nvolved in the design process				
4. Design	paration equipme	ent and ideal reactors using the fundamenta	al prin	ciple	S	
5. Apply F	ch Technology	concept for energy recovery and design b	basic I	Heat	Exc	hanger
network						
Module:1 In	oduction to Pro	cess Design			5	hours
Introduction -	pes of flowchar	t – Preparation and reading of flowchar	ts - L	Desig	n of	Fluid
nandling equip	ent – Pumps and	pipes – pipe standards - pipe schedule- Ga	uges			
Module:2 Pr	sure vessel				6	hours
Mechanical des	n of pressure ve	ssel - Concept of structural stability - Typ	pes of	pres	sure	vessel
– Codes and sta	lards – selection	procedure - supports - Storage vessels for	liquic	ls an	d gas	sses-
	4.4	•			-	1
Module:3 H	t transfer equ	notar Design of double nine heat such		<u>Ch</u>	11 on	hours
basic design ed	TEMA classifier	nster – Design of double pipe field excha	nger -	She	n an	a tube
ficat excitatiger		ation – Kent s method – Condenser design				
Module:4 H	t Exchanger N	Network			7	hours
Introduction to	nch Technology	– Pinch point –Composite and Grand Con	nposit	e cu	rves	- Heat
exchanger netw	k for simple pro	cesses	1			
Module:5 Se	aration proces	ss equipment			7	hours
Theory of disti	tion – McCabe –	-Thiele method - Design of separation colu	ımn –	Dist	illati	on and
Absorbers– Pla	type and Packed	column				
						<u> </u>
Module:6 R	ctor Design		1: - 1 4	•	6	hours
concepts of the	deal reactor – re	eactor sizing with or without reaction $-a$	diabat	ic ar	ia ca	lalytic
Teactors - Neact	performance all	ury510				
Module:7 Si	iltaneous Heat	and Mass transfer Equipment			5	hours
Introduction to	eat and mass tra	ansfer operation – design of evaporators	- sing	le ar	nd m	ultiple
effect evaporate	- design of drye	er.	0			1
Module:8 C	temporary Issu	les			2	hours
Guest lecture fr	n industry and R	& D organizations				

				Tot	al Lecture hours:	45 hours	
Tex	xt Books	•					
1.	V.V. M	Iahajani and S.B. Umarji, .	Joshi's Process Eq	uipment D	esign. Laxmi Publi	cations,	
	2016, 5 th ed., India.						
2.	Coulson J.M., Richardson J.F., Chemical Engineering, Volume 6, 2005, 4 th ed., Butterworth						
	– Heinemann Publishing Ltd., USA.						
Ref	ference l	Books:					
1.	Joshi.	M.V., Mahajani. V.V., Pro	cess Equipment	Design, 20)00, 3 rd ed., Mc-M	illan India	
	Ltd., In	dia.					
2.	Richard	A. Turton, Richard C. Bai	lie, Wallace B.Wł	niting, Jose	ph A. Shaeiwitz, Do	ebangsu	
	Bhattac	charyya - Analysis, Synthesi	is and Design of C	Chemical P	rocesses, 4 th ed., Pre	entice	
	Hall, U	SA, 2014	-				
Mo	de of eva	aluation: Continuous Assess	sment Test, Quiz,	Assignmer	nt, Final Assessmen	t Test	
Rec	commend	led by Board of Studies		11-0	2-2022		
Ар	proved b	y Academic Council	No.65	Date	17-03-2022		

Course codeCourse titleLTP						Р	С		
BC	CHE308P	Chemical Proc	cess Equipment	Design La	b	0	0	2	1
Pre	-requisite	BCHI	E302L, BCHE30	2P		Syllabus v			on
							1.	0	
Cours	se Objective	S:							
1. To	apply concep	pts to generate and r	ead flowchart for	processes					
2. To	sketch major	r equipment to given	dimensions usin	g Solid wo	rks				
3. To	understand a	and apply simulation	tools to design						
C	0-4								
	Se Outcomes	flowebarts and way	to interpret the	drouvingo					
1.	Design and	draw major equipm	ent in involved in	urawings	ductries				
2.	Apply simu	lation software for s	simple systems	i piùcess ii	iuusuics				
5.	rippiy sine		simple systems						
Indica	ative Experim	nents							
1.	Basics of 3I	O drawing and applie	cations						
2.	Extrusion of	f surfaces and geome	etries						
3.	Design and	drawing of Pressure	vessel						
4.	Design and	drawing of Shell and	d Tube heat Exch	anger					
5.	Design and	drawing of Bubble of	cap tray						
6.	Design and	drawing of Rotary L	Louvre dryer						
7.	Analysis of	the performance of	Heat Exchanger u	ising Aspe	n plus				
8.	Design and	analysis of Distillati	on Column using	Aspen plu	IS				
9.	Cost Estima	tion of Distillation (Column using As	pen plus					
10.	Dynamic sin	mulation on distillat	ion column using	Aspen Plu	s/Prosin	ulato	or		
]	otal Labo	ratory I	Iour	s 30	hours	5
Mode	of assessmen	nt: Individual Experi	ment Assessmen	t, Final Ass	sessment	Test	t		
Recor	nmended by	Board of Studies		11-0	02-2022				
Appro	oved by Acad	lemic Council	No.65	Date	17-03-2	2022			

DISCIPLINE ELECTIVE COURSES - 30 (15 CREDITS)

BCHE309	L	Membrane Separation Processes	3	0	0	3	
Pre-requisi	ite	NIL	Syll	labus	ver	sion	
				1.	,0		
Course Obje	ctives	:					
 To explain the basic membrane separation mechanisms, transport models, membrane materials and modules To characterize and evaluate the membrane performance using membrane permeability parameters To describe membrane fouling, cleaning and its applications 							
J. To descrit		notatie routing, cleaning and its applications					
Course Outc	omes						
 Describe th Identify su Derive var Compute membrane Examine th 	he men itable ious tr flux, s he adv	mbrane types, modules and membrane separation processe techniques for membrane preparation and characterization ransport models for membranes concentration polarization, fouling and operating para vanced membrane processes for a specific separation	s ı meter	s fo	r va	rious	
Module:1	Overv	iew, Classification and Membrane Materials			6 h	ours	
Introduction, membrane se used in men preparation, t patterns.	Introduction, historical development, definition and types of membranes, basic principles of membrane separation, membrane processes and classifications, membrane materials - polymers used in membrane preparation and their properties, inorganic materials for membrane preparation, their advantages and disadvantages, membrane modules and selection, typical flow patterns.						
Modulo:2	Momb	arona Pronaration and Characterization			7 h	ours	
Membrane p leaching, inte methods, me TEM), Hydr permporomet microbial cha	Module:2Membrane Preparation and Characterization7 hoursMembrane preparation – phase inversion process, track-etching, sol-gel peptization, templateleaching, interfacial polymerization, wet, dry and melt spinning, sintering, dip and spin coatingmethods, membrane modification; membrane characterization – visual methods (SEM andTEM), Hydraulic permeability, bubble point, liquid displacement, mercury porosimetry,permporometry, thermporometry, gas adsorption-desorption, molecular weight cut-off (MWCO),microbial challenge test.						
Module:3	Memb	prane Transport Theory			6 h	ours	
Description o nonporous m model, concer	Description of transport process - passive and active, Transport through porous membrane and nonporous membrane, Membrane transport theory –solution-diffusion (SD) model, fouling model, concentration and gel polarization.						
Module:4	Kever	se Usmosis		4	<u> 6 h</u>	ours	
Katchalsky, parameters, I osmosis.	osmos Spieg Design	the second reverse osmosis, Models for reverse osmosis the second reverse osmosis, Models for reverse osmosis for the second sec	ransp gn a 1s sys	ort - ınd stem,	opera For	ating ward	
Modulo 5	Nores	filtration			51-	01222	
wiodule:5	vano	1111741100			5 n	ours	

Course Title

Course code

T P

С

L

Principles of nanofiltration, transport mechanism in NF membranes, parameters affecting the performance of NF membranes, application of nanofiltration membranes.

Module:6 Microfiltration and Ultrafiltration

7 hours

6 hours

Basic principles, advantages of MF, cross-flow and dead-end MF, MF membranes and modules, Models for MF transport, plugging and throughput, fouling in MF, MF applications. Basic principles of UF, UF membranes and modules, UF configurations, Models for UF transport, mass transfer coefficient, membrane rejection and sieving coefficient, factors affecting UF performance, fouling & permeate flux enhancement, UF applications, Micellar-enhanced UF, affinity UF, UF based bio separation.

Module:7 Other membrane Processes

Pervaporation, gas separation, Liquid membranes, Ion exchange membranes, Dialysis and electrodialysis, Membrane contactor, Membrane distillation, Membrane chromatography, membrane bioreactors, membranes in bio-separation.

Mo	dule:8	Contemporary issues				2 hours			
Gue	Guest lecture from industry and R & D organisations.								
				Tot	al Lecture hours:	45 hours			
Tex	Text Books:								
1.	Kaushik Nath, Membrane Separation Processes, 2016, 2 nd ed., PHI Learning Private								
	Limited, New Delhi, India.								
Ref	erence I	Books:							
1.	R.W. B	aker, Membrane Technolog	y and Application	n, 2012, Jo	hn Wiley and Sons I	Ltd. USA.			
2.	B.K. D	utta, Mass Transfer and Se	eparation Process	es, 2007, 2	2 nd ed., PHI Learnin	ng Private			
	Limited	l, New Delhi, India.				-			
Mo	de of eva	aluation: Continuous Assess	ment Test, Quiz,	Assignmen	nt, Final Assessment	Test			
Rec	ommend	led by Board of Studies		11-0	2-2022				
App	proved by	y Academic Council	No.65	Date	17-03-202	.2			

Course code	Course title	L	Т	P	С			
BCHE310L	Polymer Technology	3	0	0	3			
Pre-requisite	Nil	Sylla	abus ve	rsion	l I			
			1.0					
Course Objectives	S:							
1. To equip the students with the basic understanding of different types of polymers,								
preparation method and their applications.								
2. To impart insi	ghts in relation to the structure and size of the polym	ers and t	their pro	ocess	ing			
techniques.			•,	1.4				
3. To expose the	3. To expose the students to different types of biopolymers and bio-nanocomposites and their							
applications.								
1 Explain the im	: nortance of different types of high polymeric systems	and their	annliaa	tions				
1. Explain the line 2. Classify the di	forant methods of polymerization processes and their i	machania	applica	tions	•			
2. Classify the di	fferent structures and sizes, and characterization of the	nolymer	5111 .					
4 Summarize the	repeal and morphological properties of different	polymer	s. s					
5 Choose suitabl	e polymer processing techniques for preparation of var	ious poly	vmers					
5. Choose suitabl	e porymer processing teeninques for preparation of var	1005 por	ymers.					
Module:1 Basic	Concepts of High Polymer Systems			4 ho	urs			
Introduction and	Historical Background, Macromolecular Concept, S	tructural	Featur	res o	fa			
Polymer, Length to	Diameter Ratio, Classification of Polymers, Structur	e–Propei	ty Rela	tions	hip			
– molecular forces	and chemical bonding on polymers.	1	5		1			
Module:2 Class	ification of Polymerization			6 ho	urs			
Functionality Prir	ciple, Types of Polymerization, Basic Character	ristics c	of step	-Grov	wth			
Polymerization an	d addition polymerization, Relationship between	Average	Funct	ional	ity,			
Extent of Reaction	and Degree of Polymerization, Kinetics of Step-Gro	wth Poly	meriza	tion	and			
chain polymerizat	ion, Comparison between Chain-growth and Step-	growth	Polyme	rızatı	on,			
Concept of Copoly	merization							
Modulo 2 Dolym	on Characterization and properties of commercial	nolumon	a	8 ha				
Polymor Dogradat	ion Concept of Average Molecular Weight Poly	mor Fr	s potionat	<u>o 110</u>	urs and			
Molecular Weight	Distribution Crystallinity Glass transition tempe	ratura a	nd ma	chani				
properties: testing	of polymers Gel Permeation Chromatography $- PF-P$	P = PS =	PVA =		MΔ			
– PTFE – polyacry	lamide $-$ Nylon $-$ PF $-$ PU $-$ Silicones	1 15	1 • 7 1	1 1011	V17 X			
	infinite region in re-sincones.							
Module:4 Polyn	ner Rheology and Morphology			7 ho	urs			
Introduction - Stres	as and Strain - Ideal Elastic Solid - Non-Newtonian Flu	id - App	arent vi	scosi	tv -			
Viscosity as a Fur	iction of Molecular Weight - Weissenberg Effects. R	heologic	al prop	erties	s of			
polymers - Viscoe	lastic Behaviour. Stress Relaxation. Relaxation or St	ain Enh	anceme	nt un	der			
Constant Stress -	Hysteresis - Creep and Relaxation of Typical Pla	stics - I	Develop	ment	of			
Crystallinity - Crys	Crystallinity - Crystallization of Rubber on Cooling - Mechanism of Crystallization - Melting of							
rubber – Spherulites.								
Module:5 Polyn	ner Processing Techniques			6 ho	urs			
Moulding techniq	ues – compression – transfer moulding – injectio	n mould	ling –	react	ion			
injection moulding	– forming techniques – extrusion – spinning – calend	aring – tł	nermofo	ormin	ıg –			

Module:6 Polymer Blends, Composites and Conducting Polymers

Pol nan Pol Pol	Polyblends – Types - Properties - Glass Transition of Polyblends, Polymer Composites, Bio- nano-composites, Protein-based polymers, Conducting Polymers, Inherently Conducting Polymers, Photoconducting Polymers, Carbon Black/Carbon Fibre Reinforced Conductive Polymer Composites						
						-	
Mo	dule:7	Polymers in Wastes and	their Environme	ntal Impa	et	6 hours	
Nat	ural Res	ources Scenario, Waste Iter	ns, Classified Was	ste Materia	ls, Power Scenario, I	Municipal	
Soli	id Wast	es (MSW), Waste Mana	gement, Recover	y and Re	cycling of Organic	Wastes,	
Cor	nposting	, Integrated Waste Manager	ment for Sustainal	ole Develop	pment		
Mo	dule:8	Contemporary issues				2 hours	
Gu	est lectu	re from industry/ R&D or	ganizations				
				To	otal Lecture hours:	45 hours	
Tex	t Book:						
1.	Ghosh	P, Polymer Science and	Technology: Plas	tics, Rubb	ers, Blends and Co	omposites,	
	2017, 3	rd ed, McGraw Hill , India					
Ref	erence I	Books:					
1.	Gowari	ker V.R., Viswanathan N.	V., Jayadev S, Po	olymer Sci	ence, 2015, 2 nd ed,	New Age	
	Publish	ers, India					
2	Young	R.J., Lovell P.A., "Introduc	tion to Polymers"	, 2011, 3 rd	ed, CRC Press, India	ì.	
Mo	de of Ev	aluation: Continuous Asses	sment Test, Quizz	es, Assign	ments, Final Assessr	nent Test	
Rec	ommend	led by Board of Studies		11-0	2-2022		
App	proved b	y Academic Council	No.65	Date	17-03-202	2	

Pre-requisite Nil Syllabus version					
	1.0				
Course Ob	jectives	:			
 To equip To impa process i To expo industrie 	the stu rt insig ndustrie se stuc s.	dents with a basic understanding of different types of hts into the selection of different utilities and thei es. lents to understand the piping design, layout an	utilities. r optimum utilization in d insulation in process		
Course Out	tromes				
 Understa Assess th Compare transport Select a s Design a 	nd the i ne quali differe ation of suitable suitable	mportance of optimum usage of utilities in process in ty, effective utilization and distribution of water and s ent types of equipment used for air treatment, condi- findustrial gases. type of piping design, materials and standards used in e piping layout and insulation system used in process	dustries. steam. tioning, refrigeration and n industries. industries.		
Module:1	Intro	luction to Process Plant Utilities	7 hours		
Compressec transportatio – properties	l air fo on of ai and use	r industrial use - selection of blowers and compre r - duct design - air blending - exhaust ventilation – f es.	essors - Purification and lare systems - inert gases		
Module:2	Proce	ss water treatment and recycling	5 hours		
Water and i from blowd	ts chara owns ai	cteristics - conditioning and treatment for process - r nd rejects -Wastewater treatment and recycling.	ecycling aspects of water		
Module:3	Steam	generation and distribution	7 hours		
Steam generation and its application in chemical process plants – boiler types (Babcock Wilcox, Nestler, Cochran boilers) - boiler accessories - design of efficient steam heating systems - steam economy - condensate utilization - steam traps - steam distribution and waste heat utilization.					
Modulo:4	Humi	dification and refrigoration systems	6 hours		
Design of refrigeration and air-conditioning system - types of refrigerants - factors affecting the refrigeration cycle - operation and maintenance of refrigeration systems - concept of cryogenics and its characteristics - industrial coolants - thermal fluid systems.					
Module:5	Intro	duction to Piping Design	6 hours		

Course title

Process Utilities and Pipeline Design

L

3

Т

0

Р

0

С

3

Course code

BCHE311L

Modul	le:6	Piping Materials, Cod	es and Standar	ds		6 hours
Materia	al pro	perties of piping materials	– Metallic materia	als – Degra	dation of mat	terials in service.
Piping	codes	s and standards : $ASME - E$	BIS – ISO standard	ds relevant	to chemical e	engineering
Modul	le:7	Piping Installation and I	nsulation			6 hours
Pipe in	istalla	tions – Overhead installation	ons - Piping insula	tion – App	lication of high	gh, medium, low
temper	ature	and cryogenic insulation -	Weather proof ar	nd fire-resi	sting pipe ins	ulation jackets –
Insulati	tion m	aterials and their effect on	various materials	of equipme	ent piping.	
Modul	le:8	Contemporary issues				2 hours
Guest l	lectur	e from industry and R & D	organizations			
				Total Leo	cture hours:	45 hours
Text B	Book:					
1. Br U.	rough .K.	ton J., Process Utility Syst	ems, 2004, 3 rd ed	l., Instituti	on of Chemic	cal Engineers,
2. M Pu	cAllis ublica	ster E.W., Pipeline Rule tions	s of Thumb Ha	ind Book,	2009, 7 th	edition, Gulf
Refere	ence H	Books:				
1. $\begin{bmatrix} M^{\dagger} \\ In \end{bmatrix}$	lujawa dia.	ar B.A., A Textbook of Pl	ant Utilities, 2007	7, 3 rd ed.,	Nirali Prakas	han Publication,
2. Po	2. Poling B.E., Prausnitz J.M., O'Connell J., The Properties of Gases and Liquid, 2008, 5 th ed.,					
M						
3. Nayyar M. L., Piping Handbook, McGraw Hill, 7 th Edition, 2000						
Mode	Mode of evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test					
Recom	Recommended by Board of Studies 11-02-2022					
Approv	Approved by Academic CouncilNo.65Date17-03-2022					

Course code	e Course title	L	Т	Р	С		
BCHE312I	Chemical Process Optimization	3 0 0			3		
Pre-requisit	e BCHE208L	Syl	labu	s vers	sion		
			1.	0			
Course Objec	tives:						
 To provide To impart techniques To enhanc Chemical I 	 To provide an overview of state-of-the-art optimization algorithms To impart the theoretical knowledge of Chemical Engineering principles that strengthens optimization techniques. To enhance the modelling and formulation skills of practically relevant optimization problems in Chemical Engineering. 						
Course Outer							
1. Demonstrat 2. Summarize	e the basic principles of Chemical Engineering Systems the different types of optimization problems for process engineering						
 Evaluate si Identify the Solve the o 	ngle and multivariable optimization chemical engineering problems different types of hypotheses for the model equations chemical system ptimization problems in real field applications.						
		1					
Module:1	Formulation of Optimization Problems			6 ho	urs		
Nature and Or Hessian matrix Constraints in t	ganization of Optimization problem; Mathematical concepts of optimi k; Convex functions and sets; Degrees of freedom; Developing mod he model; Fitting models to data, Method of least squares; Factorial experim	zation; lel for nental	Gra opti desig	dient miza n	and tion;		
		1					
Module:2	Single Variable Optimization – Unconstrained			6 ho	urs		
One-dimension elimination me (Lagrange's, qu	al search - Methods requiring derivatives (Newton, Quasi Newton, Sec ethods (Interval halving, Fibonacci search and Golden section) Polync adratic & Cubic)	ant me mial a	ppro); Re xima	g10n tions		
Module:3	Multivariable Ontimization –Unconstrained			6 ho	urs		
Unconstrained based methods	multivariable optimization - Graphical visualization (contour plots, 3 – Steepest descent, conjugate direction, and Newton methods	D plo	ts);	Grad	ient-		
Module:4	Module:4 Linear Programming 6 hours						
Introduction to	Introduction to interior-point method						
Nonlinear proc	Nonlinear rrogramming with constraints	tion of	NI D	o ho	leme		
- KKT necessary and sufficient conditions; Quadratic programming - Successive linear and quadratic programming; Branch and bound methods; Minimum cost routing problems - Solution of separable nonlinear programming problem							

Module:6 Optimization of Chemical processes-I					6 hours	
Optimal pipe design of gas	Optimal pipe diameter- Minimum work of gas compression- Economic operation of fixed bed filter- Optimal design of gas transmission network- Optimum recovery of waste heat					
Module:7	Optimization of Chemica	processes-II			7 hours	
Optimal des reactors- Op optimization	Optimal design and operation of staged distillation columns- Optimal design and operation of Chemical reactors- Optimum design of shell and tube heat exchanger - optimization of heat exchanger networks-optimization of multistage evaporators using MATLAB/Excel.					
Module: 8	Contemporary issues				2 hours hours	
Guest lecture	from industry and R & D org	ganizations				
			Tota	l Lecture hours:	45 hours	
Text Book:						
1 Edgar T . McGrav	T.F., Himmelblau D.M., Lasdov-Hill Education, India.	on L.S., Optimizatio	on of Chem	ical Processes, 20	15, 2 nd ed.,	
Reference	Books:					
1 Dutta S	1 Dutta S., Optimization in Chemical Engineering, 2016, 1 st ed., Cambridge University Press, India					
 Rao S.S., Engineering Optimization: Theory and Practice, 2009, 4th ed., John Wiley & Sons Ltd., USA. 						
Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test						
Recommen	Recommended by Board of Studies 11-02-2022					
Approved by Academic Council No.65 Date 17-03-2022						

Course code	Course title	L	Т	Р	С
BCHE313L	Environmental Pollution Control	3	0	0	3
Pre-requisite	NIL	Sy	llabu	s ver	sion
			1		

1. To understand the different environmental standards related to air and water

2. To identify and design the equipments for air and water pollution control

3. To illustrate the effective methods of solid and hazardous waste management

Course Outcomes :

- 1. Understand basics of pollution parameters, standards and legislations on the environment
- 2. Apply the principles of process modification and use of alternative raw materials for pollution prevention
- 3. Design control equipments to meet appropriate requirement of environmental standards
- 4. Identify the techniques for solid and hazardous waste management
- 5. Analyze pollution control strategies in various process industries

Module:1 Introduction

Environmental problems due to pollution characterization of emission and effluents-Environmental standards (water standards for potable and agricultural streams, air standards)-MINAS.

Module:2 | Pollution Prevention

Process modification, alternative raw material, recovery of by-products from industrial emission/ effluents, recycle and reuse of waste, energy recovery and waste utilization. Material and energy balance for pollution minimization- Life cycle assessment (basic concepts).

Module:3 Air pollution control

Principles and design of air pollution control equipments (particulate and gaseous pollutants) gravity settling chamber - cyclone separator - electrostatic precipitators - fabric filters - wet scrubbers - adsorbers.

Module:4 | Water pollution control

Selection, design and performance analysis of waste water treatment processes: preliminary, primary (sedimentation, coagulation and flocculation) and secondary treatment processes (activated sludge process and trickling filter) - sludge separation and drying - tertiary treatment process (qualitative treatment)

Module:5 | Solid waste management

Classification of solid waste - collection, storage and transport of solid waste - 4R concept waste disposal methods: composting, landfilling and incineration

Module:6 | Hazardous waste management

Hazardous waste classification - treatment methods: physical, chemical, biological and thermal biomedical and e-waste management

Module:7	Pollution control	l in chemi	cal proc	ess industi	ries			6 h	ours
Sources –	characteristics -	pollution	control	strategies	for	selected	industries:	textile	and

10 hours

5 hours

6 hours

8 hours

5 hours

tanı	tanneries, electroplating, refineries and thermal power plants					
Mo	dule:8	Contemporary issues				2 hours
Gue	est lectur	e from industry and R & D	organizations			
				Tota	l Lecture hours:	45 hours
Tex	xt Book:					
1.	Rao C	S., Environmental Pollu	tion Control	Engineering,	2018, 3 rd ed.,	New Age
	Internat	tional Publishers, India.				
2.	Tchoba	noglous G., Theisen H., V	igil S.A., Inte	grated Solid V	Waste Managemer	nt, 2014, 1^{st}
	ed., M	cGraw Hill Education, India	1.			
Ref	ference I	Books:				
1.	Bhatia	S.C., Environmental Pollut	ion and Contro	ol in Chemical	Process Industrie	s, 2013, 2 nd
	ed., Kh	anna publishers, India.				
2.	Pollution Control Law Series: PCLS/02/2010, Central Pollution Control Board, 2010, 6 th ed.,					
	India.					
Mode of evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test						
Rec	Recommended by Board of Studies 11-02-2022					
Ap	Approved by Academic Council No.65 Date 17-03-2022					

Course code	Course title	L	Т	P	С
BCHE314L	Fuels and Combustion	3	0	0	3
Pre-requisite	Nil	Sy	llabu	s ver	sion
			1	.0	

- 1. To introduce basic physical and chemical properties of fossil and alternative fuels.
- 2. To describe fuel characterization techniques for various types of fuels
- 3. To perform stoichiometric based combustion calculations

Course Outcomes:

- 1. Understand various types of fuels for firing in boilers and furnaces.
- 2. Select the right type of fuel based on availability, storage, handling, pollution and cost of fuel.
- 3. Describe the fuel properties for efficient use.
- 4. Analyse exhaust and flue gases.
- 5. Explain various combustion equipment.

Module:1 | Classification and Properties of Fuels

Fuels – Types and characteristics of fuels – Determination of properties of fuels - Fuel analysis -Proximate and ultimate analysis - Calorific value (CV) - Gross and net calorific values (GCV, NCV) - Bomb Calorimetry - Boye's Calorimetry - Orsat apparatus - empirical equations for CV estimation.

Module:2 | Solid fuels

Origin of coal- Ranking of coal- Washing and cleaning of coal - applications of the coalcomparative study of solid-liquid and gaseous fuels-selection of coal for different industrial applications-carbonization of coal.

Module:3 Liquid fuels

Origin of crude oil- composition of crude petroleum - classification of crude petroleum Desalting - Desulphurisation - processing of crude petroleum- Distillation - Cracking and Reforming.

Module:4 Gaseous fuels

Rich and lean gas - Wobbe index - Natural gas - Dry and wet natural gas -Foul and sweet NG -LPG - LNG - CNG - Methane - Producer Gas - Water gas - oil gas.

Module:5 | Combustion Calculations

General principles of combustion – Flame and Flame dynamics-Types of combustion processescombustion of solid, liquid and gaseous fuels - combustion calculations-air fuel ratio, Excess air calculations - emission and carbon Foot print calculation.

Module:6 | Combustion Equipment

Combustion of solid fuels-grate firing and pulverized - fuel firing system-Fluidized bed combustion-Circulating fluidized bed boiler - Combustion equipment for liquid and gaseous fuels.

Module:7 | Alternative Fuels

Bio fuels – Adsorbed Natural Gas (ANG) – Synthetic natural Gas (SNG) – Ethanol and Methanol

Page 67 of 133

6 hours

6 hours

6 hours

6 hours

7 hours

6 hours

- H	ydrogen	Gas – Nuclear Fuels – Was	te to fuel.				
Mo	Iodule:8 Contemporary issues 2 hours						
Gue	est lectur	e from industry and R&D o	rganizations				
				Tota	Lecture hours:	45 hours	
Tex	tbooks:						
1.	R.C. G	upta, Fuels, Furnaces and R	efractories, 2016,	Prentice-H	Iall Of India, India.		
2.	James (G.Speight, The Chemistry a	nd Technology of	Coal, Thi	d Edition, CRC Pr	ess. 2016.	
Ref	erence I	Books:					
1.	Samir S	Sarkar, Fuels and combustio	on, 3rd Edition, U	niversities	Press (India) Pvt. I	Ltd.(2009)	
2.	H. Josh	ua Phillips, "Fuels - solid, l	iquid and gases –	Their anal	ysis and valuation"	, General	
	Books,	2010.					
3.	3. Kenneth K Kou, Principles of Combustion, Wiley & Sons Publications, 2012.						
Mo	Mode of evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test						
Rec	Recommended by Board of Studies 11-02-2022						
App	Approved by Academic Council No.65 Date 17-03-2022						

Course code Course title L T P					C	
BCHE31	BCHE315L Biochemical Engineering			0	0	3
Pre-requi	site	BCHE303L, BCHE303P	Syll	abus	s versi	on
	1.0					
Course Obj	ectives	:				
1. Impart the	e basic	knowledge and overview of biotechnology covering the p	rincip	les c	of cell	and
kinetics, l	bioreac	tor design, sterilization agitation and aeration				
2. Understan	nd the p	hysical processes involved in bio-systems				
3. Apply the	knowl	edge of chemical engineering principles to biological proce	sses			
Course Out	comes	•				
1. Describe	the sign	ificance and scope of biochemical processes with their met	abolic	path	iways	
2. Understan	nd basic	principles of enzyme and microbial growth kinetics		-	-	
3. Apply bas	sics of	Chemical Engineering transport processes in designing bio	proces	s sys	stems	
4. Analyze b	oioreact	or performance and their transient characteristics				
5. Demonstr	ate dov	vnstream processing methods to fulfill separation requireme	ents			
Module:1	Intro	luction to Biochemical Engineering			3 ho	ours
An overview	v of ind	ustrial biochemical processes with typical examples - comp	paring	Che	mical	and
Biochemical	l proces	sees – Development and scope of biochemical engineering a	as a di	scipl	ine.	
Module:2	Basic	Microbiology and Biochemistry			5 ho	ours
Basics of Bi	iology -	· overview of biotechnology - Diversity in microbial cells	- Cell	con	stituer	nts -
Chemicals for	or life -	Examples of microbial synthesis - Major metabolic pathw	vays –	Bio	energe	etics
- Glucose m	etabolis	sm – Biosynthesis.				
Module:3	Enzyn	nes & Enzyme kinetics			8 ho	ours
Enzymes -	Classifi	cation of enzymes - Mechanism of enzymatic reactions	– Mic	haeli	is Mer	nten
kinetics – E	nzyme	inhibition - Inhibition kinetics - Enzyme denaturation and	inactiv	vatio	n- Fac	tors
affecting the	e reaction	on rates - Enzyme immobilization - kinetics of immobiliz	ed enz	zyme	es - N	lass
transfer effe	cts on i	mmobilization.				
Module:4	Kineti	cs of Cell Growth			6 ho	ours
Typical grov	wth cha	racteristics of microbial cells - Factors affecting growth - 1	Unstru	cture	ed mo	dels
of microbial	growt	n - Monod model - Modelling of batch and continuous cel	l grov	vth –	inhibi	tion
on cell grow	rth - Im	mobilized whole cells and their characteristics.				
N. 1 1 7	T					
Module:5	Trans	port in Microbial Systems			7 ho	urs
Rheological	behav	iour of broth - Agitation and mixing - Power consum	nption	-	gas/lic	juid
transport in	cells -	Mass transfer coefficients and its measurement - Oxyg	en tra	nsfer	-Fac	tors
affecting oxygen transfer rate - Heat transport in microbial systems – Thermal death kinetics of					s of	
microorgani	microorganism - batch and continuous sterilization - air and media sterilization.					
Module:6	Biorea	actors			8 ho	ours
Classificatio	on of t	iomasters Datah and continuous types. Ead betch w	notor"	, т		nd

Classification of bioreactors - Batch and continuous types - Fed-batch reactors - Free and immobilized whole-cell and enzyme reactors - Reactors in series with and without recycle – Transient behaviour of bioreactors - Design of reactors and scale up with examples.

Mo	dule:7	Downstream processes				6 hours
Dif	ferent ur	nit operations in down stream	ning with special	reference	to filtration - centrit	fugation
extr	action -	membrane separations - cr	ystallization - ch	romatogra	phic techniques - di	rying – cell
desi	ruption t	echnologies.				
Mo	dule:8	Contemporary issues				2 hours
Gue	est lectur	e from industry and R & D	organizations			
				То	tal Lecture hours:	45 hours
Tex	t Book:					
1.	Rao D.	G., Introduction to Biochem	nical Engineering,	2012, 2 nd	ed., Tata McGraw F	Hill, India.
2.	Harvey	W.Blanch and Douglas S.	Clark, Biochemic	al Engine	ering, 1997, 2 nd ed.,	CRC Press,
	USA.					
Ref	erence l	Books:				
1.	Doran	P.M., Bioprocess Engineering	ng Principles, 201	3, 3 rd ed.,	Academic Press, Un	ited
	Kingdo	om				
2	Bailey	J.B., Ollis D.F., Biochemic	al Engineering F	undament	als, 2010, 4 th ed., M	cGraw Hill,
	USA.					
Mode of evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test						
Rec	Recommended by Board of Studies 11-02-2022					
App	Approved by Academic CouncilNo.65Date17-03-2022					

Page 71 of 133

Module:6	Packaging Techniques	6 hours				
Introduction	- packaging and stability of products - containers for pharmaceut	ical use -				
pharmaceutical packaging materials - qualification and quality control of packaging components						
- packaging	machinery.					

Module:5 Novel Drug Delivery Systems 6 hours Oral controlled release drug delivery systems - parenteral controlled drug delivery systems -

targeted drug delivery systems - nanoparticles - transdermal drug delivery systems - wound

Module:3 | Microencapsulation

Introduction - core materials - coating materials - techniques of microencapsulation - evaluation of microcapsules.

capsules - special types of hard gelatin and soft gelatin capsules - packaging - capsules

5 hours

control tests for parenteral products – packaging – tray drying – fluidised bed drying.

Module:2 | Capsules Technology Introduction - hard gelatin capsules (HGC) - soft gelatin capsules (SGC) - quality control tests for

2. To outline the different drug delivery systems.

Course Code

BCHE316L

Pre-requisite

Course Objectives:

Course Outcomes:

(IPQC) tests for tablets.

manufacturing techniques

healing systems.

Module:4 | Parenteral Products

tablet preparation - advances in granulation - operations involved in tablet manufacturing - tablet compression - auxiliary equipment - packaging - problems in tablet manufacturing - tablet

packaging materials. Module:1 | Tabletting Technology 8 hours Introduction - types and classes of tablets - formulation of tablets - granulation - methods of

coating - types of tablet coating processes - specialized coatings - tablet coating equipment

2. Classify the types of capsules, their quality control tests, and packaging.

1. List the methods of tablet preparation and the types of tablet coating processes.

1. To explain the different techniques employed in the production of tablets and capsules.

3. To illustrate the various pharmaceutical packaging materials and their quality control.

Course Title

Pharmaceutical Technology

Nil

3. Explain the different techniques of microencapsulation and the evaluation of microcapsules.

4. Describe the general manufacturing process of parenteral products and the relevant quality

control tests.

5. Elucidate the different drug delivery systems and Categorize the various pharmaceutical

process parameters - problems and remedies for tablet coating - In Process Quality Control

L

3

Т

0

Р

0

Syllabus Version

1.0

С

3

6 hours

Introduction - formulation requirements - general manufacturing process - freeze drying - quality

Mo	dule:7	Packaging Technology				6 hours		
Introduction - BFS Technology - Anti-Counterfeit Packaging Technologies – Quality Analysis -								
Packaging designs								
Module:8		Contemporary Issues						
Guest lecture from industry and R & D organizations								
				Tota	l Lecture Hours:	45 hours		
Text Books:								
1.	Kushw Medica	shwaha P., Handbook of Pharmaceutical Technology, 2015, 1 st ed., Jaypee Brothers edical Publishers Private Limited, India.						
2.	Prager USA	ager G, Practical Pharmaceutical Engineering, 2019, I st ed., John Wiley and Sons, Inc., SA						
Reference Books:								
1.	1. Bharath S., Pharmaceutical Technology: Concepts and Applications, 2013, 1 st ed., Pearson Education India, India.							
2.	Agarwal G., Kaushik A., Pharmaceutical Technology, Volume I, 2017, 1 st ed., CBS Publishers & Distributors, India.							
3.	Murthy R.S.R., Kar A., Pharmaceutical Technology, Volume II, 2017, 2 nd ed., New Age International Private Limited, India.							
Mode of Evaluation: Continuous Assessment Tests, Quizzes, Assignments, and Final Assessment Test.								
Recommended by Board of Studies: 11-02-2022								
Approved by Academic Council:			No.65	Date:	17-03-2022			
]	Pre-requis	ite	Nil	Syllabus	s version			
------------------	--	---	--	---------------------------------------	------------------------			
				1.	.0			
Co	ourse Obje	ctives	:					
1. 2. 3.	To unders To interp properties To integra	stand to ret the s, produced ate che	the importance of crude oil as fuel and the operation of petroleum the challenges involved in crude oil refining from the viewp fluct specifications, economic considerations, and environmental memical engineering principles in petroleum refining	1 refinery oint of f regulation	feedstock 1s			
Co	ourse Outc	omes	:					
1.	Explain th	ne cru	de oil formation, exploration, extraction and classification					
2. ว	Analyza	variou	is crude oil refining processes					
ა. ⊿	Fixelize s	the fu	al additives for improvement of product quality					
ч. 5.	Choose th	ie bett	er purification and conversion of petroleum products for end-use	rs applica	ation			
	odule: 1	Over	rview on crude oil and upstream processes		7 hours			
FO	rmation of	crude	e oil - exploration practices - oil reservoir types – reservoir roo	ск proper	ties - 011			
ex	traction te	chniqu	les - transportation of crude oil – crude oil composition -	classifica	ition and			
CO	nstituents c	of petr	oleum – selection criteria for crude oil - list of petroleum produ	icts - proj	perties of			
crı	ide oil and	petrol	eum products					
M	odule: 2	Disti	llation		7 hours			
De	esalting-deh	iydrat	ion of crude oil - Pre-fractionation column - components of cru	ude oil di	istillation			
col	lumn - vari	ous ty	pes of oil distillation units – ADU – VDU - factors influencing t	he perfor	mance of			
dis	stillation co	lumn	- crude distillation curves - uses of petroleum products					
M	odule: 3	Crac	king, visbreaking and coking		8 hours			
Th	e necessity	of cr	acking - Thermal cracking - Catalytic cracking - classification of	catalytic	cracking			
pro	ocess based	l on ca	atalyst mobility - Fixed bed catalytic cracking - fluid bed catalyti	c crackin	g- Steam			
r Cr	acking - H	vdroc	racking - advantages and disadvantages of different types of c	racking 1	process -			
Vi	shreaking -	Dela	ved coking - Flexi coking - uses of petroleum coke	i uoming i	51000055			
• 1	soreaking	Dena	yeu coking Tieki coking uses of perforeum coke					
M	odule: 4	Qua	lity improvement of light end petroleum products		7 hours			
Kr tec Isc	ocking - o chniques - o omerization	causes Cataly	s of knocking - feedstock, catalyst, and products of differen tic reforming – Polymerization - Hydrofluoric acid and Sulfuric	t octane cacid All	boosting cylation -			
M	odule: 5	Puri	fication of petroleum products		6 hours			
S H	weetening lydrotreatin	proce 1g - De	esses – Claus sulfur recovery - Merox treatment – Hydrod ewaxing - Deasphalting - Lube oil processing - Hydrofinishing	lesulphuri	ization –			
M	odule: 6	Fuel	additives		4 hours			
				I				

Course Title

Petroleum Refining Technology Nil

Course code

BCHE317L

Pre-requisite

С

3

Р

0

Т

0

L

3

Types of oil additives - selection of additives based on fuel type - anti-oxidants - metal deactivators - corrosion inhibitors - anti-knocking agents/oxygenates – fuel dyes							
Mo	dule: 7	Liquid fuel storage and	effluent treatme	nt plant		4 hours	
Stor	Storage and handling of liquid fuels - types of storage tanks - selection criteria of fuel storage tanks						
base	based on fuel types - overview of an effluent treatment plant						
Mo	dule: 8	Contemporary issues				2 hours	
Gue	est lecture	from industry/R&D organ	nizations				
					Total Lecture hours:	45 hours	
Tex	tbooks:						
1.	Kaiser M.J., Klerk A.D., Gary J.H., Handwerk G.E., Petroleum Refining: Technology,						
	Economics, and Markets, 2019, 6 th ed., CRC Press, USA.						
2.	Bhaskara	a Rao B.K., Modern Petr	oleum Refining	Processes,	2018, 6 th ed., OXFOR	D & IBH	
	Publishi	ng, India.	-				
Reference Books:							
1.	Meyers	R. A., Handbook of P	etroleum Refinin	g Process	es, 2016, 4 th ed., Mc	Graw-Hill	
	Educatio	n, Europe.					
2	Gupto O	D. Flomonts of Datroloum	Dofinary Engina	ring 2010) 1 st ad Khanna Book I	Publishing	
2	Uupia U India	.r, Elements of redoleum	Refinery Engine	anig, 2015	,1 Eu., Khailia Dook r	uonsning,	
	maia.						
Mo	de of Eval	uation: Continuous Asses	sment Test, Quiz,	Assignme	nt, Final Assessment Te	st	
Rec	ommende	ed by Board of Studies		11	-02-2022		
App	proved by	Academic Council	No.65	Date	17-03-2022		

Course	code	Course Title	L	Т	Р	С		
BCHE3	518L	Safety and Hazard Analysis			0	3		
Pre-requ	uisite	Nil	Syl	labus	s ver	sion		
			1.0					
Course Ol	ojectives	:						
1. To ass	ess the s	ignificance of the chemical safety analysis						
2. To ide	ntify the	occupational hazards in the work environment						
3. To det	ermine t	he root cause of the failure events in the workplace						
Course Ou	Course Outcomes:							
1. Develo	1. Develop work safety protocols for the individual tasks							
2. Implei	nent safe	ety framework at the workplace						
3. Analys	se the ro	ot cause of the work-related accidents using safety analysis						
4. Apply	Hazard	and Operability Study (HAZOP) for Hard and Soft Industries	5					
5. Identif	y hazard	and conduct a safety audit						
Module:1	Intro	luction to Safety in Industry			7 h	ours		
Safety cor	sciousne	ess in the workplace - Hazard, Risk, Danger and Accident	t, Ch	emic	al sa	fety,		
Industry s	afety, S	afe operating conditions and drafting safety protocols	for a	accide	ents,	and		
Importance	e of the s	afety/communication training						
		• •						
Module:2	Safety	Programmes in Industry			7 h	ours		
Safety An	alvsis in	industries: Fault tree analysis, event tree analysis, and R	eliat	oility	anal	vsis.		
Elements	of the	safety program, Economic, Social Benefits from safety	prog	gram,	disa	aster		
manageme	nt, occup	bational and industrial health hazards; and fail-safe systems.	1 0					
Module:3	Hazaı	d analysis in the workplace			7 h	ours		
Hazard id	entificati	on, Hazop table, keyword in Hazop analysis, Creating	HAZ	COP	table	for		
Chemical	plants;	High pressure and Temperature Operations; Dangerous	and	Toz	kic v	vork		
environme	nt; Route	es of entry, layer of protection analysis, and personal protecti	ve ec	lnibu	nent.			
	-1							
Module:4	Risk A	Assessment			6 h	ours		
Application	n of risk	assessment, Difference in risk assessment, Identifying risk i	n rad	liatio	n, vaj	pour		
cloud expl	osions,	and toxic work environment, chemical storage and securi	ty, s	afety	in p	olant		
layout, Ris	k manag	ement, Emergency planning, On-site & offsite workplace er	nerge	ency	planr	ning,		
and ISO ce	rtificatio	ons.						
Module:5	Safety	Models and behaviour-based safety			7 h	ours		
Occupation	hal healt	h and safety effects of toxicants and their elimination.	Toxi	c rel	ease	and		
dispersion	models	. Radioactive decay models, Gaussian plume models,	What	at-if	anal	ysis,		
Vulnerabil	ity mod	els, Resilience engineering models, FRAM models, B	ayesi	an r	egres	sion		
models, Safety audits, behaviour-based analysis for the workplaces, Involvement of Huma				man				
factors and	Errors,	safety checklist, and use of regression methods in safety.						
Module:6	Safety	v in manufacturing and service industries			6 h	ours		
Formulati	on of the	safety committee the legal framework in safety committee	Sof	hor	dline	of		
high areas	m or the	safety commuter, the legal manework in safety commutee,		5 man	unng	01		
nigh energy material; tools; machinery, ergonomic safety, and safety in workplaces								

Mo	dule:7	Case studies				3 hours	
Doi	Dominos' effect, Worst case scenario, Chemical release, and Natural disasters						
Mo	dule:8	Contemporary Issues				2 hours	
Guest lecture from industry and R & D organizations							
				Tot	al Lecture hours:	45 hours	
Text Books:							
1.	Ericsor	n C.A., Hazard Analysis Teo	chniques for Syste	m Safety, 2	2015, 2 nd ed., Wiley	, USA.	
2.	Lars H 1 st ed.,	arms-Ringdahl, Safety Anal Taylor and Francis.	lysis, Principles, a	nd practice	es in occupational sa	fety, 2001,	
Ref	erence]	Books:					
1.	Gupta .	A., Industrial Safety and En	vironment, 2015,	2 nd ed., La	xmi Publications, In	dia.	
2.	Daniel	A. Crowl and Joseph F	. Louvar, Chemi	cal Proces	s Safety: Fundame	entals with	
	Applic	ations, 2019, Pearson Educa	tion, India.				
Rec	commen	ded by Board of Studies		11-(02-2022		
Approved by Academic CouncilNo.65Date17-03-2022							

Pre-requisite	Syllabus version	
		1.0
Course Objectiv	25:	
1. To emphasize	the basic concepts of steady-state process plant simulation	
2. To impart k	nowledge and awareness to understand the validity and	physicochemical
interpretation	of thermodynamic models and their limitations	
3. To develop	skills for plant simulation and optimization, solve cher	mical engineering
problems end	ountered in chemical industries using professional software's	0 0
r	61	
Course Outcome		
1. Explain the p	rinciples for developing a Process flow sheet and its execution	n
2. Illustrates the	approaches to follow in plant simulation	-
3. Utilize comm	ercial software's for a complete simulation of refineries	
4. Interpret stea	dy-state process plant simulation	
5. Improve the	lebottleneck existing in the process plant and have maximum	productivity
Modulo 1 Intr	duction	3 hours
Introduction to Pr	ocess Synthesis Flow sheeting & simulation Degrees of free	dom Process flow
sheet	seess synthesis, i low sheeting & sinitiation, Degrees of new	dom, 1 locess now
Sheet		
Module:2 Ann	roaches to process simulation	4 hours
Sequential modul	ar approach and Simultaneous modular approaches. Equation	solving approach
used in process pl	ant simulation.	· sorting upprotein
1 1		
Module:3 Equ	ation solving Approach	4 hours
Partitioning, De	composition, Probabilistic Transformation Method (PTI	M), slow-wave
structure(SWS),	Steward, and Rudd-Algorithms, Direct Methods, Iterativ	e methods, Block
triangular form	(BTF), Bordered block transformation (BBTF), Block H	Back Substitution,
Beecham-Titchen	er-Simpson (BTS).	
Module:4 Deco	mposition of Networks	5 hours
Tearing Algorithm	ns in the decomposition of networks, digraph, signal flow gr	aph, Boyer Moore
(BM) Algorithm,	Binary Tree Algorithm (BTA), Kennard-Stone (K&S) Algorithm	rithm, Metropolis-
Hastings (M&H)	Algorithms, and related problems.	_
Module:5 Con	vergence promotion	4 hours
Linear equation	nonlinear equation Convergence Promotion scheme Newton	n's mathad Direct
substitution. We	stein's method. Dominant eigen value method. Quasi-	Newton methods.
Acceleration crit	erion.	i contoni incentoub,
Module:6 App	lication of flow sheeting software	4 hours
Flow sheeting sof	tware: Aspen Plus-Steady state simulation, Aspen Hysys-dyna	amic simulation
<u> </u>		

Course title

Process Plant Design and Simulation

Case studies: process plant simulation Module:7

Course code

BCHE319E

Process plant steady-state and dynamic simulation: Any process such as Ammonia plant, Biodiesel plant, NG liquefaction.

L

2

Т

0

Р

2

С

3

W

Mo	dule:	8 Conte	emporary issues					2 hours
Gue	est lec	ture from i	ndustry/ R&D orga	nizations				
					Tota	al Lecture	hours:	45 hours
Tex	ktbool	k(s)p						
1.	Robi	in S., Chen	nical Process Design	n and Integration,	2016, 2 nd	ed., Wiley,	USA	
2	Jana Delh	A.K., Prod i	cess Simulation and	Control using A	spen, 2012	, 1 st ed., Pr	enticeHa	ll, New
Ref	ferenc	e Books						
1.	Nish E.D.	ishanth G.C, Chien H.C, Denny N.K.S, Rafil E, Cheng L.C, Lung C.I, Hao Y.L, Rene D., Chemical Engineering Process Simulation, 2017, 1 st ed., Elsevier Science, USA						
2	B.V.	Babu, Proc	cess Plant Simulatio	on, 2004, Oxford U	University	Press, India	a	
Mo	de of	evaluation	Continuous Assess	sment Test, Quiz,	Assignme	nt, Final As	ssessmen	t Test
Ind	licativ	e Experin	nents					
1.	S	Simulation	of Binary Distillation	on using Aspen pl	us/ Hysys			
2.	S	Simulation	of Heat Exchanger	using Aspen plus	/ Hysys			
3.	S	Simulation	of CSTR using Asp	en plus/ Hysys				
4.	S	Simulation	of PFR using Aspen	n plus/ Hysys				
5.	S	Simulation	of Adsorption proce	ess using Aspen p	lus/ Hysys	6		
6.	S	Simulation	of Absorption proc	ess using Aspen p	lus/ Hysys			
7.	S	Simulation	of Ammonia refrige	eration cycle using	g Aspen pl	us/ Hysys		
8.	S	Simulation	of Ammonia produ	ction process usin	ig Aspen p	lus/ Hysys		
9.	S	Simulation	of NG liquefaction	process using Asj	pen plus/ H	Iysys		
10.	S	Simulation	of HEN analysis us	ing Aspen Energy	y Analyser			
				Total	Laborato	ry Hours	30 hour	S
	1	Mode of as	sessment: Individu	ual Experiment A	Assessmen	t, Final As	sessmen	t Test
Rec	comm	ended by E	Board of Studies		11-(02-2022		
Approved by Academic Council No.65 Date 17-03-2022								

Course co	Course codeCourse TitleLTP					
BCHE32	OL	Chemical Product Design	3	0	0	3
Pre-requi	site	Nil	Syll	abus v	ersion	
				1.0		
Course Obj	ectives					
1. To train	the stu	dents in identifying the needs and converting needs to	product	specif	ication	ıs
2. To facili	itate ge	neration of innovative ideas for chemical products an	d select a	among	the ide	as
3. To fami	inarize	the student with intellectual property issues and ma	anuractui	re and	design	OI
speciali	ty prou					
Course Out	comes	,				
1. Underst	and the	e needs of the customer				
2. Apply e	nginee	ring knowledge to convert the needs to product specif	ications			
3. Generat	e innov	vative ideas for chemical products				
4. Evaluat	e ideas	to satisfy the product specifications				
5. Analyze	e the im	plementation of ideas in practice for the manufacture	of produ	cts		
		Province of 100000 m Province for the manufacture	or pro <i>u</i> a	•••		
10114	T (• <i></i>				
Module:1	Intro	luction			1 h	our
Introduction	to che	mical product design - Product examples				
Modulo:2	Noodo	of ahomical product			6 ho	
Customer n	ands	of chemical product	tornativo	e to in	torviou	
consumer pr	roducts	- needs examples	lemative	s to m		/5 -
consumer pr	ouucis					
Module:3	Need	s to specifications			6 ho	urs
Consumer a	ssessm	ents - simple comparison test - relative grading test -	test for a	assessi	ng ratio	os -
Converting	needs to	specifications - revising product specifications - example	mples			
					-1	
Module:4	Ideas				8 ho	urs
Human sour	ces of i	deas - brainstorming - problem-solving styles - chemi	cal sourc	es of i	deas -	
natural prod	uct scre	eening - random molecular assembly - combinatorial c	chemistry	- sorti	ng the	
1deas - scree	ning th	e ideas - examples				
Madula 5	Salaa	tion of ideas			e ho	
Soloction us	Selec	moduramica ingradiant substitutions substitution	in con	aumor.	o IIO	
ingredient i	mprove	minodynamics - ingredient substitutions - substitution	is ill'colli pritoria	rick i	produc n prod	us -
selection - e	vample	s selection using kinetics - less objective c		IISK I	n prou	uci
selection e	xampic	5				
Module:6	Prod	uct manufacture			6 ho	urs
Intellectual	propert	y - patents and trade secrets - requirements for pat	ents - su	pplyin	g miss	ing
information	- final s	specifications - micro structured products - device main	nufacture	e - exar	nples	U
		• • •			•	
Module:7	Specia	ality chemical manufacture and Economic Conc	erns		8 ho	urs
First steps to	owards	production - extending laboratory results - reaction en	ngineerin	ig - sep	oaration	18 -
heuristics fo	r separ	ations - speciality scale-up - Product versus process e	conomic	s - Gar	tt char	t -
cash flow - t	ime va	lue of money - examples				
Module:8	Conte	emporary Issues			2 ho	urs

Γ

Guest Lecture from Industry and R&D	Organizations						
Total Lecture hours: 45hours							
Text Book:							
1. Cussler E.L., Moggridge G. D., University Press, UK.	Cussler E.L., Moggridge G. D., Chemical Product Design, 2011, 2 nd ed., Cambridge University Press, UK.						
Reference Books:							
1. Seider W.D., Seader J D., Lewir ed., Wiley, USA.	Seider W.D., Seader J D., Lewin D.R., Product and Process Design Principles, 2016, 4 th ed., Wiley, USA.						
2. Wei J., Product Engineering: M University Press, UK.	olecular Structur	re and Pro	operties, 2007, 1 st ed., Oxford				
Mode of evaluation: Continuous Asses	sment Test, Quiz	, Assignme	ent, Final Assessment Test				
Recommended by Board of Studies		11-	02-2022				
Approved by Academic Council	No.65	Date	17-03-2022				

Course code	Course Title	L	Т	P	С
BCHE321L	Natural Gas Engineering	3	0	0	3
Pre-requisite	e Nil	Syllabus version			
			1.0		
G		I			
1 To impart d	ves: esign experiences essential for graduates to enter the practice	of Ga	s End	rinee	ring
and pursue 1 2. To summari 3. To impleme	lifelong professional development ze the necessary theory, application to case studies and engineeri ent research that generates, communicates and applies new	ng pro knov	oject vledg	desig e for	n the
betterment of	of society				
Course Outcon	nes :				
 Emphasize Natural Gas Recognize t Develop an realistic cor in the field of Apply natur managemen Evaluate prunder condi Module:1 Pr Natural gas ori properties – Co Natural Gas Module:2 Na 	fundamentals of mathematics and integrates them in applic Engineering to improve further needs he changes and practices followed in offshore platforms ability to revamp and retrofit a system, process to meet d astraints such as environmental, health, safety, manufacturability of Natural Gas al gas refining principles and practices for optimizing resource t oject economics and resource valuation methods for design an tions of risk and uncertainty operties and Composition of Natural Gas agin – Composition of Natural Gas – Source of Natural Gas appressibility factor for Natural Gas – Heating value and fl atural Gas Extraction	cation esired ty and ce dev nd deo	to the need of the sustant velops of the sus	raditi ls wi ainab nent mak nours odyna ilimi hou	onal athin ility and and ing amic it of rs
Onshore Extrac	ction - Offshore Extraction- Techniques and Principles				
Module:3 Na	tural Gas Offshore Production and Handling		6 ł	ours	5
Drilling Deepw Terminals	ater Reservoir – Deepwater production systems – Mooring	g Syst	tems	– G	as
Module:4 Na	atural Gas Onshore Production and Handling		6	hou	rs
Sucker rod pum	ping – separation, storage and transportation of Natural Gas				
Module:5	Natural Gas Processing		8 ł	ours	5
Dehydration – Absorption pro Thompson effec	Desulphurization processes (Sour gases, Toxicity of H2S, Phy cess, Carbonate process, sulphur recovery) – Low-temperature ct, Turbo expander, Refrigeration, Low-temperature Heat Exchan	sical a re pro nger)	and Cocesse	hemi s (Jo	ical oule
Module:6	Liquid Recovery		6 ł	1011rs	5
	Enquire Accorrency		U I	Juic	,

Natural Gas Liquids(NGL), LPG, C ₃ and C ₂ fraction recovery from Natural Gas						
Modul	e:7 Economics of Natural Gas				6 hours	
Curren	t status in India – Trade & selection of	f port location – l	Economics	s of gas process	sing	
Modul	e:8 Contemporary issues				2 hours	
Guest I	Lecture from Industry and R&D Organ	nizations				
			Total Le	cture hours:	45 hours	
Text Bo	ooks:					
1.	Arthur J. Kidnay, William R. Parrish., Fundamentals of Natural Gas Processing, 2018, 5 th ed., Taylor and Francis, CRC Press, UK.					
2.	Alireza Bahadori, Natural Gas Proce Elsevier, Gulf Professional Publishin	essing Technolog ng, UK.	gy and Eng	gineering Desig	gn, 2014,	
Refere	nce Books:	-				
1.	S. Mokhatab, William A. Poe, James and Processing, 2014, 1 st ed., Gulf Pr	es G. Speight., H rofessional Publi	andbook o shing, US	of Natural Gas ' A.	Transmission	
2.	G. Ghalambor, Natural Gas Engineering Handbook, 2014, 2 nd ed., Gulf Publishing Company, USA.					
Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test						
Recom	nmended by Board of Studies	11-02-2022				
A	Approved by Academic Council N	0.65	Date	17-03-2022		

Course code	Course Title	L	T.	P	C			
BCHE322L	Nanoscience and Nanotechnology	3	0	0	3			
Pre-requisite	Nil	Syllabus version			ion			
		1.0						
Course Objectives:								
1. To understand nanotechnology and nanoscience phenomena								

CT114 (1

- 2. To provide an insight into the chemical materials and fabrication techniques used in nanotechnology
- 3. To emphasize the design concepts and strategies to build molecular machines

Course Outcomes:

~

- 1. Distinguish between micro/nano systems based on their properties
- 2. Explain the nanoscale paradigm in terms of properties at the nanoscale dimension
- 3. Describe major top-down and bottom-up strategies in making the stable nanomaterials
- 4. Discuss various nanoscale device fabrication techniques
- 5. identify various characterization techniques for estimating the properties of nanomaterials

Module:1 Introduction

Definition of Nano and history of nanotechnology, Scientific revolution-Atomic Structure and atomic size, the influence of nano over micro/macro, size effects and crystals, large surface to volume ratio, surface effects on the properties.

Module:2Types of nanostructure and their properties6 hoursOne dimensional, Two dimensional and Three dimensional nanostructured materials, Quantum

Dots shell structures, metal oxides, semiconductors, composites, mechanical-physical-chemical properties.

Module:3Synthesis and stability of nanomaterials7 hoursTop-downand bottom-up methods, chemical methods, physical methods, electrostaticstabilization, steric stabilization, Depletion stabilization

Module:4 Metal, semiconductor and magnetic nanoparticles 6 hours

Size, properties and shape control of metal, semiconductor and magnetic nanoparticles, Core-Shell structured and semiconductor nanoparticles – alloy nanostructure – Janus nanoparticles.

Module:5 Nano scale device fabrication	6 hours
Lithography techniques - Photo - UV - X-ray - inferometric techniques - inkjet prin	nting – nano
scale coating techniques - dip-coating - spin coating - spray coating - CVD - plasm	na coating –
atomic layer deposition.	

Module:6 Nano scale characterization techniques					
Optical pro	perties - surface and bulk morphological properties - phase purity	v – surface			
characterization – nano mechanic properties – electromagnetic properties.					

Module:7 Application of nanomaterials

<u>6 ho</u>urs

5 hours

Ferroelectric materials, molecular electronics and nanoelectronics, biological, environmental, membrane-based application, polymer-based application.

Mo	dule:8	Contemporary issues				2 hours	
Gue	Guest lecture from industry and R & D organizations						
				Tota	Lecture hours:	45 hours	
Tex	t Book:						
1.	Chris E	Binns, Introduction To Nan	oscience And Nat	notechnolo	ogy, 2010, 1 st edit	ion, John	
	Wiley a	& Sons Inc, USA.					
Ref	erence l	Books:					
1.	Sulabh	a K Kulkarni, Nanotechnol	ogy: Principles an	nd Practice	es, 2019, 3 rd editio	on, Springer	
	Interna	tional Publishing, USA.					
2.	CNR F	Rao, Achim Müller and An	nthony K. Cheeth	am , The	Chemistry of nat	nomaterials:	
	Synthesis, properties and applications, 2004, Wiley-VCH Verlag GmbH & Co. KGaA.						
Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test							
Recommended by Board of Studies 11-02-2022							
Approved by Academic Council No.65 Date 17-03-2022							

Course code	Course Title	L	T	P	C		
BCHE323L	Fertilizer Technology	3 0 0		0	3		
Pre-requisite	Nil	Syllabus versi		on			
	1.0						
Course Objectives:							
1. To introduce the	production of various NPK fertilizers and their importance	e					
2. To impart knowledge of bio fertilizers, fluid fertilizers and controlled release fertilizers							
3. To identify pollutants in fertilizer industries and their controlling strategies							

Course Outcomes:

- 1. Understand the role of essential elements for plant growth.
- 2. Identify reactions and unit operations involved in the manufacturing of various fertilizers
- 3. Categorize the major engineering problems associated with the fertilizer manufacturing processes
- 4. Explain the importance of bio fertilizers, fluid fertilizers and controlled release fertilizer
- 5. Analyse the impact of pollution from the fertilizer industry based on pollution standards

Module:1 | Overview of Fertilizers

Introduction - Plant Nutrients - Fertilizer grade - Terminology and Definitions - Status of fertilizer industry - Fertilizer production and consumption- Raw materials - Availability and Sources-Productivity and energy efficiency.

Module:2 | Nitrogenous Fertilizers

Nitrogenous fertilizers - Ammonia - Nitric acid - Urea - Ammonium sulphate - Ammonium chloride - Ammonium nitrate - Methods of production - characteristics and specification - Storage and handling.

Module:3 | Phosphatic Fertilizers

Phosphatic Fertilizers - Raw materials - phosphate rock, sulphur, pyrites etc. - Production of sulphuric and phosphoric acids - Ground rock phosphate - Bone meal -Single superphosphate - Triple superphosphate - Thermal phosphates - Methods of production characteristics and specifications.

Module:4 | Potassic Fertilizers

Potassic fertilizers - Potassium Chloride - Potassium sulphate - Potassium magnesium sulphate -Potassium hydroxide - Potassium nitrate - Methods of production - characteristics and specifications.

Module:5 | Complex Fertilizers

Complex fertilizers - Ammonium phosphate - Urea ammonium phosphate - Ammonium phosphate sulphate - Nitrophosphates - Calcium ammonium nitrate - Grades of complex fertilizers.

Module:6 Other Fertilizers

Fertilizers and granulated mixtures - Biofertilizers - Fluid fertilizers - Granular fertilizers -Controlled-release fertilizers - Slow-release fertilizers- Statistics and economic analysis.

Module:7 | Pollution Control in Fertilizer industry

Pollution from fertilizer industry - Solid, liquid and gaseous pollution - MINAS standards-Controlling techniques

Page 85 of 133

6 hours

7 hours

7 hours

6 hours

6 hours

5 hours

6 hours

Мо	dule:8	Contemporary issues				2 hours
Gue	est lectur	e from industry and R & D	organizations			
		•				
				Tot	al Lecture hours:	45 hours
Tex	kt Book:					
1.	Austin	T.G., Shreve's Chemical	Process Industr	ies, 2017	, 5 th ed., Tata N	IcGraw-Hill
	Educati	ion Pvt. Ltd, India.				
Ref	ference I	Books:				
1	Rao G.	, Sittig M., Dryden's Outlir	nes of Chemical To	echnology	, 2019, 3 rd ed., East	West Press,
	India.					
2.	Shukla	S.D., Pandey G.N., A T	ext Book of Che	mical Tec	hnology, 2018, 1 st	^t ed., Vikas
	Publish	ing House Pvt. Ltd, India.				
3.	Fertiliz	er Manual, United Nations	s Industrial Devel	opment C	rganization, New	York, 1967,
	United Nations.					
4.	4. Handbook of Fertilizer Technology, Fertilizer Association of India, 1977, New Delhi.					
Mo	Mode of Evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test					
Rec	Recommended by Board of Studies 11-02-2022					
Ap	proved b	y Academic Council	No.65	Date	17-03-2022	

Course code	Course title	L	Т	Р	С		
BCHE324L	Fermentation Technology	3	0	0	3		
Pre-requisite	Nil	Syllabus version		on			
			1.	0			
Course Objectives:							

1. To recognize the basics of the various aspects of microbiology and bio-systems

- 2. To impart experimental design thinking capability in relation to various fermenter configurations, modes of operation, growth kinetics and product recovery
- 3. To employ the design thinking skills to bio-related processes with a chemical engineering background

Course Outcomes:

- 1. Understand the fermentation processes as applied for various bio-transformations
- 2. Summarize kinetics prevalent in microbial processes
- 3. Recognize the classification of microorganisms to select and manage microorganisms from a natural source to fermentation
- 4. Apply the fermenter configuration for different types of cells and enzymes
- 5. Design downstream processing of fermentation products

Module:1 Introduction and history of fermentation processes

Development of fermentation process – range of processes under fermentation, Types of fermentation

Module:2 Microbial growth kinetics

Microbial growth - Batch, Continuous and fed-batch – kinetics studies – structured and unstructured models of culture

Module:3 Microbial Strain Management

Industrial microorganisms – isolation - preservation of strains - Storage methods - improvement strategies

Module:4 | Media for industrial fermentations

Media formulation – energy - carbon and nitrogen sources - micro nutrients - oxygen requirements; Other non-nutrient and functional components - Effects of media composition on penicillin production - Media optimization

Module:5 Aseptic fermentation process

Preparation of media and air for pure culture fermentation; Media sterilization - Batch and continuous sterilization; Sterilization of fibrous filters and design; Development of inocula - processes involving yeast, bacterial, fungi; Inoculation of plant fermentation.

Module:6 Fermenters

Basic functions – Aeration and agitation – process requirements and mechanical design -Maintenance of aseptic conditions - Foam control - Types and design of fermenters for industrial applications - stirred & sparred tanks fermenters, Tower fermenter, Packed tower, Air lift and rotating disc fermenters - Solid State fermentation.

Module:7	Process technology for bulk products	7 hours
Downstream	processing - Bulk products; Production of alcohols- organic acids-	enzymes, and

4 hours

6 hours

5 hours

5 hours

8 hours

8 hours

anti	antibiotics – flow sheet and process description of modern processes.						
Module:8Contemporary Issues2 hour						2 hours	
Gue	est lectur	re from industry and R & D	organizations				
					1		
				Total l	Lecture hours:	45 hours	
Tex	t Books	•					
1.	Stanbu	ry P.F., Whitaker A., Steve	H., Principles of I	Fermentati	on Technology,	2008, 3 rd ed.,	
	Butterv	vorth-Heinemann, USA.					
2.	El-Mar	si E., Bryce C.F.A, Arno	ld L.D., Allman	A.R., Fei	rmentation Micr	obiology and	
	Biotech	nnology, 2007, 2 nd ed., CRC	C Press, USA.				
Ref	erence l	Books:					
1.	Ashok	P, Christian L, Carlos R.S.	S., Advances in F	Fermentatio	on Technology,	2008, 1 st ed.,	
	Asiatech Publishers Inc., India.						
2.	Rhodes	A and Pletcher. D.L: Princ	ciples of Industria	l Microbio	ology, 1977, 3 rd e	ed., Pergamon	
Press, UK.							
Mode of evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test							
Recommended by Board of Studies 11-02-2022							
App	Approved by Academic Council No.65 Date 17-03-2022						

Course code Title of the course					L	Т	P	C
BCHE391J	BCHE391J Technical Answers to Real Problems Project					0	0	3
Pre-requisite		Nil			Sy	llabu	s vers	sion
						1.	.0	
Course Objectives	S:	C 11	• ,					
1. To gain an und	erstanding of real-lif	e issues faced by s	society.	1 1 6 1				
2. To study appro	priate technologies i	n order to find a so	olution to r	eal-life issu	es.			
3. Students will d	esign system compo	nents intended to s	solve a real	l-life issue.				
Expected Course	Outcome:							
1. Identify rea	ll-life issue(s) faced l	by society.						
2. Apply appr	opriate technologies	to suggest a soluti	on to the i	dentified iss	ue(s)).		
3. Design the	related system comp	onents/processes i	ntended to	provide a s	oluti	on to	the	
identified is	ssue(s).							
Module Content			(Pı	oject duration	on: T	wo se	emest	ers)
Students are expec	ted to perform a surv	yey and interact wi	th society	to find real-	life i	ssues.		
Logical steps with	the application of a	appropriate techno	ologies sho	ould be sug	geste	d to	solve	the
identified issues.			U		0			
Subsequently, the	student should desi	gn the related sy	stem com	ponents or	proce	esses	whic	h is
intended to provide	e the solution to the i	dentified real-life	issues.		-			
General Guideline	es:							
1. Identifi	cation of real-life pro	oblems						
2. Field vi	sits can be arranged	by the faculty con	cerned					
3. $3-4$ str	udents can form a tea	am (within the san	ne/differen	t discipline)				
4. Minimu	im of eight hours on	self-managed tear	n activity					
5. Approp	riate scientific metho	odologies to be uti	lized to so	lve the ident	ified	1ssue	;	
6. Solution	n should be in the for	rm of fabrication/c	coding/mod	delling/prod	uct d	lesign/	proc	ess
7 Consoli	dated report to be su	bmitted for assess	mont					
8 Particin	ation involvement	and contribution i	nom oroun dis	cussions du	rina	the co	ntact	-
hours w	vill be used as the mo	dalities for the co	ntinuous a	ssessment of	f the	theor	v	
compor	ient					une or)	
9. Project	outcome to be evaluated	ated in terms of te	chnical, ec	onomical, so	ocial			
environ	mental, political and	demographic feas	sibility	,		,		
10. Contrib	10. Contribution of each group member to be assessed							
11. The pro	ject component to ha	ave three reviews	with the w	eightage of 2	20:30	0:50		
Mode of Evaluation	Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student							
has registered. (No	FAT) Continuous A	ssessment on the	project – N	lark weight	age c	ot 20:3	50:50	
project report to be	project report to be submitted, presentation and project reviews							
Recommended by Board of Studies 11-02-2022								
Approved by Academic Council No.65 Date 17-03-2022								

Course code		Title of the cours	se		L	Т	Р	C
BCHE392J		Design Project		0 0 0				3
Pre-requisite		Nil			Syl	llabus	s vers	sion
						1.	0	
Course Objectives	S:							
1. Students wi	ll be able to upgrade	a prototype to a d	esign prot	otype.				
2. Describe an	d demonstrate the te	chniques and skill	s necessar	y for the pro	ject.			
3. Acquire kno	owledge and better u	nderstanding of de	esign syste	ms.				
Expected Course	Outcome:							
1. Develop new skills and demonstrate the ability to upgrade a prototype to a design prototype or working model. 2. Utilize the techniques, skills, and modern tools necessary for the project. 3. Synthesize knowledge and use insight and creativity to better understand and improve design systems. Module Content (Project duration: one semester) Students are expected to develop new skills and demonstrate the ability to develop prototypes to								
			ening prou		.035.			
Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. (No FAT) Continuous Assessment on the project – Mark weightage of 20:30:50 – project report to be submitted, presentation and project reviews								
Recommended by Board of Studies 11-02-2022								
Approved by Acad	emic Council	No.65	Date	17	7-03-	2022		

					r
Course code	Title of the course	L	Т	P	С
BCHE393J	Laboratory Project	0	0	0	3
Pre-requisite	Nil	Syllabus version		sion	
			1.	0	

Course Objectives:

- 1. The student will be able to conduct experiments on the concepts already learnt.
- 2. Analyse experimental data.
- 3. Present the results with appropriate interpretation.

Expected Course Outcome:

- 1. Design and conduct experiments in order to gain hands-on experience on the concepts already studied.
- 2. Analyse and interpret experimental data.
- 3. Write clear and concise technical reports and research articles

Module Content	(Project duration: one semester)

Students are expected to perform experiments and gain hands-on experience on the theory courses they have already studied or registered in the ongoing semester. The theory course registered is not expected to have laboratory component and the student is expected to register with the same faculty who handled the theory course. This is mostly applicable to the elective courses. The nature of the laboratory experiments (wet lab / dry lab) is depended on the course.

Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. (No FAT) Continuous Assessment on the project – Mark weightage of 20:30:50 – project report to be submitted, presentation and project reviews

Recommended by Board of Studies	11-02-2022				
Approved by Academic Council	No.65	Date	17-03-2022		

Course code	Title of the course	L	L T P							
BCHE394J	Product Development Project	0	3							
Pre-requisite	Nil	Sy	Syllabus version							
	1.0									
Course Objectives:										

- 1. Students will be able to translate a prototype to a useful product.
- 2. Apply relevant codes and standards during product development.
- 3. The student will be able to present his results by means of clear technical reports.

Expected Course Outcome:

- 1. Demonstrate the ability to translate the developed prototype/working model to a viable product useful to society/industry.
- 2. Apply the appropriate codes/regulations/standards during product development.
- 3. Write clear and concise technical reports and research articles

Module Content

(Project duration: Two semesters)

Students are expected to translate the developed prototypes/working models into a product that has application to society or industry. Evaluation involves periodic reviews by the faculty with whom the student has registered.

Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. (No FAT) Continuous Assessment on the product – Mark weightage of 20:30:50 – project report to be submitted, presentation and demonstration reviews

Recommended by Board of Studies	11-02-2022					
Approved by Academic Council	No.65	Date	17-03-2022			

Course code		Title of the cours	se		L	Т	P	C	
BCHE395J		Computer Proje	ct		0	0	0	3	
Pre-requisite		Nil			Syllabus version				
						1.	.0		
Course Objectives	5:								
1. Student	s will be able to anal	yse complex engin	neering pro	ocesses.					
2. Describ	e the applications an	d limitations of a	given engi	neering proc	cess.				
3. Present	the results in written	reports and oral p	oresentatio	ns.					
Expected Course	Outcome:								
1. Utilize	programming s	skills/modelling	to ana	yse comj	olex	eng	ginee	ring	
process	es/problems.								
2. Demons	strate the ability to	evaluate the ap	plicability	and limitat	tions	of t	he gi	ven	
enginee	ring process.								
3. Commu	inicate effectively the	rough written repo	orts, oral pi	resentations,	and	discu	ssion		
Module Content			(]	Project durat	tion:	One s	semes	ster)	
Students are expect processes. The stud engineering proces has registered.	ted to use programm lent should be able to ses. Evaluation invol	ing skills or mode o evaluate the app lves periodic revie	lling to and lication and ews by the	alyse completed limitations faculty with	ex en s of tl who	iginee he sai om the	ering d e stud	ent	
Mode of Evaluation has registered. (No project report to be	on: Evaluation invol FAT) Continuous A submitted, presentat	ves periodic revie ssessment on the tion and project re	ws by the f project – N views	aculty with Aark weight	whoi age o	m the f 20:3	stude 30:50	ent –	
Recommended by	Board of Studies		11-(02-2022					
Approved by Acad	emic Council	No.65	Date	1′	7-03-	2022			

Course code		Title of the cours	se		L	Т	Р	C	
BCHE396J		Reading Cours	e		0	0	0	3	
Pre-requisite		Nil			Syl	labus	s vers	sion	
					1.0				
Course Objectives	5:								
 The student will be able to analyse and interpret published literature for information pertaining to niche areas. Scrutinize technical literature and arrive at conclusions. Use insight and creativity for a better understanding of the domain of interest. 									
Expected Course	Autcome:								
1. Retrieve	e, analyse, and int	terpret published	literature	books prov	viding	g inf	orma	tion	
2 Examin	o fiche areas/focuse	u uomanis.	w and day	alan aanalua	iona				
2. Examining	ize knowledge and y	, resorve anorgun	y, and dev	etop conclus	tond	thad		n of	
3. Synthes	aze knowledge and t	ise insight and cre		better unders	tand	the d	oman	n oi	
interest.									
Module Content			(]	Project durat	ion:	One s	emes	ster)	
Module Content (Project duration: One semester) This is oriented towards reading published literature or books related to niche areas or focused domains under the guidance of a faculty. It is expected to have at least 10 students to form a group and come up with a specific topic. Assessments will be as per the academic regulations slated for the theory course.									
Mode of Evaluation has registered. (Not submitted, presenta	on: Evaluation invol FAT) Continuous ation and project revi	lves periodic revie Assessment – Ma ews	ws by the rk weighta	faculty with age of 20:30	who: :50 -	om th - Rep	e stuc ort to	dent o be	
Recommended by	Board of Studies		11-0	02-2022					
Approved by Acad	emic Council	No.65	Date	17	7-03-	2022			

Course code		Title of the cours	se		L	Т	Р	C
BCHE397J		Special Project			0	0	0	3
Pre-requisite		Nil			Syl	labus	s vers	sion
					1.0			
Course Objectives	5:							
1. Stud 2. Des 3. Pres	lents will be able to i cribe major approach ent the results in a c	identify and solve nes and findings in lear and concise m	problems the area c anner.	in a time-bo of interest.	und 1	mann	er.	
Expected Course	Outcome:							
1. To ide	ntify, formulate, a	nd solve probler	ns using	appropriate	inf	orma	tion	and
approac	hes in a time-bound	manner.						
2. To dem	onstrate an understa	nding of major ap	proaches,	concepts, a	nd cu	ırrent	resea	arch
findings	in the area of intere	st.						
3. Write	clear and concis	e research arti	cles for	publicatio	n ii	n co	onfere	ence
proceed	ings/peer-reviewed j	journals.						
Module Content			(Project semeste	t duration: n ers)	ot m	ore th	an th	ree
This is an open-enproject under the publication of rese journal.	ded course in which supervision of a fac arch articles in a co	the student is exp culty. The result s nference proceeding	bected to whould be	vork on a ti a tangible peer-review	me-b outpo red S	oound ut in copus	resea terms inde	arch s of exed
Mode of Evaluation has registered. (No project report to be	on: Evaluation invol FAT) Continuous A submitted, presenta	ves periodic revie Assessment on the tion and project re	ws by the project – views	faculty with Mark weigh	n who ntage	om th of 20	e stud 0:30:5	dent 50 –
Recommended by I	Board of Studies		11-0	02-2022				
Approved by Acad	emic Council	No.65	Date	1	7-03-	-2022		

Course code	ode Title of the course L T P C						C				
BCHE398J		Simulation Proje	ect		0	0	0	3			
Pre-requisite		Nil			Syllabus version						
						1.	0				
Course Objectives	3:										
1. Stud	lents will be able to	simulate a real sys	tem.								
2. Identify the variables which affect the system.											
3. Desc	3. Describe the performance of a real system.										
	Ĩ										
Expected Course	Expected Course Outcome:										
1. Demons	1. Demonstrate the ability to simulate and critically analyse the working of a real system.										
2. Identify	and study the differ	ent variables whic	h affect th	e system ela	bora	tely.					
3. Evaluate	e the impact and per	formance of the re	al system.								
Module Content			(Pr	oiect duratio	on: of	ne ser	neste	r)			
				-j				-/			
The student is exp	ected to simulate an	d critically analys	se the wor	king of a re	eal sy	/stem.	Role	e of			
different variables	which affect the sys	stem has to be stu	idied exter	nsively such	that	the i	mpac	t of			
each step in the pr	ocess is understood	, thereby the perf	ormance of	of each step	of th	ne eng	ginee	ring			
process is evaluate	d. Evaluation involv	ves periodic review	ws by the	faculty with	who	om the	e stuc	lent			
has registered.											
Mode of Evaluation	on: Evaluation invol	ves periodic revie	ws by the	faculty with	n who	om th	e stuc	lent			
has registered. (No	FAT) Continuous A	Assessment on the	project –	Mark weigh	itage	of 20):30:5	50 -			
project report to be	submitted, presenta	tion and project re	views								
Recommended by I	Board of Studies		11-0	02-2022							
Approved by Acade	emic Council	No.65	Date	1'	7-03-	2022					

Course co	de	Course Title	L	Т	Р	С			
BCHE401	L	Petrochemical Technology	3	0	0	3			
Pre-requis	ite	Nil	Syl	labu	s vers	ion			
a ol:				1	.0				
Course Obje	ctives	:							
1. To outlin	e the	basics of organic synthesis and the processes that goes along	with	it		.1			
2. To disti	nguish	between the various unit operations and unit processe	s in	volve	d in	the			
polymeri	zation	to i monomers	mlia	otion	orion	tod			
challenge	enci	ountered in the chemical industry	phe	auon	-onen	licu			
enanong									
Course Outc	omes	<u>.</u>							
1. Demonst	rate th	he basic methods for converting monomers to polymers							
2. Compare different types of polymers for diverse applications									
3. Develop an understanding of the major industrial polymerization processes									
4. Summarize applications of plastics and fibres									
5. Analyse the economics of the Petroleum industry									
	I								
Module:1	Petr	ochemicals and Precursors			2 hot	irs			
Introduction -	- Prec	ursors -Selection of precursors- properties - petrochemical f	rom	prec	ursors				
Module:2	Alka	nnes and Alkenes			7 hou	irs			
Introduction -	Man	ufacture of Petrochemical Derivatives from C1, C2, C3, C4	comp	ound	ls				
					<i>.</i>				
Module:3	Aro	matics ufacture of Detrochemical Derivatives from Penzona, Telu		v	6 hou	irs and			
Styrene	- wian	unacture of Petrochemical Derivatives from Benzene, Toluc	ene,	Δ	lene a	anu			
Styrene.									
Module:4	Petr	ochemical Derivatives			8 hou	urs			
Manufacture	of vir	nyl chloride (VCM) by thermal cracking, Dimethyl Tereph	thal	ate,	Poly 7	ΓА,			
maleic anhyd	ride, c	cumene, diphenylcarbonate.							
Module:5	Polv	mers			8 hou	irs			
Production of	f - po	ly butadiene rubber, Styrene-Butadiene Rubber (SBR), Sty	rene	Acr	ylonit	rile			
(SAN), Polya	lkyler	ne Terephthalate, Alpha Olefins(Linear), Octenes.			-				
	DI								
Module:6	Plas	tics and Fibres	C.	1: 4:6	7 hou	itre			
Glycerine(SN	I POINT (G) = 0	explosives	- 30	man	lea n	iuo			
	(0)								
Module:7	Ecor	nomics of Petrochemical Industry			5 hou	irs			
Current statu	is in	India - Trade - Selection of Petrochemical products	- F	Econ	omics	of			
Petrochemica	lderiv	zatives.							
	~) ha-	INC.			
Module:8	Con	temporary Issues			2 not	ITS			
Guest Lecture	e from	Industry and R&D Organizations							
				<u> </u>					
		Total Lecture h	lour	s: 4	5 hou	Irs			

Tex	t Books:								
1.	I. D. Mall, Petrochemical Process	Technology, 2	2017, 2 nd ed., M	lacmillan Publishers, India.					
2.	S. Maitra and O. P. Gupta, Ele Publishers, India.	ements of I	Petrochemical	Engineering, 2018, Khanna					
Reference Books:									
1.	V. Patel, Advances in Petrochemicals, 2015, Intech Open Publications, India.								
2.	I.D. Mall, Petroleum Refining Technology, 2017, CBS Publishers, India.								
Mo	de of evaluation: Continuous Assess	ment Test, Q	uiz, Assignmen	it, Final Assessment Test					
Rec	commended by Board of Studies		11-0	2-2022					
App	proved by Academic Council	No.65	Date	17-03-2022					
			-						

Course code	Course code Course title L T P C							
BCHE402L	Food Process Engineering	3	0	0	3			
Pre-requisite	Nil	Sylla	abus v	versi	ion			
			1.0					
Course Objectives	3							
1. To familiarize w	with the constituents of food and importance of microorganism	ns and	d addi	tives	s in			
food processing.								
2. To emphasize	on the basic concepts of unit operations in Chemical En	ginee	ring v	with	an			
application to fo	od processing.							
3. To impart nece	ssary knowledge required for food processing technology,	food	l qual	ity a	and			
packaging.								
Course Outcomes								
1. Explain the con	stituents and nutritive aspects of food and the importance	of mi	croorg	ganis	ms			
and food additiv	es.							
2. Develop materia	al and energy balances on unit operations involved in food pro-	ocesse	es.					
3. Compare the un	it operations involved in food processing and their integratio	n to a	ctual	proc	ess			
design.								
4. Identify the appropriate preservation techniques for various food items.								
5. Explain differen	t processing technology to produce quality food products and	l their	pack	agin	g.			
Module:1 Intro	duction to food		4	4 ho	urs			
Constituents of foc	od - Carbohydrates, Proteins, Lipids, Enzymes, Vitamins an	d min	erals,	Wa	ter,			
role and functional	properties in food, contribution to organoleptic and textural of	charac	teristi	cs				
Module:2 Food	microbiology and food additives		4	1 ho	urs			
Importance of mic	cro-organisms in foods, Food borne diseases and food sp	poilag	e Fur	nctio	nal			
characteristics of	additives in food processing; food colourants - natural a	nd ar	tificia	l; fo	bod			
flavours; enzymes	as food processing aids.							
Module:3 Food	process calculations		4	4 ho	urs			
Material balance ca	alculations with and without reaction, recycle and bypass, N	lateria	al and	ene	rgy			
balances in food pr	ocessing (mixing, evaporation and drying)							
Module:4 Unit	operations in food processing		1) ho	urs			
Concept of food r	heology and viscoelastic foods; Size reduction – Equipment	its and	a enei	:gy a	ind			
power requirement	ts, Mixing and agitation – Agitated vessels – Impellers	for h	igh v	ISCOS	sity			
liquids; Mechanica	al separations – Filtration: Constant rate and constant pr	essure	e filtr	atioi	1 –			
filtration equipme	nts – filter press – rotary drum filters – sedimentatio	n and	d cen	trifu	gal			
separations; Heat e	xchangers – types of heat exchangers – enthalpy balance; E	vapora	ators -	- sin	gle			
and multiple-effec	t – evaporator economy – enthalpy balance of single-ef	ffect	evapo	rato	r —			
multiple-effect eva	porator – methods of feeding; Dryers – drying rate – types of	f drye	rs – fl	uidi	zed			
bed – Spray drier –	vacuum shelf dryer – freeze dryer							
Module:5 Food	preservation techniques		1) ho	urs			
Heat and cold de	ehydration, irradiation, microwave heating, sterilization a	and p	asteu	rizat	ion			
(thermal death curv	ves of microorganisms)							
Food canning technology (batch and continuous), application of infrared, microwaves, sterilization								
of canned food, can	nning procedures for fruits, vegetables, meats, poultry marine	produ	ucts.					
Module:6 Food	processing and food quality		8	8 ho	urs			

Processing	g of Cereal grains, Vegeta	bles, Spices, Bak	ery, Conf	ectionary Proc	lucts, Soft and	
Alcoholic Beverages, Dairy Products, Meat Products.						
Food quality parameters and their evaluation - FSSAI and safety concepts in food processing,						
Quality control and Food standard organizations						
Module:7	Food packaging				3 hours	
Basic pac	kaging materials, Types of pa	ckaging, Packagin	g design, j	packaging for d	ifferent types of	
foods, reto	ort pouch packing, costs of pa	ckaging and recyc	ling of ma	terials		
Module:8	Contemporary issues				2 hours	
Guest lect	ure from industry and R&D of	organizations				
			Total L	ecture hours:	45 hours	
Text Boo	k(s)		e e t e erd			
1. Berk,	Z., Food Process Engineerin	g and Technology	$, 2018, 3^{ra}$	ed., Academic	press, USA.	
2. Sivas	ankar, B., Food Processing an	nd Preservation, 20	$009, 1^{31} \text{ ed}$., Prentice-Hall	of India Pvt.	
Ltd. I	New Delhi.					
Reference	e Books			nd		
1. Smith	n, P.G., Introduction to Food	Process Engineerii	1g, 2011, 2	^{nu} ed., Springer	r, USA.	
2. Rao,	D.G., Fundamentals of Fo	od Engineering,	$2010, 1^{st}$	ed., PHI Lean	ming Private	
Limit	ed, New Delhi.					
3. Sarav	acos, G. D., Maroulis, Z.B.	, Food Process E	ngineering	g Operations, 2	2011, 1 st ed.,	
CRC	press, USA.					
Mode of H	Evaluation: CAT, Quiz, Semin	nar, FAT				
Recomme	nded by Board of Studies		11-()2-2022		
Approved	by Academic Council	No.65	Date	17-0	3-2022	

Course code	Course title	L	Т	Р	С
BCHE403L	Process Intensification	3	0	0	3
Pre-requisite	BCHE208L, BCHE208P	Syllabus version			
			1	.0	

Course Objectives:

- 1. To understand the concept of process intensification.
- 2. To apply the techniques of intensification to chemical processes
- 3. To infer alternative solutions considering economic viability, environmental and social acceptance

Course Outcomes:

- 1. Explain the scientific background, techniques of intensification in the process industries
- 2. Apply process intensification in chemical processes
- 3. Classify the various methodologies adopted for process intensification
- 4. Identify scale up issues in the chemical processes
- 5. Evaluate the feasibility of the process intensification

Module:1 Introduction

Techniques of Process Intensification (PI) - Applications, The philosophy and opportunities of Process Intensification, benefits from process intensification, Process intensifying Equipment, Process intensification toolbox

Module:2 Process intensification through micro reaction technology 6 hours

Effect of miniaturization on unit operations and reactions, Implementation of Micro reaction Technology, From basic Properties, Technical Design Rules, Inherent Process Restrictions in Miniaturized Devices and Their Potential Solutions, Microfabrication of Reaction and unit operation Devices - Wet and Dry Etching Processes.

Module:3 Mixing and flow patterns

Scales of mixing, Flow patterns in reactors, Mixing in stirred tanks: Scale up of mixing, Heat transfer, Mixing in intensified equipment, Chemical Processing in High-Gravity Fields Atomizer Ultrasound Atomization, High intensity inline mixers reactors Static mixers, Ejectors, Tee mixers, Impinging jets, Rotor stator mixers, Design Principles of static Mixers Applications of static mixers, Higee reactors.

Module:4	Combined	chemical	reactor	with	heat	exchange	and	6 hours
	reactor/sepa	rators						

Principles of operation; Applications, Reactive absorption, Reactive distillation, Applications of RD Processes.

Module:5 Compact heat exchangers

Classification of compact heat exchangers, Plate heat exchangers, Spiral heat exchangers, Flow pattern, Heat transfer and pressure drop, Flat tube-and-fin heat exchangers, Microchannel heat exchangers, Phase-change heat transfer, Selection of heat exchanger technology, Feed/effluent heat exchangers, Integrated heat exchangers in separation processes, Design of compact heat exchanger - example.

Module:6 Enhanced fields

Energy based intensifications in distillation, Sono-chemistry, Cavitation Reactors, Flow over a

6 hours

8 hours

8 hours

6 hours

rotating surface, Hydrodynamic cavitation applications, Cavitation reactor design, Nusselt-flow model and mass transfer. Sono crystallization, Reactive separations								
Мо	dule:7	Case studies				3 hours		
Rea	ction s	eparation of Plastic/Bior	nass pyrolysis;	Petrochem	icals and Fine	Chemicals,		
Ref	ineries, I	Bulk Chemicals, Nuclear In	ndustry					
Mo	dule:8	Contemporary issues				2 hours		
Gue	est lectur	re from industry/ R&D orga	nizations					
				Tota	l Lecture hours:	45 hours		
Tex	tbooks:							
1.	Reay I Sustain	D, Ramshaw C, Harvey A ability and Flexibility, 2013	A., Process Inten 3, 2 nd ed., Butterwe	sification orth Heine	Engineering for E mann, USA.	Efficacy,		
2	Dominic C. Y.F, Halwagi-EI M.M., Process Intensification and Integration for Sustainable Design, 2021, 1 st ed., Wiley-VCH, USA.							
Ref	erence l	Books:	•					
1.	Hernán	dez S, Gabriel J, Petric	iolet B, Adrián.	Process	Intensification in	Chemical		
	Engine	ering Design Optimization	and Control, 2016	, 1 st ed., Sp	oringer, Switzerland	d		
2.	Boodho	bo K, Harvey A., Proce	ss Intensification	Technol	ogies for Green	Chemistry:		
Engineering Solutions for Sustainable Chemical Processing, 2013, 1 st ed., Wiley, USA.								
Mode of evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test								
Recommended by Board of Studies 11-02-2022								
App	proved b	y Academic Council	No.65	Date	17-03-2022			

Course codeCourse TitleLTP						C				
BCHE4()4L	Co	Colloids and Interfacial Science			0	0	3		
Pre-requisite			Ν	Nil			Syllabus version			
						1.	0			
Course Ob	jectives	:								
1. To desc	ribe the	theories of col	loids and inter	facial phenomena						
2. To expla	ain solu	tion thermody	namics, stabili	ty of colloids, light scatterin	g,capi	llary (effects	3		
3. To expo	se the in	nportance of c	olloidal pheno	mena through real-life examp	ples					
Course Ou	tcomes	,								
1. Describ	e the co	ncept of non	-covalent coll	oidal forces						
2. Explain	differe	nt methods of 1	measuring liqu	id surface tension and conta-	ct angl	e				
3. Apply t	he know	ledge of therm	nodynamics fo	r micellization in surfactant s	olutio	ns				
4. Interpre	t the ki	netic and therr	nodynamic sta	bility of emulsions and inter	faces					
5. Calcula	te collo	dal parameters	s using light sc	attering spectrum						
	-									
Module:1	Introd	luction to Coll	loid & Interfa	ice Science			6 ho	urs		
Fundament	als of	Colloid Sci	ence-Colloids	definition-Van der Waa	ls int	eracti	ions-T	hę		
theory-Zeta	potent	al-Gibbs energ	gy of electrosta	atic interactions		layer		'L)		
				•			<u> </u>			
Module:2	Surfa	<u>e Tension and</u>	d Contact An	gle			<u>6 ho</u>	urs		
Surface ter angle-Meas	sion of suring c	liquids-defini ontact angles	ition-Lewis A – Du Nouv ri	cid-Base interactions-Surfac ng method – Wilhelmy plat	e tens e meth	ion 8 10d –	k con effect	tact t of		
temperature	e on Sur	ace tension –	Young – Lapla	ace equation – Kelvin equation	on					
Modulo 2	Inton	ations of In	tarfoggg				5 ha			
Surfactants	Tupes	<u>actions at In</u>	refraces	vionic surfactant: Zwitterion	Ger	mini	ond F			
surfactants	– Defir	- Cationic su	cations -therm	odynamics - Surface exce	$\propto M$	icelli [,]	zation	of		
surfactant -	Hydron	hilic-lipophilic	c balance (HL)	B).	55, 11		Lation	01		
	<u> </u>			-).						
Module:4	Emul	sions					6 ho	urs		
Definitions	and a	pplications	Types of en	nulsions - Thermodynamics	of e	emuls	ificati	on-		
Emulsion s	tability	- Ostwald ripe	ning – phase i	nversion – micro emulsion –	foams					
Module:5	Desig	ı of Interfac	es				7 ho	urs		
Advortion	Model	of adsorption	n Adsorption	at the solid liquid interface	Adso	rotion	a of f	<u>ho</u>		
liquid oir ir	torface	A description at	the solid air in	torface applications calcu	lation	of fr		rav		
of adaptin	nerrace-	Ausorption at	the solid-all li	lienace – applications – calci	паноп	OI III	ee ene	igy		
	911.									
Module:6	Princ	iples of Ligh	<u>ıt Scatterinş</u>	5			6 ho	urs		
Fundamentals of light scattering-Static light scattering-Dynamic light scattering – applications –										
Rayleigh sc	Rayleigh scattering – polydispersity index – average particle size calculation.									
	1									
Module:7	Appli	cation of	Colloids	and Interfacial pheno	mena		7 ho	urs		
Colloidal treatment-N	and i Aedicine	nterfacial phe 2-Tribology-Er	enomena in	biology- food technology-	Photov	oltai	c - W	ater		

FT14 ()

~

~

Mo	dule:8	Contemporary issues				2 hours			
Guest lecture from industry and R&D organisations.									
				Tot	al Lecture hours:	45 hours			
Tex	<mark>kt Books</mark>	:							
1.	Pallab	Ghosh, Colloid and Interfac	e Science, 2009,	1 st edition,	PHI, India				
Ref	ference I	Books:							
1.	Hiemer	nz P.C., Rajagopalan R., Pr	inciples of Colloi	d and Surf	ace Chemistry, 199	7, 3rd ed.,			
	CRC Press, USA.								
2.	Wang C	C., Leblanc R.M., Recent Pr	ogress in Colloid	and Surfac	e Chemistry, 2016,	1^{st} ed.,			
	Oxford	University Press Inc., UK.							
Mode of evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test									
Rec	Recommended by Board of Studies 11-02-2022								
Ap	proved b	y Academic Council	No.65	Date	17-03-2022				

Course codeCourse titleLTP	C						
BCHE405LFluidization Engineering300	3						
Pre-requisite NiL Syllabus version	on						
1.0							
Course Objectives:							
1. To understand the physical and chemical aspects of the fluidization process							
2. To identify the various fluidization regimes and describe their behaviour							
3. To design the various types of fluidized bed widely used in industrial practice							
Course Outcomes:							
1. Identify the behavior of fluidization process under various operating conditions							
2. Determine minimum fluidization velocity and terminal velocity in fluidized bed							
3. Design suitable distributor for fluidized beds							
4. Apply various models for designing the fluidized bed systems							
5. Analyze the performance of fluidized bed reactor systems							
Module:1 Introduction 5 hou	urs						
Concept of Fluidization - Special Features of Fluidization - Comparison with other Contacti	ing						
Methods - Advantages and Disadvantages of Fluidized Beds - Industrial Applications	of						
Fluidized Beds - Historical Highlights - Physical Operation - Chemical Operations.							
Module:2Characteristics of solids5 hou	urs						
Geldart Classifications of Particles - Flow characteristics and its outline in the different types	of						
fluidizations – Gas-solid system - Liquid-solid system							
Module:3 Characterization of Fluidization I 5 hou	ars						
Mapping of Fluidization Flow pattern – Transition regime - Behaviour of Fluidized Beds	3 —						
Minimum and Terminal Velocities in Fluidized Beds							
Modulo: A Characterization of Eluidization II 7 has	1100						
Frictional pressure dron and its model – analysis - Solid movement mixing segregation and	115						
Staging - Gas distribution - small and large scale industries - Design of Distributors $-$ Pov	ver						
Consumption	VCI						
Module:5 Entrainment and Elutriation 8 hou	urs						
Free Board Behaviour - Entrainment from Tall and Short Vessels - Constant Approach - Flo	ow						
Pattern of Gases through Fluidized Beds - Solid Movement - Mixing, Segregation and Staging							
Module:6Heat Transfer in Fluidized Beds6 hou	urs						
Fluid-solid heat transfer - Determination and Interpretation of Heat Transfer. Calculation	of						
overall Heat Transfer coefficient							
Module:/ Miscellaneous systems 7 hot Conical fluidined had Inverse fluidined had Durft take	ars						
Conical hundized bed - inverse hundized bed – Draft tube systems; Semi fluidized bed system	1S -						
Module 8 Contemporary issues 2 ho	Irc						

				Tota	l Lecture hours:	45 hours			
Tex	Textbook:								
1.	Kunii D and Levenspiel O., Fluidization Engineering, 2013, 2 nd ed., Butterworth Heinemann,								
	USA.								
Ref	ference I	Books:							
1.	Yang V	V.C., Handbook of Fluidiza	tion and Fluid – P	Particle Sys	tem, 2003, 1 st ed., 0	CRC Press,			
	USA.								
2.	Grace J.R., Avidan A.A., Knowlton T.M., Circulating Fluidized Beds, 2011, 1st ed.,								
	Springe	er, USA.							
3.	John G	race, Xiaotao Bi, Naoko E	Illis, Essentials of	Fluidizati	on Technology, 20	20, Wiley-			
	VCH V	erlag GmbH & Co, German	ny						
Mo	Mode of evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test								
Rec	Recommended by Board of Studies 11-02-2022								
App	proved b	y Academic Council	No.65	Date	17-03-202	22			

Course code		Course title	L	Т	Р	С		
BCHE406L		AI in Chemical Engineering	3	0	0	3		
Pre-requ	isite	NIL	Sylla	abus	vers	ion		
				1.	0			
Course Ob	jectives	:						
1. To intro	1. To introduce Artificial Intelligence (AI) as an advanced approach to automation in process to							
industri	industries							
2. To imp	art kno	wledge on various AI techniques employed to address	comp	lex (chem	ical		
3 To analy	engineering problems							
<i>J.</i> 10 anai	yse the	issues and minitations of AT methods						
Course Ou	tcomes	:						
1. Underst	and the	scope of Artificial Intelligence (AI) in simulating the huma	an beh	aviou	ır			
2. Analyze	e the con	mponents of AI and its capability to address the nonlinear c	hemic	al pro	ocess	es		
3. Apply A	AI appro	aches to model different chemical processes						
4. Assess t	the suita	bility of various AI approaches to solve optimization probl	ems					
5. Develop	o AI-bas	sed models for fault detection and diagnosis in process plan	ts and	cont	rol			
systems								
Madalari	A				1			
Module:1	Arun	cial Intelligence in Chemical Engineering		2	a nou	rs		
Scope of A	I in Ch	nemical Engineering - background - phases of AI - expe	rt syst	ems	- ne	ural		
network - d	eep lear	ning and data science - merits and demerits.						
Module:2	Artifi	cial Neural Networks (ANN)		6	o hou	rs		
History of	ANN -	biological neuron - artificial neuron - activation function	n - ne	ural	netw	ork		
architecture	- lear	ning methods - single layer perceptron - multi layer	perce	otron	- b	ack		
propagation	algorit	hm - applications - clustering - classification - function	appro	xima	tion	and		
prediction -	familia	rize neural network tool box in MATLAB.						
	1			ł				
Module:3	Intro	luction to Fuzzy logic		6	o hou	rs		
History of	fuzzy l	ogic- fuzzy sets and concepts - operation on fuzzy sets	- fuzz	y rel	lation	ıs —		
fuzzification	n - defi	azzification- fuzzy membership functions - Adaptive Neu	ro Fuz	zzy I	nfere	nce		
System (ANFIS) - familiarization of fuzzy logic and ANFIS tool box in MATLAB								
Module:4	AI in	Process Modelling		8	6 hou	rs		
Mathematic	al vers	us AI based process models - AI approaches to process	mode	elling	- A	NN		
models - fu	uzzy lo	gic models - hybrid models, case study - ANN model	ling o	f wa	stew	ater		
treatment p	rocess							
Module:5	Al in	Process Optimization		8	5 hou	rs		
Classical of	ptimizat	ion approaches versus evolutionary algorithms - genetic	algori	thm	- SW	arm		

opti	mizatio	n, case study - optimization	of chemical proce	SS			
Module:6AI in fault detection and diagnosis8 hours							
Faul	Fault detection and diagnosis in process plants - methods of fault diagnosis - neural network						
met	hod - fu	zzy logic method, case stud	ly - fault diagnosis	s using ger	netic fuzzy system		
Mo	dule:7	AI in Process Control				5 hours	
Con	vention	al versus AI based process	s control – ANN	- Fuzzy I	logic – ANFIS, C	lase study:	
Onl	ine gene	tic-ANFIS temperature con	trol in reactors				
Mo	dule:8	Contemporary issues				2 hours	
Gue	st lectur	re from industry and R & D	organizations				
				Tot	al Lecture hours:	45 hours	
Tex	t Book:						
1.	Quantri ed., Ac	ille, T.E. and Liu, Y.A., Ar ademic Press, USA	tificial Intelligenc	e in Chem	ical Engineering, 1	.991, 1 st	
Ref	erence l	Books:					
1.	Michae Acader	l L. Mavrovouniotis, Arti nic Press, USA	ficial Intelligence	in Proces	ss Engineering, 19	90, 1 st ed,	
2.	Boullar Process	t, L., Krijgsman, A., Ving Control, 1992, Pergamon I	gerhoeds, R.A., A Press Ltd., UK	Application	n of Artificial Inte	lligence in	
3. Zhang, Huaguang, Liu, Derong, Fuzzy modelling and Fuzzy control series: Control Engineering, 2006, Birkahauser, Swiss							
Mode of evaluation: Continuous Assessment Test, Quiz, Assignment, Final Assessment Test							
Rec	ommend	led by Board of Studies		11-0	2-2022		
App	proved b	y Academic Council	No.65	Date	17-03-202	22	
PROJECTS AND INTERNSHIP COURSES-3 (9 CREDITS)

Course code		Title of the cours	se		L	Т	Р	С
BCHE399J	Summ	ner Industrial In	ternship		0 0 0		0	1
Pre-requisite		Nil			Syl	ion		
						1.	.0	
Course Objectives:								
The course is desig	gned so as to expose	the students to the	e industry e	environment	and	to tal	ke up	on-
site assignments as	trainees or interns.							
	0.4							
Expected Course	Outcome:							
• Demonstrate pr	ofessional and ethic	al responsibility.						
• Understand the	impact of engineering	ng solutions in a g	lobal, ecor	nomic, envir	onme	ental,	and	
societal context	t							
• Develop the ab	ility to engage in res	earch and to invol	ve in lifelo	ng learning				
Comprehend co	ontemporary issues							
Module Content					4 W	eeks	(28 d)	ays)
Four weeks of work	k at the industry site							
Supervised by an e	xpert in the industry							
	~		-					
Mode of Evaluation Review	Mode of Evaluation: Continuous Assessment - Internship Report, Presentation and Project Review							
Recommended by	Board of Studies	11-02-2022						
Approved by Acad	emic Council	No.65	Date	17	7-03-	-2022		

Course code	Title of the course	L	Т	Р	С
BCHE497J	Project - I	0	0	0	3
Pre-requisite	Nil			vers	ion
		1.0			

Course Objectives:

To provide sufficient hands-on learning experience related to the design, development, and analysis of suitable product/process so as to enhance the technical skill sets in the chosen field.

Expected Course Outcome:

- 1. Demonstrate professional and ethical responsibility.
- 2. Evaluate evidence to determine and implement best practices.
- 3. Mentor and support peers to achieve excellence in the practice of the discipline.
- 4. Work in multi-disciplinary teams and provide solutions to problems that arise in multidisciplinary work.

Module Content	(Project duration: one semester)

The project may be a theoretical analysis, modelling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research, and any other related activities.

Can be individual work or a group project, with a maximum of 3 students.

In the case of group projects, the individual project report of each student should specify the individual's contribution to the group project.

Carried out inside or outside the university, in any relevant industry or research institution.

Publications in the peer reviewed journals / International Conferences will be an added advantage

Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. (No FAT) Continuous Assessment on the project – Mark weightage of 20:30:50 – project report to be submitted, presentation and project reviews

Recommended by Board of Studies	11-02-2022				
Approved by Academic Council	No.65	Date	17-03-2022		

Course code	Title of the course	L	Т	Р	C
BCHE498J	Project – II /Internship	0	0	0	5
Pre-requisite	Nil		labus	vers	ion
		1.0			

Course Objectives:

To provide sufficient hands-on learning experience related to the design, development, and analysis of suitable product / processes so as to enhance the technical skill sets in the chosen field.

Expected Course Outcome:

- 1. Formulate specific problem statements for ill-defined real-life problems with reasonable assumptions and constraints.
- 2. Perform literature search and/or patent search in the area of interest.
- 3. Conduct experiments / Design and Analysis/solution iterations and document the results.
- 4. Perform error analysis / benchmarking/costing
- 5. Synthesize the results and arrive at scientific conclusions/products/solution
- 6. Document the results in the form of a technical report/presentation

Module Content(Project duration: one semester)1. Project may be a theoretical analysis, modelling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software

- development, applied research and any other related activities.
- 2. Project can be for one or two semesters based on the completion of the required number of credits as per the academic regulations.
- 3. Can be individual work or a group project, with a maximum of 3 students.
- 4. In the case of group projects, the individual project report of each student should specify the individual's contribution to the group project.
- 5. Carried out inside or outside the university, in any relevant industry or research institution.
- 6. Publications in peer-reviewed journals / International Conferences will be an added advantage

Mode of Evaluation: Evaluation involves periodic reviews by the evaluation Team. (No FAT) Continuous Assessment on the project – Mark weightage of 20:30:50 – project report to be submitted, presentation and project reviews

Recommended by Board of Studies	11-02-2022					
Approved by Academic Council	No.65	Date	17-03-2022			

<i>a</i> 1		Ŧ		T	
Course code	Title of the course	L	Т	P	C
BCHE499.I	One Semester Internship	0	0	0	14
DOILEDING		v	v	v	. .
Pre-requisite	Nil	Syl	llabus	vers	ion
			1	Δ	

Course Objectives:

To provide sufficient hands-on learning experience related to the design, development, and analysis of suitable product / processes so as to enhance the technical skill sets in the chosen field.

Expected Course Outcome:

- 1. Formulate specific problem statements for ill-defined real-life problems with reasonable assumptions and constraints.
- 2. Perform literature search and/or patent search in the area of interest.
- 3. Conduct experiments / Design and Analysis/solution iterations and document the results.
- 4. Perform error analysis / benchmarking/costing
- 5. Synthesize the results and arrive at scientific conclusions/products/solution
- 6. Document the results in the form of a technical report/presentation

Module Content	(Project duration: one semester)

This is a capacity-linked opportunity during which the students are expected to take up research / industrial internship for a period of 5 - 6 months duration. These students are expected to complete all other academic commitments. The outcome is expected to be exceptional quality with tangible outcomes more than that expected of an undergraduate student. Evaluation will be either at the industry and / or by the school level committee constituted for this purpose. Student generally registers for the 5 credit internship and is escalated to 14 credits depending on the performance.

Mode of Evaluation: Evaluation involves periodic reviews by the evaluation Team. (No FAT) Continuous Assessment on the project – Mark weightage of 20:30:50 – project report to be submitted, presentation and project reviews

Recommended by Board of Studies	11-02-2022				
Approved by Academic Council	No.65	Date	17-03-2022		

NON GRADED DISCIPLINE CORE COURSE – 1 (1 CREDIT)

Course code Course Title					L	Т	Р	С
BCHE101N	BCHE101N Introduction to Engineering			0	0	0	1	
Pre-requisite		Nil			Syl	labu	s ver	sion
	1.0							
Course Objective:								
1. To make the stu	ident comfortable an	d get familiarized	with the fa	acilities av	ailabl	e on	camp	ous
2. To make the stu	ident aware of the ex	citing opportuniti	es and use	fulness of	engin	eerin	g to	
society								
3. To make the stu	ident understand the	philosophy of eng	gineering					
Expected Course	Outcome:							
1. To know the in	frastructure facilities	available on cam	pus					
2. To rationally ut	ilize the facilities du	ring their term for	their profe	essional gr	owth			
3. To appreciate th	ne engineering princ	iples, involve in li	fe-long lea	rning and	take u	p en	ginee	ring
practice as a set	rvice to society							
General Guideline	es							
General Guidelines 1. Student should observe and involve in the activities during the induction programme. Both general activities and those which are discipline-specific should be included here. 2. Student should get familiarized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website. 3. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering. 4. Activities under 'Do-it-Yourself' will be detailed by the School. 5. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used.								
Mode of Evaluation	n: Evaluation of the	submitted report a	nd interact	ion with th	ne stuc	lents		
Recommended by	Board of Studies			yes				
Approved by Acad	emic Council	No. 62	Date	15-07-20	21			

SHORT SYLLABUS

SCHOOL OF CHEMICAL ENGINEERING - SCHEME

B.Tech in Chemical Engineering

Discipline-Linked Engineering Sciences :

BCHE201L Computational Methods in Chemical Engineering (3 - 0 - 0 - 3)

Single Algebraic and Transcendental Equations - Computers and error analysis, mathematical model formulation; Linear and Nonlinear System of Equations - solution for single and simultaneous equations; Interpolation and Regression Analysis - Interpolation and regression analysis; Optimization - unconstrained and constrained optimization; Integration and Differentiation - numerical integration and differentiation ; Ordinary Differential Equations - Ordinary differential equations, Initial and boundary value problems; Partial Differential Equations - partial differential equations: Implicit and explicit methods.

BCHE201P Computational Methods in Chemical Engineering Lab (0 - 0 - 2 - 1)

Experiments related to computational methods - MATLAB code for bisection / Regula falsi method, Newton Raphson / Secant method, Gauss Elimination / Gauss Jordan method, Gauss Jacobi / Gauss Seidel method, Develop MATLAB code for ODE: Euler / Modified Euler method, ODE: Runge-Kutta method, Liebmann's method - Aspen Plus simulation/ MS Excel package.

BCHE204L Transport Phenomena (3 - 1 - 0 - 4)

Introduction - Concepts in chemical engineering, Transfer of momentum, mass, and energy; Momentum Transport - Phenomenological laws; Vector and Tensor analysis - Molecular and Convective Transport; 1D Viscous Flow: Shell Balance - viscous

Flow, shell Balance; Equations of Change - Equations of Change, Applications to isothermal flow of Newtonian and non-Newtonian fluids; Steady state Heat Transfer – Shell Balance - energy transport; Mass Transfer- Shell Balance - mass transport, mechanisms.

BCHE206L Materials Science and Engineering (3 - 0 - 0 - 3)

Basics of Materials and Structure – Classification of materials, atomic structure, chemical Bonds, structures of metals, ceramics, polymers, and amorphous materials; Crystal Systems - frenkel and schottky defects; Phase Diagrams of the engineering materials - chemical alloying; Evaluation of engineering materials – preparation of nano materials, microstructure; Characterization of materials - physicochemical properties; Electrochemical Characterization of the materials - evaluation of electrochemical, thermal and optical properties of materials, stress-strain response, polarization curves, electrolytic/electrochemical systems; Nano materials - Preparation of nano-materials, Heat treatment, sintering.

Discipline Core :

BCHE202L Chemical Engineering Thermodynamics (3 - 1 - 0 - 4)

Fundamental Concepts and Definitions - Volumetric properties of pure fluids, P-V-T relationships ; Laws of Thermodynamics - first law of thermodynamics, second law of thermodynamics; Thermodynamic Properties of Pure Fluids - thermodynamic properties of pure fluids, Maxwell's relations, fugacity, activity ; Thermodynamic Properties of Solutions - partial molar properties, residual properties , excess property relations; Phase Equilibria - Vapour-Liquid Equilibria for ideal solutions; Vapour-Liquid Equilibria – Non-ideal Solutions – azeotropic systems, P-x-y and T-x-y diagrams, consistency test for VLE data, Chemical Reaction Equilibria - criteria for chemical equilibrium, equilibrium constant.

BCHE203L Chemical Process Calculations (3 – 1 – 0 – 4)

Introduction to Basic Concepts - Unit conversion, mass and mole fractions; Vapor pressure and Humidity calculations - Vapor pressure of liquids, humidity and saturation; Material Balance without Chemical Reaction - steady state material balances for unit operations; Material balance with Chemical Reaction -

Stoichiometric equation, material balance with single and multiple chemical reactions; Recycle and Bypass Operation - Recycle, purge and bypass calculations in unit operations; Combustion calculations - theoretical and excess air requirement; Energy balance - steady state energy balance equation.

BCHE205L Momentum Transfer (3 - 0 - 0 - 3)

Basic Concept of Momentum Transfer - Characteristic properties of fluids; Fluid Flow Phenomena - Kinematics and Dynamics of fluid flow; Flow Measuring Devices – Classification and working principle; Flow through Pipes - Velocity Profile, Fluid friction; Dimensional and Model Analysis - Dimensional homogeneity, Similitude; Flow through Packed and Fluidized Bed - Flow past immersed bodies, Pressure drop across packed beds; Transportation of Fluids - Pumps, Pump Characteristics.

BCHE205P Momentum Transfer Lab (0 - 0 - 2 - 1)

Experiments related to Momentum Transfer - Flow through Venturi meter, Orifice meter, circular pipe, non-circular pipe, Reynolds Experiment, Bernoulli's theorem, Characteristics of Centrifugal pump, Packed bed, Fluidized bed.

BCHE207L Mass Transfer-1 (2 – 1 – 0 - 3)

Diffusion - Steady state molecular diffusion; Molecular diffusion in fluids - Diffusivity in solids and fluids; Mass transfer coefficients - Correlation for convective mass transfer coefficient; Theories of mass transfer - Penetration and surface theory; Humidification - Psychrometric Charts, Cooling Towers; Drying - Rate of Drying, Drying Equipment's; Crystallization - Super saturation, Types of Crystallizers used in practice.

BCHE208L Heat Transfer (3 - 0 - 0 - 3)

Conduction - Steady state and unsteady state conduction; Extended Surfaces and Unsteady state conduction - Fin efficiency and effectiveness, Lumped parameter system; Convection (without phase change) - Convective heat transfer coefficients; Convection (with phase change) - Drop wise and Film wise condensation, Boiling, Condensation; Radiation - Blackbody concepts, Gray bodies ; Heat Exchangers - LMTD, NTU, Effectiveness, Special type of heat exchangers; Evaporators - Design of single and multiple effect evaporators.

BCHE208P Heat Transfer Lab (0 - 0 - 2 - 1)

Experiments related to Heat Transfer - Thermal conductivity of metal rod and liquids, Transient Heat Conduction, Fin efficiency & effectiveness, Natural Convection heat transfer, Forced Convection heat transfer, Emissivity, Double Pipe Heat Exchanger, Plate type Heat Exchanger, shell and tube Heat Exchanger, Aspen Plus – EDR and PROSIM software.

BCHE301L Mechanical Operations (3 - 0 - 0 - 3)

Properties and Storage of Solids - Storage and transportation of bulk solids; Size Reduction of Solids - Laws of Crushing, Size Reduction Equipment; Size separation of solids - Screen analysis; Separation of solids based on specific Properties - Wet scrubber, Elutriator; Settling and Sedimentation - free and hindered settling; Filtration – Constant Pressure Filtration, Constant Rate Filtration; Agitation and Mixing - Power Consumption in Agitated vessel, Mixing index.

BCHE301P Mechanical Operations Lab 0 0 2 1

Experiments related to mechanical operations- Screen Effectiveness, Size reduction studies in Jaw crusher, Ball mill, Size reduction studies in Roll crusher, terminal settling velocity of a sphere, Plate and frame filter press, Leaf filter, Determination of area of thickener, Cyclone separator, Effectiveness of mixing.

BCH302L Mass Transfer-II (3-0-0-3)

Introduction to Equilibrium Staged Operations - Vapour–liquid Equilibria, Types of distillation; Distillation - McCabe-Thiele and Ponchon - Savarit graphical method; Absorption - Continuous contact, co-current, counter-current; Extraction- Liquid – Liquid equilibria, extraction equipment; Leaching - rate of leaching, Equipment for leaching; Adsorption – isotherms, Breakthrough Curves; Modern separation

techniques - Membrane separation, Chromatography techniques.

BCH302P Mass Transfer Lab (0-0-2-1)

Experiments related to Mass Transfer - Diffusion in gas phase, liquid phase, Wetted wall column, Simple distillation, Tray dryer, Liquid-liquid Equilibria ternary system, cross current Extraction, Continuous distillation, Adsorption (using Aspen Plus or PROSIM), Leaching.

BCHE303L Chemical Reaction Engineering I (3 – 0 – 0 – 3)

Fundamental Concepts and Definitions - rate and stoichiometry; Chemical Kinetics - reaction mechanism, Half-life method; Design of Isothermal Ideal Reactors - Ideal Mixed Flow and plug flow reactor; Multiple Reactors - mixed flow and plug flow reactors in series and parallel; Design of Multiple reactions - simultaneous reactions, Consecutive Reactions; Special Reactors - Semi batch reactor, Bio reactor; Non-isothermal Reactors - Material balance, Energy balance, Adiabatic reactors.

BCHE303P Chemical Reaction Engineering Lab (0 - 0 - 2 - 1)

Experiments related to reaction Engineering - equimolar and non-equimolar constant volume batch reactor, Adiabatic batch reactor, Plug flow reactor, Mixed flow reactor, reactor in series, packed bed reactor, RTD studies in Mixed flow reactor, RTD studies in plug flow reactor, RTD studies in packed bed flow reactor.

BCHE304L Chemical Process Technology and Economics (3 – 1 – 0 - 4)

Chloro-alkali and Cement Industries - Manufacture of sulphur, sulphuric acid, Portland cement, glass; Industrial Gases - carbon-di-oxide, hydrogen, oxygen and nitrogen; Fertilizer Industries - NPK Fertilizers; Cellulose, Sugar, Soap and Detergent Production Industries - paper, sugar, soap; Petroleum Industries - Petroleum refining processes; Cost Estimation - Cash flow for industrial operations, financing sources, capital requirements estimation; Cost accounting and Depreciation - Cost and asset accounting, financial statements, Depreciation.

BCHE305L Process Dynamics and Control (3 – 0 – 0 – 3)

Process Instrumentation - Principal measuring instruments in process industries; Linear Open Loop Systems - Forcing functions, first order and second order systems; Linear Closed Loop Systems - Development of Block diagram, controllers and final control elements; Transient Response and Stability Analysis – characteristics of controllers, offset, Routh's test; Frequency Domain Analysis - Bode stability criteria, Nyquist plot, Controller tuning; Advanced Process Control - Cascade control, Feed-Forward control; Computer Process Control - Distributed Control System, SCADA.

BCHE305P Process Dynamics and Control Lab (0 - 0 - 2 - 1)

Experiments related to process control - Temperature control system, level control system, flow control system, Cascade control loop, Non-interacting tanks/interacting tanks, controller tuning using cohen and coon, controller tuning Ziegler–Nichols method in Simulink, control Valve Characteristics, Ratio control using PROSIM, control using DCS trainer.

BCHE306L Chemical Reaction Engineering II (2 – 1-0-3)

Non-ideal Reactors - Residence Time Distribution, C, E and F curves; Introduction to Heterogeneous Reaction Engineering - Non catalytic fluid-solid reactions, ratecontrolling steps; Introduction to Catalytic Reactions - Rate law mechanisms, Rate limiting step; Transport Mechanisms in heterogeneous catalysis - Internal effectiveness, External transport limitations; Catalyst preparation and characterization - Surface area and pore volume determination; Catalyst Deactivation methods - order of deactivation, Catalyst regeneration; Design of Reactors for Fluid-Solid and Fluid-Liquid reactions - Overall view of Fluidized, Packed and Moving bed reactors.

BCHE307L Process Modelling and Simulation (2 - 0 - 0 - 2)

Conservation Principles and Models - Mathematical models, Conservation principles, Constitutive relations; Steady state lumped systems - linear and non-linear algebraic equations; Flow Sheeting and Solution - partitioning and precedence ordering, simultaneous solution, modular solution; Unsteady State Lumped Systems - matrix differential equations, simulation of closed loop systems; Dynamic Simulation of Unsteady State Lumped Systems - matrix differential equations, simulation of closed loop systems; Steady and unsteady State Distributed systems - Analysis of compressible flow, ODE boundary value problems; Artificial Neural Network - development of ANN based models, Performance of ANN Models.

BCHE307P Process Modelling and Simulation Lab (0 - 0 - 2 - 1)

Experiments related to modeling and simulation - Solution of Algebraic equations, Interacting Tanks in Series, Jacketed stirred tank Heater, Van de Vusse Reaction Mechanism, Non-isothermal CSTRs in series, Biochemical Reactor, Mixing Tank, 1D unsteady state heat conduction, Elliptic PDE and Parabolic PDE using Matlab PDE toolbox.

BCHE308L Chemical Process Equipment Design (3 - 0 - 0 - 3)

Introduction to Process Design - Flowchart and interpretation; Pressure vessel - Codes and standards, mechanical design of pressure vessel, storage vessels; Heat transfer equipment – heat Exchanger design, Condenser design; Heat Exchanger Network - Pinch Technology, Heat exchanger with energy network design; Separation process equipment - Distillation and Absorbers design; Reactor Design - ideal and adiabatic reactors; Simultaneous Heat and Mass transfer Equipment – Design of evaporators and dryers.

BCHE308P Chemical Process Equipment Design Lab (0 - 0 - 2 - 1)

Experiments related process equipment design - 3D drawing and applications, surfaces and geometries, Design and drawing of Pressure vessel, Shell and Tube heat Exchanger, Bubble cap tray, Rotary Louvre dryer, performance of Heat Exchanger using Aspen plus, Distillation Column using Aspen plus, Cost Estimation of Distillation Column using Aspen plus, Dynamic simulation on distillation column using Aspen Plus/Prosimulator

BCHE309L Membrane Separation Processes (3 - 0 - 0 - 3)

Overview, Classification and Membrane Materials - classification, types of membrane processes, membrane material; Membrane Preparation and Characterization - phase inversion process, visual methods; Membrane Transport Theory - Transport through porous membrane and nonporous membrane, fouling model; Reverse Osmosis - Models for reverse osmosis transport, Design of RO module; Nanofiltration - transport mechanism in NF membranes; Microfiltration and Ultrafiltration – MF and UF membranes and modules, membrane rejection and sieving coefficient; Other membrane Processes - Liquid membranes, membrane bioreactors.

BCHE310L Polymer Technology (3-0-0-3)

Basic Concepts of High Polymer Systems - Structural Features of a Polymer, Classification of Polymers; Classification of Polymerization- step-Growth Polymerization, addition polymerization; Polymer Characterization and properties of commercial polymers - Polymer Fractionation, Molecular Weight Distribution, Crystallinity, testing of polymers; Polymer Rheology and Morphology - Stress and Strain, Rheological properties of polymers, Crystallization of Rubber on Cooling; Polymer Processing Techniques - Moulding technique, forming techniques; Polymer Blends, Composites and Conducting Polymers - Bio-nano-composites, Protein-based polymers; Polymers in Wastes and their Environmental Impact - Waste Management, Recovery and Recycling of Organic Wastes.

BCHE311L Process Utilities and Pipeline Design (3 - 0 - 0- 3)

Introduction to process plant utilities - selection of blowers and compressors, Purification and transportation of air; Process water treatment and recycling recycling aspects of water from blowdowns and rejects; Steam generation and distribution - boiler types, boiler accessories, steam distribution and waste heat utilization; Humidification and refrigeration systems - types of refrigerants, concept of cryogenics and its characteristics; Introduction to Piping Design - Process Auxiliaries, piping drawings, pipe fittings, pipe joints; Piping Materials, Codes and Standards -Metallic materials, ASME – BIS – ISO standards; Piping Installation and Insulation -Overhead installations Weather proof and fire-resisting pipe insulation

BCHE312L Chemical Process Optimization (3 - 0 - 0 - 3)

Formulation of Optimization Problems - Mathematical concepts of optimization; Single Variable Optimization - Unconstrained - Region elimination methods, Polynomial approximations; Multivariable Optimization – Unconstrained - Graphical visualization, Gradient-based methods; Linear Programming - Simplex method, Sensitivity analysis; Nonlinear Programming with constraints - Lagrange multipliers, Quadratic programming; Optimization of Chemical processes-I - Minimum work of gas compression, Optimum recovery of waste heat; Optimization of Chemical processes-II - optimization of heat exchanger networks, optimization of multistage evaporators using MATLAB/Excel.

BCHE313L Environmental Pollution Control (3 - 0 - 0 - 3)

Introduction - Environmental standards, MINAS; Pollution Prevention - Process modification, alternative raw material, energy recovery and waste utilization; Air pollution control - Principles and design of air pollution control equipments; Water pollution control – Selection, design and performance analysis of waste water treatment processes; Solid waste management - Classification of solid waste, 4R concept, waste disposal methods; Hazardous waste management - Hazardous waste classification, e-waste management; Pollution control in chemical process industries - textile and tanneries, electroplating, refineries and thermal power plants.

BCHE314L Fuels and combustion (3 - 0 - 0 - 3)

Classification and Properties of Fuels – Types and characteristics of fuels, Calorific value (CV), Orsat apparatus; Solid fuels - Origin of coal, applications of the coal; Liquid fuels - classification of crude petroleum, processing of crude petroleum; Gaseous fuels - Dry and wet natural gas, LPG, LNG, CNG; Combustion Calculations - Flame and Flame dynamics, air fuel ratio, and carbon Foot print calculation; Combustion Equipment - fuel firing system, Fluidized bed combustion; Alternative Fuels - Adsorbed Natural Gas (ANG), Synthetic natural Gas (SNG), Waste to fuel.

BCHE315L Biochemical Engineering (3 - 0 - 0 - 3)

Introduction to Biochemical Engineering - Scope of biochemical engineering; Basic Microbiology and Biochemistry - overview of biotechnology, diversity in microbial

cells, Glucose metabolism; Enzymes & Enzyme kinetics- mechanism of enzymatic reactions, enzymes inhibition, enzyme immobilization; Kinetics of Cell Growth - growth characteristics of microbial cells, inhibition on cell growth; Transport in Microbial Systems - Newtonian and non-Newtonian behavior of broth, gas/liquid transport in cells, heat transport in microbial systems; Bio reactors – Design of bio reactor, Scale up studies; Downstream processes – centrifugation, extraction, membrane separations, cell desruption technologies.

BCHE316L Pharmaceutical Technology 3003

Tabletting Technology - Types and classes of tablets, formulation of tablets, tablet coating; Capsules Technology – hard gelatin and soft gelatin capsules; Microencapsulation - core materials, coating materials, evaluation of microcapsules; Parenteral Products - general manufacturing process; Novel Drug Delivery Systems - targeted drug delivery systems, nanoparticles; Packaging Techniques – packaging and stability of products, packaging machinery; Packaging Technology – BFS Technology, Quality Analysis, Packaging designs.

BCHE317L Petroleum Refining Technology (3 - 0 - 0 - 3)

Overview on crude oil and upstream processes - exploration practices, crude oil composition, selection criteria for crude oil; Distillation – Desalting, ADU, VDU; Cracking, visbreaking and coking - Thermal cracking, Catalytic cracking, Hydrocracking; Quality improvement of light end petroleum products - Knocking, Catalytic reforming, Polymerization; Purification of petroleum products - Sweetening processes, Dewaxing , Deasphalting; Fuel additives - Types of oil additives, corrosion inhibitors, fuel dyes; Liquid fuel storage and effluent treatment plant - types of storage tanks , overview of an effluent treatment plant.

BCHE318L Safety and Hazard Analysis (3 - 0 - 0 - 3)

Introduction to Safety in Industry - Hazard, Risk, Danger and Accident, Chemical safety, Industry safety; Safety Programmes in Industry - Safety Analysis in industries, Economic, Social Benefits from safety program; Hazard analysis in the workplace - Hazard identification, Creating HAZOP table for Chemical plants, , Layer of Protection Analysis (LOPA); Risk Assessment - Difference in risk assessment, Risk management, Emergency planning; Safety Models and behaviour-based safety

- Gaussian plume models, What-if analysis, Vulnerability models, Safety audits, safety checklist; Safety in manufacturing and service industries - Formulation of the safety committee, ergonomic safety; Case studies - Dominos' effect, Chemical release.

BCHE319E Process Plant Design and Simulation (2 – 0 - 2 - 3)

Introduction - Process synthesis, flow sheeting & simulations; Approaches to process simulation - Equation solving approach used in process plant simulation; Equation solving approach - Partitioning, Decomposition, Direct Methods, Iterative methods; Decomposition of Networks - digraph, signal flow graph, Boyer Moore (BM) Algorithm; Convergence promotion - Linear equation, nonlinear equation, Convergence Promotion scheme Newton's method, Wegstein's method; Application of flow sheeting software - Aspen Plus-Steady state simulation, Aspen Hysys-dynamic simulation; Case studies: Process plant steady-state and dynamic simulation.

BCHE320L Chemical Product Design (3 - 0 - 0 - 3)

Introduction - Introduction to chemical product design; Needs of chemical product -Customer needs, lead users, interviews; Needs to specifications - Consumer assessments, Converting needs to specifications; Ideas – brainstorming, Chemical sources of ideas, sorting the ideas, screening the ideas; Selection of ideas ingredient substitutions, selection using kinetics, risk in product selection; Product manufacture - patents and trade secrets, supplying missing information, micro structured products; Speciality chemical manufacture and Economic Concerns extending laboratory results, heuristics for separations, Product versus process economics, time value of money.

BCHE321L Natural Gas Engineering (3 - 0 - 0 - 3)

Properties and Composition of Natural Gas - Natural Gas origin, Thermodynamic properties; Natural Gas Extraction - Onshore Extraction, Offshore Extraction; Natural Gas Offshore Production and Handling - Drilling Deep-water Reservoir, Mooring Systems; Natural Gas Onshore Production and Handling- Sucker rod pumping; Natural Gas Processing – Dehydration, Desulphurization processes, Low-temperature processes; Liquid Recovery – Natural Gas Liquids(NGL), LPG, C3 and

C2 fraction recovery from Natural Gas; Economics of Natural Gas - Trade & selection of port location, Economics of gas processing.

BCHE322L Nanoscience and Nanotechnology (3 - 0 - 0 - 3)

Introduction - Scientific revolution, influence of nano over micro/macro; Types of nanostructure and their properties - Quantum Dots shell structures, mechanical-physical-chemical properties; Synthesis and stability of nanomaterials - Top-down and bottom-up methods, electrostatic stabilization; Metal, semiconductor and magnetic nanoparticles - Core-Shell structured and semiconductor nanoparticles, Janus nanoparticles; Nano scale device fabrication - Lithography techniques, inferometric techniques, nano scale coating techniques; Nano scale characterization techniques - surface and bulk morphological properties, nano mechanic properties; Application of nanomaterials - molecular electronics and nanoelectronics, membrane-based application.

BCHE323L Fertilizer Technology (3-0-0-3)

Overview of Fertilizers - Plant Nutrients, Fertilizer production and consumption, Raw materials; Nitrogenous Fertilizers - Ammonium sulphate, Ammonium chloride, Ammonium nitrate; Phosphatic Fertilizers - Production of sulphuric and phosphoric acids, Single superphosphate, Triple superphosphate, Thermal phosphates; Potassic Fertilizers - Potassium Chloride, Potassium sulphate, Potassium magnesium sulphate; Complex Fertilizers - Urea ammonium phosphate, Ammonium phosphate sulphate; Other Fertilizers – Biofertilizers, Controlled release fertilizers; Pollution from fertilizer industry - Solid, liquid and gaseous pollution.

BCHE324L Fermentation Technology (3 – 0 – 0 - 3)

Introduction and history of fermentation processes - Development of fermentation process; Microbial growth kinetics - Batch, Continuous and fed-batch, structured and unstructured models of culture; Microbial Strain Management - Industrial microorganisms, isolation, preservation of strains; Media for industrial fermentations - Media formulation, oxygen requirements, Media optimization; Aseptic fermentation process - Media sterilization, Development of inocula; Fermenters - Aeration and agitation, Foam control, stirred & sparred tanks fermenters; Process technology for bulk products - Downstream processing, flow sheet and process description of modern processes.

BCHE391J Technical Answers to Real Problems Project (0 - 0 - 0 - 3)

Students are expected to perform a survey and interact with society to find out the real life issues. Logical steps with the application of appropriate technologies should be suggested to solve the identified issues. Subsequently the student should design the related system components or processes which is intended to provide the solution to the identified real-life issues.

BCHE392J Design Project (0 - 0 - 0 - 3)

Students are expected to develop new skills and demonstrate the ability to develop prototypes to design prototype or working models related to an engineering product or a process.

BCHE393J Laboratory Project (0 - 0 - 0 - 3)

Students are expected to perform experiments and gain hands-on experience on the theory courses they have already studied or registered in the ongoing semester. The theory course registered is not expected to have laboratory component and the student is expected to register with the same faculty who handled the theory course. This is mostly applicable to the elective courses. The nature of the laboratory experiments (wet lab / dry lab) is depended on the course

BCHE394J Product Development Project (0 - 0 - 3)

Students are expected to translate the developed prototypes / working models into a product which has application to society or industry. Evaluation involves periodic reviews by the faculty with whom the student has registered.

BCHE395J Computer Project (0 - 0 - 3)

Students are expected to use programming skills or modelling to analyse complex engineering processes. The student should be able to evaluate the application and limitations of the said engineering processes. Evaluation involves periodic reviews by the faculty with whom the student has registered.

BCHE396J Reading Course (0-0-0-3)

This is oriented towards reading published literature or books related to niche areas or focussed domains under the guidance of a faculty. It is expected to have at least 10 students to form a group and come up with a specific topic. Assessments will be as per the academic regulations slated for the theory course.

BCHE397J Special Project (0-0-0-3)

This is an open-ended courses in which the student is expected to work on a time bound research project under the supervision of a faculty. The result should be a tangible output in terms of publication of research articles in a conference proceeding or in a peer-reviewed Scopus indexed journal.

BCHE398J Simulation Project (0 - 0 - 3)

The student is expected to simulate and critically analyse the working of a real system. Role of different variables which affect the system has to be studied extensively such that the impact of each step in the process is understood, thereby the performance of each step of the engineering process is evaluated. Evaluation involves periodic reviews by the faculty with whom the student has registered.

BCHE401L Petrochemical Technology (3 - 0 - 0 - 3)

Petrochemicals and Precursors - Selection of precursors; Alkanes and Alkenes -Manufacture of Petrochemical Derivatives from C1, C2, C3, C4 compounds; Aromatics - Manufacture of Petrochemical Derivatives from Benzene, Toluene, Xylene and Styrene; Petrochemical Derivatives - Dimethyl Terephthalate, cumene, diphenyl carbonate; Polymers - poly butadiene rubber, Styrene-Butadiene Rubber (SBR); Plastics and Fibres – Melamine, Formaldehyde resins; Economics of Petrochemical Industry - Selection of Petrochemical products, Economics of Petrochemical derivatives.

BCHE402L Food Process Engineering (3 - 0 - 0 - 3)

Introduction to food - Constituents of food, contribution to organoleptic and textural characteristics; Food microbiology and food additives - Food borne diseases and

food spoilage, Functional characteristics of additives in food processing; Food process calculations - Material and energy balances in food processing; Unit operations in food processing - Concept of food rheology and viscoelastic foods, Mechanical separations, Heat exchangers, Evaporators, Dryers; Food preservation techniques - sterilization and pasteurization, Food canning technology, microwaves, sterilization of canned food; Food processing and food quality - Processing of Cereal grains, Vegetables, Food quality parameters and their evaluation; Food packaging - Types of packaging, Packaging design.

BCHE403L Process Intensification (3 - 0 - 0 - 3)

Introduction - Techniques of Process Intensification (PI), Applications, benefits from process intensification; Process intensification through micro reaction technology - Implementation of Micro reaction Technology, Microfabrication of Reaction and unit operation Devices, Wet and Dry Etching Processes; Mixing and flow pattern - Scales of mixing, Flow patterns in reactors, Mixing in intensified equipment, Ultrasound Atomization, High intensity inline mixers reactors, Static mixers; Combined chemical reactor with heat exchange and reactor/separators - Reactive absorption, Reactive distillation; Compact heat exchangers - Plate heat exchangers, Spiral heat exchangers, Selection of heat exchanger technology; Enhanced fields - Cavitation Reactors, Sono crystallization; Case studies - Petrochemicals and Fine Chemicals, Nuclear Industry.

BCHE404L Colloids and Interfacial Science (3 - 0 - 0 - 3)

Introduction to Colloid & Interface Science - Fundamentals of Colloid Science, Electrostatic Interactions in Colloids, The electrical double layer (EDL) theory; Surface Tension and Contact Angle - Lewis Acid-Base interactions, Du Noüy ring method , Wilhelmy plate method; Interactions at Interfaces - Surfactants Types, Micellization of surfactant, Hydrophilic-lipophilic balance (HLB); Emulsions -Thermodynamics of emulsification, micro emulsion, foams; Design of Interfaces -Models of adsorption, calculation of free energy of adsorption; Principles of Light Scattering - Static light scattering, Dynamic light scattering; Application of Colloids and Interfacial phenomena – Colloidal and interfacial phenomena in biology, Medicine, Tribology.

BCHE405L Fluidization Engineering (3 - 0 - 0 - 3)

Introduction - Concept of Fluidization, Industrial Applications of Fluidized Beds; Characteristics of solids - Geldart Classifications of Particles, Gas-solid system, Liquid-solid system; Characterization of Fluidization I - Mapping of Fluidization Flow pattern, Behaviour of Fluidized Beds; Characterization of Fluidization II - Frictional pressure drop and its model, Design of Distributors; Entrainment and Elutriation -Entrainment from Tall and Short Vessels, Flow Pattern of Gases through Fluidized Beds; Heat Transfer in Fluidized Beds - Fluid-solid heat transfer, Determination and Interpretation of Heat Transfer; Miscellaneous systems - Conical fluidized bed, Inverse fluidized bed, Draft tube systems, Design of fluidized bed reactors.

BCHE406L AI in Chemical Engineering (3 - 0 - 0 - 3)

Artificial Intelligence in Chemical Engineering - phases of AI, expert systems, neural network; Artificial Neural Networks (ANN) - neural network architecture, learning methods, clustering, classification; Introduction to Fuzzy Logic - fuzzy sets and concepts, fuzzy relations, Adaptive Neuro Fuzzy Inference System (ANFIS); AI in Process Modelling - ANN models, fuzzy logic models, hybrid models; AI in Process Optimization - genetic algorithm, swarm optimization; AI in fault detection and diagnosis - neural network method, fuzzy logic method; AI in Process Control - Conventional versus AI based process control, ANN, Fuzzy logic, ANFIS.

Project and Internship :

BCHE399J Summer Industrial Internship (0 - 0 - 0 - 1)

Four weeks of work at industry site. Supervised by an expert at the industry.

BCHE497J Project – I (0 - 0 - 0 - 3)

Carried out inside or outside the university, in any relevant industry or research institution. Publications in peer-reviewed journals / International Conferences will be an added advantage

BCHE498J Project - II/Internship (0 - 0 - 0 - 5)

Carried out inside or outside the university, in any relevant industry or research institution. Publications in peer-reviewed journals / International Conferences will be an added advantage

BCHE499J One Semester Internship

Carried out inside or outside the university, in any relevant industry or research institution. Publications in peer-reviewed journals / International Conferences will be an added advantage

Date : 21-02-2022

Signature Dean, SCHEME

(0 - 0 - 0 - 14)

Dean School of Chemical Engineering (SCHEME) Vellore Institute of Technology (VIT) (Deemed to be University under sections of the USC Ad, 1956) Vellore - 632 014, TN, India

Im