

SCHOOL OF CHEMICAL ENGINEERING (SCHEME)

B.Tech Chemical Engineering (BCM)

Curriculum and Syllabus

[2019-2020 admitted students]

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF CHEMICAL ENGINEERING

To improve the quality of life through innovations in Chemical Engineering

MISSION STATEMENT OF THE SCHOOL OF CHEMICAL ENGINEERING

To prepare the graduates for a rewarding career by providing quality education in Chemical Engineering in tune with evolving requirements of the society.

To impart knowledge and develop technology through quality research in frontier areas of chemical and inter-disciplinary fields.

To produce practicing engineers with professional ethics to cater the contemporary needs of the society and environment.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.
- 2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies in engineering or management.
- 6. Graduates will pursue career paths in teaching or research.

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_02: Having a clear understanding of the subject related concepts and of contemporary issues and apply them to identify, formulate and analyse complex engineering problems.

PO_03: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment

PO_04: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information

PO_05: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice

B.Tech Chemical Engineering (BCM)

PO_06: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems

PO_07: Having adaptive thinking and adaptability in relation to environmental context and sustainable development

PO_08: Having a clear understanding of professional and ethical responsibility

PO_09: Having cross cultural competency exhibited by working as a member or in teams

PO_10: Having a good working knowledge of communicating in English - communication with engineering community and society

PO_11: Having a good cognitive load management skills related to project management and finance

PO_12: Having interest and recognize the need for independent and lifelong learning

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of B. Tech. (Chemical Engineering) programme, graduates will be able to:

- 1. Analyze and solve complex problems in process and allied Industries by applying core and multidisciplinary competencies.
- 2. Design and develop efficient chemical processes/products considering economic, safety and environmental aspects.
- 3. Implement the modern practices in industrial/research settings to serve as practicing engineers with professional ethics.

SCHOOL OF CHEMICAL ENGINEERING (SCHEME)

B. Tech Chemical Engineering

CREDIT STRUCTURE

Category-wise Credit distribution

Category	Credits
University core (UC)	53
Programme core (PC)	60
Programme elective (PE)	35
University elective (UE)	12
Total credits	160

S.No	Course Code	Course Title	L	Т	Р	J	С
1	CHE1901	Technical Answers for Real World Problems (TARP)	1	0	0	4	2
2	CHE1902	Industrial Internship	0	0	0	0	1
3	CHE1903	Comprehensive Examination	0	0	0	0	1
4	CHE1904	Capstone Project	0	0	0	0	12
5	CHY1701	Engineering Chemistry	3	0	2	0	4
6	CSE1001	Problem Solving and Programming	0	0	6	0	3
7	CSE1002	Problem Solving and Object Oriented Programming	0	0	6	0	3
8	ENG1901/ ENG1902/ ENG1903	Technical English I Technical English II Advanced Technical English	0/ 0/ 0	0/ 0/ 0	4/ 4/ 2	0/ 0/ 4	2
9	FLC4097	Foreign Language Courses Basket	2	0	0	0	2
10	HUM1021	Ethics and Values	2	0	0	0	2
11	MAT1011	Calculus for Engineers	3	0	2	0	4
12	MAT2001	Statistics for Engineers	3	0	2	0	4
13	MGT1022	Lean Start-up Management	1	0	0	4	2
14	PHY1701	Engineering Physics	3	0	2	0	4
15	PHY1901	Introduction to Innovative Projects	1	0	0	0	1
16	STS 1101 STS 1201	Fundamentals of Aptitude Introduction to problem solving	0	0	0	0	1
17	STS 1102 STS 1202	Arithmetic problem solving Introduction to quantitative, logical and verbal ability	0	0	0	0	1
18	STS 2101	Getting started to skill enhancement	0	0	0	0	1

B. Tech Chemical Engineering University Core

	STS 2201	Numerical ability and cognitive intelligence					
19	STS 2102 STS 2202	Enhancing problem solving skills Advanced aptitude and reasoning skills	0	0	0	0	1
20	STS 3101 STS 3201	Introduction to programming skills Programming skills for employment	0	0	0	0	1
BRIDO	BRIDGE COURSE – NON CREDIT COURSE						
1	CHY1002	Environmental Sciences	3	0	0	0	3
2	ENG1000/ ENG2000	Foundation English I Foundation English II	0	0	4	0	2
3	EXC4097	Extra & Co- Curricular Activities	0	0	0	0	2
	Total Credits	(A)			60		
	Non Credit Course (B)				7		
	University Core Courses (A-B) 53						

Programme Core

Sl. No	Course Code	Course Title	L	Т	Р	J	С
1	CHE1001	Materials Science and Strength of Materials	3	0	0	0	3
2	CHE1002	Process Calculations	4	0	0	0	4
3	CHE1003	Process Engineering Thermodynamics	3	0	0	4	4
4	CHE1004	Chemical Technology	3	0	0	0	3
5	CHE1005	Momentum Transfer	3	0	2	0	4
6	CHE1006	Heat Transfer	2	0	2	4	4
7	CHE1022	Mechanical Operations	3	0	2	0	4
8	CHE2001	Chemical Reaction Engineering	3	0	2	0	4
9	CHE2002	Process Equipment Design and Economics	2	0	2	4	4

10	CHE3001	Computational Methods in Process Engineering	3	0	2	0	4
11	CHE3002	Process Instrumentation and Control	2	0	2	4	4
12	CHE3003	Mass Transfer	3	0	0	0	3
13	CHE4001	Equilibrium Staged Operations	2	0	2	4	4
14	MAT2002	Applications of Differential and Difference Equations	3	0	2	0	4
15	MAT3003	Complex Variables and Partial Differential Equations	3	1	0	0	4
16	MEE1001	Engineering Drawing	1	0	4	0	3
		Total					60

Programme Electives

Sl. No.	Course Code	Course Title	L	Т	Р	J	С
1	CHE1007	Safety and Hazard Analysis	2	0	0	4	3
2	CHE1008	Unit Processes in Organic Synthesis	3	0	2	0	4
3	CHE1009	Biochemical Engineering	3	0	0	0	3
4	CHE1010	Process Plant Utilities	3	0	0	0	3
5	CHE1011	Optimization of Chemical Processes	3	0	0	0	3
6	CHE1013	Natural Gas Engineering	3	0	0	0	3
7	CHE1014	Petroleum Technology	3	0	0	0	3
8	CHE1015	Petrochemical Technology	3	0	0	0	3
9	CHE1016	Fermentation Technology	3	0	0	0	3
10	CHE1017	Food Process Engineering	2	0	0	4	3
11	CHE1018	Membrane Separations Technology	3	0	0	0	3
12	CHE1019	Polymer Technology	3	0	0	0	3
13	CHE1020	Fertilizer Technology	3	0	0	0	3

B.Tech Chemical Engineering (BCM)

14	CHE1023	Production and Operations Management	3	0	0	0	3
15	CHE2003	Chemical Product Design	3	0	0	0	3
16	CHE2006	Fuels and Combustion	3	0	0	0	3
17	CHE2007	Process Intensification	3	0	0	0	3
18	CHE2008	Chemical Engineering Computational Fluid Dynamics	2	0	0	4	3
19	CHE3004	Heterogeneous Reaction Engineering	2	0	0	4	3
20	CHE3005	Chemical Process Integration	3	0	0	0	3
21	CHE3006	Process Plant Simulation	3	0	0	4	4
22	CHE3007	Multiphase Flow	3	0	0	0	3
23	CHE3008	Industrial Pollution Engineering	3	0	0	0	3
24	CHE3010	Colloids and Interfacial Sciences	3	0	0	0	3
25	CHE4002	Transport Phenomena	3	0	0	0	3
26	CHE4003	Modelling and Simulation in Process Engineering	2	0	2	0	3
27	CHE4005	Fluidization Engineering	3	0	0	0	3
28	CHE4006	Introduction to Molecular Dynamics and Simulation	3	0	0	0	3
29	CHE4007	Rheology of Complex Fluids	3	0	0	0	3
30	CHY1004	Materials and Instrumental Techniques	3	0	2	0	4
31	EEE1001	Basic Electrical and Electronics Engineering	2	0	2	0	3
32	MEE1011	Renewable Energy Sources	2	2	2	0	4
33	MEE4006	Computational Fluid Dynamics	2	2	2	0	4

University Elective Baskets

Management courses

Sl.No	Code	Title	L	Т	Р	J	С
1	MGT1001	Basic Accounting	3	0	0	0	3
2	MGT1002	Principles of Management	2	0	0	4	3
3	MGT1003	Economics for Engineers	2	0	0	4	3

B.Tech Chemical Engineering (BCM)

		•		-			
4	MGT1004	Resource Management	2	0	0	4	3
5	MGT1005	Design, Systems and Society	2	0	0	4	3
6	MGT1006	Environmental and Sustainability Assessment	2	0	0	4	3
7	MGT1007	Gender, Culture and Technology	2	0	0	4	3
8	MGT1008	Impact of Information Systems on Society	2	0	0	4	3
9	MGT1009	Technological Change and Entrepreneurship	2	0	0	4	3
10	MGT1010	Total Quality Management	2	2	0	0	3
11	MGT1014	Supply Chain Management	3	0	0	0	3
12	MGT1015	Business Mathematics	3	0	0	0	3
13	MGT1016	Intellectual Property Rights	3	0	0	0	3
14	MGT1017	Business Regulatory Framework For Start-ups	3	0	0	0	3
15	MGT1018	Consumer Behaviour	3	0	0	0	3
16	MGT1019	Services Marketing	3	0	0	0	3
17	MGT1020	Marketing Analytics	2	0	2	0	3
18	MGT1021	Digital and Social Media Marketing	3	0	0	0	3
19	MGT1022	Lean Start-up Management	1	0	0	4	2
20	MGT1023	Fundamentals of Human Resource Management	3	0	0	4	4
21	MGT1024	Organizational Behaviour	3	0	0	4	4
22	MGT1025	Foundations of Management And Organizational Behaviour	3	0	0	4	4
23	MGT1026	Information Assurance and Auditing	2	0	0	4	3
24	MGT1028	Accounting and Financial Management	2	2	0	4	4
25	MGT1029	Financial Management	2	1	0	4	4
26	MGT1030	Entrepreneurship Development	3	0	0	4	4
27	MGT1031	International Business	3	0	0	4	4
28	MGT1032	Managing Asian Business	3	0	0	4	4
29	MGT1033	Research Methods in Management	2	1	0	4	4
30	MGT1034	Project Management	3	0	0	4	4
31	MGT1035	Operations Management	3	0	0	0	3
32	MGT1036	Principles of Marketing	3	0	0	4	4
33	MGT1037	Financial Accounting and Analysis	2	1	0	4	4

34	MGT1038	Financial Econometrics	2	0	0	4	3
35	MGT1039	Financial Markets and Institutions	2	0	0	4	3
36	MGT1040	Personal Financial Planning	2	0	0	4	3
37	MGT1041	Financial Derivatives	2	1	0	4	4
38	MGT1042	Investment Analysis and Portfolio Management	2	0	0	4	3
39	MGT1043	Applications in Neuro Marketing	3	0	0	4	4
40	MGT1044	Global Brand Marketing Strategies	3	0	0	4	4
41	MGT1045	Industrial Marketing	3	0	0	4	4
42	MGT1046	Sales and Distribution Management	3	0	0	4	4
43	MGT1047	Social Marketing	3	0	0	4	4
44	MGT1048	Political Economy of Globalization	3	0	0	4	4
45	MGT1049	Sustainable Business Models	3	0	0	4	4
46	MGT1050	Software Engineering Management	2	0	0	4	3
47	MGT1051	Business Analytics for Engineers	2	2	0	0	3
48	MGT1052	Bottom of the Pyramid Operations	3	0	0	0	3
49	MGT1053	Entrepreneurship Development, Business Communication and IPR	1	0	2	0	2
50	MGT1054	Product Planning and Strategy	2	2	0	0	3
51	MGT1055	Design Management	2	2	0	0	3
52	MGT1056	Accounting and Financial Management	3	0	0	4	4
53	MGT6001	Organizational Behaviour	2	0	0	4	3

Humanities courses

Sl.N	Code	Title	L	Т	Р	J	С
0							
1	HUM1001	Fundamentals of Cyber Laws	3	0	0	0	3
2	HUM1002	Business Laws	3	0	0	0	3
3	HUM1003	Basic Taxation for Engineers	3	0	0	0	3
4	HUM1004	Corporate Law for Engineers	3	0	0	0	3
5	HUM1005	Cost Accounting for Engineers	3	0	0	0	3
6	HUM1006	Business Accounting for Engineers	3	0	0	0	3
7	HUM1007	Contemporary Legal Framework for Business	3	0	0	0	3
8	HUM1009	International Business	3	0	0	0	3
9	HUM1010	Foreign Trade Environment	3	0	0	0	3
10	HUM1011	Export Business	3	0	0	0	3

B.Tech Chemical Engineering (BCM)

11	HUM1012	Introduction to Sociology	3	0	0	0	3
12	HUM1013	Population Studies	3	0	0	0	3
13	HUM1021	Ethics and Values	2	0	0	0	2
14	HUM1022	Psychology in Everyday Life	2	0	0	4	2
15	HUM1023	Indian Heritage and Culture	2	0	0	4	2
16	HUM1024	India and Contemporary World	2	0	0	4	2
17	HUM1025	Indian Classical Music	1	0	2	4	1
18	HUM1033	Micro Economics	3	0	0	0	3
19	HUM1034	Macro Economics	3	0	0	0	3
20	HUM1035	Introductory Econometrics	2	0	2	0	2
21	HUM1036	Engineering Economics and Decision Analysis	2	0	0	4	2
22	HUM1037	Applied Game Theory	2	0	0	4	2
23	HUM1038	International Economics	3	0	0	0	3
24	HUM1039	Community Development in India	2	0	0	4	2
25	HUM1040	Indian Social Problems	3	0	0	0	3
26	HUM1041	Indian Society Structure and Change	3	0	0	0	3
27	HUM1042	Industrial Relations and Labour Welfare in India	3	0	0	0	3
28	HUM1043	Mass Media and Society	2	0	0	4	2
29	HUM1044	Network Society	3	0	0	0	3
30	HUM1045	Introduction to Psychology	2	0	2	0	2
31	HUM1706	Business Accounting for Engineers	3	0	0	0	3

UNIVERSITY CORE

Course code	Technical Answers for Real World	Problems (TAR	L T P J C
CHE1901			1 0 0 4 2
Pre-requisite	PHY1999 and 115 Credits Earned		Syllabus version
			v. 1.0
Course Objectives	:		
Needs	s to identify the need for developing newer	-	
2. To train student prototypes / pro	ts to propose and implement relevant techno oducts	logy for the deve	elopment of the
3. To make the stu prototypes / pro	idents learn to the use the methodologies availated action of the second s	ailable to assess t	the developed
Course Outcomes			
2. Apply appro	l life problems related to society. opriate technology(ies) to address the identifind arrive at innovative solutions	ied problems usi	ing engineering
		I	
Module:1			15 hours
 Field visits 6 – 10 stude Minimum of Appropriate Solution sho design/relev Consolidate Participatio will be used Project outo political and Contributio 	on of real life problems can be arranged by the faculty concerned ents can form a team (within the same / diffe of eight hours on self-managed team activity e scientific methodologies to be utilized to se ould be in the form of fabrication/coding/mo vant scientific methodology(ies) ed report to be submitted for assessment n, involvement and contribution in group dis a sthe modalities for the continuous assessment come to be evaluated in terms of technical, e d demographic feasibility n of each group member to be assessed component to have three reviews with the w	blve the identified odeling/product d scussions during ment of the theor conomical, socia	lesign/process the contact hours y component l, environmental,
	n: (No FAT) Continuous Assessment the pro report to be submitted, presentation and proj		k weightage of

Recommended by Board of Studies	04-03-2016		
Approved by Academic Council	No. 47	Date	05-10-2017

CHE1902	Ir	ndustrial Intern	ship		L	Т	P	J	С
					0	0	0	0	1
Pre-requisite	Completion of mini	mum of Two set	mesters			1	<u> </u>		
Course Objecti	ves:								
The course is de	signed so as to expose	the students to i	industry e	nvironment ar	nd to	o ta	ke u	o on	-
site assignment	as trainees or interns.								
Course Outcom	es:								
1. Have an	exposure to industrial	practices and to	work in t	aame					
		practices and to	WOIK III t	callis					
 Communicate effectively Understand the impact of engineering solutions in a global, economic, environmental 									
		peering solutions	in a glob	al economic	env	iro	me	ntal	
3. Understa	nd the impact of engir	neering solutions	s in a glob	al, economic,	env	iro	ıme	ntal	
3. Understa and socie	nd the impact of engiretal context						ime	ntal	
 Understa and socie Develop 	nd the impact of engir etal context the ability to engage i	n research and to					nme	ntal	
 Understa and socie Develop Compreh 	nd the impact of engir etal context the ability to engage is and contemporary issued	n research and to ues					nme	ntal	
 Understa and socie Develop Compreh 	nd the impact of engir etal context the ability to engage i	n research and to ues					nme:	ntal	
 Understa and socie Develop Compreh 	nd the impact of engir etal context the ability to engage is and contemporary issued	n research and to ues						ntal Wee	eks
 Understa and socie Develop Compreh Engage i Contents	nd the impact of enginetal context the ability to engage in rend contemporary issuent n establishing his/her	n research and to ues			arnir				eks
 Understa and socia Develop Compreh Engage i Contents Four weeks of we were weeks of we were weeks of we were weeks of we were were were were were were were	nd the impact of enginetal context the ability to engage in end contemporary issuent contemporary issuent n establishing his/her of ork at industry site.	n research and to ues digital footprint			arnir				eks
 Understa and socia Develop Compreh Engage i Contents Four weeks of we were weeks of we were weeks of we were weeks of we were were were were were were were	nd the impact of enginetal context the ability to engage in rend contemporary issuent n establishing his/her	n research and to ues digital footprint			arnir				eks
 Understa and socia Develop Compreh Engage i Contents Four weeks of we were weeks of we were weeks of we were weeks of we were were were were were were were	nd the impact of enginetal context the ability to engage in end contemporary issuent contemporary issuent n establishing his/her of ork at industry site.	n research and to ues digital footprint			arnir				eks
 3. Understa and socie 4. Develop 5. Compreh 6. Engage i Contents Four weeks of w Supervised by an analysis of the second	nd the impact of enginetal context the ability to engage in end contemporary issuent contemporary issuent n establishing his/her of ork at industry site.	n research and to ues digital footprint	o involve	in life-long lea	arnir				eks
 3. Understa and socie 4. Develop 5. Compreh 6. Engage i Contents Four weeks of we supervised by an analysis of the second sec	nd the impact of enginetal context the ability to engage in end contemporary issuent n establishing his/her of ork at industry site.	n research and to ues digital footprint	o involve	in life-long lea	arnir				

Course code	Comprehensive Examination	L T P J C
CHE1903		00001
Pre-requisite	Minimum of 115 Credits Earned or at the end of the 7 th semester	Syllabus version
		v. 1.0
Course Objectiv	ves:	

- 1. To measure student's competency and mastery of concepts in the field of chemical engineering.
- 2. To evaluate the ability of students to move into the dissertation phase of their degree.

Course Outcomes:

- 1. Define, explain and summarize the basic principles of chemical engineering.
- 2. Use the principles of science and mathematics to identify, formulate and solve advanced engineering problems.
- 3. Evaluate the hypotheses, methods, results and conclusions of published scientific literature and apply conclusions to their own work.

Contents

Process Calculations and Thermodynamics: Steady and unsteady state mass and energy balances including multiphase, multi-component, reacting and non-reacting systems. Use of tie components; recycle, bypass and purge calculations; Gibb's phase rule and degree of freedom analysis. First and Second laws of thermodynamics. Applications of first law to close and open systems. Second law and Entropy. Thermodynamic properties of pure substances: Equation of State and residual properties, properties of mixtures: partial molar properties, fugacity, excess properties and activity coefficients; phase equilibria: predicting VLE of systems; chemical reaction equilibrium

Momentum Transfer: Fluid statics, Newtonian and non-Newtonian fluids, shell- balances including differential form of Bernoulli equation and energy balance, Macroscopic friction factors, dimensional analysis, flow through pipeline systems, flow meters, pumps and compressors, flow past immersed bodies including packed and fluidized beds, Turbulent flow: fluctuating velocity, universal velocity profile and pressure drop.

Mechanical Operations: Particle size and shape, particle size distribution, size reduction and classification of solid particles; free and hindered settling; centrifuge and cyd0nes-; thickening and classification, flotation, filtration, agitation and mixing; conveying of solids.

Heat Transfer: Steady and unsteady heat conduction, convection and radiation, Heat Transfer through fins, thermal boundary layer and heat transfer coefficients, boiling, condensation and evaporation; types of heat exchangers and evaporators and their process calculations. Design of double pipe, shell and tube heat exchangers, and single and multiple effect evaporators.

Mass Transfer: Fick's laws, molecular diffusion in fluids, mass transfer coefficients, film, penetration and surface renewal theories; analogies; stage-wise and continuous contacting and stage efficiencies; HTU & NTU concepts; design and operation of equipment for distillation, absorption, leaching, liquid-liquid extraction, drying, humidification, dehumidification adsorption and crystallization.

Chemical Reaction Engineering: Theories of reaction rates; kinetics of homogeneous reactions, interpretation of kinetic data, single and multiple reactions in ideal reactors, non-ideal reactors; residence time distribution, single parameter model; non-isothermal reactors; kinetics of heterogeneous catalytic reactions; diffusion effects in catalysis.

Instrumentation and Process Control: Measurement of process variables; sensors, transducers and their dynamics, process modeling and linearization, transfer functions and dynamic responses of various systems, systems with inverse response, process reaction curve, controller modes (P, Pl, and PIO); control valves; analysis of closed loop systems including stability, frequency response, controller tuning, cascade and feed forward control.

Chemical Technology: Inorganic chemical industries (sulfuric acid, phosphoric acid, chloroalkali industry, cement, paint, glass industry), fertilizers (Ammonia, Urea, SSP and TSP); natural products industries (Pulp and Paper, Sugar, Oil, and Fats); petroleum refining and petrochemicals; Fermentation products: Ethanol, citric acid, antibiotics, penicillin polymerization industries (polyethylene, polypropylene, PVC and polyester synthetic fibers).

Plant Design and Economics: Principles of process economics and cost estimation including depreciation and total annualized cost, cost indices, rate of return, payback period, discounted cash flow, optimization in process design and sizing of chemical engineering equipment such as compressors, heat exchangers, multistage contactors.

Assessment / Criteria: Computer based on line Examination

Mode of Evaluation: Computer based Evaluation

Recommended by Board of Studies	04-03-2016		
Approved by Academic Council	No. 47	Date	05.10.2017

Course Code	Course Title	L T P J C
CHE1904	Capstone Project	0 0 0 12
Pre-requisite	As per the academic regulations	Syllabus version

Course Objectives:

To provide sufficient hands-on learning experience related to the design, development and analysis of suitable product / process so as to enhance the technical skill sets in the chosen field.

Course Outcomes:

- 1. Formulate specific problem statements for ill-defined real life problems with reasonable assumptions and constraints.
- 2. Perform literature search and / or patent search in the area of interest.
- 3. Conduct experiments / Design and Analysis / solution iterations and document the results.
- 4. Perform error analysis / benchmarking / costing
- 5. Synthesize the results and arrive at scientific conclusions / products / solution
- 6. Document the results in the form of technical report / presentation

Mode of Evaluation:	Periodic reviews.	Presentation, Final	oral viva. P	oster submission
nioue of Lituration.	1 0110 010 10 110 110,	I resentation, I mai	orar oraș i	

Recommended by Board of Studies	10-06-2015		
Approved by Academic Council	37 th AC	Date	16-06-2015

Course code	Engineering Chemistry	J	L T P J C
CHY1701		/	
Pre-requisite	Chemistry of 12 th standard or equivalent	-	Syllabus version
	Chemistry of 12 standard of equivalent		1.1
Course Objective	s•		1.1
-	ological aspects of applied chemistry		
	on for practical application of chemistry in en	igineering aspect	S
Course Outcomes	s (CO):		
	lyze the issues related to impurities in wate		
	thodologies in water treatment for domestic a		
2. Evaluate the ca metals	uses of metallic corrosion and apply the m	nethods for corr	osion protection of
	ectrochemical energy storage systems such	as lithium batte	ries, fuel cells and
solar cells, and	design for usage in electrical and electronic a	pplications	
4. Assess the quat	lity of different fossil fuels and create an av	wareness to deve	elop the alternative
	coperties of different polymers and disting	uish the polym	ers which can be
• •	emonstrate their usefulness	guisir the polyn	iers which can be
U	oretical aspects: (a) in assessing the wat	er quality; (b)	understanding the
	d working of electrochemical cells; (c) anal		
	ethods; (d) evaluating the viscosity and wate		
materials			1 2
Module:1 Wate	r Technology		5 hours
	ard water - hardness, DO, TDS in water a	nd their determi	nation – numerical
problems in hardne	ss determination by EDTA; Modern techniq	ues of water an	alysis for industrial
use - Disadvantages	of hard water in industries.		
Module:2 Wate	r Treatment		8 hours
Water softening me	thods: - Lime-soda, Zeolite and ion exchange	processes and t	heir applications.
Specifications of w	vater for domestic use (ICMR and WHO);	Unit processes	involved in water
	ipal supply - Sedimentation with coagulant- S		
	rification – Candle filtration- activated carbo		infection methods-
Ultrafiltration, UV	reatment, Ozonolysis, Reverse Osmosis; Elec	ctro dialysis.	
Module:3 Corr			
	ion - detrimental effects to buildings, machin	nes, devices & de	6 hours
			ecorative art forms,
	rential aeration, Pitting, Galvanic and Stres	s corrosion cra	ecorative art forms,
		s corrosion cra	ecorative art forms,
enhance corrosion a	rential aeration, Pitting, Galvanic and Stress and choice of parameters to mitigate corrosion osion Control	s corrosion cra n.	ecorative art forms, cking; Factors that 4 hours
enhance corrosion a	rential aeration, Pitting, Galvanic and Stress and choice of parameters to mitigate corrosion	s corrosion cra n.	ecorative art forms, cking; Factors that 4 hours
enhance corrosion a Module:4 Corr Corrosion protectio	rential aeration, Pitting, Galvanic and Stress and choice of parameters to mitigate corrosion osion Control	s corrosion crad	ecorative art forms, cking; Factors that 4 hours current protection
enhance corrosion a Module:4 Corr Corrosion protection methods; Advanced	rential aeration, Pitting, Galvanic and Stress and choice of parameters to mitigate corrosion osion Control n - cathodic protection – sacrificial anodic	s corrosion cra- n. and impressed oless plating, PV	ecorative art forms, cking; Factors that 4 hours current protection /D and CVD.
enhance corrosion a Module:4 Corr Corrosion protection methods; Advanced Alloying for corrosi	rential aeration, Pitting, Galvanic and Stress and choice of parameters to mitigate corrosion osion Control n - cathodic protection – sacrificial anodic protective coatings: electroplating and electr	s corrosion cra- n. and impressed oless plating, PV	ecorative art forms, cking; Factors that 4 hours current protection /D and CVD.

Brief introduction to conventional primary and secondary batteries; High energy electrochemical energy systems: Lithium batteries – Primary and secondary, its Chemistry, advantages and applications.

Fuel cells – Polymer membrane fuel cells, Solid-oxide fuel cells- working principles, advantages, applications.

Solar cells – Types – Importance of silicon single crystal, polycrystalline and amorphous silicon solar cells, dye sensitized solar cells - working principles, characteristics and applications.

Module:6 **Fuels and Combustion**

8 hours

6 hours

2 hours

Calorific value - Definition of LCV, HCV. Measurement of calorific value using bomb calorimeter and Boy's calorimeter including numerical problems.

Controlled combustion of fuels - Air fuel ratio – minimum quantity of air by volume and by weight-Numerical problems-three way catalytic converter- selective catalytic reduction of NO_X; Knocking in IC engines-Octane and Cetane number - Antiknocking agents.

Module:7 **Polymers**

Difference between thermoplastics and thermosetting plastics; Engineering application of plastics -ABS, PVC, PTFE and Bakelite; Compounding of plastics: moulding of plastics for Car parts, bottle caps (Injection moulding), Pipes, Hoses (Extrusion moulding), Mobile Phone Cases, Battery Trays, (Compression moulding), Fibre reinforced polymers, Composites (Transfer moulding), PET bottles (blow moulding); Conducting polymers- Polyacetylene- Mechanism of conduction – applications (polymers in sensors, self-cleaning windows)

Module:8 Contemporary issues:

Lecture by Industry Experts

Total Lecture hours: 45 hours

Text Book(s)

- 1. Sashi Chawla, A Text book of Engineering Chemistry, Dhanpat Rai Publishing Co., Pvt. Ltd., Educational and Technical Publishers, New Delhi, 3rd Edition, 2015.
- 2. O.G. Palanna, McGraw Hill Education (India) Private Limited, 9th Reprint, 2015.
- 3. B. Sivasankar, Engineering Chemistry 1st Edition, Mc Graw Hill Education (India), 2008
- 4. "Photovoltaic solar energy : From fundamentals to Applications", Angà le Reinders, Pierre Verlinden, Wilfried van Sark, Alexandre Freundlich, Wiley publishers, 2017.

Reference Books

- 1. O.V. Roussak and H.D. Gesser, Applied Chemistry-A Text Book for Engineers and Technologists, Springer Science Business Media, New York, 2nd Edition, 2013.
- 2. S. S. Dara, A Text book of Engineering Chemistry, S. Chand & Co Ltd., New Delhi, 20th Edition, 2013.

Mod	Mode of Evaluation: Internal Assessment (CAT, Quizzes, Digital Assignments) & FAT				
List	of Experiments	CO: 6			
1.	Water Purification: Estimation of water hardness by EDTA method and its	1 h 30 min			
	removal by ion-exchange resin				
	Water Quality Monitoring:	3 h			
2.	Assessment of total dissolved oxygen in different water samples by				
	Winkler's method				
3.	Estimation of sulphate / chloride in drinking water by conductivity method				
4/5	Material Analysis: Quantitative colorimetric determination of divalent	3h			
	metal ions of Ni/Fe/Cu using conventional and smart phone digital-imaging				
	methods				
6.	Analysis of Iron in carbon steel by potentiometry	1 h 30 min			

7.	7. Construction and working of an Zn-Cu electrochemical cell				
8.	8. Determination of viscosity-average molecular weight of different natural/				1 h 30 min
	synthetic polymers				
9.	9. Arduino microcontroller based sensor for monitoring temperature /			1 h 30 min	
	conductivity in samples.				
]	Fotal Lab	oratory Hours	17 hours
Mod	le of Evaluation: Viva-voce and La	b performance &	FAT		
Reco	Recommended by Board of Studies 31-05-2019				
App	roved by Academic Council	55 th ACM	Date	13-06-2019	

Course code		L	Т	P J	С
CSE1001		0	0		3
Pre-requisite	NIL	Syl	labu	s vers	$\frac{100}{1.0}$
Course Objective	s:				110
2. Introduce the e	ad understanding of computers, programming languages and the ssential skills for a logical thinking for problem solving se in essential skills in programming for problem solving using c	-			5
Course Outcome:					
programming lan2. Learn various prosider the proble3. Differentiate the4. Solve various en	roblem solving approaches and ability to identify an appropriate m e programming Language constructs appropriately to solve any p ngineering problems using different data structures te the given problem using structural approach of programming	app prob	oroac		
List of Challengir	ng Experiments (Indicative)				
	blem Solving Drawing Flowchart using yEd tool/Raptor Tool		4 h	ours	
	to Python, Demo on IDE, Keywords, Identifiers, I/O Statement cam to display Hello world in Python.	s,	4 h	ours	
_	d Expressions in Python		4 h	ours	
4. Algorithmic	Approach 1: Sequential		2		
5. Algorithmic	Approach 2: Selection (if, elif, if else, nested if else		2 h	ours	
6. Algorithmic	Approach 3: Iteration (while and for)		4 h	ours	
7. Strings and it	ts Operations		2 h	ours	
8. Regular Exp	ressions		2 h	ours	
9. List and its o	perations.		2 h	ours	
10. Dictionaries:	operations		2 h	ours	
11. Tuples and it	s operations		2 h	ours	
12. Set and its op	perations		2 h	ours	
13. Functions, R	ecursions		2 h	ours	
14. Sorting Tech	niques (Bubble/Selection/Insertion)		4 h	ours	
15. Searching Te	echniques : Sequential Search and Binary Search		3 h	ours	
16. Files and its	Operations		4 h	ours	
I	Total Laboratory hou	Irs	45	hour	5

Text Book(s)							
1.	John V. Guttag., 2016. Introductio	n to computation a	and program	mming using python: with			
	applications to understanding data. PHI Publisher.						
Reference Books							
1.	. Charles Severance.2016.Python for everybody: exploring data in Python 3, Charles						
	Severance.						
2	Charles Dierbach.2013.Introductio	n to computer scie	ence using	python: a computational			
	problem-solving focus. Wiley Pub	lishers.Mode of Ev	valuation: 1	PAT / CAT/ FAT			
Mo	de of Evaluation: CAT / Assignmen	nt / Quiz / FAT / P	roject / Sei	ninar			
Rec	Recommended by Board of Studies 04-04-2014						
Ap	proved by Academic Council	38 th AC	Date	23-10-2015			

Course cod	le	Problem Solving And Object Oriented Programming	L	T	P	J	C
CSE1002			0	0	6	0	3
Pre-requisi	ite	NIL	S	yllal	ous	vers	sion
						١	/1.0
Course Ob	jectives	:					
		e benefits of object oriented concepts.					
	e studer	ts to solve the real time applications using object oriented j	prog	ramn	ning	5	
features							
-		skills of a logical thinking and to solve the problems using a	iny p	oroce	ssir	ıg	
elements							
Course Ou				4:			
1. Recall the program		of procedural programming and to represent the real world	enti	ties	as		
1 0	U	t oriented concepts and translate real-world applications int	o ar	anhi			
represent	0	t offented concepts and translate real-world applications int	U gra	apino	<i>a</i>		
-		usage of classes and objects of the real world entities in ap	olica	tions	3		
		reusability and multiple interfaces with same functionality				es to)
		omputing problems					
5. Propose j	possible	error-handling constructs for unanticipated states/inputs an	d to	use	gen	eric	
program	ning co	nstructs to accommodate different datatypes					
6. Validate	the prog	gram against file inputs towards solving the problem					
Madalari	<u>C</u> 4	I Due encoursie e			1	<u></u>	
Module:1		tured Programming ming conditional and looping statements - arrays - function	a n	ointe			ours
		llocation - structure	s - p	onna	15 -		
	u annor y a						
Module:2	Intro	luction to object oriented approach			1	0 ha	ours
Introduction	i to obje	ct oriented approach: Why object oriented programming? -	Cha	racte	rist	ics	
		inguage: classes and objects - encapsulation - data abstraction					_
		ferits and Demerits of object oriented programming. UML			<u> </u>		f
		on default argument function - Exception handling (Standar	a) - 1	reter	enc	e:	
muepenuelli		ce function returning reference pass by reference.					
Module:3	Class	es and objects			1	4 ha	ours
		: Definition of classes access specier class versus structure	const	truct			
		structor and its importance array of objects dynamic objects			01		
function-fri	1.	1 5 5 5 5					
Module:4	Polyn	orphism and Inheritance			2	6 ha	ours
Polymorphi	, v	Inheritance: Polymorphism - compile time polymorphism f	uncti	ion c	ver	-	
loading ope	rator ov	erloading. Inheritance - types of inheritance - constructors a	ind d	lestru	icto	rs	
		raints of multiple inheritance - virtual base class - run time	poly	mor	ohis	m	
- function o		0					
Module:5		ption handling and Templates	_				ours
		g and Templates Exception handling(user-dened exception)					
list, stack,		ate Template with inheritance, STL Container, Algorithm,	itera	uor ·	- ve	ctor,	,
not, stack,	mup.						

Mo	dule:6	IO Streams and Files 10	hours			
IO	streams	and Files IO streams, Manipulators- overloading Inserters(<<) and				
Ex	tractors(2	>>)Sequential and Random files – writing and reading objects into/from				
file	es					
			hours			
	t Book(s	,				
1.	•	B Lippman, Josee Lajoie, Barbara E, Moo, C++ primer, Fifth edition,				
•		n-Wesley, 2012.	0			
2		rami, Object oriented Systems development, Tata McGraw - Hill Education, 199	9.			
3						
Def		e Hall Inc., 1988.				
	erence B					
1.		stroustrup, The C++ programming Language, Addison Wesley, 4th edition, 2013				
2 3		M. Deitel and Paul J. Deitel, C++ How to Program, 7th edition, Prentice Hall, 20)10.			
-		n Sprankle and Jim Hubbard, Problem solving and Programming concepts, 9th aluation: CAT / Assignment / Quiz / FAT / Project / Seminar				
MO		auation: CAT / Assignment / Quiz / FAT / Project / Seminar				
т.						
	1	lenging Experiments (Indicative)	5 1			
1		an Problem	5 hrs			
	-	man needs to walk down every street in his area in order to deliver the Assume that the distances between the streets along the roads are given.				
		ostman starts at the post once and returns back to the post o_ce after				
	-	ing all the mails. Implement an algorithm to help the post man to walk				
		um distance for the purpose.				
2		t Allocation for Marketing Campaign	5 hrs.			
	0	bile manufacturing company has got several marketing options such as				
		advertisement campaign, TV non-peak hours campaign, City top paper				
		k, Viral marketing campaign, Web advertising. From their previous				
	experie	ence, they have got a statistics about paybacks for each marketing option.				
	Given	the marketing budget (rupees in crores) for the current year and details of				
		ks for each option, implement an algorithm to determine the amount that				
		pent on each marketing option so that the company attains the maximum				
	pro_t.					
3		naries and Cannibals	5 hrs.			
		nissionaries and three cannibals are on one side of a river, along with a boat				
		n hold one or two people. Implement an algorithm to find a way to get				
		ne to the other side of the river, without ever leaving a group of missionaries				
	in one	place outnumbered by the cannibals in that place.				

4	Register Allocation Problem	5 hrs
	A register is a component of a computer processor that can hold any type of data and	
	can be accessed faster. As registers are faster to access, it is desirable to use them to the	
	maximum so that the code execution is faster. For each code submitted to the	
	processor, a register interference graph (RIG) is constructed. In a RIG, a node	
	represents a temporary variable and an edge is added between two nodes (variables) t1	
	and t2 if they are live simultaneously at some point in the program. During register	
	allocation, two temporaries can be allocated to the same register if there is no edge	
	connecting them. Given a RIG representing the dependencies between variables in a	
	code, implement an algorithm to determine the number of registers required to store the	
	variables and speed up the code execution.	
5	Selective Job Scheduling Problem	5 hrs
	A server is a machine that waits for requests from other machines and responds to	
	them. The purpose of a server is to share hardware and software resources among	
	clients. All the clients submit the jobs to the server for execution and the server may	
	get multiple requests at a time. In such a situation, the server schedule the jobs	
	submitted to it based on some criteria and logic. Each job contains two values namely	
	time and memory required for execution. Assume that there are two servers that	
	schedules jobs based on time and memory. The servers are named as	
	Time_Schedule_Server and memory_Schedule_Server respectively. Design a OOP	
	model and implement the time_Schedule_Server and memory_Schedule_Server. The	
	Time_Schedule_Server arranges jobs based on time required for execution in	
	ascending order whereas memory_Schedule_Server arranges jobs based on memory	
	required for execution in ascending order.	
6	Fragment Assembly in DNA Sequencing	5 hrs
	DNA, or deoxyribonucleic acid, is the hereditary material in humans and almost all	
	other organisms. The information in DNA is stored as a code made up of four chemical	
	bases: adenine (A), guanine (G), cytosine (C), and thymine (T). In DNA sequencing,	
	each DNA is sheared into millions of small fragments (reads) which assemble to form	
	a single genomic sequence ("superstring"). Each read is a small string. In such a	
	fragment assembly, given a set of reads, the objective is to determine the shortest	
	superstring that contains all the reads. For example, given a set of strings, {000, 001,	
	010, 011, 100, 101, 110, 111} the shortest superstring is 0001110100. Given a set of	
	reads, implement an algorithm to find the shortest superstring that contains all the	
	given reads.	
_	TT TT-	<u> </u>
7	House Wiring	5 hrs
	An electrician is wiring a house which has many rooms. Each room has many power	
	points in different locations. Given a set of power points and the distances between	
	them, implement an algorithm to find the minimum cable required.	
Rec	ommended by Board of Studies 29.10.2015	
	roved by Academic Council 39 th AC Date 17-12-2015	
4 • PP		

Course Cod	e	Course Title	L	Τ	Р	J	С
ENG1901		Technical English - I	0	0	4	0	2
Pre-requisit	e	Foundation English-II	S	yllał	ous V	Vers	ion
							1
Course Obj							
		lents' knowledge of grammar and vocabulary to read and wri	te er	ror-f	ree		
		life situations.					
	the stu	dents' practice the most common areas of written and spoker	n con	nmur	nicat	ions	
skills.							
-		lents' communicative competency through listening and spea	king	acti	vities	s in t	he
classroom							
Course Out							
-		understanding of advanced grammar rules and write gramm	atica	lly co	orrec	t	
sentences		and plane and loan starts size for sman free communication					
 Acquire wide vocabulary and learn strategies for error-free communication. Comprehend language and improve speaking skills in academic and social contexts. 							
		g skills so as to understand complex business communication			ietv	of	
-		ccents through proper pronunciation.		u vai	lety	01	
-	-	liagrams and improve both reading and writing skills which v	voul	d hel	p the	em ir	1
		s well as professional career.			L		
		*					
Aodule:1	Adv	anced Grammar			4	hou	irs
Articles, Ter		oice and Prepositions					
		ets on Impersonal Passive Voice, Exercises from the prescrib	ed te	xt			
Module:2	Voca	abulary Building I			4	4 ho	urs
Idioms and F	Phrases	s, Homonyms, Homophones and Homographs					
		izzles; Vocabulary Activities through Web tools					
Module:3		ening for Specific Purposes			4	4 ho	urs
		short conversations, announcements, briefings and discussion	ns				
	-	g; Interpretations					
Module:4	Spea	aking for Expression			6	ho	urs
Introducing	oneself	f and others, Making Requests & responses, Inviting and Acc	eptir	ng/De	eclin	ing	
Invitations A	ctivity	r: Brief introductions; Role-Play; Skit.					
Module:5	Read	ding for Information			4	4 ho	urs
Reading Sho		ages, News Articles, Technical Papers and Short Stories					
Activity: Rea	ading s	pecific newspaper articles; blogs					
Module:6	Wri	ting Strategies			4	ho	urs
Joining the		ces, word order, sequencing the ideas, introduction and concl	usio	n Ac	ctivit	y: Sl	lort
Paragraphs;	Descr	ibing familiar events; story writing					
Module:7	Voca	bulary Building II					
Enrich the de	omain	specific vocabulary by describing Objects, Charts, Food, Sp	orts	and			
Employment							
1 ·		g Objects, Charts, Food, Sports and Employment					
		5 - · J · · · · · · · · · · · · · · · · ·					

Moau	le:8 Listening for Daily Life	4 hours
	ng for statistical information, Short extracts, Radio broadcasts and TV interviews	
Activit	y: Taking notes and Summarizing	
Modu	r a 8 and r	6 hours
-	onic conversations, Interpretation of Visuals and describing products and processes.	
Activit	y: Role-Play (Telephonic); Describing Products and Processes	
Modu	le: 10 Comprehensive Reading	4 hours
	g Comprehension, Making inferences, Reading Graphics, Note-making, and Critical	
Readir		
	y: Sentence Completion; Cloze Tests	
Modu	le: 11 Narration	4 hours
Writin	g narrative short story, Personal milestones, official letters and E-mails.	
	y: Writing an E-mail; Improving vocabulary and writing skills.	
Modu	le:12 Pronunciation	4 hours
Speech	Sounds, Word Stress, Intonation, Various accents	
Activit	y: Practicing Pronunciation through web tools; Listening to various accents of English	sh
	le:13 Editing	4 hours
Simple	e, Complex & Compound Sentences, Direct & Indirect Speech, Correction of Errors,	4 hours
	e, Complex & Compound Sentences, Direct & Indirect Speech, Correction of Errors,	4 hours
Simple Punctu Activit	e, Complex & Compound Sentences, Direct & Indirect Speech, Correction of Errors, ations. y: Practicing Grammar	4 hours
Simple Punctu Activit Modu	e, Complex & Compound Sentences, Direct & Indirect Speech, Correction of Errors, ations. y: Practicing Grammar le:14 Short Story Analysis	
Simple Punctu Activit Modu "The E	e, Complex & Compound Sentences, Direct & Indirect Speech, Correction of Errors, ations. y: Practicing Grammar le:14 Short Story Analysis Boundary" by Jhumpa Lahiri	
Simple Punctu Activit Modu "The E	e, Complex & Compound Sentences, Direct & Indirect Speech, Correction of Errors, ations. y: Practicing Grammar le:14 Short Story Analysis Boundary" by Jhumpa Lahiri y: Reading and analyzing the theme of the short story.	4 hours
Simple Punctu Activit Modu "The E Activit	e, Complex & Compound Sentences, Direct & Indirect Speech, Correction of Errors, ations. y: Practicing Grammar le:14 Short Story Analysis Boundary" by Jhumpa Lahiri y: Reading and analyzing the theme of the short story. Total Lecture hours	4 hours
Simple Punctu Activit Modu "The E Activit Text B	e, Complex & Compound Sentences, Direct & Indirect Speech, Correction of Errors, ations. y: Practicing Grammar le:14 Short Story Analysis Boundary" by Jhumpa Lahiri y: Reading and analyzing the theme of the short story. Total Lecture hours Book / Workbook	4 hours 60 hours
Simple Punctu Activit Modu "The E Activit	e, Complex & Compound Sentences, Direct & Indirect Speech, Correction of Errors, ations. y: Practicing Grammar le:14 Short Story Analysis Boundary" by Jhumpa Lahiri y: Reading and analyzing the theme of the short story. Total Lecture hours Book / Workbook Wren, P.C.; Martin, H.; Prasada Rao, N.D.V. (1973–2010). <i>High School English</i> (4 hours 4 hours 60 hours
Simple Punctu Activit Modu "The E Activit Text B 1.	e, Complex & Compound Sentences, Direct & Indirect Speech, Correction of Errors, ations. y: Practicing Grammar le:14 Short Story Analysis Boundary" by Jhumpa Lahiri y: Reading and analyzing the theme of the short story. Total Lecture hours Sook / Workbook Wren, P.C.; Martin, H.; Prasada Rao, N.D.V. (1973–2010). <i>High School English C</i> & Composition. New Delhi: Sultan Chand Publishers.	4 hours 60 hours Grammar
Simple Punctu Activit Modu "The E Activit Text B	e, Complex & Compound Sentences, Direct & Indirect Speech, Correction of Errors, ations. y: Practicing Grammar le:14 Short Story Analysis Boundary" by Jhumpa Lahiri y: Reading and analyzing the theme of the short story. Total Lecture hours Book / Workbook Wren, P.C.; Martin, H.; Prasada Rao, N.D.V. (1973–2010). <i>High School English C</i> & <i>Composition</i> . New Delhi: Sultan Chand Publishers. Kumar, Sanjay,; Pushp Latha. (2018) English Language and Communication S	4 hours 60 hours Grammar
Simple Punctu Activit Modu "The E Activit Text B 1. 2	e, Complex & Compound Sentences, Direct & Indirect Speech, Correction of Errors, ations. y: Practicing Grammar le:14 Short Story Analysis Boundary" by Jhumpa Lahiri y: Reading and analyzing the theme of the short story. Total Lecture hours Book / Workbook Wren, P.C.; Martin, H.; Prasada Rao, N.D.V. (1973–2010). <i>High School English C & Composition</i> . New Delhi: Sultan Chand Publishers. Kumar, Sanjay,; Pushp Latha. (2018) English Language and Communication S Engineers, India: Oxford University Press.	4 hours 60 hours Grammar
Simple Punctu Activit "The E Activit Text E 1. 2 Refere	e, Complex & Compound Sentences, Direct & Indirect Speech, Correction of Errors, ations. y: Practicing Grammar le:14 Short Story Analysis Boundary" by Jhumpa Lahiri y: Reading and analyzing the theme of the short story. Total Lecture hours Sook / Workbook Wren, P.C.; Martin, H.; Prasada Rao, N.D.V. (1973–2010). <i>High School English C & Composition</i> . New Delhi: Sultan Chand Publishers. Kumar, Sanjay,; Pushp Latha. (2018) English Language and Communication S Engineers, India: Oxford University Press.	4 hours 60 hours <i>Grammar</i> Skills for
Simple Punctu Activit Modu "The E Activit Text B 1. 2	e, Complex & Compound Sentences, Direct & Indirect Speech, Correction of Errors, ations. y: Practicing Grammar le:14 Short Story Analysis Boundary" by Jhumpa Lahiri y: Reading and analyzing the theme of the short story. Total Lecture hours Book / Workbook Wren, P.C.; Martin, H.; Prasada Rao, N.D.V. (1973–2010). <i>High School English C & Composition</i> . New Delhi: Sultan Chand Publishers. Kumar, Sanjay,; Pushp Latha. (2018) English Language and Communication S Engineers, India: Oxford University Press.	4 hours 60 hours <i>Grammar</i> Skills for

2	2. Steven Brown, (2011) Dorolyn Smith, <i>Active Listening</i> 3 , 3 rd Edition, UK: Cambridge							
2.	University Press.	cumonago						
3.	Liz Hamp-Lyons, Ben Heasley, (2010) <i>Study Writing</i> , 2 nd Edition,	UK: Cambridge						
5.	University Pres.	OK. Camonuge						
4.	Kenneth Anderson, Joan Maclean, (2013) Tony Lynch, <i>Study Speaking</i> , Cambridge, University Press.	2 nd Edition, UK:						
5.	Eric H. Glendinning, Beverly Holmstrom, (2012) <i>Study Reading</i> , 2 nd Edition, UK: Cambridge University Press.							
6.	6. Michael Swan, (2017) <i>Practical English Usage</i> (Practical English Usage), 4th edition, UK: Oxford University Press.							
7.	Michael McCarthy, Felicity O'Dell, (2015) <i>English Vocabulary in Use Advanced</i> (South Asian Edition), UK: Cambridge University Press.							
8.	Michael Swan, Catherine Walter, (2012) <i>Oxford English Grammar Course Advanced</i> , Feb, 4 th Edition, UK: Oxford University Press.							
9.	Watkins, Peter. (2018) Teaching and Developing Reading Skills: Camb	ridge Handbooks						
	for Language teachers, UK: Cambridge University Press.							
10.								
	https://www.newyorker.com/magazine/2018/01/29/the-							
Mada	boundary?intcid=inline_amp							
	of evaluation: Quizzes, Presentation, Discussion, Role play, Assignments a	nd FA I						
	Challenging Experiments (Indicative)							
	elf-Introduction	12 hours						
	equencing Ideas and Writing a Paragraph	12 hours						
	eading and Analyzing Technical Articles	8 hours						
	istening for Specificity in Interviews (Content Specific)	12 hours						
	lentifying Errors in a Sentence or Paragraph	8 hours						
6. V	Vriting an E-mail by narrating life events	8 hours						
	Total Laboratory Hours	60 hours						
	Mode of evaluation: Quizzes, Presentation, Discussion, Role play, Assignments and FAT							
	Recommended by Board of Studies 08.06.2019							
Appro	ved by Academic Council55Date: 13-06-2019							

Course Code	Course Title	L	Τ	P	J	C
ENG1902	Technical English - II	0	0	4	0	2
Pre-requisite	71% to 90% EPT score	Sy	llab	us V	Vers	ion
						1
Course Objectiv						
	ficiency levels in LSRW skills on par with the requirements for pl	lace	ment	Ţ		
	igh-end companies / competitive exams.	C .				
	mplex arguments and to articulate their own positions on a range	of te	echni	cal	and	
general topics.	mmatical and acceptable English with minimal MTI, as well as d	ovol	on o	VO	at on	d
active vocabula	· ·	eve	op a	va	st all	u
Course Outcom						
	proficiently in high-end interviews and exam situations and all s	ocia	1 siti	iati	ons	
	academic articles and draw inferences	0010			0110	
1	erent perspectives on a topic					
4. Write clearly	and convincingly in academic as well as general contexts					
5. Synthesize co	mplex concepts and present them in speech and writing					
Module:1 Li	istening for Clear Pronunciation			4	4 ho	urs
Ice-breaking, Int	roduction to vowels, consonants, diphthongs.					
Listening to form	nal conversations in British and American accents (BBC and CNN	N) a	s we	ll as	s oth	er
'native' accents						
Activity: Factual	and interpretive exercises; note-making in a variety of global En	glisl	n acc	ent	S	
	troducing Oneself			4	4 ho	urs
	dual Presentations					
	troductions, Extempore speech					
	ffective Writing			(6 ho	urs
	ss letters and Emails, Minutes and Memos			1		
Formats of Minu	ate of common business letters and emails: inquiry/ complaint/ pla	acin	g an	ord	er;	
	ts write a business letter and Minutes/ Memo					
•	omprehensive Reading				4 ho	rc
	g Comprehension Passages, Sentence Completion (Technical and	Ge	neral			
Vocabulary and			liciu		.0105	ι),
•	e tests, Logical reasoning, Advanced grammar exercises					
	istening to Narratives				4 ho	urs
	ning to audio files of short stories, News, TV Clips/ Documentari	es. I	Moti			
-	US/ global English accents.	,				
1	aking and Interpretive exercises					
-	cademic Writing and Editing			(6 ho	urs
	/ Proofreading symbols					
Citation Formats						
	Abstract and Research Paper					
	g Abstracts and research paper; Work with Editing/ Proofreading	exe	rcise			
	eam Communication			4	4 ho	urs
	Discussions and Debates on complex/ contemporary topics					
	ation parameters, using logic in debates					
Activity: Group	Discussions on general topics					

Module:8	Career-oriented Writing	4 hours						
Writing: I	Resumes and Job Application Letters, SOP							
Activity: V	Vriting resumes and SOPs							
Module:9	Reading for Pleasure	4 hours						
-	Reading short stories							
	lassroom discussion and note-making, critical appreciation of the short story							
	0 Creative Writing	4 hours						
0	maginative, narrative and descriptive prose							
-	Vriting about personal experiences, unforgettable incidents, travelogues							
	1 Academic Listening	4 hours						
	Listening: Listening in academic contexts							
	istening to lectures, Academic Discussions, Debates, Review Presentations, Review Presen	esearch						
-	ect Review Meetings							
	2 Reading Nature-based Narratives	4 hours						
	on Climate Change, Nature and Environment							
-	lassroom discussions, student presentations							
	3 Technical Proposals	4 hours						
U	Cechnical Proposals							
Activities:	Writing a technical proposal							
Module:1	4 Presentation Skills	4 hours						
Persuasive	and Content-Specific Presentations							
Activity: 7	echnical Presentations							
	Total Lecture hours:	60 hours						
Text Book	: / Workbook							
	enden, Clive and Christina Latham-Koenig. New English File: Advanced Stu- erback. Oxford University Press, UK, 2017.	dents Book.						
-	vi, Ashraf. Effective Technical Communication. McGraw-Hill India, 2017.							
Reference	Books							
C	xenden, Clive and Christina Latham-Koenig, New English File: Advanced	: Teacher's						
	ook with Test and Assessment. CD-ROM: Six-level General English Course							
	Paperback. Oxford University Press, UK, 2013.							
	alasubramanian, T. English Phonetics for the Indian Students: A Workbould ablications, 2016.	ook. Laxmi						
3 P	nilip Seargeant and Bill Greenwell, From Language to Creative Writing. I	Bloomsbury						
A	cademic, 2013.							
	rishnaswamy, N. <i>Eco-English</i> . Bloomsbury India, 2015.							
ור	anto, Saadat Hasan. <i>Selected Short Stories</i> . Trans. Aatish Taseer. Random H 012.	ouse India,						
6. Gh	osh, Amitav. The Hungry Tide. Harper Collins, 2016.							
7 Gh	osh, Amitav. The Great Derangement: Climate Change and the Unthinkab oks, 2016.	le. Penguin						
	MLA Handbook for Writers of Research Papers, 8th ed. 2016.							
1 221	δ.							
	line Sources:							

M	https://americanliterature.com/short-short-stories. (75 short short stories) http://www.eco-ction.org/dt/thinking.html (Leopold, Aldo."Thinking like a Mountain") http://www.esl-lab.com/; http://www.bbc.co.uk/learningenglish/; https://www.bbc.com/news; https://learningenglish.voanews.com/a/using-voa-learning-english-to-improve-listening-skills/3815547.html Mode of evaluation: Quizzes, Presentation, Discussion, Role play, Assignments and FAT					
NIO	le of evaluation: Quizzes, Presenta	ation, Discussion, F	Role play, Assignments and	1 FAT		
	List of Challenging I	cative)				
1.	Self-Introduction using SWOT			12 hours		
2.	Writing minutes of meetings			10 hours		
3.	Writing an abstract			10 hours		
4.	Listening to motivational speeche	es and interpretation	1	10 hours		
5.	Cloze Test			6 hours		
6.	Writing a proposal			12 hours		
	•	T	otal Laboratory Hours	60 hours		
Moo	le of evaluation: Quizzes, Presenta	ation, Discussion, F	Role play, Assignments and	1 FAT		
Rec	ommended by Board of Studies	08.06.2019				
Арр	proved by Academic Council	55	Date: 13-06-2019			

Course Code	Course title	L	Т	Р	J	C		
ENG1903	Advanced Technical English	0	0	2	4	2		
Pre-requisite	Greater than 90 % EPT score	-	Sylla		_			
		~	<u> </u>			1		
Course Objective	s:	1						
•	ature in any form or any technical article							
2. To infer conten	t in social media and respond accordingly							
3. To communicat	te with people across the globe overcoming trans-cultural bar	riers	and	nego	otiate			
successfully								
Course Outcome	5:							
1. Analyze critica	1. Analyze critically and write good reviews							
2. Articulate resea	rch papers, project proposals and reports							
	ffectively in a trans-cultural environment							
_	ead teams towards success							
5. Present ideas in	an effective manner using web tools							
Module:1 Neg	otiation and Decision Making Skills through Literary Ana	alysi	S		5 ho	urs		
	tiation and Decision Making Skills	•						
	of excerpts from Shakespeare's "The Merchant of Venice" (o	court	scer	ne) a	nd			
discussion on neg				,				
	of excerpts from Shakespeare's "Hamlet" (Monologue by Ha	mlet) and	l dise	cussi	on		
on decision makin			·					
	iting reviews and abstracts through movie interpretations			5	hou	rs		
	d abstract writing with competency					_ 10		
	g Charles Dickens "Great Expectations" and writing a movie	revie	ew					
-	F. Nolan's "Logan's Run" and analyzing it in tune with the			enar	io of			
-	rces and writing an abstract							
	hnical Writing				4 ho	urs		
	e linguistics for writing: content and style							
Activity: Proofrea								
Statement of Purp	ose							
Module:4 Tra	ns-Cultural Communication			4	4 ho	urs		
	cultural communication							
Activity:								
-	and case studies on trans-cultural communication.							
	Iltural communication.							
	oort Writing and Content Writing				4 ho	urs		
• •	ge on relevant audio-visuals							
Activity:								
	tary on social issues and draft a report							
Identify a video on any social issue and interpret								
	fting project proposals and article writing			4	4 ho	urs		
	Dynamics of drafting project proposals and research articles							
Activity:								
Writing a project proposal.								
Writing a research					4 7			
Module:7 Tec	hnical Presentations			4	4 ho	urs		

Build smart presentation skills and strategies

Activity: Technical presentations using PPT and Web tools

			Total Lecture hours	30 hours		
	t Book / Workbook					
1.	Raman, Meenakshi & Sangeeta S 3 rd edition, Oxford University Pre		l Communication: Principles and	l Practice,		
Ref	erence Books					
1	Basu B.N. Technical Writing, 201					
2	Arathoon, Anita. <i>Shakespeare's T</i> Publishers, 2015.	v		0		
3	Kumar, Sanjay and Pushp Lata. <i>E</i> Oxford University Press, India, 20		and Communication Skills for En	gineers,		
4	Frantisek, Burda. <i>On Transcultural Communication</i> , 2015, LAP Lambert Academic Publishing, UK.					
5	Geever, C. Jane. <i>The Foundation</i> Reprint 2012 The Foundation Cer		<i>p Proposal Writing</i> , 5 th Edition, 20)07,		
6	Young, Milena. <i>Hacking Your Sta</i> 2014 Kindle Edition.	ttement of Purpos	e: A Concise Guide to Writing Yo	ur SOP,		
7	Ray, Ratri, William Shakespeare's	<i>Hamlet</i> , The Atl	antic Publishers, 2011.			
8	C Muralikrishna & Sunitha Mishr Pearson, 2011.	a, Communicatio	n Skills for Engineers, 2 nd edition,	NY:		
Mo	de of Evaluation: Quizzes, Present	ation, Discussion	, Role Play, Assignments			
List	t of Challenging Experiments (Inc	licative)				
1.	Enacting a court scene - Speaking	3		6 hours		
2.	Watching a movie and writing a r	eview		4 hours		
3.	Trans-cultural – case studies			2 hours		
4.	Drafting a report on any social iss	ue		6 hours		
5.	Technical Presentation using web	tools		6 hours		
6.	Writing a research paper			6 hours		
J- (Component Sample Projects					
	1. Short Films					
	2. Field Visits and Reporting					
	3. Case studies					
	4. Writing blogs					
	5. Vlogging					
	1		Total Hours (J-Component)	60 hours		
Мо	de of evaluation: Quizzes, Presenta	ation, Discussion,		1		
	commended by Board of Studies	08.06.2019				
Ap	proved by Academic Council	55	Date: 13-06-2019			

Course Code	e	Ethics and Values			Г		P	J	С	
HUM 1021				2	0		0		2	
/ HUM1032										
Pre-requisite	e	Nil S			llabus Version					
					1.1					
Course Objectives:										
and polity 2. To unders	, stand th	ad appreciate the ethical issues faced by an in e negative health impacts of certain unhealth e need and importance of physical, emotional	y behaviors			<u>эс</u>	iety	У		
Course Outo	comes:									
 Understan Understan Identify et and citatio 	und mo nd vario nd the c thical c on of so	The to: brals and ethical values scrupulously to prove bus social problems and learn to act ethically oncept of addiction and how it will affect the oncerns in research and intellectual contexts burces, the objective presentation of data, and typologies, characteristics, activities, actors	e physical and mer , including academ l the treatment of h	ic i um	nte an	gr su	ity			
Module:1	D	Good and Responsible	5 ho							
Gandhian values such as truth and non-violence – Comparative analysis on leaders of past and present – Society's interests versus self-interests - Personal Social Responsibility: Helping the needy, charity and serving the society Module:2 Social Issues 1 4 hours										
Harassment – Types - Prevention of harassment, Violence and Terrorism										
Module:3	Social	Issues 2	4 ho	urs						
Corruption: Ethical values, causes, impact, laws, prevention – Electoral malpractices; White collar crimes - Tax evasions – Unfair trade practices										
		tion and Health	5 ho							
Peer pressure - Alcoholism: Ethical values, causes, impact, laws, prevention – Ill effects of smoking - Prevention of Suicides; Sexual Health: Prevention and impact of pre-marital pregnancy and Sexually Transmitted Diseases										
Module:5	Drug A	Abuse	3 ha	nrs						
	U	ypes of legal and illegal drugs: Ethical value				ıd				
Module:6	Persor	al and Professional Ethics	4 ha	nre						
		g - Malpractices in Examinations – Plagiari		u1 3						
2 Iononeory	Stouin									
Module:7	Ahuse	of Technologies	3 hou	ire						
intouuter/	TTOUSC		5 1101	11 13						

Hacking and other cyber crimes, Addiction to mobile phone usage, Video games and Social networking websites

Мо	dule:8	Contemporary Issues:				2 hours
Gue	est lectur	es by Industrial Experts				
			Total Lecture He	ours:	30 hours	
Ref	ference I	Books		l		
1.	Dhaliw	al, K.K (2016), "Gandhian	Philosophy of Eth	ics: A Stu	udy of Rela	tionship between his
	Presupp	position and Precepts, Write	ers Choice, New D	elhi, India	a.	
2.	Vittal, I	N (2012), "Ending Corrupti	on? - How to Clea	n up Indi	a?", Pengui	n Publishers, UK.
3.	Pagliar	o, L.A. and Pagliaro, A.M.	1 (2012), "Handb	ook of C	hild and A	Adolescent Drug and
	Substar	nce Abuse: Pharmacologic	al, Development	tal and	Clinical Co	onsiderations", Wiley
	Publish	ers, U.S.A.				
4.	Pandey	, P. K (2012), "Sexual Hara	ssment and Law i	n India", I	Lambert Pu	blishers, Germany.
Mo	de of Ev	valuation: Quizzes, CAT, F	AT, Digital assign	ments, po	oster/collag	e making and
Sen	ninars					
Rec	commend	led by Board of Studies	26-07-2017			
Ap	proved b	y Academic Council	No. 46	Date	24-08-20)17

Course Code	Calculus for Engineers		L	Т	Р	J	С
MAT1011			3	0	2	0	4
Pre-requisite	10+2 Mathematics or MAT1001	S	Sylla	bus	Ve	ersio	n
							1.0
Course Objectiv							
	le the requisite and relevant background nee						
-	engineering mathematics courses offered f	-			ists.		
	uce important topics of applied mathematic	s, namely Single	e and	l			
	able Calculus and Vector Calculus etc.						
-	t the knowledge of Laplace transform, an in	nportant transfor	rm te	echn	iqu	e fo	r
Engineers	s which requires knowledge of integration						
Course Outcom	es:						
1. Apply single	variable differentiation and integration	to solve applie	ed n	rohl	em	s in	
	nd find the maxima and minima of function		ou p	1001	UIII	, 111	
• •	pasic concepts of Laplace Transforms and		ıs wi	th 1	oeri	odic	;
	p functions, impulse functions and convolu	1		1			
	tial derivatives, limits, total differentials,		ylor	seri	ies	and	
-	problems involving several variables with		-				
-	tiple integrals in Cartesian, Polar, Cylindric				nate	s.	
	gradient, directional derivatives, divergen	-					
Gauss theorem	-						
6. Demonstrate	MATLAB code for challenging problems i	n engineering					
Module:1 Apr	olication of Single Variable Calculus	9	hour	rs			
	Extrema on an Interval-Rolle's Theorem and				em-	-	
Increasing and D	ecreasing functions and First derivative tes	t-Second derivat	ive t	est-	Ma	xim	a
-	cavity. Integration-Average function value						
of solids of revol							
Module:2 Lap	lace transforms	7	hour	rs			
	place transform-Properties-Laplace transfo	orm of periodic	func	ctio	ns-I	Lapl	ace
transform of unit	step function, Impulse function-Inverse La	place transform	-Con	ivol	utic	n.	
Module:3 Mu	ltivariable Calculus	4	hour	rs			
Functions of two	variables-limits and continuity-partial deri	vatives –total di	ffere	entia	ıl-Ja	icob	ian
and its properties							
Module:4 Apr	olication of Multivariable Calculus	5	hour	re			
	on for two variables-maxima and minima-				d m	ninir	na-
Lagrange's multi							
	tiple integrals	8	hour	rs			
	puble integrals-change of order of integra	ation-change of	vari	iabl	es ł	oetw	veen
	lar co-ordinates - Evaluation of triple inte						
	lindrical and spherical co-ordinates- Beta a		ction	s—ir	ntern	elat	ion
-evaluation of mu	altiple integrals using gamma and beta func	tions.					
Module:6 Vec	tor Differentiation	5	hour	rs			
		5	nvul	3			

	nd vector valued functions – gra -scalar and vector potentials–Sta			
Module	7 Vector Integration			5 hours
	face and volume integrals - S	tatement of Green	's, Stoke's an	
theorems	s -verification and evaluation of	vector integrals usi	ng them.	
Module	1 2		2 hours	
Industr	y Expert Lecture			
	Tota	al Lecture hours:	45 hours	
Text Bo	ok(s)			
	nas' Calculus, George B.Thoma			
[2] Adva	nced Engineering Mathematics,	Erwin Kreyszig, 1	0 th Edition, W	iley India, 2015.
Referen	ce Books			
	r Engineering Mathematics, B.S	S. Grewal, 43 rd Edit	ion, Khanna P	ublishers,
2015 2 Higho	r Engineering Mathematics, Joh	n Rind Ath Edition	Electrica Limi	tad 2017
0	lus: Early Transcendentals, Jam			
	eering Mathematics, K.A.Strou			0
•	iillan (2013)	u and Dexter J. Do	oui, / Euiu	oli, raigiave
	Evaluation			
		A and a minimum for the second		Γ
0	Assignments, Quiz, Continuous		Assessment	Test
	Challenging Experiments (Indi			
	roduction to MATLAB through			2 hours
	tting and visualizing curves and		AB –	2 hours
-	mbolic computations using MA			
	aluating Extremum of a single v			2 hours
	derstanding integration as Area			2 hours
	aluation of Volume by Integrals			2 hours
	aluating maxima and minima of		al variables	2 hours
-	plying Lagrange multiplier optim	mization method		2 hours
	aluating Volume under surfaces			2 hours
	aluating triple integrals			2 hours
	aluating gradient, curl and diver			2 hours
	aluating line integrals in vectors			2 hours
12. Ap	plying Green's theorem to real v	<u>+</u>		2 hours
		Total Labo	oratory Hours	24 hours
	Evaluation:			
•	Assessment, Final Assessment			
	ended by Board of Studies	03-06-2019		
Approve	d by Academic Council	No. 55	Date	13-06-2019

Course Code	Statistics for Engineers	L	Т	Р	J	С
MAT2001		3	0	2	0	4
Prerequisites	MAT1011 – Calculus for Engineers	-	vllal	ous V	ersic	on:
1 1 1 1 1 1 1			5			1.0
Course Objectives:						1.0
	nts with a framework that will help them choose	e the	anr	ronri	ate	
1	s in various data analysis situations.		"Pr	10111	ate	
-	tions and relationship of real-time data.					
•	n and testing methods to make inference and modell	ing te	chni	ques	for	
decision making.	C C	U		•		
Course Outcomes:						
1. Compute and interp	pret descriptive statistics using numerical and graphic	al tec	hniq	ues.		
	sic concepts of random variables and find an appro-				on f	for
	tific to an experiment.	-				
3. Apply statistical m	nethods like correlation, regression analysis in analy	rsing,	inte	rpreti	ng	
experimental data.						
	decisions using statistical inference that is the centra	l to e	expe	rimen	tal	
research.						
	nodology and tools in reliability engineering problem	5.				
6. demonstrate R prog	gramming for statistical data					
	Г Т					
		hour				
	ics and data analysis-Measures of central tenden	cy –I	Meas	ures	of	
-	Skewness-Kurtosis (Concepts only)].					
		hour				
	variables-Probability mass Function, distribution and					and
	ribution and joint density functions- Marginal, cond Mathematical expectation, and its properties C				mon	
generating function – c		ovan	ance	,	mon	icin
0 0		hour	'C			
	ssion – Rank Correlation- Partial and Multiple cor			Aulti	ole	
regression.	ssion Rank correlation Further and Multiple con	ciuli	, , , , , , , , , , , , , , , , , , , ,	vi ui ui	510	
	ability Distributions 7	hour	s			
	distributions – Normal distribution – Gamma distribu					
	n – Weibull distribution.					
-	thesis Testing I	4 hc	ours			
	s – Introduction-Types of errors, critical region,			e of	test	ting
	ble tests- Z test for Single Proportion, Difference of	-				-
difference of means.						
Module: 6 Hypo	thesis Testing II	9 hc	ours			
	tudent's t-test, F-test- chi-square test- goodness of	fit -	ind	epend	lence	e of
-	Experiments - Analysis of variance - one and two	o way	y cla	ssific	atior	ns -
CRD-RBD- LSD.						
Module: 7 Relia		5 hc				
-	ard function-Reliabilities of series and parallel	•	ms-	Syste	em	
	bility-Preventive and repair maintenance- Availabilit					
Module: 8 Conte	emporary Issues	2 hou	Irs			

Inc	lustry Expert Lecture	
	Total Lecture hours 45 hours	
Te	xt book(s)	
	Probability and Statistics for engineers and scientists, R.E.Walpole, S.L.Mayers and K.Ye, 9 th Edition, Pearson Education (2012).	•
	Applied Statistics and Probability for Engineers, Douglas C. Montgomery, Geo Runger, 6 th Edition, John Wiley & Sons (2016).	orge C.
Re	ference books	
1.	Reliability Engineering, E.Balagurusamy, Tata McGraw Hill, Tenth reprint 2017.	
2.	Probability and Statistics, J.L.Devore, 8 th Edition, Brooks/Cole, Cengage Learning (2012).	
3.	Probability and Statistics for Engineers, R.A.Johnson, Miller Freund's, 8th edition,	
	Prentice Hall India (2011).	
4.	Probability, Statistics and Reliability for Engineers and Scientists, Bilal M. Ayyub Richard H. McCuen, 3 rd edition, CRC press (2011).	and
M	ode of Evaluation	
	gital Assignments (Solutions by using soft skills), Continuous Assessment Tests nal Assessment Test.	, Quiz,
Lis	st of Experiments (Indicative)	
1.	Introduction: Understanding Data types; importing/exporting data.	2 hours
2.	Computing Summary Statistics /plotting and visualizing data using Tabulation and Graphical Representations.	2 hours
3.	Applying correlation and simple linear regression model to real dataset; computing and interpreting the coefficient of determination.	2 hours
4.	Applying multiple linear regression model to real dataset; computing and interpreting the multiple coefficient of determination.	2 hours
5.	Fitting the following probability distributions: Binomial distribution	2 hours
6.	Normal distribution, Poisson distribution	2 hours
7.	Testing of hypothesis for One sample mean and proportion from real-time problems.	2 hours
8.	Testing of hypothesis for Two sample means and proportion from real- time problems	2 hours
9.	Applying the t test for independent and dependent samples	2 hours
10		2 hours
11	 Performing ANOVA for real dataset for Completely randomized design, Randomized Block design ,Latin square Design 	2 hours
	Total laboratory hours	22 hours
M	ode of Evaluation: Weekly Assessment, Final Assessment Test	
Re	commended by Board of Studies 03-06-2019	
Ap	proved by Academic Council No. 55 Date: 13-06-2	019

Course cod	e	LEAN START-UP MANAGEMENT	L	Τ	P	J	С
MGT1022			1	0	-	4	2
Pre-requisi	te	Nil	Syll	abu			
						v.	2.2
Course Obj							
The objectiv	ve of the	course is to make a student to create and commercialize the pro-	oduct				
Course Out							
1		mpletion of the course the students will be able to					
		loping business models and growth drivers					
		model canvas to map out key components of enterprise size, cost structure, revenue streams, and value chain					
-		l-measure-learn principles					
J. Foleseen	ig and q	uantifying business and financial risks					
	<u> </u>				-		
Module:1			1		hou		
-	-	gn Thinking (identify the vertical for business opportunity, u	nder	stan	d ye	ou	r
customers, ac	ccurater	y assess market opportunity)					
	1			-	-		
Module:2					hou		
Minimum V	able Pi	oduct (Value Proposition, Customer Segments, Build-measure-	learn	pro	cess	5)	
	T			2			
Module:3			17		hou	Irs	•
		velopment(Channels and Partners, Revenue Model and streams,	•		~~~~		
		es and Costs, Customer Relationships and Customer Developme vas –the lean model-templates)	nt Pr	oces	sses,	,	
business mo		vas –the lean model-templates)					
Madular				2	har		
Module:4	on and	A same to Eunding(visioning your youture, taking the meduat	/		hou	IIS	,
		Access to Funding(visioning your venture, taking the product					
	-	n including Digital & Viral Marketing, start-up finance - Cost $ngal \langle VC \rangle$ (Reply Leans and Kay elements of raising monoy)	.S/PT	ms	α		
Losses/cash	110w, A	ngel/VC,/Bank Loans and Key elements of raising money)					
	1		1				
Module:5				2	hou	Irs	;
Legal, Regu	latory, 0	CSR, Standards, Taxes					
	I		Γ.				
Module:6	Conte	mporary discussion	2 h	our	s		
	T						
		Total Lecture hours:		15	hou	Irs	•
Text Book(s)						

1.	Steve Blank, K & S Ranch (2012)The	e Startup Owne	r's Manual	: The Step-By-Step Guide		
	for Building a Great Company, 1st edition					
2.	Steve Blank (2013)The Four Steps to t	the Epiphany, K	&S Ranch	a; 2nd edition		
3.	Eric Ries (2011) The Lean Startur	p: How Toda	y's Entrep	reneurs Use Continuous		
	Innovation to Create Radically Success	sful Businesses	, Crown B	usiness		
Refe	ference Books					
1.	Steve Blank (2014) Holding a Cat by the	he Tail, , K&S	Ranch Pub	lishing LLC		
2.	2. Karal T Ulrich, Product Design and Development, SDEppinger, McGraw Hill					
3.	Peter Thiel, (2014) Zero to One: Notes	s on Startups, or	· How to B	uild the Future, Crown		
	Business;					
4.	Lean Analytics: Use Data to Build a Be	etter Startup Fas	ster(Lean S	eries), Alistair Croll &		
	Benjamin Yoskovitz,O'Reilly Media; 15	stEdition				
5.	Marty Cagan, (2008) Inspired: How To	o Create Produc	cts Custom	ers Love, SVPG Press;		
	1 stedition					
	•					
Reco	commended by Board of Studies 17-	-08-2017				
App	proved by Academic Council 47	7	Date	05-10-2017		

Course code	Course title		T	Т	ΡT	С
PHY1701	Engineering Physics		3	0	$\frac{1}{2}$ 0	4
Pre-requisite	Physics of 12th standard or equivalent		Sy	yllab		rsion
Course Objectives						V.2.1
	ents to understand the basics of the latest advancements in Physic	s viz Ouan	tum Me	chani	cs.	
	asers, Electro Magnetic Theory and Fiber Optics.	5 (12., Quui		Jiidiii	,	
	· · · ·					
	Outcome: Students will be able to					
	lual nature of radiation and matter.					
	ger's equations to solve finite and infinite potential problems.					
	ideas at the nanoscale. ideas for understanding the operation and working principle of op	ntoelectronic	devices			
	well's equations in differential and integral form.			•		
	cal fiber for different Engineering applications.					
	f Lorentz Transformation for Engineering applications.					
	quantum mechanical ideas – LAB					
	roduction to Modern Physics		_			iours
	hypothesis), Compton Effect, Particle properties of wave: Matter					
-	nberg Uncertainty Principle, Wave function, and Schrodinger equ	iation (time	depende	nt &		
independent).						
Module:2 Ap	plications of Quantum Physics				51	iours
	ox (Eigen Value and Eigen Function), 3-D Analysis (Qualitati	ve) Tunnel	ing Effe	ct (C		
	g Tunneling Microscope (STM).	, , , , , , , , , , , , , , , , , , , ,				
Module:3 Na	nophysics				51	iours
	no-materials, Moore's law, Properties of Nano-materials, Qua		nement,	Quai	ntum	well,
wire & dot, Carbor	Nano-tubes (CNT), Applications of nanotechnology in industry	•				
Module:4 La	ser Principles and Engineering Application				61	iours
	cs, Spatial and Temporal Coherence, Einstein Coefficient & its	significance	- Popula	ation		
	level systems, Pumping schemes, Threshold gain coefficient, C					
	aser and their engineering applications.	I	,			<u></u>
	ectromagnetic Theory and its application					iours
	ence, Gradient and Curl, Qualitative understanding of surface an					
	ative), Wave Equation (Derivation), EM Waves, Phase velocity,	Group veloc	city, Gro	up 1n	idex,	
Wave guide (Qua						
Module:6 Pro	opagation of EM waves in Optical fibers and				101	iours
	toelectronic Devices					
Light propagation	through fibers, Acceptance angle, Numerical Aperture, Types of					
	ultimode, Attenuation, Dispersion-intermodal and intramodal.			z La	ser D	viode,
Detectors-Photodet	ectors- PN & PIN - Applications of fiber optics in communication	on-Endosco	py.			
Module:7 Spe	noial Theory of Polativity				5 1	iours
	ecial Theory of Relativity e, Galilean relativity, Postulate of special theory of relativity, S	imultaneity	length (ontr		
time dilation.	, cancent relativity, roscilate or special theory of relativity, b	initiatiuncity,	iongui	Jun	action	
Module:8 C	ontemporary issues:				21	iours
	ecture by Industry Experts					
T						
	Total Lecture hours:				45 I	iours
Text Book(s)						

1.	Arthur Beiser et al., Concepts of Modern Phy	vsics, 2013, Sixth	Edition, Tat	a McGraw Hill. William	Silfvast,	
2.	Laser Fundamentals, 2008, Cambridge Unive		,		,	
3.	D. J. Griffith, Introduction to Electrodynamics, 2014, 4th Edition, Pearson. Djafar K. Mynbaev and Lowell L.Scheiner, Fiber Optic Communication Technology, 2011, Pearson					
4.	Djafar K. Mynbaev and Lowell L.Scheiner, H	Fiber Optic Comr	nunication T	echnology, 2011, Pearson		
Refer	ence Books					
1.	Raymond A. Serway, Clement J. Mosses, Cu	urt A. Moyer Mo	odern Physic	s, 2010, 3rd Indian Edition	on Cengage	
	learning.					
2.	John R. Taylor, Chris D. Zafiratos and Micha PHI Learning Private Ltd.	ael A. Dubson, M	odern Physic	es for Scientists and Engir	neers, 2011,	
3.	Kenneth Krane Modern Physics, 2010, Wiley	Indian Edition.				
4.	Nityanand Choudhary and Richa Verma, Lase		pplications,	2011, PHI Learning Privat	te Ltd.	
5.	S. Nagabhushana and B. Sathyanarayana,					
	Publishing House Pvt. Ltd.,	-				
6.	R. Shevgaonkar, Electromagnetic Waves, 200					
7.	Principles of Electromagnetics, Matthew N.O					
8.	Ajoy Ghatak and K. Thyagarajan, Introductio			bridge University Press.		
Mode	of Evaluation: CAT / Assignment / Quiz / FA	5				
		t of Experiment				
1.	Determination of Planck's constant using ele	ectroluminescenc	e process		2 hrs	
2.	Electron diffraction				2 hrs	
3.	Determination of wavelength of laser source		d diode laser	rs of	2 hrs	
	different wavelengths) using diffraction tech					
4.	Determination of size of fine particle using la				2 hrs	
5.	Determination of the track width (periodicity				2 hrs	
6.	Optical Fiber communication (source + optic				2 hrs	
7.	Analysis of crystallite size and strain in a nat		U	*	2 hrs	
8.	Numerical solutions of Schrödinger equation	n (e.g. particle in	a box proble	m)	2 hrs	
	(can be given as an assignment)					
9.	Laser coherence length measurement				2 hrs	
10.	Proof for transverse nature of E.M. waves				2 hrs	
11.	Quantum confinement and Heisenberg's unc	ertainty principle			2 hrs	
12.	Determination of angle of prism and refractive		us colour –S	pectrometer	2 hrs	
13.	Determination of divergence of a laser beam				2 hrs	
14.	Determination of crystalline size for nanoma	terial (Computer	simulation)		2 hrs	
15.	Demonstration of phase velocity and group v	velocity (Compute	er simulation)	2 hrs	
				Total Laboratory Hours	30 hrs	
	of evaluation: CAT / FAT					
		06-2019				
Appro	oved by Academic Council No.	55	Date	13-06-2019		

Course code	Course title			T P J C
PHY1999	Introduction to Innovative P	rojects	1	
Pre-requisite	Nil		Svlla	abus versio
•			v	1.
Course Objectives				
	ts confident enough to handle the day to day i	issues.		
	"Thinking Skill" of the students, especially Cre		kills	
	lents to be innovative in all their activities	0		
4. To prepare a pro	oject report on a socially relevant theme as a s	olution to the exi	isting is	ssues
Course Outcomes			0	
1. Understand the	e various types of thinking skills.			
2. Enhance the in	inovative and creative ideas.			
3. Find out a suita	able solution for socially relevant issues- J con	nponent		
		-		
Module:1 A Self	Confidence	1	hour	
	E – Johari Window –SWOT Analysis – Self Es			tor - Case
Study	Johan whice - 5 w O1 Milarysis - 501 ES	a contracting a co	JIIIIDU	Case
	g self, understanding surrounding, thinking ab	out how s(he) ca	ın be a	contributor
	eating a big picture of being an innovator – wi			
	elf – Topic "Mr X – the great innovator of 20			
hours)	1	1		
			1	
/	nking Skill	1	hour	
Module:1 B Thi	nking Skill aviour – Types of thinking– Concrete – Abstra			ent, Creative
Module:1 B Thin Thinking and Beha		act, Convergent, I	Diverg	
Module:1 BThisThinking and BehaAnalytical, Sequent	aviour – Types of thinking– Concrete – Abstra	act, Convergent, I	Diverg	
Module:1 B This Thinking and Beha Analytical, Sequent Study.	aviour – Types of thinking– Concrete – Abstra tial and Holistic thinking – Chunking Triangle	act, Convergent, I – Context Grid -	Diverg – Exan	nples – Case
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting a	aviour – Types of thinking– Concrete – Abstra tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata o	act, Convergent, I – Context Grid - of life and talk to	Diverg – Exan them /	nples – Case ′ make field
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting avisits to identify a result	aviour – Types of thinking– Concrete – Abstra tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata o min of100 society related issues, problems for	act, Convergent, 1 – Context Grid - of life and talk to which they need	Diverg – Exan them / solutic	nples – Case ′ make field ons and
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting avisits to identify a rcategories them an	aviour – Types of thinking– Concrete – Abstra tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata o	act, Convergent, 1 – Context Grid - of life and talk to which they need	Diverg – Exan them / solutic	nples – Case ′ make field ons and
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting avisits to identify a rcategories them anhours)	aviour – Types of thinking– Concrete – Abstra tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata o min of100 society related issues, problems for	act, Convergent, 1 – Context Grid - of life and talk to which they need lessons learnt. (4	Diverg – Exan them / solutic	nples – Case ′ make field ons and
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting avisits to identify a rcategories them anhours)Module:1 CLate	aviour – Types of thinking– Concrete – Abstratial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata of min of100 society related issues, problems for d upload along with details of people met and eral Thinking Skill	act, Convergent, 1 – Context Grid - of life and talk to which they need lessons learnt. (4	Diverge – Exan them / solutic 4 non- hour	nples – Case / make field ons and contact
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting avisits to identify a rcategories them anhours)Module:1 CLateBlooms Taxonomy	aviour – Types of thinking– Concrete – Abstra tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata o min of100 society related issues, problems for d upload along with details of people met and	act, Convergent, 1 – Context Grid - of life and talk to which they need lessons learnt. (4 1 o lateral thinking	Diverge – Exan them / solutic 4 non- hour	nples – Case / make field ons and contact
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting avisits to identify a rcategories them anhours)Module:1 CBlooms TaxonomyProject : Last weel	aviour – Types of thinking– Concrete – Abstra- tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata of min of100 society related issues, problems for d upload along with details of people met and eral Thinking Skill y – HOTS – Outof the box thinking – deBond	act, Convergent, 1 – Context Grid - of life and talk to which they need lessons learnt. (4 1 o lateral thinking ded	Diverge – Exan them / solutic 4 non- hour	nples – Case / make field ons and contact
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting avisits to identify a rcategories them anhours)Module:1 CLateBlooms TaxonomyProject : Last weelModule:2 ACreat	aviour – Types of thinking– Concrete – Abstra- tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata o min of100 society related issues, problems for d upload along with details of people met and eral Thinking Skill y – HOTS – Outof the box thinking – deBond ks - incomplete portion to be done and upload	act, Convergent, 1 – Context Grid - of life and talk to which they need lessons learnt. (4 1 o lateral thinking ded 1	Diverg – Exan them / solutic 4 non- hour model	nples – Case / make field ons and contact
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting avisits to identify a rcategories them anhours)Module:1 CBlooms TaxonomyProject : Last weelModule:2 ACreativity Models	aviour – Types of thinking– Concrete – Abstra- tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata of min of100 society related issues, problems for d upload along with details of people met and eral Thinking Skill y – HOTS – Outof the box thinking – deBond ks - incomplete portion to be done and upload ativity	act, Convergent, 1 – Context Grid - of life and talk to which they need lessons learnt. (4 1 o lateral thinking ded 1 amples	Diverg – Exan them / solutic 4 non- hour model hour	nples – Case ' make field ons and contact – Examples
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting avisits to identify a rcategories them anhours)Module:1 CBlooms TaxonomyProject : Last weelModule:2 ACreativity ModelsProject : Selectingprioritisation, use	aviour – Types of thinking– Concrete – Abstra- tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata of min of100 society related issues, problems for d upload along with details of people met and eral Thinking Skill y – HOTS – Outof the box thinking – deBond ks - incomplete portion to be done and upload ativity – Walla – Barrons – Koberg & Begnall – Exa g 5 out of 100 issues identified for future y of statistical tools & upload . (4 non- contac	act, Convergent, 1 – Context Grid - of life and talk to which they need lessons learnt. (4 1 o lateral thinking ded 1 amples work. Criteria ba t hours)	Diverg – Exan them / solutic 4 non- hour model hour ased ap	nples – Case ' make field ons and contact – Examples
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting avisits to identify a rcategories them anhours)Module:1 CBlooms TaxonomyProject : Last weelModule:2 ACreativity ModelsProject : Selectingprioritisation, useModule:2 BBrain	aviour – Types of thinking– Concrete – Abstra- tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata of min of100 society related issues, problems for d upload along with details of people met and eral Thinking Skill y – HOTS – Outof the box thinking – deBond ks - incomplete portion to be done and upload ativity – Walla – Barrons – Koberg & Begnall – Exa g 5 out of 100 issues identified for future of statistical tools & upload . (4 non- contac instorming	act, Convergent, 1 – Context Grid - of life and talk to which they need lessons learnt. (4 1 o lateral thinking ded 1 amples work. Criteria ba t hours)	Diverg – Exan them / solutic 4 non- hour model hour	nples – Case ' make field ons and contact – Examples
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting avisits to identify a rcategories them anhours)Module:1 CLateBlooms TaxonomyProject : Last weelModule:2 ACreativity ModelsProject : Selectingprioritisation, useModule:2 BBrai25 brainstorming to	aviour – Types of thinking– Concrete – Abstra- tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata of min of100 society related issues, problems for d upload along with details of people met and eral Thinking Skill y – HOTS – Outof the box thinking – deBond ks - incomplete portion to be done and upload ativity – Walla – Barrons – Koberg & Begnall – Exa g 5 out of 100 issues identified for future y of statistical tools & upload . (4 non- contac instorming echniques and examples	act, Convergent, 1 – Context Grid - of life and talk to which they need lessons learnt. (4 1 o lateral thinking ded 1 amples work. Criteria ba t hours) 1	Diverg – Exan them / solutic 4 non- hour model hour ased ap hour	nples – Case ' make field ons and contact – Examples proach f o r
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting avisits to identify a rcategories them anhours)Module:1 CLateBlooms TaxonomyProject : Last weelModule:2 ACreativity ModelsProject : Selectingprioritisation, useModule:2 BBrail25 brainstorming tProject: Brainstor	aviour – Types of thinking– Concrete – Abstra- tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata of min of100 society related issues, problems for d upload along with details of people met and eral Thinking Skill y – HOTS – Outof the box thinking – deBond ks - incomplete portion to be done and upload ativity – Walla – Barrons – Koberg & Begnall – Exa g 5 out of 100 issues identified for future y of statistical tools & upload . (4 non- contac instorming echniques and examples m and come out with as many solutions as p	act, Convergent, 1 – Context Grid - of life and talk to which they need lessons learnt. (4 1 o lateral thinking ded 1 amples work. Criteria ba t hours) 1	Diverg – Exan them / solutic 4 non- hour model hour ased ap hour	nples – Case ' make field ons and contact – Examples proach f o r
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting avisits to identify a rcategories them anhours)Module:1 CLastBlooms TaxonomyProject : Last weelModule:2 ACreativity ModelsProject : Selectingprioritisation, useModule:2 BBrain25 brainstorming tProject: Brainstor& upload. (4 non-	aviour – Types of thinking– Concrete – Abstra- tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata of min of100 society related issues, problems for d upload along with details of people met and eral Thinking Skill y – HOTS – Outof the box thinking – deBond ks - incomplete portion to be done and upload ativity – Walla – Barrons – Koberg & Begnall – Exa g 5 out of 100 issues identified for future y of statistical tools & upload . (4 non- contac instorming echniques and examples m and come out with as many solutions as p - contact hours)	act, Convergent, 1 – Context Grid - of life and talk to which they need lessons learnt. (4 1 to lateral thinking ded 1 amples work. Criteria ba t hours) 1 ossible for the to	Diverg – Exan them / solutio 4 non- hour model hour ased ap hour	nples – Case ' make field ons and contact – Examples proach f o r
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting avisits to identify a rcategories them anhours)Module:1 CBlooms TaxonomyProject : Last weelModule:2 ACreativity ModelsProject : Selectingprioritisation, useModule:2 BBrai25 brainstorming tProject: Brainstor& upload . (4 non-Module:3Min	aviour – Types of thinking– Concrete – Abstra- tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata of min of100 society related issues, problems for d upload along with details of people met and eral Thinking Skill y – HOTS – Outof the box thinking – deBond ks - incomplete portion to be done and upload ativity – Walla – Barrons – Koberg & Begnall – Exa g 5 out of 100 issues identified for future y of statistical tools & upload . (4 non- contact instorming echniques and examples m and come out with as many solutions as p - contact hours) ad Mapping	act, Convergent, 1 – Context Grid - of life and talk to which they need lessons learnt. (4 1 o lateral thinking ded 1 amples work. Criteria ba t hours) 1 ossible for the to 1	Diverg – Exan them / solutic 4 non- hour model hour ased ap hour	nples – Case ' make field ons and contact – Examples proach f o r
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting avisits to identify a rcategories them anhours)Module:1 CLateBlooms TaxonomyProject : Last weelModule:2 ACreativity ModelsProject : Selectingprioritisation, useModule:2 BBrai25 brainstorming tProject: Brainstor& upload . (4 non-Module:3Mind Mapping te	aviour – Types of thinking– Concrete – Abstra- tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata of min of100 society related issues, problems for d upload along with details of people met and eral Thinking Skill y – HOTS – Outof the box thinking – deBond ks - incomplete portion to be done and upload ativity – Walla – Barrons – Koberg & Begnall – Exa g 5 out of 100 issues identified for future v of statistical tools & upload . (4 non- contac instorming echniques and examples m and come out with as many solutions as p - contact hours) md Mapping chniques and guidelines. Drawing a mind ma	act, Convergent, 1 – Context Grid - of life and talk to which they need lessons learnt. (4 1 o lateral thinking ded 1 amples work. Criteria ba t hours) 1 ossible for the to 1 p	Diverg – Exan them / solutio 4 non- hour model hour ased ap hour p 5 issu hour	nples – Case ' make field ons and contact – Examples proach f o r
Module:1 B This Thinking and Beha Analytical, Sequent Study. Project : Meeting a Project : Meeting a visits to identify a f categories them an hours) Module:1 C Late Blooms Taxonomy Project : Last weel Module:2 A Creativity Models Project : Selecting prioritisation, use Module:2 B Brai 25 brainstorming to Project: Brainstorming to Module:3 Min Mind Mapping te Project : Using M	aviour – Types of thinking– Concrete – Abstra- tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata of min of100 society related issues, problems for d upload along with details of people met and eral Thinking Skill y – HOTS – Outof the box thinking – deBond ks - incomplete portion to be done and upload ativity – Walla – Barrons – Koberg & Begnall – Exa g 5 out of 100 issues identified for future y of statistical tools & upload . (4 non- contac instorming echniques and examples m and come out with as many solutions as p - contact hours) ad Mapping chniques and guidelines. Drawing a mind ma find Maps get another set of solutions fort	act, Convergent, 1 – Context Grid - of life and talk to which they need lessons learnt. (4 1 o lateral thinking ded 1 amples work. Criteria ba t hours) 1 ossible for the to 1 p	Diverg – Exan them / solutio 4 non- hour model hour ased ap hour p 5 issu hour	nples – Case ' make field ons and contact – Examples proach f o r
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting avisits to identify a rcategories them anhours)Module:1 CBlooms TaxonomyProject : Last weelModule:2 ACreativity ModelsProject : Selectingprioritisation, useModule:2 BBrai25 brainstorming toProject: Brainstor& upload . (4 non-Module:3MindMind Mapping teProject : Using Mnon- contact hour	aviour – Types of thinking – Concrete – Abstra- tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata of min of100 society related issues, problems for d upload along with details of people met and eral Thinking Skill y – HOTS – Outof the box thinking – deBond ks - incomplete portion to be done and upload ativity – Walla – Barrons – Koberg & Begnall – Exa g 5 out of 100 issues identified for future y of statistical tools & upload . (4 non- contac instorming echniques and examples m and come out with as many solutions as p - contact hours) ad Mapping chniques and guidelines. Drawing a mind ma find Maps get another set of solutions forth rs)	act, Convergent, 1 – Context Grid - of life and talk to which they need lessons learnt. (4 1 o lateral thinking ded 1 amples work. Criteria ba t hours) 1 ossible for the to 1 p he next 5 issues (for the to	Diverg – Exan them / solutic 4 non- hour model hour ased ap hour op 5 issu hour	nples – Case ' make field ons and contact – Examples proach f o r
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting avisits to identify a rcategories them anhours)Module:1 CLateBlooms TaxonomyProject : Last weelModule:2 ACreativity ModelsProject : Selectingprioritisation, useModule:2 BBrai25 brainstorming tProject: Brainstor& upload . (4 non-Module:3Mind Mapping teProject : Using Mnon- contact houModule:4 ASystem	aviour – Types of thinking – Concrete – Abstra- tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata of min of100 society related issues, problems for d upload along with details of people met and eral Thinking Skill y – HOTS – Outof the box thinking – deBond ks - incomplete portion to be done and upload ativity – Walla – Barrons – Koberg & Begnall – Exa g 5 out of 100 issues identified for future v of statistical tools & upload . (4 non- contact instorming echniques and examples m and come out with as many solutions as p - contact hours) md Mapping chniques and guidelines. Drawing a mind ma find Maps get another set of solutions forth rs) tems thinking	act, Convergent, 1 - Context Grid - of life and talk to which they need lessons learnt. (4 1 to lateral thinking ded 1 amples work. Criteria ba t hours) 1 ossible for the to 1 up he next 5 issues (i	Diverg – Exan them / solutio 4 non- hour model hour ased ap hour p 5 issu hour	nples – Case ' make field ons and contact – Examples proach f o r
Module:1 B This Thinking and Beha Analytical, Sequent Study. Project : Meeting a Project : Meeting a visits to identify a f categories them an hours) Module:1 C Late Blooms Taxonomy Project : Last weel Module:2 A Creativity Models Project : Selecting prioritisation, use Module:2 B Brai 25 brainstorming to Project: Brainstorming to Module:3 Min Mind Mapping te Project : Using Mind Module:4 A Systems Thinking a	aviour – Types of thinking– Concrete – Abstra- tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata of min of100 society related issues, problems for d upload along with details of people met and eral Thinking Skill y – HOTS – Outof the box thinking – deBond ks - incomplete portion to be done and upload ativity – Walla – Barrons – Koberg & Begnall – Exa g 5 out of 100 issues identified for future y of statistical tools & upload . (4 non- contact instorming echniques and examples m and come out with as many solutions as p - contact hours) nd Mapping chniques and guidelines. Drawing a mind ma find Maps get another set of solutions fort rs) tems thinking essentials – examples – Counter Intuitive cond	act, Convergent, 1 - Context Grid - of life and talk to which they need lessons learnt. (4 1 to lateral thinking ded 1 amples work. Criteria ba t hours) 1 ossible for the to 1 he next 5 issues (i 1 demns	Diverg – Exan them / solution 4 non- hour model hour ased ap hour op 5 issu hour issue 6 hour	nples – Case ' make field ons and contact – Examples proach f o r ues identifie – 10) . (4
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting avisits to identify a rcategories them anhours)Module:1 CLateBlooms TaxonomyProject : Last weelModule:2 ACreativity ModelsProject : Selectingprioritisation, useModule:2 BBrai25 brainstorming toProject: Brainstor& upload . (4 non-Module:3MindMind Mapping teProject : Using Mnon- contact hourModule:4 ASystems Thinking GProject : Select	aviour – Types of thinking – Concrete – Abstra- tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata of min of100 society related issues, problems for d upload along with details of people met and eral Thinking Skill y – HOTS – Outof the box thinking – deBond ks - incomplete portion to be done and upload ativity – Walla – Barrons – Koberg & Begnall – Exa g 5 out of 100 issues identified for future y of statistical tools & upload . (4 non- contact instorming echniques and examples m and come out with as many solutions as p - contact hours) ad Mapping chniques and guidelines. Drawing a mind ma find Maps get another set of solutions forth rs) tems thinking essentials – examples – Counter Intuitive cond 1 issue / problem for which the possil	act, Convergent, 1 - Context Grid - of life and talk to which they need lessons learnt. (4 1 o lateral thinking ded 1 amples work. Criteria ba t hours) 1 ossible for the to 1 he next 5 issues (i 1 demns ble solutions are	Diverg – Exan them / solutic 4 non- hour model hour ased ap hour op 5 issu hour issue 6 hour availab	nples – Case ' make field ons and contact – Examples proach f o r ues identifie – 10) . (4 ole with you
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting avisits to identify a rcategories them anhours)Module:1 CLateBlooms TaxonomyProject : Last weelModule:2 ACreativity ModelsProject : Selectingprioritisation, useModule:2 BBrai25 brainstorming tProject: Brainstor& upload. (4 non-Module:3Mind Mapping teProject : Using Nnon- contact houModule:4 ASystems Thinking GProject : SelectApply Systems Thinking G	aviour – Types of thinking – Concrete – Abstra- tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata of min of100 society related issues, problems for d upload along with details of people met and eral Thinking Skill y – HOTS – Outof the box thinking – deBond ks - incomplete portion to be done and upload ativity – Walla – Barrons – Koberg & Begnall – Exa g 5 out of 100 issues identified for future y of statistical tools & upload . (4 non- contact instorming echniques and examples m and come out with as many solutions as p - contact hours) md Mapping chniques and guidelines. Drawing a mind ma find Maps get another set of solutions fort rs) tems thinking essentials – examples – Counter Intuitive cond 1 issue / problem for which the possil inking process and pick up one solution [examples]	act, Convergent, 1 - Context Grid - of life and talk to which they need lessons learnt. (4 1 b lateral thinking ded 1 amples work. Criteria ba t hours) 1 ossible for the to 1 wp he next 5 issues (for 1 demns ble solutions are cplanation should	Diverg – Exan them / solution 4 non- hour model hour ased ap hour op 5 issu hour issue 6 hour availab d be giv	nples – Case ' make field ons and contact – Examples proach f o r ues identifie – 10) . (4 ole with you ven why the
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting avisits to identify a rcategories them anhours)Module:1 CLateBlooms TaxonomyProject : Last weelModule:2 ACreativity ModelsProject : Selectingprioritisation, useModule:2 BBrai25 brainstorming trProject: Brainstor& upload. (4 non-Module:3MindMind Mapping teProject : Using Mnon- contact hourModule:4 ASystems ThinkingProject : SelectApply Systems Thother possible solu	aviour – Types of thinking – Concrete – Abstra- tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata of min of100 society related issues, problems for d upload along with details of people met and eral Thinking Skill y – HOTS – Outof the box thinking – deBond ks - incomplete portion to be done and upload ativity – Walla – Barrons – Koberg & Begnall – Exa g 5 out of 100 issues identified for future y of statistical tools & upload . (4 non- contact instorming echniques and examples m and come out with as many solutions as p - contact hours) ad Mapping chniques and guidelines. Drawing a mind ma find Maps get another set of solutions fort rs) tems thinking essentials – examples – Counter Intuitive cond 1 issue / problem for which the possil inking process and pick up one solution [ex- tions have been left out]. Go back to the con-	act, Convergent, 1 - Context Grid - of life and talk to which they need lessons learnt. (4 1 b lateral thinking ded 1 amples work. Criteria ba t hours) 1 ossible for the to 1 wp he next 5 issues (for 1 demns ble solutions are cplanation should	Diverg – Exan them / solution 4 non- hour model hour ased ap hour op 5 issu hour issue 6 hour availab d be giv	nples – Case ' make field ons and contact – Examples proach f o r ues identifie – 10) . (4 ole with you ven why the
Module:1 BThisThinking and BehaAnalytical, SequentStudy.Project : Meeting avisits to identify a rcategories them anhours)Module:1 CLateBlooms TaxonomyProject : Last weelModule:2 ACreativity ModelsProject : Selectingprioritisation, useModule:2 BBrain25 brainstorming toProject : Brainstor& upload . (4 non-Module:3MindMind Mapping teProject : Using Mnon- contact hourModule:4 ASystems Thinking GProject : SelectApply Systems Thinking G	aviour – Types of thinking – Concrete – Abstra- tial and Holistic thinking – Chunking Triangle at least 50 people belonging to various strata of min of100 society related issues, problems for d upload along with details of people met and eral Thinking Skill y – HOTS – Outof the box thinking – deBond ks - incomplete portion to be done and upload ativity – Walla – Barrons – Koberg & Begnall – Exa g 5 out of 100 issues identified for future y of statistical tools & upload . (4 non- contact instorming echniques and examples m and come out with as many solutions as p - contact hours) md Mapping chniques and guidelines. Drawing a mind ma find Maps get another set of solutions fort rs) tems thinking essentials – examples – Counter Intuitive cone 1 issue / problem for which the possil inking process and pick up one solution [examples]	act, Convergent, I - Context Grid - of life and talk to which they need lessons learnt. (4 1 o lateral thinking ded 1 amples work. Criteria ba t hours) 1 ossible for the to 1 he next 5 issues (i 1 demns ble solutions are splanation should ustomer and asse	Diverg – Exan them / solution 4 non- hour model hour ased ap hour op 5 issu hour issue 6 hour availab d be giv	nples – Case ' make field ons and contact – Examples proach f o r ues identifie – 10) . (4 ole with you ven why the

Module:5 A	"design week" celebration	is upload the weeks.			1 hour
	etween Creativity and Inno	ovation - Examples	of innow		
	terature searches on proto				
,	d upload (4 non- conta		uon man	zeu. i iepai	e a prototype moder
Module:5 B	Blocks for Innovation				1 hour
	ks for creativity and inno		a obstacl		
•	roject presentation on		0		2
	erim review with PPT pre	-			auons-expected
Module:5 C	•		contact		1 hour
	right climate for	rippowntion			I IIUUI
	ining the project, based or		and unlos	ding the to	set (Anon contac
hours)	ining the project, based of	ii the review report	and upior	uning the te	xt (4 11011- Contac
Module:6 A	Innovation in India				1 hour
	ndian innovations				I IIUuI
	ng the project better with a	add ons (4 non- c	ontact ho	ure)	
Module:6 B	IUGAAD Innovation			,	1 hour
	flexible approach to inn		e with les		
	tuning the innovation				-
(Credit fo	0	1 / 5	1	1	u upioaung
Module:7 A	Innovation Project				1 hour
Wiouule.7 A	Presentation	Toposai			I IIUUI
Project prope	osal contents, economic in	put. ROI – Template	2		
	sentation of the innovativ			. (4 non	- contact hours)
	Contemporary issue in I				1 hour
	issue in Innovation				
1 /	project Presentation, Vi	va voce Exam (4 no r	n- contac	t hours)	
,	,	Total Lecture hou		hours	
Text Book(s)					
	ave Creative Ideas, Edwar	d debone Vermilon	publication	on UK 20	07
	of Innovation, Tom Kelley				
	-		i, i ionic i	DOOKS LIU,	018,2000
Reference Bo					
1 0 0	Confidence, Meribeth Bo	<u> </u>			
v	inking Skills Paul Sloane	Keogan Page India	,	Delhi, 200)8
2. Lateral T			. 2015		
2. Lateral T	novators, Akhat Agrawal,	Jaico Books, Mumb	ai, 2015		
 Lateral T Indian In JUGAAD 		5		Random hou	ıse India, Noida,
2. Lateral T 3. Indian In	novators, Akhat Agrawal,	5		Random hou	ise India, Noida,
 Lateral T Indian In JUGAAD 2012. 	novators, Akhat Agrawal,	aideep Prabhu, Simor	ne Ahuja H		ise India, Noida,
 Lateral T Indian In JUGAAD 2012. Mode of Eval 	novators, Akhat Agrawal, Innovation, Navi Radjou, J	aideep Prabhu, Simor t / Quiz / FAT / Pro	ne Ahuja H Dject / Ser		ise India, Noida,
 Lateral T Indian In JUGAAD 2012. Mode of Eval Three reviews 	novators, Akhat Agrawal, Innovation, Navi Radjou, J uation: CAT / Assignmen	aideep Prabhu, Simor t / Quiz / FAT / Pro	ne Ahuja H Dject / Ser		ise India, Noida,

PROGRAMME CORE

B.Tech Chemical Engineering- BCM

Course code	CHE1001	L	Т	Р	J	С
Course title	MATERIAL SCIENCE AND STRENGTH OF	3	0	0	0	3
Pre-requisite	NIL	S	ylla	bus v	versi	ion
						1.2
Course Objectiv						
	the concept of mechanical behaviour of materials, stress -	strai	n an	d the	ir us	se in
•	esign of machine members and structures.					
	stributed force systems, centroid/centre of gravity and meth	od of	find	ing c	entr	oid
-	igures and bodies	c				
	moment of inertia and method of finding moment of inerti	a of	area	s and	bo	dies
bending of bea	ams under different loading conditions					
Course Outcom	es (CO):					
1. Understand c	oncept of mechanical behavior of materials and calculate	ation	s of	sam	le u	sing
appropriate eq						
•	ehaviour of structural and machine components subjected t	o va	rious	load	ling	and
	ions based on principles of equilibrium.	c		• ,	C.	
and bodies.	gnificance of centroid/ center of gravity and find centroids	s of o	com	posite	e fig	ures
	e concept of moment of inertia and method of finding mon	ient i	of in	ertia	ofa	reas
and bodies.	e concept of moment of merita and method of finding mon		51 111	citia	01 0	nca
	cept of stress and strain to analyse structural members and	1 ma	chin	e par	ts u	ndei
	ar load, and bending moment.			1		
6. Analyze the st	resses developed in cylindrical and spherical shell.					
	gineering Metallurgy				6 ho	
_	aterials: Mechanical, Physical & Chemical properties, In			-		-
	rous & Non Ferrous metals & alloys; Introduction to va	riou	s he	at tre	eatm	ent
processes & Me	chanical tests.					
Module:2 Res	ponse of materials (Regular Geometry)				5 ho	urs
	elasticity – Stress & Strain – Types of stresses & strain – S	tress	strai			
relationship - H	ooke's law - Modulus of Elasticity & Modulus of Rigidity					
body due to forc	e acting on it – Deformation of a body due to self-weight.					
Madulas2 Das	nonge of motorials (Innomian Coomstra)) h a	
	ponse of materials (Irregular Geometry) erposition – Stress & Strain analysis in bars of varying section	na	Stro		8 ho	
of uniformly tap		- 115	Suc	5565 1	11 00	115
or uniformity tup						
Module:4 Cer	itroid			(5 ho	
Intro des ations to f						urs
miroduction to C	Centroid & Centre of Gravity – Methods of Centroid – Centro	oid o	f pla	ne fig	gure	
by geometrical c	onsideration. Centre of Gravity (real bodies): Centre of grav	ity by	y me	thod	of	s
by geometrical c	-	ity by	y me	thod	of	s
by geometrical c	onsideration. Centre of Gravity (real bodies): Centre of grav	ity by	y me	thod	of	s

Concept of Moment of Inertia & Methods for Moment of Inertia – Moment of Inertia for Rectangular sections – Theory of Parallel axis – Moment of Inertia for Triangular, Circular and Semi-circular sections.

Module:6Transverse loading on Beams6 hoursIntroduction to Beams – Types of Loading – Shear force and Bending Moments – Sign
conventions – SFD & BMD for Cantilever beams and Simply supported beams with point
loads, UDL and UVL.6 hours

Module:7	Thin and Thick Pressure vessels	5 hours
Introductio	n – Pressure vessels; Stresses in thin and thick cylindrical she	ll due to internal pressure
– Circumfe	rential and longitudinal stresses – Spherical shells subjected t	o internal pressure.
Module:8	Contemporary issues	2 hours
	Total Lecture hours	45 hours
Text Book	S	
	Ashby, D. R. H. Jones, Engineering Materials - An Introduction polications. 2 nd ed., Butterworth Heinemann, 2011	on to their Properties
	oshenko, D.H. Young (Author), Strength of Materials: Advan ns, 4 th ed., CBS Publishers & Distributors, 2013	ced theory and
Reference	Books	
1. N.M. I	Belayavev, Problems in Strength of Materials, Pergamon Press	s, 2013.
2. W. A. Hill, 2	Nash, Strength of Materials, Schaum's Outline Series, Revise 010.	d 4 th ed., McGraw
3. Beer. N	Materials (in SI Units). Tata McGraw Hill Johnston & Dewol	f. Mechanics Of

5.	Publications, 2004	incolaw Inn Johnston & Dewor	i, wicemanies Of
Mo	de of evaluation: Continuous Asses	sment Test, Quizzes, Assignments	, Final Assessment Test
Rec	commended by Board of Studies	15-04-2019	
Ap	proved by Academic Council	55 th	13-06-2019

Course title	CHE1002	L	T	P	J	<u>C</u>
	PROCESS CALCULATIONS	4	0	0	0	4
Pre-requisite	NIL	2	Sylla	bus	vers	
Course Objectives						1.2
Course Objectives	l balances to solve for compositions and flow rates of proce		troor	ne		
	and multiple reactions into unit operations within chemical					
	and energy balance calculations in various systems	pro	10035	05		
	and energy bulance calculations in various systems					
Course Outcomes	(CO):					
1.Apply mole conc	ept and ideal gas equation to express the composition of mix	ture	es			
11 .	oncept of humidity and usage of psychrometric chart					
	hethod of solving steady state material balances without cher	mica	al rea	ictio	ns	
	nt of reaction in material balances for systems involving che					
5.Analyze the proce	esses involving recycling and bypass involving chemical rea	octic	ons			
6.Apply simultaneo	ous material & energy balances to industrial processes					
	Chemical Calculations ons – Conversion factors – Mole concept – Concept of norm				hou	
Vapor pressure and	v r pressure and Humidity calculations d liquids – Antoine equation, Vapor pressure of immiscib	1 1		6	ho	
	s law – Humidity and Saturation – Relative and percentage strature, Dew point – Use of humidity chart for engineering ca	satu	ratio	n, W		lea
and dry bulb tempe	s law – Humidity and Saturation – Relative and percentage s	satu	ratio	on, W ons		dea oult
and dry bulb tempe Module:3	s law – Humidity and Saturation – Relative and percentage strature, Dew point – Use of humidity chart for engineering ca	satu alcu	ratio	on, Wons	/et l 2 ho	dea oult
and dry bulb tempeModule:3MaterLaw of conservati	s law – Humidity and Saturation – Relative and percentage s rature, Dew point – Use of humidity chart for engineering ca rial Balance without Chemical Reaction	satu alcu	ratio latic	on, Wons	/et l 2 ho	dea oult
and dry bulb tempe Module:3 Mater Law of conservatidrying, dissolution,	s law – Humidity and Saturation – Relative and percentage s rature, Dew point – Use of humidity chart for engineering car rial Balance without Chemical Reaction on of mass – Process flow sheet – Material balance cal	satu alcu	ratio latic	on, Wons	/et b 2 ho volv	dea oult
and dry bulb tempeModule:3MaterLaw of conservatidrying, dissolution,Module:4Mater	s law – Humidity and Saturation – Relative and percentage s rature, Dew point – Use of humidity chart for engineering car- rial Balance without Chemical Reaction on of mass – Process flow sheet – Material balance cal- distillation, crystallization, evaporation, absorption and extr rial balance with Chemical Reaction	satu alcu cula racti	ation	on, Wons	/et b 2 ho volv 7 ho	dea oult ours ing
and dry bulb tempeModule:3MaterLaw of conservatidrying, dissolution,Module:4Mater	s law – Humidity and Saturation – Relative and percentage s rature, Dew point – Use of humidity chart for engineering car- rial Balance without Chemical Reaction on of mass – Process flow sheet – Material balance cal distillation, crystallization, evaporation, absorption and extr rial balance with Chemical Reaction ation – stoichiometric ratio – limiting reactant – excess	satu alcu cula racti	ation	on, Wons	/et b 2 ho volv 7 ho	dea oult ours ing
and dry bulb tempeModule:3MaterLaw of conservatidrying, dissolution,Module:4MaterStoichiometric equ	s law – Humidity and Saturation – Relative and percentage s rature, Dew point – Use of humidity chart for engineering car- rial Balance without Chemical Reaction on of mass – Process flow sheet – Material balance cal distillation, crystallization, evaporation, absorption and extr rial balance with Chemical Reaction ation – stoichiometric ratio – limiting reactant – excess	satu alcu cula racti	ation	on, Wons	/et b 2 ho volv 7 ho	dea oult ours ing
and dry bulb tempe Module:3 Mater Law of conservati drying, dissolution, Module:4 Mater Stoichiometric equ excess – conversion	s law – Humidity and Saturation – Relative and percentage s rature, Dew point – Use of humidity chart for engineering car- rial Balance without Chemical Reaction on of mass – Process flow sheet – Material balance cal distillation, crystallization, evaporation, absorption and extr rial balance with Chemical Reaction ation – stoichiometric ratio – limiting reactant – excess	satu alcu cula racti	ation	on, Wons 112 s in t – 1	/et b 2 ho volv 7 ho	dea bult ours ing ours ent
and dry bulb tempeModule:3MaterLaw of conservatidrying, dissolution,Module:4MaterStoichiometric equexcess – conversionModule:5Recyce	s law – Humidity and Saturation – Relative and percentage s rature, Dew point – Use of humidity chart for engineering ca rial Balance without Chemical Reaction on of mass – Process flow sheet – Material balance cal distillation, crystallization, evaporation, absorption and extr rial balance with Chemical Reaction ation – stoichiometric ratio – limiting reactant – excess n – yield	satu alcu cula racti rea	ation ctan	on, W ons 11 s in t – j	/et l 2 ha volv 7 ha perc 7 ha	dea bult ours ing ours ent
and dry bulb tempe Module:3 Mater Law of conservati drying, dissolution, Module:4 Mater Stoichiometric equ excess – conversion Module:5 Recyce Recycle, Purge, By	s law – Humidity and Saturation – Relative and percentage s rature, Dew point – Use of humidity chart for engineering ca rial Balance without Chemical Reaction on of mass – Process flow sheet – Material balance cal distillation, crystallization, evaporation, absorption and extr rial balance with Chemical Reaction ation – stoichiometric ratio – limiting reactant – excess n – yield Ple and Bypass Operation pass calculations in operations such as evaporation, distillation	satu alcu cula racti rea	ation ctan	n, W ns 11 s in t – j dryi	Z ho volv 7 ho perc 7 ho	dea bulk burg ing ent
and dry bulb tempe Module:3 Mater Law of conservati drying, dissolution, Module:4 Mater Stoichiometric equ excess – conversion Module:5 Recyce Recycle, Purge, By Module:6 Comb	s law – Humidity and Saturation – Relative and percentage s rature, Dew point – Use of humidity chart for engineering car- rial Balance without Chemical Reaction on of mass – Process flow sheet – Material balance cal distillation, crystallization, evaporation, absorption and extr rial balance with Chemical Reaction ation – stoichiometric ratio – limiting reactant – excess n – yield ele and Bypass Operation pass calculations in operations such as evaporation, distillation pustion calculations	satu alcu cula racti rea	ation ation ation ation and	n, Wons 11 11 11 11 11 11 11 11 11 11 11 11 11	Z ho Z ho volv 7 ho ng 7 ho	dea oult ours ing ours ent ours
and dry bulb tempeModule:3MaterLaw of conservatidrying, dissolution,Module:4MaterStoichiometric equexcess – conversionModule:5RecyceRecycle, Purge, ByModule:6Comb	s law – Humidity and Saturation – Relative and percentage s rature, Dew point – Use of humidity chart for engineering car- rial Balance without Chemical Reaction on of mass – Process flow sheet – Material balance cal- distillation, crystallization, evaporation, absorption and extr rial balance with Chemical Reaction ation – stoichiometric ratio – limiting reactant – excess n – yield ele and Bypass Operation pass calculations in operations such as evaporation, distillation pustion calculations uels, Flue gas analysis, Orsat analysis, theoretical and excess	satu alcu cula racti rea	ation ation ation ation and	n, Wons 11 11 11 11 11 11 11 11 11 11 11 11 11	Z ho Z ho volv 7 ho ng 7 ho	dea oult ours ing ours ent ours
Module:3 Mater Law of conservatidrying, dissolution, Module:4 Module:4 Mater Stoichiometric eque excess – conversion Module:5 Recyce Recycle, Purge, By Module:6 Module:6 Comb Calorific value of f	s law – Humidity and Saturation – Relative and percentage s rature, Dew point – Use of humidity chart for engineering car- rial Balance without Chemical Reaction on of mass – Process flow sheet – Material balance cal- distillation, crystallization, evaporation, absorption and extr rial balance with Chemical Reaction ation – stoichiometric ratio – limiting reactant – excess n – yield ele and Bypass Operation pass calculations in operations such as evaporation, distillation pustion calculations uels, Flue gas analysis, Orsat analysis, theoretical and excess	satu alcu cula racti rea	ation ation ation ation and	n, Wons 11 11 11 11 11 11 11 11 11 11 11 11 11	Z ho Z ho volv 7 ho ng 7 ho	dea bulk ours ing ours ent
and dry bulb tempeModule:3MaterLaw of conservatidrying, dissolution,Module:4MaterStoichiometric equexcess – conversionModule:5RecyceRecycle, Purge, ByModule:6CombCalorific value of ffor solid, liquid andModule:7Energe	s law – Humidity and Saturation – Relative and percentage s rature, Dew point – Use of humidity chart for engineering car- rial Balance without Chemical Reaction on of mass – Process flow sheet – Material balance cal- distillation, crystallization, evaporation, absorption and extr rial balance with Chemical Reaction ation – stoichiometric ratio – limiting reactant – excess n – yield ele and Bypass Operation pass calculations in operations such as evaporation, distillation pustion calculations uels, Flue gas analysis, Orsat analysis, theoretical and excess	satu alcu cula racti rea ion, s ain	ation ation ation ation and and	n, W ns 11 s in t – j dryi 10 uirer 8	/et l 2 ho volv 7 ho ng 7 ho ng hou	deabull our ing our ent our

Standard heat of formation – Standard heat of combustion – Standard Heat of reaction – Hess's law – Determination of heat of reaction at temperatures other than standard temperature using specific heat relationships – Calculation of theoretical flame temperature

Mo	dule:8	Contemporary issues				2 hours
			Total Lecture h	ours		60 hours
Tex	t Books					
1.	Himme	blau D.M., Basic Princip	les and Calculation	ons in Che	emical Engineering,	8 th ed.,
		e Hall, India, 2012.				
2.	Bhatt E	B.I., Thakore S. B., Stoichio	ometry, 5 th ed., Ta	ita McGra	w – Hill Book Comp	any,
	New D	elhi, 2011.				
Ref	erence l	Books				
1.	Felder	R, Rousseau R, Elementary	y Principles of Ch	emical Pro	ocesses, 3 rd ed., John	Wiley &
	Sons, 2	000.				
2.	Naraya	nan K.V., Lakshmikutty B,	Stoichiometry and	d Process c	alculations, Prentice	
	Hall Ir	ndia Limited, New Delhi, 20)06.			
Mo	de of eva	aluation: Continuous Assess	sment Test, Quizz	es, Assign	ments, Final Assessm	ent Test
Rec	ommend	led by Board of Studies	15-04-2019			
App	proved b	y Academic Council	55^{th}	Date	13-06-2019	

Course code	CHE1003	L	Τ	Р	J	С
Course title	PROCESS ENGINEERING THERMODYNAMICS	3	0	0	4	4
Pre-requisite	NIL	S	Sylla	bus	vers	sion
						1.2
Course Objectives						
physical and ch2. Introduce the cfor ideal and re	asic knowledge and intuitive understanding of thermodyna nemical system oncepts of partial molar properties, fugacity, activity, vapour al substances existing in more than one phases under equilibred design thinking skills on property estimation to chemical ind	r-liq oriur	uid e n		ibriu	ım
Course Outcomes	(CO):					
	strate thermodynamic equilibrium state system, ideal and not	n-ide	eal re	elatio	ons	
	es such as change in enthalpy, entropy, free energy, heat an					ent
for any batch a	nd flow process happens in chemical industries					
	nermodynamic relations to interpret the partial molar prope	erties	s of	pure	e gas	ses
and liquids, and		_				
	analysis the phase equilibrium data, P-x-y, T-x-y diagra	m f	or ic	leal	bina	ary
	r-liquid systems					
	lologies for qualitative and quantitative analysis of VLE for	or no	on-10	leal	bina	ıry
	ns using van Laar, Margules, property estimation models					c
	easibilities of any reaction, and to determine the equilibriu	m ra	ite c	onst	ant	for
chemical reacti	ons					
Module:1 Fund	amental concepts and definitions		5	5 ho	irs	
	nition and Basic Concepts - classical and statistical thermo	dyna				cept
of Continuum - Th	ermodynamic steady state - equilibrium state process , Volu elations - Ideal gas- Real gas- Law of corresponding states					
	<u> </u>			ha		
	of thermodynamics - Closed non-flow system - Steady state flow systems and th	oir c		b ho		and
law of thermodyna	t effects - standard heat of reaction					
Module:3 There	nodynamic properties of pure fluids		-	/ ho	Ire	
	· Helmholtz free energy- exact differential equation - therr	nod				-rtv
relations- Maxwe	ll's relations and applications - fugacity -activity of gacity of pure gases, solids and liquids	•		-	-	•
Module:4 There	nodynamic properties of solution		7	/ ho	urs	
	ids - Partial molar properties - Chemical potential - fugacit	ies i	n sol	utio	n; Ic	leal
solutions - Lewis	Randal rule - Raoult' s law - Henry's law; Gibbs-Duhem	equ	ıatio	n; R	lesid	lual
properties - Proper	ty changes of mixing for ideal - non-ideal solutions - Excess	s pro	pert	ies r	elati	ons
and Gibbs free ene	rgy calculation					
		-				
Module:5 Phase	e equilibria		(6 hou	urs	

Phase rule - criteria of phase equilibrium - single component - multiple components; Vapor Liquid Equilibria for ideal solutions - Phase diagram for binary systems using ASPEN PLUS constant temperature equilibria- constant pressure equilibria - phase equilibrium curves.

Module:6 Vapor liquid equilibria - non-ideal solutions 7 hours Non ideal solution - Azeotropes systems - minimum boiling - maximum boiling - VLE - Px-y diagram and T-x-y diagram using ASPEN PLUS; Bubble point – Dew Point – calculation methods – Van Laar equation - Margules equation - Wilson equation. Multicomponent Systems – flash vaporization; Consistency Test for VLE Data

Module:7 Chemical reaction equilibria	5 hours						
Chemical reaction equilibria - Reaction coordinates - criteria for che	mical equilibrium,						
equilibrium constant - Gibbs Free Energy of the reaction - effect of temperature on equilibrium							
constant - equilibrium constant of homogeneous gas and liquid phase reactions							

Mo	dule:8 Contemporary issues	2 hours
	Total Lecture hours	45 hours
Tex	t Books	
1.	Narayanan K.V., A Textbook of Chemical Engineering Thermodynamics, 2 Hall India, New Delhi, 2012	nd ed., Prentice
2.	Ahuja P, Chemical Engineering Thermodynamics, 2nd ed., PHI Learning I	Pvt. Ltd., New
	Delhi, 2012.	
Ref	erence Books	
1.	Smith J.M., Van Ness H.C., Abbott M.M., Introduction to Chem	ical Engineering
	Thermodynamics, 8 th ed., McGraw-Hill, New York, 2018.	
2.	Rao Y.V.C., Chemical Engineering Thermodynamics, 1st ed., University H	Press, New Delhi,
	2005.	
Mo	de of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final A	Assessment Test
Rec	ommended by Board of Studies 15-04-2019	
Ap	broved by Academic Council 55 th Date 13-06-2019	

Course code	CHE 1004	L	Т	Р	J	С
Course title	CHEMICAL TECHNOLOGY	3	0	0	0	3
Pre-requisite	NIL	S	ylla	bus	versi	ion
						1.2
Course Objectives	•					
chemical industr 2. Familiarize the c	asic information and the systematic diagrams of Unit op ies. concepts of design, operation details and schematic of indu- tht separation technology for easy separation of chemical co	strial	equi	pme		in
Course Outcomes	(CO):					
 Illustrate the mar Understand the d Demonstrate the Explain the proce 	or unit operations and processes involved in manufacturing nufacturing processes of organic and inorganic chemical ind ifferent industrial gases involved in chemical industries manufacturing processes for fertilizers industries ess flow sheet and end uses of cellulosic material in differe ufacturing processes of petroleum refinery and petrochemic	lustri nt ap	ies plica	ition		
Module:1 Chlor	o-alkali and Cement Industries		61	nour	s	
Manufacture of so	da ash; caustic soda–manufacture of calcium hypochlor ric acid; manufacture of Portland cement; manufacture of g					of
Module:2 Indus	trial Gases		5 h	our	5	
	bon-di-oxide; hydrogen; oxygen and nitrogen; acetylene;	wate	-		-	cer
gas and manufactur			0	/ 1		
Module:3 Fertili	izer Industries		8 h	our	8	
	ic acid and urea; manufacture of phosphorus and phosphor	ric ac				ure
	and triple super phosphate; manufacture of potassium chlo		,			
	ose, Sugar and Oil Production Industries			our		
	-manufacture of paper and manufacture of viscous rayon;					
-	g of edible oils and fats; manufacture of soaps and deterge	nts; t	010-d	egra	uabi	nty
of surfactants						
Module:5 Petrol	eum Industries		61	nour	c	
	processes; reforming; cracking; secondary refining process	65	UI	IUUI	5	
r eu oreum renning	processes, reforming, cracking, secondary forming process	~				
Module:6 Petroe	chemical Industries		6	hou	rs	
Introduction to Petr	ochemical processes; Manufacture of C2, C3,C4 chemical c	omp	ound	s		
Module:7 Polym	ner Industries		5	hou	S	
Introduction; manu	facture of nylon 6; nylon 6,6; manufacture of silicones;	man	ufact	ure	of u	rea
formaldehyde; man	ufacture of phenol formaldehyde					
		_				
Module:8 Conte	mporary issues		2	hou	rs	

., East West Press,
, East West Press,
, USA, 2012.
Sulf Publishing, USA,
SA, 2005.
nal Assessment Test
019

Course title	CHE1005	L	T	P	J	С
course une	MOMENTUM TRANSFER	3	0	2	0	4
Pre-requisite	NIL	S	ylla	bus	vers	
						1.2
Course Objectives	:					
transfer 2. Apply the physical in engineering ap	fluid properties, the fundamental principles and theorem re- sical and mathematical models to analyse the fluid fi plications state and un-steady state momentum transfer problems					
Course Outcomes	(CO):					
momentum trans 2. Classify the gove 3. Summarize the d 4. Solve the problem 5. Analyze the diffe	operties of Newtonian and Non-Newtonian fluid and sfer erning equations related to the momentum transfer phenome lifferent types of flow measuring devices related to the mom ms related to the losses incurred during the flow of fluid erent non-dimensional numbers based on the theorems d flow phenomena through packed and fluidized bed	ena		1		of
	Concept of Momentum Transfer			5 h	our	2
fluid - Classification Newtonian Fluids	Significance of Momentum Transfer in Chemical Engine on of fluids – Newtonian fluid – Characteristic propertie and their classification. Fluid statics: Pascal's law and re and its measurement- Manometers	es of	flui	ds –	No	of on -
fluid - Classificati Newtonian Fluids equilibrium; Pressu	on of fluids – Newtonian fluid – Characteristic propertie and their classification. Fluid statics: Pascal's law and re and its measurement- Manometers	es of	flui	ds – atic	- No law	n of on - 7 of
fluid - Classification Newtonian Fluids equilibrium; Pressu Module:2 Conco Kinematics of fluid of fluid flow. Equ	on of fluids – Newtonian fluid – Characteristic propertie and their classification. Fluid statics: Pascal's law and	es of Hyd	flui drost	ds – atic 7 h	- No law ours – ty	n of on - y of s ypes
fluid - Classification Newtonian Fluids equilibrium; Pressu Module:2 Concorrect Kinematics of fluid of fluid flow. Equ Euler's equation, B	on of fluids – Newtonian fluid – Characteristic propertie and their classification. Fluid statics: Pascal's law and re and its measurement- Manometers ept of Fluid Flow Phenomena I flow, Dynamics of fluid flow – Basic equations governin ation of Continuity and its application, Equation of mot ernoulli's equation and its application in fluid flow	es of Hyd	flui drost	ds – atic 7 h low eriva	- No law ours - ty ation	n of on - y of s pes n of
fluid - Classificati Newtonian Fluids equilibrium; Pressu Module:2 Conce Kinematics of fluid of fluid flow. Equ Euler's equation, B Module:3 Flow Importance of meter	on of fluids – Newtonian fluid – Characteristic propertie and their classification. Fluid statics: Pascal's law and re and its measurement- Manometers ept of Fluid Flow Phenomena I flow, Dynamics of fluid flow – Basic equations governin ation of Continuity and its application, Equation of mot	es of Hyd ng flu tion	flui drost uid f – D	ds – atic 7 h low eriva	- No law ours - ty ation	n of on - y of s ypes n of s
fluid - Classificati Newtonian Fluids equilibrium; Pressu Module:2 Conce Kinematics of fluid of fluid flow. Equ Euler's equation, B Module:3 Flow Importance of meter meter, Venturi meter	on of fluids – Newtonian fluid – Characteristic propertie and their classification. Fluid statics: Pascal's law and re and its measurement- Manometers ept of Fluid Flow Phenomena I flow, Dynamics of fluid flow – Basic equations governin ation of Continuity and its application, Equation of mot ernoulli's equation and its application in fluid flow Measuring Devices ering – Classification flow measuring devices, Principle and er, Pitot tube, Variable area meters: Rotameter	es of Hyd ng flu tion	flui drost uid f – D	ds – atic 7 h low eriva 5 h g of	- Nc law ours - ty atior Ours Orif	on off on - y of s ypess n of s s s
fluid - Classification Newtonian Fluids equilibrium; Pressu Module:2 Conce Kinematics of fluid of fluid flow. Equination Euler's equation, B Module:3 Flow Importance of meter meter, Venturi meter Module:4 Flow Flow of fluids in L equation - Concept Fluid friction – S	on of fluids – Newtonian fluid – Characteristic propertie and their classification. Fluid statics: Pascal's law and re and its measurement- Manometers ept of Fluid Flow Phenomena I flow, Dynamics of fluid flow – Basic equations governin ation of Continuity and its application, Equation of mot ernoulli's equation and its application in fluid flow Measuring Devices ering – Classification flow measuring devices, Principle and	es of Hyd ng flu tion d wo n - F	flui drost uid f – D rking Iager ctor,	$\frac{ds}{dt} = \frac{1}{2}$	- Nc law ours - ty ation Orif ours ours ours	i of on - on - of s rpess i of s s iice s iille t of
fluid - Classification Newtonian Fluids equilibrium; Pressu Module:2 Concerns Kinematics of fluid of fluid flow. Equilibrium; Sequation, B Module:3 Flow Module:4 Flow Flow of fluids in L equation - Concept Fluid friction - S Application of Model	on of fluids – Newtonian fluid – Characteristic propertie and their classification. Fluid statics: Pascal's law and re and its measurement- Manometers ept of Fluid Flow Phenomena I flow, Dynamics of fluid flow – Basic equations governin ation of Continuity and its application, Equation of mot ernoulli's equation and its application in fluid flow Measuring Devices ering – Classification flow measuring devices, Principle and er, Pitot tube, Variable area meters: Rotameter through Circular Pipes aminar regime – Velocity Profile, Shear Stress Distribution of average velocity – Concept of Kinetic energy correction kin friction – Form friction – Factors affecting friction ody's diagram, Minor losses and major losses during flow	es of Hyd ng flu tion d wo n – H	flui drost uid f – D rking Iager ctor,	ds - atic 7 h low eriva 5 h g of 8 h n-Pc Cor on f	- Nc law ours - ty ation Orif ours ours ours	i of on - on - y of s pess pess i of s s iille t of or -
fluid - Classification Newtonian Fluids equilibrium; Pressu Module:2 Concord Kinematics of fluid of fluid flow. Equilibrium; Sequation, B Module:3 Flow Importance of meter meter, Venturi meter Module:4 Flow Flow of fluids in L equation - Concept Fluid friction - S Application of Model Module:5 Dimention	on of fluids – Newtonian fluid – Characteristic propertie and their classification. Fluid statics: Pascal's law and re and its measurement- Manometers ept of Fluid Flow Phenomena I flow, Dynamics of fluid flow – Basic equations governin ation of Continuity and its application, Equation of mot ernoulli's equation and its application in fluid flow Measuring Devices ering – Classification flow measuring devices, Principle and er, Pitot tube, Variable area meters: Rotameter through Circular Pipes aminar regime – Velocity Profile, Shear Stress Distribution of average velocity – Concept of Kinetic energy correction kin friction – Form friction – Factors affecting friction	es of Hyd ng flu tion d wo n – H on fa – H	flui drost drost uid f – D rking lager ctor, Fricti	ds - atic atic 7 h low eriva 5 h g of 8 h n-Pc Cor on f 4 h	- No law ours - ty ation Orif Orif ours ours iseu acep	i of on - y of pess pess i of s iice s iille t of s s
fluid - Classification Newtonian Fluids equilibrium; Pressu Module:2 Concerns Kinematics of fluid of fluid flow. Equination Euler's equation, B Module:3 Flow Importance of meter meter, Venturi meter Flow of fluids in L equation - Concept Fluid friction – Si Application of Mode Module:5 Diment Dimensional homo model laws	on of fluids – Newtonian fluid – Characteristic propertie and their classification. Fluid statics: Pascal's law and re and its measurement- Manometers ept of Fluid Flow Phenomena I flow, Dynamics of fluid flow – Basic equations governin ation of Continuity and its application, Equation of mot ernoulli's equation and its application in fluid flow Measuring Devices ering – Classification flow measuring devices, Principle and er, Pitot tube, Variable area meters: Rotameter through Circular Pipes aminar regime – Velocity Profile, Shear Stress Distribution of average velocity – Concept of Kinetic energy correction kin friction – Form friction – Factors affecting friction ody's diagram, Minor losses and major losses during flow nsional Analysis	es of Hyd ng flu tion d wo n – H on fa – H	flui drost drost uid f – D rking lager ctor, Fricti	ds – atic 7 h low eriva 5 h g of 8 h n–Pc Cor on f 4 h nun	- No law ours - ty ation Orif Orif ours ours iseu acep	i of on - y of s rpess i of s s iice s s iice s s s s s s s s s s

Flow past immersed bodies – Significance of form friction - Concept of Drag, Drag Coefficients and Particle Reynolds number - Drag Coefficient vs. Particle Reynolds number curves for regular and irregular shaped solid particles. Flow of fluids through packed beds – Packing and types of packing -Pressure drop across packed beds –Kozeny Carman equation – Ergun's equation - Loading and Flooding Packed Beds. Concept of Fluidization – Condition for Solid particles to be in a suspended condition in a flowing fluid – minimum fluidization velocity

Module:7 Transportation of Fluids

7 hours

Transportation Components -Pipe, Fittings and Valves, Types of Fittings, valves -Stuffing Boxes, Mechanical Seals – Estimation of head loss from fittings and valves, Concept of minor lossestypes of minor losses. Fluid Moving Machinery: Pumps – Classification and working of Centrifugal Pumps and Positive Displacement Pumps Basic Principles of Centrifugal Pumps – Pump Characteristics – Concept of Specific Speed, Net Positive Suction Head - Factors influencing selection of pump

Mo	dule:8 Co	ontemporary issues				2 hours
		7	Fotal Lecture hou	ırs		45 hours
Tex	t Books					
1.		, McDonald A.T., Pi , 9 th ed., Wiley Publicat		tchell J.	W., Introduc	ction to Fluid
2.		A., Cimbala J.M., Fluid w Hill, New York, 2014): Fundan	nentals and Ap	oplications, 3 rd
Ref	erence Boo			1		
1.	USA, 2014					
2.	Som S.K., 3 rd ed., Tata	Biswas G., Chakraborty a McGraw Hill, India, 2	S., Introduction t	o Fluid M	lechanics and l	Fluid Machines,
Mo	de of evalua	tion: Continuous Assess	sment Test, Quizz	es, Assign	nments, Final A	Assessment Test
Labo	oratory Exp					
1.	Determin	ation of coefficient of d	ischarge of ventur	imeter		2 hours
2.		on of an orifice meter				2 hours
3.		ation of friction factor f				2 hours
4.		ation of loss of coefficient on traction, bend and ell		enlargeme	ent,	2 hours
5.	Determin	ation of Reynolds appar	atus			2 hours
6.	Verificati	on of Bernoulli's theore	em			2 hours
7.	Performa	nce characteristics of ce	ntrifugal pump at	rated spec	ed	2 hours
8.		ation of pressure drop p cial velocity of fluidiza		function		2 hours
9.		on of relationship betwee		pressure	drop per unit	2 hours
10.	U	ation of friction factor f	or flow through n	oncircular	pipe	2 hours
			Ŭ		oratory Hours	20 hours
Rec	commended	by Board of Studies	15-04-2019		ž	
		cademic Council	55 th	Date	13-06-2019	

Course title	CHE1006	L	Т	P	J	С
Course une	HEAT TRANSFER	2	0	2	4	4
Pre-requisite	MAT2002	S	ylla	bus	vers	ion
						1.2
Course Objectives:						
	amental principles of heat transfer and various modes of he			er		
	er problems using the principles of heat transfer in differen ate heat loads for heat transfer equipments such as heat exc			and		
evaporators	are near toads for near transfer equipments such as near exc	Jiiaii	gers	anu		
evaporators						
Course Outcomes	<u>(CO):</u>					
	rent modes of heat transfer with their significance					
	steady/unsteady state heat transfer problems					
	transfer phenomena in fluids involving phase and no phase	cha	nges			
	e heat transfer with and without radiation shields through sl	hape	fact	or co	once	pt
	formance of various heat types of heat exchangers					
6. Estimate the heat	transfer rate and surface area of evaporators/condensers					
Module:1 Condu					5 ho	
-	Conduction – Fourier's Law of Heat conduction – C		-			
	eralized conduction equation in cartesian, cylindrical and					
	iction –Heat transfer composite systems – Critical thick	ness	of i	insul	latio	n –
Conduction with he	at Generation					
Module:2 Extend	led Surfaces and Unsteady state conduction				3 h	ours
Midduic.2 Extern	icu Surfaces and Onsteady state conduction				0 11	Jui
Extended surfaces	- types and applications of fins - Fin efficiency and	effe	ctive	enes	s –	Fin
performance; Unste	ady state heat conduction - Lumped parameter system -					
Semi Infinite Solids						
					7 1	
	ction (without phase change)	onof	07 00	offi		ours
Fundamentals of Co	onvection - Thermal boundary layer & Convective heat tr				cien	ts –
Fundamentals of Co Convection correlat	onvection – Thermal boundary layer & Convective heat tr ions through Dimensional analysis; Laminar flow over a f	lat p	late	– Tı	cien ırbu	ts – lent
Fundamentals of Co Convection correlat flow over a flat pla	onvection – Thermal boundary layer & Convective heat tr ions through Dimensional analysis; Laminar flow over a f ate – Flow over cylinders – Internal flow through pipes	lat p	late	– Tı	cien ırbu	ts – lent
Fundamentals of Co Convection correlat flow over a flat pla	onvection – Thermal boundary layer & Convective heat tr ions through Dimensional analysis; Laminar flow over a f	lat p	late	– Tı	cien ırbu	ts – lent
Fundamentals of Co Convection correlat flow over a flat pla Natural convection	onvection – Thermal boundary layer & Convective heat tr ions through Dimensional analysis; Laminar flow over a f ate – Flow over cylinders – Internal flow through pipes	lat p	late	– Tı	cien 1rbu pace	ts – lent
Fundamentals of CoConvection correlatflow over a flat plaNatural convection iModule:4Conve	onvection – Thermal boundary layer & Convective heat tr ions through Dimensional analysis; Laminar flow over a f ate – Flow over cylinders – Internal flow through pipes in vertical - inclined and horizontal surfaces.	lat p – a	late nnul	– Tu ar sj	cien urbu pace 3 h	ts – lent es –
Fundamentals of CoConvection correlatflow over a flat plaNatural convection iModule:4ConveCondensation and H	onvection – Thermal boundary layer & Convective heat tr ions through Dimensional analysis; Laminar flow over a f ate – Flow over cylinders – Internal flow through pipes in vertical - inclined and horizontal surfaces.	lat p – a	late nnul	– Tu ar sj	cien urbu pace 3 h	ts – lent es –
Fundamentals of Convection correlated Convection correlated flow over a flat plated Natural convection is Module:4 Convection Condensation and H vertical plate;	 Dependence of the provided and the provided and	lat p – a	late nnul nden	– Tu ar s satio	cien irbu pace <u>3 h</u> on o	ts – lent es –
Fundamentals of Convection correlated flow over a flat plated by a flat plate state of the second state of the seco	 onvection – Thermal boundary layer & Convective heat training through Dimensional analysis; Laminar flow over a fate – Flow over cylinders – Internal flow through pipes in vertical - inclined and horizontal surfaces. ction (with phase change) Boiling – Drop wise and Film type Condensation – Film and – Nucleate boiling and film boiling correlations – Critication 	lat p – a	late nnul nden Ix 3 I	– Tu ar s satic	cien urbu pace <u>3 h</u> on o	ts – lent es – ours n a
Fundamentals of Convection correlated flow over a flat plated by a flat plate structure of the second se	 Dependence of the second second	lat p – a	late nnul nden Ix 3 I	– Tu ar s satic	cien urbu pace <u>3 h</u> on o	ts – lent es – ours n a
Fundamentals of Convection correlated flow over a flat plated by a flat plate structure of the second se	 onvection – Thermal boundary layer & Convective heat training through Dimensional analysis; Laminar flow over a fate – Flow over cylinders – Internal flow through pipes in vertical - inclined and horizontal surfaces. ction (with phase change) Boiling – Drop wise and Film type Condensation – Film and – Nucleate boiling and film boiling correlations – Critication 	lat p – a	late nnul nden Ix 3 I	– Tu ar s satic	cien urbu pace <u>3 h</u> on o	ts – lent es – ours n a
Fundamentals of Convection correlated Convection correlated flow over a flat plated Natural convection in Module:4 Convection in Module:5 Radiated Radiation heat trant Emissive power – R	 Denvection – Thermal boundary layer & Convective heat traitions through Dimensional analysis; Laminar flow over a fate – Flow over cylinders – Internal flow through pipes in vertical - inclined and horizontal surfaces. Ction (with phase change) Boiling – Drop wise and Film type Condensation – Film ag – Nucleate boiling and film boiling correlations – Critication Internal radiation – Laws of radiation – Blac adiation shape factor – Gray bodies – Radiation shields 	lat p – a	late nnul nden x 3 I ody	– Tu ar s satio	cien urbu pace <u>3 h</u> on o	ts – lent es – ours n a
Fundamentals of ColConvection correlatflow over a flat plaNatural convection iModule:4ConveCondensation and Hvertical plate; BoilinModule:5RadiatRadiation heat tranEmissive power – RModule:6Heat H	 onvection – Thermal boundary layer & Convective heat traitions through Dimensional analysis; Laminar flow over a fate – Flow over cylinders – Internal flow through pipes in vertical - inclined and horizontal surfaces. ction (with phase change) Boiling – Drop wise and Film type Condensation – Film ag – Nucleate boiling and film boiling correlations – Critication ion asfer – Thermal radiation – Laws of radiation – Blac adiation shape factor – Gray bodies – Radiation shields 	lat p – a n con al flu k be	late nnul nden ix 3 l ody 5	– Tu ar s satic	cien urbu pace <u>3 h</u> on o <u>s</u> cept:	ts – lent s – ours n a
Fundamentals of ColConvection correlatflow over a flat plaNatural convection iModule:4ConveCondensation and Hvertical plate; BoilinModule:5RadiatRadiation heat tranEmissive power – RModule:6Heat EHeat exchangers – 1	 Denvection – Thermal boundary layer & Convective heat traitions through Dimensional analysis; Laminar flow over a fate – Flow over cylinders – Internal flow through pipes in vertical - inclined and horizontal surfaces. Ction (with phase change) Boiling – Drop wise and Film type Condensation – Film ag – Nucleate boiling and film boiling correlations – Critication Internal radiation – Laws of radiation – Blac adiation shape factor – Gray bodies – Radiation shields 	lat p – a	late nnul nden ix 3 I ody 5 Il he	– Tu ar s satic hour cond hou	cien arbu pace 3 h on o .s cept: rs anst	ts – lent es – ours n a

Mo	dule:7	Evaporators				4 hours
Intr	oduction	n – Types of Evaporators	- Capacity - Ste	eam econo	omy – Boili	ng point elevation
		ule); Material and energy				
effe	ct evapo	prators; Design of single and	l multiple effect ev	aporators,	Vapor recor	npression method
Mo	dule:8	Contemporary issues				2 hours
		Tot	al Lecture hours			30 hours
Tex	t Books	5				
1.		A.J., Cengel Y.A., Heat w-Hill, USA, 2014.	and Mass Trans	sfer: A P	ractical App	proach, 5 th ed.,
2.	Holma	n J.P, Heat Transfer, 10 th ed	., McGraw-Hill Se	ries, USA	, 2010.	
	erence		,	,	,	
1.	Frank 1	Kreith, Raj M Manglik, Prin	nciples of Heat Ti	ansfer, 8 th	ed., Cengag	ge Learning, USA,
	2016.		1			
2.	Frank.	P. Incropera, David P. Dev	witt, Fundamentals	s of Heat a	& Mass Trai	nsfer, 6 th ed., John
	Wiley	& Sons, USA, 2010.				
Mo	de of eva	aluation: Continuous Assess	sment Test, Quizze	es, Assignr	ments, Final	Assessment Test
Labo	oratory	Experiments		$\Delta \Sigma$		
1.		surement of thermal conduc		insulators	5	2 hours
2.		lysis of Transient Heat Cone				2 hours
3.		ormance of Natural Convect				2 hours
4.	Ana	lysis of Fin efficiency & eff	ectiveness			2 hours
5.		ssivity measurement				2 hours
6.	Perf	ormance of Double Pipe He	at Exchanger			2 hours
7.		ormance of Agitated Vessel				2 hours
8.		ormance of Plate type Heat				2 hours
9. Performance of Heat Transfer in packed bed				2 hours		
10.	Perf	ormance of Cooling tower				2 hours
				Total Lab	oratory Hour	rs 20 hours
Mo	de of eva	aluation: Continuous Assess	sment Test, Quizze	es, Assignr	nents, Final	Assessment Test
		ded by Board of Studies	15-04-2019			
App	proved b	y Academic Council	55 th	Date	13-06-2019	

Course code	CHE1022	L	Τ	Р	J	С
Course title	MECHANICAL OPERATIONS	3	0	2	0	4
Pre-requisite	Nil	S	Sylla	bus	vers	sion
						1.2
Course Objectives	:					
chemical industr 2. Learn the concep	ic information and the systematic diagrams of Unit operati ies its of design, operation details and schematic of industrial e separation technology for easy separation of chemical com	quip	men		in	
Course Outcomes	(CO):					
	asic principles in unit operations					
	e distribution of average particles					
	size reduction equipment					
	ble separation technique based on particle characteristics					
5. Estimate the filtr						
	vessel based on standard design criterion					
	luction to Particulate Solids				hou	
Particle Shape, Siz	ze, Mixed Particle Sizes and Size Analysis - Cumulat	tive	and	Diff	erei	ntial
Analysis -Various	Mean Diameters – Screen Analysis Standard Screens	- V	ariou	s In	dus	trial
Screens						
	le Separation				hou	
	ticle Separation – Electrostatic Precipitation and Magnetic	Sepa	aratic	n - S	Stor	age
of Solids						
	Reduction		~		<u>ho</u>	
Mechanical Efficie	rinciples of Comminution - Energy and Power Requirement ency-Laws of Crushing-Size Reduction Equipment – Open and Closed Circuit Operation					
Module:4 Partic	ulate Solids Flow			5 h	loui	•6
	ticle through a Fluid – Terminal Velocity–Free and	Hi	ndere			
Classification: Sepa	arations Ratio – Classification Equipment – Gravity Settlir Bowl Classifier – Centrifugal Classifier – Cyclone Separato	ng Ta	ank -	Elut	riat	-
Module:5 Hydro	o-Mechanical Separations			7	' ho	urs
Sedimentation: Gra	vity Sedimentation – Mechanism – Continuous Sedimen	tatio	n – '	Thic	ken	er –
Design of thicken	er - Classifier and Clarifier - Settling Area - Centrit	fugal	Sec	lime	ntat	ion-
Centrifuges - Hydro	clones. Floatation: Equipment – Modifiers – Collectors - I	Froth	ning .	Agei	nts	
Module:6 Filtra	tion		8 ł	nour	S	
	edia – Filter Aids – Principles of Cake Filtration – Consta	nt Dr				•

Mo	dule:7	Agitation and Mixing				8 hours
Agi	tation a	nd Mixing of Liquids – Pr	inciples of Agitati	ion – Ag	itation Equ	ipment –Impellers –
Flo	w Pattern	n in Agitated Vessel - Pow	er Consumption ir	n Agitate	d vessel. Fle	ow number – Power
Cor	relation	- Calculation of power con	sumption. Blendir	ng and m	ixing - Jet	mixers – Motionless
		king of Solids: Mixtures fo				ts Criteria for mixer
effe	ectivenes	s. Mixers for free flowing g	ranular solids - Ra	te of mix	ing	
Mo	dule:8	Contemporary issues				2 hours
			al Lecture hours			45 hours
Tex	<mark>xt Books</mark>					
1.		e W., Smith J., Harriott P., w Hill Education; USA, 201		f Chemic	al Engineer	ing, 7 th ed.,
Ref	erence I	Books				
1.		n J.M., Richardson J.F., C ion Processes), 5 th ed., Butt				
2.	Naraya	nan C.M., Bhattacharya B.C. Publishers, India, 2011.				
3.		D., Mechanical Operations	(Fundamental Pr	inciples	and Applic	ations) 3 rd ed
5.		Prakasam, India, 2012.	s (Pundamental 11	merpies	and Applica	utons), 5 cu.,
Mo		aluation: Continuous Assess	ment Test Quizze	s Assion	ments Fina	1 Assessment Test
			inent rest, Quizze	<i>,</i> , , , , , , , , , , , , , , , , , ,	<u>intento, i ma</u>	
Lab	oratory	Experiments				
1.		ormance of Plate and Frame	e filter press			2 hours
2.		ormance of Rotary Drum Fi				2 hours
3.		ormance of Leaf Filter	1 V V			2 hours
4.	Ana	ysis of Jaw crusher parame	eters			2 hours
5.		lysis of Roll crusher parame				2 hours
6.	Ana	ysis of Ball mill parameters	5			2 hours
7.	Siev	e analysis				2 hours
8.	Mea	surement of Drag				2 hours
9.	Batc	h sedimentation performance	ce			2 hours
10.	Beak	ter decantation analysis				2 hours
	· ·		,	Total Lab	oratory Ho	urs 20 hours
Mo	de of eva	aluation: Continuous Assess	sment Test, Quizze	es, Assign	ments, Fina	l Assessment Test
Rec	commend	led by Board of Studies	15-04-2019			
Ap	proved b	y Academic Council	55^{th}	Date	13-06-201	9

Course code	CHE2001	L	Т	Р	J	С
Course title	CHEMICAL REACTION ENGINEERING	3	0	2	0	4
Pre-requisite	CHE1003	-	ylla		-	ion
		~	<u> </u>			1.2
Course Objectives	:					
 Impart the known and material and Simulate several need Examine the probyield Course Outcomes Classify various Apply the principidata Design ideal representation scheme Evaluate the chomultiple reaction 	edge of calculus, differential equations, thermodynamics, a energy balances to solve reactor design problems. types of reactors in order to choose the most appropriate re- plems related to multiple reactions and evaluate the selective (CO): reaction types and their applications ples of reaction kinetics, formulate rate equations and analy- actors (Batch, CSTR, PFR, recycle and autocatalytic) for sice of right reactor among single, multiple, recycle reactor, as	vity, yze t	r for react	a gi ivity atch	ven v and read	1 etor
-	ermal reactors and the heat exchange equipment required reactors using tracer information					
Module:1 Funda	mental Concepts and Definitions			4	5 ho	urs
	actions- Rate and stoichiometry-rate law- rate equation-ra reaction-activation energy-reactions at equilibrium	te co	onsta	nt-va	ariat	oles
Module:2 Chem	ical Kinetics			(5 ho	urs
reactor; Integral r	atch Reactor Data-Constant Volume Batch Reactor and vanethod-Differential method of analysis for reactions-r Analysis of data for Reversible and Irreversible Reactions	eacti				
	ermal Ideal Reactor Design of Single and Multipl	le			7 ho	urs
reactIdeal Batch ReactoPlug Flow Reactor	8 8 I	l Flo		eacto	or-Ic	leal
Ideal Batch Reactor Plug Flow Reactor Semi batch reactor	ions r-space time-holding time and space velocity; Ideal Mixed for single reactions-Size comparison of single Reactors - Recycle reactor-Auto catalytic reactor	l Flo		eacto e rea	or-Ic	leal ons-
reactIdeal Batch ReactorPlug Flow ReactorSemi batch reactorModule:4Multi	ions r-space time-holding time and space velocity; Ideal Mixed for single reactions-Size comparison of single Reactors - Recycle reactor-Auto catalytic reactor ple Reactors	l Flo for s	singl	eacto e rea	or-Ic actio	leal ons-
reactIdeal Batch ReactorPlug Flow ReactorSemi batch reactorModule:4Multiple Reactor S	ions r-space time-holding time and space velocity; Ideal Mixed for single reactions-Size comparison of single Reactors - Recycle reactor-Auto catalytic reactor	for s	single	eacto e rea (n sei	or-Ic actio 5 ho ries a	leal ons- urs and
reactIdeal Batch ReactorPlug Flow ReactorSemi batch reactorModule:4MultiMultiple Reactor Sor in parallel-mixed	ions r-space time-holding time and space velocity; Ideal Mixed for single reactions-Size comparison of single Reactors - Recycle reactor-Auto catalytic reactor ple Reactors ystems-equal size mixed flow reactors in series-plug flow reactors of different sizes in series-reactors of different	for s	single	eacto e rea (n ser in se	or-Ic actio 6 ho ries a ries	leal ons- urs and
reactIdeal Batch ReactorPlug Flow ReactorSemi batch reactorModule:4MultiMultiple Reactor S or in parallel-mixedModule:5DesigReactions in parallel	ions r-space time-holding time and space velocity; Ideal Mixed for single reactions-Size comparison of single Reactors - Recycle reactor-Auto catalytic reactor ple Reactors ystems-equal size mixed flow reactors in series-plug flow reactors	for s react	ors i	eacto e rea (n sei in sei	or-Ic actio ó ho ies a ries	leal ons- urs and
reactIdeal Batch ReactorPlug Flow ReactorSemi batch reactorModule:4Multiple Reactor S or in parallel-mixedModule:5Desig Reactions in paralle Reactions) for CST	ions r-space time-holding time and space velocity; Ideal Mixed for single reactions-Size comparison of single Reactors - Recycle reactor-Auto catalytic reactor ple Reactors ystems-equal size mixed flow reactors in series-plug flow reactors of different sizes in series-reactors of different sizes in ser	for s react	ors i	eacto e rea (n ser in se ((ecuti	or-Ic actio <u>ó ho</u> ies a <u>ries</u> <u>ó ho</u> ve	urs and urs
reactIdeal Batch ReactorPlug Flow ReactorSemi batch reactorModule:4MultiMultiple Reactor S or in parallel-mixedModule:5DesigReactions in paralleReactions j for CSTModule:6Non-it	 ions r-space time-holding time and space velocity; Ideal Mixed for single reactions-Size comparison of single Reactors Recycle reactor-Auto catalytic reactor ple Reactors ystems-equal size mixed flow reactors in series-plug flow reactors of different sizes in series-reactors of different series in series-reactions in series el (simultaneous reactions) for CSTR-PFR-reactions in series sothermal Reactors 	l Flo for s react ent ty es (C	single ors i /pes	eacto e rea () n ser in se () () ()	or-Ic actio <u>ó ho</u> ries <u>ó ho</u> ve <u>ó ho</u>	urs urs urs urs
reactIdeal Batch ReactorPlug Flow ReactorSemi batch reactorModule:4MultiMultiple Reactor S or in parallel-mixedModule:5DesigReactions in paralle Reactions for CSTModule:6Non-fSteady state non-is	ions r-space time-holding time and space velocity; Ideal Mixed for single reactions-Size comparison of single Reactors - Recycle reactor-Auto catalytic reactor ple Reactors ystems-equal size mixed flow reactors in series-plug flow reactors of different sizes in series-reactors of different sizes in ser	l Flo for s react ent ty es (C	single ors i /pes	eacto e rea () n ser in se () () ()	or-Ic actio <u>ó ho</u> ries <u>ó ho</u> ve <u>ó ho</u>	urs urs urs urs

Recommended by Board of Studies

Approved by Academic Council

Module:7 Non Ideal Reactors	7 hours
Basics of non-ideal flow - Measurement of residence time distribution (RTD)	- Relationship
between C, E and F curves - Modelling of non-ideal reactors - one parameter and	two parameter
models - Conversion in real reactor systems	
Module:8 Contemporary issues	2 hours
Total Lecture hours	45 hours
Text Books	
1. Levenspiel O., Chemical Reaction Engineering, 3 rd ed., Wiley Publications, US.	A, 2006
2. Fogler H.S., Elements of Chemical Reaction Engineering, 5 th ed., Prentice Hall	India Pvt.
Ltd., India, 2016	
Reference Books	
1. Froment G. F, Bischoff K.B, Wilde J.D., Chemical Reactor Analysis and D	esign, 1 st ed.,
Wiley Publications, USA, 2010	
2. Smith J.M., Chemical Engineering Kinetics, 8 th ed., McGraw-Hill, USA, 2008	
Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Asse	essment Test
Laboratory Experiments	
	2 hours
	2 hours
	2 hours
1	2 hours
5. Analysis of Mixed flow reactor	2 hours
	2 hours
7. Analysis of combined reactor system	2 hours
8. Analysis of Packed bed reactor	2 hours
9. Analysis of RTD studies in Plug flow reactor	2 hours
10. Analysis of RTD studies in Mixed flow reactor 2	2 hours
Total Laboratory Hours	20 hours
	20 110013
Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Asse	ssment Test

15-04-2019 55th

13-06-2019

Date

Course code	CHE2002	L	Т	P	J	С
Course title	PROCESS EQUIPMENT DESIGN AND	2	0	2	4	4
D	ECONOMICS					L
Pre-requisite	CHE1006		Sylla	bus	vers	1.2
Course Objectives	5: 					1.2
2. Impart knowledg	concepts of unit operations and unit processes in chemical en- ge on the concepts of design of major equipment economics and feasibility analysis of the process industry	ngin	eerin	g.		
Course Outcomes	(CO):					
 Explain the pro- vessels, heat tra Summarize the b Apply Pinch Teo Apply economic alternatives and 	read flowcharts and ways of interpreting the drawings cedure involved in selection and design of fluid handling en- nsfer equipment basics to design separation equipment and ideal reactors chnology to solve the energy recovery and the Heat Exchan e principles to do cost estimation of projects and equipment replacement and profit analysis in chemical industries aded process equipment design problems	ger r	netwo	ork.		
		1				
Introduction - Typ	duction and Pressure vessel es of flowchart preparation; Fluid handling equipment; N	lech		hou al de		of
pressure Vessel.						
Module:2 Heat	transfer equipment		5	hou	rc	
	pipe, shell and tube heat exchanger; Principles of dryer desi	gn.	J	nou	15	
		-				
Module:3 Heat	Exchanger Network		4	hou	rs	
Introduction to Pin	ch Technology – pinch point – Composite and Grand Comp twork for simple processes.	oosit	e cur	ves;	Fin	d
				_		
	ration process equipment		4	hou	rs	
Design of Distillati	on column and absorbers – plate type and packed columns.					
Module:5 Princ	ciples and Design of Reactors		4	houi	rs	
	eactor design – adiabatic and catalytic reactors					
	Estimation of Projects			houi		
Cost estimation of and literature.	Chemical Projects; Cost estimation of individual equipmen	t usi:	ng al	gorit	thms	>
Module:7 Analy	vsis of Cost Estimation		4	hou	ırs	
	noney; Depreciation; Profitability analysis; Analysis	of a	alterr	nativ	es	and
Module:8 Conto	emporary issues		1	b a-	12	
	111por al y 1880c8			l hoi	11.	

	Total Lecture hours	30 hours
Tex	t Books	
1.	Peters M., Timmerhaus K., West R., Plant Design and Economics for Cher ed., McGraw Hill, USA, 2017.	-
2.	Kemp I.C., Pinch Analysis and Process Integration: A User Guide on Proce Efficient Use of Energy, 2 nd ed., Butterworth-Heinemann, USA, 2007.	ess Integration for
Ref	erence Books	
1.	Joshi. M.V., Mahajani. V.V., Process Equipment Design, 3 rd ed., Mc-Milla 2000.	n India Ltd., India,
2.	Richard A. Turton, Richard C. Bailie, Wallace B. Whiting, Joseph A. Shae. Bhattacharyya, Analysis, Synthesis and Design of Chemical Processes, 4 th USA, 2013.	ed., Prentice Hall,
Mo	de of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final	Assessment Test
Labo	oratory Experiments	
1.	Basics of 3D drawing and applications	2 hours
2.	Extrusion of surfaces and geometries	2 hours
3.	Design and drawing of Pressure vessel to dimensions	2 hours
4.	Design and drawing of a Shell and Tube heat Exchanger	2 hours
5.	Design and drawing of a bubble cap tray	2 hours
6.	Design and drawing of Rotary Louvre dryer	2 hours
7.	Analysis of the performance of a Heat Exchanger (Aspen)	2 hours
8.	Design and analysis of Distillation Column (Aspen)	2 hours
9.	Cost Estimation of a Distillation Column (Aspen)	2 hours
10.	Dynamic simulation experiment on distillation column (Aspen)	2 hours
	Total Laboratory Hours	20 hours
Mo	de of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final	Assessment Test
	ommended by Board of Studies 15-04-2019	
	proved by Academic Council 55 th Date 13-06-2019)

				•	-			
COMPUTATIONAL METHODS IN PROCESS	3	0	2	0	4			
ENGINEERING								
MAT3003	S	Syllabus version			sion			
	1.2			1.2				
Course Objectives:								
	ENGINEERING MAT3003	ENGINEERING MAT3003 S	ENGINEERING MAT3003 Sylla	ENGINEERING MAT3003 Syllabus	ENGINEERING			

- 1. Formulate problems for roots of a function, solution of simultaneous equations, optimized value of a given function, numerical integration and differentiation, ODE and PDE
- 2. Solve roots of a function, simultaneous equations, optimization, numerical integration, ODE and PDE
- **3.** Develop MATLAB code for finding the roots of a function, solution of a simultaneous equations, optimization, numerical integration, ODE and PDE

Course Outcomes (CO):

- 1. Formulate engineering problem as mathematical model for an appropriate solution using numerical methods
- 2. Determine roots of a single equation and simultaneous equations
- 3. Solve optimization, regression and numerical integration using different methods
- 4. Evaluate ordinary differential equation involving initial value and boundary value problems
- 5. Estimate the solution for partial differential equation involving elliptical and parabolic equation
- **6.** Create MATLAB program for roots finding, simultaneous equations, optimization, regression and curve fitting, numerical integration, ODE and PDE

Module:1 Finding the Roots

6 hours

5 hours

Computers and error analysis, Mathematical models for solving engineering problems, programming and software; Finding roots of a single equation- Direct methods (bisection, Regula falsi) - Indirect methods (Newton-Raphson, Secant method)

Module:2 Solution for Simultaneous Equations

Types of matrices and matrix operation rules; Solution for linear system of simultaneous equations – Direct methods (Gauss Elimination, Gauss Jordan), Iterative methods (Gauss-Jacobi and Gauss-Seidel); Overview of non-linear system of equations

Module:3	Interpolation and Regression Analysis	7 hours				
Newton's d	livided-difference interpolating polynomial - Linear - polynomi	al - quadratic rules;				
Lagrange in	terpolating polynomial - Linear - polynomial Regression.					
Module:4	Optimization	7 hours				
One-Dimen	sional Unconstrained Optimization - Golden section search and	d Newton's Method;				
Overview of	on multidimensional unconstrained optimization – gradient and n	on-gradient methods;				
Constrained	l optimization – Simplex method; Optimization of Chemical Pro	cesses using Aspen				
Plus.						
Module:5	Integration and Differentiation	5 hours				
Newton cot	es Integration- Trapezoid method - Simpson's 1/3rd rule - Simpson	's 3/8 th rule;				
Numerical of	differentiation - Forward - Backward - Central difference methods					
Module 6	Ordinary Differential Equations	6 hours				

Initial Value Problems – Euler - Predictor-corrector - Runge-Kutta methods; Boundary Value Problems – Shooting method - Central difference method

	dule:7 Partial Differential Equations	7 hours					
	te difference solutions of elliptic equations - Liebmann's method - finite						
	parabolic equations - Crank-Nicolson and implicit methods - Over	view of hyperbolic					
equa	ations; Case study on solving PDEs						
Mo	dule:8 Contemporary issues	2 hours					
	Total Lecture hours	45 hours					
Tex	t Books						
1.	1. Chapra S.C, Canale R.P, Numerical Methods for Engineers, 7 th ed., McGraw Hill Publications, USA, 2016.						
2.	Kamal I.M., Al-Malah, Aspen Plus: Chemical Engineering Application Wiley & Sons Inc., USA, 2016.	ons, 1 st ed., John					
Ref	erence Books						
1.	Dorfman K.D., Daoutidis P, Numerical Methods with Chemical Engineer	ing Applications, 1 st					
	ed., Cambridge University Press, USA, 2017.						
2.	Jana A.K., Chemical Process Modelling and Computer Simulation, 2 nd	ed., Prentice Hall of					
	India, India, 2011.						
Moo	le of evaluation: Continuous Assessment Test, Quizzes, Assignments, Fina	al Assessment Test					
	Laboratory Experiments						
1.	Develop MATLAB code for bisection / Regula falsi method	2 hours					
2.	Develop MATLAB code for Newton Raphson / Secant method	2 hours					
3.	Develop MATLAB code for Gauss Elimination / Gauss Jordan	2 hours					
	method						
4.	Develop MATLAB code for Gauss Seidel method	2 hours					
5.	Develop Aspen Plus simulation for solving simultaneous equations i	n 2 hours					
	distillation column						
6.	Develop MATLAB code for Numerical Integration	2 hours					
7.	Develop MATLAB code for ODE – Euler / Modified Euler method	2 hours					
8.	Develop MATLAB code for ODE – Runge Kutta method	2 hours					
9.	Develop MATLAB code for PDE – Liebmann's method	2 hours					
10.	Develop MATLAB code to optimize a chemical process involving	2 hours					
	PDE						
	Total Laboratory Hours	20 hours					

Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test						
Recommended by Board of Studies	15-04-2019					
Approved by Academic Council	55 th	Date	13-06-2019			

Course code	CHE3002	L	Т	Р	J	С
Course title	PROCESS INSTRUMENTATION AND CONTROL	2	0	2	4	4
Pre-requisite	МАТЗООЗ		Sylla		vers	sion
		~	<u> </u>			1.2
Course Objectives	\$					
 Explain the in process indust Describe prince 	e basic concepts of measuring instruments used in process in nportance of process control mechanism and their appleties ciples of modes of controllers and their general characters is of digital control system	icatio	ons i			
Course Outcomes	(CO):					
 Demonstrate knowledge of chemical process systems as well as the operating principles of common instruments Understand concepts of the mathematical modeling and develop transfer functions of open loop control systems and their responses with different forcing functions Develop closed loop block diagram and analyze with set point and load changes to calculate offset Identify the modes of controllers required for process system with their characteristics and tune the controllers with the right technique for optimization of the system Analyze the stability of the control system with time and frequency domain analysis techniques Compare different advanced control schemes to various processes 						
Principles and clas	sification of process control instruments - Temperature - 1				id F	
Chromatography m	el - pH - Viscosity - Humidity of gases and Concentration nethods.	by S	pect	rosco	ору	and
Module:2 Intro	duction to Process Control				6 h	ours
Laplace transforma theorems - Open 1 sinusoidal - First	ation - transform of standard functions - derivatives and oop system - Transfer functions - Forcing functions - ste order and Higher order system dynamics - First orde its application in process control - Continuous ar	p, pu r sys	lse, i tems	impu in	iver ilse serie	sion and es -
Module:3 Feed	oack Control Block Diagram				4 h	ours
	m - Development of block diagram - Block diagram re n - Transient response of closed loop control systems n.				rvo	and
Module:4 Cont	collers and Control Action				4 h	ours
Transfer function Integral and Deriva	of controllers and control valve - Characteristics of ON ative control modes - P - PI - PD - PID control modes - Pri atrollers - I/P converter - Control valve - Construction - Sizi	ncipl	es of	Pne	rtio	nal, atic
Module:5 Time	and Frequency Domain Analysis				5 ho	ours

Stability criteria- Routh's stability criteria - Root locus diagram - Frequency response analysis -
Gain margin - Phase margin and cross over frequency - Bode plot - Polar plot and Nyquist plot.

Module:6	Controller Tuning	2 hours	
Process reaction curve - Cohen-Coon method - IMC tuning - Ziegler Nichols method.			

Module:7	Advanced Process Control	3 hours
Introduction	to multivariable control - Computer applications in process	s control - Advanced
control strategies - Cascade control - Ratio control - Feed-Forward control - Inferential control		
Adaptive control - Control of Reactor - Distillation towers - Heat Exchangers.		

Module:8 Contemporary issues

2 hours

	Total Lecture hours	3	0 hours		
Tex	xt Books				
1.	Seborg D. E., Edgar, T. F., Mellichamp D. A., Process Dynamics and Control, 3 rd ed., Wiley India, New Delhi, 2013.				
2.	Stephanopoulos G., Chemical Process Control, 1 st ed., Pearson Education India, New Delhi, 2015.				
Ref	ference Books				
1. Coughanowr C. R., Koppel L. M., Process System Analysis and Control, 3 rd ed., McGraw Hill, New Delhi, 2013.					
Moo	de of evaluation: Continuous Assessment Test, Quizzes, Assignme	nts, Final As	sessment Test		
]	Laboratory Experiments				
1.	Automatic temperature control loop in a heating tank.	2 hours			
2.			2 hours		
3.	Automatic flow control loop in a pipe line.	2 hours			
4.	Automatic cascade control loop.		2 hours		
5.	Dynamics of non-interacting tanks.	2 hours			
6.	Dynamics of interacting tanks.		2 hours		
7.	7. Controller tuning using an open loop method (Cohen-Coon method) in 2 hours Simulink.		2 hours		
8.	Controller tuning using a closed loop method (Ziegler–Nich method) in Simulink.	nols	2 hours		
9.	Control Valve Characteristics.	2 hours			
10.			2 hours		
Total Laboratory Hours			20 hours		
Rec	commended by Board of Studies 15-04-2019				
App	proved by Academic Council 55 th Date 13	3-06-2019			

Course cod	e CHE3003	L	Τ	P	J	C
Course title	e MASS TRANSFER	3	0	0	0	3
Pre-requisi	te MAT3003, CHE1005	5	Sylla	bus	vers	sion
-			•			1.2
Course Ob	jectives:					
2. Interpret different	nd the principles of diffusion in gas, liquid and solid phases the relation between mass transfer coefficients and the theories of separation operations rate the working principles of cooling tower, dryer and crystallize		tran	sfer	for	
Course Ou	tcomes (CO):					
 Compare applicati Interpret Design of balances Estimate Discuss 	lecular diffusion in fluids and solids using correlation and theorie various mass transfer coefficients and analogies for various C ons the theories of mass transfer for individual and overall mass trans of humidification and dehumidification equipment's based on the Psychometric properties of air-water system using charts and different types of mass transfer equipment's cooling tower, drien l applications	themi ofer co mate equat	oeffio rial ions	cient and	s ene	rgy
	Diffusion				6 ho	
	to Mass transfer operation, Fick's law of diffusion, Steady state molecular and laminar flow conditions, Diffusion coefficient measurement and presented and			on ir	ı flui	ids
Module:2	Molecular diffusion in Fluids				5 ho	urs
	iffusion in gas and Liquids, Multicomponent diffusion, Diffusion	throi	ıơh		<u>, 110</u>	uis
	ss-sectional area, Diffusivity in solids and its applications		*511			
Module:3	Mass transfer coefficients				6 ha	
	to mass transfer coefficient, Correlation for convective mass transfer c	oeffic	iont			
	sfer coefficients for single cylinder, Packed column, flow over a flat plate			Con	ciati	
Module:4	Theories of mass transfer			4	5 ho	llre
	heory, Surface Renewal Theory, Interphase mass transfer, two film	theor	v. O			
transfer coet	•		. <u>,</u> , 0	, ora		abb
	Humidification			71	1011	rs
Module:5		Bulb	Te		ratu	
Module:5 Basic con	cepts, Principles of Humidification –Definitions Wet	Daro	10			
Basic con	Saturation Temperatures –Air/Water System psychrometric			-	met	rıc
Basic con &Adiabatic		and	Psy	chro		
Basic con &Adiabatic Charts –	Saturation Temperatures –Air/Water System psychrometric Jtilization of Psychrometric Charts – Dehumidification – Draft Towers: forced draft towers and induced draft towers; D	and Cool	Psy ing	chro Tov	vers	_

Principles of Drying-Definitions of moisture and other terms on Drying, Classification of Drying operations. Rate of Drying -Constant and Falling Rate Drying. Moisture movement in solids -Through Circulation Drying - Rate of drying for Continuous Direct heat Driers-Types of Dryers used in practice and their operation-Batch and Continuous Dryers

Module:7 Crystallization

6 hours

2 hours

Crystal Geometry - Invariant Crystals - Principles of Crystallization- Super saturation-Nucleation-Crystal growth -Material & Energy Balance applied to Crystallizers-Types of Crystallizers used in practice

Module:8 Contemporary issues

45 hours

Text Books

1. Dutta, B.K., Principles of Mass transfer and Separation Processes. Prentice-Hall of India, New Delhi 2007.

Total Lecture hours

2. Treybal, R.E., Mass-Transfer Operations, 3rd ed, McGraw-Hill 1981.

Reference Books

- Cussler, E.L, Diffusion: MassTransfer in Fluid Systems, Cambridge university press,2017
 Christie J Geankoplis, Transport processes and Unit Operations, 4th ed, Prentice Hall India Pvt.Ltd, 2003
- 3. Anantharaman N , Meera Sheriffa Begum K.M., Mass transfer-Theory and practice, Prentice-Hall of India, New Delhi, 2011

Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test				
Recommended by Board of Studies	15-04-2019			
Approved by Academic Council	55 th Date 13-06-2019			

Course title	CHE4001 EQUILIBRIUM STAGED OPERATIONS	L 2	T 0	P 2	J 4	<u>C</u>
Course title Pre-requisite	CHE3003	-	ylla			
11c-requisite	CHIE5005	ĸ	упа	bus	vers	1.2
Course Objectives						1,2
 Understand the ba in equilibrium sta leaching, adsorpti Perform basic des separation operati Describe various t widely used in sep Course Outcomes 1.Describe basic pribalances 2.Determine the num 3.Determine number and adsorption un 4.Explain different 5.Recognize moder 6.Develop experim	asic principles of staged and continuous contact separation end operations such as distillation, absorption, liquid-liquid on and other modern separation operations ign calculations for staged and continuous contact equilibrions types of equipment's and modern separation methods for his paration operation (CO):	exti ium gh p mat orpti extr	erial on u actio	on, ed y pro and nits on, le	ener eachi	s
Module:1 Introd	luction to Equilibrium Staged Operations rious equilibrium staged operations - Distillation - abso ion; Vapour–liquid equilibria; Types of distillation – F	orpti	1 - 8	Extra	tropi	n ·
Extractive distillation	ons; Develop VLE data using Aspen Plus; Simple mass ar simulation software	nd e	nerg	y Dal	lance	
Extractive distillation	ons; Develop VLE data using Aspen Plus; Simple mass ar simulation software	nd e	nerg	y Dal		
Extractive distillation flash column using Module:2 Distill	simulation software ation				6 ha	e ir our
Extractive distillation flash column using Module:2 Distill Distillation column equation for different section - feed tray l of theoretical trays	simulation software	on o n se lum	of op ction n; De	perat	6 h ing 1 tripp	e ir our ing ior
Extractive distillation flash column using Module:2 Distill Distillation column equation for different section - feed tray l of theoretical trays	ation - Types of contact – Tray Vs Packed Column; Derivati ent section and parts of distillation column - rectification ocation - condenser - reboiler - efficiency of distillation col - McCabe-Thiele method -Ponchon- Savarit method; Case for multicomponent separation using Aspen Plus	on o n se lum	of op ction n; De	peration 1 - s etern of In	6 h ing 1 tripp	e ir our ine ing ior ria
Extractive distillation flash column using Module:2 Distill Distillation column equation for differed section - feed tray 1 of theoretical trays distillation column Module:3 Absor Introduction to abs absorber); Design of	ation - Types of contact – Tray Vs Packed Column; Derivati ent section and parts of distillation column - rectification ocation - condenser - reboiler - efficiency of distillation col - McCabe-Thiele method -Ponchon- Savarit method; Case for multicomponent separation using Aspen Plus ption sorption - Continuous contact counter-current multi-stag of packed tower based on overall mass transfer coefficient	on o	of op ction n; Do udy o	peration i - s etern of In	6 ho ing 1 tripp ninat dust 4 ho n (T	e in ing ing ion ria
Extractive distillationflash column usingModule:2DistillDistillation columnequation for differedsection - feed tray 1of theoretical traysdistillation columnModule:3AbsorIntroduction to absorber); Design ofoperation using Asp	ation - Types of contact – Tray Vs Packed Column; Derivati ent section and parts of distillation column - rectification ocation - condenser - reboiler - efficiency of distillation col - McCabe-Thiele method -Ponchon- Savarit method; Case for multicomponent separation using Aspen Plus ption sorption - Continuous contact counter-current multi-stag of packed tower based on overall mass transfer coefficient pen Plus	on o	of op ction n; Do udy o	perat 1 - s etern of In ption rber	6 ho ing tripp ninat dust 4 ho n (T colu	e in inq inq ion ria
Extractive distillationflash column usingModule:2DistillDistillation columnequation for differencesection - feed tray lof theoretical traysdistillation columnModule:3AbsorIntroduction to absorber); Design ofoperation using AspModule:4Extraction	simulation software ation - Types of contact – Tray Vs Packed Column; Derivati ent section and parts of distillation column - rectification ocation - condenser - reboiler - efficiency of distillation col - McCabe-Thiele method -Ponchon- Savarit method; Case for multicomponent separation using Aspen Plus ption sorption - Continuous contact counter-current multi-stag of packed tower based on overall mass transfer coefficien pen Plus ction	on con con see studies	of op ction i, Do idy o ibsor	peration term of In ption rber	6 ho ing 1 tripp ninat dust 4 ho colu 3 ho	ing ing ing ion ria
Extractive distillation flash column using Module:2 Distill Distillation column equation for difference section - feed tray l of theoretical trays distillation column Module:3 Absor Introduction to absorber); Design of operation using Asp Module:4 Extraction Liquid–Liquid equit	ation - Types of contact – Tray Vs Packed Column; Derivati ent section and parts of distillation column - rectification ocation - condenser - reboiler - efficiency of distillation col - McCabe-Thiele method -Ponchon- Savarit method; Case for multicomponent separation using Aspen Plus ption sorption - Continuous contact counter-current multi-stag of packed tower based on overall mass transfer coefficient pen Plus	on con con see studies	of op ction i, Do idy o ibsor	peration term of In ption rber	6 ho ing 1 tripp ninat dust 4 ho colu 3 ho	ing ing ing ion ria
Extractive distillationflash column usingModule:2DistillDistillation columnequation for differencesection - feed tray lof theoretical traysdistillation columndistillation columnModule:3AbsorIntroduction to absorber); Design ofoperation using AspModule:4ExtractLiquid–Liquid equit	simulation software ation - Types of contact – Tray Vs Packed Column; Derivati ent section and parts of distillation column - rectification ocation - condenser - reboiler - efficiency of distillation col - McCabe-Thiele method -Ponchon- Savarit method; Case for multicomponent separation using Aspen Plus ption sorption - Continuous contact counter-current multi-stag of packed tower based on overall mass transfer coefficien pen Plus ction libria – Determination of number theoretical stages – co-cu ntact operations - Classification of extraction equipment	on con con see studies	of op ction i, Do idy o ibsor	peration of In of In of In rption rber	6 ho ing 1 tripp ninat dust 4 ho colu 3 ho	e in in in in in in in in in in in ria

B.Tech Chemical Engineering- BCM

General principles of leaching - Factors influencing the leaching rate – Equipment for leaching – Advanced industrial leaching processes

Module:6 Adsorption

Adsorption theory- Structure of adsorbents - Adsorption isotherms – Langmuir and Freundlich isotherms - Adsorption equipment

Module:7Modern separation techniques4 hoursMembraneseparation - microfiltration - ultrafiltration - nanofiltration - reverse osmosis;
Chromatography - liquid chromatography - Advanced separation techniques - Divided wall
column, melt crystallization, zone melting; Develop membrane separators using Aspen and
solving for optimum purification

Mo	dule:8	2 hours						
		То	tal Lecture hour	'S		30 hours		
Tex	Text Books							
1.	1. Dutta B.K., Principles of Mass transfer and Separation Processes, 1 st ed., Prentice Hall of							
		ndia, 2007.						
2.	Seader	J.D., Henley E.J, Roper D.I	K., Separation Pro	ocess Princ	iples, , 3 rd ed.,	, John Wiley &		
		JSA, 2010.						
Ref	erence l							
1.		l R.E., Mass-Transfer Opera						
2.		.K., Chemical Process Mod	lelling and Comp	outer Simu	lation, 2 nd ed.	, Prentice Hall of		
	,	ndia, 2011.						
Mo	de of eva	aluation: Continuous Assess	sment Test, Quizz	zes, Assign	ments, Final A	Assessment Test		
Labo	oratory	Experiments						
1.		iffusion in gas phase				2 hours		
2.		iffusion in liquid phase				2 hours		
3.		Vetted wall column				2 hours		
4.		apor-liquid equilibria using	Aspen Plus or Pr	oSim		2 hours		
5.		imple distillation				2 hours		
6.		Iulti Component distillation			n	2 hours		
7.		iquid-liquid equilibria using	Aspen Plus or P	roSim		2 hours		
8.		iquid-liquid extraction				2 hours		
9.	С	ontinuous distillation using	Aspen Plus or Pr	oSim		2 hours		
10.	A	dsorption using Aspen Plus	or ProSim			2 hours		
		Total Labo	oratory Hours			20 hours		
		aluation: Continuous Assess	sment Test, Quizz	zes, Assign	ments, Final A	Assessment Test		
Rec	ommend	led by Board of Studies	15-04-2019					
App	proved b	y Academic Council	55 th	Date	13-06-2019			

4 hours

Course code	Applications of Differential and Differenc	e L	Т	P	J	(
	Equations		0	-	+	\vdash
MAT2002		3	0	2	0	-
Pre-requisite	MAT1011 - Calculus for Engineers	Sy	llabı	IS V		
<u> </u>						1.0
Course Objec						
analysis	the elementary notions of Fourier series, which is vita					
	he knowledge of eigenvalues and eigen vectors of ma					
-	olve linear systems, that arise in sciences and enginee	ering [3] E	Inric	hing	the	;
	g initial and boundary value problems	1.1.7	7 /	c		
	knowledge and application of difference equations	and the	Z-tra	nsto	rm	1n
discrete system	s, that are inherent in natural and physical processes					
Course Outco	me (CO):					
[1] Employ th tabulated value	e tools of Fourier series to find harmonics of periodic	functions	fron	n the	;	
	oncepts of eigenvalues, eigen vectors and diagonalisation	ation in lin	ears	vste	ms	
	echniques of solving differential equations		icar s	yste	1115	
	the series solution of differential equations and finding	ng eigen v	alues	eio	en	
	rum-Liouville's problem		urues	, 016	,en	
	<i>L</i> -transform and its application in population dynamic	s and digi	al si	onal		
processing	a dission in and its approaction in population dynamic	s and digit	an bi	Snar		
	e MATLAB programming for engineering problems					
[0]	programming for ongeneering procreme					
Module:1	Fourier series:	6 hou	rs			
Fourier series -	Euler's formulae - Dirichlet's conditions - Change o	f interval	- Hal	f rar	ige	
	value – Parseval's identity – Computation of harmoni				-0-	
Module:2	Matrices:	6 hou	rs			
Eigenvalues a	nd Eigen vectors - Properties of eigenvalues and	eigen vec	tors	- C	ayle	ev-
	rem - Similarity of transformation - Orthogonal tran					
quadratic form						
-						
Module:3	Solution of ordinary differential equations:	6 hou	rs			
Linear second	order ordinary differential equation with constant co	oefficients	- So	oluti	ons	of
	nd non-homogenous equations - Method of under					
method of va	riation of parameters - Solutions of Cauchy-Eule	er and Ca	uchy	-Leg	gend	١re
differential equ				_		
	Solution of differential equations through Laplace transform and matrix method	8 hou	rs			
	DDE's - Nonhomogeneous terms involving Heav					
function - Sol	ving nonhomogeneous system using Laplace transf	form – Re	duct	ion (of <i>i</i>	ιth
	al equation to first order system - Solving nonhom					
ofuer uniterent	a equation to mist order system solving nomion	0	2			
	ial equations $(X' = AX + G)$ and	8	5			

B.Tech Chemical Engineering- BCM

		1	1	
Mo	dule:5	Strum Liouville's problems and power series	6 hours	
Tł	e Strum-l	Solutions: Liouville's Problem - Orthogonality of Eigen functions	- Series solution	sof
		equations about ordinary and regular singular points -	Legend	
		equation - Bessel's differential equation	8	
Mo	dule:6	Z-Transform:	6 hours	
Z-	transform	-transforms of standard functions - Inverse Z-transform	m: by partial fract	ions
an	d convolu	tion method		
		2000		
	dule:7	Difference equations:	5 hours	· · · · ·
		uation - First and second order difference equations v sequence - Solution of difference equations - Co		
		tegral by the method of undetermined coefficient		
		uations using Z-transform	is - Solution of	simpt
		6		
Mo	dule:8	Contemporary Issues	2 hours	
		1 U		
Ind	ustry Exp	ert Lecture		
		Total Lecture hours:	45 hours	
Tey	kt Book(s			
1.		d Engineering Mathematics, Erwin Kreyszig, 10 th	Edition, John V	Viley
-	India, 20			
	erence B			
1.	Higher I India, 20	Engineering Mathematics, B. S. Grewal, 43 rd Edition,	Khanna Publisher	s,
2.	,	d Engineering Mathematics by Michael D. Greenberg	2 nd Edition Pear	rson
2.		on, Indian edition, 2006	, 2 Lutton, 1 ca	15011
Mo	de of Eva			
Dig	ital Ass	gnments (Solutions by using soft skills), Cont	inuous	
		Fests, Quiz, Final Assessment Test		
1		g Homogeneous differential equations arising in engine	eering 2 ho	ours
	probler			
2.		g non-homogeneous differential equations and Cauchy	, 2 ho	ours
	Ŭ	re equations		
3.	equation	ng the technique of Laplace transform to solve differen	ntial 2 ho	ours
4		ations of Second order differential equations to Mass s	pring 2 ho	urs
-+.		(damped, undamped, Forced oscillations), LCR circui		u13
5		zing Eigen value and Eigen vectors	2 ho	ours
6		g system of differential equations arising in engineering		
	applica		-	
7.	Applyi	ng the Power series method to solve differential equati	ons 2 ho	ours
		in engineering applications		
8.		ng the Frobenius method to solve differential equation	s 2 ho	ours
	arising	in engineering applications		

9.	9. Visualising Bessel and Legendre polynomials					
10.	Evaluating Fourier series-Harmonic	series		2 hours		
11.	Applying Z-Transforms to functions	s encountered in engi	neering	2 hours		
12. Solving Difference equations arising in engineering applications 2 hou						
		Total I	Laboratory Ho	ours 24 hours		
Mod	e of Evaluation: Weekly Assessmen	t, Final Assessment	t Test			
Recommended by Board of Studies 03-06-2019						
Appr	Approved by Academic Council No. 55 Date 13-0					

	Complex Variables and Partial Differential Equation	L	T	P	J	C
MAT3003		3	2	0	0	4
Pre-requisite	MAT2002 Applications of Differential and	S	yllab	us	vers	ior
	Difference Equations					
~						1.0
Course Object						
	course is to present a comprehensive, compact and integrated t				WO	
-	branches of applied mathematics for engineers and scientists		-			
functions of cor	nplex variable and Partial differential equations in finite and in	nfinit	te do	mai	ns	
Course Outcor	nes (CO):					
[1] Construct an	alytic functions and find complex potential of fluid flow and	elect	tric			
fields						
[2] Find the im	age of straight lines by elementary transformations and					
	ess analytic functions in power series					
	l integrals using techniques of contour integration					
	artial differential equations, and its applications, design t					
-	dimensional heat and wave equations) and find Fourier series	es, Fo	ourie	r tra	nsf	orn
techniques in th	eir respective engineering problems.					
Student Learn	ng Outcomes (SLO): 1, 2, 9					
	ability to apply mathematics and science in engineering applic.	ation	5			
-	ar understanding of the subject related concepts and of conten			sues	2	
-	lem solving ability- solving social issues and engineering prob	-	-	suc	,	
	alytic Functions		, nour	c		
	le-Analytic functions and Cauchy – Riemann equations - Lapl	-		-	and	
	ions - Construction of Harmonic conjugate and analytic function					s
	tions to fluid-flow and Field problems.		F F			~
	nformal and Bilinear transformations		nour			
Conformal map						
	ping - Elementary transformations-translation, magnification,					
Exponential and	l Square transformations (w = e^z , z^2) - Bilinear transform	natio	n -			
Exponential and		natio	n -			
Exponential and ratio-Images of	I Square transformations ($w = e^z$, z^2) - Bilinear transform the regions bounded by straight lines under the above transform	natio natio	on - ons.	Cr		
Exponential and ratio-Images of Module:3 Po	l Square transformations (w = e^z , z^2) - Bilinear transform	natio natio 4 h	on - ons.	Cr	OSS-	
Exponential and ratio-Images of Module:3 Po	I Square transformations ($w = e^z$, z^2) - Bilinear transform the regions bounded by straight lines under the above transform wer series	natio natio 4 h	on - ons.	Cr	OSS-	
Exponential and ratio-Images of Module:3 Po Functions given Module:4 Co	I Square transformations ($w = e^z$, z^2) - Bilinear transform the regions bounded by straight lines under the above transform wer series by Power Series - Taylor and Laurent series - singularities - per omplex Integration	natio natio 4 h oles - 5	on - ons. ours - Res hour	Cr idu	OSS-	
Exponential and ratio-Images of Module:3 Po Functions given Module:4 Co Integration of a	I Square transformations ($w = e^z$, z^2) - Bilinear transformthe regions bounded by straight lines under the above transformwer seriesby Power Series - Taylor and Laurent series -singularities - poomplex Integrationcomplex function along a contour - Cauchy-Goursat theorem	natio natio 4 h oles - 5 - Ca	on - ons. ours - Res hour	Cr idu	es.	
Exponential and ratio-Images of Module:3 Po Functions given Module:4 Co Integration of a integral formul	I Square transformations ($w = e^z$, z^2) - Bilinear transform the regions bounded by straight lines under the above transform wer series by Power Series - Taylor and Laurent series - singularities - per omplex Integration	natio natio 4 h oles - 5 - Ca	on - ons. ours - Res hour	Cr idu	es.	
Exponential and ratio-Images of Module:3 Po Functions given Module:4 Co Integration of a integral formul	I Square transformations ($w = e^z$, z^2) - Bilinear transformthe regions bounded by straight lines under the above transformwer seriesby Power Series - Taylor and Laurent series -singularities - poomplex Integrationcomplex function along a contour - Cauchy-Goursat theorem	natio natio 4 h oles - 5 - Ca	on - ons. ours - Res hour	Cr idu	es.	
Exponential and ratio-Images of Module:3 Po Functions given Module:4 Co Integration of a integral formul integral.	I Square transformations ($w = e^z$, z^2) - Bilinear transform the regions bounded by straight lines under the above transform wer series by Power Series - Taylor and Laurent series - singularities - po omplex Integration complex function along a contour - Cauchy-Goursat theorem a -Cauchy's residue theorem - Evaluation of real integrals	matio matio 4 h oles - 5 - Ca - In	on - ons. ours - Res hour	Cr idu rs rs ed c	es.	
Exponential and ratio-Images of Module:3 Por Functions given Module:4 Control Integration of a integral formul integral. Module:5 Pa	I Square transformations (w = e ^z , z ²) - Bilinear transform the regions bounded by straight lines under the above transform wer series by Power Series - Taylor and Laurent series - singularities - perform omplex Integration complex function along a contour - Cauchy-Goursat theorem a -Cauchy's residue theorem - Evaluation of real integrals rtial Differential equations of first order	mationation 4 h oles - 5 - Ca - In 6 l	on - ons. - Res hour uchy dente	Ct idu idu 's ed c s	es.	
Exponential and ratio-Images of Module:3 Po Functions giver Module:4 Co Integration of a integral formul integral. Module:5 Pa Formation and	I Square transformations ($w = e^z$, z^2) - Bilinear transform the regions bounded by straight lines under the above transform wer series by Power Series - Taylor and Laurent series - singularities - po omplex Integration complex function along a contour - Cauchy-Goursat theorem a -Cauchy's residue theorem - Evaluation of real integrals	<pre>matio matio 4 h ples - 5 - Ca - In 6 l Comp</pre>	on - ons. - Res - Res - Res - dente dente	Ct idu idu 's ed c s	es.	

Mo	dule:6	Applications of Partial	Differential			10	hours
		Equations					
		al differential equations of high					
		cential equation by separation			ary Value	Problems-	one
dim	nensional	wave and heat equations- Fo	ourier series so	lution.			
М	d	Foundary transformed				7 1	
	dule:7	Fourier transforms	Dolotion 1	a atraza ar	Equinion		ours
COI tror	npiex ro	ourier transform and propertie - Fourier sine and cosine trar	s - Relation t	nyoluti	on Theory	and Laplace	sovol's
	ntity.	- Fourier sine and cosine trai	1 storms – Co	iivoiuu			seval s
luc	inity.						
Mo	dule:8	Contemporary issues:				2 hou	irs
		pert Lecture				_ 100	
	j						
			Total I	Lecture	e hours:	45 hours	
Tu	torial	• A minimum of 10 problem	ns to be work	ed out l	ру	30 hours	
		students inventory Tutoria	al Class				
		• Another 5 problems per T	utorial Class t	o be giv	ven as		
		home work.					
	<mark>xt Book</mark> (·	(
1.		ced Engineering Mathematics		szig, 10	th Edition	ı, John Wile	ey &
		Viley student Edison) (2015)	6				
	ference l						
1		Engineering Mathematics, B. ers, New Delhi	. S. Grewal, 4	-3 rd Ed	ition (201	9), Khanna	
2		course in complex analysis	with applicat	ions. G	.Dennis Z	Zill. Patrick	D. Shanahan.
		tion, 2013, Jones and Bartlett					, , , , , , , , , , , , , , , , , , , ,
3		ed Engineering Mathematics					rson
	Educat	on (2006)					
4		ed Engineering Mathematics	, Peter V. O' N	Neil, 7 th	Edition,	Cengage L	earning
_	(2012)						
5	1	ex Analysis for Mathematics	s and Engineer	rs, JH M	lathews, l	R. W. Howe	ell, 5^{tn}
7.2		, Narosa Publishers (2013)					
		aluation:	<u> </u>	<u> </u>			C' 1
- C	gital Assi sessment	gnments(Solutions by using s Test.	soft skill),Quiz	z, Conti	nuous As	sessments,]	Final
			03 06 2010				
		led by Board of Studies y Academic Council	03-06-2019 No. 55	Date	13-06-20	10	
лμ	proveu D		110.33	Date	13-00-20	17	

MEE1001		ENGINEERING DRAWING	L	Т	ΡJ	C
MEE1001			1	0	4 0	3
Pre-requisite		NIL	Syll	abu	s ver	sion
					V.	. 2.2
Course Objectiv	ves:					
1. Understand a	and e	scalate the importance of basic concepts and principles of l	Eng	inee	ring	
Drawing (com	nponer	nts, sections, views, and graphical representation).				
		with various concepts like dimensioning, conventions and s	tanc	lard	8	
	-	lrawings in order to become professionally efficient.				
Develop the al sketching.	bility	to communicate with others through the language of technical	drav	wing	g and	
4. Ability to read	and i	interpret engineering drawings created by others.				
5. Ability to drav	w orth	ographic projections and sections.				
		anding for size specification procedures and use of SI and trad	litio	nal ı	inits o	of
linear measure	e.					
Course Outcome	es:					
1. Apply BIS and	d ISO	Standards in Engineering Drafting.				
2. Graphically co	onstru	ct mathematical curves in engineering applications.				
3. Visualize geor	metric	cal solids in 3D space through Orthographic Projections				
4. Construct ison	netric	scale, isometric projections and views.				
		lids including cylinders, cones, prisms and pyramids.				
		Flines, planes, solids, isometric projections and sections of soli	ids i	nch	1:	
cylinders, cone	00 00		10.5 1	nen	laing	
- ~ .	-	isms and pyramids using Mini-Dafter and CAD.	10.5 1	nen	laing	
7. Construct orth	-	isms and pyramids using Mini-Dafter and CAD. hic projections from pictorial views.	ius i	nen	ung	
7. Construct orth	-					
Module:1 L	ograp	hic projections from pictorial views.			1 hc	ours
Module:1 L	ograp	whic projections from pictorial views.				ours
Module:1 La Introduction, lette	ograp etteri	chic projections from pictorial views. Ing and Dimensioning practice, Elements of dimensioning - systems of dimensioning			1 ho	
Module:1LaIntroduction, letteModule:2G	etteri ering	hic projections from pictorial views. Ing and Dimensioning practice, Elements of dimensioning - systems of dimensioning etric Constructions				
Module:1LaIntroduction, letteModule:2G	etteri ering	chic projections from pictorial views. Ing and Dimensioning practice, Elements of dimensioning - systems of dimensioning			1 ho	
Module:1LaIntroduction, letteModule:2GFree hand sketchi	etteri ering Geome	hic projections from pictorial views. Ing and Dimensioning practice, Elements of dimensioning - systems of dimensioning etric Constructions			1 ho	ours
Module:1LaIntroduction, letteModule:2GFree hand sketchiModule:3Pr	ering ering ing, C	hic projections from pictorial views. Ing and Dimensioning practice, Elements of dimensioning - systems of dimensioning Etric Constructions Conic sections, Special curves.			1 ha	ours
Module:1LaIntroduction, letterModule:2GFree hand sketchiModule:3Projection of Point	etteri ering ing, C roject ints:	hic projections from pictorial views. Ing and Dimensioning practice, Elements of dimensioning - systems of dimensioning etric Constructions conic sections, Special curves. tion of Points and Projection of Lines	g.		1 ha 2 ha 2 ha	ours
Module:1LaIntroduction, letteModule:2GFree hand sketchiModule:3Projection of PoiProjection of Li	etteri ering ing, C roject ints: ines:	hic projections from pictorial views. Ing and Dimensioning practice, Elements of dimensioning - systems of dimensioning etric Constructions Conic sections, Special curves. tion of Points and Projection of Lines First and Third Angle Projections; Projection of points.	g.		1 ha 2 ha 2 ha	ours
Module:1LaIntroduction, letterModule:2GFree hand sketchiModule:3PnProjection of PoiProjection of Liinclined to one pl	etteri ering ing, C rojec ints: ines: lane a	 and Dimensioning practice, Elements of dimensioning - systems of dimensioning ctric Constructions conic sections, Special curves. tion of Points and Projection of Lines First and Third Angle Projections; Projection of points. Projection of straight lines (First angle projection only); Prond both planes, true length and true inclinations. 	g.		1 h 2 h 2 h	ours ours
Module:1LaIntroduction, letterModule:2GFree hand sketchiModule:3PrProjection of PoiProjection of Liinclined to one plModule:4Pr	etteri ering ing, C roject ints: ines: lane a	 and Dimensioning practice, Elements of dimensioning - systems of dimensioning etric Constructions conic sections, Special curves. tion of Points and Projection of Lines First and Third Angle Projections; Projection of points. Projection of straight lines (First angle projection only); Prond both planes, true length and true inclinations. tion of Solids and Section of Solids 	g.	tion	1 ho 2 ho of li 3 ho	ours ours nes
Module:1LaIntroduction, letterModule:2GFree hand sketchiModule:3PrProjection of Liinclined to one plModule:4PrProjection of solit	etteri ering ing, C rojec ints: ines: lane a rojec lids: C	hic projections from pictorial views. Ing and Dimensioning practice, Elements of dimensioning - systems of dimensioning etric Constructions Conic sections, Special curves. Conic sections, Special curves. tion of Points and Projection of Lines First and Third Angle Projections; Projection of points. Projection of straight lines (First angle projection only); Pro- nd both planes, true length and true inclinations. tion of Solids and Section of Solids Classification of solids, Projection of solids in simple position	g.	tion	1 ho 2 ho of li 3 ho	ours ours nes urs
Module:1LaIntroduction, letterModule:2GFree hand sketchiModule:3PrProjection of PoiProjection of Liinclined to one plModule:4PrProjection of solissolids inclined to	etteri ering ing, C ing, C ints: ines: lane a roject ids: C	hic projections from pictorial views. Ing and Dimensioning practice, Elements of dimensioning - systems of dimensioning etric Constructions Conic sections, Special curves. Conic sections, Special curves. tion of Points and Projection of Lines First and Third Angle Projections; Projection of points. Projection of straight lines (First angle projection only); Pro- nd both planes, true length and true inclinations. tion of Solids and Section of Solids Classification of solids, Projection of solids in simple position	g. ojec	tion	1 ho 2 ho of li 3 ho ection	ours ours nes urs

Mod	lule:5 Development of Surfaces	2 hours
Dev	velopment of surfaces for various regular solids.	
Mod	lule:6 Isometric Projection and Perspective Projection	2 hours
	netric Projection: Isometric scales, Isometric projections of simple and com	
	spective Projection: Orthographic representation of a perspective views – Pl	ane figures and
simp	ble solids - Visual ray method.	
	Iule:7 Orthographic Projection	2 hours
Con	version of pictorial view into orthographic Projection.	
Mad	lule:8 Contemporary issues	1 h ou m
IVIOU	lule:8 Contemporary issues	1 hours
	Total Lasters ha	ours: 15 hours
T	Total Lecture ho	urs: 15 nours
1.	t Book(s) Venugopal K and Prabhu Raja V, "Engineering Graphics", New Publishers, 2015.	AGE International
	erence Books	
1.	N. D. Bhatt, Engineering Drawing, Charotar publishing House, 2012.	
2	Natarajan, K. V., A Text book of Engineering Graphics, Dhanalakshmi Pu	ublishers, 2012.
Mod	le of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar	
List	of Challenging Experiments (Indicative)	
1.	Identifying the incorrect dimensioning and correct it as per BIS standards	for 4 hours
	Engineering Components.	
2.	Tutorials on free hand sketching of the plan view of stadium, garden, etc.,	
3.	Tutorials on geometric constructions like conics and special curves projection of cricket ball, missile projection, etc.,	for 4 hours
4.	Representation of orthographic projection of points	4 hours
5.	Representation of orthographic projection of lines (First angle projection) only) inclined to one plane and projection of lines inclined to both planes- solving problems like electrical bulbs hanging from the roof, find the shortest distance between fan to electrical switch board, etc.,	the ding
6.	Sketching orthographic projection of solids in simple position and project of solids inclined to one plane for household accessories and objects.	tion 8 hours
7.	Drawing the auxiliary views, orthographic views and true shape of section regular solids for household accessories and objects.	ned 4 hours
8.	Development of lateral surfaces of the regular shapes and sectioned sha for water cans, refrigerator, cylinder container, funnel, etc.,	apes 4 hours
9.	Conversion of orthographic views to isometric views for engineer components.	ring 8 hours
9.	components.	

11.	11. Conversion of pictorial drawing into orthographic projection for engineering							
	components, architectural structures, etc.,							
	Total Laboratory Hours							
Mode	e of assessment:							
Recor	Recommended by Board of Studies 17-08-2017							
Appro	oved by Academic Council	47	Date	05-10-2017				

PROGRAMME ELECTIVE

Course code	CHE1007	L	Τ	Р	J	С
Course title	SAFETY AND HAZARD ANALYSIS	2	0	0	4	3
Pre-requisite	NIL	S	ylla	bus	vers	sion
						12

Course Objectives:

- 1. Critically understand the importance of safety in process industries
- 2. Assess and identify the potential hazards in process industries
- 3. Identify and evaluate the causes of accident in a chemical industry

Course Outcomes (CO):

- 1. Distinguish the typical sources of risk in a process plant by hazard identification and examination of case studies
- 2. Assess the severity of the consequences of incidents
- 3. Identify a Hazard and Operability Study (HAZOP)
- 4. Explain the legal framework controlling process plant safety in industries
- 5. Demonstrate how the root cause of incidents can be investigated and analysed and the various human and technical aspects of such causes
- 6. Identify hazard and conduct safety audit.

Module:1	Introduction	to	Safety	in	Chemical	process Industries	5 Hours
		•••	Survey		0	Process industries	

Need for Development of Safety Consciousness in Chemical Industries - Hazard, Risk, Danger, Accident; Promotion of industrial safety, extreme operating conditions, toxic chemicals - safe handling; Psychological attitude towards safety.

Module:2Safety Programs in Industries5 HoursImportance of Safety Programs in industries; Elements of Safety Program; Effective Realization;
Economic and Social Benefits from Safety Program; Effective Communication Training at various
levels of Production and Operation. Accidents identification and prevention.5 Hours

Module:3	Potential Hazards in Chemical Process Industries	4 Hours

Chemical and Physical job Safety Analysis; High pressure and Temperature Operation; Dangerous and Toxic Chemicals; Routes of entry, Effects of toxicants and its elimination. Toxic release and dispersion models. Radio Active materials; Safe Handling and Operation of materials and Machinery; periodic inspection and replacement.

Module:4 Risk assessment

Quantitative risk assessment - rapid and comprehensive risk analysis; Risk due to Radiation, explosion due to over pressure, plant layout Personnel Safety and Protective Equipment; Occupational health and safety.

Module:5 Hazard Identification

4 hours

4 hours

Introduction to Hazard identification - Overall risk and hazard analysis - Emergency planning - On site & off site emergency planning - Risk management - ISO 14000 - Safety audits - Checklist - What if analysis - Vulnerability models - Event tree analysis - Fault tree analysis.

Module:6 HAZOP		4 hour
HAZOP study - c	case studies-pumping system-reactor-mass transfer	system. Hazard
Identification and	Assessment; Involvement of Human factors and	Errors- Hazard
Quantifications-disaste	er management; Occupational and Industrial Health	Hazards; Safety
Systems.		
Module:7 Case stud	ies	2 hour
	t case scenario, Fire, Accidents, Chemical release, Exp	
-	isasters, EMS models case studies	
	oorary Issues	2 h
Module:8 Contem	Jorary issues	2 hour
Module:8 Contemp		<u> </u>
Module:8 Contemp	Total Lecture hours	30 hours
Text Books	Total Lecture hours	30 hours
Text Books 1. Ericson C.A., Haza	Total Lecture hours ard Analysis Techniques for System Safety, 2 nd ed., Wile	30 hours ey, USA, 2015.
Text Books 1. Ericson C.A., Haza	Total Lecture hours	30 hours ey, USA, 2015.
Text Books 1. Ericson C.A., Haza 2. Gupta A., Industria Reference Books	Total Lecture hours ard Analysis Techniques for System Safety, 2 nd ed., Wile al Safety and Environment, 2 nd ed., Laxmi Publications, I	30 hours ey, USA, 2015. India, 2015
Text Books 1. Ericson C.A., Haza 2. Gupta A., Industria Reference Books	Total Lecture hours ard Analysis Techniques for System Safety, 2 nd ed., Wile	30 hours ey, USA, 2015. India, 2015
Text Books 1. Ericson C.A., Haza 2. Gupta A., Industria Reference Books	Total Lecture hours ard Analysis Techniques for System Safety, 2 nd ed., Wile al Safety and Environment, 2 nd ed., Laxmi Publications, I nes for process hazards analysis, hazards identification	30 hours ey, USA, 2015. India, 2015
Text Books 1. Ericson C.A., Haza 2. Gupta A., Industria Reference Books 1. Hyatt, N., Guidelia ed., CRC Press, US	Total Lecture hours ard Analysis Techniques for System Safety, 2 nd ed., Wile al Safety and Environment, 2 nd ed., Laxmi Publications, I nes for process hazards analysis, hazards identification	30 hours ey, USA, 2015. India, 2015 & risk analysis, 1 st
Text Books 1. Ericson C.A., Haza 2. Gupta A., Industria Reference Books 1. Hyatt, N., Guidelia ed., CRC Press, US	Total Lecture hours ard Analysis Techniques for System Safety, 2 nd ed., Wile al Safety and Environment, 2 nd ed., Laxmi Publications, I nes for process hazards analysis, hazards identification SA, 2003. ontinuous Assessment Test, Quizzes, Assignments, Final	30 hours ey, USA, 2015. India, 2015 & risk analysis, 1 st

Course code	CHE1008	T P J C
Course title	UNIT PROCESSES IN ORGANIC SYNTHESIS	3 0 2 0 4
Pre-requisite	NIL	Syllabus version
		2.1
Course Objectives	S:	
usable products 2. Develop student in industries	lge on the industrial reactions used in converting organic by various processes is understanding towards kinetics and mechanism of variou rious instrumental techniques applied in contemporary indu	s reactions involved
organic compou		
Course Outcomes		
 Recall the physic Understand the i Interpret kinetics Explain the kine Explain separati 	cal concepts behind the organic reactions mportance of heterocycles, oxidizing and reducing agents s and mechanism of nitration, and halogenation reactions tics and mechanism of sulphonation reactions on and purification of organic compounds through classical hromatographic technique for separation and purification of	1
Module:1 Basic	concepts	6 hours
Raoult's law - Ide	gases -Vander Waals equation - Critical constants - Li eal solutions-Partially miscible liquids - Phenol water syst ties - Lowering of vapor pressure - Elevation of boiling p	tem - Henry's law -
	ocyclic compounds	8 hours
Classification – An of Furan – Thipher	ure of benzene and theories of aromaticity – Hetere comaticity and Basicity of heterocyclic compounds – Prepa ne – Pyrrole. Oxidation – Oxidising agents (SeO ₂ , OsO ₄ , K Lithium aluminium hydride, metal/acid and sodium metal) ications.	ration and properties (MnO ₄) – Reduction,
Module:3 Nitra	tion	6 hours
	ration, Nitrating agents, Kinetics and Mechanism of aroma ration, typical industrial nitration process e.g. preparation o	
Module:4 Halog	genation	6 hours
	ts, Kinetics and mechanism of halogenation reactions. Appendix control of chloral and vinyl chloride.	aratus and materials
	nonation	6 hours
physical factors aft	ulphonation, sulphonation agents and sulphanation agent fecting sulphonation. Mechanism of sulphonation, commerce halene, sulphation of lauryl alcohol and dimethyl ether.	
Module 6 Sonor	ration and nurification methods	5 hours
	ration and purification methods urification methods: Classical separation methods: Theor	5 hours

Mod	ule:7	Chromatography	6 hours
		aphy- Introduction, Different types of chromatographic techniques	
		d HPLC-Theory and Instrumentation (GC and HPLC), Applications	
		nolecules.	
	0		
Mod	ule:8	Contemporary issues	2 hours
		Total Lecture hours	45 hours
Text	Books	3	
(Compa	ns P.H., Unit Processes in Organic Synthesis, 5 th ed., Tata Mc.Gr. ny, India, 2009.	
2. l	Puri B.	R., Sharma L.R., Pathania M.S., Principles of Physical Chemistry, 43	3 rd ed., Vishal
]	Publish	ning Co., India, 2008.	
	rence]		
	Atkins, 2018.	, P., Paula, J. D. Atkins, Physical Chemistry, 11 th ed., Oxford Univer	rsity Press, USA,
		J., Advanced Organic Chemistry: Reactions, Mechanisms and Structu & Sons, USA, 1992.	ures, 4 th ed., John
3.	A. Bah	l, B.S. Bahl, Advanced Organic Chemistry, 5 th ed., S. Chand & Co., L	td., India, 2012.
		aluation: Continuous Assessment Test, Quizzes, Assignments, Final A	
		Experiments	
1.		Determination of Critical Solution Temperature of the given Phenol- Vater system	2 hours
2.	D	Determination of rate constant of the hydrolysis of ethyl acetate atalyzed by HCl at room temperature	2 hours
3.		Determination of acid value of the given oil sample	2 hours
4.		Determination of saponification value of the given oil sample	2 hours
5.		ulphonation of 1-Naphthol	2 hours
6.		eduction of Benzophenone by NaBH4	2 hours
7.	P	reparation of Benzoic acid from benzaldehyde by oxidation and it nelting point measurement	2 hours
8.	P	reparation of m-Dintrobenzene from Nitrobenzene by itration and it melting point measurement	2 hours
9.		urification of organic compounds by Fractional distillation	2 hours
10.		lentification of Carbonyl group in an organic compound.	2 hours
11.		lentification of Carboxylic acid group in an organic compound.	2 hours
12.		reparation of soap or detergent	2 hours
14.	1	Total Laboratory Hours	24 hours
Mode	e of ev	aluation: Continuous Assessment Test, Quizzes, Assignments, Final A	
		ded by Board of Studies 15-04-2019	
		y Academic Council 55 th Date 13-06-2019	
Аррг		y Academic Council 35 Date 15-00-2019	

Γ

Course code	CHE1009	L	Т	Р	J	С	
Course title	BIOCHEMICAL ENGINEERING	3	0	0	0	3	
Pre-requisite			Sylla	bus	vers	sion	
•			J			2.2	
Course Obje	ctives:						
kinetics, b 2. Understand	basic knowledge and overview of biotechnology covering the prioreactor design, sterilization agitation and aeration I the physical processes involved in bio-systems knowledge of chemical engineering principles to biological proce	-	-	of ce	ll ar	ıd	
Course Outo	comes (CO):						
	d significance and scope of biochemical processes						
	nicroorganisms and cell functions for industrial biochemical pre-	ocess	ses, e	enzyı	ne a	and	
	r bioprocesses						
 Make use bioprocess Analyze bi 	mical Engineering Principles to develop kinetic models for biop of theoretical basics of chemical engineering and unit ope sequipment oreactor performance n downstream processing and biological Sewage treatment in	ratio	ns ii		U	U	
	roblems using biochemical route		-	-			
Module:1	Introduction to Dischamical Engineering				2 ho	ours	
	Introduction to Biochemical Engineering of industrial biochemical processes with typical examples compa	ring	char				
	processes – development and scope of biochemical engineering a	<u> </u>				T	
Module:2	Basic Microbiology and Biochemistry				5 ho	ours	
	mportant microbial strains, their classification – structure – cellu	lar g	eneti				
examples of 1	nicrobial synthesis of biologicals						
Madada 2					. 1		
	Enzymes & Applications in industry, medicine and food – their classification with	tuni	<u>al a</u>		ho black		
	nportant enzymes; Mechanism of enzymatic reactions – Michae						
	ibition factors affecting the reaction rates; Industrial product						
•	on – enzyme reactors with typical examples.	,	P				
Module:4	Kinetics of Cell Growth			7	' ho	urs	
	vth characteristics of microbial cells - factors affecting grow						
	batch and continuous cell growth; Immobilized whole cells and				eris	tics	
– free cell and	d immobilized cell reactors; Typical industrial examples – transp	ort ii	n cell	s.			
	Unit Operations in Biochemical engineering				<u>b ho</u>		
Newtonian and non-Newtonian behaviour of broth – agitation and mixing – power consumption; Gas/liquid transport in cells – transfer resistances – mass transfer coefficients & their role in scale up of equipment – O_2 transfer; Heat transport in microbial systems – Heat transfer correlation's; Sterilization cycles; Heat addition & removal during biological production							
<u> </u>				~ -	1		
Module:6	Bioreactors			<u>8</u> 1	nou	rs	

Bioreactors - Batch and continuous types, immobilized whole cell and enzyme reactors. Highperformance bioreactors; Reactors in series with and without recycle. Design of reactors and scale up with typical examples; Sterile and non-sterile operations.

Module:7	Downstream and effluent treatment processes	6 hours
Downstream	n processes and effluent treatment: Different Unit operations in	n down streaming with
special refe	erence to membrane separations, extractive fermentation; A	anaerobic and aerobic
treatment o	f effluents - typical industrial examples for downstream pr	rocessing and effluent
disposal.		

Module:	3 Contemporary issues			2 hours
	Tota	l Lecture hours		45 hours
Text Boo	ks			
1. Baile	y J.B., Ollis D.F., Biochemica	al Engineering Fur	Idamental	s, 4 th ed., McGraw Hill, USA,
1986				
Referenc	e Books			
1. Rao	D.G., Introduction to Biochen	nical Engineering,	1 st ed., Ta	ata McGraw Hill, India, 2009.
2 Dora	n P.M., Bioprocess Engineeri	ng Principles, 3rd e	ed., Acade	emic Press, United Kingdom,
2013				
3 Aiba	A, Humphrey A.E., Milli. N.	R., Biochemical E	ngineerin	g, 2 nd ed., Academic Press,
USA	, 2004.		3°	-
Mode of o	evaluation: Continuous Assess	sment Test, Quizz	es, Assign	ments, Final Assessment Test
Recomme	ended by Board of Studies	15-04-2019		
Approved	by Academic Council	55 th	Date	13-06-2019

Course title PROCESS PLANT UTILITIES 3 0 0 0 0 3 Pre-requisite NIL Syllabus version 2.Course Objectives: 1.2 Course Objectives: 1.2 2.Impart insights in relation to the different types of fuels and boilers used in process industries and allie operations 1.2 2.Impart insights in relation to the different types of fuels and boilers used in process industries for the generation of steam, types of compressors and blowers for handling air and inert gases 3. Expose students to different methods of treatment of wastewater and drinking water Course Outcomes (CO): 1. Explain the importance of water and various methods for water softening and purification 2. Classify the different types of compressors and blowers for handling air and inert gases 4. 3. Identify the different types of compressors and blowers for handling air and inert gases 4. 4. Summarize the different types of compressors and blowers for handling air and inert gases 4. 5. Select a suitable refrigeration system for a typical application in process industries 6. 6. Interpret the application of orect type of insulation system for control of heat losses and learn about proper utilization, membranes technology, reverse osmosis. Water resources management. Prours Propertis of steam, Boiler types a	Course code	CHE1010	L	Т	Р	J	С
Pre-requisite NIL Syllabus version Course Objectives: 1.2 Course Objectives: 1.2 1. Equip the students with the basic understanding and effective utilization of utilities viz. water, steam, compressor, vacuum pumps, refrigeration and cooling units, insulator, inert gases in process industries and allied operations 2. Impart insights in relation to the different types of fuels and boilers used in process industries for the generation of steam, types of compressors and blowers for handling air and inert gases 3. Expose students to different types of fuels and boilers used in process industries for the generation of steam 2. Classify the different types of compressors and blowers for handling air and inert gases 3. Lentify the different types of compressors and blowers for handling air and inert gases 4. Summarize the different types of compressors and blowers for handling air and inert gases 6. Interpret the application of correct type of insulation system for control of heat losses and learn about proper utilization of inert gases on the process plants Module:1 Water and Steam 7 hours Requisites of Industrial Water and its uses; Water treatment methods - ion exchange, demineralization, methranes technology, reverse osmosis. Water resources management. Properties of steam, Boiler types and mountings, boiler accessories, Indian Boiler Act, 1923. Steam distribution and utilization, steam economy, waste heat utilization							3
I. Equip the students with the basic understanding and effective utilization of utilities viz. water, steam, compressor, vacuum pumps, refrigeration and cooling units, insulator, inert gases in process industries and allied operations 2. Impart insights in relation to the different types of fuels and boilers used in process industries for the generation of steam, types of compressors and blowers for handling air and inert gases 3. Expose students to different methods of treatment of wastewater and drinking water Course Outcomes (CO): 1. Explain the importance of water and various methods for water softening and purification 2. Classify the different types of fuels and boilers used in process industries for the generation of steam 3. Identify the different types of compressors and blowers for handling air and inert gases 4. Summarize the different types of equipment used for humidification, and dehumidification 5. Select a suitable refrigeration system for a typical application in process industries 6. Interpret the application of correct type of insulation system for cortrol of heat losses and learn about proper utilization of inert gases on the process plants Module:1 Water and Steam 7 hours Requisites of steam, Boiler types and mountings, boiler accessories, Indian Boiler Act, 1923. Steam distribution steam for power generation, Typical combustion calculations Module:2 Industrial fuels 6 hours Solid, liquid and gaseous fuels used in chemical process industries			•	-	-	-	-
Course Objectives: 1. Equip the students with the basic understanding and effective utilization of utilities viz. water, steam, compressor, vacuum pumps, refrigeration and cooling units, insulator, inert gases in process industries and allied operations 2. Impart insights in relation to the different types of fuels and boilers used in process industries for the generation of steam, types of compressors and blowers for handling air and inert gases 3. Expose students to different methods of treatment of wastewater and drinking water Course Outcomes (CO): 1. Explain the importance of water and various methods for water softening and purification 2. Classify the different types of fuels and boilers used in process industries for the generation of steam 3. Identify the different types of compressors and blowers for handling air and inert gases 4. Summarize the different types of equipment used for humidification, and dehumidification 5. Select a suitable refrigeration system for a typical application in process industries 6. Interpret the application of correct type of insulation system for control of heat losses and learn about proper utilization of inert gases on the process plants Module:1 Water and Steam 7 hours Requisites of Industrial Water and its uses; Water treatment methods - ion exchange, demineralization, membranes technology, reverse osmosis. Water resources management. Properties of steam, Boiler types and mountings, holier accessories, Indian Boiler Act, 1923. Steam distribution and utilization, steam economy, waste heat utili	<u>110-10quisite</u>		L.	y na	bus	VUIS	
1. Equip the students with the basic understanding and effective utilization of utilities viz. water, steam, compressor, vacuum pumps, refrigeration and cooling units, insulator, inert gases in process industries and allied operations 2. Impart insights in relation to the different types of fuels and boilers used in process industries for the generation of steam, types of compressors and blowers for handling air and inert gases 3. Expose students to different methods of treatment of wastewater and drinking water Course Outcomes (CO): 1. Explain the importance of water and various methods for water softening and purification 2. Classify the different types of fuels and boilers used in process industries for the generation of steam 3. Identify the different types of compressors and blowers for handling air and inert gases 4. Summarize the different types of equipment used for humidification, and dehumidification 5. Select a suitable refrigeration system for a typical application in process industries 6. Interpret the application of correct type of insulation system for control of heat losses and learn about proper utilization of inert gases on the process plants Module:1 Water and Steam 7 hours Requisites of Industrial Water and its uses; Water treatment methods - ion exchange, demineralization, membranes technology, reverse osmosis. Water resources management. Properties of steam, Boiler types and mountings, boiler accessories, Indian Boiler Act, 1923. Steam distribution and utilization, steam economy, waste heat utilization	Course Objectives	<u> </u>					1.2
steam, compressor, vacuum pumps, refrigeration and cooling units, insulator, inert gases in process industries and allied operations 2. Impart insights in relation to the different types of fuels and boilers used in process industries for the generation of steam, types of compressors and blowers for handling air and inert gases 3. Expose students to different methods of treatment of wastewater and drinking water Course Outcomes (CO): 1. Explain the importance of water and various methods for water softening and purification 2. Classify the different types of fuels and boilers used in process industries for the generation of steam 3. Identify the different types of compressors and blowers for handling air and inert gases 4. Summarize the different types of equipment used for humidification, and dehumidification 5. Select a suitable refrigeration system for a typical application in process industries 6. Interpret the application of correct type of insulation system for control of heat losses and learn about proper utilization of inert gases on the process plants Module:1 Water and Steam Requisites of Industrial Water and its uses; Water treatment methods - ion exchange, demineralization, membranes technology, reverse osmosis. Water resources management. Properties of steam, Boiler types and mountings, boiler accessories, Indian Boiler Act, 1923. Steam distribution and utilization, steam economy, waste heat utilization Module:2 Industrial fuels 6 hours Solid, liquid and gaseous fuels used in chemical process industries for power generation, Typical combustion calculations Module:3 Compressed Air 7 houres 7 properties of fangeration and centrifugal compressors, rotary blowers and vacuum pumps and their performance characteristics. Methods of vacuum development, ejectors and their imitations, materials handling under vacuum, piping systems.	Course Objectives						
1. Explain the importance of water and various methods for water softening and purification 2. Classify the different types of fuels and boilers used in process industries for the generation of steam 3. Identify the different types of compressors and blowers for handling air and inert gases 4. Summarize the different types of equipment used for humidification, and dehumidification 5. Select a suitable refrigeration system for a typical application in process industries 6. Interpret the application of correct type of insulation system for control of heat losses and learn about proper utilization of inert gases on the process plants Module:1 Water and Steam 7 hours Requisites of Industrial Water and its uses; Water treatment methods - ion exchange, demineralization, membranes technology, reverse osmosis. Water resources management. Properties of steam, Boiler types and mountings, boiler accessories, Indian Boiler Act, 1923. Steam distribution and utilization, steam economy, waste heat utilization 6 hours Solid, liquid and gaseous fuels used in chemical process industries for power generation, Typical combustion calculations 6 hours Module:3 Compressed Air 6 hours Types of fans, axial, reciprocating and centrifugal compressors, rotary blowers and vacuum pumps and their performance characteristics. Methods of vacuum development, ejectors and their limitations, materials handling under vacuum, piping systems. Module:4 Humidification and Dehumidification <td< td=""><td>steam, compres process industrie 2. Impart insights i for the generation</td><td>sor, vacuum pumps, refrigeration and cooling units, insues and allied operations in relation to the different types of fuels and boilers used on of steam, types of compressors and blowers for handling</td><td>ilato in p air a</td><td>r, in roces and in</td><th>ert g ss in</th><th>gases dust</th><td>s in ries</td></td<>	steam, compres process industrie 2. Impart insights i for the generation	sor, vacuum pumps, refrigeration and cooling units, insues and allied operations in relation to the different types of fuels and boilers used on of steam, types of compressors and blowers for handling	ilato in p air a	r, in roces and in	ert g ss in	gases dust	s in ries
1. Explain the importance of water and various methods for water softening and purification 2. Classify the different types of fuels and boilers used in process industries for the generation of steam 3. Identify the different types of compressors and blowers for handling air and inert gases 4. Summarize the different types of equipment used for humidification, and dehumidification 5. Select a suitable refrigeration system for a typical application in process industries 6. Interpret the application of correct type of insulation system for control of heat losses and learn about proper utilization of inert gases on the process plants Module:1 Water and Steam 7 hours Requisites of Industrial Water and its uses; Water treatment methods - ion exchange, demineralization, membranes technology, reverse osmosis. Water resources management. Properties of steam, Boiler types and mountings, boiler accessories, Indian Boiler Act, 1923. Steam distribution and utilization, steam economy, waste heat utilization 6 hours Solid, liquid and gaseous fuels used in chemical process industries for power generation, Typical combustion calculations 6 hours Module:3 Compressed Air 6 hours Types of fans, axial, reciprocating and centrifugal compressors, rotary blowers and vacuum pumps and their performance characteristics. Methods of vacuum development, ejectors and their limitations, materials handling under vacuum, piping systems. Module:4 Humidification and Dehumidification <td< td=""><td>Course Outcomes</td><td>(CO)·</td><td></td><td></td><th></th><th></th><td></td></td<>	Course Outcomes	(CO)·					
2. Classify the different types of fuels and boilers used in process industries for the generation of steam 3. Identify the different types of compressors and blowers for handling air and inert gases 4. Summarize the different types of equipment used for humidification, and dehumidification 5. Select a suitable refrigeration system for a typical application in process industries 6. Interpret the application of correct type of insulation system for control of heat losses and learn about proper utilization of inert gases on the process plants Module:1 Water and Steam 7 hours Requisites of Industrial Water and its uses; Water treatment methods - ion exchange, demineralization, membranes technology, reverse osmosis. Water resources management. Properties of steam, Boiler types and mountings, boiler accessories, Indian Boiler Act, 1923. Steam distribution and utilization, steam economy, waste heat utilization 6 hours Solid, liquid and gaseous fuels used in chemical process industries for power generation, Typical combustion calculations 6 hours Module:3 Compressed Air 6 hours Types of fans, axial, reciprocating and centrifugal compressors, rotary blowers and vacuum pumps and their performance characteristics. Methods of vacuum development, ejectors and their limitations, materials handling under vacuum, piping systems. Module:4 Humidification and Dehumidification 5 hours Properties of Air-Water Vapors and use of Humidity Chart, Equipm			1	• 6*			
Requisites of Industrial Water and its uses; Water treatment methods - ion exchange, Properties of Industrial Water treatment methods - ion exchange, Properties of steam, Boiler types and mountings, boiler accessories, Indian Boiler Act, 1923. Steam distribution and utilization, steam economy, waste heat utilization Module:2 Industrial fuels 6 hours Solid, liquid and gaseous fuels 6 hours Solid, liquid and gaseous fuels used in chemical process industrial Geners Solid, liquid and gaseous fuels gaseous fuels fu	 Classify the difference Identify the difference Summarize the difference Select a suitable Interpret the app 	erent types of fuels and boilers used in process industries the erent types of compressors and blowers for handling air and lifferent types of equipment used for humidification, and de refrigeration system for a typical application in process ind lication of correct type of insulation system for control of l	for the iner iner iner iner iner iner iner ine	ne ge t gas idific es	enera es catio	ntion n	
Solid, liquid and gaseous fuels used in chemical process industries for power generation, Typical combustion calculations Module:3 Compressed Air 6 hours Types of fans, axial, reciprocating and centrifugal compressors, rotary blowers and vacuum pumps and their performance characteristics. Methods of vacuum development, ejectors and their limitations, materials handling under vacuum, piping systems. Module:4 Humidification and Dehumidification 5 hours Properties of Air–Water Vapors and use of Humidity Chart, Equipments used for Humidification, Dehumidification and Cooling Towers 6 hours Module:5 Refrigeration & Ventilation 6 hours Principle of refrigeration, Refrigeration system like compression refrigeration, absorption refrigeration, and chilled water system; Types of refrigerants; Concept of cryogenics and cryogenics characteristics. Air blending, exhaust ventilation and flaring	Requisites of Ind demineralization, n Properties of stear	lustrial Water and its uses; Water treatment method nembranes technology, reverse osmosis. Water resources ma n, Boiler types and mountings, boiler accessories, India	anag	eme	exent.	chan	ige,
Solid, liquid and gaseous fuels used in chemical process industries for power generation, Typical combustion calculations Module:3 Compressed Air 6 hours Types of fans, axial, reciprocating and centrifugal compressors, rotary blowers and vacuum pumps and their performance characteristics. Methods of vacuum development, ejectors and their limitations, materials handling under vacuum, piping systems. Module:4 Humidification and Dehumidification 5 hours Properties of Air–Water Vapors and use of Humidity Chart, Equipments used for Humidification, Dehumidification and Cooling Towers 6 hours Module:5 Refrigeration & Ventilation 6 hours Principle of refrigeration, Refrigeration system like compression refrigeration, absorption refrigeration, and chilled water system; Types of refrigerants; Concept of cryogenics and cryogenics characteristics. Air blending, exhaust ventilation and flaring			T				
combustion calculations 6 hours Module:3 Compressed Air 6 hours Types of fans, axial, reciprocating and centrifugal compressors, rotary blowers and vacuum pumps and their performance characteristics. Methods of vacuum development, ejectors and their limitations, materials handling under vacuum, piping systems. Module:4 Humidification and Dehumidification 5 hours Properties of Air–Water Vapors and use of Humidity Chart, Equipments used for Humidification, Dehumidification and Cooling Towers 6 hours Module:5 Refrigeration & Ventilation 6 hours Principle of refrigeration, Refrigeration system like compression refrigeration, absorption refrigeration, and chilled water system; Types of refrigerants; Concept of cryogenics and cryogenics characteristics. Air blending, exhaust ventilation and flaring				4 :			
Types of fans, axial, reciprocating and centrifugal compressors, rotary blowers and vacuum pumps and their performance characteristics. Methods of vacuum development, ejectors and their limitations, materials handling under vacuum, piping systems. Module:4 Humidification and Dehumidification 5 hours Properties of Air–Water Vapors and use of Humidity Chart, Equipments used for Humidification, Dehumidification and Cooling Towers 6 hours Module:5 Refrigeration & Ventilation 6 hours Principle of refrigeration, Refrigeration system like compression refrigeration, absorption refrigeration, and chilled water system; Types of refrigerants; Concept of cryogenics and cryogenics characteristics. Air blending, exhaust ventilation and flaring			gen	erau	on,	турі	cal
Types of fans, axial, reciprocating and centrifugal compressors, rotary blowers and vacuum pumps and their performance characteristics. Methods of vacuum development, ejectors and their limitations, materials handling under vacuum, piping systems. Module:4 Humidification and Dehumidification 5 hours Properties of Air–Water Vapors and use of Humidity Chart, Equipments used for Humidification, Dehumidification and Cooling Towers 6 hours Module:5 Refrigeration & Ventilation 6 hours Principle of refrigeration, Refrigeration system like compression refrigeration, absorption refrigeration, and chilled water system; Types of refrigerants; Concept of cryogenics and cryogenics characteristics. Air blending, exhaust ventilation and flaring	Modulo:3 Comr	prossed Air				6 ho	iirc
Properties of Air–Water Vapors and use of Humidity Chart, Equipments used for Humidification, Dehumidification and Cooling Towers Module:5 Refrigeration & Ventilation 6 hours Principle of refrigeration, Refrigeration system like compression refrigeration, absorption refrigeration, and chilled water system; Types of refrigerants; Concept of cryogenics and cryogenics characteristics. Air blending, exhaust ventilation and flaring	Types of fans, axia and their perform	Il, reciprocating and centrifugal compressors, rotary blower nance characteristics. Methods of vacuum development			cuum	n pui	nps
Properties of Air–Water Vapors and use of Humidity Chart, Equipments used for Humidification, Dehumidification and Cooling Towers Module:5 Refrigeration & Ventilation 6 hours Principle of refrigeration, Refrigeration system like compression refrigeration, absorption refrigeration, and chilled water system; Types of refrigerants; Concept of cryogenics and cryogenics characteristics. Air blending, exhaust ventilation and flaring	Module:4 Humi	dification and Dehumidification				5 ho	urs
Dehumidification and Cooling Towers Module:5 Refrigeration & Ventilation 6 hours Principle of refrigeration, Refrigeration system like compression refrigeration, absorption refrigeration, and chilled water system; Types of refrigerants; Concept of cryogenics and cryogenics characteristics. Air blending, exhaust ventilation and flaring	Properties of Air-V	Water Vapors and use of Humidity Chart, Equipments used	for	Hun			
Principle of refrigeration, Refrigeration system like compression refrigeration, absorption refrigeration, and chilled water system; Types of refrigerants; Concept of cryogenics and cryogenics characteristics. Air blending, exhaust ventilation and flaring							
Principle of refrigeration, Refrigeration system like compression refrigeration, absorption refrigeration, and chilled water system; Types of refrigerants; Concept of cryogenics and cryogenics characteristics. Air blending, exhaust ventilation and flaring	Module:5 Refrig	geration & Ventilation				6 ho	urs
refrigeration, and chilled water system; Types of refrigerants; Concept of cryogenics and cryogenics characteristics. Air blending, exhaust ventilation and flaring			ratio	on. 2			
Module:6 Industrial insulation and Inert Cases 8 hours	refrigeration, and	chilled water system; Types of refrigerants; Concept					
	Module:6 Indus	trial insulation and Inert Gases			\$	2 ho	Ire

Importance of insulation, insulation material and their effect on various materials of equipment piping, fitting and valves, insulation for high, intermediate, low and subzero temperatures including cryogenic insulation

Introduction, properties of inert gases & their use, sources and methods of generation, general arrangement for inerting system; operational, maintenance and safety aspects

Module:7 Effluent treatment	5 hours				
Disposal of solid, liquid and gas wastes; pollution control measures - com	pliance to statutory				
norms; Effluent Treatment – Case studies like treatment of effluents from paper mills, Dye and					
Textile industries, petrochemical industries, plastic and rubber industries.					

Module:8	Contemporary issues
wiouuic.o	Contemporary issues

2 hours

Total Lecture hours 45 hours							
Tex	Text Books						
1.	Broughton J., Process Utility Systems, 3 rd ed., Institution of Chemic 2004	cal Engineers, U.K.,					
Ref	ference Books						
1.	Mujawar B.A., A Textbook of Plant Utilities, 3 rd ed., Nirali Prakas	han Publication, India,					
	2007.						
2.	Poling B.E., Prausnitz J.M., O'Connell J., The Properties of Gase	es and Liquid, 5 th ed.,					
	McGraw Hill, USA, 2008.						
3.	Perry, R.H., Green, D. W., Perry's Chemical Engineers Handbook,	8 th ed., McGraw Hill,					
	USA, 2007.						
Mo	de of evaluation: Continuous Assessment Test, Quizzes, Assignments, F	Final Assessment Test					
Rec	Recommended by Board of Studies 15-04-2019						
App	Approved by Academic Council 55 th Date 13-06-2019						

Course code	CHE-1011	L	Τ	Р	J	С			
Course title	OPTIMIZATION OF CHEMICAL PROCESSES	3	0	0	0	3			
Pre-requisite	MAT3003	S	ylla	bus '	vers	ion			
						1.2			
Course Objectives	:								
 Provide an overview of state-of-the-art optimization algorithms Impart the theoretical knowledge of chemical engineering principles that underpin optimization techniques. Enhance the modelling skills to describe and formulate optimization problems and their use for solving several types of practically relevant optimization problems in Chemical engineering 									
Course Outcomes	(CO):								
Course Outcomes									
 Recognize the di Evaluate single a Execute the com Identify the diffe 	basic principles of Chemical Engineering Systems fferent types of optimization problems for process engineer and multivariable optimization chemical engineering problem plex chemical engineering processes using software tools rent types of hypotheses for the model equations chemical s al Control and Dynamic optimization problems	ns	m						
	ulation of Optimization Problems		6		hou				
Developing model	nization of Optimization problem; Mathematical concept for optimization; Taylor expansion; Gradient and Hess Gaussian elimination method								
Module:2 Mode	ls for Optimization			4	5 ho	ure			
Selection of function	on; Degrees of freedom; Classification of models; factorial edge of the state of th			ntal	desig				
Module:3 Linea	r and Nonlinear Least square problems				5 ho	urc			
One-dimensional method); Region	search - Methods requiring derivatives (Newton, Qua elimination methods (Interval halving, Fibonacci search imations (Lagrange's, quadratic & Cubic)			.on,	Sec	cant			
		T							
Unconstrained mu	Module:4Multivariable Optimization-I6 hoursUnconstrained multivariable optimization - Graphical visualization (contour plots, 3D plots); Gradient based methods - Steepest descent, conjugate direction, and Newton methods								
Modulas5 Marte	variable Ontimization II				(h -				
Module:5Multivariable Optimization-II6 hoursLinear programming (LP) - Graphical solution - Simplex Method; Test for optimality – Barrier methods - Sensitivity analysis; Concept of duality; Introduction to interior-point method –									
	tor model – ASPEN PLUS and MatLab								
Module:6 Nonli	near Programming			,	7 ho	lire			
	ming (NLP) with constraints; Lagrange multipliers - Grap	l nical	illu						
- Piogram						~-			

NLP problems - KKT necessary and sufficient conditions; Quadratic programming - Successive
linear and quadratic programming; Penalty function method; Integer and mixed integer
programming. (IP and MIP) - Graphical solution - Branch and bound methods
programming, (it who fill) cruphical solution 21 and and count invalous
Module:7 Dynamic Programming 7 hour
Dynamic programming - Minimum cost routing problems - Solution of separable nonline
programming problems; Global optimization problems; Introduction to multi objective optimization problems- Pareto optimal solutions (graphical illustration)
Module:8 Contemporary issues 2 hou
Total Lecture hours45 hours
Text Books
Text Books 1. Edger T.F., Himmelblau D.M., Lasdon L.S., Optimization of Chemical Processes, 2 nd ed.,
1. Edger T.F., Himmelblau D.M., Lasdon L.S., Optimization of Chemical Processes, 2 nd ed.,
 Edger T.F., Himmelblau D.M., Lasdon L.S., Optimization of Chemical Processes, 2nd ed., McGraw-Hill, USA, 2015. Reference Books
 Edger T.F., Himmelblau D.M., Lasdon L.S., Optimization of Chemical Processes, 2nd ed., McGraw-Hill, USA, 2015. Reference Books
 Edger T.F., Himmelblau D.M., Lasdon L.S., Optimization of Chemical Processes, 2nd ed., McGraw-Hill, USA, 2015. Reference Books Hillier F.S., Lieberman G. J., Introduction to Operations Research, 7th ed., McGraw-Hil
 Edger T.F., Himmelblau D.M., Lasdon L.S., Optimization of Chemical Processes, 2nd ed., McGraw-Hill, USA, 2015. Reference Books Hillier F.S., Lieberman G. J., Introduction to Operations Research, 7th ed., McGraw-Hil USA, 2001.
 Edger T.F., Himmelblau D.M., Lasdon L.S., Optimization of Chemical Processes, 2nd ed., McGraw-Hill, USA, 2015. Reference Books Hillier F.S., Lieberman G. J., Introduction to Operations Research, 7th ed., McGraw-Hill USA, 2001. Rao S.S., Engineering Optimization: Theory and Practice, 4th ed., John Wiley & Sons Ltd
 Edger T.F., Himmelblau D.M., Lasdon L.S., Optimization of Chemical Processes, 2nd ed., McGraw-Hill, USA, 2015. Reference Books Hillier F.S., Lieberman G. J., Introduction to Operations Research, 7th ed., McGraw-Hil USA, 2001. Rao S.S., Engineering Optimization: Theory and Practice, 4th ed., John Wiley & Sons Ltd USA, 2009.
 Edger T.F., Himmelblau D.M., Lasdon L.S., Optimization of Chemical Processes, 2nd ed., McGraw-Hill, USA, 2015. Reference Books Hillier F.S., Lieberman G. J., Introduction to Operations Research, 7th ed., McGraw-Hill USA, 2001. Rao S.S., Engineering Optimization: Theory and Practice, 4th ed., John Wiley & Sons Ltd USA, 2009. Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test

Course code	CHE1013	L	Τ	P	J	С
Course title	NATURAL GAS ENGINEERING	3	0	0	0	3
Pre-requisite	NIL	5	Sylla	bus	vers	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						1.2
Course Objectives						
pursue lifelong j 2. Summarize the r	speriences essential for graduates to enter the practice of C professional development necessary theory, application to case studies and engineering rch that generates, communicates and applies new knowled ciety	g pro	ject	desi	-	and
Course Outcomes	(CO):					
1. Emphasize fund	lamentals of mathematics and integrates them in appli- gineering to improve further needs	catic	on to	tra	ditio	onal
	d orient systems for offshore problems					
·	lity to revamp and retrofit a system, process to meet d	lesir	ed n	eeds	wi	thin
	ints such as environmental, health, safety, manufacturabili					
	as Refining principles and practices for optimizing resour	ce d	level	opm	ent	and
management						
	urification mechanism to estimate, design equipment's for	pro	cessi	ng, s	stora	age
And transport					1	
	economics and resource valuation methods for design an	nd d	ecisi	on 1	nak	ıng
under conditions	s of risk and uncertainty					
Madalari Dara					(], .	
	erties and Composition of Natural Gas – Composition of Natural Gas – Source of Natural Gas	<u> </u> ר	hore			ours
	pressibility factor for Natural Gas – Heating value and f					
Natural Gas				5		
M. L.L.O. NLA					<u>- 1</u>	
	ral Gas Offshore Drilling g and Horizontal Drilling				5 nc	ours
Module:3 Natur	ral Gas Offshore Production and Handling				6 ha	ours
Drilling Deepwate	r Reservoir - Deepwater production systems - Moori	ng	Syste	ems	- (Gas
Terminals						
Module:4 Natur	al Cog Onghang Production and Handling				<u>Ch</u>	
	ral Gas Onshore Production and Handling ng – Separation , Storage, Transportation of Natural Gas				0 110	ours
<u> </u>	ral Gas Processing				8 hc	ours
Tratulation Tratul	ulphurization processes (Sour gases, Toxicity of H ₂ S, Phy	vica	and			
	UIDHUHZAUOH DIOCESSES LOOHI PASES. TOXICHV OF H2N PHV					
Dehydration – Des	s, Carbonate process, sulphur recovery) – Low temperatu					ıle
Dehydration – Des Absorption process		re p	roces			ıle
Dehydration – Des Absorption process Thompson effect, T	s, Carbonate process, sulphur recovery) – Low temperatu Furbo expander, Refrigeration, Low temperature Heat Excha	re p	roces	sses	(Joi	
Dehydration – Des Absorption process Thompson effect, 7 Module:6 Liqui	s, Carbonate process, sulphur recovery) – Low temperatu Furbo expander, Refrigeration, Low temperature Heat Excha	re p	roces	sses		

Mo	dule:7	Economics of Natural Ga	as			6 hours
Cur	rrent stat	us in India – Trade & Selec	tion of port location	on – Econo	mics of Gas Pr	rocessing
Mo	dule:8	Contemporary issues				2 hours
		Тс	otal Lecture hour	S		45 hours
Tex	kt Books	}				
1.	Arthur	J. Kidnay, William R. Par	rish, Fundamenta	ls of Natu	ral Gas Proces	ssing, 4 th ed.,
		and Francis, CRC Press, Ul	,			
2.	Subrata	a K Chakrabarti, Handbool	k of offshore eng	gineering,	1 st ed., Elsevie	er Publishers,
	Nether	lands, 2005.				
Ref	ference 1	Books				
1.	S. Mok	khatab, William A. Poe, Jan	nes G.Speight, Ha	andbook of	Natural Gas 7	Transmission
	and Pro	ocessing, 1 st ed., Gulf Profes	sional Publishing	, USA, 201	4.	
2.	G. Gha	lambor, Natural Gas Engine	eering Handbook,	Gulf Publi	shing Company	y, USA, 2005.
Mo	de of ev	aluation: Continuous Assess	sment Test, Quizzo	es, Assignr	nents, Final As	ssessment Test
Rec	commen	ded by Board of Studies	15-04-2019			
App	proved b	y Academic Council	55 th	Date	13-06-2019	

Course code	CHE1014	L	Т	Р	J	С
Course title	PETROLEUM TECHNOLOGY	3	0	0	0	3
Pre-requisite	NIL	S	Sylla	bus	vers	sion
						1.2
Course Objectives						
	mportance of crude oil as source of fuel and the size of refin					
	llenges involved in refining from viewpoint of product species nd environmental regulations	ifica	tions	s, eco	onoi	mic
	on of chemical engineering principles to petroleum refining					
5. Design application	on of element engineering principles to perfore in remaining					
Course Outcomes	(CO):					
	omposition of crude oil and its products, along with	its	pror	oertie	es a	and
characterization	· · · ·	105	Prof			
2. Discuss the basic	c separation and conversion processes used in refining crude	e oil				
_	chemical engineering principles to the analysis of safe an	nd e	fficie	ent r	efin	ery
operations						
• 1	ifications required for good quality petroleum product occess of purification and fractionation of crude oil					
	tionship safety and environment in Petroleum Refining Indu	strie	28			
Module:1 Petro	loum				6 ha	ours
	es - Reservoir Rock Properties - Reservoir types - Reservo	ir Fo	time			
	Classification and constituents of petroleum - Dehydra					
	rude oil - Classification of petroleum					
L						
Module:2 Distil						ours
	ide oil distillation - various crude oil distillation systems	- use	es of	pet	role	um
products						
Module:3 Cracl	sing				8 ha	ours
	ing - Types of cracking - advantages and disadvantages of	of c	ataly			
•	ing - Houdrys fixed bed processes - Moving bed processes		•			-
cracking processes						
	•				4 1	
Module:4 Refor				4	4 no	ours
I IICI III AIIU CALAIV	tic Reforming; Polymerization; Alkylation; Isomerization					
	cation of petroleum products			,	7 ha	ours
Module:5 Purifi	cation of petroleum products sses types –Merox – HDS; Dewaxing; Deasphalt; Lube oil	treat	tmen		7 ho	ours
Module:5 Purifi Sweetening proce	sses types –Merox – HDS; Dewaxing; Deasphalt; Lube oil	treat	tmen	t		
Module:5PurifiSweetening proceModule:6Prope	sses types –Merox – HDS; Dewaxing; Deasphalt; Lube oil erties of Petroleum Products			t	7 ho	ours
Module:5PurifiSweetening proceModule:6PropeSpecific gravity - V	sses types –Merox – HDS; Dewaxing; Deasphalt; Lube oil erties of Petroleum Products Vapor pressure – Viscosity - red wood viscometer - Flash po	int -	Fire	t poin	7 ho nt -	ours
Module:5PurificSweetening proceModule:6PropeSpecific gravity - VPour point - Smoke	sses types –Merox – HDS; Dewaxing; Deasphalt; Lube oil erties of Petroleum Products Vapor pressure – Viscosity - red wood viscometer - Flash po e point - Aniline point - Diesel index - Octane number - Perf	int -	Fire	t poin	7 ho nt -	ours
Module:5PurificSweetening proceModule:6PropeSpecific gravity - VPour point - Smoke	sses types –Merox – HDS; Dewaxing; Deasphalt; Lube oil erties of Petroleum Products Vapor pressure – Viscosity - red wood viscometer - Flash po	int -	Fire	t poin	7 ho nt -	ours
Module:5 Purifi Sweetening proce Module:6 Prope Specific gravity - V Pour point - Smoke Cetane number - Provide	sses types –Merox – HDS; Dewaxing; Deasphalt; Lube oil erties of Petroleum Products Vapor pressure – Viscosity - red wood viscometer - Flash po e point - Aniline point - Diesel index - Octane number - Perf roperties of greases - Drop point of grease	int -	Fire	t poin nun	7 h o nt - nber	ours
Module:5PurifiSweeteningproceModule:6PropeSpecific gravity - VPour point - SmokeCetane number - PriModule:7Knoce	sses types –Merox – HDS; Dewaxing; Deasphalt; Lube oil erties of Petroleum Products Vapor pressure – Viscosity - red wood viscometer - Flash po e point - Aniline point - Diesel index - Octane number - Perf roperties of greases - Drop point of grease	int - orm	Fire	t poin nun	7 ho nt - nber 5 ho	ours

Mo	dule:8	Contemporary issues				2 hours
		Total Lect	ure hours		45 hou	ırs
Tex	t Books	l .				
1.		H., Handwerk G.E., Kaiser CRC Press, USA, 2013.	M.J., Petroleum	Refining '	Technology and	Economics,
2.	Speigh	t J.G., Petroleum Refining F	Process, 1 st ed., Ta	ylor and F	rancis, USA, 20	15
3	Bhaska	ra Rao B.K., Modern Petrol	leum Refining Pro	cessess, 5 ^t	th ed., Oxibh, Ind	lia, 2013
Ref	erence]	Books				
1.	Mohan USA, 2	ned A.F., Taher A., Amal 2010.	E., Fundamentals	of Petrole	eum Refining, 1 ^s	^t ed., Elsevier,
2.	Nelson	, Petroleum Refinery Engin	eering, 4 th ed., Mc	Graw Hill	l, USA, 2010.	
Mo	de of eva	aluation: Continuous Assess	sment Test, Quizzo	es, Assign	ments, Final Ass	essment Test
Rec	ommen	led by Board of Studies	15-04-2019	C		
App	proved b	y Academic Council	55^{th}	Date	13-06-2019	

Г

Course code	CHE1015	L	Т	Р	J	С
Course title	PETROCHEMICAL TECHNOLOGY	3	0	0	0	3
Pre-requisite		-	Sylla	-	-	-
		~	<u> </u>			1.2
Course Obje	ctives:					
2. Differentia monomer	the technological principles of organic synthesis and related un tate the different unit operations and unit processes involve to polymers various kinds of application oriented problems faced in chem techniques	dir	1 CO	nver		
Course Outc	omes (CO):					
 2. Explain the 3. Distinguish 4. Develop fa 5. Understand 	etailed insight of all the chemicals derived from petroleum different methods for the conversion of monomer to polymers different type of polymers for specific application miliarity with major polymerization processes on industrial scale the different process technologies for Elastomers and resins te the manufacture of Plastics, Fibres and their applications					
Module:1	Petrochemical & Precursors		1	,	2 ho	
	Petrochemical & its Precursors				2 110	uis
introduction,						
Module:2	Alkanes & Alkenes			,	7 ho	urs
	o Alkanes and Alkenes; Manufacture of Petrochemical Derivativ	ves f	rom			
Module:3	Aromatics				6 ho	urs
	o Aromatics; Manufacture of Petrochemical Derivatives from	– Be	enzer			
Xylene, Styre		2.				,
	Alternate Route and its Derivatives				<u>8 ho</u>	
Manufacture carbonate.	of VCM by thermal cracking, DMT, PTA, maleic anhydrid	e, cı	imer	ne, d	liphe	nyl
Module:5	Polymers				8 ho	urs
	f - poly butadiene rubber, SBR,SAN, Polyalkylene Terephtha	ate.	Alp			
(Linear), Octo			p-			
Module:6	Plastics & Fibres			,	7 ho	urs
Production of	– Polyacrylonitrile resins, Melamine, formaldehyde resins, SNC	i, ex	plosi	ves,	dye	S
Modelar7	Faanamics of Datuachamical Industry		1		5 h -	
	Economics of Petrochemical Industry s in India; Trade; Selection of Petrochemical products; Econom	ice (<u>5 ho</u>	
derivatives ar		105 (лге			ical
ucrivatives di	a maaay					
Module:8	Contemporary issues				2 ho	urs
D. Ta ala Chamaia	al Engineering- BCM					Page

	Total Lecture hou	irs		45 hours
Tex	xt Books			
1.	Mall I.D., Petrochemical Process	Technology, 2 nd	ed., Mac	millan Petroleum Chemicals
	Ltd, UK, 2011.			
2.	Chaudhuri U.R., Fundamentals of	of Petroleum and	Petroche	emical Engineering, 3 rd ed.,
	CRC Press, USA, 2011.			
Ref	erence Books			
1.	Richard A. Dawe, Modern petrole	um technology, 6 ¹	th ed., Joh	n Wiley & Sons Limited, USA,
	2012.			
2.	Abdulin F., Production of Oil & G	as, 2 nd ed., Mir pu	blishers, l	Russia, 2014.
Mo	de of evaluation: Continuous Assess	sment Test, Quizz	es, Assign	nments, Final Assessment Test
Rec	commended by Board of Studies	15-04-2019		
Ap	pproved by Academic Council	55 th	Date	13-06-2019

Г

Course code	CHE1016	L	Т	Р	J	С
Course title	FERMENTATION TECHNOLOGY	3	0	0	0	3
Pre-requisite	NIL	S	ylla	bus	vers	sion
						1.2
Course Obiecti	ves:					
2. Impart experi modes of ope	cs of the various aspects of microbiology and biosystems mental design thinking capability in relation to various ferme ration, growth kinetics and product recovery ne design thinking skills to bio related processes with ch			-		
Course Outcon	es (CO):					
 Summarize ki Understand fermentation Interpret the enzymes Design of ferm 	e importance of fermentation with reference to industrial micro netics prevalent in microbial processes he process to select and manage microorganisms from acquired knowledge on fermenter configuration for differen nenter and the downstream processing of fermentation product tive applications for fermentation technologies for novel product	nat t typ ts	ural	sou		
Module:1 Int	roduction and history of fermentation processes				4 ho	ours
Development of fermentation.	f fermentation process – range of processes under ferm	enta	tion,	Тур	bes	of
Madula Mi	anabial anouth kinatiag				6 ho	
Microbial growt	erobial growth kinetics n - Batch, Continuous and types of fed batch culture – design a ne modes of culture	and l	kinet) 110	urs
	crobial Strain Management				<u>5 ho</u>	
and improvement	organisms - isolation, preservation and improvement of strain t strategies.	1s; S	tora	ge m	netho	ods
Module:4 Me	dia for industrial fermentations				5 ho	iire
	on - energy, carbon and nitrogen sources, micro nutrients; o ent and functional components. Effects of media compo			quir	eme	nts;
	-					
Other non-nutriproduction; Mec	ia optimization.		-	-	3 ho	
Other non-nutriproduction; Med Module:5 Pr Preparation of continuous ster	-	izati lesig	on - m; D	8 Ba Devel	<mark>8 ho</mark> tch lopn	urs and hent
Other non-nutriproduction; Med Module:5 Pr Preparation of continuous ster of inocula - fermentations.	ia optimization. eparation of aseptic fermentation process media and air for pure culture fermentation; Media steril ilization processes; Sterilization of fibrous filters and their c	izati lesig	on - m; D	8 Ba Devel	3 ho tch lopn f p	urs and hent

Basic functions of fermenter – Aeration and agitation – process requirements and mechanical design aspects; Maintenance of aseptic conditions and foam control. Types of fermenters for industrial applications - stirred & sparred tanks fermenters, Tower fermenter, Packed tower, Air lift and rotating disc fermenters; Solid State fermentation.

Module:7Process technology for bulk products7 hoursBasic downstream processing; Process technology for bulk products; Production of alcohols,
organic acids, enzymes, and antibiotics – flow sheet and process description of modern processes.7

Module:8 Contemporary issues

2 hours

	Tot	al Lecture hours			45 hours				
Tex	Text Books								
1.	1. Stanbury P.F., Whitaker A., Steve H., Principles of Fermentation Technology, 3 rd ed.,								
	Butterworth-Heinemann, USA, 2017.								
2.									
	Biotechnology, 2 nd ed., CRC Press, USA, 2007.								
Ref	ference Books								
1.	Ashok P, Christian L, Carlos R.S	., Advances in Fe	rmentation	Technology	y, 1 st ed., Asiatech				
	Publishers Inc., India, 2008.								
2.	Rhodes A and Pletcher. D.L: Prin	ciples of Industria	l Microbio	ology, 3 rd ed.	, Pergamon Press,				
	UK, 1977.		∇V						
Mo	de of evaluation: Continuous Assess	sment Test, Quizz	es, Assigni	ments, Final	Assessment Test				
Rec	commended by Board of Studies	15-04-2019							
Ap	proved by Academic Council	55^{th}	Date	13-06-2019					

Course code	CHE1017	L	Т	Р	J	С
Course title	FOOD PROCESS ENGINEERING	2	0	0	4	3
Pre-requisite	NIL	S	Sylla	bus	vers	sion
•			·			1.2
Course Objectives	5:					
with an applicaImpart necessary management, foFamiliarize the required in tran	e basic concepts of unit operations and unit processes in Chetion to Food technology v knowledge required for food processing technology, food od standards and packaging various properties of the raw material used in food processin sforming them into quality food products and to train the stu- ing equipment involved in food processing operations	qua ng ai	lity nd te	chno	logi	
Course Outcomes	(0).					
 will be useful to 2. Device the suital 3. Understand the manufacturing p 4. Identify and trans 5. Understand the u 	arious engineering properties of the raw material used in foo design the various food Processing equipment's ble dryers with considering technical and economical point knowledge in different food processing operations invol process sform different processing technology to produce quality for unit operations involved in food technology n the packaging material and methods and the cost involved	of vi ved ood p	ew in v	ariou		
M 1 1 1 Intro	duction to Food				4.1	
112002010012	roteins, Enzymes, Carbohydrates, Micronutrients, Water, Int	oroo	tions		4 ho	urs
wacromolecules-p	rotenis, Enzymes, Carbonydrates, Micronutrients, water, int	erac	tions)		
Module:2 Food	Microbiology			3	b ho	urs
	rs and Control. Food additives and preservatives. Adulteration	on				10
Module:3 Food	process calculations					
	•			,	3 ho	urs
	y calculations in food processing				3 ho	ours
Material and energ	y calculations in food processing					
Material and energ Module:4 Unit	y calculations in food processing pperations in food processing	0			3 ho 5 ho	
Material and energ Module:4 Unit	y calculations in food processing	S				
Material and energ Module:4 Unit Material handling,	y calculations in food processing perations in food processing heat transfer, mixing, size reduction, mechanical separation	S		5	5 ho	urs
Material and energ Module:4 Unit of Material handling, Module:5 Food	y calculations in food processing perations in food processing heat transfer, mixing, size reduction, mechanical separation Preservation Techniques		zatio	5		urs
Material and energModule:4Unit ofMaterial handling,Module:5FoodDrying and dehydra	y calculations in food processing perations in food processing heat transfer, mixing, size reduction, mechanical separation		zatio	5	5 ho	urs
Material and energ Module:4 Unit Material handling, Module:5 Food Drying and dehydr Cleaning/sanitation	y calculations in food processing operations in food processing heat transfer, mixing, size reduction, mechanical separation Preservation Techniques ation, Irradiation, Microwave Heating, Sterilization and Past		zatio	<u>5</u> 0n –	5 ho 5 ho	urs
Material and energModule:4Unit ofMaterial handling,Module:5FoodDrying and dehydr. Cleaning/sanitationModule:6Food	y calculations in food processing perations in food processing heat transfer, mixing, size reduction, mechanical separation Preservation Techniques ation, Irradiation, Microwave Heating, Sterilization and Past in Process (CIP and SIP), Fermentation and Pickling	euri		5 0n - 5	5 ho 5 ho 5 ho	urs urs
Material and energ Module:4 Unit of Material handling, Module:5 Food Drying and dehydr Cleaning/sanitation Module:6 Food Processing of Ce	y calculations in food processing perations in food processing heat transfer, mixing, size reduction, mechanical separation Preservation Techniques ation, Irradiation, Microwave Heating, Sterilization and Past in In Process (CIP and SIP), Fermentation and Pickling Processing and Food quality	euri	Oils	5 n – 5, B	5 ho 5 ho 6 ho aker	urs urs urs
Material and energyModule:4Unit ofMaterial handling,Module:5FoodDrying and dehydrCleaning/sanitationModule:6FoodProcessing of CeConfectionary and	y calculations in food processing perations in food processing heat transfer, mixing, size reduction, mechanical separation Preservation Techniques ation, Irradiation, Microwave Heating, Sterilization and Past in Process (CIP and SIP), Fermentation and Pickling Processing and Food quality real Grains, Pulses, Vegetables, Fruits, Spices, Fats	euri and ry P	Oils	5 on – 5 5, B 1cts,	i ho i ho i ho aker Me	urs urs urs
Material and energyModule:4Unit ofMaterial handling,Module:5FoodDrying and dehydrCleaning/sanitationModule:6FoodProcessing of CeConfectionary andPoultry and Fish	y calculations in food processing perations in food processing heat transfer, mixing, size reduction, mechanical separation Preservation Techniques ation, Irradiation, Microwave Heating, Sterilization and Past in Process (CIP and SIP), Fermentation and Pickling Processing and Food quality real Grains, Pulses, Vegetables, Fruits, Spices, Fats Chocolate Products Soft and Alcoholic Beverages, Dai	euri and ry P	Oils	5 on – 5 5, B 1cts,	i ho i ho i ho aker Me	urs urs urs
Material and energyModule:4Unit ofMaterial handling,Module:5FoodDrying and dehydrCleaning/sanitationModule:6FoodProcessing of CeConfectionary andPoultry and Fish	y calculations in food processing perations in food processing heat transfer, mixing, size reduction, mechanical separation Preservation Techniques ation, Irradiation, Microwave Heating, Sterilization and Past in Process (CIP and SIP), Fermentation and Pickling Processing and Food quality real Grains, Pulses, Vegetables, Fruits, Spices, Fats Chocolate Products Soft and Alcoholic Beverages, Dai Products, Food quality parameters and their evaluation	euri and ry P	Oils	5 on – 5 5, B 1cts,	i ho i ho i ho aker Me	urs urs urs

Concepts, definition, Significance, classification – fresh and processed; Basic packaging materials, types of packaging, Packaging methods. Newer methods of thermal processing, batch and continuous; application of infrared, microwaves. packaging design, retort pouch packing, vacuum packaging; costs of packaging and recycling of materials and Labelling

Module:8	Contemporary issues			2 hours
	Tota	l Lecture hours		30 hours
Text Book	8			
1. Rao C.	G., Essentials of Food Proc	essing Engineering	g, 1 st ed., 1	BS Publications, India, 2005.
2. Subbu	lakshmi G, Udipi Shobha A	A., Food Processir	ng and Pre	eservation, 1 st ed., New Age
Interna	tional, India, 2017.			
Reference	Books			
1. Khetar	paul N., Food Processing an	d Preservation, 1 ^s	t ed., Day	a Publications, India, 2005.
Mode of ev	aluation: Continuous Assess	sment Test, Quizzo	es, Assign	ments, Final Assessment Test
Recommen	ded by Board of Studies	15-04-2019		
Approved b	by Academic Council	55 th	Date	13-06-2019

Course code	CHE1018	L	Т	Р	J	С
Course title	MEMBRANE SEPARATIONS TECHNOLOGY	3	0	0	0	3
Pre-requisit		-	Sylla	-	-	
i i e i equisit		,	Jyna	JUD		1.21
Course Obje	ctives:				-	1.21
	d basic principles of membrane separation and characterization	netho	ods av	vaila	ble f	for
membrane 2. Derive var	s ious transport mechanism involved in MF, UF, NF, RO and gas	separ	atior	1		
membrane 3 Select mer	es nbranes for different industrial separation and purification applie	ration				
		cation				
Course Outo						
2. Describe d	d the basic principle of membrane separation processes ifferent technics available for membrane characterization					
3. Derive van membrane	ious transport models for membrane flux and concentration po	olariza	ation	for	vari	ous
4. Compute 1	nembrane flux, concentration polarization and fouling using va s membrane systems	rious	trans	sport	mo	dels
	membrane process and design components to carry out a specif.	ic sen	aratio	on		
	nbranes for gas and bio separation application	r				
Module:1	Membrane Materials, Preparation and			4	5 ho	urs
	Characterization			•	no	uis
	- Historical development of membranes - types of membrane	e pro	cesse	s - t	vpe	s of
	mbranes - membrane materials - membrane module; Membrar					
	ocess - casting methods; Membrane characterization - Measu					
solute proper	ties - visual methods - bubble point method - liquid displacem	ent m	etho	d, m	olec	ular
weight cut-of	f (MWCO), microbial challenge test					
	Membrane Transport Theory	<u> </u>	4		<u>5 ho</u>	
	ransport theory – Introduction, solution-diffusion model;	Struc	ture-j	perm	ieab	ility
	n solution diffusion membranes; Pore-flow membranes.					
Module:3	Concentration Polarization				6 ho	ours
Concentratio	n polarization – Introduction, boundary layer film model; Con	centra	ation	pola	riza	tion
	ration process; Cross-flow, co-flow and counter-flow processes			-		
	Microfiltration and Ultrafiltration				1011	
	n: Introduction and history, applications; Recent trends and					
	Ultra filtration: Introduction and history – characterization					
	concentration polarization and membrane fouling, membrane of	cieani	ng –	men	iora	ne
and modules	– system design – application					
	Nanofiltration				1011	
	n: Introduction – process principles – application of nanofiltrati	on for	the	prod	ucti	on
of drinking w	vater and process water – solvent resistance nanofiltration					

Mo	dule:6	Reverse Osmosis				7 hours	
Reverse osmosis: Introduction – membrane categories – membrane selectivity – membrane							
	-	oncentration polarization –	membrane modul	es – men	nbrane fou	ıling control –	
me	mbrane c	cleaning applications					
Mo	dule:7	Recent development in N	Iembrane Proces	sses		6 hours	
Rec	cent mat	terial and module configu	rations for Micr	ofiltration	and ultr	afiltration; Thin film	
con	nposite 1	nembranes – Biofouling p	rotection; Integrat	ted memb	orane syste	ems; Gas separation -	
		separation- oxygen and o					
me	mbranes						
Mo	dule:8	Contemporary issues				2 hours	
Total Lecture hours					45 hours		
Tey	kt Books	}					
1.	Dutta I	3.K., Principles of Mass tra	nsfer and Separat	ion Proces	sses, 1 st e	d., Prentice Hall of	
		ndia, 2007.					
2.	Mulder	M., Basic Principles of M	Iembrane Techno	logy, 2 nd	ed., Sprin	ger Science, USA,	
1991.							
Ref	ference]			$\overline{\mathbf{n}}$			
1.		k K.N., Membrane Separati					
2. Cui Z.F., Muralidhara H.S., Membrane Technology: A Practical Guide to Membrane							
Technology and Applications in Food and Bioprocessing, 1 st ed., Elsevier, USA, 2010.							
Mo	de of eva	aluation: Continuous Assess	sment Test, Quizz	es, Assign	ments, Fi	nal Assessment Test	
		ded by Board of Studies	15-04-2019		-		
Ap	proved b	y Academic Council	55^{th}	Date	13-06-2	019	
		y Academic Council	55 th	Date	13-06-20	019	

Course code	CHE1019	L	Τ	Р	J	С
Course title	POLYMER TECHNOLOGY	3	0	0	0	3
Pre-requisite	NIL	S	Sylla	bus	vers	
						1.2
Course Objectives	:					
	rent types of polymers					
	bus technologies and types of polymerization techniques					
3. Analyze the poly	mer processing techniques and polymer additives					
Course Outcomes	(CO):					
•	racterize polymers and polymeric reactions					
	rent methods of polymerization essing technologies for different polymer synthesis and thei	m o d	1:4:	•		
	polymer for specific application	1 au		28		
	rent type of polymers for various applications					
6. Demonstrate the	novel biopolymers and their applications					
Module:1 Intro	luction to polymer				5 ha	mrs
	rs and their classification: Degree of polymerization.	Polv	meri			
	tion and copolymerization	j				
,						
	ods of polymerization				6 ha	ours
Bulk, solution, emu	llsion and suspension polymerization					
M. 1. 1. 2. St.		<u> </u>				
	ture and size of polymer mers, Characterization of polymers: Molecular weight,	Cm	rata 11		6 ho	
	are and mechanical properties: testing of polymers	CIY	stan	inity	, U	1888
transition temperati	are and meenament properties, testing of porymens					
Module:4 Polyn	ner processing additives			(6 ha	ours
	, Anti-oxidants, colorants, stabilizers, and other related addi	tives	3			
	ner processing techniques				6 ho	
	pression transfer moulding methods; calendaring, extrusion	on, t	herm	ofor	min	g,
powder coating						
Madulas (Dalum	novio motoviala	<u> </u>			0 h a	
	neric materials lypropylene; polymethyl methacrylate; polyvinyl cl	-1 <i>am</i> i	dar		9 ho	
	yacrylate, polyesters; Polymeric foams – Polyurethane, pol	1lori vstv	,	pol	ytet	la-
naoroeuryrene, por	juer juice, poryesters, rorymene roams – rorymenane, por	ysty.	i chic.			
Module:7 Specia	al polymers and bio polymers				5 ha	ours
	olysulphones; aromatic polyamides; aromatic polyester;	; ph	oto			
polymers; wool sill	and cellulose derivatives, Protein based polymers and Bio	-nan	0-C01	mpo	sites	5
Module:8 Conte	emporary issues	<u> </u>			<u> </u>	our
$\neg \neg $					<i>4</i> 1	vul

Total Lecture hours 45 hour							
Text Books							
1. Gowariker V.R., Viswanathan N.V., Sreedhar J., Polymer Science, 2 nd ed., New Age							
	Publishers, India, 2015.						
2.	Ebewele R.O., Polymer Science an	d Technology, 1st	ed., CRC	press, USA, 20)00.		
Ref	ference Books						
1.	Froed J.R., Polymer science & Tec	hnology, 1 st ed., P	Prentice H	all Publishers, U	JSA, 2014.		
2.	2. Young R.J., Lovell P.A., Introduction to Polymers, 1 st ed., CRC Press, USA, 2011.						
Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test							
Rec	Recommended by Board of Studies 15-04-2019						
Ap	proved by Academic Council	55 th	Date	13-06-2019			

Course code	CHE1020	L	Т	Р	J	C
Course title	FERTILIZER TECHNOLOGY	3	0	0	0	3
Pre-requisite	NIL	S.	Syllabus ver			sion
						1.2
Course Objectives						
2. Impart knowledg	ction of various NPK fertilizers and their importance ge of bio fertilizers, fluid fertilizers and controlled releas ns involved in fertilizer manufacture and their controllin ndards			to m	naint	ain
Course Outcomes	(CO):					
1. Realize the role and potash fertil	of essential elements for plant growth and the need of izers	înitroge	nous	s, ph	ospł	iate
•	s and unit operations involved in the manufacturing of v	various f	ertil	izers		
1	physical and chemical properties of fertilizers					
-	ajor engineering problems associated in fertilizer manu				•	
1 1	ortance of bio fertilizers, fluid fertilizers and controlled r					
6. Analyze the impa	act of pollution from fertilizer industry based on pollution	on stand	ards			
Module:1 Introd	duction to Fertilizers				7 ho	urs
	ilizers- Importance, Feed stocks for the production of A		ia. P	roce	sses	for

gasification of fossil fuel and methods of production of ammonia and nitric acid

Module:2Nitrogenous Fertilizers7 hoursNitrogenous fertilizers – Ammonium sulphate, Urea, Ammonium chloride, Ammonium nitrate and
Calcium ammonium nitrate, Their methods of production, Characteristics and specification,
Storage and handling7 hours

Module:3 I	Phosphatic Fertilizers	5 hours			
Phosphatic Fertilizers: Raw materials – phosphate rock, sulphur, pyrites etc. Processes for the					
production of	production of sulphuric and phosphoric acids. Phosphatic fertilizers – ground rock phosphate,				
bone meal $-S$	bone meal – Single superphosphate, Triple superphosphate, thermal phosphates – their methods of				
production, characteristics and specifications.					

Module:4 Potassic Fertilizers	5 hours
Potaasic fertilizers- Potassium Chloride, Potassium sulphate, Potassium	magnesium sulphate,
Potassium hydroxide, Potassium nitrate – Methods of production: the specifications.	ir characteristics and

Module:5NPK Fertilizers7 hoursNPK fertilizers: Urea ammonium phosphate, ammonium phosphate sulphate, Nitrophosphates,
and various grades of NPK fertilizers produced in the country7 hours

Module:6 Other Fertilizer

7 hours

Fertilizers and granulated mixtures; Biofertilisers, Nutrient - Secondary nutrients and micronutrients; Fluid fertilizers, Granular fertilizers, Controlled release fertilizers, Slow release fertilizers

Mo	dule:7	Pollution control			5 hours
Pol	lution fr	om fertilizer industry, Solid,	liquid and gaseou	is pollution	on control and standards
Mo	dule:8	Contemporary issues			2 hour
		Tota	al Lecture hours		45 hours
Tex	xt Book				
1.	Handbo	ook of fertilizer technology,	Association of In	dia, New	Delhi, 1977
2.	Fertiliz York, 1		Industrial Develop	oment Or	ganization, United Nations, New
Ref	ference l	Books			
1.	Rao G. 2010.	, Sittig M., Dryden's Outlin	es of Chemical Te	chnology	y, 3 rd ed., East West Press, India,
2. Austin T.G., Shreve's Chemical Process Industries, 5 th ed., Tata McGraw-Hill Education Pvt. Ltd, USA, 2012.					
3. Shukla S.D., Pandey G.N., A Text Book of Chemical Technology, 1 st ed., Vikas Publishing House Pvt. Ltd, India, 1978.					
Mo	de of eva	aluation: Continuous Assess	sment Test, Quizz	es, Assigi	nments, Final Assessment Test
Rec	commen	led by Board of Studies	15-04-2019		
Δn	nroved h	y Academic Council	55 th	Date	13-06-2019

Course code	CHE1023	L	Τ	P	J	С
Course title	PRODUCTION AND OPERATIONS	3	0	0	0	3
	MANAGEMENT					
Pre-requisite			Sylla	bus	vers	sion
A			•			1.2
Course Obje	ctives:					
	e student understanding levels of product and process layout fund					
	knowledge of statistics for performing quality control and In	spec	tion	and	pro	ject
planning						
3. Make the s	tudents to analyze situations and use different models for decision	on m	akınş			
Course Outc	pmos(CO)					
	e concepts of production and operations					
-	product and process layout					
	e material inventory and manage the supply					
4. Judge the d	uality control and Inspection using statistical tools					
	antt chart, and conduct project evaluation and review					
6. Analyze si	tuations and use different models for decision making					
Module:1	ntroduction to Production and Operations				6 ho	lire
	Management				5 110	u 1 3
	ystem, production management; Operating system, operati	ons	mar	agei	nent	t –
classifications	, objectives and scope					
	Plant Location and Layout				<u>6 ho</u>	
	ncing plant location - location models; Plant layout – object duct and process layout.	ives.	, cla	ssifi	catic	ons;
		1				
	Supply of Resources				6 ho	ours
Materials Mar	nagement - purchasing; ABC Analysis					
Module:4	nventory Management/Control				6 ho	ours
	nagement – objectives, benefit, technique; Inventory models - w	ithou	ıt sh	ortag	ge, w	vith
shortage						
Mad-1- 7	Duality Control and Inc	1			<u>(</u>]	
Module:5 Quality Control and Inspection 6 hours					0 N O	ours
Statistical Line	ality Control Methods - p, x and R charts etc.,					
Statistical Qu						
Module:6	Project Planning				7 ho	ours
Module:6	Project Planning odels – Gantt chart; Priority decision rule, Network Models, PEI	RT, (CPM		7 ho	ours
Module:6 I Scheduling m	odels – Gantt chart; Priority decision rule, Network Models, PE	RT, (CPM			
Module:6 I Scheduling m Module:7 I	odels – Gantt chart; Priority decision rule, Network Models, PEl Decision Making			-	6 ho	ours
Module:6ISchedulingmModule:7IGeneral Modulem	odels – Gantt chart; Priority decision rule, Network Models, PE			-	6 ho	ours
Module:6 I Scheduling m Module:7 I General Mod	odels – Gantt chart; Priority decision rule, Network Models, PEl Decision Making el for decision making - Bayes' Decision Rule; Decision Makir			Unc	6 ho	ours nty

	Total Lecture hours 45 hours						
Tex	xt Books						
1.	1. Chary S.N., Production and Operations Management, 5 th ed., Tata McGraw-Hill Education Pvt. Ltd., India, 2012						
2.	2. Panneerselvam R., Production and Operations Management, 3 rd ed., PHI Learning Pvt. Ltd., India, 2012						
Ref	erence Books						
1.	Garg, A.K., Production and Oper Pvt. Ltd., India, 2012	ations Manageme	nt, 1 st ed.,	Tata M	cGraw-Hill Education		
2	2 Montgomery, D.C., Introduction to Statistical Quality Control, 6 th ed., John Wiley & Sons, Inc. USA, 2009						
Mo	Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test						
Rec	commended by Board of Studies	15-04-2019					
Ap	proved by Academic Council	55^{th}	Date	13-06-2	.019		

Course cod		CHE2003	L	Т	Р	J	С				
Course title	9	CHEMICAL PRODUCT DESIGN			3 0 0 0 3						
Pre-requisi	te	CHE1004	S	ylla	bus '	vers	ion				
							1.2				
Course Ob	jectives	:									
2. Facilitate	e genera	ts in identifying the needs and converting needs to product ation of innovative ideas for chemical products and select and student with intellectual property issues and manufacture ar at	mong	g the	idea						
Course Out	tcomes	(CO):									
		analyze the needs of the customers									
 Apply et Create a Evaluate Analyze 	ngineer nd gene e and se the ma	ing knowledge to convert needs to product specifications erate innovative ideas for products lect among ideas nufacture of products harketable products									
Module:1		luction			1	hou	ır				
Introduction	to che	mical product design									
Module:2		of chemical product			6	hou	ırs				
Customer ne	eeds - c	onsumer products									
	[
Module:3		to specifications			6	hou	irs				
Converting	needs to	o specifications - revising product specifications									
Module:4	Ideas					hou	ırs				
Human sour	rces of i	deas - chemical sources of ideas - sorting the ideas - screer	ing t	he ic	leas.						
Module:5		ion of ideas				hou	irs				
Selection us product sele		rmodynamics - selection using kinetics - less objective crite	eria -	rise	in						
Module:6	Produ	ict manufacture			6	hou	ire				
		y - supplying missing information - final specifications - m	icro	struc			11.5				
				struc	luict	ł					
products - device manufacture											
Module:7	Specia Conce	alty chemical manufacture and Economic erns			8	hou	ırs				
First steps towards production - separations - specialty scale up - Product versus process design -											
-	process economics - economics for products										
Module:8	Conte	mporary issues				2 h	ours				
	-										
		Total Lecture hours		45	hou	rs					

Text Books

Cussler E.L., Moggridge G. D., Chemical Product Design, Cambridge University Press,
2 nd ed., UK, 2011.

Reference Books

1.	Seider W.D., Seader J D., Lewin D.R., Product and Process Design Principles, Wiley, 4 th ed.,
	USA, 2016.

2. Wei J., Product Engineering: Molecular Structure and Properties, Oxford University Press, 1st ed., UK, 2007.

Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment TestRecommended by Board of Studies15-04-2019Approved by Academic Council55thDate13-06-2019

SCHEENE 2020

Course code	CHE2006	L	Τ	P	J	С
Course title	FUELS AND COMBUSTION	3	0	0	0	3
Pre-requisite	NIL	S	ylla	bus	ver	sion
						1.2

- 1. Develop the understanding levels of fuels and combustion fundamentals
- 2. Classify and introduce different types of fuel and fuel analysis techniques that assists the students to choose most convenient fuel for a process involving combustion`
- 3. Engage the students in designing various control techniques for handling various environmental issues resulting from combustion of fuels

Course Outcomes (CO):

- 1. Classify the various types of fuels like liquid, solid and gaseous fuels available for firing in boilers and furnaces
- 2. Compare various fuel properties and its efficient use
- 3. Choose the right type of fuel depends on various factors such as availability, storage, handling, pollution and cost of fuel
- 4. Differentiate the properties of exhaust and flue gases
- 5. Execute basic engineering and science concepts for the design of various combustion equipment
- 6. Interpret various air pollution controlling techniques for reducing the pollution generated from combustion of various fuels

Module:1 Classification and Properties of Fuels	5 hours
Fuels-Types and characteristics of fuels-Determination of properties	of fuels-Fuel analysis-
Proximate and ultimate analysis-Calorific value (CV)-Gross and net calori	ific values (GCV,NCV)-
Bomb Calorimetry-empirical equations for CV estimation	
Module:2 Solid Fuels	6 hours
Origin of coal-Ranking of coal-Washing, cleaning and storage of coal-I	
comparative study of Solid, liquid and gaseous fuels-selection of coal applications-carbonization of coal	for different industrial
Module:3Liquid fuelsOrigin of crude oil-composition of crude petroleum-classification of crude	6 hours
Cracking-Hydrotreatment and Reforming	
Module:4 Gaseous fuels	6 hours
Rich and lean gas-Wobbe index-Natural gas-Dry and wet natural gas-Fo LNG-CNG-Methane-Producer Gas-Water gas-Coal Gasification-Gasification	
Module:5 Combustion	7 hours
General principles of combustion-types of combustion processes-Co Combustion equations-Kinetics of combustion-combustion of sol calculations-air fuel ratio-Excess air calculations	
Module:6 Combustion Equipment	7 hours
Tech Chemical Engineering- BCM	Page 1

Analysis of flue gases by Orsat apparatus-Combustion of solid fuels-grate firing and pulverized fuel firing system-Fluidized bed combustion-Circulating fluidized bed boiler-Burners-Factors affecting burners and combustion

Mo	dule:7	Air Pollution			6 hou
Typ	pes of po	llution-Combustion generat	ed air pollution-E	ffects of a	air pollution-Pollution of
fos	sil fuels a	and its control-Pollution from	m automobiles an	d its cont	rol
Mo	dule:8	Contemporary issues			2 hour
		Tota	l Lecture hours		45 hou
Tey	kt Books	}			
1.	Kennet	h K.K., Principles of Comb	ustion, 2 nd ed., W	iley Publi	cations, USA, 2012
2.	Phillips	s H.J., Fuels-solid, liquid a	and gases-Their	analysis a	and valuation, 1 st ed., Foster
	Press, U	USA, 2010			
Ref	ference l				
1.	Speigh 2016	t J.G., The Chemistry and T	Technology of Co	al, 3 rd ed.	, Taylor and Francis Ltd., USA
2. Sarkar S., Fuels and combustion, 3 rd ed., Universities Press, India, 2009					
Mo		, , ,	,		nments, Final Assessment Test
		ded by Board of Studies	15-04-2019	<u> </u>	
		y Academic Council	55 th	Date	13-06-2019

Course code	CHE2007	L	Т	P	J	С
Course title	PROCESS INTENSIFICATION	3	0	0	0	3
Pre-requisite	CHE1006	5	Sylla	bus	vers	sion
						1.0
Course Object	ives:					
 Apply the tec Infer alternation 	he concept of Process Intensification chniques of intensification to a range of chemical processes ive solutions keeping in view point, the environmental protection social acceptance	on, e	econo	omic		
Course Outcor	mes (CO):					
process indus 2. Apply proces 3. Implement m 4. Identify scale 5. Interpret the	he scientific background, techniques and applications of intensist stries as intensification in industrial processes bethodologies for process intensification e up issues in the chemical process feasibility of the process intensification d solve process challenges using intensification technologies	fica	tion i	in th	e	
Techniques of Process Intensi	troduction Process Intensification (PI) Applications - The philosophy ification - Main benefits from process intensification -	Proc	ess	ortur inter	nitie: nsify	
Equipment - Pro	ocess intensification toolbox - Techniques for Process intensify	ing	appli	catio	on	
	ocess Intensification Through Micro Reaction				6 ha	ours
Effect of minia Technology fro Miniaturized D	aturization on unit operations and reactions - Implementation om basic Properties - Technical Design Rules - Inherent Pro- Devices and Their Potential Solutions - Microfabrication of the cess - Wet and Dry Etching Processes	oces	s Re	stric	tion	s in
Module:3 M	ixing And Flow Patterns				8 ha	ours
Scales of mixin transfer - Mixin - Ultrasound At mixers - Imping	ng - Flow patterns in reactors - Mixing in stirred tanks: Scale ing in intensified equipment - Chemical Processing in High grav comization - High intensity inline MIXERS reactors - Static mi ging jets - Rotor stator mixers - Design Principles of static Mix - Higee reactors	vity xers	Field – Ej	ixing ls At jecto	g - H comi ors -	Heat zer Tee
	ombined Chemical Reactor Heat Exchangers And eactor Separators			(6 ha	ours
	peration – Applications - Reactive absorption - Reactive distill	atio	n - A	ppli	cati	ons
Module:5 Co	ompact Heat Exchangers				0.1	ours

Module:6 Enhanced Fields

6 hours

Energy based intensifications – Sono chemistry - Basics of cavitation - Cavitation Reactors -Flow over a rotating surface - Hydrodynamic cavitation applications - Cavitation reactor design – Nusselt flow model and mass transfer - Sono crystallization; Reactive separations

Module:7 Case Studies

Reactive Extraction Case Studies - Absorption of NO_x - Coke Gas Purification

2 hours

3 hours

Module:8	Contemporary issues	

Total	Lecture	hours

45 hours

- **Text Books**
- Segovia H., Juan G., Bonilla P., Adrián, Process Intensification in Chemical Engineering design optimization and control, 1st ed., Springer, Mexico, 2016.
 David R., Colin R., Adam H., Process Intensification Engineering for Efficiency.
- David R., Colin R., Adam H., Process Intensification Engineering for Efficiency, Sustainability and Flexibility, 2nd ed., Elsevier, Netherlands, 2013.

Reference Books

- 1. Andrzej S., Jacob A., Moulijn, Re-engineering the chemical processing plant: process intensification, 1st ed., Marcel Dekker Inc, USA, 2004.
- 2. Reay D., Ramshaw C., Harvey A., Process Intensification, 1st ed., Elsevier, Netherlands, 2008.

Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test								
Recommended by Board of Studies	15-04-2019							
Approved by Academic Council	55 th	Date	13-06-2019					

Course code	CHE2008	L	Т	P	J	C				
Course title	urse title Chemical Engineering Computational Fluid Dynamics									
Pre-requisite	CHE1005, CHE1006			hua	NO.W	l				
Pre-requisiteCHE1005, CHE1006Syllabus version1.0										
Course Object	ives:					1.0				
	sic fluid and heat transfer governing equations									
	aspects of discretization for grid generation d flow and heat transfer problems									
5. Estimate nui	a now and neat transfer problems									
Course Outcor	nes (CO):									
	and select the governing equations of fluid flow and heat transfe lve one and two-dimensional ordinary and partial differential e		iona							
	onal CFD tools	quai	10115							
0	discretization techniques for derivatives and differential equat	ions	to so	olve						
numerically										
-	eral transformation equations for grid generation									
	suitable explicit, implicit and semi-implicit methods of finite	diffe	renc	e scł	neme	5				
for given pro	low field and temperature field to design any process equipmer	nt mei	na a	some						
popular CFD		it usi	ng :	SOIIIC	/					
r - r										
Module:1 G	overning Equations				4 ha	ours				
	Equations; Complete energy equations-complete mass com	serv	atior	equ	latic	ons;				
Parabolized Na	vier-Stokes Equations; Euler Equations									
Module:2 Co	onservation laws and forms of equations				5 h	ours				
	ow – Conservation form Continuity; Momentum and	Ener	ov 1							
	rm (differential equations only) - Characteristics of PDE's - E									
hyperbolic										
Madada D	· · · · · · · · · · · · · · · · · · ·				5 1					
	scretization ce method- Forward; Backward and Central difference sche	mec	Fin			ours				
Finite element t		mes-	1 111	ne v	orui	nc-				
	•									
	rid generation					ours				
	grid oriented velocity components- Cartesian velocity compo	nent	s- St	agge	red	and				
collocated arrar	ngements									
Module:5 Co	onvection and Diffusion				3 h/	ours				
	mensional convection and diffusion- Central difference	e; 11	pwi		qui					
~	brid and power law schemes- False diffusion, Simple algorithm	,	r		1	.7				
		-								
	FD Techniques				3 ha	ours				
ADI Technique	- Pressure correction Technique Simple algorithm									
Module:7 Ca	ase Study				3 ho	1116				
With the second	ase sinny			•	, 110	u1 5				

	ustrially important process equipment - Heat exchangers; H ipments; Cyclone separators	Fluid flow; Mixing
N	11.0 Contamporary issues	
NIO	dule:8 Contemporary issues	2 hours
	Total Lecture hours	30 hours
Tex	xt Books	
1.	Pletcher R.H., Tannehill J.C., Anderson D.A., Computational fluid mec	hanics and heat
	transfer, 3 rd ed., CRC Press, USA, 2012.	
2.	Aref H., Computational Fluid Dynamics, 1 st ed., Cambridge University Pre	ess, USA, 2017.
Ref	ference Books	
1.	Versteeg H.K., Malalasekera W., An introduction to computational fluid d	ynamics: The finite
	volume method, 2 nd ed., Prentice Hall, UK, 2007.	
2.	Hirsch C., Computation of internal and external flows: The fundamental	s of computational
	fluid dynamics, 2 nd ed., Butterworth-Heinemann, USA, 2007.	
Mo	de of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final	Assessment Test
Rec	commended by Board of Studies 15-04-2019	
App	proved by Academic Council 55 th Date 13-06-2019	9

Course code	CHE3004	L	Т	Р	J	С
Course title	HETEROGENEOUS REACTION ENGINEERING	2	0	0	4	3
Pre-requisite		S	ylla	bus	vers	
			J			1.2
Course Obje	ctives:					
	udents about catalytic phenomena with an extension to reactor de	esign	n and	cat	alys	t
characteriz						
	the fundamentals of heterogeneous reactions, design, and analys	is of	fnon	-cat	alyti	с,
•	uid-solid reactors including multi-phase reactors					
	dents in handling most common industrial chemical and biochem					
achieve produ	ction goals for processes involving homogeneous or heterogeneous	ous r	eacti	on s	yste	ms
Course Outc	omes (CO):					
1. Understan	d the heterogeneous reaction systems and design the reactors for	flui	d-sol	id s	vste	ms
	ne mechanism of non-catalytic solid-fluid reactions				,	
	he role of catalyst in reactions and the transport mechanism in he	tero	gene	ous		
catalysts	•					
4. Design an	d characterize catalyst surface properties for better activation of t	the c	atal	/st		
5. Identify cr	itical parameters affecting the performance of heterogeneous and	1 mu	ılti-p	hase	•	
reactors						
6. Construct	and apply a general problem solving approach to design	het	erog	eneo	us	and
multiphase	reactors					
	ntroduction to Heterogeneous Reaction Engineering				<u>2 ho</u>	
	o heterogeneous reacting systems - Sharp interface and volum				lode	- IS
determination	of rate-controlling steps and application to design of reactors - b	10 10	acto	18		
Module:2	Non-catalytic solid-fluid reactions				4 ho	urs
	re model – Gas film controlling – Ash layer controlling –	Ch	emi			
	Shrinking spherical particles – Fluidized bed reactor					
	ntroduction to Catalytic Reactions				4 ho	
	d properties - Steps involved in catalytic reactions - Rate laws	me	chan	isms	5 - F	Rate
limiting step						
					- 1	
	Transport Mechanism in heterogeneous catalysts				<u>5 ho</u>	
Transport effe	ects in heterogeneous catalysis - Internal effectiveness - External	tran	snor	t lim	itati	ons
-			spor			
and overall ef	fectiveness		врог			
and overall ef			spor			lire
and overall ef Module:5	Catalysts preparation & characterization				4 ho	ours
and overall ef Module:5 Optimizion and	Catalysts preparation & characterization I types of catalysts – Industrial catalysts – Preparation and charac				4 ho	ours
and overall ef Module:5 Operation and	Catalysts preparation & characterization				4 ho	ours
and overall ef Module:5 0 Definition and catalysts, Surf	Catalysts preparation & characterization d types of catalysts – Industrial catalysts – Preparation and charac face area and pore volume determination			n of	4 ho the	
and overall ef Module:5 0 Definition and catalysts, Surf Module:6 0	Catalysts preparation & characterization I types of catalysts – Industrial catalysts – Preparation and charac Face area and pore volume determination Catalyst deactivation methods	cteri	zatio	n of	4 ho the 4 ho	
and overall ef Module:5 0 Definition and catalysts, Surf Module:6 0	Catalysts preparation & characterization d types of catalysts – Industrial catalysts – Preparation and charac face area and pore volume determination	cteri	zatio	n of	4 ho the 4 ho	
and overall ef Module:5 Oefinition and catalysts, Surf Module:6 Types of catal	Catalysts preparation & characterization I types of catalysts – Industrial catalysts – Preparation and charac Face area and pore volume determination Catalyst deactivation methods	cteri	zatio	n of	4 ho the 4 ho	

Reactor design fundamentals and methodology, rate data analysis - Overall vi	iew of Fluidized,
Packed and Moving bed reactors- Fluid-liquid reactions: Film and Penetration	theories - Fluid-
solid catalytic reactions	
Modulo 8 Contemporary issues	2 hours

Mo	dule:8 Contemporary issues			2 hours				
	Total Le	cture hours		30 hours				
Text Books								
1.	Levenspiel O., Chemical Reaction	n Engineering, 3 rd e	d., Wiley	Publications, USA, 2006				
2.	Fogler H.S., Elements of Chemics							
	Ltd., India, 2016	-	-					
Ref	erence Books							
1.	Miller, G. T., Chemical Reaction	Engineering, 1 st ed	., CRS put	lications, USA, 2016				
2.	Vannice, M. A., Kinetics of Catal	ytic Reactions. 2nd	l ed., Sprin	ger, USA, 2010				
Mo	de of evaluation: Continuous Asses	ssment Test, Quizz	es, Assign	ments, Final Assessment Test				
Rec	ommended by Board of Studies	15-04-2019						
Ap	proved by Academic Council	55 th	Date	13-06-2019				

Course code				LTPJEGRATION300					
Course title						0	0	3	
Pre-requisit	e	CHE2002		2	Sylla			sion	
Course Oh :						. 2. 1	-		
Course Obj					•	1			
• To impart the strategy for effective and energy efficient way of fine tuning the process design so as to maximize profit by minimizing utilities.									
• To provide an insight on the utilities with their standards and conservation aspects.									
• To caters the fundamental knowledge about energy efficient chemical process design.									
_									
Expected Co	ourse O	utcome:							
Upon comple	etion of	this course students would be able to							
 Provide solution approach for energy efficient chemical process design Develop a methodology of process integration for Heat Exchangers, Evaporators, Dryers, Distillation Columns and Reactors-Some of the energy intensive unit operations Design a methodology of distillation column sequencing and reactor networking which are essential for a good process design 									
• Ana	lyze wa	ter pinch technology for minimizing fresh w	ater consumption	on ar	nd w	aste	wa	ter	
redu	ction								
Module:1	Dictill	ation Sequencing	7	hour					
		quencing, distillation sequencing for simple co				ra ti	an	two	
		ing thermal coupling, distillation sequencing for						two	
Module:2	Heat H	Exchanger Networks – Targets	6 ho	ours					
		oblem table algorithm, network energy targets, 1			rgets	. nu	mbe	er of	
shells target,	capital of	cost and total cost targets	8		0	,		-	
Module:3		Exchanger Networks – Network Design	6 hou						
Pinch Designetwork stream		od, stream splitting, design of multiple pinche	s, superstructure	app	roac	n, tr	ade	offs,	
Module:4	Heat I	ntegration – Process Equipment	6 ho	ours					
Use of comp	osite cu	rve for integration of reactors, heat integration	in distillation col	lumn	s and	1 dis	tilla	ation	
sequences.									
	T								
Module:5	_	y consuming – Process Utilities	6 hou						
		evaporator, heat integration of dryers, heat integration	gration of boilers	s, he	at in	tegra	tior	ı of	
compressors	and refr	igerator							
Module:6	Water	system design	6	hour	·c				
		ss industries, design for maximum water reus				want		vator	
treatment flo	<u>w r</u> ate, t	argeting and design for effluent treatment and re	generation		um	wast	- 1	alei	
		· · · · · · · · · · · · · · · · · · ·							
Module:7	Clean	process technology	6	hour	S				
		m Chemical Production. Clean Process Technology, Process Operations and Process utilities. Life		Rea	ctors	, Sej	para	ition	
Module:8	Conte	emporary issues	2	hou	rs				

		Total Lecture hours	s: 45 hours						
Tex	kt Book(s)								
1. Robin Smith, "Chemical Process: Design and Integration", John Wiley and Sons, 2016									
2.	Richard Turton, Richard C. Bai	lie, Wallace B. Whiti	ing, Joseph A. Shaeiwitz, Debangsu						
	Bhattacharyya, "Analysis, Synthes	is and Design of Chen	mical Processes", Prentice Hall, 2012.						
Ref	ference Books								
1.	Alexandre C. Dimian, Costin S. Bi Chemical Processes", Elsevier Pul	· · · ·	"Integrated Design and Simulation of						
2	Ian C. Kemp, "Pinch Analysis and Integration", Elsevier Publications	0	A User Guide on Process						
	de of Evaluation: Continuous Assessme	ent Test, Quizzes, Assigr							
	commended by Board of Studies		04.03.2016						
App	proved by Academic Council	40 E	Date 18.03.2016						

Introduction to Process Synthesis - Flow sheeting & simulation - Degrees of freedom – Process Equipment's - Process flow sheet 6 hours Module:2 Approaches to Process Simulation 6 hours Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation 6 hours Module:3 Equation Solving Approach 8 hours Partitioning - Decomposition - Disjointing - PTM - SWS - Steward - Rudd Algorithms; Sparcity - Direct Methods - Pivoting - Iterative methods - BTF- BBTF Block Back Substitution- BTS - etc 7 hours Tearing Algorithms in decomposition of Networks 7 hours Tearing Algorithms in decomposition of networks – digraph - signal flow graph - BM Algorithm – BTA - K&S Algorithm - M&H Algorithm - related problems 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion 5 hours Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction 6 hours	Course code	;	CHE3006	L	Т	Р	J	С
1.2 Course Objectives: 1. Emphasize the basic concepts of steady state process plant simulation 2. Impart the knowledge and awareness to understand the validity and physicochemical interpretation of thermodynamic models and their limitations 3. Develop the skills for plant simulation and optimization, solve chemical engineering problems encountered in chemical industries using professional software's Course Outcomes (CO): 1. Understand the principles for developing a Process flow sheet and its execution 2. Illustrate the approaches to follow in plant simulation of refineries 3. Overcome the debottlencek existing in process plant and have maximum productivity 4. Implement the strategies for solving simple and complex plant problems 5. Utilize commercial software's for complete simulation or feineries 6. Interpret steady state process plant simulation Module:1 Introduction Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation Module:3 Equation Solving Approach Partitioning - Decomposition of Networks 7 hours Tearing Algorithms in decomposition of networks – digraph - signal flow graph - BM Algorithm – BTA - K&S Algorithm - M&H Algorithm - related problems Module:5 Convergence Promotion 6 hours Linear equation - nonlinear equation - Converg				-	-		-	
Course Objectives: 1. Emphasize the basic concepts of steady state process plant simulation 2. Impart the knowledge and awareness to understand the validity and physicochemical interpretation of thermodynamic models and their limitations 3. Develop the skills for plant simulation and optimization, solve chemical engineering problems encountered in chemical industries using professional software's Course Outcomes (CO): 1. Understand the principles for developing a Process flow sheet and its execution 2. Illustrate the approaches to follow in plant simulation 3. Overcome the debottleneck existing in process plant and have maximum productivity 4. Implement the strategies for solving simple and complex plant problems 5. Utilize commercial software's for complete simulation of refineries 6. Interpret steady state process plant simulation Module:1 Introduction 5. Process flow sheet Module:2 Approaches to Process Simulation Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation Module:3 Equation Solving Approach 8 hours Partitioning - Decomposition of Networks 7 hours Thereat equation of Networks Girapah - Signal flow graph - BM Algorithm - BTA - K&S Algorithm - M&H Algorithm - related problems Module:5 Convergence	Pre-requisite	e	MAT3003	S	ylla	bus	vers	
1. Emphasize the basic concepts of steady state process plant simulation 2. Impart the knowledge and awareness to understand the validity and physicochemical interpretation of thermodynamic models and their limitations 3. Develop the skills for plant simulation and optimization, solve chemical engineering problems encountered in chemical industries using professional software's Course Outcomes (CO): 1. Understand the principles for developing a Process flow sheet and its execution 2. Illustrate the approaches to follow in plant simulation 3. Overcome the debottleneck existing in process plant and have maximum productivity 4. Implement the strategies for solving simple and complex plant problems 5. Utilize commercial software's for complete simulation of refineries 6. Interpret steady state process plant simulation Module:1 Introduction 5 hours Introduction to Process Synthesis - Flow sheeting & simulation - Degrees of freedom – Process Equipment's - Process flow sheet Module:2 Approaches to Process Simulation 6 hours Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation 8 hours Partitioning - Decomposition of Networks 7 hours 7 hours Tearing Algorithms in decomposition of networks – digraph - signal flow graph - BM Algorithm – BTA - K&S Algorithm - M&H Algorithm - related problems	Course Obie	ootivos	•					1.2
2. Impart the knowledge and awareness to understand the validity and physicochemical interpretation of thermodynamic models and their limitations 3. Develop the skills for plant simulation and optimization, solve chemical engineering problems encountered in chemical industries using professional software's Course Outcomes (CO): 1. Understand the principles for developing a Process flow sheet and its execution 2. Illustrate the approaches to follow in plant simulation 3. Overcome the debottleneck existing in process plant and have maximum productivity 4. Implement the strategies for solving simple and complex plant problems 5. Utilize commercial software's for complete simulation of refineries 6. Interpret steady state process plant simulation Module:1 Introduction 5. Hours Introduction to Process flow sheet Module:2 Approaches to Process Simulation 6 hours Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation Module:3 Equation Solving Approach 8 hours Partitioning - Decomposition - Disjointing - PTM - SWS - Steward - Rudd Algorithms; Sparcity - Direct Methods - Pivoting - Iterative methods - BTF- BBTF Block Back Substitution- BTS - etc Module:3 Convergence Promotion 6 hours Traing Algorithms in decomposition of	\$							
interpretation of thermodynamic models and their limitations 3. Develop the skills for plant simulation and optimization, solve chemical engineering problems encountered in chemical industries using professional software's Course Outcomes (CO): 1. Understand the principles for developing a Process flow sheet and its execution 2. Illustrate the approaches to follow in plant simulation 3. Overcome the debottleneck existing in process plant and have maximum productivity 4. Implement the strategies for solving simple and complex plant problems 5. Utilize commercial software's for complete simulation of refineries 6. Interpret steady state process plant simulation Module:1 Introduction 5 hours Introduction to Process Synthesis - Flow sheeting & simulation - Degrees of freedom – Process Equipment's - Process flow sheet Module:2 Approaches to Process Simulation 6 hours Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation Module:3 Equation Solving Approach 8 hours Partitioning - Decomposition of Networks 7 hours Trearing Algorithms in decomposition of networks – digraph - signal flow graph - BM Algorithm BTA - K&S Algorithm - M&H Algorithm - related problems Undule:5 Convergence Promotion Complete plant problems Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation Module:7 Case Studies: (Un)Steady State Process Simulation - Aspen Hysys dynamic simulation Module:8 Contemporary issues 2 hours	-			chen	nical			
3. Develop the skills for plant simulation and optimization, solve chemical engineering problems encountered in chemical industries using professional software's Course Outcomes (CO): 1. Understand the principles for developing a Process flow sheet and its execution 2. Illustrate the approaches to follow in plant simulation 3. Overcome the debottleneck existing in process plant and have maximum productivity 4. Implement the strategies for solving simple and complex plant problems 5. Utilize commercial software's for complete simulation Module:1 Introduction 7 5 hours Introduction to Process Synthesis - Flow sheeting & simulation - Degrees of freedom – Process Module:2 Approaches to Process Simulation Module:3 Equation Solving Approach 8 hours Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation 8 hours Module:3 Equation Solving Approach 8 hours Partitioning - Decomposition - Disjointing - PTM - SWS - Steward - Rudd Algorithms; Sparcity - Direct Methods - Pivoting - Iterative methods - BTF- BBTF Block Back Substitution- BTS - etc Module:4 Decomposition of Networks 7 hours Tearag Algorithms in decomposition of networks – digraph - signal flow graph - BM Algorithm – BTA - K&& Algorithm - M&H Algorithm - related problems<				enten	mean			
problems encountered in chemical industries using professional software's Course Outcomes (CO): 1. Understand the principles for developing a Process flow sheet and its execution 2. Illustrate the approaches to follow in plant simulation 3. Overcome the debottleneck existing in process plant and have maximum productivity 4. Implement the strategies for solving simple and complex plant problems 5. Utilize commercial software's for complete simulation of refineries 6. Interpret steady state process plant simulation Module:1 Introduction 5 hours Introduction to Process Synthesis - Flow sheeting & simulation - Degrees of freedom – Process Equipment's - Process flow sheet Module:2 Approaches to Process Simulation 6 hours Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation Module:3 Equation Solving Approach PTM - SWS - Steward - Rudd Algorithms: Sparcity - Direct Methods - Pivoting - Iterative methods - BTF- BBTF Block Back Substitution- BTS - etc Module:4 Decomposition of Networks — digraph - signal flow graph - BM Algorithm - BTA - K&S Algorithm - M&H Algorithm - related problems Module:5 Convergence Promotion 6 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state Process Simulation - Aspen Hysys dynamic simulation Module:8 Contemporary issues 2 hours such as Ammonia plant - Biodiesel plant - NG Hiquefaction				inee	ring			
1. Understand the principles for developing a Process flow sheet and its execution 2. Illustrate the approaches to follow in plant simulation 3. Overcome the debottleneck existing in process plant and have maximum productivity 4. Implement the strategies for solving simple and complex plant problems 5. Utilize commercial software's for complete simulation of refineries 6. Interpret steady state process plant simulation Module:1 Introduction 5. Process Synthesis - Flow sheeting & simulation - Degrees of freedom – Process Module:2 Approaches to Process Simulation 6. hours Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation Module:3 Equation Solving Approach 8 hours Partitioning - Decomposition - Disjointing - PTM - SWS - Steward - Rudd Algorithms; Sparcity - Direct Methods - Pivoting - Iterative methods - BTF- BBTF Block Back Substitution- BTS - etc Module:4 Decomposition of Networks 7 hours Tearing Algorithms in decomposition of networks – digraph - signal flow graph - BM Algorithm – BTA - K&S Algorithm - M&H Algorithm - related problems 6 hours Module:5 Convergence Promotion 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-				, ,	U			
1. Understand the principles for developing a Process flow sheet and its execution 2. Illustrate the approaches to follow in plant simulation 3. Overcome the debottleneck existing in process plant and have maximum productivity 4. Implement the strategies for solving simple and complex plant problems 5. Utilize commercial software's for complete simulation of refineries 6. Interpret steady state process plant simulation Module:1 Introduction 5. Process Synthesis - Flow sheeting & simulation - Degrees of freedom – Process Module:2 Approaches to Process Simulation 6 hours Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation Module:3 Equation Solving Approach 8 hours Partitioning - Decomposition - Disjointing - PTM - SWS - Steward - Rudd Algorithms; Sparcity - Direct Methods - Pivoting - Iterative methods - BTF- BBTF Block Back Substitution- BTS - etc Module:4 Decomposition of Networks 7 hours Tearing Algorithms in decomposition of networks – digraph - signal flow graph - BM Algorithm – BTA - K&S Algorithm - M&H Algorithm - related problems 6 hours Module:5 Convergence Promotion 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-N								
2. Illustrate the approaches to follow in plant simulation 3. Overcome the debottleneck existing in process plant and have maximum productivity 4. Implement the strategies for solving simple and complex plant problems 5. Utilize commercial software's for complete simulation of refineries 6. Interpret steady state process plant simulation Module:1 Introduction Sequential modular approaches to Process Simulation 6 hours Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation 8 hours Module:3 Equation Solving Approach 8 hours Partitioning - Decomposition - Disjointing - PTM - SWS - Steward - Rudd Algorithms; Sparcity - Direct Methods - Pivoting - Iterative methods - BTF- BBTF Block Back Substitution- BTS - etc Module:4 Decomposition of Networks 7 hours Tearing Algorithms in decomposition of networks – digraph - signal flow graph - BM Algorithm – BTA - K&S Algorithm - M&H Algorithm - related problems 6 hours Module:5 Convergence Promotion 6 hours Linear equation - onlinear equation - Convergence promotion scheme Newton's method; Acceleration criterion 6 hours Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation 6 hours								
3. Overcome the debottleneck existing in process plant and have maximum productivity 4. Implement the strategies for solving simple and complex plant problems 5. Utilize commercial software's for complete simulation of refineries 6. Interpret steady state process plant simulation Module:1 Introduction 5 hours Introduction to Process Synthesis - Flow sheeting & simulation - Degrees of freedom - Process Equipment's - Process flow sheet Module:2 Approaches to Process Simulation 6 hours Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation 8 hours Module:3 Equation Solving Approach 8 hours Partitioning - Decomposition - Disjointing - PTM - SWS - Steward - Rudd Algorithms; Sparcity - Direct Methods - Pivoting - Iterative methods - BTF- BBTF Block Back Substitution- BTS - etc Module:4 Module:4 Decomposition of Networks 7 hours Tearing Algorithms in decomposition of networks – digraph - signal flow graph - BM Algorithm – BTA - K&S Algorithm - M&H Algorithm - related problems 6 hours Module:5 Convergence Promotion 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion 6 hours Mod	1. Understand	d the p	rinciples for developing a Process flow sheet and its execut	tion				
4. Implement the strategies for solving simple and complex plant problems 5. Utilize commercial software's for complete simulation of refineries 6. Interpret steady state process plant simulation Module:1 Introduction 5. Hourse Introduction to Process Synthesis - Flow sheeting & simulation - Degrees of freedom – Process Equipment's - Process flow sheet Module:2 Approaches to Process Simulation 6. hourse Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation Module:3 Equation Solving Approach 8 hourse Partitioning - Decomposition - Disjointing - PTM - SWS - Steward - Rudd Algorithms; Sparcity - Direct Methods - Pivoting - Iterative methods - BTF- BBTF Block Back Substitution- BTS - etc Module:4 Decomposition of Networks 7 hours Tearing Algorithms in decomposition of networks – digraph - signal flow graph - BM Algorithm – BTA - K&S Algorithm - M&H Algorithm - related problems 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion 6 hours Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys		11	1	dua				
5. Utilize commercial software's for complete simulation of refineries 6. Interpret steady state process plant simulation Module:1 Introduction Shours Introduction to Process Synthesis - Flow sheeting & simulation - Degrees of freedom - Process Equipment's - Process flow sheet Module:2 Approaches to Process Simulation 6. Interpret steady state process flow sheet Module:3 Equation Solving Approach Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation Module:3 Equation Solving Approach Partitioning - Decomposition - Disjointing - PTM - SWS - Steward - Rudd Algorithms; Sparcity - Direct Methods - Pivoting - Iterative methods - BTF- BBTF Block Back Substitution- BTS - etc Module:4 Decomposition of Networks 7 hours Tearing Algorithms in decomposition of networks – digraph - signal flow graph - BM Algorithm – BTA - K&S Algorithm - M&H Algorithm - related problems 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution - Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion 6 hours Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation <td< td=""><td></td><td></td><td></td><td>Juuc</td><td>uvity</td><td>/</td><td></td><td></td></td<>				Juuc	uvity	/		
6. Interpret steady state process plant simulation 5 hours Module:1 Introduction 5 hours Introduction to Process Synthesis - Flow sheeting & simulation - Degrees of freedom – Process Equipment's - Process flow sheet Module:2 Approaches to Process Simulation 6 hours Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation 8 hours Module:3 Equation Solving Approach 8 hours Partitioning - Decomposition - Disjointing - PTM - SWS - Steward - Rudd Algorithms; Sparcity - Direct Methods - Proteing - Iterative methods - BTF- BBTF Block Back Substitution- BTS - etc Module:4 Module:4 Decomposition of Networks 7 hours Tearing Algorithms in decomposition of networks – digraph - signal flow graph - BM Algorithm – BTA - K&S Algorithm - M&H Algorithm - related problems 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion 6 hours Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction 6 hours								
Module:1 Introduction 5 hours Introduction to Process Synthesis - Flow sheeting & simulation - Degrees of freedom - Process Equipment's - Process flow sheet Module:2 Approaches to Process Simulation 6 hours Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation 6 hours Module:3 Equation Solving Approach 8 hours Partitioning - Decomposition - Disjointing - PTM - SWS - Steward - Rudd Algorithms; Sparcity - Direct Methods - Pivoting - Iterative methods - BTF- BBTF Block Back Substitution- BTS - etc Module:4 Decomposition of Networks 7 hours Tearing Algorithms in decomposition of networks – digraph - signal flow graph - BM Algorithm – BTA - K&S Algorithm - M&H Algorithm - related problems 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion 6 hours Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction 6 hours Module:8 Contemporary issues 2 hours								
Introduction to Process Synthesis - Flow sheeting & simulation - Degrees of freedom – Process Equipment's - Process flow sheet Module:2 Approaches to Process Simulation 6 hours Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation 6 hours Module:3 Equation Solving Approach 8 hours Partitioning - Decomposition - Disjointing - PTM - SWS - Steward - Rudd Algorithms; Sparcity - Direct Methods - Pivoting - Iterative methods - BTF- BBTF Block Back Substitution- BTS - etc 7 hours Module:4 Decomposition of Networks 7 hours Tearing Algorithms in decomposition of networks - digraph - signal flow graph - BM Algorithm - BTA - K&S Algorithm - M&H Algorithm - related problems 6 hours Module:5 Convergence Promotion 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction 6 hours	1	5	1 1					
Equipment's - Process flow sheet 6 hours Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation 6 hours Module:3 Equation Solving Approach 8 hours Partitioning - Decomposition - Disjointing - PTM - SWS - Steward - Rudd Algorithms; Sparcity - Direct Methods - Pivoting - Iterative methods - BTF- BBTF Block Back Substitution- BTS - etc 7 hours Module:4 Decomposition of Networks 7 hours Tearing Algorithms in decomposition of networks – digraph - signal flow graph - BM Algorithm – BTA - K&S Algorithm - M&H Algorithm - related problems 6 hours Module:5 Convergence Promotion 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction 6 hours Module:8 Contemporary issues 2 hours	Module:1	Introd	luction			4	5 ho	urs
Module:2 Approaches to Process Simulation 6 hours Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation 6 hours Module:3 Equation Solving Approach 8 hours Partitioning - Decomposition - Disjointing - PTM - SWS - Steward - Rudd Algorithms; Sparcity - Direct Methods - Pivoting - Iterative methods - BTF- BBTF Block Back Substitution- BTS - etc Module:4 Decomposition of Networks 7 hours Tearing Algorithms in decomposition of networks – digraph - signal flow graph - BM Algorithm – BTA - K&S Algorithm - M&H Algorithm - related problems 6 hours Module:5 Convergence Promotion 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion 5 hours Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction - Module:8 Contemporary issues 2 hours				f fre	edon	1 – I	Proc	ess
Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation Module:3 Equation Solving Approach or Disjointing - PTM - SWS - Steward - Rudd Algorithms; Sparcity - Direct Methods - Pivoting - Iterative methods - BTF- BBTF Block Back Substitution- BTS - etc Module:4 Decomposition of Networks 7 hours Tearing Algorithms in decomposition of networks - digraph - signal flow graph - BM Algorithm - BTA - K&S Algorithm - M&H Algorithm - related problems 6 hours Module:5 Convergence Promotion 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion 5 hours Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction 6 hours Module:8 Contemporary issues 2 hours	Equipment's	- Proc	ess flow sheet					
Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation Module:3 Equation Solving Approach or Disjointing - PTM - SWS - Steward - Rudd Algorithms; Sparcity - Direct Methods - Pivoting - Iterative methods - BTF- BBTF Block Back Substitution- BTS - etc Module:4 Decomposition of Networks 7 hours Tearing Algorithms in decomposition of networks - digraph - signal flow graph - BM Algorithm - BTA - K&S Algorithm - M&H Algorithm - related problems 6 hours Module:5 Convergence Promotion 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion 5 hours Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction 6 hours Module:8 Contemporary issues 2 hours		A						
used in process plant simulation 8 hours Module:3 Equation Solving Approach 8 hours Partitioning - Decomposition - Disjointing - PTM - SWS - Steward - Rudd Algorithms; Sparcity - Direct Methods - Pivoting - Iterative methods - BTF- BBTF Block Back Substitution- BTS - etc Module:4 Decomposition of Networks 7 hours Tearing Algorithms in decomposition of networks - digraph - signal flow graph - BM Algorithm - BTA - K&S Algorithm - M&H Algorithm - related problems 6 hours Module:5 Convergence Promotion 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation Module:7 Case Studies: (Un)Steady State Process Simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction - Module:8 Contemporary issues 2 2				00.0	Juin			
Module:3 Equation Solving Approach 8 hours Partitioning - Decomposition - Disjointing - PTM - SWS - Steward - Rudd Algorithms; Sparcity - Direct Methods - Pivoting - Iterative methods - BTF- BBTF Block Back Substitution - BTS - etc Module:4 Decomposition of Networks 7 hours Tearing Algorithms in decomposition of networks – digraph - signal flow graph - BM Algorithm – BTA - K&S Algorithm - M&H Algorithm - related problems Module:5 Convergence Promotion 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion 5 hours Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction - Module:8 Contemporary issues 2 hours				011 50	JI V III	g ap	proa	iCII
Partitioning - Decomposition - Disjointing - PTM - SWS - Steward - Rudd Algorithms; Sparcity - Direct Methods - Pivoting - Iterative methods - BTF- BBTF Block Back Substitution- BTS - etc Module:4 Decomposition of Networks 7 hours Tearing Algorithms in decomposition of networks - digraph - signal flow graph - BM Algorithm - BTA - K&S Algorithm - M&H Algorithm - related problems Module:5 Convergence Promotion 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction - Module:8 Contemporary issues 2 hours	used in proce	bb più						
Direct Methods - Pivoting - Iterative methods - BTF- BBTF Block Back Substitution- BTS - etc Module:4 Decomposition of Networks 7 hours Tearing Algorithms in decomposition of networks – digraph - signal flow graph - BM Algorithm – BTA - K&S Algorithm - M&H Algorithm - related problems 6 hours Module:5 Convergence Promotion 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction - Module:8 Contemporary issues 2 hours	Module:3	Equat	ion Solving Approach			8	3 ho	urs
Module:4 Decomposition of Networks 7 hours Tearing Algorithms in decomposition of networks – digraph - signal flow graph - BM Algorithm – BTA - K&S Algorithm - M&H Algorithm - related problems Module:5 Convergence Promotion 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation 6 hours Module:7 Case Studies: (Un)Steady State Process Simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction - - - -								
Tearing Algorithms in decomposition of networks – digraph - signal flow graph - BM Algorithm – BTA - K&S Algorithm - M&H Algorithm - related problems Module:5 Convergence Promotion 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction - Module:8 Contemporary issues -	Direct Metho	ods - Pi	voting - Iterative methods - BTF- BBTF Block Back Subs	titut	ion-	BTS	- et	С
Tearing Algorithms in decomposition of networks – digraph - signal flow graph - BM Algorithm – BTA - K&S Algorithm - M&H Algorithm - related problems Module:5 Convergence Promotion 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction - Module:8 Contemporary issues -	Module 4	Decon	nnosition of Networks			,	7 ho	urs
BTA - K&S Algorithm - M&H Algorithm - related problems Module:5 Convergence Promotion 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation 6 hours Module:7 Case Studies: (Un)Steady State Process Simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction - Module:8 Contemporary issues -			-					
Module:5 Convergence Promotion 6 hours Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation 6 hours Module:7 Case Studies: (Un)Steady State Process Simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction - Module:8 Contemporary issues -	0 0			h - ł	3M A	Algoi	ithr	n –
Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation 6 hours Module:7 Case Studies: (Un)Steady State Process Simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction - Module:8 Contemporary issues -	DIA - Kas	Aigon	unii - M&H Algoriunii - felated problems					
Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion Module:6 Application of Flow Sheeting Software Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation Module:7 Case Studies: (Un)Steady State Process Simulation Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction - Module:8 Contemporary issues	Module:5	Conve	ergence Promotion			(5 ho	urs
Acceleration criterion Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation 6 hours Module:7 Case Studies: (Un)Steady State Process Simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction - - Module:8 Contemporary issues 2 hours				on's	metł			
Module:6 Application of Flow Sheeting Software 5 hours Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation 6 hours Module:7 Case Studies: (Un)Steady State Process Simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction - Module:8 Contemporary issues 2 hours				-Nev	vton	met	hod	s;
Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation Module:7 Case Studies: (Un)Steady State Process Simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction - Module:8 Contemporary issues 2 hours	Acceleration	criteri	on					
Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation Module:7 Case Studies: (Un)Steady State Process Simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction - Module:8 Contemporary issues 2 hours	Modulo:6	Appli	nation of Flow Shooting Softwara			5	ho	INC
Module:7 Case Studies: (Un)Steady State Process Simulation 6 hours Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction - Module:8 Contemporary issues 2 hours				nam	ic sir			u1 5
Complete plant (un)steady state simulation: Any process such as Ammonia plant - Biodiesel plant - NG liquefaction Module:8 Contemporary issues 2 hours		5 3011	and rispon rus steady state simulation rispon riysys dy		511			
- NG liquefaction - Module:8 Contemporary issues 2 hours	Module:7	Case S	Studies: (Un)Steady State Process Simulation				6 ho	ours
- NG liquefaction - Module:8 Contemporary issues 2 hours					_			
- Module:8 Contemporary issues 2 hours)steady state simulation: Any process such as Ammonia pl	ant -	Bio	diese	el pl	ant
	- NG liquefac	ction						
	Module:8	Conte	mporary issues				2 h	01115

То				l				
Total Lecture hours45 hours								
Text Books								
1. Robin S., Chemical Process Design and Integration, 2 nd ed., Wiley, USA, 2016.								
Babu B.V., Process Plant Simulation	on, 1 st ed., Oxford	Universit	y Press, India	, 2004.				
ence Books								
Vesterberg A.W., Hutchison H.P.	, Motard R.L., V	Vinter P.,	Process Flow	v sheeting, 1 st ed.,				
Cambridge Press, UK, 2011.								
Richard T., Analysis, Synthesis and	d Design of Chem	ical Proce	esses, 1 st ed., F	Pearson Education				
nternational, USA, 2009.								
of evaluation: Continuous Assess	ment Test, Quizze	es, Assign	ments, Final A	Assessment Test				
nmended by Board of Studies	15-04-2019							
oved by Academic Council	55 th	Date	13-06-2019					
	obin S., Chemical Process Design abu B.V., Process Plant Simulation ence Books Vesterberg A.W., Hutchison H.P. ambridge Press, UK, 2011. ichard T., Analysis, Synthesis and iternational, USA, 2009. of evaluation: Continuous Assess imended by Board of Studies	obin S., Chemical Process Design and Integration, 2abu B.V., Process Plant Simulation, 1st ed., Oxfordence BooksVesterberg A.W., Hutchison H.P., Motard R.L., Wambridge Press, UK, 2011.ichard T., Analysis, Synthesis and Design of Chemiternational, USA, 2009.of evaluation: Continuous Assessment Test, Quizzeimmended by Board of Studies15-04-2019	obin S., Chemical Process Design and Integration, 2 nd ed., Wabu B.V., Process Plant Simulation, 1 st ed., Oxford Universitence Books//esterberg A.W., Hutchison H.P., Motard R.L., Winter P.,ambridge Press, UK, 2011.ichard T., Analysis, Synthesis and Design of Chemical Proceiternational, USA, 2009.of evaluation: Continuous Assessment Test, Quizzes, Assignimended by Board of Studies15-04-2019	obin S., Chemical Process Design and Integration, 2nd ed., Wiley, USA, 20abu B.V., Process Plant Simulation, 1st ed., Oxford University Press, India,ence Books//esterberg A.W., Hutchison H.P., Motard R.L., Winter P., Process Flowambridge Press, UK, 2011.ichard T., Analysis, Synthesis and Design of Chemical Processes, 1st ed., Fiternational, USA, 2009.of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Amended by Board of Studies				

Г

1

() annua 4!41 -	CHE3007	L	T	P	J	C
Course title	MULTIPHASE FLOW	3	0	0	0	3
Pre-requisite	CHE1005, CHE1006	S	Sylla	bus	vers	
						1.2
Course Objective	\$:					
2. Formulate mon	oncepts of multiphase systems in the processing industry nentum, energy and material balance models in multiphase s a thinking skills to understand multiphase flows in chemical			es		
Course Outcomes	(((((((((((((((((((((((((((((((((((((((
	te the basic types of multiphase systems in process industries	es				
	e of flow-pattern and flow regimes for fluid-fluid (gas-liqui		d liq	uid-l	liqui	d)
	limensional Steady state models in multiphase flows					
	Flux models two phase system					
5. Formulate and	estimate flow properties for phase change systems					
Design and fab operations	ricate the columns to handle for multiphase system in chemi	ical	engir	neeri	ng	
Module:1 Intro	duction to multiphase flow, type of flow and			91	noui	ſS
appli	cations					
	oncepts: Flow field description - conservation laws - visco				rbul	en
flow – pressure dr	op - Review of Single Phase Flow; Scope and significance -	app	licati	ions		
	pattern maps and Regime		Test		hou	
	r gas-liquid; gas-solid; liquid-liquid; liquid-solid syster cal- Vertical flow; horizontal flow; co-current; counter cu					
liquid-solid three p		11101	it sy	stem	io, C	Jas
<u>[</u>						
· · · · · · · · · · · · · · · · · · ·						
Module:3 One of	limensional steady state flow			9 I	10UI	ſS
	limensional steady state flow nmon Terminologies - simple analytical model - homogeno	us fl	ow r			ſS
Definitions and con	nmon Terminologies - simple analytical model - homogeno	us fl	ow r	node	el.	
Definitions and con Module:4 Drift	nmon Terminologies - simple analytical model - homogeno	us fl	ow r	node		
Definitions and con Module:4 Drift	nmon Terminologies - simple analytical model - homogeno	us fl	low n	node	el.	
Definitions and conModule:4DriftTheory of drift fluxModule:5Separ	nmon Terminologies - simple analytical model - homogeno flux model x model and its application cated flow model			node 4 1	el.	S
Definitions and con Module:4 Drift Theory of drift flux Module:5 Sepan	nmon Terminologies - simple analytical model - homogeno flux model x model and its application			node 4 1	el. nou	S
Definitions and conModule:4DriftTheory of drift fluxModule:5SeparSeparated flow mo	nmon Terminologies - simple analytical model - homogeno flux model x model and its application cated flow model			1 1 4 1 4 1	el. nou	rs rs
Definitions and controlModule:4DriftTheory of drift fluxModule:5SeparatedSeparated flow module:6Two provident flow flow flow flow flow flow flow flow	mmon Terminologies - simple analytical model - homogeno flux model x model and its application cated flow model del for stratified and annular flow; Correction factor and ana			1 1 4 1 4 1	el. noui	rs rs
Definitions and controlModule:4DriftTheory of drift fluxModule:5SeparatedSeparated flow module:6TwoModule:6Two	nmon Terminologies - simple analytical model - homogeno flux model x model and its application cated flow model del for stratified and annular flow; Correction factor and ana phase flow with phase change			4 1 4 1 4 1	el. noui	rs rs
Definitions and controlModule:4DriftTheory of drift fluxModule:5Separated flow module:6Module:6TwoBoiling flow heatModule:7Meas	mmon Terminologies - simple analytical model - homogeno flux model a model and its application cated flow model del for stratified and annular flow; Correction factor and ana phase flow with phase change transfer - regimes - bubble growth	alysi	S	1 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	el. noun noun	rs rs rs
Definitions and conModule:4DriftTheory of drift fluxModule:5SeparatedSeparated flow moModule:6TwoBoiling flow heatModule:7MeasSamplingMethodanalysis	mmon Terminologies - simple analytical model - homogeno flux model a model and its application cated flow model del for stratified and annular flow; Correction factor and ana phase flow with phase change transfer - regimes - bubble growth urement techniques	alysi	S	1 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	el. noun noun	rs rs rs

	Total Lecture hours				45 hours				
Tex	Text Books								
1.	1. Wallis, One Dimensional Two-phase flow, McGraw Hill Book Company,1 st ed., USA, 2000.								
2.	John G.C., John R.T., Convective Boiling and Condensation, Oxford University Press, 3 rd ed.,								
	UK, 2002.								
Ref	erence Books								
1.	Clement K. S., Two Phase Flow -	Theory and Appli	cations, 1	st ed., 7	Taylor and Francis, USA,				
	2003.								
2.	Govier, G.W., Aziz K., The Flow of	of Complex Mixtu	re in Pipe	es, 2^{nd} e	ed., Society of Petroleum				
	Engineers Publishers, USA, 2008.				-				
Mo	de of evaluation: Continuous Assess	sment Test, Quizz	es, Assigr	ments	, Final Assessment Test				
Rec	commended by Board of Studies	15-04-2019							
Ap	proved by Academic Council	55^{th}	Date	13-0	6-2019				
	· · · · ·		•						

Course code	CHE3008	L	Т	P	J	С
Course title	INDUSTRIAL POLLUTION ENGINEERING	3	0	0	0	3
Pre-requisite	NIL	S	Sylla	bus	vers	ion
						1.2
Course Obje						
2. Identify an	e legislation and standards related to air, water and solid wastes in d design treatment equipments for air and water pollution e effective methods of solids waste treatment techniques	n Ind	ian c	onte	ext	
Course Outc	omes (CO):					
 Distinguish Categorize Classify an Differentia 	basics of pollution parameters and characteristics of industrial v types of standards and legislations and resource optimization m sources, types, and control equipment's for industrial air pollution d design methods of wastewater treatment the various solid waste disposal techniques aste treatment flow sheets of various process industries	etho				
N. 1 1. 1					<u>- 1 - </u>	
	Introduction	.f::4	ion		5 n 0	ours
• •	ustries - Characteristics of industrial wastes - Fundamental de					
pollution par	ameters - Effects of industrial pollutants on environment – air, w	ater	and I	and.		
Module:2	Standards and legislation				5 ha	ours
Environmenta - EMP - ISO	I legislations related to prevention and control of industrial efflu 14000 series - Combined treatment of industrial wastewater - R trial symbiosis - waste minimization techniques.					
Module:3	ndustrial air pollution control			,	7 ha	ours
	meteorology (generation, transportation and dispersion of air po	olluta	ants)			
	air pollution control equipment: gravity settling chambers - a					
Module:4	ndustrial waste water treatment				6 ha	ours
	sign and performance analysis of industrial waste water t	reatr	nent			
	Primary - Secondary treatment processes.			1		
-						
	Advanced wastewater treatment				7 ho	
Chemical oxi	dation - Ozonation - Photo catalysis - Wet Air Oxidation - Adso	orptic	on - I	Evap	orat	ion
	e - Membrane Technologies.					
	Hazardous Solid waste management					ours
Classification	of hazardous waste - waste disposal methods - Composting - L	andfi	ill- B	riqu	ettir	ıg -
Gasification -	Incineration.					
Cushieunon						
Module:7	Case studies			1	8 ho	ours

Sources - Characteristics - Waste treatment flow sheets for selected industries such as Textiles -Tanneries - Pharmaceuticals - Electroplating - Pulp and Paper - Refineries - Fertilizer - Thermal power plants - Wastewater reclamation concepts.

Mo	dule:8 Contemporary issues	2 hours
	Total Lecture hours	45 hours
Tex	at Books	
1.	Rao C.S., Environmental Pollution Control Engineering, 3 rd ed., N	ew Age International
	Publishers, India, 2018.	
2.	Karia G.L., Christian R.A., Wastewater Treatment: Concepts and Desi	gn Approach, 2 nd ed.,
	Eastern Economy Edition, India, 2013.	
Ref	Ference Books	
1.	Pollution Control Law Series: PCLS/02/2010, Central Pollution Control	l Board, 6 th ed., India,
	2010.	
2.	Tchobanoglous G., Theisen H., Vigil S.A., Integrated Solid Waster	Management,1 st ed.,
	McGraw Hill Education, India, 2014.	_
3.	Bhatia S.C., Environmental Pollution and Control in Chemical Proce	ss Industries, 2 nd ed.,
	Khanna publishers, India, 2013.	
Mo	de of evaluation: Continuous Assessment Test, Quizzes, Assignments, Fi	nal Assessment Test
Rec	commended by Board of Studies 15-04-2019	
Ap	proved by Academic Council 55 th Date 13-06-2	019

capillary effects 3. Expose the importance of colloidal phenomena through real time e	examples
	I
Course Outcomes (CO):	
1. Understand the concept of the origin of long-range, non-coval	lent colloidal forces (van de
Waals, electrostatic, etc.)2. Explain the link between liquid surface tension and contact angle,	and demonstrate how certain
experimental techniques can be used for the assessment of liquid s	
3. Apply the knowledge of thermodynamics for micellization in surface	actant solutions
4. Describe the thermodynamics of emulsion formation and	calculate the kinetic and
thermodynamic stability of such emulsions5. Design colloidal systems or engineered surfaces of high industrial	or technological interest
6. Explain the interactions between colloids and visible light, as well	
dynamic light scattering	· ··· FF
Module:1 Introduction to Colloid & Interface Science	
	l o noui
	als interactions-The Hamak
Fundamentals of Colloid Science-Colloids: definition-Van der Wa	aals interactions-The Hamake
	aals interactions-The Hamake
Fundamentals of Colloid Science-Colloids: definition-Van der Wa constant-Electrostatic Interactions in Colloids-The electrical double Gibbs energy of electrostatic interactions	aals interactions-The Hamake e layer (EDL)- Zeta potentia
Fundamentals of Colloid Science-Colloids: definition-Van der Wa constant-Electrostatic Interactions in Colloids-The electrical double Gibbs energy of electrostatic interactions Module:2 Surface Tension and Contact Angle	aals interactions-The Hamak e layer (EDL)- Zeta potentia 6 hou
Fundamentals of Colloid Science-Colloids: definition-Van der Wa constant-Electrostatic Interactions in Colloids-The electrical double Gibbs energy of electrostatic interactions	aals interactions-The Hamake e layer (EDL)- Zeta potentia 6 hou
Fundamentals of Colloid Science-Colloids: definition-Van der Wa constant-Electrostatic Interactions in Colloids-The electrical double Gibbs energy of electrostatic interactions Module:2 Surface Tension and Contact Angle Surface tension of liquids-definition-Lewis Acid-Base interactions-Su-Measuring contact angles	aals interactions-The Hamaka e layer (EDL)- Zeta potentia 6 hour urface tension& contact angle
Fundamentals of Colloid Science-Colloids: definition-Van der Wa constant-Electrostatic Interactions in Colloids-The electrical double Gibbs energy of electrostatic interactions Module:2 Surface Tension and Contact Angle Surface tension of liquids-definition-Lewis Acid-Base interactions-Su-Measuring contact angles Module:3 Interactions at Interfaces	aals interactions-The Hamako e layer (EDL)- Zeta potentia 6 hour urface tension& contact angle 5 hour
Fundamentals of Colloid Science-Colloids: definition-Van der Wa constant-Electrostatic Interactions in Colloids-The electrical double Gibbs energy of electrostatic interactions Module:2 Surface Tension and Contact Angle Surface tension of liquids-definition-Lewis Acid-Base interactions-Su-Measuring contact angles	aals interactions-The Hamaka e layer (EDL)- Zeta potentia 6 hour urface tension& contact angle 5 hour
Fundamentals of Colloid Science-Colloids: definition-Van der Wa constant-Electrostatic Interactions in Colloids-The electrical double Gibbs energy of electrostatic interactions Module:2 Surface Tension and Contact Angle Surface tension of liquids-definition-Lewis Acid-Base interactions-Su-Measuring contact angles Module:3 Interactions at Interfaces Surfactants I: definitions and applications-Surfactants II: thermodyna Module:4 Emulsions	aals interactions-The Hamako e layer (EDL)- Zeta potentia 6 hour urface tension& contact angle 5 hour amics-Surface excess 6 hour
Fundamentals of Colloid Science-Colloids: definition-Van der Wa constant-Electrostatic Interactions in Colloids-The electrical double Gibbs energy of electrostatic interactions Module:2 Surface Tension and Contact Angle Surface tension of liquids-definition-Lewis Acid-Base interactions-Su-Measuring contact angles Module:3 Interactions at Interfaces Surfaceants I: definitions and applications-Surfactants II: thermodyna Module:4 Emulsions Definitions and applications-Types of emulsions-Thermodynamics	aals interactions-The Hamaka e layer (EDL)- Zeta potentia 6 hou urface tension& contact angle 5 hou amics-Surface excess 6 hou
Fundamentals of Colloid Science-Colloids: definition-Van der Wa constant-Electrostatic Interactions in Colloids-The electrical double Gibbs energy of electrostatic interactions Module:2 Surface Tension and Contact Angle Surface tension of liquids-definition-Lewis Acid-Base interactions-Su-Measuring contact angles Module:3 Interactions at Interfaces Surfactants I: definitions and applications-Surfactants II: thermodyna Module:4 Emulsions	aals interactions-The Hamak e layer (EDL)- Zeta potentia 6 hou urface tension& contact angl 5 hou amics-Surface excess 6 hou
Fundamentals of Colloid Science-Colloids: definition-Van der Wa constant-Electrostatic Interactions in Colloids-The electrical double Gibbs energy of electrostatic interactions Module:2 Surface Tension and Contact Angle Surface tension of liquids-definition-Lewis Acid-Base interactions-St-Measuring contact angles Module:3 Interactions at Interfaces Surfactants I: definitions and applications-Surfactants II: thermodyna Module:4 Emulsions Definitions and applications-Types of emulsions-Thermodynamics	aals interactions-The Hamak e layer (EDL)- Zeta potentia 6 hou urface tension& contact angle 5 hou amics-Surface excess 6 hou s of emulsification-Emulsio
Fundamentals of Colloid Science-Colloids: definition-Van der Wa constant-Electrostatic Interactions in Colloids-The electrical double Gibbs energy of electrostatic interactions Module:2 Surface Tension and Contact Angle Surface tension of liquids-definition-Lewis Acid-Base interactions-Su-Measuring contact angles Module:3 Interactions at Interfaces Surfaceants I: definitions and applications-Surfactants II: thermodyna Module:4 Emulsions Definitions and applications-Types of emulsions-Thermodynamics	aals interactions-The Hamak e layer (EDL)- Zeta potentia 6 hour urface tension& contact angle 5 hour amics-Surface excess 6 hour s of emulsification-Emulsio 7 hour
Fundamentals of Colloid Science-Colloids: definition-Van der Wa constant-Electrostatic Interactions in Colloids-The electrical double Gibbs energy of electrostatic interactions Module:2 Surface Tension and Contact Angle Surface tension of liquids-definition-Lewis Acid-Base interactions-Su-Measuring contact angles Module:3 Interactions at Interfaces Surfaceations and applications-Surfactants II: thermodyna Module:4 Emulsions Definitions and applications-Types of emulsions-Thermodynamics stability	aals interactions-The Hamak e layer (EDL)- Zeta potentia 6 hour urface tension& contact angle 5 hour amics-Surface excess 6 hour s of emulsification-Emulsio 7 hour
Fundamentals of Colloid Science-Colloids: definition-Van der Wa constant-Electrostatic Interactions in Colloids-The electrical double Gibbs energy of electrostatic interactions Module:2 Surface Tension and Contact Angle Surface tension of liquids-definition-Lewis Acid-Base interactions-Si-Measuring contact angles Module:3 Interactions at Interfaces Surfactants I: definitions and applications-Surfactants II: thermodyna Module:4 Emulsions Definitions and applications-Types of emulsions-Thermodynamics stability Module:5 Design of Interfacial science Adsorption-Models of adsorption-Adsorption at the solid-liquid liquid-air interface-Adsorption at the solid-air interface	aals interactions-The Hamak e layer (EDL)- Zeta potentia 6 hour urface tension& contact angle 5 hour amics-Surface excess 6 hour s of emulsification-Emulsio 7 hour interface-Adsorption at the
Fundamentals of Colloid Science-Colloids: definition-Van der Wa constant-Electrostatic Interactions in Colloids-The electrical double Gibbs energy of electrostatic interactions Module:2 Surface Tension and Contact Angle Surface tension of liquids-definition-Lewis Acid-Base interactions-Su-Measuring contact angles Module:3 Interactions at Interfaces Surfactants I: definitions and applications-Surfactants II: thermodyna Module:4 Emulsions Definitions and applications-Types of emulsions-Thermodynamics stability Module:5 Design of Interfacial science Adsorption-Models of adsorption-Adsorption at the solid-liquid liquid-air interface-Adsorption at the solid-air interface Module:6 Principles of Light Scattering	aals interactions-The Hamak e layer (EDL)- Zeta potentia 6 hou urface tension& contact angl 5 hou amics-Surface excess 6 hou s of emulsification-Emulsio 7 hou interface-Adsorption at the 6 hou
Fundamentals of Colloid Science-Colloids: definition-Van der Wa constant-Electrostatic Interactions in Colloids-The electrical double Gibbs energy of electrostatic interactions Module:2 Surface Tension and Contact Angle Surface tension of liquids-definition-Lewis Acid-Base interactions-Si-Measuring contact angles Module:3 Interactions at Interfaces Surfactants I: definitions and applications-Surfactants II: thermodyna Module:4 Emulsions Definitions and applications-Types of emulsions-Thermodynamics stability Module:5 Design of Interfacial science Adsorption-Models of adsorption-Adsorption at the solid-liquid liquid-air interface-Adsorption at the solid-air interface	aals interactions-The Hamak e layer (EDL)- Zeta potentia 6 hou urface tension& contact angl 5 hou amics-Surface excess 6 hou s of emulsification-Emulsio 7 hou interface-Adsorption at the 6 hou

Course code	CHE3010	L	Τ	P	J	С
Course title	COLLOIDS AND INTERFACIAL SCIENCE	3	0	0	0	3
Pre-requisite	NIL	S	ylla	bus	vers	sion
						1.0

Modul	:7 Application of Coll phenomena	oids and Inte	rfacial		7 hours
Colloid		ena in biology-I	Photovoltai	c-Water	treatment-Medicine-
Tribolo	gy-Engineering	0.			
Modul	:8 Contemporary issues				2 hours
	Tot	al Lecture hours			45 hours
Text B	ooks				
1. W	ng C., Leblanc R.M., Recent F	Progress in Colloid	and Surfac	e Chemist	ry, 1 st ed., Oxford
	iversity Press Inc., UK, 2016				
2. Bi	di K.S., Handbook of Surface	and Colloid Chemi	stry, 4 th ed.	, CRC Pre	ess., India, 2015
Refere	nce Books				
1. Hi	emenz P.C., Rajagopalan R., P	rinciples of Colloid	d and Surfa	ice Chemi	stry, 3 rd ed., CRC
	ss, USA, 1997				
2. Rh	odes M., Introduction to Partic	le Technology, 2 nd	ed., Wiley	Publicatio	ons, USA, 2008
Mode of	f evaluation: Continuous Asses	ssment Test, Quizze	es, Assignn	nents, Fina	al Assessment Test
Recom	nended by Board of Studies	15-04-2019			
Approv	ed by Academic Council	55 th	Date	13-06-20	19

CHE4002	L	Т	Р	J	С
TRANSPORT PHENOMENA	3	0	0	0	3
CHE1006, CHE3003	S	ylla	bus	vers	sion
					1.2
-	TRANSPORT PHENOMENA	TRANSPORT PHENOMENA 3	TRANSPORT PHENOMENA30	TRANSPORT PHENOMENA30	TRANSPORT PHENOMENA300

- 1. Emphasis the basic concepts of transport phenomena, the similarities of the governing relations of momentum, heat, and mass transfer
- 2. Solve appropriate differential equations such as momentum, thermal energy, and mass species balance, accounting convective and diffusive (molecular-scale) fluxes, with sources and sinks to obtain velocity, temperature and concentration profiles
- 3. Develop design thinking skills to solve various kinds of application oriented problems faced in chemical industries using analytical techniques

Course Outcomes (CO):

- 1. Understand and relate transport properties of molecular transfer of momentum, energy and mass transport.
- 2. Solve and physically interpret one-dimensional steady state momentum transfer, heat conduction and species diffusion problems
- 3. Make use of Navier-Stoke's equation with right boundary conditions to examine the problems related to fluid, heat and mass transfer
- 4. Evaluate the interphase transport properties for internal flow and external flow and estimate powere that required for fluid flow
- 5. Understand simultaneous heat, mass and momentum transfer analysis
- 6. Formulate and solve industrial problems along with appropriate approximations and boundary conditions

Module:1Transport by Molecular Motion6 hoursPhenomenological laws of transport properties - Newtonian and non-Newtonian fluids;
Rheological models - theories of transport properties of gases and liquids - effect of pressure and
temperature - Transport analogy6 hours

Module:2 Vector and tensor analysis

Vector - coordinate system - time derivatives

Module:3 1D Viscous Flow – Shell Balance

General method of shell balance approach to transfer problems; boundary conditions - rectilinear flow - curvilinear flow - momentum flux and velocity distribution - Newtonian fluids - non-Newtonian fluids - pipe - annular flow

Module:4 Equations of Change

Equation of Motion and Continuity - Integral Conservation Equations- Navier-Stokes and Euler Equation Constitutive relation - Dimensional analysis – Applications.

Module:5	Turbulent Flow and Interphase momentum transfer
----------	---

8 hours

2 hours

8 hours

Turbulent models - RANS equation - Reynolds stresses; Internal flow- External flow - Boundary Layer Theory - Isothermal System - Flow through conduits - Empirical correlation – friction factor, drag coefficient - Ergun Equation - Flow through porous media

Module:6Heat Transfer by conduction and convection6 hoursShell Balance - Equations of energy - Heat Transfer coefficient - COMSOL Simulation

Module:7 Mass Transfer

Microscopic balances - General equations Boundary conditions - Mass transfer co-efficient, Homogeneous reaction, Fixed bed catalytic reactor - steady state system.

Module:8 Contemporary issues

2 hours

5 hours

	Tot	al Lecture hours			45 hours
Te	xt Books				
1.	Bird R. B., Stewart W. E., Lightf	oot E. N., Transpo	ort Phenor	mena, 2 nd ed	l., John Wiley &
	Sons Inc., USA. 2012.				
2.	Wick C.E., Welty J., Wilson R.E.		Moment	um, heat and	d Mass Transfer,
	5 th ed., John Wiley & Sons Inc., U	SA, 2016.	\sim		
Ref	ference Books				
1.	Thomson W.J., Introduction to Tra	Insport Phenomena	a, Pearson	Education A	Asia, India, 2001.
2.	William M. Dean, Analysis of Tra	nsport Phenomena	, Oxford	University P	ress, India, 2011.
Mo	de of evaluation: Continuous Assess	sment Test, Quizz	es, Assigr	ments, Final	Assessment Test
Rec	commended by Board of Studies	15-04-2019			
Ap	proved by Academic Council	55 th	Date	13-06-201	9

Course code	CHE4003	L	Τ	P	J	С
Course title	MODELLING AND SIMULATION IN PROCESS	2 0 2 0				3
	ENGINEERING					
Pre-requisite	CHE3001	S	ylla	bus	vers	sion
						2.2
Course Objective	es:					

- 1. Explain the representation and simulation of physical systems using a mathematical formulations
- 2. Develop the typical mathematical models for the chemical process industries
- 3. Enhance the skill of engineering software applications which illustrate a variety of modelling techniques

Course Outcomes (CO):

- 1. Demonstrate the basic principles of chemical engineering for modeling of chemical system
- 2. Apply mathematical tools to solve model equations
- 3. Analyze the linear steady state and un-steady state lumped system of process industries
- 4. Construct the model equations for the Chemical Engineering system
- 5. Evaluate the model solving ability for various unit processes and unit operations
- 6. Execute the algorithm for different chemical engineering systems

Module:1 Modeling Conservative Principles and Models

Introduction of process modeling; definition of modelling and simulation; different types of models; application of mathematical modeling; Fundamental Laws – Continuity equation, energy equation, and equation of motion, transport equation, equation of state, phase and chemical equilibrium, chemical kinetics

Module:2 Steady State Lumped Systems

Degree of freedom analysis; single and network of process units; systems yielding linear and nonlinear algebraic equations; solution of linear and non-linear algebraic equations

Module:3 Flow Sheeting and Process design

Steady state flow sheeting; approach to flow sheeting systems; introduction to sequential modular approach; simultaneous modular approach and equation solving approach; nested insideout algorithms

Module:4 Unsteady State Lumped Systems

Microscopic balances for Unsteady state and dynamic simulation–liquid level tank–gravity flow tank–jacketed stirred tank heater; Isothermal and Non-isothermal reactors–flash and distillation column; Solution of ODE initial value problems

Module:5 Dynamic Simulation of Unsteady State Lumped Systems

5 hours

Solution of ODE initial value problems; matrix differential equations; simulation of closed loop systems

Module:6 Process Modeling of Distributed Systems

4 hours

4 hours

4 hours

4 hours

Analysis of compressible flow; heat exchanger; plug flow reactor; solution of ODE boundary value problems –Sedimentation–Heat conduction–Diffusion; classification and solution of partial differential equations

Module:7	Process mode	ling	of dis	stribu	ited sys	stems-II					3 hours
Pressure	vessels–Stresses	in	thin	and	thick	cylindrical	shell	due	to	internal	pressure-
Circumfere	ential and longitu	dina	l stres	sses –	Spheri	cal shells sul	bjected	to int	erna	al pressure	e

Module:8 Contemporary issues

2 hours

Т

	Total Lect	ure hours			30 hours
Tex	t Books			1	
1.	Varma A.K., Process Modellin Environmental Engineering, 1 st ed			nemical,	Biochemical and
2.	Bequette B.W., Process Dynamic Hall Inc., USA, 2010.	s: Modeling, Anal	ysis and S	Simulation	, 1 st ed., Prentice
Ref	erence Books				
1.	Luyben W.L., Process Modelling S	Simulation and Cor	ntrol, 3 rd e	d., McGra	w-Hill, USA, 1996.
2.	Ramirez W., Computational Methe				
	USA, 2005.				1.4
Mo	de of evaluation: Continuous Asses	sment Test, Quizze	es, Assignt	nents, Fina	al Assessment Test
	oratory Experiments				
1.	Develop and solve the object Algebric equations	ive function for rea	action syst	em using	2 hours
2.	Develop mathematical mode	l for two interactin	g tanks in	series	2 hours
3.	Design the jacketed stirred ta	nk heater	•		2 hours
4.	Optimization of Van de-Vus reactor operation	se reaction kinetics	s using sen	ni-batch	2 hours
5.	Determination of kinetic rate	of non-isothermal	CSTRs in	series	2 hours
6.	Design and Develop the obje	ctive functions for	Biochemi	cal reactor	2 hours
7.	Analyze the mixing performa	ance of reactant in	mixing tar	ık	2 hours
8.	Simulation of unsteady state	heat conduction ec	uation usi	ng MatLa	b 2 hours
9.	Solve the elliptic PDE using	PDE toolbox			2 hours
10.	Solve the parabolic PDE usin	ng PDE toolbox			2 hours
		oratory Hours			20 hours
	de of evaluation: Continuous Asses		es, Assignr	nents, Fina	al Assessment Test
	commended by Board of Studies	15-04-2019			
App	proved by Academic Council	55 th	Date	13-06-20	19

Course code	CHE4005	L	T	P	Ĵ	C
Course title	FLUIDIZATION ENGINEERING	3	0	0	0	3
Pre-requisite	Nil	S	ylla	bus	vers	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						1.2
Course Object	ives:					
2. Describe the	physical and chemical concepts aspects of fluidization process various fluidization regimes and their models rious units of fluidized bed widely used in industrial practice					
Course Outco	mes (CO):					
 2. Elucidate the 3. Determine m 4. Design suital 5. Apply variou 	he behavior of fluidization under various operating conditions e various industrial applications of fluidization inimum fluidization velocity and terminal velocity ble gas distributor for fluidized beds us models for designing the fluidized bed systems performance of various fluidized bed systems					
Module:1 In	troduction to Fluidization				7 h	
Methods - Adv	antages and Disadvantages of Fluidized Beds - Industrial Appl al Highlights - Physical Operation - Chemical Operations.					ing
Methods - Adv Beds - Historica Module:2 Cl	idization - Special Features of Fluidization - Comparison wa antages and Disadvantages of Fluidized Beds - Industrial Appl	icati	ons			zed
Methods - Adv Beds - Historica Module:2 Cl Gross Behavior	 idization - Special Features of Fluidization - Comparison we antages and Disadvantages of Fluidized Beds - Industrial Apple al Highlights - Physical Operation - Chemical Operations. haracterization of Fluidization I of Fluidized Beds – Minimum and Terminal Velocities in Fluidized Physical PhysicaPhysical Physical PhysicaPhysicaPhysicaPhysicaPhysicaPhysicaPhy	icati	ons	of F	luidi 6 ho	zed
Methods - Adv Beds - Historica Module:2 Cl Gross Behavior Module:3 Cl	 idization - Special Features of Fluidization - Comparison we antages and Disadvantages of Fluidized Beds - Industrial Apple al Highlights - Physical Operation - Chemical Operations. haracterization of Fluidization I of Fluidized Beds – Minimum and Terminal Velocities in Fluidized haracterization of Fluidization II haracterization of Fluidization II 	icati dizeo	ons d Be	of F	luidi 6 ho 6 ho	urs
Methods - Adv Beds - Historic Module:2 Cl Gross Behavior Module:3 Cl Geldart Classif Power Consum	 idization - Special Features of Fluidization - Comparison we antages and Disadvantages of Fluidized Beds - Industrial Apple al Highlights - Physical Operation - Chemical Operations. haracterization of Fluidization I of Fluidized Beds – Minimum and Terminal Velocities in Fluidized haracterization of Fluidization II ications of Particles – Mapping of Fluidization Regions – Desi ption 	icati dizeo	ons d Be	of F	6 ho 6 ho outor	urs urs
Methods - Adv Beds - Historic Module:2 Cl Gross Behavior Module:3 Cl Geldart Classif Power Consum Module:4 Bu	 idization - Special Features of Fluidization - Comparison we antages and Disadvantages of Fluidized Beds - Industrial Apple al Highlights - Physical Operation - Chemical Operations. haracterization of Fluidization I of Fluidized Beds – Minimum and Terminal Velocities in Fluidization of Fluidization II ications of Particles – Mapping of Fluidization Regions – Desi ption 	icati dized gn c	ons d Be	of F	6 ho butor 7 ho	urs urs urs
Methods - Adv Beds - Historic Module:2 Cl Gross Behavior Module:3 Cl Geldart Classif Power Consum Module:4 Bu Bubbles in Der Formation abov	 idization - Special Features of Fluidization - Comparison we antages and Disadvantages of Fluidized Beds - Industrial Apple al Highlights - Physical Operation - Chemical Operations. haracterization of Fluidization I of Fluidized Beds – Minimum and Terminal Velocities in Fluidized haracterization of Fluidization II ications of Particles – Mapping of Fluidization Regions – Desi ption 	icati dized gn c	ons d Be	of F	6 ho 6 ho outor 7 ho	urs urs urs
Methods - Adv Beds - Historic Module:2 Cl Gross Behavior Module:3 Cl Geldart Classif Power Consum Module:4 Bu Bubbles in Der Formation abov Bed Properties	 idization - Special Features of Fluidization - Comparison we antages and Disadvantages of Fluidized Beds - Industrial Apple al Highlights - Physical Operation - Chemical Operations. haracterization of Fluidization I of Fluidized Beds – Minimum and Terminal Velocities in Fluidized haracterization of Fluidization II ications of Particles – Mapping of Fluidization Regions – Desi ption ubble Mechanics in Fluidized Beds nse Beds - Single Rising Bubble - Coalescence and Splitting of we a Distributor. Bubbling Fluidized Beds - Experimental Find 	icati dized gn c	ons d Be	of F	6 ho 6 ho outor 7 ho	urs urs s – urs
Methods - Adv Beds - Historic Module:2 Cl Gross Behavior Module:3 Cl Geldart Classif Power Consum Module:4 Bu Bubbles in Der Formation abov Bed Properties Module:5 En Free Board Be	 idization - Special Features of Fluidization - Comparison we antages and Disadvantages of Fluidized Beds - Industrial Appleal Highlights - Physical Operation - Chemical Operations. haracterization of Fluidization I of Fluidized Beds – Minimum and Terminal Velocities in Fluidizations of Particles – Mapping of Fluidization Regions – Desiption hable Mechanics in Fluidized Beds nse Beds - Single Rising Bubble - Coalescence and Splitting of ve a Distributor. Bubbling Fluidized Beds - Experimental Find - Bubbling Bed Model 	dized dized gn c bf B lings	ons d Be of Di ubble s - E	of F.	6 ho 6 ho utor 7 ho But ation 6 ho	urs urs s – urs ble n of
Methods - Adv Beds - Historic Module:2 Cl Gross Behavior Module:3 Cl Geldart Classif Power Consum Module:4 Bu Bubbles in Der Formation abov Bed Properties Module:5 En Free Board Be Pattern of Gase	 idization - Special Features of Fluidization - Comparison we antages and Disadvantages of Fluidized Beds - Industrial Appleal Highlights - Physical Operation - Chemical Operations. haracterization of Fluidization I of Fluidized Beds – Minimum and Terminal Velocities in Fluidized Beds – Mapping of Fluidization Regions – Desiption hable Mechanics in Fluidized Beds hase Beds - Single Rising Bubble - Coalescence and Splitting of ve a Distributor. Bubbling Fluidized Beds - Experimental Find Bubbling Bed Model harainment and Elutriation 	dized dized gn c bf B lings	ons d Be of Di ubble s - E	of F ds strib es – stim	6 ho 6 ho utor 7 ho But ation 6 ho	urs urs urs s – urs bble n of urs w
Methods - Adv Beds - Historic Module:2 Cl Gross Behavior Module:3 Cl Geldart Classif Power Consum Module:4 Bu Bubbles in Der Formation abov Bed Properties Module:5 En Free Board Be Pattern of Gase Module:6 Ho Heat Transfer b	 aidization - Special Features of Fluidization - Comparison we antages and Disadvantages of Fluidized Beds - Industrial Apple al Highlights - Physical Operation - Chemical Operations. haracterization of Fluidization I of Fluidized Beds – Minimum and Terminal Velocities in Fluidized beds – Mapping of Fluidization Regions – Desi ption abble Mechanics in Fluidized Beds nse Beds - Single Rising Bubble - Coalescence and Splitting of ve a Distributor. Bubbling Fluidized Beds - Experimental Find - Bubbling Bed Model harainment and Elutriation havior - Entertainment from Tall and Short Vessels. Constant s through Fluidized Beds - Solid Movement - Mixing, Segregat 	dized dized gn c of B lings t A lings	ons d Be of Di ubble s - E ppro and S	of F	6 ho 6 ho utor 7 ho But ation 6 ho Flo Flo S ho	urs urs s – urs bble n of urs w
Methods - Adv Beds - Historic Module:2 Cl Gross Behavior Module:3 Cl Geldart Classif Power Consum Module:4 Bu Bubbles in Der Formation abov Bed Properties Module:5 En Free Board Be Pattern of Gase Module:6 He Heat Transfer betwee	 idization - Special Features of Fluidization - Comparison we antages and Disadvantages of Fluidized Beds - Industrial Appl al Highlights - Physical Operation - Chemical Operations. haracterization of Fluidization I of Fluidized Beds – Minimum and Terminal Velocities in Fluidizations of Particles – Mapping of Fluidization Regions – Desi ption ubble Mechanics in Fluidized Beds nse Beds - Single Rising Bubble - Coalescence and Splitting of a Distributor. Bubbling Fluidized Beds - Experimental Find - Bubbling Bed Model ntrainment and Elutriation havior - Entertainment from Tall and Short Vessels. Constants through Fluidized Beds - Solid Movement - Mixing, Segregat eat Transfer in Fluidized Beds between Fluid and Solid - Determination and Interpretation of Fluidized Beds and Surface - Experimental Findings and The 	dized dized gn c of B lings t A lings	ons d Be of Di ubble s - E ppro and S	of F ds strib es – stim ach. Stagi	6 ho 6 ho utor 7 ho Bub ation 6 ho Flo ng 5 ho . He ies	urs urs s – urs oble n of urs w
Methods - Adv Beds - Historic Module:2 Cl Gross Behavior Module:3 Cl Geldart Classif Power Consum Module:4 Bu Bubbles in Der Formation abov Bed Properties Module:5 En Free Board Be Pattern of Gase Module:6 Ho Heat Transfer betwee Module:7 M	antages and Disadvantages of Fluidization - Comparison we antages and Disadvantages of Fluidized Beds - Industrial Apple al Highlights - Physical Operation - Chemical Operations. haracterization of Fluidization I • of Fluidized Beds – Minimum and Terminal Velocities in Fluidications of Particles – Mapping of Fluidization Regions – Desiption abble Mechanics in Fluidized Beds • ness Beds - Single Rising Bubble - Coalescence and Splitting of ve a Distributor. Bubbling Fluidized Beds - Experimental Find - Bubbling Bed Model • ntrainment and Elutriation havior - Entertainment from Tall and Short Vessels. Constants through Fluidized Beds - Solid Movement - Mixing, Segregat • eat Transfer in Fluidized Beds • optimized Beds - Solid Movement - Mixing, Segregat • optimized Beds • optimized Be	icati dized gn c of B lings tat A leat eoret	ons d Be of Di ubbla s - E ppro and S Tran ical	of F ds strib es – stim ach. Stagi	6 ho 6 ho 6 ho 10 10 10 10 10 10 10 10 10 10	urs urs urs blo n o urs w

Mo	dule:8	Contemporary issues			2 hours		
	Total Lecture hours45 hours						
Tex	kt Books	5					
1.	Kunii 2013.	D., Levenspiel O., Fluidiza	tion Engineering,	2^{nd} ed., B	utterworth Heinemann, UK,		
2.	2. Yang W.C., Handbook of Fluidization and Fluid – Particle System, 1 st ed., CRC Press, USA, 2003.						
Ref	erence l	Books					
1.	Grace 3 2011.	J.R., Avidan A.A., Knowlto	n T.M., Circulatin	ıg Fluidize	d Beds, 1 st ed., Springer, USA,		
2.	L.G. G	ibilaro, Fluidization Dynam	ics, 1 st ed., Buttery	worth Heir	nemann, UK, 2001.		
Mo	de of eva	aluation: Continuous Assess	sment Test, Quizze	es, Assigni	ments, Final Assessment Test		
Rec	commen	ded by Board of Studies	15-04-2019				
App	proved b	y Academic Council	55 th	Date	13-06-2019		

Course code	CHE4006		L	Τ	Р	J	С
Course title	Introduction to Molecular Dynamics and Si	mulation	3	0	0	0	3
Pre-requisite	CHE1003, CHE3001		S	ylla	bus '	vers	ion
							1.0
Course Object	ctives:						
	nolecular simulation techniques used in soft matter in	n atomic tin	ne ar	nd le	ngth	scal	les
2. Understand	the basics of Molecular Dynamics simulation						
3. Demonstrat	te the predictive capabilities of these methods by cons	idering a se	et of	case	-stuc	lies	
Course Outco	omes (CO):						
1. Choose app	ropriate potentials for a system of interest						
	arious ensembles and demonstrate importance of the	rmodynami	c pr	oper	ies		
	n bonded and bonded interaction and experiment with						
	the MD algorithm and contrast different integration			-			
	Bromacs terminologies						
6. Estimate th	e dynamic properties of proteins, lipids and surfactan	ts					
Module:1 N	Model potentials	5 hours					
Electronic, atc	omic, molecular soft matter examples; Interaction pot	entials- Red	luced	l uni	ts		
Module:2	Statistical Mechanics	7 hours					
Statistical en	sembles; Thermodynamic averages fluctuations;	Structural	q	uanti	ties;	T	ime
correlation fur	nctions and transport coefficients						
	(, V						
	Basics of Molecular dynamics simulations	8 hours					
	Interactions; Bonded interaction; Force Fields; Period	ic Box and	Min	imur	n Im	age	
Convention; I	Long Range Forces						
	Molecular dynamics strategy	5 hours					
	gorithms for velocity and acceleration updates; Diff	erent types	of t	thern	nosta	ats a	ind
barostats							
	Steps involved in GROMACS	6 hours					
	, , 1	ilibration o		-			
pressure; Prod	luction- Sampling- Analysis validation simulated valu	les with exp	perir	nent	al va	lues	
		4.1					
Module:6	Over view of GROMACS Files	4 hours	<u> </u>				
1	re files visualization by VMD- Input files require	ed for MD	S11	nula	tion-	· Pc	ost
mano occasiona	output files						
processing of							
	Case Study using MD Simulation	8 hours					
Module:7 (Case Study using MD Simulation	8 hours					
Module:7 (Case Study using MD Simulation						
Module:7 (MD Simulatio				nour			

Course code	CHE4007	L	Т	Р	J	С
Course title	RHEOLOGY OF COMPLEX FLUIDS	3	0	0	0	3
Pre-requisite	NIL	S	ylla	bus	vers	sion
						1.0

- 1. Make student aware about complex fluids and structure length scales in polymeric and colloidal systems
- 2. Provide basic knowledge of the physics behind colloidal systems
- 3. Impart basic knowledge of the physics behind polymeric solutions and its rheological behavior with concentration and temperature

Course Outcomes (CO):

- 1. Distinguish among viscous, elastic and viscoelastic behavior of fluids
- 2. Explain the basic forces that give rise to complex fluid behavior
- 3. Identify non-linear viscoelastic properties of materials and their corresponding behavior
- 4. Measure extensional behavior of complex fluids
- 5. Apply rheological behavior of colloidal system for various applications
- 6. Apply rheological behavior of polymeric system for various applications

Module:1	Elastic Solid and Viscous liquid	4 hours
Stress tenso	r - Principal stresses - Finite deformation tensor - Neo-Hookean sol	id; Velocity
gradient, ge	neral viscous fluid, plastic behaviour.	
Module:2	Complex fluid and forces	5 hours
Complex fl	uids - examples, pertinent length scales, common features & app	olications; Forces –
basics force	es that drive the dynamics and behavior - steric, van der Waals, elec	trostatic etc.
Module:3	Linear Viscoelasticity	6 hours
Introduction	n, models - Kelvin, Maxwell; Linear viscoelasticity in three dimen	nsions - differential
form; Stress	s relaxation, creep, oscillation.	
Module:4	Nonlinear Viscoelasticity	7 hours
	Nonlinear Viscoelasticity henomenon, normal stress, shear thinning, extensional thickening; S	
Nonlinear p		Second order fluid -
Nonlinear p	henomenon, normal stress, shear thinning, extensional thickening; S	Second order fluid -
Nonlinear p	henomenon, normal stress, shear thinning, extensional thickening; S	Second order fluid -
Nonlinear p Upper-Conv Module:5	henomenon, normal stress, shear thinning, extensional thickening; s vected Maxwell Equation, Lodge Integral Equation, Integral Constit	Second order fluid - tutive Equations. 7 hours
Nonlinear p Upper-Con Module:5 Introduction	henomenon, normal stress, shear thinning, extensional thickening; svected Maxwell Equation, Lodge Integral Equation, Integral Constit Extensional Viscosity	Second order fluid - tutive Equations. 7 hours stretching method,
Nonlinear p Upper-Conv Module:5 Introduction	henomenon, normal stress, shear thinning, extensional thickening; sected Maxwell Equation, Lodge Integral Equation, Integral Constitution Extensional Viscosity n - Importance, theory; Experimental methods - Homogeneous	Second order fluid - tutive Equations. 7 hours stretching method,

Introduction, viscosity of suspension of solid particles in Newtonian fluids, colloidal contribution to viscosity, viscoelastic properties of suspension.

Module	e:7 Rheology of Polymeric Liquids	7 hours
Introdu	ction, polymer chain conformation, zero shear viscosity, rheology	of dilute polymer
solution	; Concentrated Solutions and Melts - Temperature Dependence.	
Module	e:8 Contemporary issues	2 hours
	Total Lecture hours	45 hours
Text Bo	ooks	
	espande A.P., Krishnan J.M., Sunil Kumar P.B., Rheology of Complex ringer-Verlag, USA, 2010.	Fluids, 1 st ed.,
	acosko C.W., Rheology: Principles, Measurements and Application, 9 th plications, USA, 2015.	¹ ed., Wiley-VCH
Referen	nce Books	
1. Bai 201	rnes H.A., Hutton J.F., Walters K., An Introduction to Rheology, 17	th ed., Elsevier, UK,
	rson R.G., The Structure and Rheology of Complex Fluids, 1 st ed. ess, UK, 1999.	, Oxford University
Mode o	f evaluation: Continuous Assessment Test, Quizzes, Assignments, Fina	al Assessment Test

mode of evaluation. Continuous risses	ment rest, Quille	es, 1 1991911	mentes, i mai i issessiment i e	5
Recommended by Board of Studies	15-04-2019			
Approved by Academic Council	55 th	Date	13-06-2019	

CHY1004	Materials & Instrumental Tec	chniques	L T P J C
D			
Pre-requisite	Chemistry of 12 th standard or equivalent	t	Syllabus version
Course Objective	6 •		v. 2.0
*	and the chemistry of engineering materials ar	nd the correlation	hetween structure
and propert		id the correlation	between structure
1 1	e analytical capability of students by using in	strumental analyti	ical techniques
Course Outcomes			
alloys.	ructure, hardening mechanisms, phase behav		s of selected
	d formulate composite materials and lubrican	nts.	
-	ethods to synthesize nanomaterials.		
	ructures of carbon nanomaterials and apply t		n mathada
-	d describe semiconductor materials and solar metals like iron, sodium and potassium using		
photometry		g colorined y and	finance emission
	ystalline samples employing powder X-ray d	iffraction using th	e skills learnt in
the class.		-	
	nd describe morphology and composition of a	materials by SEM	, EDX and TEM
techniques.			
Module:1 Meta	ls and Alloys		4 hours
	y - metallic structures and properties – phase	behaviour of iron-	
hardening mechan	isms of steel –shape memory alloys		
Madada Carrie			
	posite Materials and Lubricants	motol motrix oor	6 hours
	s of composites - polymer matrix composites ; applications of composites in automobiles a		
	fication, properties and mechanism of differe		
Module:3 Nano			6 hours
	terials - unique properties of nanomaterials		· · · ·
	CdSe nanocrystals and silver nanoparticles;		
synthesis of coppe	n-up approaches- high-energy ball millin	g, soi-gei memo	a, solution phase
• •	ation by laser evaporation and arc methods	s, properties of f	ullerenes and their
applications		, rr or i	
	materials - II		6 hours
	and graphene- preparation of carbon nanotul	•	
	and CVD, properties and applications of carb		
	rties and applications;engineering applicatior nical systems (NEMS)	is of nanomaterial	18,
nanociectionicella			

Module:5	Semiconductor Materials and Solar Energy Conversion	11 hours
	- Fermi level; importance of silicon - silicon wafer prep	
in prepara	c grade silicon, single crystal silicon, float zone technique ation of complementary metal-oxide-semiconductor (CM	OS) IC - photolithography, wet
	plasma etching, ion implantation, metalation, thin film de	
	rgy conversion methods - principles and devices – photo d junction solar cell, multiple junction solar cell, dye-sen	
Module:6	Spectroscopic Techniques	5 hours
Interactio	n between electromagnetic radiation and matter – absorp	tion and emission
	opy-Beer-Lambert law; spectrometric instrumentation p	
	pectroscopy; colorimetric determination of Iron in steel;	1
	opy-principle, instrumentation and determination of lead	
	nissions photometry-principle, instrumentation and deterr	nination of Na and K present
in water		
Module:7	Diffraction and Microscopic Techniques	5 hours
	ray diffraction - principle and instrumentation; XRD path	
	y - TEM, SEM, SEM-EDAX - principle, instr	
	zation of metal nanoparticles using electron microscopy	une appreadon,
enaraetern		
Module:8	Contemporary Issues	2 hours
Module:8 Lecture by		2 hours
	Contemporary Issues Industry Experts	2 hours
	Total Lecture hours:	
Lecture by Text Bool	Total Lecture hours: (s) ey D. Fahlman, "Materials Chemistry", 2011, 2 nd Edition	45 hours
Lecture by Text Bool 1. Bradl New 2. Gary	Total Lecture hours: (s) ey D. Fahlman, "Materials Chemistry", 2011, 2 nd Edition	45 hours
Lecture by Text Bool 1. Bradl New 2. Gary	Total Lecture hours: (s) ey D. Fahlman, "Materials Chemistry", 2011, 2 nd Edition York. D. Christian, Purnendu K. Dasgupta, Kevin A. Schug, "A lition, John Wiley & Sons, Inc., New York.	45 hours , Springer Publications,
Lecture by Text Bool 1. Bradl New 2. Gary 7 th Ed Reference	Total Lecture hours: Total Lecture hours: (s) ey D. Fahlman, "Materials Chemistry", 2011, 2 nd Edition York. D. Christian, Purnendu K. Dasgupta, Kevin A. Schug, "A lition, John Wiley & Sons, Inc., New York. Books	45 hours , Springer Publications, analytical Chemistry", 2013,
Lecture by Text Bool 1. Bradl New 2. Gary 7 th Ed Reference 1. Doug	Total Lecture hours: (s) ey D. Fahlman, "Materials Chemistry", 2011, 2 nd Edition York. D. Christian, Purnendu K. Dasgupta, Kevin A. Schug, "A lition, John Wiley & Sons, Inc., New York.	45 hours , Springer Publications, analytical Chemistry", 2013,
Lecture by Text Bool 1. Bradl New 2. Gary 7 th Ed Reference 1. Doug Instru 2. Ray F	Total Lecture hours: Total Lecture hours: (s) ey D. Fahlman, "Materials Chemistry", 2011, 2 nd Edition York. D. Christian, Purnendu K. Dasgupta, Kevin A. Schug, "A lition, John Wiley & Sons, Inc., New York. Books las A Skoog, F James Holler, Stanley R Crouch, 2016, 7 th mental Analysis", Cengage Learning, Boston, USA. F. Egerton., "Physical Principles of Electron Microscopy -	45 hours , Springer Publications, analytical Chemistry", 2013, ¹ Edition, "Principles of
Lecture by Text Bool 1. Bradl New 2. Gary 7 th Ed Reference 1. Doug Instru 2. Ray F	Total Lecture hours: (s) ey D. Fahlman, "Materials Chemistry", 2011, 2 nd Edition York. D. Christian, Purnendu K. Dasgupta, Kevin A. Schug, "A lition, John Wiley & Sons, Inc., New York. Books las A Skoog, F James Holler, Stanley R Crouch, 2016, 7 th mental Analysis", Cengage Learning, Boston, USA.	45 hours , Springer Publications, analytical Chemistry", 2013, ¹ Edition, "Principles of
Lecture by Text Bool 1. Bradl New 2. Gary 7 th Ed Reference 1. Doug Instru 2. Ray F SEM	Total Lecture hours: Total Lecture hours: (s) ey D. Fahlman, "Materials Chemistry", 2011, 2 nd Edition York. D. Christian, Purnendu K. Dasgupta, Kevin A. Schug, "A lition, John Wiley & Sons, Inc., New York. Books las A Skoog, F James Holler, Stanley R Crouch, 2016, 7 th mental Analysis", Cengage Learning, Boston, USA. F. Egerton., "Physical Principles of Electron Microscopy -	45 hours , Springer Publications, analytical Chemistry", 2013, ¹ Edition, "Principles of – An introduction to TEM,
Lecture by Text Bool 1. Bradl New 2. Gary 7 th Ed Reference 1. Doug Instru 2. Ray F SEM Mode of E	Total Lecture hours: Total Lecture hours: (s) ey D. Fahlman, "Materials Chemistry", 2011, 2 nd Edition York. D. Christian, Purnendu K. Dasgupta, Kevin A. Schug, "A lition, John Wiley & Sons, Inc., New York. Books las A Skoog, F James Holler, Stanley R Crouch, 2016, 7 ^{tt} mental Analysis", Cengage Learning, Boston, USA. F. Egerton., "Physical Principles of Electron Microscopy- and AFM", 2016, 2 nd Edition, Springer, USA,	45 hours , Springer Publications, analytical Chemistry", 2013, ¹ Edition, "Principles of – An introduction to TEM,
Lecture by Text Book 1. Bradl New 2. Gary 7 th Ed Reference 1. Doug Instru 2. Ray F SEM Mode of E List of Ch	Total Lecture hours: Total Lecture hours: (s) ey D. Fahlman, "Materials Chemistry", 2011, 2 nd Edition York. D. Christian, Purnendu K. Dasgupta, Kevin A. Schug, "A lition, John Wiley & Sons, Inc., New York. Books las A Skoog, F James Holler, Stanley R Crouch, 2016, 7 th mental Analysis", Cengage Learning, Boston, USA. F. Egerton., "Physical Principles of Electron Microscopy- and AFM", 2016, 2 nd Edition, Springer, USA, Evaluation: Internal Assessment (CAT, Quizzes, Digital A	45 hours , Springer Publications, analytical Chemistry", 2013, ¹ Edition, "Principles of – An introduction to TEM, assignments) & FAT
Lecture by Text Bool 1. Bradl New 2. Gary 7 th Ed Reference 1. Doug Instru 2. Ray F SEM Mode of E List of Ch 1. Pre 2. Pre	Total Lecture hours: Total Lecture hours: (s) ey D. Fahlman, "Materials Chemistry", 2011, 2 nd Edition York. D. Christian, Purnendu K. Dasgupta, Kevin A. Schug, "A lition, John Wiley & Sons, Inc., New York. Books las A Skoog, F James Holler, Stanley R Crouch, 2016, 7 th mental Analysis", Cengage Learning, Boston, USA. F. Egerton., "Physical Principles of Electron Microscopy - and AFM", 2016, 2 nd Edition, Springer, USA, Evaluation: Internal Assessment (CAT, Quizzes, Digital A hallenging Experiments (Indicative)	45 hours , Springer Publications, analytical Chemistry", 2013, ¹ Edition, "Principles of – An introduction to TEM, assignments) & FAT etion analysis 1 hour
Lecture by Text Book 1. Bradl 1. Bradl 2. Gary 7 th Ed Reference 1. Doug Instru 2. Ray F SEM Mode of E List of Ch 1. Pre 2. SEM	Total Lecture hours: X(s) ey D. Fahlman, "Materials Chemistry", 2011, 2 nd Edition York. D. Christian, Purnendu K. Dasgupta, Kevin A. Schug, "A lition, John Wiley & Sons, Inc., New York. e Books las A Skoog, F James Holler, Stanley R Crouch, 2016, 7 th mental Analysis", Cengage Learning, Boston, USA. F. Egerton., "Physical Principles of Electron Microscopy and AFM", 2016, 2 nd Edition, Springer, USA, Evaluation: Internal Assessment (CAT, Quizzes, Digital A valuation: Internal Assessment (Indicative) paration of ruby by combustion method and X-ray diffrace	45 hours , Springer Publications, analytical Chemistry", 2013, ¹ Edition, "Principles of – An introduction to TEM, assignments) & FAT etion analysis 1 hour

5.	Estimation of sulphate ions in w	ater by light scatte	ering techn	ique	2 hours
6.	Quantification divalent iron con	2 hours			
7.	Aromatic content of given lubric	cating oil by meas	uring its ar	niline point	1 hour
8.	Determination of pour point and	cloud point of a l	ubricant oi	1	1 hour
9.	Quality checking of lubricant by	measuring its vis	cosity		1 hour
10.	Photodegradation kinetics of methylene blue dye by nano ZnO photocatalyst				2 hours
11.	Preparation of Cu/CuO nanoparticles and imaging using electron microscopy				1 hour
12.	Preparation of iron nanoparticles	s and investigating	, its magne	tic property	1 hour
	Total Laboratory Hours 18 hours				18 hours
Mode	Mode of Evaluation: Viva-voce and Lab performance & FAT				
Reco	mmended by Board of Studies	12.08.2017			
Appr	oved by Academic Council	No. 46	Date	24.08.2017	

EEE1001	Basic Electrical and Electronics H	Ingineering	L T P J C
Pre-requisite	NIL		Syllabus version
			v. 1.0
Course Objective		1	1 . 1
	ne various laws and theorems applied to solv		
	tudents with an overview of the most import		Electrical and
Course Outcomes	gineering which is the basic need for every er	Igilieei	
		d the one mag	
	trical circuit problems using various laws an ver circuits and networks, its measurement a		me
	npare various types of electrical machines	nd safety concer	.115
•	lement various digital circuits		
	cateristics of semiconductor devices and con-	prehend the va	rious modulation
•	nunication engineering	iprenend the val	nous modulation
1	luct experiments to analyze and interpret dat	a	
Module:1 DC c			5 hours
	ents and sources, Ohms law, Kirchhoff's law	I series and par	
	ode voltage analysis, Mesh current analysis,		
transfer theorem	oue voluge analysis, wesh current analysis,	The vening and	Maximum power
	ircuits		6 hours
			0 nours
Alternating voltage	es and currents AC values Single Phase RL	RC RLC Serie	es circuits Power
	es and currents, AC values, Single Phase RL ver Factor- Three Phase Systems – Star and I		
in AC circuits-Pov	ver Factor- Three Phase Systems - Star and I	Delta Connection	n- Three Phase
in AC circuits-Pov		Delta Connection	n- Three Phase
in AC circuits-Pov	ver Factor- Three Phase Systems – Star and I nt – Electrical Safety –Fuses and Earthing, F	Delta Connection	n- Three Phase
in AC circuits-Pow Power Measureme Module:3 Elect	ver Factor- Three Phase Systems – Star and I nt – Electrical Safety –Fuses and Earthing, F rical Machines	Delta Connection Residential wirin	n- Three Phase
in AC circuits-Pow Power Measureme Module:3 Elect Construction, Wor	ver Factor- Three Phase Systems – Star and I nt – Electrical Safety –Fuses and Earthing, F	Delta Connection Residential wirin	n- Three Phase ng 7 hours ers, Single phase
in AC circuits-Pow Power Measureme Module:3 Elect Construction, Wor	ver Factor- Three Phase Systems – Star and I nt – Electrical Safety –Fuses and Earthing, F rical Machines king Principle and applications of DC Machines	Delta Connection Residential wirin	n- Three Phase ng 7 hours ers, Single phase
in AC circuits-Pow Power Measureme Module:3 Elect Construction, Wor and Three-phase In motor	ver Factor- Three Phase Systems – Star and I nt – Electrical Safety –Fuses and Earthing, F rical Machines king Principle and applications of DC Machineduction motors, Special Machines-Stepper r	Delta Connection Residential wirin	n- Three Phase ng 7 hours ers, Single phase ptor and BLDC
in AC circuits-Pow Power Measureme Module:3 Elect Construction, Wor and Three-phase In motor Module:4 Digit	ver Factor- Three Phase Systems – Star and I nt – Electrical Safety –Fuses and Earthing, F rical Machines king Principle and applications of DC Machine induction motors, Special Machines-Stepper in al Systems	Delta Connection Residential wirin Ines, Transforme notor, Servo Mo	n- Three Phase ng 7 hours ers, Single phase otor and BLDC 5 hours
in AC circuits-Pow Power Measureme Module:3 Elect Construction, Wor and Three-phase In motor Module:4 Digit Basic logic circuit	ver Factor- Three Phase Systems – Star and I nt – Electrical Safety –Fuses and Earthing, F rical Machines king Principle and applications of DC Machine duction motors, Special Machines-Stepper 1 al Systems concepts, Representation of Numerical Data	Delta Connection Residential wirin Ines, Transforme notor, Servo Mo	n- Three Phase ng 7 hours ers, Single phase otor and BLDC 5 hours
in AC circuits-Pow Power Measureme Module:3 Elect Construction, Wor and Three-phase In motor Module:4 Digit Basic logic circuit	ver Factor- Three Phase Systems – Star and I nt – Electrical Safety –Fuses and Earthing, F rical Machines king Principle and applications of DC Machine induction motors, Special Machines-Stepper in al Systems	Delta Connection Residential wirin Ines, Transforme notor, Servo Mo	n- Three Phase ng 7 hours ers, Single phase otor and BLDC 5 hours
in AC circuits-Pow Power Measureme Module:3 Elect Construction, Wor and Three-phase In motor Module:4 Digit Basic logic circuit logic circuits, Synt	ver Factor- Three Phase Systems – Star and I nt – Electrical Safety –Fuses and Earthing, F rical Machines king Principle and applications of DC Machine duction motors, Special Machines-Stepper 1 al Systems concepts, Representation of Numerical Data hesis of logic circuits	Delta Connection Residential wirin Ines, Transforme notor, Servo Mo	n- Three Phase ng 7 hours ers, Single phase otor and BLDC 5 hours I- Combinational
in AC circuits-Pow Power Measureme Module:3 Elect Construction, Wor and Three-phase In motor Module:4 Digit Basic logic circuit logic circuits, Synt Module:5 Semi	ver Factor- Three Phase Systems – Star and I nt – Electrical Safety –Fuses and Earthing, F rical Machines king Principle and applications of DC Machine duction motors, Special Machines-Stepper r al Systems concepts, Representation of Numerical Data hesis of logic circuits	Delta Connection Residential wirin Ines, Transforme notor, Servo Me in Binary Form	n- Three Phase ng 7 hours ers, Single phase otor and BLDC 5 hours 1- Combinational 7 hours
in AC circuits-Pow Power Measureme Module:3 Elect Construction, Wor and Three-phase In motor Module:4 Digit Basic logic circuit logic circuits, Synt Module:5 Semi Conduction in Semi	ver Factor- Three Phase Systems – Star and I nt – Electrical Safety –Fuses and Earthing, F rical Machines king Principle and applications of DC Machine duction motors, Special Machines-Stepper r al Systems concepts, Representation of Numerical Data hesis of logic circuits conductor devices and Circuits niconductor materials, PN junction diodes, Z	Delta Connection Residential wirin Ines, Transforme notor, Servo Mo In Binary Form In Binary Form	n- Three Phase ng 7 hours ers, Single phase otor and BLDC 5 hours n- Combinational 7 hours Ts, MOSFETs,
in AC circuits-Pow Power Measureme Module:3 Elect Construction, Wor and Three-phase In motor Module:4 Digit Basic logic circuit logic circuits, Synt Module:5 Semi Conduction in Sen Rectifiers, Feedbac	ver Factor- Three Phase Systems – Star and I nt – Electrical Safety –Fuses and Earthing, F rical Machines king Principle and applications of DC Machine duction motors, Special Machines-Stepper in al Systems concepts, Representation of Numerical Data hesis of logic circuits conductor devices and Circuits niconductor materials, PN junction diodes, Z ck Amplifiers using transistors. Communicat	Delta Connection Residential wirin Ines, Transforme notor, Servo Mo In Binary Form In Binary Form	n- Three Phase ng 7 hours ers, Single phase otor and BLDC 5 hours n- Combinational 7 hours Ts, MOSFETs,
in AC circuits-Pow Power Measureme Module:3 Elect Construction, Wor and Three-phase In motor Module:4 Digit Basic logic circuit logic circuits, Synt Module:5 Semi Conduction in Sen Rectifiers, Feedbac	ver Factor- Three Phase Systems – Star and I nt – Electrical Safety –Fuses and Earthing, F rical Machines king Principle and applications of DC Machine duction motors, Special Machines-Stepper r al Systems concepts, Representation of Numerical Data hesis of logic circuits conductor devices and Circuits niconductor materials, PN junction diodes, Z	Delta Connection Residential wirin Ines, Transforme notor, Servo Mo In Binary Form In Binary Form	n- Three Phase ng 7 hours ers, Single phase otor and BLDC 5 hours n- Combinational 7 hours Ts, MOSFETs,
in AC circuits-Pow Power Measureme Module:3 Elect Construction, Wor and Three-phase In motor Module:4 Digit Basic logic circuit logic circuits, Synt Module:5 Semi Conduction in Sen Rectifiers, Feedbac	ver Factor- Three Phase Systems – Star and I nt – Electrical Safety –Fuses and Earthing, F rical Machines king Principle and applications of DC Machine duction motors, Special Machines-Stepper r al Systems concepts, Representation of Numerical Data hesis of logic circuits conductor devices and Circuits niconductor materials, PN junction diodes, Z ck Amplifiers using transistors. Communicat mplitude and Frequency Modulation	Delta Connection Residential wirin Ines, Transforme notor, Servo Mo in Binary Form ener diodes, BJ ion Engineering	n- Three Phase ng 7 hours ers, Single phase otor and BLDC 5 hours n- Combinational 7 hours Ts, MOSFETs,
in AC circuits-Pow Power Measureme Module:3 Elect Construction, Wor and Three-phase In motor Module:4 Digit Basic logic circuit logic circuits, Synt Module:5 Semi Conduction in Sen Rectifiers, Feedbac Demodulation - An	ver Factor- Three Phase Systems – Star and I nt – Electrical Safety –Fuses and Earthing, F rical Machines king Principle and applications of DC Machine duction motors, Special Machines-Stepper in al Systems concepts, Representation of Numerical Data hesis of logic circuits conductor devices and Circuits niconductor materials, PN junction diodes, Z ck Amplifiers using transistors. Communicat	Delta Connection Residential wirin Ines, Transforme notor, Servo Mo In Binary Form In Binary Form	n- Three Phase ng 7 hours ers, Single phase otor and BLDC 5 hours n- Combinational 7 hours Ts, MOSFETs,
in AC circuits-Pow Power Measureme Module:3 Elect Construction, Wor and Three-phase In motor Module:4 Digit Basic logic circuit logic circuits, Synt Module:5 Semi Conduction in Sem Rectifiers, Feedbac Demodulation - An	ver Factor- Three Phase Systems – Star and I nt – Electrical Safety –Fuses and Earthing, F rical Machines king Principle and applications of DC Machine duction motors, Special Machines-Stepper in al Systems concepts, Representation of Numerical Data hesis of logic circuits conductor devices and Circuits hiconductor materials, PN junction diodes, Z ck Amplifiers using transistors. Communicat mplitude and Frequency Modulation Total Lecture hours:	Delta Connection Residential wirin Ines, Transforme notor, Servo Me in Binary Form ener diodes, BJ ion Engineering 30 hours	n- Three Phase ng 7 hours ers, Single phase otor and BLDC 5 hours 7 hours Ts, MOSFETs, g: Modulation and
in AC circuits-Pow Power Measureme Module:3 Elect Construction, Wor and Three-phase In motor Module:4 Digit Basic logic circuit logic circuits, Synt Module:5 Semi Conduction in Sem Rectifiers, Feedbac Demodulation - An	ver Factor- Three Phase Systems – Star and I nt – Electrical Safety –Fuses and Earthing, F rical Machines king Principle and applications of DC Machine duction motors, Special Machines-Stepper r al Systems concepts, Representation of Numerical Data hesis of logic circuits conductor devices and Circuits niconductor materials, PN junction diodes, Z ck Amplifiers using transistors. Communicat mplitude and Frequency Modulation Total Lecture hours: FElectrical circuit theory and technology ', N	Delta Connection Residential wirin Ines, Transforme notor, Servo Me in Binary Form ener diodes, BJ ion Engineering 30 hours	n- Three Phase ng 7 hours ers, Single phase otor and BLDC 5 hours 7 hours Ts, MOSFETs, g: Modulation and
in AC circuits-Pow Power Measureme Module:3 Elect Construction, Wor and Three-phase In motor Module:4 Digit Basic logic circuit logic circuits, Synt Module:5 Semi Conduction in Sem Rectifiers, Feedbac Demodulation - An Text Book(s) 1. J. John Bird,	ver Factor- Three Phase Systems – Star and I nt – Electrical Safety –Fuses and Earthing, F rical Machines king Principle and applications of DC Machine duction motors, Special Machines-Stepper r al Systems concepts, Representation of Numerical Data hesis of logic circuits conductor devices and Circuits niconductor materials, PN junction diodes, Z ck Amplifiers using transistors. Communicat mplitude and Frequency Modulation Total Lecture hours: FElectrical circuit theory and technology ', N	Delta Connection Residential wirin Ines, Transforme notor, Servo Me in Binary Form ener diodes, BJ ion Engineering 30 hours	n- Three Phase ng 7 hours ers, Single phase otor and BLDC 5 hours 7 hours Ts, MOSFETs, g: Modulation and
in AC circuits-Pow Power Measureme Module:3 Elect Construction, Wor and Three-phase In motor Module:4 Digit Basic logic circuit logic circuits, Synt Module:5 Semi Conduction in Sem Rectifiers, Feedbac Demodulation - An Text Book(s) 1. 1. John Bird, Edition, 2010 Reference Books	ver Factor- Three Phase Systems – Star and I nt – Electrical Safety –Fuses and Earthing, F rical Machines king Principle and applications of DC Machine duction motors, Special Machines-Stepper r al Systems concepts, Representation of Numerical Data hesis of logic circuits conductor devices and Circuits niconductor materials, PN junction diodes, Z ck Amplifiers using transistors. Communicat mplitude and Frequency Modulation Total Lecture hours: FElectrical circuit theory and technology ', N	Delta Connection Residential wirin Ines, Transforme notor, Servo Mo in Binary Form ener diodes, BJ ion Engineering 30 hours ewnes publication	n- Three Phase ng 7 hours ers, Single phase otor and BLDC 5 hours 5 hours 7 hours Ts, MOSFETs, g: Modulation and ons, 4 th

2.	Simon Haykin, 'Communication S	ystems', John Wil	ey & Sons	, 5 t h Edition,	2009.
3.	Charles K Alexander, Mathew N C McGraw Hill, 2012.) Sadiku, 'Fundan	nentals of I	Electric Circuits	s', Tata
4.	Batarseh, 'Power Electronics Circu	its', Wiley, 2003			
5.	H. Hayt, J.E. Kemmerly and S. M. Hill, New Delhi, 2011.	Durbin, 'Enginee	ring Circui	t Analysis', 6/6	e, Tata McGraw
7.	Fitzgerald, Higgabogan, Grabel, 'E	Basic Electrical En	gineering'	, 5t h edn, McC	Graw Hill, 2009.
8.	S.L.Uppal, 'Electrical Wiring Estir	nating and Costin	g ', Khann	a publishers, N	ewDelhi, 2008.
Mo	de of Evaluation: CAT / Assignmen	t / Quiz / FAT / Pi	roject / Ser	ninar	
List	t of Challenging Experiments (Ind	licative)			
1.	Thevenin's and Maximum Power matching of source and load		is – Imped	ance	2 hours
2.	Sinusoidal steady state Response of	of RLC circuits			2 hours
3.	Three phase power measurement f	for ac loads	2		2 hours
4.	Staircase wiring circuit layout for	multi storey build	ing		2 hours
5.	Fabricate and test a PCB layout fo	r a rectifier circui	t		2 hours
6.	Half and full adder circuits.				2 hours
7.	Full wave Rectifier circuits used in characteristics of the semiconduct		ies. Study	the	2 hours
8.	Regulated power supply using zen Zener diode used	er diode. Study th	e characte	ristics of the	2 hours
9.	Lamp dimmer circuit (Darlington Study the characteristics of the tra		transistors) used in cars.	2 hours
10.	•				2 hours
	1	_	Total Lab	oratory Hours	20 hours
	de of assessment: Assignment / FA'				
	ommended by Board of Studies	29/05/2015	Data	16/06/2015	
App	proved by Academic Council	37 th AC	Date	16/06/2015	

Course code	RENEWABLE ENERGY SO	URCES L T P J C
MEE1011		
Pre-requisite	NIL	Syllabus version
		v. 2.2
Course Objectiv	res:	
1. To help studer sources	nts gain essential knowledge on the importance	e of various renewable energy
2. To familiarize sources	the students with principles of energy converse	sion for various renewable energy
	l experiments for energy resource performance	e under different operating
	the method for assessment of various input er rements.	nergy resources for meeting the
	mitations in renewable energy conversion tech	iniques
Course Outcom	es:	
1. Explain the cu	rrent energy scenario and requirement of migra	ation to renewable energy sources
-	he knowledge of various solar thermal energy	
	V systems under stand-alone mode and analyz	
4. Design a bio-g		•
0 0	erformance of wind mills	
• 1	ver potential of a given site and choose adequa	te hydro turbine
-	is methods for harvesting the ocean energy	2
-	y determine performance of various renewable	energy conversion devices
	different operating conditions	6,
0	1 0	
Module:1 Clas	ssification of Energy	5 hours
Energy chain and	l common forms of usable energy - Present energy	ergy scenario - World energy status
•••	o in India - Introduction to renewable energy re	
•••	from Sun - Spectral distribution of Solar radia	
	- Solar radiation data analysis	
	Dications of Solar Energy	6 hours
	ions - Introduction to Solar thermal collectors	
	brs - Flat plate - Evacuated tube collectors	
	- Solar dryers -solar cookers - solar stills - Sol	
	type - Methods of Solar power generation - Po	
Point	71	
Module:3 Intr	oduction to Solar Photovoltaics	5 hours

Physics of solar cells - Cell and module.

Manufacturing Process– Characteristics of cells and module - Performance parameters -BoS- PV System applications - Stand alone- Grid connected systems.

Module:4 Bio Energy Sources

4 hours

4 hours

2 hours

2 hours

2 hours

Energy through various processes - Energy through fermentation - Gasification - various types of gasifiers -Pyrolysis - Fixed bed and fast Pyrolysis - Bio energy through digestion - Types of Digesters- Factors affecting the yield of products.

Module:5 Wind Energy

resource assessment - types of wind turbines - selection of components - blade materials - power regulation - various methods of control - wind farms - site selection - off shore wind farms -Solar Wind Hybrid energy systems.

Module:6 Small Hydro Power Systems

Introduction - types - system components, discharge curve and estimation of power potential -Turbines for SHP.

Module:7 Ocean Energy

Power generation through OTEC systems - various types - Energy through waves and tides - Energy generation through geothermal systems – types.

Module:8 Contemporary issues:

Discussion on Recent developments in the area of renewable energy systems and their integration

Total Lecture hours:30 hours

Text Book(s)

1. John Andrews, Nick Jelley (2013), Energy Science: Principles, technologies and impacts, Oxford Universities press.

Reference Books

- 1. Fang Lin You, Hong ye (2012), Renewable Energy Systems, Advanced conversion technologies and applications, CRC Press
- 2 John.A.Duffie, William A.Beckman (2013), Solar Engineering of Thermal processes, Wiley
- 3 A.R.Jha (2010), Wind Turbine technology, CRC Press.
- 4 Godfrey Boyle (2012), Renewable Energy, power for a sustainable future, Oxford University Press..

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

Lis	t of Challenging Experiments (Ir	ndicative)				
1.	1. Estimation of Solar radiation: Pyranometer, pyrheliometer.					30 x 14
	2. Testing the yield of a Solar still in outdoor conditions (Multiple sessions).					
	3. Wind Energy Experimental Set up – I.					
	4. Wind Energy Experimental Set up – II.					
	5. Testing of Solar PV system in	PV training Kit.				
	6. Fuel Cell Experiment.					
	7. Performance of Biomass stove					
	8. Production of Bio-diesel by Tr	ansesterification	process			
	9. Flash Point and Fire point com	Fire point comparison for conventional fuels and alternate				
	fuels.					
	10. Production of Hydrogen from Electrolysis with PV system.					
	11. Estimation of Figures of Merit in a Solar cooker.					
	12. Performance characteristics of a Solar thermal collector.					
	13. Exergy analysis of a Solar cabinet dryer.					
			Tot	al La	boratory Hours	17 hours
Mo	de of assessment:					
Rec	commended by Board of Studies	17-08-2017	V			
Ap	proved by Academic Council	No. 47	Dat	e	05-10-2017	

Course code	COMPUTATIONAL FLUID DYNAMICS		L	T	P	J	С
MEE4006			2	1	2	0	4
Pre-requisite	Pre-requisite MEE1004, MEE2005, MAT3005 (or) MEE1032, MEE1033/MEE2005, MAT3005		lal	bu	s v	ers	sion
						V	2.2

1. To provide the students with sufficient background to understand the mathematical representation of the governing equations for fluid flow and heat transfer problems.

- 2. To equip the students to address complex fluid flow and heat transfer problems by approximating the governing differential equations with boundary conditions through Finite difference and finite volume discretization methods.
- 3. To enable students to understand different types of grid and its attributes and their suitability for different engineering applications
- 4. Develop the students to use appropriate turbulence model for solving engineering problems.

Course Outcomes:

- 1. Apply mathematics and engineering fundamentals to recognize the type of fluid flow and heat transfer that occur in a particular physical system and to use the appropriate model equations to investigate the problem.
- 2. Solve governing equations using finite difference discretization technique
- 3. Solve governing equations using finite volume method
- 4. Generate appropriate type of grids required for solving engineering problems accurately.
- 5. Apply suitable turbulence model for the chosen real world engineering problems.
- 6. Solve fluid flow and heat transfer problems using commercial CFD tools

Module:1 Introduction

CFD overview - Applications of CFD.

Module:2 Governing Equations of Fluid Dynamics and Heat Transfer: 6 hours

Models of Flow – Conservation and Non-conservation form - Continuity, Momentum and Energy Equation in conservation and non-conservation form (differential equations only) - Characteristics of PDE's - elliptic, parabolic and hyperbolic.

Module:3	Discretization and Finite Difference method	7 hours			
Discretization: Basic aspects of Discretization – Comparison of finite difference, finite volume					
and finite element techniques.					
Finite Difference method: Forward, Backward and Central difference schemes, Transient one					
and two din	nensional conduction - Explicit, implicit, semi-implicit and ADI method	s - Stability			

analysis and error estimation.

1 hour

	odule:4	Grid Generation	3 hours				
Gr	id Gene	cation: Choice of grid, grid oriented velocity components, Cartesian ve	locity				
cor	nponents	, staggered and collocated arrangements.					
Mo	odule:5	Convection and Diffusion	7 hours				
Co	nvection	and Diffusion: Steady one-dimensional convection and diffusion	- Central				
		upwind, quick, exponential, hybrid and power law schemes- False diff	fusion, SIMPLE				
– A	lgorithm	l					
Ma	odule:6	Turbulance Modeling	4 hours				
		Turbulence Modeling					
		e Modeling : Introduction – Types of Turbulence modeling – Reynord - Reynolds Time Averaged conservation equations – Boussinesq approx					
		□ model.	ach – Ohe				
equ	ution K						
Mo	odule:7	Contemporary issues	2 hours				
	Judici	Contrarportary Listers					
		Total Lecture hours	: 30hours				
Ta	xt Book(
1.	· · · · · ·	,	ione 1st				
1.		John D Anderson, Computational Fluid Dynamics – The Basics with Applications, 1st Edition, McGraw Hill, 2012.					
Re	ference 1						
1.		T.J, Computational Fluid Dynamics, Cambridge University Press, 2014	4.				
2.	-	dhar K and Sundararajan T, Computational Fluid Flow and Heat Transf					
		tions, New Delhi, 2014.	,				
3.	Verstee	Versteeg H.K and Malalasekara W, An Introduction to Computational Fluid Dynamics - The					
		Volume Method, 2nd Edition, Pearson, 2010.					
Mo	ode of Ev	aluation: CAT / Assignment / Quiz / FAT / Project / Seminar					
Lis		llenging Experiments (Indicative)					
	Mod	eling of simple and complex geometries.	3 hours				
1.							
1. 2.	Hexa	hedral meshing for simple geometries like square duct, circular pipe.	3 hours				
2. 3.	Hexa O-gr	id hexa meshing for circular pipe.	3 hours 3 hours				
2.	Hexa O-gr Tetra	id hexa meshing for circular pipe. hedral meshing for simple geometries including fluid and solid	3 hours				
2. 3. 4.	Hexa O-gr Tetra doma	id hexa meshing for circular pipe. The hedral meshing for simple geometries including fluid and solid ains.	3 hours 3 hours 3 hours				
2. 3.	Hexa O-gr Tetra dom Prep	id hexa meshing for circular pipe. hedral meshing for simple geometries including fluid and solid	3 hours 3 hours				

7.	Diffuser for a hydropower turbine.				3 hours
8. Flow over an airfoil - Laminar and turbulent flow.					3 hours
9. Supersonic flow past a wedge in a channel.					3 hours
10.	10. Exercise (for each student – different exercise) from FLUENT tutorial				3 hours
	(case setup, analyzing, and post				
			Total Lab	ooratory Hours	30 hours
Mode	e of assessment:				
Reco	mmended by Board of Studies	17-08-2017			
Anne	oved by Academic Council	47	Date	05-10-2017	