

SCHOOL OF CHEMICAL ENGINEERING (SCHEME)

B. Tech Chemical Engineering (BCM)

Curriculum and Syllabus

[2018-2019 admitted students]

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF SCHOOL OF CHEMICAL ENGINEERING

To improve the quality of life through innovations in Chemical Engineering

MISSION STATEMENT OF SCHOOL OF CHEMICAL ENGINEERING

- To prepare the graduates for a rewarding career by providing quality education in Chemical Engineering in tune with evolving requirements of the society.
- To impart knowledge and develop technology through quality research in frontier areas of chemical and inter-disciplinary fields.
- To produce practicing engineers with professional ethics to cater the contemporary needs of the society and environment.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.
- 2. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies in engineering or management.
- 6. Graduates will pursue career paths in teaching or research.

PROGRAMME OUTCOMES (POs)

- PO_01: Having an ability to apply mathematics and science in engineering applications.
- PO_02: Having a clear understanding of the subject related concepts and of contemporary issues and apply them to identify, formulate and analyse complex engineering problems.
- PO_03: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment
- PO_04: Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information
- PO_05: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice

- PO_06: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems
- PO_07: Having adaptive thinking and adaptability in relation to environmental context and sustainable development
- PO_08: Having a clear understanding of professional and ethical responsibility
- PO_09: Having cross cultural competency exhibited by working as a member or in teams
- PO_10: Having a good working knowledge of communicating in English communication with engineering community and society
- PO_11: Having a good cognitive load management skills related to project management and finance
- PO_12: Having interest and recognise the need for independent and lifelong learning

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of B. Tech. (Chemical Engineering) programme, graduates will be able to:

- 1. Analyse and solve complex problems in process and allied Industries by applying core and multidisciplinary competencies.
- 2. Design and develop efficient chemical processes/products considering economic, safety and environmental aspects.
- 3. Implement the modern practices in industrial/research settings to serve as practicing engineers with professional ethics.

SCHOOL OF CHEMICAL ENGINEERING

B. Tech Chemical Engineering

CREDIT STRUCTURE

Category-wise Credit distribution

Category	Credits
University core (UC)	70
Programme core (PC)	60
Programme elective (PE)	38
University elective (UE)	12
Bridge Course (BC)	-
Total credits	180

B. Tech Chemical Engineering

CURRICULUM

University Core

S.No	Course Code	Course Title	Course Type	L	T	P	J	C
1	CHE3099	Industrial Internship	PJT	0	0	0	0	2
2	CHE3999	Technical Answers for Real World Problems (TARP)	ETP	1	0	0	8	3
3	CHE4098	Comprehensive Examination	PJT	0	0	0	0	2
4	CHE4099	Capstone Project	PJT	0	0	0	0	20
5	CHY1002	Environmental Sciences	TH	3	0	0	0	3
6	CHY1701	Engineering Chemistry	ET	3	0	2	0	4
7	CSE1001	Problem Solving and Programming	LO	0	0	6	0	3
8	CSE1002	Problem Solving and Object Oriented Programming	LO	0	0	6	0	3
9	ENG1011	English for Engineers	LO	0	0	4	0	2
10	EXC4097	Co-Extra Curricular Basket	CDB	0	0	0	0	2
11	FLC4097	Foreign Language Course Basket	CDB	0	0	0	0	2
12	HUM1021	Ethics and Values	TH	2	0	0	0	2
13	MAT1011	Calculus for Engineers	ET	3	0	2	0	4
14	MAT2001	Statistics for Engineers	ET	2	1	2	0	4
15	MGT1022	Lean Start-up Management	ETP	1	0	0	4	2
16	PHY1701	Engineering Physics	ET	3	0	2	0	4
17	PHY1999	Introduction to Innovative Projects	ЕТР	1	0	0	4	2
18	STS4097	Soft Skills Course Basket	CDB	0	0	0	0	6

B. Tech Chemical Engineering

Programme Core

S.No	Course Code	Course Title	Course Type	L	T	P	J	C
1	CHE1001	Materials Science and Strength of Materials	TH	3	0	0	0	3
2	CHE1002	Process Calculations	TH	4	0	0	0	4
3	CHE1003	Process Engineering Thermodynamics	ETP	3	0	0	4	4
4	CHE1004	Chemical Technology	TH	3	0	0	0	3
5	CHE1005	Momentum Transfer	ETL	3	0	2	0	4
6	CHE1006	Heat Transfer	ETLP	2	0	2	4	4
7	CHE1022	Mechanical Operations	ETL	3	0	2	0	4
8	CHE2001	Chemical Reaction Engineering	ETL	3	0	2	0	4
9	CHE2002	Process Equipment Design and Economics	ETLP	2	0	2	4	4
10	CHE3001	Computational Methods in Process Engineering	ETL	3	0	2	0	4
11	CHE3002	Process Instrumentation and Control	ETLP	2	0	2	4	4
12	CHE3003	Mass Transfer	TH	3	0	0	0	3
13	CHE4001	Equilibrium Staged Operations	ETLP	2	0	2	4	4
14	MAT2002	Applications of Differential and Difference Equations	ETL	3	0	2	0	4
15	MAT3003	Complex Variables and Partial Differential Equations	TH	3	1	0	0	4
16	MEE1001	Engineering Drawing	ETL	1	0	4	0	3

B. Tech Chemical Engineering

Programme Elective

S.No	Course Code	Course Title	Course Type	L	T	P	J	C
1	CHE1007	Safety and Hazard Analysis	ETP	2	0	0	4	3
2	CHE1008	Unit Processes in Organic Synthesis	ETL	3	0	2	0	4
3	CHE1009	Biochemical Engineering	TH	3	0	0	0	3
4	CHE1010	Process Plant Utilities	TH	3	0	0	0	3
5	CHE1011	Optimization of Chemical Processes	TH	3	0	0	0	3
6	CHE1013	Natural Gas Engineering	TH	3	0	0	0	3

7	CHE1014	Petroleum Technology	TH	3	0	0	0	3
8	CHE1015	Petrochemical Technology	TH	3	0	0	0	3
9	CHE1016	Fermentation Technology	TH	3	0	0	0	3
10	CHE1017	Food Process Engineering	ETP	2	0	0	4	3
11	CHE1018	Membrane Separations Technology	TH	3	0	0	0	3
12	CHE1019	Polymer Technology	TH	3	0	0	0	3
13	CHE1020	Fertilizer Technology	TH	3	0	0	0	3
14	CHE1023	Production and Operations Management	TH	3	0	0	0	3
15	CHE2003	Chemical Product Design	TH	3	0	0	0	3
16	CHE2006	Fuels and Combustion	TH	3	0	0	0	3
17	CHE3004	Heterogeneous Reaction Engineering	ETP	2	0	0	4	3
19	CHE3005	Chemical Process Integration	TH	3	0	0	0	3
19	CHE3006	Process Plant Simulation	ETP	3	0	0	4	4
20	CHE3007	Multiphase Flow	TH	3	0	0	0	3
21	CHE3008	Industrial Pollution Engineering	TH	3	0	0	0	3
22	CHE4002	Transport Phenomena	TH	3	0	0	0	3
23	CHE4003	Modelling and Simulation in Process Engineering	ETL	2	0	2	0	3
24	CHE4005	Fluidization Engineering	TH	3	0	0	0	3
25	CHY1704	Materials and Instrumental Techniques	ETL	3	0	2	0	4
26	EEE1001	Basic Electrical and Electronics Engineering	ETL	2	0	2	0	3
27	MEE1011	Renewable Energy Sources	ETLP	2	2	2	0	4
28	MEE4006	Computational Fluid Dynamics	ETL	2	1	2	0	4

UNIVERSITY CORE

CHE3099	Industrial Internship	L	T	P	J	C
		0	0	0	0	2
Pre-requisite	Completion of minimum of Two semesters					
G 01.						
Course Objecti	ves:					
The course is de	signed so as to expose the students to industry environm	ent and to	tak t	e uj	o on	-
	as trainees or interns.			•		
Course Outcon	nes:					
1 Hove on ove	osure to industrial practices and to work in teams					
_	<u>.</u>					
2. Communica	•					
2 II. 1 1	.1			. 1		

- 3. Understand the impact of engineering solutions in a global, economic, environmental and societal context
- 4. Develop the ability to engage in research and to involve in life-long learning
- 5. Comprehend contemporary issues6. Engage in establishing his/her digital footprint

Contents				4	Weeks
Four weeks of work at industry site.					
Supervised by an expert at the industr	y.				
Mode of Evaluation: Internship Repor	t, Presentation	and Projec	t Review		
Recommended by Board of Studies	28-02-2016				
Approved by Academic Council	No. 37	Date	16-06-2015		

Course code	Technical Answers for Real World Problems (TARP)) L T P	J C
CHE3999		1 0 0	8 3
Pre-requisite	PHY1999 and 115 Credits Earned	Syllabus ve	ersion
		v. 1.0	

- 1. To help students to identify the need for developing newer technologies for industrial / societal Needs
- 2. To train students to propose and implement relevant technology for the development of the prototypes / products
- 3. To make the students learn to the use the methodologies available to assess the developed prototypes / products

Course Outcomes:

- 1. Identify real life problems related to society.
- 2. Apply appropriate technology(ies) to address the identified problems using engineering principles and arrive at innovative solutions

Module:1 15 hours

- 1. Identification of real life problems
- 2. Field visits can be arranged by the faculty concerned
- 3. 6-10 students can form a team (within the same / different discipline)
- 4. Minimum of eight hours on self-managed team activity
- 5. Appropriate scientific methodologies to be utilized to solve the identified issue
- 6. Solution should be in the form of fabrication/coding/modeling/product design/process design/relevant scientific methodology(ies)
- 7. Consolidated report to be submitted for assessment
- 8. Participation, involvement and contribution in group discussions during the contact hours will be used as the modalities for the continuous assessment of the theory component
- 9. Project outcome to be evaluated in terms of technical, economical, social, environmental, political and demographic feasibility
- 10. Contribution of each group member to be assessed
- 11. The project component to have three reviews with the weightage of 20:30:50

Mode of Evaluation: (No FAT) Continuous Assessment the project done – Mark weightage of 20:30:50 – project report to be submitted, presentation and project reviews

Recommended by Board of Studies	04.03.2016		
Approved by Academic Council	No. 47	Date	05.10.2017

Course code	Comprehensive Examination	L	T	P	J	C
CHE4098		0	0	0	0	2
Pre-requisite	Minimum of 115 Credits Earned or at the end of the 7 th semester	Syl	lab	us v	ers	sion
			V	·. 1.0)	

- 1. To measure student's competency and mastery of concepts in the field of chemical Engineering.
- 2. To evaluate the ability of students to move into the dissertation phase of their degree.

Course Outcomes:

- 1. Define, explain and summarize the basic principles of chemical engineering.
- 2. Use the principles of science and mathematics to identify, formulate and solve advanced engineering problems.
- 3. Evaluate the hypotheses, methods, results and conclusions of published scientific literature and apply conclusions to their own work.

Contents

Process Calculations and Thermodynamics: Steady and unsteady state mass and energy balances including multiphase, multi-component, reacting and non-reacting systems. Use of tie components; recycle, bypass and purge calculations; Gibb's phase rule and degree of freedom analysis. First and Second laws of thermodynamics. Applications of first law to close and open systems. Second law and Entropy. Thermodynamic properties of pure substances: Equation of State and residual properties, properties of mixtures: partial molar properties, fugacity, excess properties and activity coefficients; phase equilibria: predicting VLE of systems; chemical reaction equilibrium

Momentum Transfer: Fluid statics, Newtonian and non-Newtonian fluids, shell-balances including differential form of Bernoulli equation and energy balance, Macroscopic friction factors, dimensional analysis, flow through pipeline systems, flow meters, pumps and compressors, flow past immersed bodies including packed and fluidized beds, Turbulent flow: fluctuating velocity, universal velocity profile and pressure drop.

Mechanical Operations: Particle size and shape, particle size distribution, size reduction and classification of solid particles; free and hindered settling; centrifuge and cyd0nes-; thickening and classification, flotation, filtration, agitation and mixing; conveying of solids.

Heat Transfer: Steady and unsteady heat conduction, convection and radiation, Heat Transfer through fins, thermal boundary layer and heat transfer coefficients, boiling, condensation and evaporation; types of heat exchangers and evaporators and their process calculations. Design of double pipe, shell and tube heat exchangers, and single and multiple effect evaporators.

Mass Transfer: Fick's laws, molecular diffusion in fluids, mass transfer coefficients, film, penetration and surface renewal theories; analogies; stage-wise and continuous contacting and stage efficiencies; HTU & NTU concepts; design and operation of equipment for distillation, absorption, leaching, liquid-liquid extraction, drying, humidification, dehumidification adsorption and crystallization.

Chemical Reaction Engineering: Theories of reaction rates; kinetics of homogeneous reactions, interpretation of kinetic data, single and multiple reactions in ideal reactors, non-ideal reactors; residence time distribution, single parameter model; non-isothermal reactors; kinetics of heterogeneous catalytic reactions; diffusion effects in catalysis.

Instrumentation and Process Control: Measurement of process variables; sensors, transducers and their dynamics, process modeling and linearization, transfer functions and dynamic responses of various systems, systems with inverse response, process reaction curve, controller modes (P, Pl, and PIO); control valves; analysis of closed loop systems including stability, frequency response, controller tuning, cascade and feed forward control.

Chemical Technology: Inorganic chemical industries (sulfuric acid, phosphoric acid, chlor alkali industry, cement, paint, glass industry), fertilizers (Ammonia, Urea, SSP and TSP); natural products industries (Pulp and Paper, Sugar, Oil, and Fats); petroleum refining and petrochemicals; Fermentation products: Ethanol, citric acid, antibiotics, penicillin polymerization industries (polyethylene, polypropylene, PVC and polyester synthetic fibers).

Plant Design and Economics: Principles of process economics and cost estimation including depreciation and total annualized cost, cost indices, rate of return, payback period, discounted cash flow, optimization in process design and sizing of chemical engineering equipment such as compressors, heat exchangers, multistage contactors.

Assessment / Criteria: Computer based on line Examination

Mode of Evaluation: Computer based Evaluation

Recommended by Board of Studies	04-03-2016		
Approved by Academic Council	No. 47	Date	05.10.2017

Course Code	Course Title	I	T	P	J C
CHE4099	Capstone Project	0	0	0	0 20
Pre-requisite	As per the academic regulations	Sylla	bus	ve	rsion
				,	v. 1.0

To provide sufficient hands-on learning experience related to the design, development and analysis of suitable product / process so as to enhance the technical skill sets in the chosen field.

Course Outcomes:

- 1. Formulate specific problem statements for ill-defined real life problems with reasonable assumptions and constraints.
- 2. Perform literature search and / or patent search in the area of interest.
- 3. Conduct experiments / Design and Analysis / solution iterations and document the results.
- 4. Perform error analysis / benchmarking / costing
- 5. Synthesise the results and arrive at scientific conclusions / products / solution
- 6. Document the results in the form of technical report / presentation

Contents

- 1. Capstone Project may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities.
- 2. Project can be for one or two semesters based on the completion of required number of credits as per the academic regulations.
- 3. Can be individual work or a group project, with a maximum of 3 students.
- 4. In case of group projects, the individual project report of each student should specify the individual's contribution to the group project.
- 5. Carried out inside or outside the university, in any relevant industry or research institution.
- 6. Publications in the peer reviewed journals / International Conferences will be an added advantage

Mode of Evaluation: Periodic reviews, Presentation, Final oral viva, Poster submission					
Recommended by Board of Studies	10.06.2015				
Approved by Academic Council	37 th AC	Date	16.06.2015		

Course code	Environmental Sciences	L	T	P	J	C
CHY1002		3	0	0	0	3
Pre-requisite	NIL	Syllabus version			sion	
		V:			':1.1	

- 1. To make students understand and appreciate the unity of life in all its forms, the implications of life style on the environment.
- 2. To understand the various causes for environmental degradation.
- 3. To understand individuals contribution in the environmental pollution.
- 4. To understand the impact of pollution at the global level and also in the local environment.

Module:1 Environment and Ecosystem

7 hours

Key environmental problems, their basic causes and sustainable solutions. IPAT equation. Ecosystem, earth – life support system and ecosystem components; Food chain, food web, Energy flow in ecosystem; Ecological succession- stages involved, Primary and secondary succession, Hydrarch, mesarch, xerarch; Nutrient, water, carbon, nitrogen, cycles; Effect of human activities on these cycles.

Module:2 Biodiversity

6 hours

Importance, types, mega-biodiversity; Species interaction - Extinct, endemic, endangered and rare species; Hot-spots; GM crops- Advantages and disadvantages; Terrestrial biodiversity and Aquatic biodiversity – Significance, Threats due to natural and anthropogenic activities and Conservation methods.

Module:3 Sustaining Natural Resources and Environmental Quality 7 hours

Environmental hazards – causes and solutions. Biological hazards – AIDS, Malaria, Chemical hazards- BPA, PCB, Phthalates, Mercury, Nuclear hazards- Risk and evaluation of hazards. Water footprint; virtual water, blue revolution. Water quality management and its conservation. Solid and hazardous waste – types and waste management methods.

Module:4 Energy Resources

6 hours

Renewable - Non renewable energy resources- Advantages and disadvantages - oil, Natural gas, Coal, Nuclear energy. Energy efficiency and renewable energy. Solar energy, Hydroelectric power, Ocean thermal energy, Wind and geothermal energy. Energy from biomass, solar-Hydrogen revolution.

Module:5 | Environmental Impact Assessment

6 hours

Introduction to environmental impact analysis. EIA guidelines, Notification of Government of India (Environmental Protection Act – Air, water, forest and wild life). Impact assessment methodologies. Public awareness. Environmental priorities in India.

				1	
Mo	dule:6	Human Population Char	nge and Environn	nent	6 hours
T T1.					Dunantian of accuration
		onmental problems; Consu		•	
	-	t – Impact of population ag			
em	powerme	ent. Sustaining human socie	ties: Economics, e	environme	nt, policies and education.
Mo	dule:7	Global Climatic Change	e and Mitigation		5 hours
Cli	ata dia	nuntion Casan bours offert	Omana lavan danl		A sid min Versta mate sal
		ruption, Green house effect,	• •		• •
		lits, Carbon sequestration m		eal Protoc	ol. Role of Information
tecl	hnology	in environment-Case Studie	es.		
	dule:8	Contemporary issues			2 hours
Le	ecture by	Industry Experts			
			Total Lecture ho	ours:	45 hours
Tex	xt Books				
1.	G. Tyle	er Miller and Scott E. Spool	man (2016), Envii	ronmental	Science, 15 th Edition,
	Cengag	ge learning.			
2.	George	Tyler Miller, Jr. and Scott	Spoolman (2012),	Living in	the Environment –
	Princip	les, Connections and Soluti	ons, 17 th Edition,	Brooks/Co	ole, USA.
Ref	ference l	Books			
1.	David	M.Hassenzahl, Mary C	Catherine Hager,	Linda	R.Berg (2011), Visualizing
		nmental Science, 4thEdition			
Mo	de of eva	aluation: Internal Assessme	nt (CAT, Quizzes,	, Digital A	ssignments) & FAT
Rec	commend	ded by Board of Studies	12.08.2017		-
		y Academic Council	No. 46	Date	24.08.2017

Course code	Engineering Chemistry (UC)	L	T	P	J	C
CHY1701		3	0	2	0	4
Pre-requisite	NIL	Syllabus version			ion	
		1			1.1	

- 1. To impart technological aspects of applied chemistry
- 2. To lay foundation for practical application of chemistry in engineering aspects

Course Outcomes:

- 1. Recall and analyze the issues related to impurities in water and their removal methods and apply recent methodologies in water treatment for domestic and industrial usage
- 2. Evaluate the causes of metallic corrosion and apply the methods for corrosion protection of metals
- 3. Evaluate the electrochemical energy storage systems such as lithium batteries, fuel cells and solar cells, and design for usage in electrical and electronic applications
- 4. Assess the quality of different fossil fuels and create an awareness to develop the alternative fuels
- 5. Analyze the properties of different polymers and distinguish the polymers which can be degraded and demonstrate their usefulness
- 6. Apply the theoretical aspects: (a) in assessing the water quality; (b) understanding the construction and working of electrochemical cells; (c) analyzing metals, alloys and soil using instrumental methods; (d) evaluating the viscosity and water absorbing properties of polymeric materials

Module:1 | Water Technology

5 hours

Characteristics of hard water - hardness, DO, TDS in water and their determination – numerical problems in hardness determination by EDTA; Modern techniques of water analysis for industrial use - Disadvantages of hard water in industries.

Module:2 | Water Treatment

8 hours

Water softening methods: - Lime-soda, Zeolite and ion exchange processes and their applications. Specifications of water for domestic use (ICMR and WHO); Unit processes involved in water treatment for municipal supply - Sedimentation with coagulant- Sand Filtration - chlorination; Domestic water purification – Candle filtration- activated carbon filtration; Disinfection methods-Ultrafiltration, UV treatment, Ozonolysis, Reverse Osmosis; Electro dialysis.

Module:3 Corrosion

6 hours

Dry and wet corrosion - detrimental effects to buildings, machines, devices & decorative art forms, emphasizing Differential aeration, Pitting, Galvanic and Stress corrosion cracking; Factors that enhance corrosion and choice of parameters to mitigate corrosion.

Module:4 | Corrosion Control

4 hours

Corrosion protection - cathodic protection – sacrificial anodic and impressed current protection methods; Advanced protective coatings: electroplating and electroless plating, PVD and CVD.

Alloying for corrosion protection – Basic concepts of Eutectic composition and Eutectic mixtures - Selected examples – Ferrous and non-ferrous alloys.

Module:5 | **Electrochemical Energy Systems**

6 hours

Brief introduction to conventional primary and secondary batteries; High energy electrochemical energy systems: Lithium batteries – Primary and secondary, its Chemistry, advantages and applications.

Fuel cells – Polymer membrane fuel cells, Solid-oxide fuel cells- working principles, advantages, applications.

Solar cells – Types – Importance of silicon single crystal, polycrystalline and amorphous silicon solar cells, dye sensitized solar cells - working principles, characteristics and applications.

Module:6 Fuels and Combustion

8 hours

Calorific value - Definition of LCV, HCV. Measurement of calorific value using bomb calorimeter and Boy's calorimeter including numerical problems.

Controlled combustion of fuels - Air fuel ratio – minimum quantity of air by volume and by weight-Numerical problems-three way catalytic converter- selective catalytic reduction of NO_X; Knocking in IC engines-Octane and Cetane number - Antiknocking agents.

Module:7 | **Polymers**

6 hours

Difference between thermoplastics and thermosetting plastics; Engineering application of plastics - ABS, PVC, PTFE and Bakelite; Compounding of plastics: moulding of plastics for Car parts, bottle caps (Injection moulding), Pipes, Hoses (Extrusion moulding), Mobile Phone Cases, Battery Trays, (Compression moulding), Fibre reinforced polymers, Composites (Transfer moulding), PET bottles (blow moulding);

Conducting polymers- Polyacetylene- Mechanism of conduction – applications (polymers in sensors, self-cleaning windows)

Module:8	Contemporary issues:		2 hours
Lecture by 1	Industry Experts		
		Total Lecture hours:	45 hours

Text Book(s)

- 1. Sashi Chawla, A Text book of Engineering Chemistry, Dhanpat Rai Publishing Co., Pvt. Ltd., Educational and Technical Publishers, New Delhi, 3rd Edition, 2015.
 - 2. O.G. Palanna, McGraw Hill Education (India) Private Limited, 9th Reprint, 2015.
 - 3. B. Sivasankar, Engineering Chemistry 1st Edition, Mc Graw Hill Education (India), 2008
 - 4. Photovoltaic solar energy: From fundamentals to Applications", Angà le Reinders, Pierre Verlinden, Wilfried van Sark, Alexandre Freundlich, Wiley publishers, 2017.

Reference Books

- 1. O.V. Roussak and H.D. Gesser, *Applied Chemistry-A Text Book for Engineers and Technologists*, Springer Science Business Media, New York, 2nd Edition, 2013.
 - 2. S. S. Dara, *A Text book of Engineering Chemistry*, S. Chand & Co Ltd., New Delhi, 20th Edition, 2013.

Mode of Evaluation: Internal Assessment (CAT, Quizzes, Digital Assignments) & FAT

List of Experiments

	Experiment title	Hours
1.	Water Purification: Estimation of water hardness by EDTA method and its	1 h 30 min
	removal by ion-exchange resin	

	Water Quality Monitoring:				3h	
2.	Assessment of total dissolved oxy	Assessment of total dissolved oxygen in different water samples by				
	Winkler's method					
3.	Estimation of sulphate/chloride in	drinking water b	y conductiv	vity method		
4/5	Material Analysis: Quantitative co	olorimetric detern	nination of	divalent	3h	
	metal ions of Ni/Fe/Cu using con	ventional and sma	art phone d	igital-		
	imaging methods					
6.	Analysis of Iron in carbon steel by	y potentiometry			1 h 30 min	
7.	7. Construction and working of an Zn-Cu electrochemical cell					
8.	Determination of viscosity-average natural/synthetic polymers	ge molecular weig	ht of differ	ent	1 h 30 min	
9.	Arduino microcontroller	based sensor	for	monitoring	1 h 30 min	
	pH/temperature/conductivity in sa	amples.				
	Total Laboratory Hours					
Mode of Evaluation: Viva-voce and Lab performance & FAT						
Recommended by Board of Studies 31-05-2019						
App	roved by Academic Council	54 th ACM	Date	13-06-2019		

Course code	PROBLEM SOLVING AND PROGRAMMING	L	T	P	J	С
CSE1001		0	0	6	0	3
Pre-requisite	NIL	Syllabus vers		ion		
		v1		v1.0		

- 1. To develop broad understanding of computers, programming languages and their generations
- 2. Introduce the essential skills for a logical thinking for problem solving
- 3. To gain expertise in essential skills in programming for problem solving using computer

Course Outcomes:

- 1. Understand the working principle of a computer and identify the purpose of a computer programming language.
- 2. Learn various problem solving approaches and ability to identify an appropriate approach to solve the problem
- 3. Differentiate the programming Language constructs appropriately to solve any problem
- 4. Solve various engineering problems using different data structures

List of Challenging Experiments (Indicative)

- 5. Able to modulate the given problem using structural approach of programming
- 6. Efficiently handle data using flat files to process and store data for the given problem

1. Steps in Problem Solving Drawing flowchart using yEd tool/Raptor Tool 3 Hours 2. Introduction to Python, Demo on IDE, Keywords, Identifiers, I/O Statements. 4 Hours 3. Simple Program to display Hello world in Python. 4. Operators and Expressions in Python 4 Hours 5. Algorithmic Approach 1: Sequential 2 Hours 6. Algorithmic Approach 2: Selection (if, elif, if.. else, nested if else 2 Hours 7. Algorithmic Approach 3: Iteration (while and for) 4 Hours 8. Strings and its Operations 2 Hours 9. Regular Expressions 2 Hours 10. List and its operations. 2 Hours

11. Dictionaries: operations

12. Tuples and its operations

13. Set and its operations

14. Functions, Recursions

15. Sorting Techniques (Bubble/Selection/Insertion)

2 Hours

2 Hours

2 Hours

2 Hours

4 Hours

	16. Searching Techniques: Sequential Search and Binary Search	3 Hours				
	17. Files and its Operations	4 Hours				
T	otal Lecture hours:	45 hours				
Tex	at Book(s)					
1.	1. John V. Guttag., 2016. Introduction to computation and programming using python: with applications to understanding data. PHI Publisher.					
Ref	Ference Books					
1.						
2.	2. Charles Dierbach.2013.Introduction to computer science using python: a computational problem-solving focus. Wiley Publishers.					
M	ode of Evaluation: PAT/CAT/FAT					
Re	commended by Board of Studies Date: 04-04-2014					
Aŗ	proved by 38th Academic Council Date: 23-10-2015					

CSE1002	Problem Solving and Object Oriented Programming]]	ГР	J	C
		(0	6	0	3
Pre-requisite	NIL	Syll	abı	ıs v	ers	sion
					,	v1.0

- 1. To emphasize the benefits of object oriented concepts
- 2. To enable the students to solve the real time applications using object oriented programming features.
- 3. To improve the skills of a logical thinking and to solve the problems using any processing elements

Course Outcomes:

- 1. Recall the basics of procedural programming and to represent the real world entities as programming constructs
- 2. Enumerate object oriented concepts and translate real-world applications into graphical representations
- 3. Demonstrate the usage of classes and objects of the real world entities in applications
- 4. Discriminate the reusability and multiple interfaces with same functionality based features to solve complex computing problems
- 5. Propose possible error-handling constructs for unanticipated states/inputs and to use generic programming constructs to accommodate different datatypes
- 6. Validate the program against file inputs towards solving the problem

Module:1 | Structured Programming

12 hours

Structured Programming conditional and looping statements-arrays – functions - pointers – dynamic memory allocation - structure

Module:2 Introduction to object oriented approach

10 hours

Introduction to object oriented approach: Why object oriented programming? - Characteristics of object oriented language: classes and objects - encapsulation-data abstraction- inheritance - polymorphism - Merits and Demerits of object oriented programming. UML- class diagram of OOP - Inline function – default argument function - Exception handling (Standard) - reference: independent reference – function returning reference – pass by reference.

Module:3 | Classes and objects

14 hours

Classes and objects: Definition of classes – access specifier – class versus structure – constructor – destructor – copy constructor and its importance – array of objects – dynamic objects- friend function-friend class

Module:4 Polymorphism and Inheritance

26 hours

Polymorphism and Inheritance: Polymorphism-compile time polymorphism – function

overloading – operator overloading - . Inheritance-types of inheritance- constructors and destructors in inheritance – constraints of multiple inheritance-virtual base class - run time polymorphism-function overriding.

Module:5 | Exception handling and Templates

18 hours

Exception handling and Templates Exception handling(user-defined exception)- Function template, Class template – Template with inheritance, STL – Container, Algorithm, Iterator - vector, list, stack, map.

Module:6 | **IO Streams and Fi les**

10 hours

IOstreams and Files IOstreams, Manipulators- overloading Inserters(<<) and Extractors(>>)Sequential and Random files – writing and reading objects into/from files

Total Lab hours: 90 hours

Text Book(s)

- 1. Stanley B Lippman, Josee Lajoie, Barbara E, Moo, "C++ primer", Fifth edition, Addison-Wesley, 2012.
- 2. Ali Bahrami, Object oriented Systems development, Tata McGraw Hill Education, 1999
- 3. Brian W. Kernighan, Dennis M. Ritchie, The "C" programming Language, 2nd edition, Prentice Hall Inc., 1988.

Reference Books

- 1. Bjarne stroustrup, The C++ programming Language, Addison Wesley, 4th edition, 2013
- 2. Harvey M. Deitel and Paul J. Deitel, C++ How to Program, 7th edition, Prentice Hall, 2010.
- 3. Maureen Sprankle and Jim Hubbard, Problem solving and Programming concepts, 9th edition, Pearson Eduction, 2014

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

List of Challenging Experiments (Indicative)

1. | Postman Problem

A postman needs to walk down every street in his area in order to deliver the mail. Assume that the distances between the streets along the roads are given. The postman starts at the post office and returns back to the post office after delivering all the mails. Implement an algorithm to help the post man to walk minimum distance for the purpose.

2. **Budget Allocation for Marketing Campaign**

A mobile manufacturing company has got several marketing options such as Radio advertisement campaign, TV non peak hours campaign, City top paper network, Viral marketing campaign, Web advertising. From their previous experience, they have got a statistics about paybacks for each marketing option. Given the marketing budget (rupees in crores) for the current year and details of paybacks for each option, implement an algorithm to determine the amount that shall spent on each marketing option so that the company attains the maximum profit.

3. Missionaries and Cannibals

Three missionaries and three cannibals are on one side of a river, along with a boat that can hold one or two people. Implement an algorithm to find a way to get everyone to the other side of the river, without ever leaving a group of missionaries in one place outnumbered by

the cannibals in that place.

4. Register Allocation Problem

A register is a component of a computer processor that can hold any type of data and can be accessed faster. As registers are faster to access, it is desirable to use them to the maximum so that the code execution is faster. For each code submitted to the processor, a register interference graph (RIG) is constructed. In a RIG, a node represents a temporary variable and an edge is added between two nodes (variables) t1 and t2 if they are live simultaneously at some point in the program. During register allocation, two temporaries can be allocated to the same register if there is no edge connecting them. Given a RIG representing the dependencies between variables in a code, implement an algorithm to determine the number of registers required to store the variables and speed up the code execution.

5. Selective Job Scheduling Problem

A server is a machine that waits for requests from other machines and responds to them. The purpose of a server is to share hardware and software resources among clients. All the clients submit the jobs to the server for execution and the server may get multiple requests at a time. In such a situation, the server schedule the jobs submitted to it based on some criteria and logic. Each job contains two values namely time and memory required for execution. Assume that there are two servers that schedules jobs based on time and memory. The servers are named as Time_Schedule_Server and memory_Schedule_Server respectively. Design a OOP model and implement the time_Schedule_Server and memory_Schedule_Server. The Time_Schedule_Server arranges jobs based on time required for execution in ascending order whereas memory_Schedule_Server arranges jobs based on memory required for execution in ascending order.

6. Fragment Assembly in DNA Sequencing

DNA, or deoxyribonucleic acid, is the hereditary material in humans and almost all other organisms. The information in DNA is stored as a code made up of four chemical bases: adenine (A), guanine (G), cytosine (C), and thymine (T). In DNA sequencing, each DNA is sheared into millions of small fragments (reads) which assemble to form a single genomic sequence ("superstring"). Each read is a small string. In such a fragment assembly, given a set of reads, the objective is to determine the shortest superstring that contains all the reads. For example, given a set of strings, {000, 001, 010, 011, 100, 101, 110, 111} the shortest superstring is 0001110100. Given a set of reads, implement an algorithm to find the shortest superstring that contains all the given reads.

7. House Wiring

An electrician is wiring a house which has many rooms. Each room has many power points in different locations. Given a set of power points and the distances between them, implement an algorithm to find the minimum cable required.

Total Laboratory Hours	90 hours
Recommended by Board of Studies	Date: 29-10-2015
Approved by 39th Academic Council	Date: 17-12-2015

Course code	Course title	L	T	P	J	C
ENG1011	English for Engineers	0	0	4	0	2
Pre-requisite	Cleared EPT / Effective English	Syllabus version				s version
		v.				v. 2.2

- 1. To facilitate effective language skills for academic purposes and real-life situations.
- 2. To enhance students' language and communication with focus on placement skills development.
- 3. To aid students apply language and communication skills in professional reading and reporting.

Course Outcomes:

- 1. Apply language skills with ease in academic and real-life situations.
- 2. Build up a job winning digital foot print and learn to face interviews confidently.
- 3. Develop good interpreting and reporting skills to aid them in research.
- 4. Comprehend language and communication skills in academic and social contexts.
- 5. Acquire vocabulary and learn strategies for error-free communication.

Module:1	Listening	4 hours
Casu	ual and Academic	
Module:2	Speaking	4 hours
Soci	alizing Skills - Introducing Oneself- His / Her	Goals & SWOT
Module:3	Reading	2 hours
Skin	nming and Scanning	1
Module:4	Writing	2 hours
Erro	r-free sentences, Paragraphs	1
Module:5	Listening	4 hours
	vs (Authentic Material): Analyzing General and rmation	d Domain Specific
Module:6	Speaking	4 hours
Grou	up Discussion on factual, controversial and abs	tract issues
Module:7	Reading:	2 hours
Exte	ensive Reading	-1
Module:8	Writing	2 hours
Ema	il Etiquette with focus on Content and Audience	ce
Module:9	Listening	4 hours

	Spacehas : Car	noval and Domain Specific Information	
	Speecnes : Ger	neral and Domain Specific Information	
Module:10		Speaking	4 hours
	Developing Pe	rsuasive Skills - Turncoat and Debate	
Module:11		Reading	2 hours
	Intensive Read	ing	
Module:12		Writing	2 hours
	Data Transcod	ing	
Module:13		Cross Cultural Communication	4 hours
	Understanding	Inter and Cross-Cultural Communication	Nuances
Module:14		Speaking	4 hours
	Public Speaking	g/Extempore /Monologues	
Module:15		Reading for research	2 hours
	Reading Scient	fic/Technical Articles	
Module:16		Writing	2 hours
	Creating a Digi	tal/Online Profile – LinkedIn (Résumé/Vi	deo Profile)
Module:17		Speaking:	4 hours
	Mock Job/Place	ement Interviews	
Module:18		Writing	2 hours
	Report Writing		
Module:19		Speaking	4 hours
	Presentation us	sing Digital Tools	
Module:20		Vocabulary	2 hours
	Crossword Puzz	zles/Word games	
		Total Lecture hours:	60 hours
Text Book (s)			
	Clive Oxenden ar	d Christina Latham-Koenig, New English File	e: Advanced: Teacher's
		sessment CD-ROM: Six-level general English	
		University Press, UK	course for addits raper

2	Clive Oxenden and Christina Latham-Koenig, New English File: Advanced Students Book Paperback – Feb 2012, Oxford University Press, UK			
	Michael Vince, Language Practice for Advanced - Book, Feb. 2014, 4th Edition, Macmillan Education, Oxford, United King	Students gdom		
Reference Boo	oks			
1.	Steven Brown, Dorolyn Smith, Active Listening 3, 2011, 3 rd Edition, C University Press, UK	ambridge		
2.	Tony Lynch, Study Listening, 2013, 2 nd Edition, Cambridge University	Press, UK		
3.	Liz Hamp-Lyons, Ben Heasley, Study Writing, 2010, 2 nd Edition, Cambuniversity Press, UK	bridge		
4.	Kenneth Anderson, Joan Maclean, Tony Lynch, Study Speaking, 2013, Cambridge University Press, UK	2 nd Edition,		
5.	Eric H. Glendinning, Beverly Holmstrom, Study Reading, 2012, 2 nd Ed Cambridge University Press, UK	lition		
6.	Michael Swan, Practical English Usage (Practical English Usage), Jun edition, Oxford, University Press, UK	2017, 4th		
7.	Michael McCarthy, Felicity O'Dell, English Vocabulary in Use Advance Asian Edition), May 2015, Cambridge University Press, UK	ced (South		
8.	Michael Swan, Catherine Walter, Oxford English Grammar Course Ad 2012, 4 th Edition, Oxford University Press, UK	vanced, Feb		
9.	Heather Silyn-Roberts, Writing for Science and Engineering: Papers, P. Reports, Jun 2016, 2 nd Edition, Butterworth-Heinemann, UK	resentations and		
Mode of Eval	uation: Assignment and FAT- Mini Project, Flipped Class Room, Lectur	re, PPT's, Role		
play, Assignm	ents Class/Virtual Presentations, Report and beyond the classroom activi	ties		
	List of Challenging Experiments (Indicative)			
1.	Create a Digital or Online Profile or a Digital Footprint	6 hours		
2.	Prepare a video resume	8 hours		
3.	Analyse a documentary critically	4 hours		
4.	Turn Coat- Speaking for and against the topic / Activities through VIT Community Radio	6 hours		
5	Present a topic using 'Prezi'	6 hours		
6	Analyse a case on cross cultural communication critically	6 hours		
7	Create a list of words relating to your domain	4 hours		
8	Listen to a conversation of native speakers of English and answer the following questions	6 hours		

9	Read an article and critical	50 words	6 hours		
Read an autobiography and role play the character in class by taking an excerpt from the book					8 hours
Total Practica	Total Practical Hours				
Mode of evaluation: Mini Project, Flipped Class Room, Lecture, PPT's, Role play, Assignments Class/Virtual Presentations, Report and beyond the classroom activities					
Recommended by Board of Studies 22-07-2017					
Approved by A	cademic Council	No. 47	Date	24.08.2017	

Course code	Course title	L T P J C
HUM1021	ETHICS AND VALUES	2 0 0 0 2
Pre-requisite	Nil	Syllabus version
		1.1

- 1. To understand and appreciate the ethical issues faced by an individual in profession, society and polity
- 2. To understand the negative health impacts of certain unhealthy behaviors
- 3. To appreciate the need and importance of physical, emotional health and social health

Course Outcomes:

- 1. Follow sound morals and ethical values scrupulously to prove as good citizens
- 2. Understand various social problems and learn to act ethically
- 3. Understand the concept of addiction and how it will affect the physical and mental health
- 4. Identify ethical concerns in research and intellectual contexts, including academic integrity, use and citation of sources, the objective presentation of data, and the treatment of human subjects
- 5. Identify the main typologies, characteristics, activities, actors and forms of cybercrime

Module:1 Being Good and Responsible

5 hours

Gandhian values such as truth and non-violence – Comparative analysis on leaders of past and present – Society's interests versus self-interests - Personal Social Responsibility: Helping the needy, charity and serving the society

Module:2 | Social Issues 1

4 hours

Harassment - Types - Prevention of harassment, Violence and Terrorism

Module:3 | Social Issues 2

4 hours

Corruption: Ethical values, causes, impact, laws, prevention – Electoral malpractices; White collar crimes - Tax evasions – Unfair trade practices

Module:4 Addiction and Health

5 hours

Peer pressure - Alcoholism: Ethical values, causes, impact, laws, prevention – Ill effects of smoking - Prevention of Suicides;

Sexual Health: Prevention and impact of pre-marital pregnancy and Sexually Transmitted Diseases

Module:5 Drug Abuse

3 hours

Abuse of different types of legal and illegal drugs: Ethical values, causes, impact, laws and prevention

Module:6 Personal and Professional Ethics

4 hours

Dishonesty - Stealing - Malpractices in Examinations - Plagiarism

Mo	dule:7	Abuse of Technologies				3 hours
	king and sites	other cyber crimes, Addiction	to mobile phone us	age, V	ideo games and	Social networking
Ma	Jl0	Cantamnamawiggwage				2 house
	dule:8	Contemporary issues:				2 hours
Gue	st lecture	es by Experts				
			Total Lecture ho	urs:	30 hours	
Ref	erence l	Books				
1.	Dhaliwa	al, K.K, "Gandhian Philosoph	ny of Ethics: A Study	of Re	lationship betw	een his
••		position and Precepts, 2016, Wi				
2.		N, "Ending Corruption? - How				shers UK
3.		o, L.A. and Pagliaro, A.M, "H				
٥.	_	cological, Developmental and				
4.		P. K (2012), "Sexual Harassı				
т.	i andey,	1. IX (2012), Sexual Harassi	incin and Law III IIIu	1α , ΔU	12, Lamoert I u	onsiters, Octimany.
Mod	de of Ev	aluation: CAT, Assignment	t, Quiz, FAT and S	Semin	ar	
Rec	ommen	ded by Board of Studies	26-07-2017			
Apr	proved b	y Academic Council	No. 46	Date	24-08-20)17

Course Code	Course Title			T	P	J	C
MAT-1011	Calculus for Engineers		3	0	2	0	4
Pre-requisite	10+2 Mathematics or MAT1001	Sy	llat	ous '	Ver	sion	1
			1	.0			

- 1. To provide the requisite and relevant background necessary to understand the other important engineering mathematics courses offered for Engineers and Scientists.
- 2. To introduce important topics of applied mathematics, namely Single and Multivariable Calculus and Vector Calculus etc.
- 3. To impart the knowledge of Laplace transform, an important transform technique for Engineers which requires knowledge of integration

Course Outcomes:

- 1. A pply single variable differentiation and integration to solve applied problems in engineering and find the maxima and minima of functions
- 2. Understand basic concepts of Laplace Transforms and solve problems with periodic functions, step functions, impulse functions and convolution
- 3. Evaluate partial derivatives, limits, total differentials, Jacobians, Taylor series and optimization problems involving several variables with or without constraints
- 4. Evaluate multiple integrals in Cartesian, Polar, Cylindrical and Spherical coordinates.
- 5. Understand gradient, directio nal derivatives, divergence, curl and Greens', Stokes, Gauss theorems

Module:1 | Application of Single Variable Calculus | 9 hours

Differentiation- Extrema on an Interval-Rolle's Theorem and the Mean Value Theorem-Increasing and Decreasing functions and First derivative test-Second derivative test- Maxima and Minima-Concavity. Integration-Average function value - Area between curves - Volumes of solids of revolution - Beta and Gamma functions—interrelation

Module:2 | Laplace transforms 7 hours

Definition of Laplace transform-Properties-Laplace transform of periodic functions-Laplace transform of unit step function, Impulse function-Inverse Laplace transform-Convolution.

Module:3 | Multivariable Calculus | 4 hours

Functions of two variables-limits and continuity-partial derivatives –total differential- Jacobian and its properties.

Module:4 | Application of Multivariable Calculus 5 hours

Taylor's expansion for two variables—maxima and minima—constrained maxima and minima-Lagrange's multiplier method.

Module:5 | **Multiple integrals**

8 hours

Evaluation of double integrals—change of order of integration—change of variables between Cartesian and polar co-ordinates - Evaluation of triple integrals-change of variables between Cartesian and cylindrical and spherical co-ordinates- evaluation of multiple integrals using gamma and beta functions.

Module:6 Vector Differentiation

5 hours

Scalar and vector valued functions – gradient, tangent plane–directional derivative- divergence and curl–scalar and vector potentials–Statement of vector identities-Simple problems

Module:7 Vector Integration

5 hours

line, surface and volume integrals - Statement of Green's, Stoke's and Gauss divergence theorems -verification and evaluation of vector integrals using them.

Module:8 | Contemporary Issues:

2 hours

Industry Expert Lecture

Total Lecture hours:

45 hours

Text Book(s)

- [1] Thomas' Calculus, George B.Thomas, D.Weir and J. Hass, 13th edition, Pearson, 2014.
- [2] Advanced Engineering Mathematics, Erwin Kreyszig, 10th Edition, Wiley India, 2015.

Reference Books

- 1. Higher Engineering Mathematics, B.S. Grewal, 43rd Edition ,Khanna Publishers, 2015
- 2. Higher Engineering Mathematics, John Bird, 6th Edition, Elsevier Limited, 2017.
- 3. Calculus: Early Transcendentals, James Stewart, 8th edition, Cengage Learning, 2017.
- 4. Engineering Mathematics, K.A.Stroud and Dexter J. Booth, 7th Edition, Palgrave Macmillan (2013)

Mode of Evaluation

Digital Assignments, Quiz, Continuous Assessments, Final Assessment Test

List	of Challenging Experiments (Indicative)	
1.	Introduction to MATLAB through matrices, and general Syntax	2 hours
2	Plotting and visualizing curves and surfaces in MATLAB – Symbolic computations using MATLAB	2 hours
3.	Evaluating Extremum of a single variable function	2 hours
4.	Understanding integration as Area under the curve	2 hours
5.	Evaluation of Volume by Integrals (Solids of Revolution)	2 hours
6.	Evaluating maxima and minima of functions of several variables	2 hours
7.	Applying Lagrange multiplier optimization method	2 hours
8.	Evaluating Volume under surfaces	2 hours

9.	Evaluating triple integrals	2 ho	ours		
10.	Evaluating gradient, curl and diver	gence		2 ho	ours
11.	Evaluating line integrals in vectors			2 ho	ours
12.	Applying Green's theorem to real w	2 ho	ours		
		24 h	ours		
Mo	de of Assessment:				
	Weekly assessment, Final Assessment Test				
Rec	Recommended by Board of Studies 12-06-2015				
App	Approved by Academic Council No. 37 Date 16-06-2015				

Course Code	Course title	L	T	P	J	С
MAT2001	Statistics for Engineers	3	0	2	0	4
Prerequisites	MAT1011 – Calculus for Engineers	Syllabus Version:			1.0	

- 1. To provide students with a framework that will help them choose the appropriate descriptive methods in various data analysis situations.
- 2. To analyse distributions and relationship of real-time data.
- 3. To apply estimation and testing methods to make inference and modelling techniques for decision making.

Course Outcomes:

- 1. Compute and interpret descriptive statistics using numerical and graphical techniques.
- 2. Understand the basic concepts of random variables and find an appropriate distribution for analysing data specific to an experiment.
- 3. Apply statistical methods like correlation, regression analysis in analysing, interpreting experimental data.
- 4. Make appropriate decisions using statistical inference that is the central to xperimental research.
- 5. Use statistical methodology and tools in reliability engineering problems.
- 6. Demonstrate R programming for statistical data

Module: 1	Introduction to Statistics	6 hours			
Introduction to statistics and data analysis-Measures of central tendency – Measures of					
variability-[Moments-Skewness-Kurtosis (Concepts only)].					

Module: 2 Random variables 8 hours

Introduction -random variables-Probability mass Function, distribution and density functions - joint Probability distribution and joint density functions- Marginal, conditional distribution and density functions- Mathematical expectation, and its properties Covariance, moment generating function – characteristic function.

Module: 3	Correlation and regression	4 hours			
Correlation and Regression – Rank Correlation- Partial and Multiple correlation- Multiple					
regression.					

Module: 4	Probability Distributions	7 hours
Binomial and Poisson	distributions - Normal distribution -	- Gamma distribution –
Exponential distributi	on – Weibull distribution.	

Testing of hypothesis – Introduction-Types of errors, critical region, procedure of testing hypothesis-Large sample tests- Z test for Single Proportion, Difference of Proportion, mean and difference of means.

Module: 6	Hypothesis Testing II	9 hours

Small sample tests- Student's t-test, F-test- chi-square test- goodness of fit - independence of attributes- Design of Experiments - Analysis of variance – one and two way classifications - CRD-RBD- LSD.

Module: 7 Reliability 5 hours

Basic concepts- Hazard function-Reliabilities of series and parallel systems- System Reliability - Maintainability-Preventive and repair maintenance- Availability.

Module: 8 Contemporary Issues 2 hours

Industry Expert Lecture

Total Lecture hours 45 hours

Text book(s)

- Probability and Statistics for engineers and scientists, R.E.Walpole, R.H.Myers, S.L.Mayers and K.Ye, 9th Edition, Pearson Education (2012).
- Applied Statistics and Probability for Engineers, Douglas C. Montgomery, George C. Runger, 6th Edition, John Wiley & Sons (2016).

Reference books

- Reliability Engineering, E.Balagurusamy, Tata McGraw Hill, Tenth reprint 2017.
- Probability and Statistics, J.L.Devore, 8th Edition, Brooks/Cole, Cengage Learning (2012).
- Probability and Statistics for Engineers, R.A.Johnson, Miller Freund's, 8th edition, Prentice Hall India (2011).
- Probability, Statistics and Reliability for Engineers and Scientists, Bilal M. Ayyub and Richard H. McCuen, 3rd edition, CRC press (2011).

Mode of Evaluation

Digital Assignments, Continuous Assessment Tests, Quiz, Final Assessment Test.

List of	Experiments (Indicative)	
1	Introduction: Understanding Data types; importing/exporting data.	2 hours
2	Computing Summary Statistics /plotting and visualizing data using Tabulation and Graphical Representations.	2 hours
3	Applying correlation and simple linear regression model to real dataset; computing and interpreting the coefficient of determination.	2 hours
4	Applying multiple linear regression model to real dataset; computing and interpreting the multiple coefficient of determination.	2 hours
5	Fitting the following probability distributions: Binomial distribution	2 hours
6	Normal distribution, Poisson distribution	2 hours

7	7 Testing of hypothesis for One sample mean and proportion from real-time problems.				2 hours		
8	Testing of hypothesis for proportion from real-time problem	-	means	and	2 hours		
9	9 Applying the t test for independent and dependent samples						
10	Applying Chi-square test for goodness of fit test and Contingency test to real dataset			2 hours			
11	Performing ANOVA for real dataset for Completely randomized design, Randomized Block design ,Latin square Design				2 hours		
Total laboratory hours					22 hours		
	Mode of Evaluation						
Weekly Assessment, Final Assessment Test							
Recommended by Board of Studies 25-02-2017							
Approved by Academic Council		47	Date:	05-10-2	2017		

Course code	Course title		LTPJC
MGT1022	Lean Start up Manageme	ent	1 0 0 4 2
Pre-requisite	Nil		Syllabus version
			v.1.0
Course Objective	es:		
	hods of company formation and management.		
	ical skills in and experience of stating of busi	ness using pre-se	t collection of
business ic			
3. Learn basi	cs of entrepreneurial skills.		
Course Outcome	s·		
	d developing business models and growth dri	vers	
	siness model canvas to map out key compone		
	narket size, cost structure, revenue streams, an		
	d build-measure-learn principles		
Foreseeing	g and quantifying business and financial risks		
Module:1			2 Hours
Creativity and Des	sign Thinking (identify the vertical for busine	ss opportunity, u	nderstand your
	tely assess market opportunity)	7,	, , , , , , , , , , , , , , , , , , ,

Module:2			3 Hours
Minimum Viable	Product (Value Proposition, Customer Segme	nts, Build- meası	ure-learn process)
Module:3			3 Hours
	Development (Channels and Partners, Revenue		
	ties and Costs, Customer Relationships and C	ustomer Develop	ment Processes,
Business model ca	anvas –the lean model- templates)		
Module:4			3 Hours
	Access to Funding(visioning your venture, ta	king the product	/ service to
	an including Digital & Viral Marketing, start-		
	Angel/VC,/Bank Loans and Key elements of		
Module:5			3 Hours
Legal, Regulatory	, CSR, Standards, Taxes		
Modulo:6			2 11
Module:6			2 Hours
Lectures by Entre	preneurs		
	Total Lastona		15 hours
	Total Lecture		15 hours

	xt Book(s)					
1.	The Startup Owner's Manual: The Step-By-Step Guide for Building a Great C	ompany, Steve				
	Blank, K & S Ranch; 1st edition (March 1, 2012)					
2	The Four Steps to the Epiphany, Steve Blank, K&S Ranch; 2nd edition (July 1					
3	The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses, Eric Ries, Crown Business; (13 September 2011)					
Ref	ference Books					
1.	Holding a Cat by the Tail, Steve Blank, K&S Ranch Publishing LLC (August	14, 2014)				
2	Product Design and Development, Karal T Ulrich, SD Eppinger, McGraw Hil	1				
3	Zero to One: Notes on Startups, or How to Build the Future, Peter Thiel, Crown					
4	Lean Analytics: Use Data to Build a Better Startup Faster (Lean Series), Alista	air Croll &				
	Benjamin Yoskovitz, O'Reilly Media; 1 st Edition (March 21, 2013)					
5	Inspired: How To Create Products Customers Love, Marty Cagan, SVPG Pres	s; 1st edition				
	(June 18, 2008)					
6	Website References:					
	1. http://theleanstartup.com/					
	2. https://www.kickstarter.com/projects/881308232/only-on-kickstarter-the-le	aders-guide-				
	by-eric-ries					
	3. http://businessmodelgeneration.com/					
	4. https://www.leanstartupmachine.com/					
	5. https://www.youtube.com/watch?v=fEvKo90qBns					
	6. http://thenextweb.com/entrepreneur/2015/07/05/whats-wrong-with-the-lean	-startup-				
	methodology/#gref	150615661				
	7. http://www.businessinsider.in/Whats-Lean-about-Lean-Startup/articleshow	7/53615661.cms				
	8. https://steveblank.com/tools-and-blogs-for-entrepreneurs/					
	9. https://hbr.org/2013/05/why-the-lean-start-up-changes-everything	1				
	10.chventures.blogspot.in/platformsandnetworks.blogspot.in/p/saas-model.htm	nı				
N // -	do of Evolvetion. Assignments, Field Twins Cose Studies, a leave in Leave in	~ 4la mary alla				
	ode of Evaluation: Assignments; Field Trips, Case Studies; e-learning; Learning earch, TED Talks	g unrougn				
	oject					
1.	Project	60 hours				
-	Total Project					

08-06-2015

Date

16-06-2015

37

Recommended by Board of Studies
Approved by Academic Council

Course code	Course title			T	P	J	С
PHY1701	ENGINEERING PHYSICS			0	2	0	4
Pre-requisite	Physics of 12th standard or equivalent		Syl	lal	bus	vei	rsion
							V.2.1

To enable the students to understand the basics of the latest advancements in Physics viz., Quantum Mechanics, Nanotechnology, Lasers, Electro Magnetic Theory and Fiber Optics.

Course Outcomes:

- 1. Understand the dual nature of radiation and matter.
- 2. Apply Schrodinger's equations to solve finite and infinite potential problems.
- 3. Apply quantum ideas at the nanoscale.
- 4. Apply quantum ideas for understanding the operation and working principle of optoelectronic devices.
- 5. Analyze the Maxwell's equations in differential and integral form.
- 6. Classify the optical fiber for different Engineering applications.
- 7. Apply concept of Lorentz Transformation for Engineering applications.
- 8. Demonstrate the quantum mechanical ideas LAB

Module:1 Introduction to Modern Physics

6 hours

Planck's concept (hypothesis), Compton Effect, Particle properties of wave: Matter Waves, Davisson Germer Experiment, Heisenberg Uncertainty Principle, Wave function, and Schrodinger equation (time dependent & independent).

Module:2 Applications of Quantum Physics

5 hours

Particle in a 1-D box (Eigen Value and Eigen Function), 3-D Analysis (Qualitative), Tunneling Effect (Qualitative) (AB 205), Scanning Tunneling Microscope (STM).

Module:3 Nanophysics

5 hours

Introduction to Nano-materials, Moore's law, Properties of Nano-materials, Quantum confinement, Quantum well, wire & dot, Carbon Nano-tubes (CNT), Applications of nanotechnology in industry.

Module:4 Laser Principles and Engineering Application

6 hours

Laser Characteristics, Spatial and Temporal Coherence, Einstein Coefficient & its significance, Population inversion, Two, three & four level systems, Pumping schemes, Threshold gain coefficient, Components of laser, Nd-YAG, He-Ne, CO2 and Dye laser and their engineering applications.

Module:5 Electromagnetic Theory and its application

6 hours

Physics of Divergence, Gradient and Curl, Qualitative understanding of surface and volume integral, Maxwell Equations (Qualitative), Wave Equation (Derivation), EM Waves, Phase velocity, Group velocity, Group index, Wave guide (Qualitative)

Module:6 Propagation of EM waves in Optical fibers and Optoelectronic Devices

10 hours

Light propagation through fibers, Acceptance angle, Numerical Aperture, Types of fibers - step index, graded index, single mode & multimode, Attenuation, Dispersion-intermodal and intramodal. Sources-LED & Laser Diode, Detectors-Photodetectors- PN & PIN - Applications of fiber optics in communication- Endoscopy.

Module:7 **Special Theory of Relativity** 5 hours Frame of reference, Galilean relativity, Postulate of special theory of relativity, Simultaneity, length contraction and time dilation. Module:8 **Contemporary issues:** 2 hours Lecture by Industry Experts Total Lecture hours: 45 hours Text Book(s) Arthur Beiser et al., Concepts of Modern Physics, 2013, Sixth Edition, Tata McGraw Hill. William Silfvast, Laser Fundamentals, 2008, Cambridge University Press. 2. D. J. Griffith, Introduction to Electrodynamics, 2014, 4th Edition, Pearson. 3. Djafar K. Mynbaev and Lowell L. Scheiner, Fiber Optic Communication Technology, 2011, Pearson Reference Books Raymond A. Serway, Clement J. Mosses, Curt A. Moyer Modern Physics, 2010, 3rd Indian Edition Cengage 1. learning. 2. John R. Taylor, Chris D. Zafiratos and Michael A. Dubson, Modern Physics for Scientists and Engineers, 2011, PHI Learning Private Ltd. Kenneth Krane Modern Physics, 2010, Wiley Indian Edition. 3. Nityanand Choudhary and Richa Verma, Laser Systems and Applications, 2011, PHI Learning Private Ltd. 4. S. Nagabhushana and B. Sathyanarayana, Lasers and Optical Instrumentation, 2010, I.K. International 5. Publishing House Pvt. Ltd., R. Shevgaonkar, Electromagnetic Waves, 2005, 1st Edition, Tata McGraw Hill 6. Principles of Electromagnetics, Matthew N.O. Sadiku, 2010, Fourth Edition, Oxford. 7. Ajoy Ghatak and K. Thyagarajan, Introduction to Fiber Optics, 2010, Cambridge University Press. 8. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar **List of Experiments** Determination of Planck's constant using electroluminescence process 2 hrs 2. 2 hrs Electron diffraction 3. Determination of wavelength of laser source (He -Ne laser and diode lasers of 2 hrs different wavelengths) using diffraction technique Determination of size of fine particle using laser diffraction 4. 2 hrs 5. Determination of the track width (periodicity) in a written CD 2 hrs Optical Fiber communication (source + optical fiber + detector) 2 hrs 6. 7. 2 hrs Analysis of crystallite size and strain in a nano -crystalline film using X-ray diffraction Numerical solutions of Schrödinger equation (e.g. particle in a box problem) 8. 2 hrs (can be given as an assignment) Laser coherence length measurement 9. 2 hrs 10. Proof for transverse nature of E.M. waves 2 hrs

Quantum confinement and Heisenberg's uncertainty principle

Determination of divergence of a laser beam

Determination of angle of prism and refractive index for various colour –Spectrometer

Determination of crystalline size for nanomaterial (Computer simulation)

11.

12.

13.

14.

2 hrs

2 hrs

2 hrs

2 hrs

15. Demonstration of phase velocity and group velocity (Computer simulation)								
	Total Laboratory Hours 30 hrs							
Mode	e of evaluation: CAT / FAT							
Reco	Recommended by Board of Studies 04-06-2019							
Appro	Approved by Academic Council No. 55 Date 13-06-2019							

Course code	Course title	L T P J C
PHY1999	Introduction to Innovative Projects	1 0 0 4 2
Pre-requisite	Nil	Syllabus version
		1.0

- 1. To make students confident enough to handle the day to day issues.
- 2. To develop the "Thinking Skill" of the students, especially Creative Thinking Skills
- 3. To train the students to be innovative in all their activities
- 4. To prepare a project report on a socially relevant theme as a solution to the existing issues

Course Outcomes:

- 1. Understand the various types of thinking skills.
- 2. Enhance the innovative and creative ideas.
- 3. Find out a suitable solution for socially relevant issues- J component

Module:1 A | Self Confidence

1 hour

Understanding self – Johari Window –SWOT Analysis – Self Esteem – Being a contributor – Case Study

Project : Exploring self, understanding surrounding, thinking about how s(he) can be a contributor for the society, Creating a big picture of being an innovator – writing a 1000 words imaginary autobiography of self – Topic "Mr X – the great innovator of 2015" and upload. (4 **non-contact hours**)

Module:1 B | Thinking Skill

1 hour

Thinking and Behaviour – Types of thinking– Concrete – Abstract, Convergent, Divergent, Creative,

Analytical, Sequential and Holistic thinking – Chunking Triangle – Context Grid – Examples – Case

Study.

Project : Meeting at least 50 people belonging to various strata of life and talk to them / make field visits to identify a min of 100 society related issues, problems for which they need solutions

Module:1 C | Lateral Thinking Skill

1 hour

Blooms Taxonomy – HOTS – Outof the box thinking – deBono lateral thinking model – Examples **Project :** Last weeks - incomplete portion to be done and uploaded

Module:2 A Creativity	1 hour				
Creativity Models – Walla – Bar	ons – Koberg & Begnall – Examples				
Project: Selecting 5 out of 100 issues identified for future work. Criteria based					
	statistical tools & upload. (4 non- contact hours)				
Module:2 B Brainstorming	1 hour				
25 brainstorming techniques and	examples				
Project: Brainstorm and come o	t with as many solutions as possible for the top 5				
issues identified & upload. (4 no					
Module:3 Mind Mapping	1 hour				
Mind Mapping techniques and g					
	nother set of solutions for the next 5 issues (issue $6-10$).				
(4 non- contact hours)					
Module:4 A Systems thinking	1 hour				
	amples – Counter Intuitive condemns				
_	blem for which the possible solutions are available with				
	rocess and pick up one solution [explanation should be given				
	have been left out]. Go back to the customer and assess the				
acceptability and upload (4 no	- contact hours)				
Module:4 B Design Thinking	1 hour				
Design thinking process – Huma	element of design thinking – case study				
	o the selected solution, apply the engineering & scientific tinge				
	celebrations upload the weeks learning out come.				
Module:5 A Innovation	1 hour				
Difference between Creativity ar	I Innovation – Examples of innovation –Being innovative.				
	prototyping of your solution finalized. Prepare a prototype				
model or process and upload (4					
Module:5 B Blocks for Innov	1 2 2				
, ,	innovation – overcoming obstacles – Case Study				
	problem identification, solution, innovations-				
	with PPT presentation (4 non- contact hours)				
Module:5 C Innovation Proc					
Steps for Innovation – right clim					
	ed on the review report and uploading the text (4 non-				
contact hours) Module:6 A Innovation in In	io 1 hours				
	ia 1 hour				
Stories of 10 Indian innovations	with add ons (4 non- contact hours)				
Module:6 B JUGAAD Innov	· · · · · · · · · · · · · · · · · · ·				
	o innovation - doing more with less Indian Examples				
	ation project with JUGAAD principles and uploading				
	mentation). (4 non- contact hours)				
Module:7 A Innovation Pro					
Presentation	1 nour				
Project proposal contents, econo	nic input, ROI – Template				
Project: Presentation of the innovative project proposal and upload . (4 non- contact hours)					
Module:8 A Contemporary issue in Innovation 1 hour					
Contemporary issue in Innovation					

Proje	Project: Final project Presentation, Viva voce Exam (4 non- contact hours)						
			Total Lecture ho	urs:	15 hours		
Text]	Text Book(s)						
1.	How to	have Creative Ideas, Edwa	rd debone, Vermilo	on publ	ication, UK,	2007	
2.	The Ar	t of Innovation, Tom Kelley	y & Jonathan Littm	an, Pro	file Books L	td, UK, 2008	
Refer	ence Bo	oks					
1.	Creatin	g Confidence, Meribeth Bo	nct, Kogan Page Ir	ndia Lto	l, New Delh	i, 2000	
2.	Lateral	Thinking Skills, Paul Sloan	ne, Keogan Page In	dia Ltd	, New Delhi	, 2008	
3.	Indian	Innovators, Akhat Agrawal	, Jaico Books, Mun	nbai, 20)15		
4.	JUGAA	D Innovation, Navi Radjou, J	aideep Prabhu, Simo	ne Ahuj	a Random ho	ouse India, Noida,	
	2012.						
Mode	of Evalu	uation: CAT / Assignment /	Quiz / FAT / Proje	ect / Sei	minar		
Three	raviawa	with weightage of 25 · 25 ·	50 along with reno	orte			
Tillee	Three reviews with weightage of 25: 25: 50 along with reports						
Recor	mmende	d by Board of Studies	15-12-2015				
Appro	oved by A	Academic Council	No. 39	Date	17-12-20	015	

Soft Skill Course Basket

Course co	ode	Course title	L T P J C			
STS 120)1	Introduction to problem solv	ving 3 0 0 0 1			
Pre-requi	site	None	Syllabus version			
			1			
Course Obj	ectives	:				
		the logical reasoning skills of the stude	nts and improve the			
		ving abilities				
		en the ability to solve quantitative aptitu				
3. To ea	nrich th	ne verbal ability of the students for acade	emic purpose			
Course Outcomes:						
		ll be introduced to basic concepts of Qu	antitative Aptitude, Logical			
		nd Verbal ability				
		ll be able to read and demonstrate good	comprehension of text in areas of the			
	ent's in					
		ll be able to demonstrate the ability to re	esolve problems that occur in their			
field	•					
N/. 1 1 . 4	T		21			
		ns on excellence	2hours			
Skill introsp	ection,	Skill acquisition, consistent practice				
Module:2	Logic	al Reasoning	18 hours			
Thinking Sl		ar Keasoning	10 1100115			
	lem So	lvino				
	cal Thi					
	al Thir	•				
		ught-provoking word and rebus puzzles	s, and word-link builder questions			
C	\mathcal{C}		,			
Coding & d	ecodin	g, Series, Analogy, Odd man out and	Visual reasoning			
□ Codi	ng and	Decoding				
☐ Serie	S					
☐ Anal	ogy					
	Man O	ut				

□ Visual Reasoning				
Sudoku pu Solving intr with number	oductory to moderate level sudoku puza	zles to boost logical thinking and comfort		
Attention to detail Picture and word driven Qs to develop attention to detail as a skill				
Module:3	Quantitative Aptitude	14 hours		
Speed Mat	hs			
Add	ition and Subtraction of bigger numbers	S		
□ Squ	are and square roots			
	es and cube roots			
\Box Ved	ic maths techniques			
□ Mul	tiplication Shortcuts			
	tiplication of 3 and higher digit number	s		
	plifications			
	pparing fractions			
	rtcuts to find HCF and LCM			
-	sibility tests shortcuts			
	islomity tests shorteats			
Algebra an	d functions			
36 1 1 4				
	Recruitment Essentials	5hours		
	an engineering career through the pr			
-	ortance of a resume - the footprint of a p	person's career achievements		
	a resume looks like?			
☐ An e	-	t skills you must build starting today and		
Impression	Management			
	ght for the interview:			
	oming, dressing			
\square Bod	y Language and other non-verbal signs			
☐ Disp	playing the right behaviour			
Module:5	Verbal Ability	6hours		
Gramma	r challenge			
A practice	paper with sentence based and passage	-based questions on grammar discussed.		
Topics co	vered in questions are Nouns and Prono	uns, Verbs, Subject-		
Verb Agre	eement, Pronoun-Antecedent Agreemen	t, Punctuations		
Verbal reasoning				

	Total Lecture hours:	45 hours

Mode of Evaluation: FAT, Assignments, 3 Assessments with Term End FAT (Computer Based Test)

Text Book(s):

- **1.** FACE, Aptipedia Aptitude Encyclopedia, 2016, 1stEdition, Wiley Publications, Delhi.
- **2.** ETHNUS, Aptimithra, 2013, 1stEdition, McGraw-Hill Education Pvt.Ltd.
- 3. SMART, PlaceMentor, 2018, 1st Edition, Oxford University Press.
- **4.** R S Aggarwal, Quantitative Aptitude For Competitive Examinations, 2017, 3rd Edition, S. Chand Publishing, Delhi.

Reference Book(s):

Arun Sharma, Quantitative Aptitude, 2016, 7th Edition, McGraw Hill Education Pvt. Ltd.

Course code	Course title		Цï	Ŋ	4	J	C
STS 1202	Introduction to quantitative, logical and verbal ability 3 0 0 1					1	
Pre-requisite	None			S	yl	la	bus version
Cleared the cut-off						—	1
in end-of-sem 1		1					
assessment							
Course Objectives:							
•	he logical reasoning skills of the students and i	mprov	ve t	he			
±	n the ability to solve quantitative aptitude probl	eme					
_	e verbal ability of the students for academic pur						
3. To entren the	e verbai ability of the students for academic pur	pose					
Course Outcomes:							
	be able to show more confidence in solving pr	oblen	ns c	f			
Quantitative		001011					
_	be able to show more confidence in solving pr	oblen	ns c	of L	o	gi	cal
Reasoning						U	
_	be able to show more confidence in understan-	ding t	he o	que	est	tio	ns of Verbal
Ability							
O	l Reasoning						12 hour
Word group catego	orization questions						12 hours
Word group categor Puzzle type class inv	O	p ord	ers	of	lo	gi	
Word group categor Puzzle type class inv	orization questions	p ord	ers	of i	lo	gi	
Word group catego Puzzle type class inv sense	orization questions	p orde	ers	of	lo	gi	
Word group categor Puzzle type class invesense Cryptarithmetic	orization questions	p ord	ers	of :	lo	gi	
Word group categor Puzzle type class invisense Cryptarithmetic Data arrangements Linear Arran	orization questions volving students grouping words into right grou s and Blood relations ngement	p ord	ers	of	lo	gi	
Word group categor Puzzle type class invisense Cryptarithmetic Data arrangements Linear Arran	orization questions volving students grouping words into right groups and Blood relations agement angement	p ord	ers	of	lo	gi	
Word group categor Puzzle type class invisense Cryptarithmetic Data arrangements Linear Arran Circular Arran	orization questions volving students grouping words into right grous and Blood relations agement angement assional Arrangement	p ord	ers	of	lo	gi	

Module:2	Quantitative Aptitude	20 hour
	and Proportion	
□ Rat		
	portion	
	riation	
	nple equations	
	blems on Ages	
☐ M1X	tures and alligations: Problems involving	ng multiple iterations of mixtures
Percentage	es, Simple and Compound Interest	
	centages as Fractions and Decimals	
	centage Increase / Decrease	
□ Sim	nple Interest	
	mpound Interest	
□ Rel	ation Between Simple and Compound I	Interest
Number Sy	vstem	
•	mber system	
	wer cycle	
Ren	nainder cycle	
	etors, Multiples	
□ НС	F and LCM	
Madula 2	Verbal Ability	13hou
	omprehension – Advanced	1311001
Keauing C	omprenension – Auvanceu	
Grammar	- application and discussion	
A practice p	paper with sentence based and passage-	
	Topics covered in questions are Preposit	
	Speech and Voice, Idioms and Phrasal	Verbs, Collocations, Gerund and
Infinitives		
Articles, Pi	repositions and Interrogatives	
,	finite and Indefinite Articles	
□ Om	nission of Articles	
□ Pre	positions	
□ Cor	mpound Prepositions and Prepositional	Phrases
□ Inte	errogatives	
Vocabular	y – Advanced	
•	o challenging placement questions on vo	ocabulary
	Total Lecture hours:	45 hour

Mode of Evaluation: FAT, Assignments, 3 Assessments with Term End FAT (Computer Based Test)

Text Book(s):

- **1.** FACE, Aptipedia Aptitude Encyclopedia, 2016, 1stEdition, Wiley Publications, Delhi.
- **2.** ETHNUS, Aptimithra, 2013, 1stEdition, McGraw-Hill Education Pvt.Ltd.
- 3. SMART, PlaceMentor, 2018, 1st Edition, Oxford University Press.
- **4.** R S Aggarwal, Quantitative Aptitude For Competitive Examinations, 2017, 3rd Edition, S. Chand Publishing, Delhi.

Reference Book(s):

Arun Sharma, Quantitative Aptitude, 2016, 7th Edition, McGraw Hill Education Pvt. Ltd.

Cours	Course title					L	7	ΓΙ	J	ſ	C																			
STS	2201	ľ	Jun	eri	cal	lal	bili	ity	an	nd c	ogn	it	tivo	e ir	nte	elliş	gei	nce	е	3	() (0)				1		
Pre-re	quisite							1	No	ne									Syl	lal	bu	IS V	ers	sic	n					
																									1					
Course (Objectives	es:																												
1. T	o develop	the	stu	dent	ts'	log	gic	al	thi	nkiı	ng s	ki	ills	an	nd	app	ply	it it	in 1	the	r	eal	-lif	e			-			
	enarios																													
	o learn the							_	_				e a	bil	lity	pr	rob	ole	ms											
3. T	o enrich th	the v	erb	al at	oili	ity	of	the	e st	tude	ents																			
	Outcomes																													
	tudents wi										itica	al	th	ink	cin	g s	kil	ls,	suc	ch	as	pr	ob	lei	m					
	olving rela																													
	tudents wi	ill t	e at	ole t	o d	len	nor	nst	rat	e co	omp	et	en	сy	in	ve	rb	al,	qua	ant	ita	ativ	e a	ıno	d re	as	son	ing		
_	ptitude		_				_																							
3. S	tudents wi	/ill t	e at	ole t	o p	er	tor	m	go	od v	writ	te	n c	con	nn	ıur	nic	ati	on s	ski	IIIs	S								
36 3 3	<u> </u>											-																40		
Module:									•																			10	ho	urs
	calendars	s, Di	rec	tion	se	ens	se a	anc	d C	Cube	es																			
	Clocks																													
	Calendars																													
	Direction S Cubes	Sen	se																											
_	on advanc	ood :	arak	Jam	10																									
Fractice	Jii auvanc	ceu	וטונ	леш	15																									
Data inte	erpretatio	on a	ınd	Dat	a s	suf	ffic	ier	ncv	7 - A	dv	an	nce	ed																
	Advanced								-						ıcv	au	ıes	stic	ns	of	C	ΑΊ	le	ve	el.					
	Multiple ch														- 5	1														
	1																													
Module:	2 Quan	ntita	tive	e Ap	tit	tuc	de																					19	ho	urs
T	ime and	wol	·k –	Ad	va	nc	ed	,																						
	Work with	h dif	fere	nt e	ffic	cie	enci	ies	3																					
□ P	Pipes and o	cist	erns	: M	ulti	ipl	le p	oipe	e p	rob!	lem	S																		
	Vork equiv						_	-	-																					
	Division of	of wa	ages																											

☐ Advanced application problems with complexity in calculating total work
Time, Speed and Distance - Advanced
□ Relative speed
☐ Advanced Problems based on trains
☐ Advanced Problems based on boats and streams
☐ Advanced Problems based on races
Advanced Froblems based on faces
Profit and loss, Partnerships and averages - Advanced
□ Partnership
□ Averages
☐ Weighted average
Advanced problems discussed
r
Number system - Advanced
Advanced application problems on Numbers involving HCF, LCM, divisibility tests,
remainder and power cycles.
Module:3 Verbal Ability 13hours
Sentence Correction - Advanced
☐ Subject-Verb Agreement
□ Modifiers
□ Parallelism
□ Pronoun-Antecedent Agreement
□ Verb Time Sequences
□ Comparisons
•
□ Prepositions□ Determiners
Quick introduction to 8 types of errors followed by exposure to GMAT level questions
Sentence Completion and Dave jumbles Advanced
Sentence Completion and Para-jumbles - Advanced Pro-active thinking
•
Reactive thinking (signpost words, root words, prefix suffix, sentence structure clues)
☐ Fixed jumbles
☐ Anchored jumbles
Practice on advanced GRE/ GMAT level questions
Des Pro-Consent of the Administra
Reading Comprehension – Advanced
Exposure to difficult foreign subject-based RCs of the level of GRE/ GMAT
Modulo: 4 Writing skills for placements 2 hours
Module:4 Writing skills for placements 3 hours
Essay writing

	Idea generation for topics							
	Best practices							
	Practice and feedback							
	Total Lecture hours:	45 hours						
Mode	of Evaluation: FAT, Assignments, 3 Assess	ments with Term End FAT (Computer						
Based '	Test)							
Text Book(s):								
1.	FACE, Aptipedia Aptitude Encyclopedia, 2	016, 1 st Edition, Wiley						
	Publications, Delhi.							
2.	ETHNUS, Aptimithra, 2013, 1st Edition, Mo	:Graw-Hill Education Pvt.Ltd.						
3.	SMART, PlaceMentor, 2018, 1st Edition, C	Oxford University Press.						
4.	R S Aggarwal, Quantitative Aptitude For C	ompetitive Examinations, 2017,						
	3 rd Edition, S. Chand Publishing, Delhi.							
	nce Book(s): harma, Quantitative Aptitude, 2016, 7 th Edit	ion, McGraw Hill Education Pvt. Ltd.						

Cou	rse code	Course title	9	L T P J C					
ST	S 2202	Advanced aptitude and r	easoning skills	3 0 0 0 1					
Pre-	requisite	None	Syllabus version						
				1					
	e Objectives								
1.	To develop scenarios	the students' logical thinking sk	ills and apply it i	n the real-life					
	2. To learn the strategies of solving quantitative ability problems								
3.	To enrich th	ne verbal ability of the students							
4.	To strength	en the basic programming skills	for placements						
Course	e Outcomes	:							
	The students will be able to interact confidently and use decision making models effectively								
2.	2. The students will be able to deliver impactful presentations								
3.	3. The students will be able to be proficient in solving quantitative aptitude and verbal ability questions effortlessly								
Modul	e:1 Logic	al Reasoning		4 hours					
		g puzzles - Advanced							
	ced puzzles:								
	Sudoku								
		er style word statement puzzles							
	1 11100 81 001113	1							
	Rebus puzz	zies							
Logica	l connective	es, Syllogism and Venn diagra	ms						
1.	Logical Co								
2.		Syllogisms - 4, 5, 6 and other m	ultiple statement	problems					
3.	Challengir	g Venn Diagram questions: Set	theory						
Modul	e:2 Quan	titative Aptitude		10 hours					

Logarithms, Progressions, Geometry and Quadratic equations - Advanced 1. Logarithm 2. Arithmetic Progression 3. Geometric Progression 4. Geometry 5. Mensuration 6. Coded inequalities 7. Quadratic Equations Concepts followed by advanced questions of CAT level Permutation, Combination and Probability - Advanced Fundamental Counting Principle Permutation and Combination Computation of Permutation - Advanced problems П **Circular Permutations** П Computation of Combination - Advanced problems Advanced probability Module:3 | Verbal Ability 5hours **Image interpretation** 1. Image interpretation: Methods 2. Exposure to image interpretation questions through brainstorming and practice **Critical Reasoning - Advanced** 1. Concepts of Critical Reasoning 2. Exposure to advanced questions of GMAT level **Module:4** Recruitment Essentials 8 hours Mock interviews **Cracking other kinds of interviews** Skype/ Telephonic interviews Panel interviews Stress interviews Guesstimation 1. Best methods to approach guesstimation questions 2. Practice with impromptu interview on guesstimation questions Case studies/ situational interview 1. Scientific strategies to answer case study and situational interview questions 2. Best ways to present cases

Practice on presenting cases and answering situational interviews asked in

	recruitment rounds		
	recruitment rounds		
Module:5	Problem solving and Algorithmic		18 hours
	skills		
1. Log	gical methods to solve problem stateme	nts in Programming	
2. Bas	sic algorithms introduced		
	Total Lecture hours:		45 hours
Mode of E	valuation: FAT, Assignments, Mock in	nterviews, 3 Assessments with Term	
	Computer Based Test)		
Text Book	(s):		
1. FAC	CE, Aptipedia Aptitude Encyclopedia, 2	2016, 1 st Edition, Wiley	
Pub	lications, Delhi.	•	
2. ETI	HNUS, Aptimithra, 2013, 1stEdition, M	cGraw-Hill Education Pvt.Ltd.	
3. SM	ART, PlaceMentor, 2018, 1st Edition, 0	Oxford University Press.	
4. R S	Aggarwal, Quantitative Aptitude For C	Competitive Examinations, 2017, 3 rd	
	tion, S. Chand Publishing, Delhi.	•	

Reference Book(s):
Arun Sharma, Quantitative Aptitude, 2016, 7th Edition, McGraw Hill Education Pvt. Ltd.

Course code	Course title	L T P J C
STS 3201	Programming skills for employment	3 0 0 0 1
Pre-requisite	None	Syllabus version
		1

- 1. Ability to translate vast data into abstract concepts and to understand JAVA concepts
- 2. To have a clear understanding of subject related concepts
- 3. To develop computational ability in Java programming language

Course Outcomes:

- 1. Clear Knowledge about problem solving skills in JAVA concepts
- 2. Students will be able to write codes in Java

Module:1 Object and Class, Data types, Basic I / O 8 hours

Types of programming

Disadvantages of functional programming

Class & Objects

Attributes

Methods

Objects

Solving MCQs based on Objects and Classes

Solving tricky questions based on encapsulation

Solving frequently asked object based questions

Data types

Data

Why data type

Variables

Available data types

Numeric – int, float, double

Character – char, string

Solving MCQs based on type casting, data types

Solving debugging based MCQs

Printing

Getting input from user during run time

Command line arguments

Solving programming questions based on CLA

Solving MCQs questions based on CLA

Module:2 Decision Making, Loop Control, String, Date,
Array 10 hours

Need for control statement

if..else

if..else if..else

Nested if..else

Switch case

Common mistakes with control statements (like using = instead of ==)

Solving frequently asked questions on decision making

Types of looping statements

Entry Controlled

For

While

Exit Controlled

do while

break and continue

Demo on looping

Common mistakes with looping statements (like using; at the end of the loop)

Solving pattern programming problems, series problems

Solving predict the output questions

String handling, date handling

Solving problems based on arrays like searching, sorting, rearranging, iteration)

Multi-dimensional arrays

Solving pattern problems using 2D arrays

Real time application based on 2D arrays

Module:3 | Inheritance, Aggregation & Associations

10 hours

Need

Is A – Inheritance

Types of inheritance supported

Diagrammatic representation

Demo on inheritance

Has A – Aggregation

Diagrammatic representation

Demo on aggregation

Uses A - Association

Diagrammatic representation

Demo on association

Assignment on relationships

Solving MCQs based on relationships between classes

Module:4 Modifiers, Interface & Abstract classes (Java 7 hours specific), Packages Types of access specifiers Demo on access specifiers Assignment on access modifiers **Instance Members** Solving MCQs based on modifiers **Abstract Classes** Need Abstract Classes **Abstract Methods** Interfaces Assignment on abstract classes and interface Need for packages Access specifiers & packages Import classes from other packages **Module:5** | Collections 10 hours ArrayList, LinkedList, List Interface, HashSet, Map Interface, HashMap, Set Programming questions based on collections Real world problems based on data structure **Total Lecture hours:** 45 hours **Reference Books** Java The Complete Reference, 2014, 9th Edition by By Herbert Schildt, McGraw-Hill **Education Pvt Ltd** Introduction to Programming with Java: A Problem-Solving Approach 2. by John Dean Mode of Evaluation: FAT, Assignments, 3 Assessments with Term End FAT (Computer Based

Course code	Course title	I	Γ	P	J	С						
STS3204	JAVA programming and software engineering	3 0 0 0 1		1								
	fundamentals											
Pre-requisite	None	Syllabus version										
	1											
Course Objectives	Course Objectives:											
Ability to translate vast data into abstract concepts and to understand JAVA concepts												
1. Admity to ti	anstate vast data into abstract concepts and to understand 37	111100		Pu	2. To have a clear understanding of subject related concepts							

- 3. To develop computational ability in Java programming language

Course Outcomes:

- 1. Clear Knowledge about problem solving skills in JAVA concepts
- 2. Students will be able to write codes in Java

Module:1	Threads, Exceptions,	LinkedList,	Arrays,	8 hours
	Stack and Queue			

Need of threads

Creating threads

Wait

Sleep

Thread execution

Need for exception handling

try, catch, throw, throws

Creating own exception (Java, Python)

Handling own exceptions

Solving programming questions based on linked list and arrays

Solving programming questions based on stacks and queues

How to implement a stack using queue?

How to implement a queue using stack?

Module:2	Trees, JDBC Connectivity	7 hours

Solving programming questions based on trees, binary trees, binary search trees

JDBC Overview

Database Setup

Install the MySQL Database

Create New Database User in MySQL Workbench

Module:3	JDBC Data	6 hours
Selecting d	ata from tables	
Inserting D	ata into the Database	
Updating D	Data in the Database	
Deleting D	ata from the Database	
	repared Statements	
Module:4	Networking with Java	12 hours
Working w	rith URLs	
Sending H	ITP Requests	
	JSON data using Java	
Processing	XML data using Java	
Module:5	Advanced programming	12 hours
File Opera		
_	ations Encoder	
& Decoder	s Encryption &	
Decryption	Hashes	
Loggers		
	1	
	Total Lecture hours:	45 hours
Reference	Books	
	The Complete Reference, 2014, 9th Edition by By Hation Pvt Ltd	erbert Schildt, McGraw-Hill
	luction to Programming with Java: A Problem-Solvi hn Dean	ng Approach
Mode of E	valuation: FAT, Assignments, 3 Assessments with	Term End FAT (Computer Based
Test)		

Course code	Course title	L T P J C
STS 3205	Advanced JAVA Programming	3 0 0 0 1
Pre-requisite	None	Syllabus version
		1

- 1. Ability to translate vast data into abstract concepts and to understand JAVA concepts
- 2. To have a clear understanding of subject related concepts
- 3. To develop computational ability in Java programming language

Course Outcomes:

- 1. Clear Knowledge about problem solving skills in JAVA concepts
- 2. Students will be able to write codes in Java

Module:1 Associations, Modifiers 9 hours

Uses A - Association

Diagrammatic representation

Demo on association

Assignment on relationships

Solving MCQs based on relationships between classes

Types of access specifiers Demo

on access specifiers Assignment

on access modifiers Instance

Members

Solving MCQs based on modifiers

Module:2	Interface & Abstract classes (Java specific),	10 hours
	Packages	

Abstract Classes

Need

Abstract Classes

Abstract Methods

Interfaces

Assignment on abstract classes and interface

Need for packages

Access specifiers & packages

Imp	ort classes from other packages		
Mo	dule:3 Exceptions	7 hours	
Nee	ed for exception handling		
try,	catch, throw, throws		
Cre	ating own exception (Java, Python)		
Han	ndling own exceptions		
Mo	dule:4 Collections	15 hours	
Arra	ayList, LinkedList, List Interface, HashSet, Map Inte	rface, HashMap, Set	
Prog	gramming questions based on collections		
Rea	l world problems based on data structure		
3.7			
	dule:5 LinkedList, Arrays	4 hours	
Solv	ving programming questions based on linked list and	arrays	
	Total Lecture h	ours: 45 hours	
Ref	erence Books		
1.	Java The Complete Reference, 2014, 9th Edition by	By Herbert Schildt, McGraw-Hill	
	Education Pvt Ltd		
2.	Introduction to Programming with Java: A Problem-Solving Approach		
	by John Dean		
Mo	de of Evaluation: FAT, Assignments, 3 Assessments	s with Term End FAT (Computer Based	
Tes	t)		

Course code	ode Course title	
STS 3401	Foundation to programming skills	3 0 0 0 1
Pre-requisite	None	Syllabus version
		1

- 1. Ability to translate vast data into abstract concepts and to understand JAVA concepts
- 2. To have a clear understanding of subject related concepts
- 3. To develop computational ability in Java programming language

Course Outcomes:

- 1. Clear Knowledge about problem solving skills in JAVA concepts
- 2. Students will be able to write codes in Java

Module:1 Object and Class 8 hours

Types of programming

Disadvantages of functional programming

Class & Objects

Attributes

Methods

Objects

Solving MCQs based on Objects and Classes

Solving tricky questions based on encapsulation

Solving frequently asked object based questions

Module:2	Data types, Basic I / O	8 hours

Data types

Data

Why data type

Variables

Available data types

Numeric – int, float, double

Character – char, string

Solving MCQs based on type casting, data types

Solving debugging based MCQs

Printing

Getting input from user during run time

Command line arguments

Solving programming questions based on CLA Solving MCQs questions based on CLA

Module:3 | **Decision Making, Loop Control** 9 hours Need for control statement if..else if..else if..else Nested if..else Switch case Common mistakes with control statements (like using = instead of ==) Solving frequently asked questions on decision making Types of looping statements Entry Controlled For While Exit Controlled do while break and continue Demo on looping Common mistakes with looping statements (like using; at the end of the loop) Solving pattern programming problems, series problems Solving predict the output questions **Module:4** | String, Date, Array 10 hours String handling, date handling Solving problems based on arrays like searching, sorting, rearranging, iteration) Multi-dimensional arrays Solving pattern problems using 2D arrays Real time application based on 2D arrays Module:5 Inheritance, Aggregation 10 hours Need Is A – Inheritance Types of inheritance supported Diagrammatic representation Demo on inheritance Has A – Aggregation Diagrammatic representation Demo on aggregation Solving MCQs based on relationships between classes

	Total Lecture hours:	45 hours
Reference 1	Books	

- Java The Complete Reference, 2014, 9th Edition by By Herbert Schildt, McGraw-Hill Education Pvt Ltd
 Introduction to Programming with Java: A Problem-Solving Approach
- 2. Introduction to Programming with Java: A Problem-Solving Approach by John Dean

Mode of Evaluation: FAT, Assignments, 3 Assessments with Term End FAT (Computer Based Test)

BRIDGE COURSES

Course code	Course title	L T P J C
ENG1002	Effective English	0 0 4 0 2
Pre-requisite	Not cleared English Proficiency Test (EPT)	Syllabus version
		v.2.0

- 1. To enable students develop basic proficiency in Language Skills
- 2. To help students overcome communication barriers
- 3. To facilitate students communicate effectively in academic and social contexts

Expected Course Outcome:

- 1. Speak fluently in academic and social contexts
- 2. Listen for global and specific comprehension to improve study skills like note taking, summarizing, etc.
- 3. Read and comprehend technical and general texts
- 4. Write grammatically correct creative and descriptive sentences and paragraphs in specific contexts
- 5. Enact on social contexts with a message, and communicate clearly and effectively in formal and informal contexts

Module:1	Speaking	4hours	CO:01
Introduce yo	urself using Temperament Sorter		
Module:2	Listening	4 hours	CO: 02
Listen to son	gs – Gap-fill Exercise		
Module:3	Reading	2 hours	CO: 03
Loud Readin	g with focus on pronunciation		
Module:4	Writing	2 hours	CO: 04
Make senten	ces using jumbled words		
Module:5	Listening	4 hours	CO:02
Listen to M	otivational Speeches – Note taking		
	T.		
Module:6	Speaking	4 hours	CO:05
Situational	Dialogues		
	T.		
Module:7	Reading	2hours	CO:03
Reading for	vocabulary development		
	T.		
Module:8	Writing	2hours	CO:04
	Writing – Process		
Compare &	Contrast – Product description		
Module:9	Listening	4hours	CO:02

Minimal Pair	rs- Difficult Sounds for Indian Speakers			
Module:10	Speaking	4hours	CO:01	
Just a Minute				
Module:11	Reading	2hours	CO:03	
Global Comp			33132	
37 1 1 10	Wilde		GO 04	
Module:12 Travelogue V	Writing Vriting - 25+ FAQs (Wh-questions) on a place the	2hours	CO:04	
Travelogue v	vitting 23 + 171Qs (viti questions) on a place the	y nave visited	Tan work	
Module:13	Listening	4hours	CO:02	
Listen to a Do	ocumentary/Talk show and summarize			
Module:14	Speaking	4 hours	CO:01	
	and opinions using question tags		1 33,02	
Module:15	Speaking:	4hours	CO:05	
Role Play wit		41100118	CO:03	
Module:16	Writing	2hours	CO:04	
Formal Letter	r Writing focusing on Content			
Module:17	Vocabulary	2hours	CO:04	
Correct spelli	<u> </u>	1 0 01-10		
37 1 1 40			GO 0.	
Module:18	Speaking orderections/Instructions	4 hours	CO:05	
Asking for an	id giving Directions/instructions			
Module:19	Reading	2hours	CO:03	
Factual Comp	prehension	•		
Module:20	Writing	2 hours	CO:04	
	using prompts/pictures	2 Hours	CO.04	
<u> </u>			.	
	Total Practical hours:	60hours		
Text Books		ı	1	
1. Lewis Lansford and Peter Astley. Oxford English for Careers: Engineering 1: Student's Book.				
 2013. USA: Oxford University Press. Jaimie Scanlon. Q: Skills for Success 1 Listening & Speaking. 2015. [Second Revised 				
	Oxford: Oxford University Press.	Speaking, 201		
Reference B	ooks			
	Kumar and Puspalata. Communication Skills. 2 exford University Press.	015. [Second	Edition] Print. New	

- John Seely. Oxford Guide to Effective Writing and Speaking. 2013. [Third Edition].New
- 2. Delhi: Oxford University Press.
 - Meenakshi Raman. Communication Skills. 2011. [Second Edition]. New Delhi: Oxford
- 3. University Press.
 - Terry O'Brien. Effective Speaking Skills. 2011. New Delhi: Rupa Publishers.
- 4. BarunMitra. Effective Technical Communication: AGuide for Scientists and Engineers. 2015.
- 5. New Delhi: Oxford University Press.

Mode of Evaluation: Online Quizzes, Presentation, Role play, Group Discussions, Assignments, Mini project.

Willi project.					
List of Challenging Experiments (Indicative) CO:1,2,				,3,4,5	
1.	Speaking: Introduce yourself using Temperament Sorter			8 hours	
2.	Reading: Loud Reading with focu	s on pronunciation	n		4 hours
3.	Writing: Descriptive Writing – Pr	ocess			6 hours
	Compare & Contrast – Product de	escription			
4.	Speaking: Just a Minute / Activiti				6 hours
5.	5. Writing: Travelogue Writing - 25+ FAQs (Wh-questions) on a place they			place they	10 hours
	have visited – Pair work				
6.	6. Speaking: Discuss facts and opinions using question tags				6 hours
7.	. Writing: Formal Letter Writing focusing on Content			6 hours	
8.	. Vocabulary: Correct spelling errors			4 hours	
9.	9. Speaking: Asking for and giving Directions/Instructions				6 hours
10.	. Writing: Story writing using prompts/pictures				4 hours
			Total Lab	oratory Hours	60 hours
Mode of evaluation: Online Quizzes, Presentation, Role play, Group Discussions, Assignments,					
Mini project.					
Recommended by Board of Studies 22-07-2017					
App	Approved by Academic Council No. 46 Date 24-08-2017				

PROGRAMME CORE

JULY 2019

Course code	CHE1001	L	T	P	J	C
Course title	MATERIAL SCIENCE AND STRENGTH OF	3 0 0 0		0	3	
	MATERIALS					
Pre-requisite	NIL	Syllabus version			ion	
		•			1.2	

- 1. To understand the concept of mechanical behaviour of materials, stress strain and their use in analysis and design of machine members and structures.
- 2. To learn the distributed force systems, centroid/centre of gravity and method of finding centroids of composite figures and bodies
- 3. To study the moment of inertia and method of finding moment of inertia of areas and bodies, bending of beams under different loading conditions

Course Outcomes (CO):

- 1. Understand concept of mechanical behavior of materials and calculations of same using appropriate equations
- 2. Analyse the behaviour of structural and machine components subjected to various loading and support conditions based on principles of equilibrium.
- 3. Identify the significance of centroid/ center of gravity and find centroids of composite figures and bodies.
- 4. Understand the concept of moment of inertia and method of finding moment of inertia of areas and bodies.
- 5. Apply the concept of stress and strain to analyse structural members and machine parts under axial load, shear load, and bending moment.
- 6. Analyze the stresses developed in cylindrical and spherical shell.

Module:1 | Engineering Metallurgy

6 hours

Properties of materials: Mechanical, Physical & Chemical properties, Industrial Engineering Materials – Ferrous & Non Ferrous metals & alloys; Introduction to various heat treatment processes & Mechanical tests.

Module:2 | Response of materials (Regular Geometry)

6 hours

Introduction to elasticity – Stress & Strain – Types of stresses & strain – Stress strain curve and relationship – Hooke's law – Modulus of Elasticity & Modulus of Rigidity – Deformation of a body due to force acting on it – Deformation of a body due to self-weight.

Module:3 | Response of materials (Irregular Geometry)

8 hours

Principle of Superposition – Stress & Strain analysis in bars of varying sections – Stresses in bars of uniformly tapering section.

Modul	p• 4	Centroid	ı
MUUUI	U.T	Cuiuuu	L

Introduction to Centroid & Centre of Gravity – Methods of Centroid – Centroid of plane figures by geometrical consideration. Centre of Gravity (real bodies): Centre of gravity by method of moments for symmetrical & unsymmetrical lamina – Centre of gravity for solids and cut sections.

Module:5 | **Moment of Inertia**

6 hours

Concept of Moment of Inertia & Methods for Moment of Inertia – Moment of Inertia for Rectangular sections – Theory of Parallel axis – Moment of Inertia for Triangular, Circular and Semi-circular sections.

Module:6 Transverse loading on Beams

6 hours

Introduction to Beams – Types of Loading – Shear force and Bending Moments – Sign conventions – SFD & BMD for Cantilever beams and Simply supported beams with point loads, UDL and UVL.

Module:7 | Thin and Thick Pressure vessels

5 hours

Introduction – Pressure vessels; Stresses in thin and thick cylindrical shell due to internal pressure – Circumferential and longitudinal stresses – Spherical shells subjected to internal pressure.

Module:8 | Contemporary issues

2 hours

Total Lecture hours

45 hours

Text Books

- 1. M. F. Ashby, D. R. H. Jones, Engineering Materials An Introduction to their Properties and Applications. 2nd ed., Butterworth Heinemann, 2011
- 2. S. Timoshenko, D.H. Young (Author), Strength of Materials: Advanced theory and problems, 4th ed., CBS Publishers & Distributors, 2013

Reference Books

- 1. N.M. Belayavev, Problems in Strength of Materials, Pergamon Press, 2013.
- 2. W. A. Nash, Strength of Materials, Schaum's Outline Series, Revised 4th ed., McGraw Hill. 2010.
- 3. Beer, Johnsto & Dewolf, Mechanics Of Materials (in SI Units), Tata McGraw Hill Publications, 2004

Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test

Recommended by Board of Studies 04-03-2016

Approved by Academic Council 40th 18-03-2016

Course code	CHE1002	L	T	P	J	C
Course title	PROCESS CALCULATIONS	4	0	0	0	4
Pre-requisite	NIL	Syllabus version			sion	
		1			1.2	

- 1. Formulate material balances to solve for compositions and flow rates of process streams
- 2. Incorporate single and multiple reactions into unit operations within chemical processes
- 3. Perform material and energy balance calculations in various systems

Course Outcomes (CO):

- 1. Apply mole concept and ideal gas equation to express the composition of mixtures
- 2.Understand the concept of humidity and usage of psychrometric chart
- 3.Understand the method of solving steady state material balances without chemical reactions
- 4.Estimate the extent of reaction in material balances for systems involving chemical reactions
- 5. Analyze the processes involving recycling and bypass involving chemical reactions
- 6. Apply simultaneous material & energy balances to industrial processes

Module:1 | Basic Chemical Calculations

8 hours

Units and dimensions – Conversion factors – Mole concept – Concept of normality, molarity, and molality – Density and specific gravity – Methods of expressing composition of mixtures and solutions – Weight fraction – Mole fraction – Volumetric composition – Ideal gas law – Dalton's law – Amagat's law

Module:2 | Vapor pressure and Humidity calculations

6 hours

Vapor pressure and liquids – Antoine equation, Vapor pressure of immiscible liquids and ideal solutions – Raoult's law – Humidity and Saturation – Relative and percentage saturation, Wet bulb and dry bulb temperature, Dew point – Use of humidity chart for engineering calculations

Module:3 | Material Balance without Chemical Reaction

12 hours

Law of conservation of mass – Process flow sheet – Material balance calculations involving drying, dissolution, distillation, crystallization, evaporation, absorption and extraction

Module:4 | Material balance with Chemical Reaction

7 hours

Stoichiometric equation – stoichiometric ratio – limiting reactant – excess reactant – percent excess – conversion – yield

Module:5 | Recycle and Bypass Operation

7 hours

Recycle, Purge, Bypass calculations in operations such as evaporation, distillation, and drying

Module:6 | Combustion calculations

10 hours

Calorific value of fuels, Flue gas analysis, Orsat analysis, theoretical and excess air requirement for solid, liquid and gaseous fuels

Mo	dule:7	Energy balance				8 hours		
Standard heat of formation – Standard heat of combustion – Standard Heat of reaction – Hess's								
law – Determination of heat of reaction at temperatures other than standard temperature using								
spe	cific hea	t relationships – Calculation	of theoretical flan	ne temper	ature			
Mo	dule:8	Contemporary issues				2 hours		
			Total Lecture h	ours		60 hours		
Tex	t Books							
1.	Himme	elblau D.M., Basic Principl	les and Calculation	ns in Che	emical Engineering,	8 th ed.,		
	Prentic	e Hall, India, 2012.						
2.	Bhatt I	B.I., Thakore S. B., Stoichio	ometry, 5 th ed., Ta	ta McGrav	w – Hill Book Comp	any,		
	New D	Pelhi, 2011.						
Ref	erence l	Books						
1.	Felder	R, Rousseau R, Elementary	y Principles of Ch	emical Pro	ocesses, 3 rd ed., John	Wiley &		
	Sons, 2	.000.						
2.	Naraya	nan K.V., Lakshmikutty B,	Stoichiometry and	Process c	alculations, Prentice			
	Hall I	ndia Limited, New Delhi, 20	006.					
Mo	de of ev	aluation: Continuous Assess	sment Test, Quizze	es, Assigni	nents, Final Assessm	ent Test		
Rec	commen	ded by Board of Studies	04-03-2016	-				
Apı	Approved by Academic Council 40 th Date 18-03-2016							

Course code	CHE1003	L	T	P	J	C
Course title	PROCESS ENGINEERING THERMODYNAMICS	3	0	0	4	4
Pre-requisite	NIL	Syllabus versi			sion	
		1			1.2	

- 1. Enhance the basic knowledge and intuitive understanding of thermodynamics on the physical and chemical system
- 2. Introduce the concepts of partial molar properties, fugacity, activity, vapour-liquid equilibrium for ideal and real substances existing in more than one phases under equilibrium
- 3. Generalize the design thinking skills on property estimation to chemical industries

Course Outcomes (CO):

- 1. Define and illustrate thermodynamic equilibrium state system, ideal and non-ideal relations
- 2. Relate properties such as change in enthalpy, entropy, free energy, heat and work requirement for any batch and flow process happens in chemical industries
- 3. Make use of thermodynamic relations to interpret the partial molar properties of pure gases and liquids, and their mixtures
- 4. Construct and analysis the phase equilibrium data, P-x-y, T-x-y diagram for ideal binary miscible vapour-liquid systems
- 5. Device methodologies for qualitative and quantitative analysis of VLE for non-ideal binary miscible systems using van Laar, Margules, property estimation models
- 6. Estimate the feasibilities of any reaction, and to determine the equilibrium rate constant for chemical reactions

Module:1 Fundamental concepts and definitions

5 hours

Introduction - Definition and Basic Concepts - classical and statistical thermodynamics - Concept of Continuum - Thermodynamic steady state - equilibrium state process , Volumetric properties of pure fluids: PVT Relations - Ideal gas- Real gas- Law of corresponding states

Module:2 Laws of thermodynamics

6 hours

First law analysis – Closed non-flow system - Steady state flow systems and their analysis; Second law of thermodynamics - change in internal energy - enthalpy - entropy calculation for process - phase change; Heat effects - standard heat of reaction

Module:3 | Thermodynamic properties of pure fluids

7 hours

Gibbs free energy- Helmholtz free energy- exact differential equation - thermodynamic property relations- Maxwell's relations and applications - fugacity -activity of pure substances-determination of fugacity of pure gases, solids and liquids

Module:4 Thermodynamic properties of solution

Mixture of pure fluids - Partial molar properties - Chemical potential - fugacities in solution; Ideal solutions - Lewis Randal rule - Raoult' s law - Henry's law; Gibbs-Duhem equation; Residual properties - Property changes of mixing for ideal - non-ideal solutions - Excess properties relations and Gibbs free energy calculation

Module:5 | Phase equilibria

6 hours

Phase rule - criteria of phase equilibrium - single component - multiple components; Vapor Liquid Equilibria for ideal solutions - Phase diagram for binary systems using ASPEN PLUS - constant temperature equilibria- constant pressure equilibria - phase equilibrium curves.

Module:6 | Vapor liquid equilibria - non-ideal solutions

7 hours

Non ideal solution – Azeotropes systems - minimum boiling – maximum boiling – VLE – P-x-y diagram and T-x-y diagram using ASPEN PLUS; Bubble point – Dew Point – calculation methods – Van Laar equation - Margules equation - Wilson equation. Multicomponent Systems – flash vaporization; Consistency Test for VLE Data

Module:7 | Chemical reaction equilibria

5 hours

Chemical reaction equilibria - Reaction coordinates - criteria for chemical equilibrium, equilibrium constant - Gibbs Free Energy of the reaction - effect of temperature on equilibrium constant - equilibrium constant of homogeneous gas and liquid phase reactions

Module:8 | Contemporary issues

2 hours

Total Lecture hours

45 hours

Text Books

- 1. Narayanan K.V., A Textbook of Chemical Engineering Thermodynamics, 2nd ed., Prentice Hall India, New Delhi, 2012
- 2. Ahuja P, Chemical Engineering Thermodynamics, 2nd ed., PHI Learning Pvt. Ltd., New Delhi, 2012.

Reference Books

- 1. Smith J.M., Van Ness H.C., Abbott M.M., Introduction to Chemical Engineering Thermodynamics, 8th ed., McGraw-Hill, New York, 2018.
- 2. Rao Y.V.C., Chemical Engineering Thermodynamics, 1st ed., University Press, New Delhi, 2005.

Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test

Recommended by Board of Studies 04-03-2016

Approved by Academic Council 40th Date 18-03-2016

Course code	CHE 1004	L	T	P	J	C
Course title	CHEMICAL TECHNOLOGY	3	0	0	0	3
Pre-requisite	NIL	Syllabus version			sion	
					1.2	

- 1. Introduce the basic information and the systematic diagrams of Unit operations involved in chemical industries.
- 2. Familiarize the concepts of design, operation details and schematic of industrial equipment.
- 3. Ascertain the right separation technology for easy separation of chemical components

Course Outcomes (CO):

- 1. Classify the major unit operations and processes involved in manufacturing industries
- 2. Illustrate the manufacturing processes of organic and inorganic chemical industries
- 3. Understand the different industrial gases involved in chemical industries
- 4. Demonstrate the manufacturing processes for fertilizers industries
- 5. Explain the process flow sheet and end uses of cellulosic material in different application
- 6. Discuss the manufacturing processes of petroleum refinery and petrochemical products

Module:1 Chloro-alkali and Cement Industries

Manufacture of soda ash; caustic soda-manufacture of calcium hypochlorite; manufacture of sulphur and sulphuric acid; manufacture of Portland cement; manufacture of glass

Module:2 Industrial Gases

5 hours

6 hours

Manufacture of carbon-di-oxide; hydrogen; oxygen and nitrogen; acetylene; water gas; producer gas and manufacture of natural gas

Module:3 Fertilizer Industries

8 hours

Manufacture of nitric acid and urea; manufacture of phosphorus and phosphoric acid; manufacture of super phosphate and triple super phosphate; manufacture of potassium chloride

Module:4 | Cellulose, Sugar and Oil Production Industries

7 hours

Production of pulp—manufacture of paper and manufacture of viscous rayon; manufacture of sugar and starch; refining of edible oils and fats; manufacture of soaps and detergents; bio-degradability of surfactants

Module:5 | Petroleum Industries

6 hours

Petroleum refining processes; reforming; cracking; secondary refining processes

Module:6 Petrochemical Industries

6 hours

Introduction to Petrochemical processes; Manufacture of C2, C3, C4 chemical compounds

Module:7 | **Polymer Industries**

Intr	oduction	n; manufacture of nylon 6;	nylon 6,6; manuf	acture of	silicones; manufacture of urea					
		de; manufacture of phenol fe								
		_								
Mo	dule:8	Contemporary issues			2 hours					
	45 hours									
	Total Lecture hours									
Tex	t Books	3								
1	Rao G	., Sittig M., Dryden's Outli	nes of Chemical	Technolog	y, 3 rd ed., East West Press,					
	India, 2	2010.								
2	Austin	G.T., Shreve's Chemical Pro	ocess Industries, 5	th ed., McO	Graw Hill, USA, 2012.					
Ref	erence l	Books								
1	Matar	S., Hatch L.F., Chemistry of	of Petrochemical F	Processes,	4 th ed., Gulf Publishing, USA,					
	2005.	-			_					
2	Nelson	W.L., Petroleum Refinery I	Engineering, 4 th ec	l., McGrav	v Hill, USA, 2005.					
Mo					ments, Final Assessment Test					
Rec	commen	ded by Board of Studies	04-03-2016							
Apı	oroved b	y Academic Council	40 th	Date	18-03-2016					

Course code	CHE1005	L	T	P	J	C
Course title	MOMENTUM TRANSFER	3	0	2	0	4
Pre-requisite	NIL	S	Syllabus version			sion
		1			1.2	

- 1. Understand the fluid properties, the fundamental principles and theorem related to momentum transfer
- 2. Apply the physical and mathematical models to analyse the fluid flow phenomena in engineering applications
- 3. Solve the steady state and un-steady state momentum transfer problems

Course Outcomes (CO):

- 1. Explain the properties of Newtonian and Non-Newtonian fluid and basic principles of momentum transfer
- 2. Classify the governing equations related to the momentum transfer phenomena
- 3. Summarize the different types of flow measuring devices related to the momentum transfer
- 4. Solve the problems related to the losses incurred during the flow of fluid
- 5. Analyze the different non-dimensional numbers based on the theorems
- 6. Evaluate the fluid flow phenomena through packed and fluidized bed

Module:1 | Basic Concept of Momentum Transfer

5 hours

Introduction and Significance of Momentum Transfer in Chemical Engineering. Definition of fluid - Classification of fluids - Newtonian fluid - Characteristic properties of fluids - Non - Newtonian Fluids and their classification. Fluid statics: Pascal's law and Hydrostatic law of equilibrium; Pressure and its measurement- Manometers

Module:2 | Concept of Fluid Flow Phenomena

7 hours

Kinematics of fluid flow, Dynamics of fluid flow – Basic equations governing fluid flow – types of fluid flow. Equation of Continuity and its application, Equation of motion – Derivation of Euler's equation, Bernoulli's equation and its application in fluid flow

Module:3 | Flow Measuring Devices

5 hours

Importance of metering – Classification flow measuring devices, Principle and working of Orifice meter, Venturi meter, Pitot tube, Variable area meters: Rotameter

Module:4 | Flow through Circular Pipes

8 hours

Flow of fluids in Laminar regime – Velocity Profile, Shear Stress Distribution – Hagen–Poiseuille equation - Concept of average velocity – Concept of Kinetic energy correction factor, Concept of Fluid friction – Skin friction – Form friction – Factors affecting friction – Friction factor – Application of Moody's diagram, Minor losses and major losses during flow

Module:5 | Dimensional Analysis

Dimensional homogeneity – Raleigh and Buckingham π theorems – Non-dimensional numbers, model laws

Module:6 | Fluid Flow through Packed and Fluidized Bed

7 hours

Flow past immersed bodies – Significance of form friction - Concept of Drag, Drag Coefficients and Particle Reynolds number - Drag Coefficient vs. Particle Reynolds number curves for regular and irregular shaped solid particles. Flow of fluids through packed beds – Packing and types of packing -Pressure drop across packed beds –Kozeny Carman equation – Ergun's equation - Loading and Flooding Packed Beds. Concept of Fluidization – Condition for Solid particles to be in a suspended condition in a flowing fluid – minimum fluidization velocity

Module:7 | Transportation of Fluids

7 hours

Transportation Components -Pipe, Fittings and Valves, Types of Fittings, valves -Stuffing Boxes, Mechanical Seals – Estimation of head loss from fittings and valves, Concept of minor lossestypes of minor losses. Fluid Moving Machinery: Pumps – Classification and working of Centrifugal Pumps and Positive Displacement Pumps Basic Principles of Centrifugal Pumps – Pump Characteristics – Concept of Specific Speed, Net Positive Suction Head - Factors influencing selection of pump

Module:8	Contemporary issues	2 hours
	Total Lecture hours	45 hours

Text Books

- 1. Fox R.W., McDonald A.T., Pirtchard P.J., Mitchell J. W., Introduction to Fluid Mechanics, 9th ed., Wiley Publications, 2015.
- 2. Cengel Y.A., Cimbala J.M., Fluid Mechanics (SIE): Fundamentals and Applications, 3rd ed., Mcgraw Hill, New York, 2014.

Reference Books

- 1. Mc Cabe, Smith, Harriott, Unit Operations of Chemical Engineering 7th ed., McGraw Hill, USA, 2014.
- 2. Som S.K., Biswas G., Chakraborty S., Introduction to Fluid Mechanics and Fluid Machines, 3rd ed., Tata McGraw Hill, India, 2011.

Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test

Laboratory Experiments

1.	Determination of coefficient of discharge of venturimeter	2 hours
2.	Calibration of an orifice meter	2 hours
3.	Determination of friction factor for flow through circular pipe	2 hours
4.	Determination of loss of coefficient due to sudden enlargement, sudden contraction, bend and elbow	2 hours
5.	Determination of Reynolds apparatus	2 hours

6.	6. Verification of Bernoulli's theorem					
7.	7. Performance characteristics of centrifugal pump at rated speed					
8. Determination of pressure drop per unit length as a function of superficial velocity of fluidization medium					2 hours	
9.	2 hours					
10.	Determination of friction factor f	or flow through n	oncircular	pipe	2 hours	
	Total Laboratory Hours					
Reco	Recommended by Board of Studies 04-03-2016					
App	Approved by Academic Council 40 th Date 18-03-2016					

Course code	CHE1006	L	T	P	J	C
Course title	HEAT TRANSFER	2	0	2	4	4
Pre-requisite	MAT2002	Syllabus version			sion	
		1.			1.2	

- 1. Explain the fundamental principles of heat transfer and various modes of heat transfer
- 2. Solve heat transfer problems using the principles of heat transfer in different modes
- 3. Design and estimate heat loads for heat transfer equipments such as heat exchangers and evaporators

Course Outcomes (CO):

- 1. Classify the different modes of heat transfer with their significance
- 2. Model and solve steady/unsteady state heat transfer problems
- 3. Analyze the heat transfer phenomena in fluids involving phase and no phase changes
- 4. Examine radiative heat transfer with and without radiation shields through shape factor concept
- 5. Determine the performance of various heat types of heat exchangers
- 6. Estimate the heat transfer rate and surface area of evaporators/condensers

Module:1 Conduction

Basic concepts – Conduction – Fourier's Law of Heat conduction – Concept of Thermal Conductivity – Generalized conduction equation in cartesian, cylindrical and spherical systems; Steady State Conduction –Heat transfer composite systems – Critical thickness of insulation – Conduction with heat Generation

Module:2 Extended Surfaces and Unsteady state conduction 3 hours

Extended surfaces – types and applications of fins – Fin efficiency and effectiveness – Fin performance; Unsteady state heat conduction – Lumped parameter system – Conduction through Semi Infinite Solids

Module:3 | Convection (without phase change)

5 hours

5 hours

Fundamentals of Convection – Thermal boundary layer & Convective heat transfer coefficients – Convection correlations through Dimensional analysis; Laminar flow over a flat plate – Turbulent flow over a flat plate – Flow over cylinders – Internal flow through pipes – annular spaces – Natural convection in vertical - inclined and horizontal surfaces.

Module:4 | Convection (with phase change)

3 hours

Condensation and Boiling – Drop wise and Film type Condensation – Film condensation on a vertical plate; Boiling – Nucleate boiling and film boiling correlations – Critical flux

Module:5 | Radiation 3 hours Radiation heat transfer - Thermal radiation - Laws of radiation - Black body concepts-Emissive power – Radiation shape factor – Gray bodies – Radiation shields **Module:6** | **Heat Exchangers** 5 hours Heat exchangers – Types and practical application –Concept of LMTD & Overall heat transfer coefficient; Effectiveness - NTU method for heat exchanger design; Fouling factor and estimation of Overall heat transfer coefficient; Special type of heat exchangers **Module:7** | Evaporators 4 hours Introduction - Types of Evaporators - Capacity - Steam economy - Boiling point elevation (Duhring rule); Material and energy balance of single effect evaporator; Theory of multiple effect evaporators; Design of single and multiple effect evaporators, Vapor recompression method **Module:8** | Contemporary issues 2 hours 30 hours **Total Lecture hours** Text Books Ghajar A.J., Cengel Y.A., Heat and Mass Transfer: A Practical Approach, 5th ed., McGraw-Hill, USA, 2014. Holman J.P, Heat Transfer, 10th ed., McGraw-Hill Series, USA, 2010. Reference Books Frank Kreith, Raj M Manglik, Principles of Heat Transfer, 8th ed., Cengage Learning, USA, Frank. P. Incropera, David P. Dewitt, Fundamentals of Heat & Mass Transfer, 6th ed., John 2. Wiley & Sons, USA, 2010. Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test **Laboratory Experiments** 1. Measurement of thermal conductivity of Metals & insulators 2 hours Analysis of Transient Heat Conduction 2. 2 hours 3. Performance of Natural Convection 2 hours Analysis of Fin efficiency & effectiveness 4. 2 hours 5. Emissivity measurement 2 hours Performance of Double Pipe Heat Exchanger 2 hours 6. 7. Performance of Agitated Vessel 2 hours 8. Performance of Plate type Heat Exchanger 2 hours

9.	9. Performance of Heat Transfer in packed bed							
10.	10. Performance of Cooling tower							
	Total Laboratory Hours							
Mode	Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test							
Recommended by Board of Studies 04-03-2016								
Approved by Academic Council 40 th Date 18-03-2016								

Course code	CHE1022	L	T	P	J	C
Course title MECHANICAL OPERATIONS 3		3	0	2	0	4
Pre-requisite	Nil	Syllabus versi		sion		
		1.2				

- 1. Introduce the basic information and the systematic diagrams of Unit operations involved in chemical industries
- 2. Learn the concepts of design, operation details and schematic of industrial equipment
- 3. Choose the right separation technology for easy separation of chemical components

Course Outcomes (CO):

- 1. Understand the basic principles in unit operations
- 2. Calculate the size distribution of average particles
- 3. Describe various size reduction equipment
- 4. Identify the suitable separation technique based on particle characteristics
- 5. Estimate the filtration parameters
- 6. Design agitation vessel based on standard design criterion

Module:1 Introduction to Particulate Solids

4 hours

Particle Shape, Size, Mixed Particle Sizes and Size Analysis – Cumulative and Differential Analysis –Various Mean Diameters – Screen Analysis Standard Screens – Various Industrial Screens

Module:2 | Particle Separation

3 hours

Introduction to Particle Separation – Electrostatic Precipitation and Magnetic Separation - Storage of Solids

Module:3 | Size Reduction

8 hours

Size Reduction – Principles of Comminution - Energy and Power Requirements in Comminution - Mechanical Efficiency-Laws of Crushing-Size Reduction Equipment – Crushers- Grinders-Cutting Machines – Open and Closed Circuit Operation

Module:4 | Particulate Solids Flow

5 hours

Motion of a Particle through a Fluid – Terminal Velocity–Free and Hindered Settling. Classification: Separations Ratio – Classification Equipment – Gravity Settling Tank –Elutriator – Cone Classifiers – Bowl Classifier – Centrifugal Classifier – Cyclone Separator-Wet Scrubber

Module:5 | **Hydro-Mechanical Separations**

7 hours

Sedimentation: Gravity Sedimentation – Mechanism – Continuous Sedimentation – Thickener – Design of thickener – Classifier and Clarifier – Settling Area – Centrifugal Sedimentation-Centrifuges - Hydro clones. Floatation: Equipment – Modifiers – Collectors - Frothing Agents

Module:6 | Filtration 8 hours Filtration – Filter Media – Filter Aids – Principles of Cake Filtration – Constant Pressure Filtration - Constant Rate Filtration - Pressure Drop Through Filter Cake -Compressible and Incompressible Filter Cakes - Specific Cake Resistance - Filter Medium Resistance. Filtration Equipment – Filter Presses – Leaf Filter - Rotary Continuous Filters. Principles of Centrifugal Filtration-Washing of Filter Cakes 8 hours **Module:7** | **Agitation and Mixing** Agitation and Mixing of Liquids - Principles of Agitation - Agitation Equipment - Impellers -Flow Pattern in Agitated Vessel - Power Consumption in Agitated vessel. Flow number - Power Correlation - Calculation of power consumption. Blending and mixing - Jet mixers – Motionless Mixers. Mixing of Solids: Mixtures for Cohesive solids – Power requirements Criteria for mixer effectiveness. Mixers for free flowing granular solids - Rate of mixing 2 hours Module:8 **Contemporary issues** 45 hours **Total Lecture hours Text Books** McCabe W., Smith J., Harriott P., Unit Operations of Chemical Engineering, 7th ed., McGraw Hill Education; USA, 2014. **Reference Books** Coulson J.M., Richardson J.F., Chemical Engineering, Volume 2 (Particle Technology & Separation Processes), 5th ed., Butterworth – Heinemann Publishing Ltd., USA, 2001. Narayanan C.M., Bhattacharya B.C., Mechanical Operations for Chemical Engineers, 3rd ed., Khanna Publishers, India, 2011. Patil K.D., Mechanical Operations (Fundamental Principles and Applications), 3rd ed., Nirali Prakasam, India, 2012. Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test **Laboratory Experiments** Performance of Plate and Frame filter press 2 hours 1. 2. Performance of Rotary Drum Filter 2 hours Performance of Leaf Filter 3. 2 hours Analysis of Jaw crusher parameters 2 hours 4 Analysis of Roll crusher parameters 5. 2 hours Analysis of Ball mill parameters 6. 2 hours 7. Sieve analysis 2 hours

Measurement of Drag

8.

9.	9. Batch sedimentation performance					
10.	10. Beaker decantation analysis					
	Total Laboratory Hours					
Mode	e of evaluation: Continuous Assess	sment Test, Quizz	es, Assigni	ments, Final As	ssessment Test	
Reco	Recommended by Board of Studies 04-03-2016					
Appr	Approved by Academic Council 40 th Date 18-03-2016					

Course code	CHE2001	L	T	P	J	C
Course title CHEMICAL REACTION ENGINEERING				2	0	4
Pre-requisite	CHE1003	Syllabus version			sion	
						1.2

- 1. Impart the knowledge of calculus, differential equations, thermodynamics, general chemistry, and material and energy balances to solve reactor design problems.
- 2. Simulate several types of reactors in order to choose the most appropriate reactor for a given need
- 3. Examine the problems related to multiple reactions and evaluate the selectivity, reactivity and yield

Course Outcomes (CO):

- 1. Classify various reaction types and their applications
- 2. Apply the principles of reaction kinetics, formulate rate equations and analyze the batch reactor data
- 3. Design ideal reactors (Batch, CSTR, PFR, recycle and autocatalytic) for simple chemical reaction schemes
- 4. Evaluate the choice of right reactor among single, multiple, recycle reactor, etc. with or without multiple reactions
- 5. Design non-isothermal reactors and the heat exchange equipment required
- 6. Design non-ideal reactors using tracer information

Module:1 Fundamental Concepts and Definitions

5 hours

Classification of reactions- Rate and stoichiometry-rate law- rate equation-rate constant-variables affecting the rate of reaction-activation energy-reactions at equilibrium

Module:2 | Chemical Kinetics

6 hours

Interpretation of Batch Reactor Data-Constant Volume Batch Reactor and variable volume batch reactor; Integral method-Differential method of analysis for reactions-reaction mechanism; Method of half-life; Analysis of data for Reversible and Irreversible Reactions

Module:3 | Isothermal Ideal Reactor Design of Single and Multiple reactions

7 hours

Ideal Batch Reactor-space time-holding time and space velocity; Ideal Mixed Flow Reactor-Ideal Plug Flow Reactor for single reactions-Size comparison of single Reactors for single reactions-Semi batch reactor - Recycle reactor-Auto catalytic reactor

Module:4 | **Multiple Reactors**

6 hours

Multiple Reactor Systems-equal size mixed flow reactors in series-plug flow reactors in series and

or in parallel-mixed flow reactors of different sizes in series-reactors of different types in series **Design for Multiple Reactions** Module:5 6 hours Reactions in parallel (simultaneous reactions) for CSTR-PFR-reactions in series (Consecutive Reactions) for CSTR-PFR-Combined series and parallel reactions Module:6 **Non-isothermal Reactors** 6 hours Steady state non-isothermal reactors-CSTR-PFR-Mole balance-Energy balance-Adiabatic reactors -CSTR-PFR-Batch reactor-Multiple steady states-Multiple chemical reactions Module:7 **Non Ideal Reactors** 7 hours Basics of non-ideal flow - Measurement of residence time distribution (RTD) - Relationship between C, E and F curves - Modelling of non-ideal reactors - one parameter and two parameter models - Conversion in real reactor systems **Contemporary issues** Module:8 2 hours **Total Lecture hours** 45 hours Text Books Levenspiel O., Chemical Reaction Engineering, 3rd ed., Wiley Publications, USA, 2006 Fogler H.S., Elements of Chemical Reaction Engineering, 5th ed., Prentice Hall India Pvt. Ltd., India, 2016 **Reference Books** Froment G. F, Bischoff K.B, Wilde J.D., Chemical Reactor Analysis and Design, 1st ed., Wiley Publications, USA, 2010 Smith J.M., Chemical Engineering Kinetics, 8th ed., McGraw-Hill, USA, 2008 Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test **Laboratory Experiments** Analysis of Batch reactor – equimolar constant volume system 1. 2 hours Analysis of Temperature dependency of reaction rate 2. 2 hours 3. Analysis of Semi batch reactor 2 hours 4. Assessment of Adiabatic batch reactor performance 2 hours 5. Analysis of Mixed flow reactor 2 hours

6.	Analysis of Plug flow reactor	or analysis			2 hours			
7.	Analysis of combined react	or system			2 hours			
8.	Analysis of Packed bed read	ctor			2 hours			
9.	9. Analysis of RTD studies in Plug flow reactor							
10.	10. Analysis of RTD studies in Mixed flow reactor							
	Total Labo	ratory Hours			20 hours			
Mode o	Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test							
Recom	Recommended by Board of Studies 04-03-2016							
Appro	Approved by Academic Council 40 th Date 18-03-2016							

Course code	CHE2002	L	T	P	J	C
Course title	PROCESS EQUIPMENT DESIGN AND 2		0	2	4	4
	ECONOMICS					
Pre-requisite	CHE1006	Syllabus vers			sion	
						1.2

- Summarize the concepts of unit operations and unit processes in chemical engineering.
 Impart knowledge on the concepts of design of major equipment
 Understand the economics and feasibility analysis of the process industry

Course Outcomes (CO):

- 1. Understand and read flowcharts and ways of interpreting the drawings
- 2. Explain the procedure involved in selection and design of fluid handling equipment, pressure vessels, heat transfer equipment
- 3. Summarize the basics to design separation equipment and ideal reactors
- 4. Apply Pinch Technology to solve the energy recovery and the Heat Exchanger network.
- 5. Apply economic principles to do cost estimation of projects and equipments, selection between alternatives and replacement and profit analysis in chemical industries
- 6. Analyse open ended process equipment design problems

Module:1 Introduction and Pressure vessel

4 hours

Introduction - Types of flowchart preparation; Fluid handling equipment; Mechanical design of pressure Vessel.

Module:2 | **Heat transfer equipment**

5 hours

Design of Double pipe, shell and tube heat exchanger; Principles of dryer design.

Module:3 | Heat Exchanger Network

4 hours

Introduction to Pinch Technology – pinch point – Composite and Grand Composite curves; Find Heat exchanger network for simple processes.

Module:4 | Separation process equipment

4 hours

Design of Distillation column and absorbers – plate type and packed columns.

Module:5 Principles and Design of Reactors

4 hours

Concepts of ideal reactor design – adiabatic and catalytic reactors

Module:6 | Cost Estimation of Projects

4 hours

Cost estimation of Chemical Projects; Cost estimation of individual equipment using algorithms and literature.

Module:7 | Analysis of Cost Estimation

4 hours

Time value of money; Depreciation; Profitability analysis; Analysis of alternatives and replacements using cost diagrams.

Module:8 | Contemporary issues

1 hour

Total Lecture hours

30 hours

Text Books

- 1. Peters M., Timmerhaus K., West R., Plant Design and Economics for Chemical Engineers, 5th ed., McGraw Hill, USA, 2017.
- Kemp I.C., Pinch Analysis and Process Integration: A User Guide on Process Integration for Efficient Use of Energy, 2nd ed., Butterworth-Heinemann, USA, 2007.

Reference Books

- 1. Joshi. M.V., Mahajani. V.V., Process Equipment Design, 3rd ed., Mc-Millan India Ltd., India, 2000.
- 2. Richard A. Turton, Richard C. Bailie, Wallace B. Whiting, Joseph A. Shaeiwitz, Debangsu Bhattacharyya, Analysis, Synthesis and Design of Chemical Processes, 4th ed., Prentice Hall, USA, 2013.

Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test

Laboratory Experiments

1.	Basics of 3D drawing and applications	2 hours
2.	Extrusion of surfaces and geometries	2 hours
3.	Design and drawing of Pressure vessel to dimensions	2 hours
4.	Design and drawing of a Shell and Tube heat Exchanger	2 hours
5.	Design and drawing of a bubble cap tray	2 hours
6.	Design and drawing of Rotary Louvre dryer	2 hours
7.	Analysis of the performance of a Heat Exchanger (Aspen)	2 hours
8.	Design and analysis of Distillation Column (Aspen)	2 hours
9.	Cost Estimation of a Distillation Column (Aspen)	2 hours
10.	Dynamic simulation experiment on distillation column (Aspen)	2 hours
	Total Laboratory Hours	20 hours

Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test							
Recommended by Board of Studies	04-03-2016						
Approved by Academic Council	40^{th}	Date	18-03-2016				

Course code	CHE3001	L	T	P	J	C		
Course title	rse title COMPUTATIONAL METHODS IN PROCESS 3		0	2	0	4		
	ENGINEERING							
Pre-requisite	MAT3003	S	Syllabus vers			sion		
				1.2				

- 1. Formulate problems for roots of a function, solution of simultaneous equations, optimized value of a given function, numerical integration and differentiation, ODE and PDE
- 2. Solve roots of a function, simultaneous equations, optimization, numerical integration, ODE and PDE
- **3.** Develop MATLAB code for finding the roots of a function, solution of a simultaneous equations, optimization, numerical integration, ODE and PDE

Course Outcomes (CO):

- 1. Formulate engineering problem as mathematical model for an appropriate solution using numerical methods
- 2. Determine roots of a single equation and simultaneous equations
- 3. Solve optimization, regression and numerical integration using different methods
- 4. Evaluate ordinary differential equation involving initial value and boundary value problems
- 5. Estimate the solution for partial differential equation involving elliptical and parabolic equation
- **6.** Create MATLAB program for roots finding, simultaneous equations, optimization, regression and curve fitting, numerical integration, ODE and PDE

Module:1 Finding the Roots

6 hours

Computers and error analysis, Mathematical models for solving engineering problems, programming and software; Finding roots of a single equation- Direct methods (bisection, Regula falsi) - Indirect methods (Newton-Raphson, Secant method)

Module:2 | **Solution for Simultaneous Equations**

5 hour

Types of matrices and matrix operation rules; Solution for linear system of simultaneous equations – Direct methods (Gauss Elimination, Gauss Jordan), Iterative methods (Gauss-Jacobi and Gauss-Seidel); Overview of non-linear system of equations

Module:3 Interpolation and Regression Analysis

7 hours

Newton's divided-difference interpolating polynomial – Linear - polynomial - quadratic rules; Lagrange interpolating polynomial - Linear - polynomial Regression.

Module:4 | Optimization

One-Dimensional Unconstrained Optimization - Golden section search and Newton's Method; Overview on multidimensional unconstrained optimization – gradient and non-gradient methods; Constrained optimization – Simplex method; Optimization of Chemical Processes using Aspen Plus. **Module:5** | **Integration and Differentiation** 5 hours Newton cotes Integration- Trapezoid method - Simpson's 1/3rd rule - Simpson's 3/8th rule; Numerical differentiation - Forward - Backward - Central difference methods **Module:6** Ordinary Differential Equations 6 hours Initial Value Problems – Euler - Predictor-corrector - Runge-Kutta methods; Boundary Value Problems – Shooting method - Central difference method **Module:7** | Partial Differential Equations 7 hours Finite difference solutions of elliptic equations – Liebmann's method - finite difference solutions of parabolic equations - Crank-Nicolson and implicit methods - Overview of hyperbolic equations; Case study on solving PDEs **Contemporary issues** Module:8 2 hours 45 hours **Total Lecture hours** Text Books Chapra S.C, Canale R.P, Numerical Methods for Engineers, 7th ed., McGraw Hill Publications, USA, 2016. Kamal I.M., Al-Malah, Aspen Plus: Chemical Engineering Applications, 1st ed., John Wiley & Sons Inc., USA, 2016. **Reference Books** Dorfman K.D., Daoutidis P, Numerical Methods with Chemical Engineering Applications, 1st ed., Cambridge University Press, USA, 2017. Jana A.K., Chemical Process Modelling and Computer Simulation, 2nd ed., Prentice Hall of India, India, 2011. Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test **Laboratory Experiments** Develop MATLAB code for bisection / Regula falsi method 1. 2 hours 2. Develop MATLAB code for Newton Raphson / Secant method 2 hours Develop MATLAB code for Gauss Elimination / Gauss Jordan 3. 2 hours method 4. Develop MATLAB code for Gauss Seidel method 2 hours 5. Develop Aspen Plus simulation for solving simultaneous equations in 2 hours distillation column

6.

Develop MATLAB code for Numerical Integration

7.	Develop MATLAB code for ODE – Euler / Modified Euler method	2 hours
8.	Develop MATLAB code for ODE – Runge Kutta method	2 hours
9.	Develop MATLAB code for PDE – Liebmann's method	2 hours
10.	Develop MATLAB code to optimize a chemical process involving PDE	2 hours
	Total Laboratory Hours	20 hours

Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test							
Recommended by Board of Studies	04-03-2016						
Approved by Academic Council	40 th	Date	18-03-2016				

Course code	CHE3002	L	T	P	J	C
Course title PROCESS INSTRUMENTATION AND CONTROL 2		2	0	2	4	4
Pre-requisite MAT3003			ylla	bus	vers	ion
						1.2

- 1. Understand the basic concepts of measuring instruments used in process industries
- 2. Explain the importance of process control mechanism and their applications in chemical process industries
- **3.** Describe principles of modes of controllers and their general characteristics and study the stability analysis of digital control system

Course Outcomes (CO):

- 1. Demonstrate knowledge of chemical process systems as well as the operating principles of common instruments
- 2. Understand concepts of the mathematical modeling and develop transfer functions of open loop control systems and their responses with different forcing functions
- 3. Develop closed loop block diagram and analyze with set point and load changes to calculate offset
- 4. Identify the modes of controllers required for process system with their characteristics and tune the controllers with the right technique for optimization of the system
- 5. Analyze the stability of the control system with time and frequency domain analysis techniques
- 6. Compare different advanced control schemes to various processes

Module:1 Process Instrumentation

4 hours

Principles and classification of process control instruments - Temperature - Pressure - Fluid Flow Rate - Liquid Level - pH - Viscosity - Humidity of gases and Concentration by Spectroscopy and Chromatography methods.

Module:2 | Introduction to Process Control

6 hours

Laplace transformation - transform of standard functions - derivatives and integrals - inversion theorems - Open loop system - Transfer functions - Forcing functions - step, pulse, impulse and sinusoidal - First order and Higher order system dynamics - First order systems in series - linearization and its application in process control - Continuous and batch processes-Transportation lag.

Module:3 | Feedback Control Block Diagram

4 hours

Closed loop system - Development of block diagram - Block diagram reduction - Servo and Regulator problem - Transient response of closed loop control systems and their stability - OFFSET calculation.

Module:4 | Controllers and Control Action

Transfer function of controllers and control valve - Characteristics of ON-OFF, Proportional, Integral and Derivative control modes - P - PI - PD - PID control modes - Principles of Pneumatic and Electronic Controllers - I/P converter - Control valve - Construction - Sizing - Characteristics. **Module:5** | Time and Frequency Domain Analysis 5 hours Stability criteria- Routh's stability criteria - Root locus diagram - Frequency response analysis -Gain margin - Phase margin and cross over frequency - Bode plot - Polar plot and Nyquist plot. **Module:6** | Controller Tuning 2 hours Process reaction curve - Cohen-Coon method - IMC tuning - Ziegler Nichols method. **Advanced Process Control** Module:7 3 hours Introduction to multivariable control - Computer applications in process control - Advanced control strategies - Cascade control - Ratio control - Feed-Forward control - Inferential control -Adaptive control - Control of Reactor - Distillation towers - Heat Exchangers. **Contemporary issues** Module:8 2 hours 30 hours **Total Lecture hours Text Books** Seborg D. E., Edgar, T. F., Mellichamp D. A., Process Dynamics and Control, 3rd ed., Wiley India, New Delhi, 2013. Stephanopoulos G., Chemical Process Control, 1st ed., Pearson Education India, New Delhi, 2015. **Reference Books** Coughanowr C. R., Koppel L. M., Process System Analysis and Control, 3rd ed., McGraw Hill, New Delhi, 2013. Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test **Laboratory Experiments** 1. Automatic temperature control loop in a heating tank. 2 hours 2. Automatic level control loop in a cylindrical tank. 2 hours 3. Automatic flow control loop in a pipe line. 2 hours Automatic cascade control loop. 4. 2 hours 5. Dynamics of non-interacting tanks. 2 hours 6. Dynamics of interacting tanks. 2 hours Controller tuning using an open loop method (Cohen-Coon method) in 7. 2 hours Simulink.

8.	Controller tuning using a clomethod) in Simulink.	sed loop method (Ziegler–N	lichols	2 hours
9.	Control Valve Characteristics	S.			2 hours
10.	Dynamics of Ratio control us	ing ProSIM.			2 hours
	Total Lab	oratory Hours			20 hours
	Total Labo	oratory frours			20 Hours
Reco	mmended by Board of Studies	04-03-2016			
Appr	oved by Academic Council	$40^{ m th}$	Date	18-03-2016	

Course code	CHE3003	L	T	P	J	C
Course title	MASS TRANSFER	3	0	0	0	3
Pre-requisite	MAT3003, CHE1005	S	ylla	bus	vers	sion
						1.2

- 1. Understand the principles of diffusion in gas, liquid and solid phases
- 2. Interpret the relation between mass transfer coefficients and the theories of mass transfer for different separation operations
- 3. Demonstrate the working principles of cooling tower, dryer and crystallizer

Course Outcomes (CO):

- 1. Solve molecular diffusion in fluids and solids using correlation and theories
- 2. Compare various mass transfer coefficients and analogies for various Chemical Engineering applications
- 3. Interpret the theories of mass transfer for individual and overall mass transfer coefficients
- 4. Design of humidification and dehumidification equipment's based on material and energy balances
- 5. Estimate the Psychometric properties of air-water system using charts and equations
- 6. Discuss different types of mass transfer equipment's cooling tower, drier, crystallizer used for Industrial applications

 Module:1
 Diffusion
 6 hours

 Introduction to Mass transfer operation Fick's law of diffusion. Steady state molecular diffusion in fluids.

Introduction to Mass transfer operation, Fick's law of diffusion, Steady state molecular diffusion in fluids under stagnant and laminar flow conditions, Diffusion coefficient measurement and prediction

Module:2 | **Molecular diffusion in Fluids**

6 hours

Molecular diffusion in gas and Liquids, Multicomponent diffusion, Diffusion through variable cross-sectional area, Diffusivity in solids and its applications

Module: 3 Mass transfer coefficients

6 hours

Introduction to mass transfer coefficient, Correlation for convective mass transfer coefficient ,Correlation of mass transfer coefficients for single cylinder, Packed column, flow over a flat plate

Module:4 Theories of mass transfer

5 hours

Penetration theory, Surface Renewal Theory, Interphase mass transfer, two film theory, Overall mass transfer coefficients

Module:5	Humidification	7 hours
----------	----------------	---------

Basic concepts, Principles of Humidification –Definitions Wet Bulb Temperature &Adiabatic Saturation Temperatures –Air/Water System psychrometric and Psychrometric Charts – Utilization of Psychrometric Charts – Dehumidification – Cooling Towers – Mechanical Draft Towers: forced draft towers and induced draft towers; Design calculations of cooling tower

Module:6 Drying 7 hours

Principles of Drying-Definitions of moisture and other terms on Drying, Classification of Drying operations. Rate of Drying -Constant and Falling Rate Drying. Moisture movement in solids -Through Circulation Drying - Rate of drying for Continuous Direct heat Driers-Types of Dryers used in practice and their operation-Batch and Continuous Dryers

Module:7 | Crystallization

6 hours

Crystal Geometry - Invariant Crystals - Principles of Crystallization- Super saturation-Nucleation-Crystal growth -Material & Energy Balance applied to Crystallizers-Types of Crystallizers used in practice

Module:8 | Contemporary issues

2 hours

Total Lecture hours

45 hours

Text Books

- 1. Dutta, B.K., Principles of Mass transfer and Separation Processes. Prentice-Hall of India, New Delhi 2007.
- 2. Treybal, R.E., Mass-Transfer Operations, 3rd ed, McGraw-Hill 1981.

Reference Books

- 1. Cussler, E.L, Diffusion: MassTransfer in Fluid Systems, Cambridge university press,2017
- 2. Christie J Geankoplis, Transport processes and Unit Operations, 4th ed, Prentice Hall India Pvt.Ltd, 2003
- 3. Anantharaman N, Meera Sheriffa Begum K.M., Mass transfer-Theory and practice, Prentice-Hall of India, New Delhi, 2011

Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test

Recommended by Board of Studies	04-03-2016
	t h

Approved by Academic Council 40th Date 18-03-2016

Course code	CHE4001	L	T	P	J	C
Course title	EQUILIBRIUM STAGED OPERATIONS	2	0	2	4	4
Pre-requisite	CHE3003	S	ylla	bus	vers	sion
						1.2

- 1.Understand the basic principles of staged and continuous contact separation equipment involved in equilibrium staged operations such as distillation, absorption, liquid-liquid extraction, leaching, adsorption and other modern separation operations
- 2.Perform basic design calculations for staged and continuous contact equilibrium staged separation operations
- 3.Describe various types of equipment's and modern separation methods for high purity products widely used in separation operation

Course Outcomes (CO):

- 1.Describe basic principles of various equilibrium staged operations involving material and energy balances
- 2. Determine the number of equilibrium stages required for distillation and absorption units
- 3.Determine number of transfer units and height requirements required for extraction, leaching and adsorption units
- 4.Explain different column/equipment used for various separation applications
- 5. Recognize modern separation techniques applied in industries for high purity products
- 6.Develop experiments for various equilibrium staged operations using experimental setup and simulation software such as Aspen Plus, MATLAB Simulink and Pro Simulator

Student Learning Outcomes (SLO): 2,5,14

- 2. Having a clear understanding of the subject related concepts and of contemporary issues.
- 5. Having design thinking capability
- 14. Having an ability to design and conduct experiments, as well as to analyze and interpret data

Module:1 | Introduction to Equilibrium Staged Operations

4 hours

Introduction to various equilibrium staged operations - Distillation - absorption- Extraction - leaching - adsorption; Vapour-liquid equilibria; Types of distillation - Flash - azeotropic - Extractive distillations; Develop VLE data using Aspen Plus; Simple mass and energy balance in flash column using simulation software

Module:2 Distillation

6 hours

Distillation column - Types of contact - Tray Vs Packed Column; Derivation of operating line equation for different section and parts of distillation column - rectification section - stripping section - feed tray location - condenser - reboiler - efficiency of distillation column; Determination of theoretical trays - McCabe-Thiele method -Ponchon- Savarit method; Case study of Industrial distillation column for multicomponent separation using Aspen Plus

4 hours **Module:3** | **Absorption** Introduction to absorption - Continuous contact counter-current multi-stage absorption (Tray absorber); Design of packed tower based on overall mass transfer coefficient; Absorber column operation using Aspen Plus **Module:4** | Extraction 3 hours Liquid–Liquid equilibria – Determination of number theoretical stages – co-current - cross current - counter current contact operations - Classification of extraction equipment Module:5 | Leaching 3 hours General principles of leaching - Factors influencing the leaching rate - Equipment for leaching -Advanced industrial leaching processes **Module:6** | **Adsorption** 4 hours Adsorption theory- Structure of adsorbents - Adsorption isotherms - Langmuir and Freundlich isotherms - Adsorption equipment 4 hours **Module:7** | **Modern separation techniques** Membrane separation - microfiltration - ultrafiltration - nanofiltration - reverse osmosis; Chromatography - liquid chromatography - Advanced separation techniques - Divided wall column, melt crystallization, zone melting; Develop membrane separators using Aspen and solving for optimum purification **Contemporary issues** Module:8 2 hours 30 hours Total Lecture hours Text Books Dutta B.K., Principles of Mass transfer and Separation Processes, 1st ed., Prentice Hall of India, India, 2007. Seader J.D., Henley E.J, Roper D.K., Separation Process Principles, , 3rd ed., John Wiley & Sons, USA, 2010. **Reference Books** Treybal R.E., Mass-Transfer Operations, 3rd ed., McGraw-Hill Inc., USA. 1981. Jana A.K., Chemical Process Modelling and Computer Simulation, 2nd ed., Prentice Hall of India, India, 2011. Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test Laboratory Experiments Diffusion in gas phase 1. 2 hours 2. Diffusion in liquid phase 2 hours Wetted wall column 3. 2 hours 4. Vapor-liquid equilibria using Aspen Plus or ProSim 2 hours

5.	Simple distillation				2 hours
6.	Multi Component distillation	using Aspen Plus	or ProSin	1	2 hours
7.	Liquid-liquid equilibria using	Aspen Plus or Pr	oSim		2 hours
8.	Liquid-liquid extraction				2 hours
9.	Continuous distillation using	Aspen Plus or Pro	Sim		2 hours
10.	Adsorption using Aspen Plus	or ProSim			2 hours
	Total Labo	oratory Hours			20 hours
Mode	e of evaluation: Continuous Assess	sment Test, Quizze	es, Assignı	ments, Final A	ssessment Test
Reco	mmended by Board of Studies	04-03-2016			
Appr	oved by Academic Council	$40^{ m th}$	Date	18-03-2016	

PROGRAMME ELECTIVE

JULY 2019

Course code	CHE1007	L	T	P	J	C
Course title	SAFETY AND HAZARD ANALYSIS	2	0	0	4	3
Pre-requisite	NIL	S	ylla	bus	vers	ion
						1.2

- 1. Critically understand the importance of safety in process industries
- 2. Assess and identify the potential hazards in process industries
- 3. Identify and evaluate the causes of accident in a chemical industry

Course Outcomes (CO):

- 1. Distinguish the typical sources of risk in a process plant by hazard identification and examination of case studies
- 2. Assess the severity of the consequences of incidents
- 3. Identify a Hazard and Operability Study (HAZOP)
- 4. Explain the legal framework controlling process plant safety in industries
- 5. Demonstrate how the root cause of incidents can be investigated and analysed and the various human and technical aspects of such causes
- 6. Identify hazard and conduct safety audit.

Module:1	Introduction	to	Safety	in	Chemical	process Industries	5 Hours

Need for Development of Safety Consciousness in Chemical Industries - Hazard, Risk, Danger, Accident; Promotion of industrial safety, extreme operating conditions, toxic chemicals - safe handling; Psychological attitude towards safety.

Module:2 | Safety Programs in Industries

5 Hours

Importance of Safety Programs in industries; Elements of Safety Program; Effective Realization; Economic and Social Benefits from Safety Program; Effective Communication Training at various levels of Production and Operation. Accidents identification and prevention.

Module:3 Potential Hazards in Chemical Process Industries

4 Hours

Chemical and Physical job Safety Analysis; High pressure and Temperature Operation; Dangerous and Toxic Chemicals; Routes of entry, Effects of toxicants and its elimination. Toxic release and dispersion models. Radio Active materials; Safe Handling and Operation of materials and Machinery; periodic inspection and replacement.

Module:4 | Risk assessment

4 hours

Quantitative risk assessment - rapid and comprehensive risk analysis; Risk due to Radiation, explosion due to over pressure, plant layout Personnel Safety and Protective Equipment; Occupational health and safety.

Module:5 Hazard Identification					4 hours
Introduction to Hazard identification					
On site & off site emergency plant	ning - Risk mana	gement -	ISO 14000) - Safety	audits –
Checklist - What if analysis – Vulnera	ability models - Eve	ent tree and	alysis - Faul	t tree analy	ysis.
I			Т		
Module:6 HAZOP					4 hours
HAZOP study - case studies-pu				•	Hazard
Identification and Assessment; In					
Quantifications-disaster management	t; Occupational a	nd Indust	rial Health	Hazards;	Safety
Systems.					
Module:7 Case studies					2 hours
Dominos effect, Worst case scenario,	Fire, Accidents, C	Chemical 1	elease, Exp	olosion, Pe	etroleum,
Commercial, Natural disasters, EMS m	nodels case studies				
Module:8 Contemporary Issues					2 hours
			T		
Т				30 h	
1.4	ital Lecture hours			30 H	ours
	otal Lecture hours			30 III	ours
Text Books			and 1 337:1		
Text Books 1. Ericson C.A., Hazard Analysis Tea	chniques for System	m Safety, 2	2 nd ed., Wile	ey, USA, 2	015.
Text Books 1. Ericson C.A., Hazard Analysis Text 2. Gupta A., Industrial Safety and En	chniques for System	m Safety, 2	2 nd ed., Wile	ey, USA, 2	015.
Text Books 1. Ericson C.A., Hazard Analysis Tec. 2. Gupta A., Industrial Safety and Enterprese Books	chniques for System environment, 2 nd ed.,	m Safety, 2 , Laxmi Pu	blications,	ey, USA, 2 India, 201	015.
Text Books 1. Ericson C.A., Hazard Analysis Text 2. Gupta A., Industrial Safety and Enterprete Books 1. Hyatt, N., Guidelines for process	chniques for System environment, 2 nd ed.,	m Safety, 2 , Laxmi Pu	blications,	ey, USA, 2 India, 201	015.
Text Books 1. Ericson C.A., Hazard Analysis Text 2. Gupta A., Industrial Safety and Enterence Books 1. Hyatt, N., Guidelines for process ed., CRC Press, USA, 2003.	chniques for System nvironment, 2 nd ed., hazards analysis, l	m Safety, 2 , Laxmi Pu nazards ide	blications,	ey, USA, 2 India, 2013 & risk and	015. 5 alysis, 1 st
 Text Books Ericson C.A., Hazard Analysis Teat Gupta A., Industrial Safety and Enterprese Books Hyatt, N., Guidelines for process ed., CRC Press, USA, 2003. Mode of evaluation: Continuous Asses 	chniques for System nvironment, 2 nd ed., hazards analysis, l sment Test, Quizze	m Safety, 2 , Laxmi Pu nazards ide	blications,	ey, USA, 2 India, 2013 & risk and	015. 5 alysis, 1 st
Text Books 1. Ericson C.A., Hazard Analysis Text 2. Gupta A., Industrial Safety and Enterence Books 1. Hyatt, N., Guidelines for process ed., CRC Press, USA, 2003.	chniques for System nvironment, 2 nd ed., hazards analysis, l	m Safety, 2 , Laxmi Pu nazards ide	blications,	ey, USA, 2 India, 2013 & risk and Assessme	015. 5 alysis, 1 st

Course code	CHE1008	T	P	J	C	
Course title	UNIT PROCESSES IN ORGANIC SYNTHESIS	3	0	2	0	4
Pre-requisite	NIL		Syllabus ver			sion
						2.1

- 1. Impart knowledge on the industrial reactions used in converting organic raw materials into usable products by various processes
- 2. Develop students understanding towards kinetics and mechanism of various reactions involved in industries
- 3. Comprehend various instrumental techniques applied in contemporary industries to analyze the organic compounds

Course Outcomes (CO):

- 1. Recall the physical concepts behind the organic reactions
- 2. Understand the importance of heterocycles, oxidizing and reducing agents
- 3. Interpret kinetics and mechanism of nitration, and halogenation reactions
- 4. Explain the kinetics and mechanism of sulphonation reactions
- 5. Explain separation and purification of organic compounds through classical separation methods
- 6. Select suitable chromatographic technique for separation and purification of organic compounds

Module:1 Basic concepts

6 hours

Kinetic theory of gases -Vander Waals equation - Critical constants - Liquifaction of gases, Raoult's law - Ideal solutions-Partially miscible liquids - Phenol water system - Henry's law - Colligative properties - Lowering of vapor pressure - Elevation of boiling point - Depression of freezing point

Module:2 | **Heterocyclic compounds**

8 hours

Aromatics: Structure of benzene and theories of aromaticity – Heterocyclic compounds: Classification – Aromaticity and Basicity of heterocyclic compounds – Preparation and properties of Furan – Thiphene – Pyrrole. Oxidation – Oxidising agents (SeO₂, OsO₄, KMnO₄) – Reduction, Reducing agents (Lithium aluminium hydride, metal/acid and sodium metal). Grignard reagents: Synthesis and applications.

Module:3 | Nitration

6 hours

Introduction to nitration, Nitrating agents, Kinetics and Mechanism of aromatic nitration process, Equipments for nitration, typical industrial nitration process e.g. preparation of nitrobenzene, nitro acetanilide.

Module:4 | Halogenation

6 hours

Halogenating agents, Kinetics and mechanism of halogenation reactions. Apparatus and materials for construction. Technical preparation of chloral and vinyl chloride.

Module:5 | Sulphonation

6 hours

Introduction to sulphonation, sulphonation agents and sulphanation agents, chemical and physical factors affecting sulphonation. Mechanism of sulphonation, commercial sulphonation of benzene and naphthalene, sulphation of lauryl alcohol and dimethyl ether.

Module:6 | Separation and purification methods

5 hours

Separation and purification methods: Classical separation methods: Theories of distillation, fractional distillation, steam distillation, sublimation and zone refining - Solvent extraction - Distribution law - Separation of mixtures, Craig method; Recrystallization of solid products.

Module:7 | Chromatography

6 hours

Chromatography- Introduction, Different types of chromatographic techniques- TLC, Column, GC, LC, and HPLC-Theory and Instrumentation (GC and HPLC), Applications in the separation of organic molecules.

Module:8	Contemporary issues	2 hours
	Total Lecture hours	45 hours

Text Books

- 1. Groggins P.H., Unit Processes in Organic Synthesis, 5th ed., Tata Mc.Graw Hill Book Company, India, 2009.
- 2. Puri B.R., Sharma L.R., Pathania M.S., Principles of Physical Chemistry, 43rd ed., Vishal Publishing Co., India, 2008.

Reference Books

- 1. Atkins, P., Paula, J. D. Atkins, Physical Chemistry, 11th ed., Oxford University Press, USA, 2018.
- 2. March, J., Advanced Organic Chemistry: Reactions, Mechanisms and Structures, 4th ed., John Wiley & Sons, USA, 1992.
- 3. A. Bahl, B.S. Bahl, Advanced Organic Chemistry, 5th ed., S. Chand & Co., Ltd., India, 2012. Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test

Laboratory Experiments

1.	Determination of Critical Solution Temperature of the given Phenol-Water system	2 hours
2.	Determination of rate constant of the hydrolysis of ethyl acetate catalyzed by HCl at room temperature	2 hours
3.	Determination of acid value of the given oil sample	2 hours
4.	Determination of saponification value of the given oil sample	2 hours
5.	Sulphonation of 1-Naphthol	2 hours
6.	Reduction of Benzophenone by NaBH ₄	2 hours
7.	Preparation of Benzoic acid from benzaldehyde by oxidation and it melting point measurement	2 hours

nitration and it melting point measurement 9. Purification of organic compounds by Fractional distillation 2 hours 10. Identification of Carbonyl group in an organic compound. 2 hours 11. Identification of Carboxylic acid group in an organic compound. 2 hours 12. Preparation of soap or detergent 2 hours Total Laboratory Hours 24 hours	8.	Preparation of m-Dintrobenzene from Nitrobenzene by	2 hours
10. Identification of Carbonyl group in an organic compound. 2 hours 11. Identification of Carboxylic acid group in an organic compound. 2 hours 12. Preparation of soap or detergent 2 hours		nitration and it melting point measurement	
11. Identification of Carboxylic acid group in an organic compound. 2 hours 12. Preparation of soap or detergent 2 hours	9.	Purification of organic compounds by Fractional distillation	2 hours
12. Preparation of soap or detergent 2 hours	10.	Identification of Carbonyl group in an organic compound.	2 hours
	11.	Identification of Carboxylic acid group in an organic compound.	2 hours
Total Laboratory Hours 24 hours	12.	Preparation of soap or detergent	2 hours
		Total Laboratory Hours	24 hours
Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test			

Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment TestRecommended by Board of Studies04-03-2016Approved by Academic Council40thDate18-03-2016

JULY 2019

Course code	CHE1009	L	T	P	J	C
Course title	BIOCHEMICAL ENGINEERING	3	0	0	0	3
Pre-requisite	Nil	Syllabus versi			sion	
					2.2	

- 1. Impart the basic knowledge and overview of biotechnology covering the principles of cell and kinetics, bioreactor design, sterilization agitation and aeration
- 2. Understand the physical processes involved in bio-systems
- 3. Apply the knowledge of chemical engineering principles to biological processes

Course Outcomes (CO):

- 1. Understand significance and scope of biochemical processes
- 2. Classify microorganisms and cell functions for industrial biochemical processes, enzyme and kinetics for bioprocesses
- 3. Apply Chemical Engineering Principles to develop kinetic models for bioprocesses
- 4. Make use of theoretical basics of chemical engineering and unit operations in designing bioprocess equipment
- 5. Analyze bioreactor performance
- 6. Distinguish downstream processing and biological Sewage treatment in solving open ended chemical problems using biochemical route

Module:1 Introduction to Biochemical Engineering

3 hours

An overview of industrial biochemical processes with typical examples comparing chemical and biochemical processes – development and scope of biochemical engineering as a discipline.

Module:2 | Basic microbiology and Biochemistry

5 hours

Industrially important microbial strains, their classification – structure – cellular genetics – typical examples of microbial synthesis of biologicals

Module:3 | Enzymes & Applications

8 hours

Enzymes - in industry, medicine and food - their classification with typical examples of industrially important enzymes; Mechanism of enzymatic reactions - Michaelis Menten Kinetics - enzymes inhibition factors affecting the reaction rates; Industrial production, purification and immobilization - enzyme reactors with typical examples.

Module:4 | Kinetics of Cell Growth

7 hours

Typical growth characteristics of microbial cells – factors affecting growth – Monod model; Modelling of batch and continuous cell growth; Immobilized whole cells and their characteristics – free cell and immobilized cell reactors; Typical industrial examples – transport in cells.

Module:5 Unit Operations in Biochemical engineering

6 hours

Newtonian and non-Newtonian behaviour of broth – agitation and mixing – power consumption; Gas/liquid transport in cells – transfer resistances – mass transfer coefficients & their role in scale up of equipment – O_2 transfer; Heat transport in microbial systems – Heat transfer correlation's; Sterilization cycles; Heat addition & removal during biological production

Module:6 Bioreactors 8 hours

Bioreactors - Batch and continuous types, immobilized whole cell and enzyme reactors. Highperformance bioreactors; Reactors in series with and without recycle. Design of reactors and scale up with typical examples; Sterile and non-sterile operations.

Module:7 Downstream and effluent treatment processes

6 hours

Downstream processes and effluent treatment: Different Unit operations in down streaming with special reference to membrane separations, extractive fermentation; Anaerobic and aerobic treatment of effluents – typical industrial examples for downstream processing and effluent disposal.

Mo	dule:8	Contemporary issues	2 hours
			T
		Total Lecture hours	45 hours
Tex	t Books		
1.	Bailey.	J.B., Ollis D.F., Biochemical Engineering Fundamentals, 4 th ed.,	McGraw Hill, USA,
	1986.	JULY 2019	
Dof	Poronco I	Rooks	

Reference Books

- 1. Rao D.G., Introduction to Biochemical Engineering, 1st ed., Tata McGraw Hill, India, 2009.
- 2 Doran P.M., Bioprocess Engineering Principles, 3rd ed., Academic Press, United Kingdom, 2013.
- 3 Aiba A, Humphrey A.E., Milli. N.R., Biochemical Engineering, 2nd ed., Academic Press, USA, 2004.

Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test
Recommended by Board of Studies 04-03-2016

Approved by Academic Council 40th Date 18-03-2016

Course code	CHE1010	L	T	P	J	C
Course title	PROCESS PLANT UTILITIES	3	0	0	0	3
Pre-requisite	NIL	Syllabus versi			sion	
					1.2	

- 1. Equip the students with the basic understanding and effective utilization of utilities viz. water, steam, compressor, vacuum pumps, refrigeration and cooling units, insulator, inert gases in process industries and allied operations
- 2. Impart insights in relation to the different types of fuels and boilers used in process industries for the generation of steam, types of compressors and blowers for handling air and inert gases
- 3. Expose students to different methods of treatment of wastewater and drinking water

Course Outcomes (CO):

- 1. Explain the importance of water and various methods for water softening and purification
- 2. Classify the different types of fuels and boilers used in process industries for the generation of steam
- 3. Identify the different types of compressors and blowers for handling air and inert gases
- 4. Summarize the different types of equipment used for humidification, and dehumidification
- 5. Select a suitable refrigeration system for a typical application in process industries
- 6. Interpret the application of correct type of insulation system for control of heat losses and learn about proper utilization of inert gases on the process plants

Module:1 Water and Steam

7 hours

Requisites of Industrial Water and its uses; Water treatment methods - ion exchange, demineralization, membranes technology, reverse osmosis. Water resources management. Properties of steam, Boiler types and mountings, boiler accessories, Indian Boiler Act, 1923. Steam distribution and utilization, steam economy, waste heat utilization

Module:2 | Industrial fuels

6 hours

Solid, liquid and gaseous fuels used in chemical process industries for power generation, Typical combustion calculations

Module:3 | Compressed Air

6 hours

Types of fans, axial, reciprocating and centrifugal compressors, rotary blowers and vacuum pumps and their performance characteristics. Methods of vacuum development, ejectors and their limitations, materials handling under vacuum, piping systems.

Module:4 | **Humidification and Dehumidification**

5 hours

Properties of Air–Water Vapors and use of Humidity Chart, Equipments used for Humidification, Dehumidification and Cooling Towers

Module:5 | Refrigeration & Ventilation

6 hours

Principle of refrigeration, Refrigeration system like compression refrigeration, absorption refrigeration, and chilled water system; Types of refrigerants; Concept of cryogenics and cryogenics characteristics. Air blending, exhaust ventilation and flaring

Module:6 Industrial insulation and Inert Gases

8 hours

Importance of insulation, insulation material and their effect on various materials of equipment piping, fitting and valves, insulation for high, intermediate, low and subzero temperatures including cryogenic insulation

Introduction, properties of inert gases & their use, sources and methods of generation, general arrangement for inerting system; operational, maintenance and safety aspects

Module:7 Effluent treatment

5 hours

Disposal of solid, liquid and gas wastes; pollution control measures – compliance to statutory norms; Effluent Treatment – Case studies like treatment of effluents from paper mills, Dye and Textile industries, petrochemical industries, plastic and rubber industries.

Mo	dule:8	Contemporary issues			2 hours
		Tot	al Lecture hours		45 hours
Tex	kt Books	}			
1.	1. Broughton J., Process Utility Systems, 3 rd ed., Institution of Chemical Engineers, U.K.,				
	2004				
Ref	Reference Books				
1.	Mujaw	ar B.A., A Textbook of Pl	lant Utilities, 3 rd	ed., Nirali	Prakashan Publication, India,
	2007.				
2.	Poling	B.E., Prausnitz J.M., O'	Connell J., The H	Properties	of Gases and Liquid, 5th ed.,
		w Hill, USA, 2008.			
3.	Perry,	R.H., Green, D. W., Perry	's Chemical Engi	ineers Har	ndbook, 8 th ed., McGraw Hill,
	USA, 2007.				
Mo	Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test				
Rec	Recommended by Board of Studies 04-03-2016				
Ap	proved b	y Academic Council	$40^{\rm th}$	Date	18-03-2016

Course code	CHE-1011	L	T	P	J	C
Course title	OPTIMIZATION OF CHEMICAL PROCESSES	3	0	0	0	3
Pre-requisite	MAT3003	Syllabus ver			vers	sion
						1.2

- 1. Provide an overview of state-of-the-art optimization algorithms
- 2. Impart the theoretical knowledge of chemical engineering principles that underpin optimization techniques.
- 3. Enhance the modelling skills to describe and formulate optimization problems and their use for solving several types of practically relevant optimization problems in Chemical engineering

Course Outcomes (CO):

- 1. Demonstrate the basic principles of Chemical Engineering Systems
- 2. Recognize the different types of optimization problems for process engineering
- 3. Evaluate single and multivariable optimization chemical engineering problems
- 4. Execute the complex chemical engineering processes using software tools
- 5. Identify the different types of hypotheses for the model equations chemical system
- 6. Solve the Optimal Control and Dynamic optimization problems

Module:1 | Formulation of Optimization Problems

6 hours

Nature and Organization of Optimization problem; Mathematical concepts of optimization; Developing model for optimization; Taylor expansion; Gradient and Hessian matrix; Convex functions and sets; Gaussian elimination method

Module:2 | **Models for Optimization**

5 hours

Selection of function; Degrees of freedom; Classification of models; factorial experimental design; constraints in model; Optimality conditions for a single-variable and multi-variable functions

Module:3 | Linear and Nonlinear Least square problems

6 hours

One-dimensional search - Methods requiring derivatives (Newton, Quasi Newton, Secant method); Region elimination methods (Interval halving, Fibonacci search, Golden section); Polynomial approximations (Lagrange's, quadratic & Cubic)

Module:4 | **Multivariable Optimization-I**

6 hours

Unconstrained multivariable optimization - Graphical visualization (contour plots, 3D plots); Gradient based methods - Steepest descent, conjugate direction, and Newton methods

Module:5 | Multivariable Optimization-II

6 hours

Linear programming (LP) - Graphical solution - Simplex Method; Test for optimality - Barrier methods - Sensitivity analysis; Concept of duality; Introduction to interior-point method - Simulation of Reactor model - ASPEN PLUS and MatLab

Module:6	Nonlinear Programming	7 hours
Nonlinear r	programming (NLP) with constraints: Lagrange multipliers - Graph	ical illustration of

NLP problems - KKT necessary and sufficient conditions; Quadratic programming - Successive linear and quadratic programming; Penalty function method; Integer and mixed integer programming. (IP and MIP) - Graphical solution - Branch and bound methods

Module:7 Dynamic Programming

7 hours

Dynamic programming - Minimum cost routing problems - Solution of separable nonlinear programming problems; Global optimization problems; Introduction to multi objective optimization problems- Pareto optimal solutions (graphical illustration)

Module:8 | Contemporary issues

2 hours

Total Lecture hours

45 hours

Text Books

1. Edger T.F., Himmelblau D.M., Lasdon L.S., Optimization of Chemical Processes, 2nd ed., McGraw-Hill, USA, 2015.

Reference Books

- 1. Hillier F.S., Lieberman G. J., Introduction to Operations Research, 7th ed., McGraw-Hill, USA, 2001.
- 2. Rao S.S., Engineering Optimization: Theory and Practice, 4th ed., John Wiley & Sons Ltd., USA, 2009.

Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test

Recommended by Board of Studies	04-03-2016
recommended by Board of Studies	0.05 2010

Approved by Academic Council 40th Date 18-03-2016

Course code	CHE1013	L	T	P	J	C
Course title	NATURAL GAS ENGINEERING	3	0	0	0	3
Pre-requisite	NIL	Syllabus versi			sion	
						1.2

- 1. Impart design experiences essential for graduates to enter the practice of Gas Engineering and pursue lifelong professional development
- 2. Summarize the necessary theory, application to case studies and engineering project design
- 3. Implement research that generates, communicates and applies new knowledge for the betterment of society

Course Outcomes (CO):

- 1. Emphasize fundamentals of mathematics and integrates them in application to traditional Natural Gas Engineering to improve further needs
- 2. Select, locate and orient systems for offshore problems
- 3. Develop an ability to revamp and retrofit a system, process to meet desired needs within realistic constraints such as environmental, health, safety, manufacturability and sustainability in the field of Natural Gas
- 4. Apply natural Gas Refining principles and practices for optimizing resource development and management
- 5. Recognize the purification mechanism to estimate, design equipment's for processing, storage And transport
- 6. Inspect project economics and resource valuation methods for design and decision making under conditions of risk and uncertainty

Module:1 **Properties and Composition of Natural Gas** 6 hours Natural gas origin – Composition of Natural Gas – Source of Natural Gas – Thermodynamics properties - Compressibility factor for Natural Gas - Heating value and flammability limit of Natural Gas **Module:2** Natural Gas Offshore Drilling 5 hours Directional Drilling and Horizontal Drilling Module:3 Natural Gas Offshore Production and Handling 6 hours Drilling Deepwater Reservoir - Deepwater production systems - Mooring Systems - Gas Terminals **Module:4** | Natural Gas Onshore Production and Handling 6 hours Sucker Rod pumping – Separation, Storage, Transportation of Natural Gas Module:5 | Natural Gas Processing 8 hours

Dehydration – Desulphurization processes (Sour gases, Toxicity of H₂S, Physical and Chemical Absorption process, Carbonate process, sulphur recovery) – Low temperature processes (Joule Thompson effect, Turbo expander, Refrigeration, Low temperature Heat Exchanger) Module:6 | Liquid Recovery 6 hours NGL, LPG, C₃, C₂ Fraction Recovery from Natural Gas **Economics of Natural Gas** 6 hours Module:7 Current status in India – Trade & Selection of port location – Economics of Gas Processing **Contemporary issues** Module:8 2 hours 45 hours **Total Lecture hours Text Books** Arthur J. Kidnay, William R. Parrish, Fundamentals of Natural Gas Processing, 4th ed., Taylor and Francis, CRC Press, UK, 2011. Subrata K Chakrabarti, Handbook of offshore engineering, 1st ed., Elsevier Publishers, Netherlands, 2005. **Reference Books** S. Mokhatab, William A. Poe, James G.Speight, Handbook of Natural Gas Transmission and Processing, 1st ed., Gulf Professional Publishing, USA, 2014. 2. G. Ghalambor, Natural Gas Engineering Handbook, Gulf Publishing Company, USA, 2005. Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test Recommended by Board of Studies 04-03-2016

40th

Date

18-03-2016

Approved by Academic Council

Course code	CHE1014	L	T	P	J	C
Course title	PETROLEUM TECHNOLOGY	3	0	0	0	3
Pre-requisite	NIL	Syllabus version			sion	
		1.			1.2	

- 1. Understand the importance of crude oil as source of fuel and the size of refining industry
- 2. Interpret the challenges involved in refining from viewpoint of product specifications, economic considerations and environmental regulations
- 3. Design application of chemical engineering principles to petroleum refining

Course Outcomes (CO):

- 1. Explain the composition of crude oil and its products, along with its properties and characterization methods
- 2. Discuss the basic separation and conversion processes used in refining crude oil
- 3. Implement the chemical engineering principles to the analysis of safe and efficient refinery operations
- 4. Identify the specifications required for good quality petroleum product
- 5. Exemplify the process of purification and fractionation of crude oil
- 6. Interpret the relationship safety and environment in Petroleum Refining Industries

Module:1Petroleum6 hoursExploration Practices - Reservoir Rock Properties - Reservoir types - Reservoir Estimation Origin
- Composition - Classification and constituents of petroleum - Dehydration of crude oil-
Transportation of crude oil - Classification of petroleumDehydration of crude oil-
Components of crude oil distillation - various crude oil distillation systems - uses of petroleum

Module:3 Cracking

Necessity of cracking - Types of cracking - advantages and disadvantages of catalytic cracking over thermal cracking - Houdrys fixed bed processes - Moving bed processes - Fluid bed catalytic cracking processes

Module:4	Reforming	4 hours					
Thermal and catalytic Reforming; Polymerization; Alkylation; Isomerization							
Module:5	Purification of petroleum products	7 hours					
Sweetenin	Sweetening processes types –Merox – HDS; Dewaxing; Deasphalt; Lube oil treatment						
Module:6	Properties of Petroleum Products	7 hours					

Spe	cific gra	vity - Vapor pressure – Vise	cosity - red wood	viscom	eter - F	Flash point	- Fire po	oint -
Pou	ır point -	Smoke point - Aniline poir	nt - Diesel index -	Octane	numbe	er - Perforn	nance nu	mber -
Cet	ane num	ber - Properties of greases -	Drop point of gre	ase				
Mo	dule:7	Knocking						5 hours
Rea	sons for	knocking - Additives in p	petrol - Aviation g	gasolin	e - Av	iation turb	ine fuel	(ATF) -
Sto	rage and	handling of liquid fuels						
Mo	dule:8	Contemporary issues						2 hours
		Total Lect	are hours			45 h	ours	
Tex	t Books	}						
1.	.1	H., Handwerk G.E., Kaiser CRC Press, USA, 2013.	M.J., Petroleum	Refinii	ng Tecl	hnology an	d Econo	omics,
2.	Speigh	t J.G., Petroleum Refining F	Process, 1st ed., Tay	ylor an	d Franc	cis, USA, 2	015	
3	Bhaska	ra Rao B.K., Modern Petrol	eum Refining Pro	cessess	s, 5 th ed	l., Oxibh, I	ndia, 20	13
Ref	erence l	Books						
1.	Mohan	ned A.F., Taher A., Amal	E., Fundamentals	of Pet	roleum	Refining,	1 st ed.,	Elsevier,
	USA, 2							
2.	Nelson	, Petroleum Refinery Engin	eering, 4 th ed., Mc	Graw l	Hill, US	SA, 2010.		
Mo	de of ev	aluation: Continuous Assess	ment Test, Quizze	es, Ass	ignmen	ts, Final A	ssessme	nt Test
Rec	ommen	ded by Board of Studies	04-03-2016					
App	proved b	y Academic Council	40 th	Date	18	-03-2016		

Course code	CHE1015	L	T	P	J	С
Course title	PETROCHEMICAL TECHNOLOGY	3	0	0	0	3
Pre-requisite	NIL	Syllabus version			on	
				1.2		

- 1. Understand the technological principles of organic synthesis and related unit processes
- 2. Differentiate the different unit operations and unit processes involved in conversion of monomer to polymers
- 3. Interpret various kinds of application oriented problems faced in chemical industries using analytical techniques

- 1. Provide a detailed insight of all the chemicals derived from petroleum
- 2. Explain the different methods for the conversion of monomer to polymers
- 3. Distinguish different type of polymers for specific application
- 4. Develop familiarity with major polymerization processes on industrial scale
- 5. Understand the different process technologies for Elastomers and resins
- 6. Demonstrate the manufacture of Plastics, Fibres and their applications

Module:1	Petrochemical & Precursors	2 hours
Introduction	r; Petrochemical & its Precursors	
Module:2	Alkanes & Alkenes	7 hours
Introduction compounds	to Alkanes and Alkenes; Manufacture of Petrochemical Derivatives for	rom C ₁ ,C ₂ ,C ₃ ,C ₄
Module:3	Aromatics	6 hours
Introduction	n to Aromatics; Manufacture of Petrochemical Derivatives from – Be	enzene, Toluene,
Xylene, Sty		,
Module:4	Alternate Route and its Derivatives	8 hours
Manufactur	e of VCM by thermal cracking, DMT, PTA, maleic anhydride, cu	ımene, diphenyl

carl	oonate.			
Mo	dule:5	Polymers		8 hours
	duction near), Oc	of - poly butadiene rubber, SBR,SAN, Polyalky tenes.	ene Terephthalate,	Alpha Olefins
Mo	dule:6	Plastics & Fibres		7 hours
		of – Polyacrylonitrile resins, Melamine, formaldeh	vde resins SNG ex	
		or rotyactytomatic resins, wetamine, formateen	, de Tesms, STG, ex	prosives, ayes
Mo	dule:7	Economics of Petrochemical Industry		5 hours
Cur	rent stat	us in India; Trade; Selection of Petrochemical pro	ducts; Economics of	of Petrochemical
deri	ivatives a	and Industry		
Mo	dule:8	Contemporary issues		2 hours
Мо	dule:8	• •	45 ho	
		Total Lecture hours	45 ho	
	dule:8	Total Lecture hours	45 ho	
	xt Books Mall I.	Total Lecture hours		ours
Tex	xt Books Mall I. Ltd, UI	Total Lecture hours D., Petrochemical Process Technology, 2 nd ed.,	Macmillan Petroleu	m Chemicals
1. 2.	xt Books Mall I. Ltd, UI	Total Lecture hours D., Petrochemical Process Technology, 2 nd ed., 2011. D., Petrochemical Process Technology, 2 nd ed., 2011. D., Petrochemical Process Technology, 2 nd ed., 2011.	Macmillan Petroleu	m Chemicals
1. 2.	Mall I. Ltd, UI Chaudl CRC P	Total Lecture hours D., Petrochemical Process Technology, 2 nd ed., 2011. D., Petrochemical Process Technology, 2 nd ed., 2011. D., Petrochemical Process Technology, 2 nd ed., 2011.	Macmillan Petroleu ochemical Enginee	m Chemicals ring, 3 rd ed.,
1. 2. Ref	Mall I. Ltd, UE Chaudh CRC P. Cerence I Richard 2012.	Total Lecture hours D., Petrochemical Process Technology, 2 nd ed., 2011. D., Petrochemical Process Technology, 2 nd ed., 2011. D., Petrochemical Process Technology, 2 nd ed., 2011. Books	Macmillan Petroleu ochemical Enginee John Wiley & Son	m Chemicals ring, 3 rd ed.,
1. 2. Ref. 1. 2.	Mall I. Ltd, UF Chaudle CRC Pr Gerence I Richard 2012. Abdulin	Total Lecture hours D., Petrochemical Process Technology, 2 nd ed., X, 2011. nuri U.R., Fundamentals of Petroleum and Petrress, USA, 2011. Books d A. Dawe, Modern petroleum technology, 6 th ed.,	Macmillan Petroleu ochemical Enginee John Wiley & Sons	m Chemicals ring, 3 rd ed.,
1. 2. Ref. 1. Mo	Mall I. Ltd, UF Chaudr CRC Pr Cerence I Richard 2012. Abdulin de of eva	Total Lecture hours D., Petrochemical Process Technology, 2 nd ed., 2011. D., Petrochemical Process Technology, 2 nd ed., 2 nd	Macmillan Petroleu ochemical Enginee John Wiley & Sons	m Chemicals ring, 3 rd ed.,
1. 2. Ref. 1. Mo	Mall I. Ltd, UE Chaudh CRC P. Richard 2012. Abdulinde of eva	Total Lecture hours D., Petrochemical Process Technology, 2 nd ed., 5, 2011. nuri U.R., Fundamentals of Petroleum and Petrress, USA, 2011. Books d A. Dawe, Modern petroleum technology, 6 th ed., n F., Production of Oil & Gas, 2 nd ed., Mir published.	Macmillan Petroleu ochemical Enginee John Wiley & Sons ers, Russia, 2014. signments, Final As	m Chemicals ring, 3 rd ed.,

Course code	CHE1016		T	P	J	C
Course title	FERMENTATION TECHNOLOGY :		0	0	0	3
Pre-requisite	NIL	Syllabus version			sion	
						1.2

- 1. Learn the basics of the various aspects of microbiology and biosystems
- 2. Impart experimental design thinking capability in relation to various fermenter configurations, modes of operation, growth kinetics and product recovery
- 3. Extrapolate the design thinking skills to bio related processes with chemical engineering background

Course Outcomes (CO):

- 1. Understand the importance of fermentation with reference to industrial microbiology
- 2. Summarize kinetics prevalent in microbial processes
- 3. Understand the process to select and manage microorganisms from natural source to fermentation
- 4. Interpret the acquired knowledge on fermenter configuration for different types of cells and enzymes
- 5. Design of fermenter and the downstream processing of fermentation products
- 6. Create innovative applications for fermentation technologies for novel products

Module:1	Introduction	and	history	of	fermentation processes		4	4 hours
D 1		•			C 1 C	•	700	C

Development of fermentation process – range of processes under fermentation, Types of fermentation.

Module:2 | Microbial growth kinetics

6 hours

Microbial growth - Batch, Continuous and types of fed batch culture – design and kinetics. Comparison of the modes of culture

Module:3 | Microbial Strain Management

5 hours

Industrial microorganisms - isolation, preservation and improvement of strains; Storage methods and improvement strategies.

Module:4 | **Media for industrial fermentations**

5 hours

Media formulation - energy, carbon and nitrogen sources, micro nutrients; oxygen requirements; Other non-nutrient and functional components. Effects of media composition on penicillin production; Media optimization.

Module:5 | Preparation of aseptic fermentation process

8 hours

Preparation of media and air for pure culture fermentation; Media sterilization - Batch and continuous sterilization processes; Sterilization of fibrous filters and their design; Development of inocula - processes involving yeast, bacterial, fungi; Aseptic inoculation of plant fermentations.

Module:6 Basic functions of a fermenter

8 hours

Basic functions of fermenter – Aeration and agitation – process requirements and mechanical design aspects; Maintenance of aseptic conditions and foam control. Types of fermenters for industrial applications - stirred & sparred tanks fermenters, Tower fermenter, Packed tower, Air lift and rotating disc fermenters; Solid State fermentation.

Module:7 Process technology for bulk products

7 hours

Basic downstream processing; Process technology for bulk products; Production of alcohols, organic acids, enzymes, and antibiotics – flow sheet and process description of modern processes.

Module:8 | Contemporary issues

2 hours

Total Lecture hours

45 hours

Text Books

- 1. Stanbury P.F., Whitaker A., Steve H., Principles of Fermentation Technology, 3rd ed., Butterworth-Heinemann, USA, 2017.
- 2. El-Mansi E., Bryce C.F.A, Arnold L.D., Allman A.R., Fermentation Microbiology and Biotechnology, 2nd ed., CRC Press, USA, 2007.

Reference Books

- 1. Ashok P, Christian L, Carlos R.S., Advances in Fermentation Technology, 1st ed., Asiatech Publishers Inc., India, 2008.
- 2. Rhodes A and Pletcher. D.L: Principles of Industrial Microbiology, 3rd ed., Pergamon Press, UK, 1977.

Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test

Recommended by Board of Studies	04-03-2016
---------------------------------	------------

2			
Approved by Academic Council	40 th	Date	18-03-2016

Course code	CHE1017	L	T	P	J	С
Course title	Course title FOOD PROCESS ENGINEERING		0	0	4	3
Pre-requisite	NIL	Syllabus version			sion	
		1.			1.2	

- 1. Emphasize on the basic concepts of unit operations and unit processes in Chemical Engineering with an application to Food technology
- 2. Impart necessary knowledge required for food processing technology, food quality management, food standards and packaging
- 3. Familiarize the various properties of the raw material used in food processing and technologies required in transforming them into quality food products and to train the students to use the material handling equipment involved in food processing operations

- 1. Determine the various engineering properties of the raw material used in food processing which will be useful to design the various food Processing equipment's
- 2. Device the suitable dryers with considering technical and economical point of view
- 3. Understand the knowledge in different food processing operations involved in various food manufacturing process
- 4. Identify and transform different processing technology to produce quality food products
- 5. Understand the unit operations involved in food technology
- 6. Organize to learn the packaging material and methods and the cost involved

Module:1	Introduction to Food	4 hours
Macromole	cules-proteins, Enzymes, Carbohydrates, Micronutrients, Water, In	teractions
Module:2	Food Microbiology	3 hours
Deteriorativ	e factors and Control. Food additives and preservatives. Adulterati	on
Module:3	Food process calculations	3 hours
Material and	d energy calculations in food processing	
Module:4	Unit operations in food processing	5 hours
Material har	ndling, heat transfer, mixing, size reduction, mechanical separation	ns
Module:5	Food Preservation Techniques	5 hours
	dehydration, Irradiation, Microwave Heating, Sterilization and Pas	teurization –
Cleaning/sa	nitation In Process (CIP and SIP), Fermentation and Pickling	
Module:6	Food Processing and Food quality	5 hours

Processing of Cereal Grains, Pulses, Vegetables, Fruits, Spices, Fats and Oils, Bakery, Confectionary and Chocolate Products Soft and Alcoholic Beverages, Dairy Products, Meat, Poultry and Fish Products, Food quality parameters and their evaluation FSSAI and safety concepts in food processing. Quality control and Food standard organizations

Module:7 | Packaging and canning

3 hours

Concepts, definition, Significance, classification – fresh and processed; Basic packaging materials, types of packaging, Packaging methods. Newer methods of thermal processing, batch and continuous; application of infrared, microwaves. packaging design, retort pouch packing, vacuum packaging; costs of packaging and recycling of materials and Labelling

N. / .	1 1 0	Contomporaryiggues			21		
Mo	dule:8	Contemporary issues			2 hours		
		Tota	l Lecture hours		30 hours		
Tex	kt Books						
1.	Rao C.	G., Essentials of Food Proce	essing Engineering	g, 1 st ed., 1	BS Publications, India, 2005.		
2.	Subbul	akshmi G, Udipi Shobha A	A., Food Processin	g and Pre	servation, 1 St ed., New Age		
	Interna	tional, India, 2017.					
Ref	ference 1	Books					
1.	Khetar	paul N., Food Processing an	d Preservation, 1 ^S	t ed., Day	a Publications, India, 2005.		
Mo	Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test						
Rec	commen	ded by Board of Studies	04-03-2016				
App	Approved by Academic Council 40 th Date 18-03-2016						

Course code	CHE1018	L	T	P	J	C
Course title	MEMBRANE SEPARATIONS TECHNOLOGY	3	0	0	0	3
Pre-requisite	NIL	S	ylla	bus	vers	ion
]	1.21

- 1. Understand basic principles of membrane separation and characterization methods available for membranes
- 2. Derive various transport mechanism involved in MF, UF, NF, RO and gas separation membranes
- 3. Select membranes for different industrial separation and purification application

Course Outcomes (CO):

- 1. Understand the basic principle of membrane separation processes
- 2. Describe different technics available for membrane characterization
- 3. Derive various transport models for membrane flux and concentration polarization for various membrane systems
- 4. Compute membrane flux, concentration polarization and fouling using various transport models for various membrane systems
- 5. Analyze a membrane process and design components to carry out a specific separation
- 6. Select membranes for gas and bio separation application

Module:1	Membrane	Materials,	Preparation	and	5 hours
	Characteriza	tion			

Introduction - Historical development of membranes - types of membrane processes - types of synthetic membranes - membrane materials - membrane module; Membrane preparation - Phase inversion process - casting methods; Membrane characterization - Measurement of pore size - solute properties - visual methods - bubble point method - liquid displacement method, molecular weight cut-off (MWCO), microbial challenge test

Module:2 Membrane Transport Theory

6 hours

Membrane transport theory – Introduction, solution-diffusion model; Structure-permeability relationship in solution diffusion membranes; Pore-flow membranes.

Module:3 | Concentration Polarization

6 hours

Concentration polarization – Introduction, boundary layer film model; Concentration polarization in liquid separation process; Cross-flow, co-flow and counter-flow processes.

Module:4 | Microfiltration and Ultrafiltration

6 hours

Microfiltration: Introduction and history, applications; Recent trends and progress in MF/UF technology; Ultra filtration: Introduction and history — characterization of ultrafiltration membranes — concentration polarization and membrane fouling, membrane cleaning — membrane and modules — system design — application

Mod	lule:5	Nanofiltration				7 hours
Nanc	ofiltrati	on: Introduction – process p	rinciples – applicat	ion of na	nofiltrati	on for the production
of dr	inking	water and process water – se	olvent resistance na	nofiltrati	on	-
					1	
		Reverse Osmosis				7 hours
		nosis: Introduction – membr	_			•
		oncentration polarization –	membrane modules	s – meml	brane for	ıling control –
mem	ibrane o	cleaning applications				
Mod	lule:7	Recent development in M	Jamhrana Draggg	100		6 hours
		-				
comp Hydr	Recent material and module configurations for Microfiltration and ultrafiltration; Thin film composite membranes – Biofouling protection; Integrated membrane systems; Gas separation – Hydrogen separation – oxygen and oxygen enriched air; Membrane distillation and Ceramic membranes					
Mod	lule:8	Contemporary issues				2 hours
Mod	lule:8	Contemporary issues				2 hours
Mod	lule:8		Lecture hours			2 hours 45 hours
Text	Books	Total				45 hours
Text 1.	: Books Dutta I India, I	Total 3.K., Principles of Mass transition, 2007.	nsfer and Separatio			45 hours d., Prentice Hall of
Text 1. 1	: Books Dutta I India, I	Total 3.K., Principles of Mass tra	nsfer and Separatio			45 hours d., Prentice Hall of
Text 1. 1 2 2 1 Refe	Books Dutta I India, I Mulder 1991.	Total B.K., Principles of Mass traindia, 2007. M., Basic Principles of Mass traindia, 2008.	nsfer and Separation	ogy, 2 nd e	d., Sprin	45 hours d., Prentice Hall of ger Science, USA,
Text 1. 1 2 2 1 Refe 1. 1 1 1 1 1 1 1 1 1	Books Dutta I India, I Mulder 1991. rence	Total 3.K., Principles of Mass translation of	nsfer and Separation Iembrane Technologon Process, 1st ed., 1st ed	ogy, 2 nd e	d., Sprin	d., Prentice Hall of ger Science, USA, dia, India, 2008.
Text 1. 1 2 2 1 2 1 2 2 2 2	Books Dutta I India, I Mulder 1991. Frence I Kaushi Cui Z.	Total 3. K., Principles of Mass translation, 2007. 5. M., Basic Principles of Mass translation, 2007. Books k K.N., Membrane Separation, Membrane Separation, Membrane H.S., Membrane	nsfer and Separation Iembrane Technolo on Process, 1 st ed., embrane Technolo	Prentice I gy: A P	d., Sprin Hall of In	d., Prentice Hall of ger Science, USA, dia, India, 2008. Guide to Membrane
Text 1. 1 2 2 1 2 2 1 2 2 1 2 2	Dutta I India, I Mulder 1991. rence I Kaushi Cui Z.	Total B.K., Principles of Mass traindia, 2007. M., Basic Principles of Mass traindia, 2007. Books k K.N., Membrane Separations. F., Muralidhara H.S., Membrane and Applications in Foology and Applications in Foology.	nsfer and Separation Iembrane Technolo on Process, 1 st ed., 1 embrane Technolo ood and Bioprocess	Prentice I gy: A Ping, 1st ed	d., Sprin Hall of In Practical I., Elsevi	d., Prentice Hall of ger Science, USA, dia, India, 2008. Guide to Membrane er, USA, 2010.
Text 1.] 2.] Refe 1.] Model Model	Dutta I India, I Mulder 1991. Frence I Kaushi Cui Z. Techno e of eva	Total B.K., Principles of Mass translation, 2007. M., Basic Principles of Mass translation, 2007. Books k K.N., Membrane Separation, Membrane H.S., Membrane H.S., Membrane Separation, F., Muralidhara H.S., Membrane Separation, F., Membrane Separation, F., Membrane Separation, F., Muralidhara H.S., Membrane Separation, F., Muralidhara H.S., Membrane Separation, F., Membrane Separa	nsfer and Separation Iembrane Technologon Process, 1 st ed., 1 ^{embrane} Technologod and Bioprocess sment Test, Quizzes	Prentice I gy: A Ping, 1st ed	d., Sprin Hall of In Practical I., Elsevi	d., Prentice Hall of ger Science, USA, dia, India, 2008. Guide to Membrane er, USA, 2010.
7 Ext 1. 1 2 2 1 2 2	Dutta I India, I Mulder 1991. erence I Kaushi Cui Z. Techno e of eva	Total B.K., Principles of Mass traindia, 2007. M., Basic Principles of Mass traindia, 2007. Books k K.N., Membrane Separations. F., Muralidhara H.S., Membrane and Applications in Foology and Applications in Foology.	nsfer and Separation Iembrane Technolo on Process, 1 st ed., 1 embrane Technolo ood and Bioprocess ment Test, Quizzes 04-03-2016	Prentice I gy: A Ping, 1st ed	d., Sprin Hall of In Practical I., Elsevi	d., Prentice Hall of ger Science, USA, dia, India, 2008. Guide to Membrane er, USA, 2010. nal Assessment Test

Course code	CHE1019	L	T	P	J	C
Course title	POLYMER TECHNOLOGY	3	0	0	0	3
Pre-requisite	NIL	S	ylla	bus	vers	ion
						1.2

- 1. Understand different types of polymers
- 2. Identify the various technologies and types of polymerization techniques
- 3. Analyze the polymer processing techniques and polymer additives

- 1. Classify and characterize polymers and polymeric reactions
- 2. Explain the different methods of polymerization
- 3. Identify the processing technologies for different polymer synthesis and their additives
- 4. Identify suitable polymer for specific application
- 5. Distinguish different type of polymers for various applications
- 6. Demonstrate the novel biopolymers and their applications

Module:1	Introduction to polymer	5 hours
Monomer;	polymers and their classification: Degree of polymerization. Polymers	ymeric reaction:
addition; co	ondensation and copolymerization	
		1
Module:2	Methods of polymerization	6 hours
Bulk, soluti	on, emulsion and suspension polymerization	
Module:3	Structure and size of polymer	6 hours
Structure of	of polymers, Characterization of polymers: Molecular weight, Cry	ystallinity, Glass
transition to	emperature and mechanical properties: testing of polymers	•
Module:4	Polymer processing additives	6 hours
Fillers, plas	sticizers, Anti-oxidants, colorants, stabilizers, and other related additive	es .
Module:5	Polymer processing techniques	6 hours
	nd compression transfer moulding methods; calendaring, extrusion,	
powder coa		mermororining,
powder coa	ung	
Module:6	Polymeric materials	9 hours
Polyethyler	ne; polypropylene; polymethyl methacrylate; polyvinyl chlor	ide; polytetra-
fluoroethyl	ene, polyacrylate, polyesters; Polymeric foams – Polyurethane, polysty	rene.
Module:7	Special polymers and bio polymers	5 hours

	•	ates, polysulphones; arom				
pol	ymers; v	vool silk and cellulose deriv	atives, Protein bas	ed polyme	rs and Bio-nar	no-composites
Mo	dule:8	Contemporary issues				2 hours
		Te	otal Lecture hour	'S		45 hours
Tex	kt Books	3				
1.	Gowar	iker V.R., Viswanathan N	.V., Sreedhar J.,	Polymer 3	Science, 2 nd e	d., New Age
	Publish	ners, India, 2015.				
2.	Ebewe	le R.O., Polymer Science ar	nd Technology, 1st	ed., CRC	press, USA, 20	000.
Ref	ference l	Books				
1.	Froed J	J.R., Polymer science & Tec	chnology, 1 st ed., P	Prentice Ha	ll Publishers, U	USA, 2014.
2.	Young	R.J., Lovell P.A., Introduct	ion to Polymers, 1	st ed., CRO	C Press, USA,	2011.
Mo	de of ev	aluation: Continuous Assess	sment Test, Quizze	es, Assigni	ments, Final A	ssessment Test
Rec	commen	ded by Board of Studies	04-03-2016	-		
Apı	proved b	y Academic Council	40 th	Date	18-03-2016	

Course code	CHE1020	L	T	P	J	C
Course title	FERTILIZER TECHNOLOGY	3	0	0	0	3
Pre-requisite	NIL	S	ylla	bus	vers	sion
						1.2

- 1. Introduce production of various NPK fertilizers and their importance
- 2. Impart knowledge of bio fertilizers, fluid fertilizers and controlled release fertilizers
- 3. Identify pollutions involved in fertilizer manufacture and their controlling strategies to maintain the pollution standards

Course Outcomes (CO):

- 1. Realize the role of essential elements for plant growth and the need of nitrogenous, phosphate and potash fertilizers
- 2. Identify reactions and unit operations involved in the manufacturing of various fertilizers
- 3. Outline various physical and chemical properties of fertilizers
- 4. Categorize the major engineering problems associated in fertilizer manufacturing process
- 5. Explain the importance of bio fertilizers, fluid fertilizers and controlled release fertilizer
- 6. Analyze the impact of pollution from fertilizer industry based on pollution standards

Module:1 Introduction to Fertilizers

7 hours

Introduction to fertilizers- Importance, Feed stocks for the production of Ammonia. Processes for gasification of fossil fuel and methods of production of ammonia and nitric acid

Module:2 | Nitrogenous Fertilizers

7 hours

Nitrogenous fertilizers – Ammonium sulphate, Urea, Ammonium chloride, Ammonium nitrate and Calcium ammonium nitrate, Their methods of production, Characteristics and specification, Storage and handling

Module:3 | Phosphatic Fertilizers

5 hours

Phosphatic Fertilizers: Raw materials – phosphate rock, sulphur, pyrites etc. Processes for the production of sulphuric and phosphoric acids. Phosphatic fertilizers – ground rock phosphate, bone meal – Single superphosphate, Triple superphosphate, thermal phosphates – their methods of production, characteristics and specifications.

Module:4 | Potassic Fertilizers

5 hours

Potassic fertilizers- Potassium Chloride, Potassium sulphate, Potassium magnesium sulphate, Potassium hydroxide, Potassium nitrate – Methods of production: their characteristics and specifications.

Module:5 | NPK Fertilizers

7 hours

NPK fertilizers: Urea ammonium phosphate, ammonium phosphate sulphate, Nitrophosphates, and various grades of NPK fertilizers produced in the country

Mo	dule:6	Other Fertilizer			7 hou	ırs
mic		nd granulated mixtures; Bionts; Fluid fertilizers, Granul			dary nutrients and ease fertilizers, Slow release	
Mo	dule:7	Pollution control			5 hou	ırs
Pol	lution fr	om fertilizer industry, Solid,	, liquid and gaseou	ıs pollutio	on control and standards	
Mo	dule:8	Contemporary issues			2 ho	urs
		Tota	al Lecture hours		45 hours	
	kt Book					
1.	Handb	ook of fertilizer technology,	Association of In	dia, New	Delhi, 1977	
2.	Fertiliz York,		Industrial Develop	oment Or	ganization, United Nations, Ne	ew
Ref	ference	Books				
1.	Rao G. 2010.	, Sittig M., Dryden's Outlin	es of Chemical Te	echnology	, 3 rd ed., East West Press, Indi	ia,
2.	Pvt. Lt	d, USA, 2012.			Tata McGraw-Hill Education	
3.		S.D., Pandey G.N., A Tex Pvt. Ltd, India, 1978.	t Book of Chemic	cal Techn	ology, 1 st ed., Vikas Publishin	ng
Mo			sment Test, Quizzo	es, Assign	nments, Final Assessment Test	Į
Rec	commen	ded by Board of Studies	04-03-2016			
Ap	proved b	y Academic Council	40 th	Date	18-03-2016	

Course code	CHE1023	L	T	P	J	C
Course title	PRODUCTION AND OPERATIONS	3	0	0	0	3
	MANAGEMENT					
Pre-requisite	NIL	S	Sylla	bus	vers	sion
						1.2

- 1. Develop the student understanding levels of product and process layout fundamentals
- 2. Apply the knowledge of statistics for performing quality control and Inspection and project planning
- 3. Make the students to analyze situations and use different models for decision making

- 1. Explain the concepts of production and operations
- 2. Design the product and process layout
- 3. Evaluate the material inventory and manage the supply
- 4. Judge the quality control and Inspection using statistical tools
- 5. Develop Gantt chart, and conduct project evaluation and review
- 6. Analyze situations and use different models for decision making

Module:1	Introduction to Production and Operations	6 hours
	Management	
Production	system, production management; Operating system, operations	management –
classificatio	ns, objectives and scope	
Module:2	Plant Location and Layout	6 hours
	uencing plant location - location models; Plant layout - objective	es, classifications;
Design of p	roduct and process layout.	
Module:3	Supply of Resources	6 hours
Materials M	Ianagement - purchasing; ABC Analysis	
Module:4	Inventory Management/Control	6 hours
Inventory M	Inanagement – objectives, benefit, technique; Inventory models - with	out shortage, with
shortage		_
Module:5	Quality Control and Inspection	6 hours
Statistical C	Quality Control Methods - p, x and R charts etc.,	
	•	
Module:6	Project Planning	7 hours
Scheduling	models - Gantt chart; Priority decision rule, Network Models, PERT,	, CPM
	•	
Module:7	Decision Making	6 hours

	neral Model for decision making - Risk; Decision Tree Method	Bayes' Decision	Rule; Deci	ision Making under Uncertain
Mo	dule:8 Contemporary issues:			2 hou
IVIO	dule:8 Contemporary issues.			Z nou
	Tot	al Lecture hours		45 hours
Tex	xt Books			
1.	Chary S.N., Production and Operation	ations Managemer	nt, 5 th ed., '	Tata McGraw-Hill Education
	Pvt. Ltd., India, 2012			
2.	Panneerselvam R., Production an	d Operations Mar	agement,	3 rd ed., PHI Learning Pvt. Ltd
	India, 2012			
Ref	ference Books			
1.	Garg, A.K., Production and Ope	rations Manageme	ent, 1 st ed	., Tata McGraw-Hill Education
	Pvt. Ltd., India, 2012			
2	Montgomery, D.C., Introduction	to Statistical Qua	lity Contro	ol, 6 th ed., John Wiley & Sor
	Inc. USA, 2009		<u> </u>	
Mo	de of evaluation: Continuous Asses	ssment Test, Quizz	zes, Assign	ments, Final Assessment Test
Rec	commended by Board of Studies	04-03-2016		
Ap	proved by Academic Council	40 th	Date	18-03-2016

Course code	CHE2003	L	T	P	J	C
Course title	CHEMICAL PRODUCT DESIGN	3	0	0	0	3
Pre-requisite	CHE1004	S	ylla	bus	vers	sion
						1.2

- 1. Train the students in identifying the needs and converting needs to product specifications
- 2. Facilitate generation of innovative ideas for chemical products and select among the ideas
- 3. Familiarize the student with intellectual property issues and manufacture and design of speciality products

- 1. Understand and analyze the needs of the customers
- 2. Apply engineering knowledge to convert needs to product specifications
- 3. Create and generate innovative ideas for products
- 4. Evaluate and select among ideas
- 5. Analyze the manufacture of products
- 6. Design better marketable products

Module:1	Introduction	1 hour
Introduction	n to chemical product design	
	JULI 2015	
Module:2	Needs of chemical product	6 hours
Customer n	eeds - consumer products	
37 11 2	N. 1	
Module:3	Needs to specifications	6 hours
Converting	needs to specifications - revising product specifications	
Module:4	Ideas	8 hours
Human sou	rces of ideas - chemical sources of ideas - sorting the ideas - screen	ening the ideas.
Module:5	Selection of ideas	8 hours
Module:2	Selection of fices	o nours
	sing thermodynamics - selection using kinetics - less objective cri	
	sing thermodynamics - selection using kinetics - less objective cri	
Selection us	sing thermodynamics - selection using kinetics - less objective cri	
Selection us	sing thermodynamics - selection using kinetics - less objective cri	
Selection us product selection Module:6	sing thermodynamics - selection using kinetics - less objective criection	teria - rise in 6 hours
Selection us product selection Module:6 Intellectual	sing thermodynamics - selection using kinetics - less objective criection Product manufacture	teria - rise in 6 hours
Selection us product selection Module:6	Product manufacture property - supplying missing information - final specifications - 1	teria - rise in 6 hours
Selection us product selection Module:6	Product manufacture property - supplying missing information - final specifications - 1	teria - rise in 6 hours
Selection us product sele Module:6 Intellectual products - d	Product manufacture property - supplying missing information - final specifications - 1 levice manufacture	6 hours micro structured
Selection us product selection us products 6 Module:6 Intellectual products - d Module:7 First steps t	Product manufacture property - supplying missing information - final specifications - revice manufacture Specialty chemical manufacture and Economic	6 hours micro structured 8 hours

					_		
Mo	dule:8	Contemporary issues			2 hours		
		Tota	al Lecture hours		45 hours		
Tex	xt Books						
1.	Cussle	E.L., Moggridge G. D., C	Chemical Product	Design, C	Cambridge University Press,		
	2 nd ed.,	UK, 2011.					
Re	ference l	Books					
1.	Seider	W.D., Seader J D., Lewin I	D.R., Product and	Process Do	esign Principles, Wiley, 4 th ed.,		
	USA, 2	2016.					
2.	Wei J.,	Product Engineering: Mole	cular Structure an	d Properti	es, Oxford University Press, 1 st		
	ed., UK	Χ, 2007.		-	·		
Mo	Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test						
Red	Recommended by Board of Studies 04-03-2016						
Ap	proved b	y Academic Council	40^{th}	Date	18-03-2016		

Course code	CHE2006	L	T	P	J	C
Course title	FUELS AND COMBUSTION	3	0	0	0	3
Pre-requisite	NIL	S	ylla	bus	vers	sion
						1.2

- 1. Develop the understanding levels of fuels and combustion fundamentals
- 2. Classify and introduce different types of fuel and fuel analysis techniques that assists the students to choose most convenient fuel for a process involving combustion`
- 3. Engage the students in designing various control techniques for handling various environmental issues resulting from combustion of fuels

Course Outcomes (CO):

- 1. Classify the various types of fuels like liquid, solid and gaseous fuels available for firing in boilers and furnaces
- 2. Compare various fuel properties and its efficient use
- 3. Choose the right type of fuel depends on various factors such as availability, storage, handling, pollution and cost of fuel
- 4. Differentiate the properties of exhaust and flue gases
- 5. Execute basic engineering and science concepts for the design of various combustion equipment
- 6. Interpret various air pollution controlling techniques for reducing the pollution generated from combustion of various fuels

Module:1 | Classification and Properties of Fuels

5 hours

Fuels-Types and characteristics of fuels-Determination of properties of fuels-Fuel analysis-Proximate and ultimate analysis-Calorific value (CV)-Gross and net calorific values (GCV,NCV)-Bomb Calorimetry-empirical equations for CV estimation

Module:2 | Solid Fuels

6 hours

Origin of coal-Ranking of coal-Washing, cleaning and storage of coal-Renewable Solid Fuels-comparative study of Solid, liquid and gaseous fuels-selection of coal for different industrial applications-carbonization of coal

Module:3 | Liquid fuels

6 hours

Origin of crude oil-composition of crude petroleum-classification of crude petroleum-Removal of salt from crude oil-processing of crude petroleum-Fractionation distillation-ADU and VDU-Cracking-Hydrotreatment and Reforming

Module:4 | Gaseous fuels

6 hours

Rich and lean gas-Wobbe index-Natural gas-Dry and wet natural gas-Foul and sweet NG-LPG-LNG-CNG-Methane-Producer Gas-Water gas-Coal Gasification-Gasification Efficiency

٦	/Ind	hile	. 5	Com	bustion
11		ше		.0111	DUSLION

7 hours

General principles of combustion-types of combustion processes-Combustion chemistry-Combustion equations-Kinetics of combustion-combustion of solid fuels-Combustion calculations-air fuel ratio-Excess air calculations

Module:6 | Combustion Equipment

7 hours

Analysis of flue gases by Orsat apparatus-Combustion of solid fuels-grate firing and pulverized fuel firing system-Fluidized bed combustion-Circulating fluidized bed boiler-Burners-Factors affecting burners and combustion

Module:7 | Air Pollution

6 hours

Types of pollution-Combustion generated air pollution-Effects of air pollution-Pollution of fossil fuels and its control-Pollution from automobiles and its control

Module:8 | Contemporary issues

2 hours

Total Lecture hours

45 hours

Text Books

- 1. Kenneth K.K., Principles of Combustion, 2nd ed., Wiley Publications, USA, 2012
- 2. Phillips H.J., Fuels-solid, liquid and gases—Their analysis and valuation, 1st ed., Foster Press, USA, 2010

Reference Books

- 1. Speight J.G., The Chemistry and Technology of Coal, 3rd ed., Taylor and Francis Ltd., USA, 2016
- 2. Sarkar S., Fuels and combustion, 3rd ed., Universities Press, India, 2009

Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test

Recommended by Board of Studies 04-03-2016

Approved by Academic Council 40th Date 18-03-2016

Course code	CHE3004	L	T	P	J	C
Course title	HETEROGENEOUS REACTION ENGINEERING	2	0	0	4	3
Pre-requisite	CHE2001	S	ylla	bus	vers	sion
						1.2

- 1 Introduce students about catalytic phenomena with an extension to reactor design and catalyst characterization
- 2. Build upon the fundamentals of heterogeneous reactions, design, and analysis of non-catalytic, catalytic fluid-solid reactors including multi-phase reactors
- 3. Engage students in handling most common industrial chemical and biochemical reactors to achieve production goals for processes involving homogeneous or heterogeneous reaction systems

- 1. Understand the heterogeneous reaction systems and design the reactors for fluid-solid systems
- 2. Analyze the mechanism of non-catalytic solid-fluid reactions
- 3. Analyze the role of catalyst in reactions and the transport mechanism in heterogeneous catalysts
- 4. Design and characterize catalyst surface properties for better activation of the catalyst
- 5. Identify critical parameters affecting the performance of heterogeneous and multi-phase reactors
- 6. Construct and apply a general problem solving approach to design heterogeneous and multiphase reactors

Module:1	Introduction to Heterogeneous Reaction Engineering	2 hours					
Introduction to heterogeneous reacting systems - Sharp interface and volume reaction models - determination of rate-controlling steps and application to design of reactors - bio reactors							
Module:2	Non-catalytic solid-fluid reactions	4 hours					
	core model – Gas film controlling – Ash layer controlling – C – Shrinking spherical particles – Fluidized bed reactor	Chemical reaction					
Module:3	Introduction to Catalytic Reactions	4 hours					

Definition and properties - Steps involved in catalytic reactions - Rate laws mechanisms - Rate limiting step **Transport Mechanism in heterogeneous catalysts** 5 hours Module:4 Transport effects in heterogeneous catalysis - Internal effectiveness - External transport limitations and overall effectiveness Catalysts preparation & characterization Module:5 4 hours Definition and types of catalysts – Industrial catalysts – Preparation and characterization of the catalysts, Surface area and pore volume determination Module:6 **Catalyst deactivation methods** 4 hours Types of catalyst deactivation – Determining the order of deactivation – Catalyst regeneration methods Design of Reactors for Fluid-Liquid and Fluid-Solid reactions Module:7 5 hours Reactor design fundamentals and methodology, rate data analysis - Overall view of Fluidized, Packed and Moving bed reactors- Fluid-liquid reactions: Film and Penetration theories - Fluidsolid catalytic reactions **Contemporary issues** Module:8 2 hours **Total Lecture hours** 30 hours **Text Books** Levenspiel O., Chemical Reaction Engineering, 3rd ed., Wiley Publications, USA, 2006 Fogler H.S., Elements of Chemical Reaction Engineering, 5th ed., Prentice Hall India Pvt. 2. Ltd., India, 2016 **Reference Books** Miller, G. T., Chemical Reaction Engineering, 1st ed., CRS publications, USA, 2016

2.	Vannice, M. A., Kinetics of Catalytic Reactions. 2nd ed., Springer, USA, 2010							
Mod	Mode of evaluation: Continuous Assessment Test, Quizzes, Assignments, Final Assessment Test							
Red	Recommended by Board of Studies 04-03-2016							
Ap	Approved by Academic Council 40 th Date 18-03-2016							

Course code	CHE3006	L	T	P	J	C
Course title	PROCESS PLANT SIMULATION	3	0	0	4	4
Pre-requisite	Pre-requisite MAT3003		ylla	bus	vers	sion
	1					1.2

- 1. Emphasize the basic concepts of steady state process plant simulation
- 2. Impart the knowledge and awareness to understand the validity and physicochemical interpretation of thermodynamic models and their limitations
- 3. Develop the skills for plant simulation and optimization, solve chemical engineering problems encountered in chemical industries using professional software's

Course Outcomes (CO):

- 1. Understand the principles for developing a Process flow sheet and its execution
- 2. Illustrate the approaches to follow in plant simulation
- 3. Overcome the debottleneck existing in process plant and have maximum productivity
- 4. Implement the strategies for solving simple and complex plant problems
- 5. Utilize commercial software's for complete simulation of refineries
- 6. Interpret steady state process plant simulation

Module:1 Introduction

Introduction to Process Synthesis - Flow sheeting & simulation - Degrees of freedom - Process Equipment's - Process flow sheet

Module:2 | Approaches to Process Simulation

6 hours

5 hours

Sequential modular approach and Simultaneous modular approaches - Equation solving approach used in process plant simulation

Module:3 | Equation Solving Approach

8 hours

Partitioning - Decomposition - Disjointing - PTM - SWS - Steward - Rudd Algorithms; Sparcity - Direct Methods - Pivoting - Iterative methods - BTF- BBTF Block Back Substitution- BTS - etc

Module:4 | **Decomposition of Networks**

7 hours

Tearing Algorithms in decomposition of networks – digraph - signal flow graph - BM Algorithm – BTA - K&S Algorithm - M&H Algorithm - related problems

Module:5 | Convergence Promotion

6 hours

Linear equation - nonlinear equation - Convergence promotion scheme Newton's method - Direct Substitution- Wegstein's method - Dominant eigen value method - Quasi-Newton methods; Acceleration criterion

Module:6 | Application of Flow Sheeting Software

5 hours

Flow sheeting software: Aspen Plus-Steady state simulation - Aspen Hysys dynamic simulation

Mo	dule:7	Case Studies: (Un)Steady	y State Process Si	mulatio	n	6 hours
	nplete p	lant (un)steady state simula action	tion: Any process	such as A	Ammonia plan	t - Biodiesel plant
Mo	dule:8	Contemporary issues				2 hours
		То	tal Lecture hours			45 hours
Tex	t Books	.				
1.	Robin	S., Chemical Process Design	n and Integration,	2 nd ed., W	Viley, USA, 20	16.
2.	Babu B	S.V., Process Plant Simulation	on, 1 st ed., Oxford	Universi	ty Press, India,	2004.
Ref	erence l	Books				
1.		berg A.W., Hutchison H.P. idge Press, UK, 2011.	., Motard R.L., V	Vinter P.,	Process Flow	sheeting, 1 st ed.,
2.		T., Analysis, Synthesis an tional, USA, 2009.	d Design of Chem	ical Proc	esses, 1 st ed., P	Pearson Education
Mo	de of eva	aluation: Continuous Assess	sment Test, Quizze	es, Assign	nments, Final A	Assessment Test
Rec	ommen	ded by Board of Studies	04-03-2016		•	
Apr	proved b	y Academic Council	40^{th}	Date	18-03-2016	

Course code	CHE3007	L	T	P	J	C
Course title	MULTIPHASE FLOW	3	0	0	0	3
Pre-requisite	CHE1005, CHE1006	S	ylla	bus	vers	sion
						1.2

- 1. Emphasis the concepts of multiphase systems in the processing industry
- 2. Formulate momentum, energy and material balance models in multiphase systems
- 3. Develop design thinking skills to understand multiphase flows in chemical industries

Course Outcomes (CO):

- 1. Define and relate the basic types of multiphase systems in process industries
- 2. Identify the type of flow-pattern and flow regimes for fluid-fluid (gas-liquid and liquid-liquid) and fluid-solids systems
- 3. Construct one dimensional Steady state models in multiphase flows
- 4. Interpret Drift Flux models two phase system
- 5. Formulate and estimate flow properties for phase change systems
- 6. Design and fabricate the columns to handle for multiphase system in chemical engineering operations

Module:1	Introduction to multiphase flow, type of flow and applications	9 hours
Rasic fluid	flow concepts: Flow field description – conservation laws – v	iscous flow turbulent
	sure drop - Review of Single Phase Flow; Scope and significan	
now – pies	sure drop - Review of Shigle I hase I low, Scope and significan	icc - applications
Module:2	Flow pattern maps and Regime	11 hours
Flow patter	rns for gas-liquid; gas-solid; liquid-liquid; liquid-solid sy	stem; Heated tubes –
	- vertical- Vertical flow; horizontal flow; co-current; counte	
	three phase flows	,
•	*	
Module:3	One dimensional steady state flow	9 hours
Definitions	and common Terminologies - simple analytical model - homog	enous flow model.
		,
Module:4	Drift flux model	4 hours
Theory of d	rift flux model and its application	
	**	
Module:5	Separated flow model	4 hours
Separated fl	ow model for stratified and annular flow; Correction factor and	l analysis.
-		-
Module:6	Two phase flow with phase change	4 hours
Boiling flor	w heat transfer - regimes - bubble growth	
	<u> </u>	
Module:7	Measurement techniques	2 hours

	npling N lysis	Methods - Integral Method	ds – Local Meas	surement to	echniqu	es - hold up studies -
Mo	dule:8	Contemporary issues				2 hours
		Total Lecture hours				45 hours
Tex	kt Books	3			,	
1.	Wallis,	One Dimensional Two-pha	ase flow, McGrav	Hill Book	Compa	any,1 st ed., USA, 2000.
2.	John G	.C., John R.T., Convective	Boiling and Cond	lensation, C	Oxford I	University Press, 3 rd ed.,
	UK, 20	002.				
Ref	ference l	Books				
1.	Clemei	nt K. S., Two Phase Flow –	Theory and Appl	ications, 1 ^s	ed., Ta	aylor and Francis, USA,
	2003.					
2.	Govier	, G.W., Aziz K., The Flow	of Complex Mixt	ure in Pipes	$s, 2^{nd}$ ed	., Society of Petroleum
	Engine	ers Publishers, USA, 2008.				
Mo	de of ev	aluation: Continuous Assess	sment Test, Quizz	es, Assigni	ments, l	Final Assessment Test
Rec	commen	ded by Board of Studies	04-03-2016			
Anı	proved b	v Academic Council	40 th	Date	18-03-	-2016

Course code	CHE3008	L	T	P	J	C
Course title	INDUSTRIAL POLLUTION ENGINEERING	3	0	0	0	3
Pre-requisite	NIL	Syllabus vers		ion		
						1.2

- 1. Explain the legislation and standards related to air, water and solid wastes in Indian context
- 2. Identify and design treatment equipments for air and water pollution
- 3. Illustrate the effective methods of solids waste treatment techniques

Course Outcomes (CO):

- 1. Understand basics of pollution parameters and characteristics of industrial wastes
- 2. Distinguish types of standards and legislations and resource optimization methods
- 3. Categorize sources, types, and control equipment's for industrial air pollution
- 4. Classify and design methods of wastewater treatment
- 5. Differentiate various solid waste disposal techniques
- 6. Evaluate waste treatment flow sheets of various process industries

Module:1 Introduction

5 hours

Types of industries - Characteristics of industrial wastes - Fundamental definition of pollution parameters - Effects of industrial pollutants on environment – air, water and land.

Module:2 | Standards and legislation

5 hours

Environmental legislations related to prevention and control of industrial effluents - EP ACT- EIA - EMP - ISO 14000 series - Combined treatment of industrial wastewater - Resource optimization through industrial symbiosis - waste minimization techniques.

Module:3 | **Industrial air pollution control**

7 hours

Air pollution meteorology (generation, transportation and dispersion of air pollutants) - Principles and design of air pollution control equipment: gravity settling chambers - air cyclones - ESPs - filters - wet scrubbers.

Module:4 | **Industrial waste water treatment**

6 hours

Selection, design and performance analysis of industrial waste water treatment processes: Preliminary - Primary - Secondary treatment processes.

Module:5 | Advanced wastewater treatment

7 hours

Chemical oxidation - Ozonation - Photo catalysis - Wet Air Oxidation - Adsorption - Evaporation - Ion Exchange - Membrane Technologies.

Module:6 | Hazardous Solid waste management

5 hours

Classification of hazardous waste - waste disposal methods - Composting - Landfill- Briquetting -

•		
Gas	ification - Incineration.	
Mo	dule:7 Case studies	8 hours
Sou	rces - Characteristics - Waste treatment flow sheets for selected industr	ies such as Textiles -
	neries - Pharmaceuticals - Electroplating - Pulp and Paper - Refineries	- Fertilizer - Thermal
pov	ver plants - Wastewater reclamation concepts.	
Mo	dule:8 Contemporary issues	2 hours
	T 4 1 T 4 1	45 hours
	Total Lecture hours	
Tex	t Books	
1.	Rao C.S., Environmental Pollution Control Engineering, 3 rd ed., Ne	w Age International
	Publishers, India, 2018.	
2.	Karia G.L., Christian R.A., Wastewater Treatment: Concepts and Desig	gn Approach, 2 nd ed.,
	Eastern Economy Edition, India, 2013.	
Ref	erence Books	
1.	Pollution Control Law Series: PCLS/02/2010, Central Pollution Control	Board, 6 th ed., India,
	2010.	
2.	Tchobanoglous G., Theisen H., Vigil S.A., Integrated Solid Waste	Management,1 st ed.,
	McGraw Hill Education, India, 2014.	
3.	Bhatia S.C., Environmental Pollution and Control in Chemical Process	ss Industries, 2 nd ed.,
	Khanna publishers, India, 2013.	
Mo	de of evaluation: Continuous Assessment Test, Quizzes, Assignments, Fin	al Assessment Test
Rec	ommended by Board of Studies 04-03-2016	_
App	proved by Academic Council 40 th Date 18-03-20	016

Course code	CHE4002	L	T	P	J	C
Course title	TRANSPORT PHENOMENA	3	0	0	0	3
Pre-requisite	Pre-requisite CHE1006, CHE3003		ylla	bus	vers	sion
						1.2

- 1. Emphasis the basic concepts of transport phenomena, the similarities of the governing relations of momentum, heat, and mass transfer
- 2. Solve appropriate differential equations such as momentum, thermal energy, and mass species balance, accounting convective and diffusive (molecular-scale) fluxes, with sources and sinks to obtain velocity, temperature and concentration profiles
- 3. Develop design thinking skills to solve various kinds of application oriented problems faced in chemical industries using analytical techniques

Course Outcomes (CO):

- 1. Understand and relate transport properties of molecular transfer of momentum, energy and mass transport.
- 2. Solve and physically interpret one-dimensional steady state momentum transfer, heat conduction and species diffusion problems
- 3. Make use of Navier-Stoke's equation with right boundary conditions to examine the problems related to fluid, heat and mass transfer
- 4. Evaluate the interphase transport properties for internal flow and external flow and estimate powere that required for fluid flow
- 5. Understand simultaneous heat, mass and momentum transfer analysis
- 6. Formulate and solve industrial problems along with appropriate approximations and boundary conditions

	ation of	Motion and Continuity -	Integral Conserva	tion Equ	ations- Navie	er-Stokes and Euler
Equ	ation Co	onstitutive relation - Dimens	sional analysis – A	Applicatio	ns.	
Mo	dule:5	Turbulent Flow and Inte	erphase momentu	ım trans	fer	8 hours
Ти	bulant n	andala DANS aquation 1	Darmalda atraggaga	Intornal	flow Extern	nal flow Doundamy
		nodels - RANS equation - l ory - Isothermal System -				
		coefficient - Ergun Equatio				
Tuc	ior, arag	Coefficient Ligan Equation	n Tiow unough	porous m	Cara	
Mo	dule:6	Heat Transfer by conduc	ction and convect	ion		6 hours
She	ll Balan	ce - Equations of energy - H	Heat Transfer coeff	ficient - C	COMSOL Sin	nulation
		•				
Mo	dule:7	Mass Transfer				5 hours
Mie	croscopio	balances - General equa	ations Boundary	condition	s - Mass tr	ansfer co-efficient,
Ho	mogeneo	ous reaction, Fixed bed catal	lytic reactor - stead	dy state s	ystem.	
Mo	dule:8	Contemporary issues				2 hours
Mo	dule:8	Contemporary issues				2 hours
Mo	dule:8	Contemporary issues				
Mo	dule:8	•	al Lecture hours			2 hours 45 hours
	dule:8	Tot	al Lecture hours			
	xt Books	Tot			omena, 2 nd ed	45 hours
Tex	at Books Bird R	Tot			omena, 2 nd ed	45 hours
Tex	at Books Bird R Sons In Wick (Tot B., Stewart W. E., Lightfonc., USA. 2012. C.E., Welty J., Wilson R.E	oot E. N., Transpo	ort Pheno		45 hours
Tex 1.	Bird R Sons In Wick C	Tot B., Stewart W. E., Lightfonc., USA. 2012. C.E., Welty J., Wilson R.E., John Wiley & Sons Inc., U	oot E. N., Transpo	ort Pheno		45 hours
Tex 1. 2.	Sons In Wick (5 th ed.,	Total. B., Stewart W. E., Lightfonc., USA. 2012. C.E., Welty J., Wilson R.E., John Wiley & Sons Inc., USBooks	oot E. N., Transpo , Fundamentals of SA, 2016.	ort Pheno	rum, heat and	45 hours , John Wiley & I Mass Transfer,
1. 2. Ref. 1.	Bird R Sons In Wick C 5 th ed., Ference I	Total. B., Stewart W. E., Lightfonc., USA. 2012. C.E., Welty J., Wilson R.E., John Wiley & Sons Inc., USBooks on W.J., Introduction to Tra	oot E. N., Transpo , Fundamentals of SA, 2016.	ort Pheno Moment a, Pearson	rum, heat and	45 hours I., John Wiley & I Mass Transfer, Asia, India, 2001.
1. 2. Ref 1. 2.	Bird R. Sons In Wick C 5 th ed., Thomse	Total. B., Stewart W. E., Lightfonc., USA. 2012. C.E., Welty J., Wilson R.E., John Wiley & Sons Inc., Usanoks on W.J., Introduction to Trans M. Dean, Analysis of Trans	oot E. N., Transpo , Fundamentals of SA, 2016. Insport Phenomena nsport Phenomena	Moment a, Pearson	tum, heat and a Education A University P.	45 hours I., John Wiley & I Mass Transfer, Asia, India, 2001. ress, India, 2011.
Tex 1. 2. Ref 1. 2. Mo	Bird R Sons In Wick O 5 th ed., Ference I Thomse William de of eve	Total. B., Stewart W. E., Lightfonc., USA. 2012. C.E., Welty J., Wilson R.E., John Wiley & Sons Inc., Usabooks on W.J., Introduction to Trans M. Dean, Analysis of Transaluation: Continuous Assess	oot E. N., Transpo , Fundamentals of SA, 2016. Insport Phenomena Insport Phenomena Insport Phenomena Sment Test, Quizz	Moment a, Pearson	tum, heat and a Education A University P.	45 hours I., John Wiley & I Mass Transfer, Asia, India, 2001. ress, India, 2011.
1. 2. Ref 1. 2. Mo Red	Bird R. Sons In Wick C 5 th ed., Ference I Thomse William de of even	Total. B., Stewart W. E., Lightfonc., USA. 2012. C.E., Welty J., Wilson R.E., John Wiley & Sons Inc., Usanoks on W.J., Introduction to Trans M. Dean, Analysis of Trans	oot E. N., Transpo , Fundamentals of SA, 2016. Insport Phenomena nsport Phenomena	Moment a, Pearson	tum, heat and a Education A University P.	45 hours I., John Wiley & I Mass Transfer, Asia, India, 2001. ress, India, 2011. I Assessment Test

Course code	CHE4003	L	T	P	J	C
Course title	MODELLING AND SIMULATION IN PROCESS 2		0	2	0	3
	ENGINEERING					
Pre-requisite	CHE3001 S		ylla	bus '	vers	ion
						2.2

- 1. Explain the representation and simulation of physical systems using a mathematical formulations
- 2. Develop the typical mathematical models for the chemical process industries
- 3. Enhance the skill of engineering software applications which illustrate a variety of modelling techniques

Course Outcomes (CO):

- 1. Demonstrate the basic principles of chemical engineering for modeling of chemical system
- 2. Apply mathematical tools to solve model equations
- 3. Analyze the linear steady state and un-steady state lumped system of process industries
- 4. Construct the model equations for the Chemical Engineering system
- 5. Evaluate the model solving ability for various unit processes and unit operations
- 6. Execute the algorithm for different chemical engineering systems

Module:1 | **Modeling Conservative Principles and Models**

4 hours

Introduction of process modeling; definition of modelling and simulation; different types of models; application of mathematical modeling; Fundamental Laws – Continuity equation, energy equation, and equation of motion, transport equation, equation of state, phase and chemical equilibrium, chemical kinetics

Module:2 | Steady State Lumped Systems

4 hours

Degree of freedom analysis; single and network of process units; systems yielding linear and non-linear algebraic equations; solution of linear and non-linear algebraic equations

Module:3 | Flow Sheeting and Process design

4 hours

Steady state flow sheeting; approach to flow sheeting systems; introduction to sequential modular approach; simultaneous modular approach and equation solving approach; nested insideout algorithms

Module:4 | Unsteady State Lumped Systems

4 hours

Microscopic balances for Unsteady state and dynamic simulation—liquid level tank—gravity flow tank—jacketed stirred tank heater; Isothermal and Non-isothermal reactors—flash and distillation column; Solution of ODE initial value problems

Module:5	Dynamic Simulation of Unsteady State Lumped Systems	5 hours
Solution of systems	ODE initial value problems; matrix differential equations; simula	ation of closed loop
Module:6	Process Modelling of Distributed Systems	4 hours
value prob	f compressible flow; heat exchanger; plug flow reactor; solution blems —Sedimentation—Heat conduction—Diffusion; classification erential equations	
Module:7	Process modelling of distributed systems-II	3 hours
Pressure v	vessels–Stresses in thin and thick cylindrical shell due to ential and longitudinal stresses – Spherical shells subjected to intern	internal pressure-
Module:8	Contemporary issues	2 hours
	Total Lecture hours	30 hours
Text Book		
Enviro	n A.K., Process Modelling and Simulation in Chemical, onmental Engineering, 1 st ed., CRC Press, USA, 2017.	
	tte B.W., Process Dynamics: Modeling, Analysis and Simulation nc., USA, 2010.	, 1 st ed., Prentice
Reference		
	n W.L., Process Modelling Simulation and Control, 3 rd ed., McGra ez W., Computational Methods in Process Simulation, 2 nd ed., Butt	
	valuation: Continuous Assessment Test, Quizzes, Assignments, Fina	al Assessment Test
aboratory	Experiments	
1. I	Develop and solve the objective function for reaction system using Algebric equations	2 hours
2. I	Develop mathematical model for two interacting tanks in series	2 hours
3. I	Design the jacketed stirred tank heater	2 hours
	Optimization of Van de-Vusse reaction kinetics using semi-batch reactor operation	2 hours
5. I	Determination of kinetic rate of non-isothermal CSTRs in series	2 hours
6. I	Design and Develop the objective functions for Biochemical reactor	2 hours
7.	Analyze the mixing performance of reactant in mixing tank	2 hours
8.	Simulation of unsteady state heat conduction equation using MatLa	b 2 hours

9.	Solve the elliptic PDE using	PDE toolbox			2 hours	
10.	Solve the parabolic PDE using	g PDE toolbox			2 hours	
	Total Laboratory Hours					
Mode	e of evaluation: Continuous Assess	sment Test, Quizze	es, Assigni	ments, Final Ass	essment Test	
Reco	mmended by Board of Studies	04-03-2016				
Appr	oved by Academic Council	40 th	Date	18-03-2016		

Course code	CHE4005	L	T	P	J	С
Course title	FLUIDIZATION ENGINEERING	3	0	0	0	3
Pre-requisite	Nil	Syllabus version		sion		
						1.2

- 1. Illustrate the physical and chemical concepts aspects of fluidization process
- 2. Describe the various fluidization regimes and their models
- 3. Design of various units of fluidized bed widely used in industrial practice

Course Outcomes (CO):

- 1. Distinguish the behavior of fluidization under various operating conditions
- 2. Elucidate the various industrial applications of fluidization
- 3. Determine minimum fluidization velocity and terminal velocity
- 4. Design suitable gas distributor for fluidized beds
- 5. Apply various models for designing the fluidized bed systems
- 6. Analyze the performance of various fluidized bed systems

Module:1 Introduction to Fluidization

7 hour

Concept of Fluidization - Special Features of Fluidization - Comparison with other Contacting Methods - Advantages and Disadvantages of Fluidized Beds - Industrial Applications of Fluidized Beds - Historical Highlights - Physical Operation - Chemical Operations.

Module:2 | Characterization of Fluidization I

6 hours

Gross Behavior of Fluidized Beds – Minimum and Terminal Velocities in Fluidized Beds

Module:3 | Characterization of Fluidization II

6 hours

Geldart Classifications of Particles – Mapping of Fluidization Regions – Design of Distributors – Power Consumption

Module:4 | Bubble Mechanics in Fluidized Beds

7 hours

Bubbles in Dense Beds - Single Rising Bubble - Coalescence and Splitting of Bubbles - Bubble Formation above a Distributor. Bubbling Fluidized Beds - Experimental Findings - Estimation of Bed Properties - Bubbling Bed Model

Module:5 | Entrainment and Elutriation

6 hours

Free Board Behavior - Entertainment from Tall and Short Vessels. Constant Approach. Flow Pattern of Gases through Fluidized Beds - Solid Movement - Mixing, Segregation and Staging

Module:6 Heat Transfer in Fluidized Beds

5 hours

Heat Transfer between Fluid and Solid - Determination and Interpretation of Heat Transfer. Heat Transfer between Fluidized Beds and Surface - Experimental Findings and Theoretical Studies

Module:7	Miscellaneous systems			6 hours
Conical flu	nidized bed - Inverse fluidiz	ed bed - Draft tu	oe system	s; Semi fluidized bed systems,
Annular sy	stems and typical application	ns		
Module:8	Contemporary issues			2 hour
Module:8	Contemporary issues			2 hour
				45 hours
	Tot	tal Lecture hours		45 110018
Text Book				
1. Kunii	D., Levenspiel O., Fluidiza	ntion Engineering,	2 nd ed., B	Butterworth Heinemann, UK,
2013.				
2. Yang	W.C., Handbook of Fluidiz	zation and Fluid –	Particle	System, 1 st ed., CRC Press,
USA,	2003.			
Reference	Books			
1. Grace	J.R., Avidan A.A., Knowlto	n T.M., Circulatin	g Fluidize	ed Beds, 1 st ed., Springer, USA,
2011.				
2. L.G. C	Gibilaro, Fluidization Dynam	ics, 1 st ed., Buttery	vorth Hei	nemann, UK, 2001.
Mode of ev	valuation: Continuous Assess	sment Test, Quizze	es, Assign	ments, Final Assessment Test
Recommer	nded by Board of Studies	04-03-2016		
Approved	by Academic Council	40^{th}	Date	18-03-2016

CHY1004	Materials & Instrumental T	echniques	I T P J C
	- th		3 0 2 0 4
Pre-requisite	Chemistry of 12 th standard or equivale	nt	Syllabus version
Course Objective			v. 2.0
Course Objectives	and the chemistry of engineering materials	and the correlation	hatriaan steriatura
and propert	• • •	and the correlation	i between structure
	e analytical capability of students by using	instrumental analy	rtical techniques
		<u></u>	1
Course Outcomes	:		
☐ Interpret strailoys.	ructure, hardening mechanisms, phase beha	viour and properti	ies of selected
•	d formulate composite materials and lubric	ants.	
1	ethods to synthesize nanomaterials.		
☐ Illustrate str	ructures of carbon nanomaterials and apply	them in devices.	
•	d describe semiconductor materials and sol	••	
	metals like iron, sodium and potassium usi	ng colorimetry and	d flame emission
photometry		1:00	
☐ ☐ Analyse cry the class.	ystalline samples employing powder X-ray	diffraction using t	the skills learnt in
	nd describe morphology and composition o	f materials by SEN	M FDX and TFM
techniques.	1 0.	i materials by SEN	vi, EDA and TEN
1	JULY 2019		
	ls and Alloys		4 hours
	y - metallic structures and properties – phas	e behaviour of iro	n-carbon alloys -
hardening mechani	sms of steel –shape memory alloys		
Module:2 Com	posite Materials and Lubricants		6 hours
	of composites - polymer matrix composite	 es_metal_matrix_co	
	; applications of composites in automobiles		
	fication, properties and mechanism of diffe		
	materials - I		6 hours
	rerials - unique properties of nanomaterial		
	EdSe nanocrystals and silver nanoparticle n-up approaches- high-energy ball milli		
synthesis of copper		ing, soi-gei meui	iou, solution phase
• 11	ation by laser evaporation and arc metho	ods, properties of	fullerenes and their
applications		, pp	
	materials - II		6 hours
	and graphene- preparation of carbon nanot	•	
	and CVD, properties and applications of ca		
	rties and applications; engineering applicatinical systems (NEMS)	ons of nanomateria	ais,
nanociechomechai	iicai systems (indivis)		

Module:5 **Semiconductor Materials and Solar** 11 hours **Energy Conversion** Band gap – Fermi level; importance of silicon – silicon wafer preparation- metallurgical silicon, electronic grade silicon, single crystal silicon, float zone technique; chemical processes involved in preparation of complementary metal-oxide-semiconductor (CMOS) IC - photolithography, wet etching, plasma etching, ion implantation, metalation, thin film deposition; alternatives to silicon Solar energy conversion methods - principles and devices – photovoltaic cells, p-n junction solar cell, liquid junction solar cell, multiple junction solar cell, dye-sensitized solar cell. Module:6 | Spectroscopic Techniques 5 hours Interaction between electromagnetic radiation and matter – absorption and emission spectroscopy—Beer-Lambert law; spectrometric instrumentation principle, instrumentation of UV-Vis spectroscopy; colorimetric determination of Iron in steel; atomic absorption spectroscopy-principle, instrumentation and determination of lead in an environmental sample; Flame emissions photometry-principle, instrumentation and determination of Na and K present in water 5 hours **Module:7** | Diffraction and Microscopic Techniques powder X-ray diffraction - principle and instrumentation; XRD pattern of ruby Electron microscopy - TEM, SEM, SEM-EDAX - principle, instrumentation and application; characterization of metal nanoparticles using electron microscopy 2 hours Module:8 **Contemporary Issues** Lecture by Industry Experts **Total Lecture hours:** 45 hours Text Book(s) Bradley D. Fahlman, "Materials Chemistry", 2011, 2nd Edition, Springer Publications, Gary D. Christian, Purnendu K. Dasgupta, Kevin A. Schug, "Analytical Chemistry", 2013, 7th Edition, John Wiley & Sons, Inc., New York. Reference Books Douglas A Skoog, F James Holler, Stanley R Crouch, 2016, 7th Edition, "Principles of Instrumental Analysis", Cengage Learning, Boston, USA. Ray F. Egerton., "Physical Principles of Electron Microscopy – An introduction to TEM, SEM and AFM", 2016, 2nd Edition, Springer, USA,

List of Challenging Experiments (Indicative)

1.	Preparation of ruby by combustion method and X-ray diffraction analysis	1 hour
2.	Preparation of semiconductor ZnO nanoparticles and UV-Vis	2 hours
	spectroscopic analysis	
3.	Analysis of copper in brass using iodometry	2 hours
4.	Quantification of sodium and potassium in oral dehydration solution by	2 hours
	flame photometry	

Mode of Evaluation: Internal Assessment (CAT, Quizzes, Digital Assignments) & FAT

5.	Estimation of sulphate ions in w	ater by light scatte	ering techn	ique	2 hours	
6.	8 7					
7. Aromatic content of given lubricating oil by measuring its aniline point					1 hour	
8.	Determination of pour point and	cloud point of a l	ubricant oi	1	1 hour	
9.	Quality checking of lubricant by	measuring its vis	cosity		1 hour	
10. Photodegradation kinetics of methylene blue dye by nano ZnO photocatalyst			2 hours			
11. Preparation of Cu/CuO nanoparticles and imaging using electron microscopy			1 hour			
12.	Preparation of iron nanoparticles	s and investigating	g its magne	tic property	1 hour	
			Total Lab	oratory Hours	18 hours	
Mode	e of Evaluation: Viva-voce and La	b performance &	FAT			
Recommended by Board of Studies 12.08.2017						
Appr	oved by Academic Council	No. 46	Date	24.08.2017		

EEE1001		Basic Electrical and Electronics E	ngineering	LTPJC
				2 0 2 0 3
Pre-requisi	te	NIL		Syllabus version
				v. 1.0
Course Obj				
		e various laws and theorems applied to solve		
		idents with an overview of the most importa		Electrical and
		neering which is the basic need for everyen	gineer	
Course Out				
		rical circuit problems using various laws and		
		er circuits and networks, its measurement ar	nd safety concer	ns
		pare various types of electrical machines		
		ement various digital circuits		
		cteristics of semiconductor devices and com-	prehend the var	ious modulation
_		unication engineering		
		act experiments to analyze and interpret data	l	
Module:1	DC cir	rcuits		5 hours
Basic circuit	t elemer	nts and sources, Ohms law, Kirchhoff's laws	s, series and para	allel connection of
circuit eleme	ents, No	de voltage analysis, Mesh current analysis,	Thevenin's and	Maximum power
transfer theo	orem			
Module:2	AC cir			6 hours
		s and currents, AC values, Single Phase RL,		
in AC circui	ts-Powe	er Factor- Three Phase Systems – Star and D	elta Connection	- Three Phase
Power Meas	uremen	t – Electrical Safety –Fuses and Earthing, R	esidential wirin	g
		ical Machines		7 hours
		ing Principle and applications of DC Machi		
-	hase Inc	duction motors, Special Machines-Stepper n	notor, Servo Mo	tor and BLDC
motor				
Module:4		l Systems		5 hours
		oncepts, Representation of Numerical Data	in Binary Form	- Combinational
logic circuit	s, Synth	esis of logic circuits		
	~ .			
Module:5		onductor devices and Circuits	1' 1 1577	7 hours
		conductor materials, PN junction diodes, Ze		
		 Amplifiers using transistors. Communicating plitude and Frequency Modulation 	on Engineering	iviodulation and
Demodulatio	JII - AII	ipittude and Frequency Moduration		

Total Lecture hours:

30 hours

Tex	at Book(s)				
1.	1. John Bird, 'Electrical circuit the Edition, 2010.	ory and technolog	y', Newn	es publications,	, 4 th
Ref	erence Books				
1.	Allan R. Hambley, 'Electrical Eng First Impression, 6/e, 2013	ineering -Principle	es & Appli	cations' Pearso	on Education,
2.	Simon Haykin, 'Communication Systems', John Wiley & Sons, 5 t h Editio				2009.
3.	Charles K Alexander, Mathew N C McGraw Hill, 2012.) Sadiku, 'Fundan	nentals of l	Electric Circuit	s', Tata
4.	Batarseh, 'Power Electronics Circu	uits', Wiley, 2003			
5.	H. Hayt, J.E. Kemmerly and S. M. Hill, New Delhi, 2011.	Durbin, 'Enginee	ring Circu	it Analysis', 6/6	e, Tata McGraw
7.	Fitzgerald, Higgabogan, Grabel, 'I	Basic Electrical Er	gineering'	, 5t h edn, McC	Graw Hill, 2009.
8.	S.L.Uppal, 'Electrical Wiring Estin	mating and Costin	g ', Khann	a publishers, N	ewDelhi, 2008.
Mo	de of Evaluation: CAT / Assignmen	nt / Quiz / FAT / P	roject / Se	minar	
List	t of Challenging Experiments (Inc	licative)			
1.	Thevenin's and Maximum Power matching of source and load	Transfer Theorem	ıs – Imped	ance	2 hours
2.	Sinusoidal steady state Response	of RLC circuits			2 hours
3.	Three phase power measurement	for ac loads			2 hours
4.	Staircase wiring circuit layout for	multi storey build	ing		2 hours
5.	Fabricate and test a PCB layout for	or a rectifier circui	t		2 hours
6.	Half and full adder circuits.				2 hours
7.	Full wave Rectifier circuits used i characteristics of the semiconduct		lies. Study	the	2 hours
8.	Regulated power supply using zer Zener diode used	ner diode. Study th	ne characte	eristics of the	2 hours
9.	Lamp dimmer circuit (Darlington Study the characteristics of the tra		transistors) used in cars.	2 hours
10.	Characteristics of MOSFET				2 hours
			Total Lab	oratory Hours	20 hours
	de of assessment: Assignment / FA	•			
	commended by Board of Studies	29/05/2015	-	145/05/2015	
App	proved by Academic Council	37 th AC	Date	16/06/2015	

Course code	RENEWABLE ENERGY SOURCES]	Γ	P	J	C
MEE1011		2	2 2	2	0	4
Pre-requisite	NIL	Syll	abu	IS V	ers	ion
					v.	2.2

- 1. To help students gain essential knowledge on the importance of various renewable energy sources
- 2. To familiarize the students with principles of energy conversion for various renewable energy sources
- 3. To do practical experiments for energy resource performance under different operating conditions
- 4. To understand the method for assessment of various input energy resources for meeting the specific requirements.
- 5. To know the limitations in renewable energy conversion techniques

Course Outcomes:

- 1. Explain the current energy scenario and requirement of migration to renewable energy sources
- 2. Demonstrate the knowledge of various solar thermal energy applications
- 3. Design solar PV systems under stand-alone mode and analyze the performance of solar cells
- 4. Design a bio-gas digester
- 5. Analyze the performance of wind mills
- 6. Assess the power potential of a given site and choose adequate hydro turbine
- 7. Explain various methods for harvesting the ocean energy
- 8. Experimentally determine performance of various renewable energy conversion devices working under different operating conditions

Module:1 | Classification of Energy

5 hours

Energy chain and common forms of usable energy - Present energy scenario - World energy status - Energy scenario in India - Introduction to renewable energy resources - Introduction to Solar Energy - Energy from Sun - Spectral distribution of Solar radiation - Instruments for measurement of solar radiation - Solar radiation data analysis

Module:2 | Applications of Solar Energy

6 hours

Thermal applications - Introduction to Solar thermal collectors - Types - Principle of operation of different collectors - Flat plate - Evacuated tube collectors - Compound parabolic collectors - Solar air heaters - Solar dryers -solar cookers - solar stills - Solar ponds - concentrating collectors - line type - point type - Methods of Solar power generation - Power towers

Module:3	Introduction to Solar Photovoltaics	
----------	-------------------------------------	--

5 hours

Physics of solar cells - Cell and module.

Manufacturing Process— Characteristics of cells and module - Performance parameters -BoS- PV System applications - Stand alone- Grid connected systems.

Module:4 | Bio Energy Sources

4 hours

Energy through various processes - Energy through fermentation - Gasification - various types of gasifiers -Pyrolysis - Fixed bed and fast Pyrolysis - Bio energy through digestion - Types of Digesters- Factors affecting the yield of products.

Module:5 Wind Energy

4 hours

resource assessment - types of wind turbines - selection of components - blade materials - power regulation - various methods of control - wind farms - site selection - off shore wind farms - Solar Wind Hybrid energy systems.

Module:6 | Small Hydro Power Systems

2 hours

Introduction - types - system components, discharge curve and estimation of power potential - Turbines for SHP.

Module:7 | Ocean Energy

2 hours

Power generation through OTEC systems - various types - Energy through waves and tides - Energy generation through geothermal systems - types.

Module:8 Contemporary issues:

2 hours

Discussion on Recent developments in the area of renewable energy systems and their integration

Total Lecture hours:

30 hours

Text Book(s)

1. John Andrews, Nick Jelley (2013), Energy Science: Principles, technologies and impacts, Oxford Universities press.

Reference Books

- 1. Fang Lin You, Hong ye (2012), Renewable Energy Systems, Advanced conversion technologies and applications, CRC Press
- 2 John.A.Duffie, William A.Beckman (2013), Solar Engineering of Thermal processes, Wiley
- 3 A.R.Jha (2010), Wind Turbine technology, CRC Press.
- 4 Godfrey Boyle (2012), Renewable Energy, power for a sustainable future, Oxford University Press..

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

Lis	t of Challenging Experiments (Ind	licative)			
1.	1. Estimation of Solar radiation: P	yranometer, pyrhel	liomete	r.	30 x 14
	2. Testing the yield of a Solar still	in outdoor condition	ons (Mu	ultiple sessions).	
	3. Wind Energy Experimental Set up $-$ I.				
	4. Wind Energy Experimental Set up – II.				
	5. Testing of Solar PV system in P	V training Kit.			
	6. Fuel Cell Experiment.				
	7. Performance of Biomass stove.				
	8. Production of Bio-diesel by Tran	nsesterification pro	cess.		
	9. Flash Point and Fire point comp	arison for convent	ional fu	els and alternate	
	fuels.				
	10. Production of Hydrogen from I	Electrolysis with P	V syste	em.	
	11. Estimation of Figures of Merit	in a Solar cooker.			
	12. Performance characteristics of	a Solar thermal co	llector.		
	13. Exergy analysis of a Solar cabi	net dryer.			
			Total I	Laboratory Hours	17 hours
Mo	de of assessment:				
Rec	commended by Board of Studies	17-08-2017			
App	proved by Academic Council	No. 47	Date	05-10-2017	

JULY 2019

Course code	COMPUTATIONAL FLUID DYNAMICS	L T P J C
MEE4006		2 1 2 0 4
Pre-requisite	MEE1004, MEE2005, MAT3005 (or) MEE1032, MEE1033/MEE2005, MAT3005	Syllabus version
		v. 2.2

- 1. To provide the students with sufficient background to understand the mathematical representation of the governing equations for fluid flow and heat transfer problems.
- 2. To equip the students to address complex fluid flow and heat transfer problems by approximating the governing differential equations with boundary conditions through Finite difference and finite volume discretization methods.
- 3. To enable students to understand different types of grid and its attributes and their suitability for different engineering applications
- 4. Develop the students to use appropriate turbulence model for solving engineering problems.

Course Outcomes:

- 1. Apply mathematics and engineering fundamentals to recognize the type of fluid flow and heat transfer that occur in a particular physical system and to use the appropriate model equations to investigate the problem.
- 2. Solve governing equations using finite difference discretization technique
- 3. Solve governing equations using finite volume method
- 4. Generate appropriate type of grids required for solving engineering problems accurately.
- 5. Apply suitable turbulence model for the chosen real world engineering problems.
- 6. Solve fluid flow and heat transfer problems using commercial CFD tools

Module:1	Introduction	1 hour
CFD overvie	ew - Applications of CFD.	
Module 2	Coverning Equations of Fluid Dynamics and Heat Transfer	6 hours

Models of Flow – Conservation and Non-conservation form - Continuity, Momentum and Energy Equation in conservation and non-conservation form (differential equations only) - Characteristics of PDE's - elliptic, parabolic and hyperbolic.

Module:3 Discretization and Finite Difference method 7 hours

Discretization: Basic aspects of Discretization – Comparison of finite difference, finite volume and finite element techniques.

Finite Difference method: Forward, Backward and Central difference schemes, Transient one and two dimensional conduction - Explicit, implicit, semi-implicit and ADI methods - Stability analysis and error estimation.

Mo	dule:4	Grid Generation	3 hours
Gr	id Gene	ration: Choice of grid, grid oriented velocity components, Cartesian ve	locity
con	nponent	s, staggered and collocated arrangements.	
Mo	dule:5	Convection and Diffusion	7 hours
Co	nvectio	n and Diffusion: Steady one-dimensional convection and diffusion	- Central
diff	ference,	upwind, quick, exponential, hybrid and power law schemes- False diff	fusion, SIMPLE
- A	Algorith	n.	
Mo	dule:6	Turbulence Modeling	4 hours
Tu	rbulenc	e Modeling: Introduction – Types of Turbulence modeling – Reyno	olds Time
Av	eraging	 Reynolds Time Averaged conservation equations – Boussinesq appro 	ach – One
equ	ation k	- □ model.	
Mo	dule:7	Contemporary issues	2 hours
		Total Lecture hours	: 30hours
Tex	xt Book	(s)	1
1.	John I	O Anderson, Computational Fluid Dynamics – The Basics with Applicat	ions, 1st
	Editio	n, McGraw Hill, 2012.	
Re	ference	Books	
1.	Chung	T.J, Computational Fluid Dynamics, Cambridge University Press, 201	4.
2.	Mural	idhar K and Sundararajan T, Computational Fluid Flow and Heat Trans	fer, Narosa
	Public	ations, New Delhi, 2014.	
3.		eg H.K and Malalasekara W, An Introduction to Computational Fluid D	ynamics - The
	Finite	Volume Method, 2nd Edition, Pearson, 2010.	
		valuation: CAT / Assignment / Quiz / FAT / Project / Seminar	
		allenging Experiments (Indicative)	
1.		deling of simple and complex geometries.	3 hours
2.		ahedral meshing for simple geometries like square duct, circular pipe.	3 hours
3.		rid hexa meshing for circular pipe.	3 hours
4.	Teti	rahedral meshing for simple geometries including fluid and solid	3 hours
	don	nains.	
5.	Prej	processing in FLUENT – Case setup and analyzing for already mesh	3 hours
		erated model.	
6.		dy state temperature distribution in a rectangular plate (ANSYS	3 hours
		ent and FDM).	
7.	Dif	fuser for a hydropower turbine.	3 hours

8.					3 hours
9.	9. Supersonic flow past a wedge in a channel.				3 hours
10.	10. Exercise (for each student – different exercise) from FLUENT tutorial			3 hours	
	(case setup, analyzing, and post-processing).				
		T	otal Labo	ratory Hours	30 hours
Mode	of assessment:	<u>T</u>	otal Labo	oratory Hours	30 hours
	of assessment: mmended by Board of Studies	17-08-2017	otal Labo	oratory Hours	30 hours