

SCHOOL OF MECHANICAL ENGINEERING

B.Tech Mechanical Engineering (BME)

Curriculum & Syllabi (2021-2022 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

• Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

- World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.
- **Cutting edge Research:** An innovation ecosystem to extend knowledge and solve critical problems.
- Impactful People: Happy, accountable, caring and impactful workforce and students.
- Rewarding Co-Creations: Active collaboration with national & international industries
 & universities for productivity and economic development.
- Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

 To be a leader in imparting world class education in Mechanical Engineering, with a vision to nurture scientists and technocrats of the highest caliber engaged in global sustainable development.

MISSION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

- To create and maintain an environment fostering excellence in instruction & learning, Research and Innovation in Mechanical Engineering and Allied Disciplines.
- To equip students with the required knowledge and skills to engage seamlessly in higher educational and employment sectors ensuring that societal demands are met.

B. Tech Mechanical Engineering

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.
- Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies in engineering or management.
- 6. Graduates will pursue career paths in teaching or research.

B. Tech Mechanical Engineering

PROGRAMME OUTCOMES (POs)

- PO_1: Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PO_2: Problem Analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- **PO_3**: Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO_4: Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions for complex problems
- PO_5: Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- PO_6: The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

- **PO_7**: Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO_8**: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO_9**: Individual and Teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO_10**: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO_11: Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO_12: Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

B. Tech Mechanical Engineering

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of B. Tech. (Mechanical Engineering) programme, graduates will be able to

- **PSO_1**: Model, design and analyse mechanical systems and components taking into account social, economic and environmental implications
- **PSO_2**: Realize components and products using appropriate materials and machine tools
- **PSO_3**: Work professionally in mechanical and related systems

13

49

3 0 0 3

0 0 2 1

0 0 2 1

0 0 4 2 3 0 0 3

0 0 2 1

3003

0 0 2 1

3 0 0 3 0 0 2 1

3 0 0 3 0 0 2 1

3003

0021

Bachelor of Technology in Mechanical Engineering School of Mechanical Engineering

Programme	Credit Structure		C	Credits	BENG102P BSTS101P	Technical Report Writing Quantitative Skills Practice I	0 0
Foundation	Core Courses			56	BSTS102P	Quantitative Skills Practice II	0
Basic Sci	ances and Mathematics			24	BSTS201D	Qualitative Skills Practice I	0
				47	DOTO201P		0
Engineeri	ng Sciences			17	BS15202P	Qualitative Skills Practice II	0
Humanitie	es, Social Sciences and				BFLE200L	Foreign Language	2
Managem	ent (HSM)			15	BHSM200L	HSM Elective	3
Discipline-li	inked Engineering Science Cours	ses		13			
Discipline (Core Courses			49	D		
Discipline F	lective Courses			12	Discipline-li	inked Engineering Science Cours	ses
Onen Electi				12			~
Broject and	Intornahin			00	BMEE209L	Materials Science and Engineer-	3
	Internship d Credit Deguirement			09		ing	
Total Grade	a Credit Requirement			151	BMEE209P	Materials Science and Engineer-	0
Non-Grade	d Credit Requirement			11		ing Lab	
					BMEE211L	Engineering Optimization	2
Basic Scier	ces and Mathematics			24	BMEE407L	Artificial Intelligence	2
			т		BMEE308	Control Systems	2
		L 2				Microcontrollers and Interfacing	~
BPHY101L	Engineering Physics	3	0	03	DIVIEE300P		0
BPHY101P	Engineering Physics Lab	0	0	21		Lab	
BCHY101L	Engineering Chemistry	3	0	03			
BCHY101P	Engineering Chemistry Lab	0	0	2 1	Discipline (Core Courses	
BMAT101L	Calculus	3	0	03	•		
BMAT101P	Calculus Lab	0	0	2 1	BMFF202I	Mechanics of Solids	3
BMAT102	Differential Equations and	а З	1	04	BMEE202P	Mechanics of Solids Lab	ñ
DIVIATIOZE	Transforma	0		0 4		Engineering Thermodynamics	2
	Complex Veriables and Lincor	~		~ 1	DIVIEEZUJL		2
BMAT201L	Complex variables and Linear	3	1	04	BMEE204L	Fluid Mechanics and Machines	3
	Algebra				BMEE204P	Fluid Mechanics and Machines	0
BMAT202L	Probability and Statistics	3	0	03		Lab	
BMAT202P	Probability and Statistics Lab	0	0	2 1	BMEE206P	Machine Drawing Lab	0
	-				BMEE207L	Kinematics and Dynamics of	3
						Machines	
Engineering	g Sciences			17	BMEE207P	Kinematics and Dynamics of	0
		-	_		DMEEZON	Machines Lab	0
BMEE102P	Engineering Design Visualisa-	0	0	42		Machines Lab	2
	tion Lab				BINEEZIUL	Mechatronics and Measurement	3
BEEE101L	Basic Electrical Engineering	2	0	02		Systems	
BEEE101P	Basic Electrical Engineering Lab	0	0	2 1	BMEE210P	Mechatronics and Measurement	0
BECE101L	Basic Electronics	2	0	02		Systems Lab	
BECE101P	Basic Electronics Lab	0	Õ	21	BMEE301L	Design of Machine Elements	3
BMEE2011	Engineering Mechanics	2	1	03	BMEE302I	Metal Casting and Welding	3
	Computer Programming: Duthan	4	^	1 2	BMEE302P	Metal Casting and Welding Lab	ñ
DOGENOIE	Computer Programming. Fythom	1	0	4 3	DMEE2021	Thormal Engineering Systems	2
BC2E103E	Computer Programming: Java	1	0	43	DIVIEE303L		0
					BIMEE303P	i nermai Engineering Systems	0
						Lap	~
Humanities	Social Sciences and Manageme	ant		15	BMEE304L	Metal Forming and Machining	3
numannues	, Social Sciences and Manageme	7110		15	BMEE304P	Metal Forming and Machining	0
RENG101N	Effective English Communica-	Δ	Λ	12		Lab	
DEINGTUTIN	tion (NCC)	0	0	4 2	BMEE306L	Computer Aided Design and Fi-	3
DENO404	uon (NGC) Taabaiaal Faaliah - Osaaan i	~	~	<u> </u>		nite Element Analysis	-
BENG101L	i ecnnical English Communica-	2	U	02	BMEE306P	Computer Aided Design and Fi-	0
	tion				DIVICEOUU	nite Element Analysis Lob	0
BENG101P	Technical English Communica-	0	0	2 1		The Element Analysis Lab	
	tion Lab						

BMEE401L	Computer Integrated Manufac-	3	0	0	3
BMEE401P	Computer Integrated Manufac-	0	0	2	1
BMFF402I	Heat and Mass Transfer	3	0	0	3
BMEE402P	Heat and Mass Transfer Lab	0	0	2	1
Discipline E	elective Courses				12
BMEE205E	Renewable Energy Systems	2	0	2	3
BMEE208L	Industrial Engineering	3	0	0	3
BMEE212L	Quality Control and Improve-	3	0	0	3
	ment	_	_	_	_
BMEE213E	Automotive Vehicles	2	0	2	3
BMEE214E	Automotive Electricals and Elec-	2	0	2	3
BMAT206L	Numerical Analysis	3	0	0	3
BMEE305L	Manufacturing Planning and	3	0	0	3
	Control	-	-	-	-
BMEE307L	Product Design and Develop-	3	0	0	3
	ment				
BMEE309L	Lean Manufacturing	3	0	0	3
BMEE310L	Supply Chain Management	3	0	0	3
BMEE311L	Welding Engineering	3	0	0	3
BMEE312L	Engineering Tribology	3	0	0	3
BMEE313E	Non-destructive Testing	3	0	2	4
BMEE314E	Mechanical Vibrations and	3	0	2	4
BMEE315L	Acoustics Micro-Electromechanical Sys-	3	0	0	3
	tems				
BMEE316E	Industrial Robotics	3	0	2	4
BMEE317L	Mechatronic Systems Design	3	0	0	3
BMEE318E	Fluid Power Systems	3	0	2	4
BMEE319E	Advanced Material Characteri-	3	0	2	4
BMEE320L	zation Methods Refrigeration and Air-	3	0	0	3
	conditioning				
BMEE321L	Composite Materials	3	0	0	3
BMEE322L	Engineering Failure Analysis	3	0	0	3
BMEE323L	Gas Dynamics	3	0	0	3
BMEE324E	Turbomachines	2	0	2	3
BMEE325L	Internal Combustion Engines	3	0	0	3
BMEE326L	Power Plant Engineering	3	0	0	3
BMEE327E	Vehicle Dynamics	2	0	2	3
BMEE328E	Hybrid and Electric Vehicles	2	0	2	3
	Technology				
BMEE329E	Noise, Vibration, and Harshness	2	0	2	3
BMEE403L	Design of Jigs, Fixtures and	3	0	0	3
	Press Tools				
BMEE404L	Design of Transmission Systems	2	1	0	3
BMEE405L	Industrial Automation	3	0	0	3
BMEE406E	Advanced Manufacturing Pro-	3	0	2	4
	Cess				
BMEE408E	Additive Manufacturing	3	0	2	4

BMEE409E BMEE410L BMEE411L BMEE412E BMEE413L BMEE414L	Computational Fluid Dynamics Industrial Revolution 4.0 Society 5.0 Manufacturing Systems Design Design of Chassis Components Vehicle Body and Aerodynamics Engineering	2 3 3 2 3	0 0 0 1 0	2 0 2 0 0	3 3 4 3 3
BMEE415L	Electrical Machines, Drives and	3	0	0	3
BMEE416L BMEE391J	Autonomous Vehicle Systems Technical Answers to Real Prob- lems Project	3	0	0	3 3
BMEE392J	Design Project				3
BMEE393J	Laboratory Project				3
BMEE394J	Product Development Project				3
BMEE395J	Computer Project				3
BMEE396J	Reading Course				3
BMEE397J	Special Project				3
BMEE398J	Simulation Project				3

Open Elective Courses

Engineering Disciplines | Projects | Sciences | Humanities | Social Sciences | Liberal Arts | Economics | Finance | Entrepreneurship | Management | Skills | Reading

12

9 **Project and Internship** BMEE399J Summer Industrial Internship 1 Project-I 3 BMEE497J BMEE498J Project-II / Internship 5 One Semester Internship 14 BMEE499J 11 **Non-Graded Credit Requirement** BMEE101N Introduction to Engineering 1 BSSC101N Essence of Traditional Knowl-2 edge 2 **BSSC102N** Indian Constitution 2 **BEXC100N** Extracurricular Activities 2 **BCHY102N Environmental Sciences** 2 **BHUM101N Ethics and Values**

Minor (18 – 20 credits)

Bachelor of Technology in Mechanical Engineering with Minor in:

Computer Science and Engineering Artificial Intelligence and Machine Learning Data Science

BCHY101L	Engineering Chemistry		т	D	6
		Ŀ	I	Г	C
		3	0	0	3
Pre-requisite	I NIL Sy	/llab	us y	vers	on
			1.0		
Course Obje	Ctives				
1. To enable	Students to have fundamental understanding of the basic conclusion of the basic conclusion of the basic conclusion.	epts	of d	liffere	ent
	s of chemistry.				
2. To provid	e avenues for learning advanced concepts from school to univer	rsity			
3. To empo	wer students with emerging concepts in applied chemistry to be	user	uiir	1	
4 To integr	ate analytical and computational ability with experimental skills to	o cre	ate		
individua	s competent in basic science and its by-product of its application	ט ס ס זיס	alo		
5 To offer of	portunities to create pathways for self-reliant in terms of knowl	edae	an	h	
higher lea	arning	bugt		a	
Course Outo	omes '				
1 Underst	and the fundamental concepts in organic inorganic physical	an	d ar	alvti	cal
chemistr	v.		a ui	laryti	oui
2. Analvze	the principles of applied chemistry in solving the societal issues.				
 Apply ch 	emical concepts for the advancement of materials.				
4. Apprecia	te the fundamental principles of spectroscopy and the related ar	oplic	atior	าร.	
5. Design	new materials, energy conversion devices and new prote	ective	e co	oatin	a
techniqu	es.				0
Module:1	hemical thermodynamics and kinetics			6 ho	urs
Laws of therr	nodynamics - entropy change (selected processes) - spontane	ity of	fac	hem	ical
reaction and	Gibbs free energy - heat transfer; Kinetics - Concept of activa	ution	ene	rgy	and
energy barrie	r - Arrhenius equation- effect of catalysts (homo and heterogen	eous	s) -	Enzy	me
catalysis (Mid	haelis-Menten Mechanism).				
Module:2	letal complexes and organometallics			6 ho	urs
Inorganic cor	nplexes - structure, bonding and application; Organometallics	s - ii	ntro	ducti	on,
stability, stru	cture and applications of metal carbonyls, ferrocene and Gri	gnai	d re	eage	nt;
Metals in biol	ogy (haemoglobin, chlorophyll- structure and property).	-		•	
Module:3	Organic intermediates and reaction transformations			6 ho	urs
Organic inter	mediates - stability and structure of carbocations, carbanion	is ai	nd r	adica	als;
Aromatics (a	omaticity) and heterocycles (3, 4, 5, 6 membered and fused systematicity)	stem	is); (Orga	nic
transformatio	ns for making useful drugs for specific disease targets (two	exa	mple	es) a	ind
dyes (additio	n, elimination, substitution and cross coupling reactions).				
Module:4 E	nergy devices			6 ho	urs
Electrochemi	cal and electrolytic cells - electrode materials with examples (se	mi-c	ond	ucto	rs),
electrode-ele	ctrolyte interface- chemistry of Li ion secondary batteries, super-	сара	icito	rs; F	uel
cells: H2"O ₂	and solid oxide fuel cell (SOFC); Solar cells - photovoltaic cell (silic	on b	ase	d),
photoelectro	hemical cells and dye-sensitized cells.				
Module:5 F	unctional materials			7 ho	urs
Oxides of A	3, AB ₂ , ABO ₃ type (specific examples); Composites - types	and	pro	opert	ies;
Polymers - th	ermosetting and thermoplastic polymers - synthesis and applic	atio	n (T	EFL	ЭN,
BAKELITE);	Conducting polymers- polyacetylene and effect of doping - che	mist	ry o	f disp	blay
devices spec	fic to OLEDs; Nano materials - introduction, bulk vs nano (qua	ntum	n do	ts), t	op-
down and bot	tom-up approaches for synthesis, and properties of nano Au.				
Module:6	pectroscopic, diffraction and microscopic techniques	<u> </u>		<u>5 ho</u>	urs
Fundamental	concepts in spectroscopic and instrumental techniques;	. Pri	incip	ple a	and
applications	of UV-Visible and XRD techniques (numericals); Overview of val	rious	stec	hniq	ues
such as AAS	IR, NMR, SEM and IEM.				
Module 7	ndustrial applications	Т		7 ho	urs
		1			~ 0

Wat	er purification methods - zeolites, ion-exchange resins and reverse osmos	sis; Fuels and
com	bustion -LCV, HCV, Bomb calorimeter (numericals), anti-knocking agen	ts); Protective
coat	ings for corrosion control: cathodic and anodic protection - PVD technic	que; Chemical
sens	sors for environmental monitoring - gas sensors; Overview of	computational
meth	nodologies: energy minimization and conformational analysis.	
Mod	lule:8 Contemporary topics	2 hours
Gue	st lectures from Industry and, Research and Development Organizations	
	Total Lecture hours:	45 hours
Text	book	
1.	Theodore E. Brown, H Eugene, LeMay Bruce E. Bursten, Catherine Mu	urphy, Patrick
	Woodward, Matthew E. Stoltzfus, Chemistry: The Central Science, 2017	, 14th edition,
	Pearson Publishers, 2017. UK	,
Refe	erence Books	
1.	Peter Vollhardt, Neil Schore, Organic Chemistry: Structure and Function,	2018, 8th ed.
	WH Freeman, London	
2.	Atkins' Physical Chemistry: International, 2018, Eleventh edition, Oxfo	ord University
	Press; UK	
3.	Colin Banwell, Elaine Mccash, Fundamentals for Molecular Spectroscop	y, 4th Edition,
	McGraw Hill, US	- dition Miley
4.	UK.	edition, wriey,
5.	AngA"le Reinders, Pierre Verlinden, Wilfried van Sark, Alexandre	e Freundlich,
	Photovoltaic solar energy: From fundamentals to Applications, 2017, Wil	ey publishers,
6.	UK.	
	Lawrence S. Brown and Thomas Holme, Chemistry for engineering stude	ents, 2018, 4t ⁿ
	edition - Open access version	
Mod	e of Evaluation: CAT, Written assignment, Quiz and FAT	
Rec	ommended by Board of 128.06.2021	
Stuc	lies	
App	roved by Academic Council No. 63 Date 23.09.2021	

BCHY101P	Engir	neering Chei	mistry Lab	IL IT Ip IC
				IO IO I 2 11
Pre-requisite	NIL			Syllabus version
				1.0
Course Objectiv	/e			
To apply theoret	ical knowledge gaine	d in the theor	ry course and	get hands-on experience of
the topics.				
Course Outcom	1e :			
At the end of the	course the student w	ill be able to		
1. Understa	ind the importance ai	nd hands-on	experience o	n analysis of metal ions by
means of	r experiments.			
2. Get prac	tical experience on sy	Inthesis and	characterization	on of the organic molecules
and hand	omaterials in the labo	thermeducer	nia functions	kingtion and malagular
3. Apply th	en knowledge in	monto	nic functions	s, kinelics and molecular
geometri Indicativo Expo	rimente	ments.		
1 Thormodyr	amics functions from	EMEmonou	romonte : Zin	Coppor system
2 Determinat	tion of reaction rate of	rdor and mole	culority of oth	vlacotato bydrolycic
2. Determinat	ic estimation of Ni ²		ecularity of eli	mart phone digital-imaging
methods		using conve		mart phone digital imaging
4 Laboratory	scale preparation of i	important dru	a intermediate	- para aminophenol for the
synthesis f	or acetaminophen		ginternoulate	
5. Magnesium	n-sea water activate	ed cell - E	ffect of salt	concentration on voltage
generation				-
6. Analysis of	iron in an alloy samp	le by potentic	metry	
7. Preparation	n of tin oxide by sol- g	gel method a	nd its characte	rization
8. Size depen	ident colour variation	of Cu ₂ 0 nand	particles by s	pectrophotometer
9. Determinat	tion of hardness of v	water sample	by complexe	metric titration before and
after ion-ex	<pre>kchange process</pre>			
10. Computation	onal Optimization of m	olecular geo	metry using Av	ogadro software
		Tot	al Laboratory	Hours 30 hours
Mode of assess	ment: Mode of assess	sment: Conti	nuous assessi	ment/ FAT/ Oral
examination and	others			
Recommended I	by Board of Studies	l 2s.06.20	21	
Approved by Aca	ademic Council	I No. 63	Date	23.09.2021

BPHY101L	Engineering Physics	ILITIPIC
		1 3 10 10 1 3
Pre-requisite	12 th of equivalent Sy	Ilabus version
		1.0
Course Objective	es	
1. To explain th	e dual nature of radiation and matter.	ma and annly
2. To apply Sch	rounger's equation to solve finite and finitine potential proble	and apply
3 Tounderstan	d the Maxwell's equations for electromagnetic waves and an	oly the
concepts to s	semiconductors for engineering applications	pry the
Course Outcome		
At the end of the	course the student will be able to	
1. Comprehend	the phenomenon of waves and electromagnetic waves.	
2. Understand	the principles of quantum mechanics.	
3. Apply quantu	um mechanical ideas to subatomic domain.	
4. Appreciate t	he fundamental principles of a laser and its types.	
5. Design a typ	ical optical fiber communication system using optoelectronic	devices.
Module:1 Intro	duction to waves	7 hours
Waves on a string	g - Wave equation on a string (derivation) - Harmonic waves	- reflection and
transmission of w	vaves at a boundary - Standing waves and their eigenfreque	encies - waves
with dispersion -	Superposition of waves and Fourier method (qualitative) -	Wave packet -
phase velocity an	a group velocity.	71
Module:2 Elect	romagnetic waves	/ nours
Physics of diverg	ence - gradient and curi - surrace and volume integral - Max	
(Qualitative) - (wave equation in free space - Plane electromagnetic waves	in free space -
Hertz's experime	nt	millee space
Module:3 Elem	ents of quantum mechanics	7 hours
Need for Quantu	m Mechanics: Idea of Quantization (Planck and Einstein) - (Compton effect
(Qualitative) - d	e Broglie hypothesis - justification of Bohr postulate - Da	avisson-Germe
experiment - Way	e function and probability interpretation - Heisenberg uncert	ainty principle
Gedanken expe	riment (Heisenberg's microscope) - Schrodinger wave	equation (time
dependent and til	me independent).	
Module:4 Appl	ications of quantum mechanics	6 hours
Eigenvalues and	l eigenfunction of particle confined in one dimensional b	ox - Basics of
nanophysics - Q	uantum confinement and nanostructures - Tunnel effect (c	ualitative) and
scanning tunnelir	ng microscope.	
Module:5 Lase	rs	6 hours
Laser characteri	stics - spatial and temporal coherence - Einstein coeffic	ents and their
significance - Po	pulation inversion - two, three and four level systems - Pum	ping schemes
their engineering	applications	JU2 lasers and
Module:6 Pron	applications.	5 hours
Introduction to o	ntical fiber communication system - light propagation thr	ough fibers -
Acceptance and	e - Numerical aperture - V-parameter - Types of fibers -	Attenuation -
Dispersion-intern	nodal and intramodal. Application of fiber in medicine - Endos	CODY.
Module:7 Opto	electronic devices	5 hours
Introduction to se	emiconductors - direct and indirect bandgap - p-n junction.	Sources: LED
and laser diode, I	Photodetectors: PN and PIN	
Module:8 Cont	emporary Topics	2 hours
Guest lectures fro	m Industry and, Research and Development Organisations	
	Total Lecture hours:	45 hours

H	
I fe	xt Book(s)
1.	H. D. Young and R. A. Freedman, University Physics with Modern Physics, 2020, 15 th
	Edition, Pearson, USA.
2.	D. K. Mynbaev and Lowell L. Scheiner, Fiber Optic Communication Technology,
	2011, Pearson, USA
Re	ference Books
1.	H. J. Pain, The Physics of vibrations and waves, 2013, 6 th Edition, Wiley Publications,
2.	India.
	R. A. Serway, J. W. Jewett, Jr, Physics for Scientists and Engineers with Modern
3.	Physics, 2019, 10 th Edition, Cengage Learning, USA.
4.	K. Krane, Modern Physics, 2020, 4 th Edition, Wiley Edition, India.
5.	M.N.O. Sadiku, Principles of Electromagnetics, 2015, 6th Edition, Oxford University
	Press, India.
	W. Silfvast, Laser Fundamentals, 2012, 2 nd Edition, Cambridge University Press, India.
Мо	de of Evaluation: Written assignment, Quiz, CAT and FAT
Ree	commended by Board of Studies I 26.06.2021
Ар	proved by Academic Council I No. 63 Date 23.09.2021

BPH	IY101P	Engir	neering Phys	ics Lab		L	Т	Ρ	С
						0	0	2	1
Pre-	requisite	12 th or equivalent			Sy	llab	us v	vers	ion
							1.0		
Cou	rse Objective	es							
To a	pply theoretic	cal knowledge gained i	n the theory c	ourse and	d get hands-on	exp	erie	nce	of
the t	opics.								
Cou	rse Outcome	9							
At th	ne end of the	course the student will	be able to						
	1. Comprehe	end the dual nature of r	adiation and	matter by	means of expe	erime	ents		
	2. Get hand	ls-on experience on	the topics c	of quantu	m mechanical	ide	eas	in ⁻	the
	laboratory	'							
	Apply low	power lasers in optics	and optical fil	per relate	d experiments.				
Indi	cative Experi	iments							
1.	To determin	e the dependence of fu	undamental fr	equency	with the length	and	tens	sion	of
	a stretched	string using sonometer							
2.	To determin	e the characteristics of	FEM waves u	sing Hert	z experiment				
3.	To determin	e the wavelength of las	ser source (H	e-Ne lase	r and diode las	ers	of di	ffere	ent
	wavelengths	s) using diffraction grati	ng						
4.	To demonst	rate the wave nature of	f electron by c	diffraction	through graphi	te sl	heet		
5.	To determin	e the Planck's constan	t using electro	oluminesc	ence process				
6.	To numerica	ally demonstrate the dis	screte energy	levels an	d the wavefund	tion	s us	sing	
	Schrodinger	r equation (e.g., particle	e in a box pro	blem can	be given as an	ass	ignr	nent)
7.	To determin	e the refractive index of	of a prism usir	ng spectro	ometer (angle o	f pri	sm v	will b	e
	given)								
8.	To determin	e the efficiency of a so	lar cell						
9.	To determin	e the acceptance angle	e and numerio	cal apertu	re of an optical	fibe	r		
10.	To demonst	rate the phase velocity	and group ve	elocity (sir	nulation)				
				Fotal Labo	oratory Hours I	30	hou	rs	
Mod	e of assessm	nent: Continuous asse	ssment/ FAT	/ Oral exa	mination				
Rec	ommended b	y Board of Studies	26.06.2021						
App	roved by Aca	demic Council	No. 63	Date	23.09.2021				

BMAT101L	Calculus	ILITIPIC
Pro-roquisito	Nil Su	13 IU IU I 3
Fie-iequisite	Sy Sy	
Course Objectiv	/es	1.0
1. To provide the	requisite and relevant background necessary to understand	the other
important engine	ering mathematics courses offered for Engineers and Scienti	sts.
2. To introduce in	moortant topics of applied mathematics, namely Single and M	ultivariable
Calculus and Ve	ctor Calculus etc.	
3. Enhance to us	e technology to model the physical situations into mathematic	cal problems.
experiment, inte	rpret results, and verify conclusions.	···· [······,
Course Outcom	es	
At the end of the	course the student should be able to:	
1. Apply single v	ariable differentiation and integration to solve applied problem	ns in
engineering and	find the maxima and minima of functions	
2. Evaluate parti	al derivatives, limits, total differentials, Jacobians, Taylor serie	es and
optimization prol	plems involving several variables with or without constraints	
3. Evaluate multi	ple integrals in Cartesian, Polar, Cylindrical and Spherical cod	ordinates.
4. Use special fu	nctions to evaluate various types of integrals.	
5. Understand g	adient, directional derivatives, divergence, curl, Green's, Sto	kes and Gauss
Divergence theo	rems.	
Module:1 Sing	le Variable Calculus	8 hours
Differentiation-	Extrema on an Interval Rolle's Theorem and the Mean v	alue theorem-
Increasing and d	ecreasing functionsFirst derivative test-Second derivative to	est-Maxima and
Minima-Concavi	ty. Integration-Average function value - Area between curve	es - Volumes of
solids of revoluti	on.	
Module:2 Mult	ivariable Calculus	5 hours
Functions of two	variables-limits and continuity-partial derivatives -total differ	ential-Jacobian
and its properties	S.	
Module:3 App	blication of Multivariable Calculus	5 hours
Taylor's expansi	on for two variables-maxima and minima-constrained maxim	a and minima-
Lagrange's multi	plier method.	
Module:4 Mul	tiple integrals	8 hours
Evaluation of do	uble integrals-change of order of integration-change of varial	oles between
Cartesian and po	plar co-ordinates - evaluation of triple integrals-change of varia	ables between
Cartesian and cy	/lindrical and spherical co-ordinates.	
Module:5 Spe	cial Functions	6 hours
Beta and Gamm	a functions-interrelation between beta and gamma functions	s-evaluation of
multiple integral	s using gamma and beta functions. Dirichlet's integral -	Error functions
complementary e	error functions.	
Module:6 Vec	tor Differentiation	5 hours
Scalar and veo	ctor valued functions - gradient, tangent plane-directic	onal derivative-
divergence and	curl-scalar and vector potentials. Statement of vector ide	ntities-simple
problems.		
Module:7 Vec	tor Integration	6 hours
Line, surface and	d volume integrals - Statement of Green's, Stoke's and Gauss	s divergence
theorems -verific	ation and evaluation of vector integrals using them.	
Module:8 Con	temporary Topics	2 hours
Guest lectures fr	om Industry and, Research and Development Organizations	
	Total Lecture hours:	45 hours
tBook		
George R T	homas D.Weir and J. Hass Thomas Calculus 2014 1	3th edition
Pearson		

Reference Books Erwin Kreyszig, Advanced Engineering Mathematics, 2015, 10th Edition, Wiley India 1. 2. B.S. Grewal, Higher Engineering Mathematics, 2020, 44th Edition, Khanna Publishers 3. John Bird, Higher Engineering Mathematics, 2017, 6th Edition, Elsevier Limited. James Stewart, Calculus: Early Transcendental, 2017, 8th edition, Cengage Learning. 4. 5. K.A.Stroud and Dexter J. Booth, Engineering Mathematics, 2013, 7th Edition, Palgrave Macmillan. Mode of Evaluation: CAT, Assignment, Quiz and FAT Recommended by Board of Studies 24.06.2021 Approved by Academic Council No. 63 Date 23.09.2021

BMAT101P		Calculus L	ab	ILITIPIC
				IO IO I 2 I 1
Pre-requisite	NIL			Syllabus versio
				1.0
Course Objectiv	es			
1. To familiarize	with the basic syntax	, semantics and	library f	unctions of MAILAB which
serves as a tool	not only in calculus b	out also many co	ourses in	engineering and sciences
2. To visualize m	athematical function	is and its related	i properti	es.
3. To evaluate si	ngle and multiple inte	egrais and unde	rstand it	graphically.
Course Outcom	es			
At the end of the	course the student s	should be able to): 	
1. Demonstrate I	MAILAB code for ch	allenging proble	ms in en	gineering
2. Using piols/us	splays, interpret and		mary ma	
Indicative Exper	imonte			
1 Introduction	to MATLAB through	matrices and o	ionoral S	votax
2 Plotting and	visualizing curves :	and surfaces in l		- Symbolic computations
2. Γιοταιής and Using MΔTI				- Symbolic computations
3 Evaluating	Extremum of a single	e variable function	าท	
4 Understand	ling integration as Ar	ea under the cu	rve	
5. Evaluation	of Volume by Integra	als (Solids of Re	volution)	
6. Evaluating	maxima and minima	of functions of t	wo varia	bles
7. Applying La	agrange multiplier op	timization metho	bd	
8. Evaluating	Volume under surfac	ces		
9. Evaluating	triple integrals			
10. Evaluating	gradient, curl and div	/ergence		
11. Evaluating	ine integrals in vecto	ors		
12. Applying G	een's theorem to rea	al world problem	IS	
		Т	otal Labo	oratory Hours 30 hours
Text Book				
1. Brian H. H	ahn, Daniel T. Valent	ine, Essential M	IATLAB f	or Engineers and
Scientists,	Academic Press, 7th	edition, 2019.		
Reference Bool	(S			
1. Amos Gilat	, MATLAB: An Introd	luction with Ap p	ications	Wiley, 6/e, 2016.
2 Maritn Brok	ate, Pammy Manch	anda, Abul Has	an Siddio	qi, Calculus for Scientists and
Engineers,	Springer, 2019			
Mode of assessn	nent: DA and FAT			
Recommended b	y Board of Studies	I 24.06.2021	_	
Approved by Aca	ademic Council	I No. 63	Date	23.09.2021

	Differential Equations and Transforms				Ρ	С
			3	1	0	4
Pre-requisite	BMAT101L, BMAT101P	Sy	llabı	IS V	ers	ion
				1.0		
Course Objectiv	es					<u>, </u>
1. To impart	the knowledge of Laplace transform, an important transf	form	tech	niqu	les	for
Engineers	s which requires knowledge of integration.		4 1			
2. Presentin	g the elementary notions of Fourier series, this is vital in	prac	tical	nar	mo	nic
2 Enriching	the skills in solving initial and houndary value problems.					
J Impart the	the skins in solving initial and boundary value problems.	l tha	7-tra	nef	٦rm	in
discrete s	vstems that are inherent in natural and physical process		2-110	11310	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Course Outcom	es					
At the end of the	course the student should be able to:					
1. Find solu	tion for second and higher order differential equation	s, fo	rmat	ion	an	d
solving pa	artial differential equations.					
2. Understa	nd basic concepts of Laplace Transforms and solve prol	blem	s wit	h pe	erio	dic
functions	step functions, impulse functions and convolution.					
3. Employ th	ne tools of Fourier series and Fourier transforms.			<i></i>		- 1
4. Know the	e techniques of solving differential equations and p	partia	ai di	mere	enti	ai
E Know the	Z transform and its application in population dynamics	and	diai	+ o	lar	
5. Know the		anu	aigi	la s	sigr	a
processin	y.					
Madula 1 Ordi						
wodule: I Ula	nary Differential Equations (ODE)			6	ho	urs
Second order no	nary Differential Equations (ODE) n- homogenous differential equations with constant coef	ficier	nts- E	6 Diffe	ho ren	urs tial
Second order no equations with	nary Differential Equations (ODE) n- homogenous differential equations with constant coef variable coefficients- method of undetermined coef	ficier fficie	nts- E nts-r	6 Diffe neth	ho ren nod	urs itial of
Second order no equations with Variation of pa	nary Differential Equations (ODE) n-homogenous differential equations with constant coef variable coefficients- method of undetermined coef rameters-Solving Damped forced oscillations and L	ficier fficie _CR	nts- [nts-r circ	6 Diffe neth uit	ho ren nod the	urs itial of ory
Second order no equations with Variation of pa problems.	nary Differential Equations (ODE) n- homogenous differential equations with constant coef variable coefficients- method of undetermined coef rameters-Solving Damped forced oscillations and L	ficier fficie _CR	nts- [nts-r circ	6 Diffe neth uit	ho ren nod the	urs itial of eory
Second order no equations with Variation of pa problems. Module:2 Part	nary Differential Equations (ODE) n- homogenous differential equations with constant coef variable coefficients- method of undetermined coef rameters-Solving Damped forced oscillations and L al Differential Equations (PDE)	ficier fficie _CR	nts- E nts-r circ	6 Diffe neth uit 5	ho ren nod the ho	urs itial of eory urs
Second order no equations with Variation of pa problems. Module:2 Part Formation of par	nary Differential Equations (ODE) n- homogenous differential equations with constant coef variable coefficients- method of undetermined coef rameters-Solving Damped forced oscillations and L al Differential Equations (PDE) tial differential equations - Singular integrals - Solution	ficier fficie _CR	nts- E nts-r circ stane	6 Diffe neth uit 5 darc	ho ren hod the ho	urs of ory urs
Second order no equations with Variation of pa problems. Module:2 Part Formation of par of first order part	nary Differential Equations (ODE) n- homogenous differential equations with constant coef variable coefficients- method of undetermined coef rameters-Solving Damped forced oscillations and L al Differential Equations (PDE) tial differential equations - Singular integrals - Solution fal differential equations - Lagrange's linear equation-Me	ficier fficie _CR ns of	nts- E nts-r circ stand	6 Diffe neth uit 5 darc	ho ren hod the ho d typ	urs of ory urs pes
Second order no equations with Variation of pa problems. Module:2 Part Formation of par of first order part of variables	n- homogenous differential equations (ODE) n- homogenous differential equations with constant coef variable coefficients- method of undetermined coef rameters-Solving Damped forced oscillations and L al Differential Equations (PDE) tial differential equations - Singular integrals - Solution fal differential equations - Lagrange's linear equation-Me	ficier fficie _CR ns of ethoo	nts- E nts-r circ stand	6 Diffe neth uit 5 darc sepa	ho ren hod the ho d typ	urs of ory urs pes
Second order no equations with Variation of pa problems. Module:2 Part Formation of par of first order part of variables Module:3 Lapl	n- homogenous differential equations (ODE) n- homogenous differential equations with constant coef variable coefficients- method of undetermined coef rameters-Solving Damped forced oscillations and L al Differential Equations (PDE) tial differential equations - Singular integrals - Solution al differential equations - Lagrange's linear equation-Me ace Transform	ficier fficie _CR ns of ethoo	nts- E nts-r circ stand	6 Diffe neth uit 5 darc sepa	ho ren hod the ho typ rati	urs of eory urs pes ion urs
Second order no equations with Variation of pa problems. Module:2 Part Formation of par of first order part of variables Module:3 Lapl Definition- Prope	n- homogenous differential equations (ODE) n- homogenous differential equations with constant coef variable coefficients- method of undetermined coef rameters-Solving Damped forced oscillations and L al Differential Equations (PDE) tial differential equations - Singular integrals - Solution ial differential equations - Lagrange's linear equation-Me ace Transform rties of Laplace transform-Laplace transform of standard rights functions - Lagrange - Singular integrals - Solution	ficier fficie _CR ns of ethoc	nts- [nts-r circ stand d of s	6 Diffe neth uit 5 darc sepa 7 s - La	ho ren hod the ho d typ arati	urs of eory urs ion urs ace
Second order no equations with Variation of pa problems. Module:2 Part Formation of par of first order part of variables Module:3 Lapl Definition-Prope transform of per	n- homogenous differential equations (ODE) n- homogenous differential equations with constant coef variable coefficients- method of undetermined coef rameters-Solving Damped forced oscillations and L al Differential Equations (PDE) tial differential equations - Singular integrals - Solution ial differential equations - Lagrange's linear equation-Me ace Transform rties of Laplace transform-Laplace transform of standard riodic functions-Unit step function-Impulse function.	ficier fficie _CR ns of ethoc func	nts- [nts-r circ stand l of s tions	6 Diffe neth uit 5 darc sepa 7 5 - La Lap	ho ren hod the ho d typ apla blac	urs tial of eory urs pes ion urs ace
Second order no equations with Variation of pa problems. Module:2 Part Formation of par of first order part of variables Module:3 Lapl Definition- Prope transform of per transform-Partial	n- homogenous differential equations (ODE) n- homogenous differential equations with constant coef variable coefficients- method of undetermined coef rameters-Solving Damped forced oscillations and L al Differential Equations (PDE) tial differential equations - Singular integrals - Solution al differential equations - Lagrange's linear equation-Me ace Transform rities of Laplace transform-Laplace transform of standard riodic functions-Unit step function-Impulse function. fractions method and by Convolution theorem	ficier fficie _CR ns of ethoo func	nts- E nts-r circ stand d of s tions	6 Diffe neth uit 5 darc epa 7 7 - La	ho ren nod the ho I typ rati	urs of eory urs pess ion urs ace ce
Second order no equations with Variation of pa problems. Module:2 Parti Formation of part of first order part of variables Module:3 Lapl Definition- Prope transform of per transform-Partial Module:4 Solu	n- homogenous differential equations (ODE) n- homogenous differential equations with constant coef variable coefficients- method of undetermined coef rameters-Solving Damped forced oscillations and L al Differential Equations (PDE) tial differential equations - Singular integrals - Solution al differential equations - Lagrange's linear equation-Me ace Transform rties of Laplace transform-Laplace transform of standard riodic functions-Unit step function-Impulse function. fractions method and by Convolution theorem tion to ODE and PDE by Laplace transform	ficier fficie _CR ns of ethoc func	nts- E nts-r circ stand d of s tions erse	6 Diffe neth uit 5 darc epa 7 5 - La Lap 7 7	ho ren nod the ho l typ arati ho apla blac	urs itial of eory urs pess ion urs ace urs
Solution of Definition of Defi	n- homogenous differential equations (ODE) n- homogenous differential equations with constant coef variable coefficients- method of undetermined coef rameters-Solving Damped forced oscillations and L al Differential Equations (PDE) tial differential equations - Singular integrals - Solution al differential equations - Lagrange's linear equation-Me ace Transform rities of Laplace transform-Laplace transform of standard riodic functions-Unit step function-Impulse function. fractions method and by Convolution theorem tion to ODE and PDE by Laplace transform s - Non-homogeneous terms involving Heaviside function and the product transform - solution transform - solution to the product transform the product transform - solution - solution - transform - solution - transfo	ficier fficie _CR _s of ethoc Inve	nts- E nts-r circ stand I of s tions erse	6 Diffe neth uit 5 darc epa 7 Lap 7 Lap 7	ho ren nod the ho apla blac ho nctio	urs ory urs pession urs ace ce urs
Second order no equations with Variation of pa problems. Module:2 Part Formation of par of first order part of variables Module:3 Lapl Definition- Prope transform of pe transform-Partial Module:4 Solu Solution of ODE' - Solving Non-ho Laplace transform	n- homogenous differential equations (ODE) n- homogenous differential equations with constant coef variable coefficients- method of undetermined coefficients- method of undetermined coefficients- Solving Damped forced oscillations and L al Differential Equations (PDE) tial differential equations - Singular integrals - Solution al differential equations - Lagrange's linear equation-Method ace Transform rties of Laplace transform-Laplace transform of standard riodic functions-Unit step function-Impulse function. fractions method and by Convolution theorem tion to ODE and PDE by Laplace transform s - Non-homogeneous terms involving Heaviside function mogeneous system using Laplace transform - solution to n	ficier fficie _CR _ns of ethoc 	nts- E nts-r circ stand I of s tions erse	6 Diffe neth uit 5 darc sepa 7 c Lap 7 e fur er P	ho ren hod the ho d typ arati ho apla blac DE	urs itial of eory urs ion urs ace ce urs on
Second order no equations with Variation of pa problems. Module:2 Part Formation of par of first order part of variables Module:3 Lapl Definition- Prope transform of pe transform-Partial Module:4 Solu Solution of ODE' - Solving Non-ho Laplace transform	n-homogenous differential equations (ODE) n-homogenous differential equations with constant coef variable coefficients- method of undetermined coefficients- Solving Damped forced oscillations and L al Differential Equations (PDE) tial differential equations - Singular integrals - Solution ial differential equations - Lagrange's linear equation-Method ace Transform rities of Laplace transform-Laplace transform of standard riodic functions-Unit step function-Impulse function. fractions method and by Convolution theorem tion to ODE and PDE by Laplace transform s - Non-homogeneous terms involving Heaviside function mogeneous system using Laplace transform - solution to n. rier Series	ficier fficie _CR ns of ethoc func Inve	nts- E nts-r circ stand I of s tions erse pulse t ord	6 Diffe neth uit 5 darc epa 7 c Lap 7 7 c fur er P	ho ren hod the ho d typ apla blac DE blac	urs tial of eory urs pession urs ace ce urs on by
Second order no equations with Variation of pa problems. Module:2 Part Formation of par of first order part of variables Module:3 Lapl Definition- Prope transform-Partial Module:4 Solu Solution of ODE' - Solving Non-ho Laplace transform Module:5 Fou Fourier series	n- homogenous differential equations (ODE) n- homogenous differential equations with constant coef variable coefficients- method of undetermined coef rameters-Solving Damped forced oscillations and L al Differential Equations (PDE) tial differential equations - Singular integrals - Solution al differential equations - Lagrange's linear equation-Me ace Transform rties of Laplace transform-Laplace transform of standard riodic functions-Unit step function-Impulse function. fractions method and by Convolution theorem tion to ODE and PDE by Laplace transform s - Non-homogeneous terms involving Heaviside functior mogeneous system using Laplace transform - solution to n. rier Series Euler's formulae- Dirichlet's conditions - Change of in	ficier fficie _CR _s of ethoc func Inve	hts- E nts-r circ stand l of s tions erse pulse t ord	6 Diffe neth uit 5 darc epa 7 7 - La Lap 7 7 e fur er P 6 4alf	ho ren hod the ho apla blac ho nctio DE ho	urs itial of ory urs pes ion urs ace urs on by urs
Second order no equations with Variation of pa problems. Module:2 Parti Formation of part of first order part of variables Module:3 Lapi Definition- Prope transform of pe transform-Partial Module:4 Solu Solution of ODE - Solving Non-ho Laplace transform Module:5 Fou Fourier series - series - RMS va	n- homogenous differential equations (ODE) n- homogenous differential equations with constant coef variable coefficients- method of undetermined coef rameters-Solving Damped forced oscillations and L al Differential Equations (PDE) tial differential equations - Singular integrals - Solution al differential equations - Lagrange's linear equation-Me ace Transform rities of Laplace transform-Laplace transform of standard riodic functions-Unit step function-Impulse function. fractions method and by Convolution theorem tion to ODE and PDE by Laplace transform s - Non-homogeneous terms involving Heaviside functior mogeneous system using Laplace transform - solution to n. rier Series Euler's formulae- Dirichlet's conditions - Change of in ue - Parseval's identity.	ficier fficie _CR _S of ethoc Inve n, Im Firs	hts- E nts-r circ stand l of s tions erse pulse t ord	6 Diffe neth uit 5 darc s-La Lap 7 e fur er P 6 Half	ho ren hod the ho apla blac DE ho rar	urs of ory urs pession urs ace ce urs on by urs
Second order no equations with Variation of pa problems. Module:2 Part Formation of par of first order part of variables Module:3 Lapl Definition- Prope transform of pe transform-Partial Module:4 Solu Solution of ODE - Solving Non-ho Laplace transform Module:5 Fou Fourier series - series - RMS va Module:6 Fou	n- homogenous differential equations (ODE) n- homogenous differential equations with constant coef variable coefficients- method of undetermined coefficients- Solving Damped forced oscillations and L al Differential Equations (PDE) tial differential equations - Singular integrals - Solution al differential equations - Lagrange's linear equation-Me ace Transform rties of Laplace transform-Laplace transform of standard riodic functions-Unit step function-Impulse function. fractions method and by Convolution theorem tion to ODE and PDE by Laplace transform s - Non-homogeneous terms involving Heaviside functior mogeneous system using Laplace transform - solution to n. rier Series Euler's formulae- Dirichlet's conditions - Change of in ue - Parseval's identity. rier Transform	ficier fficie _CR _ns of ethoc func Inve	nts- E nts-r circ stand I of s tions erse pulse t ord	6 Diffe neth uit 5 darc sepa 7 7 5 - La Lap 7 7 6 fur er P 6 Half	ho ren hod the ho d typ arati ho aplac DE ho rar ho	urs tial of cory urs pes ion urs ace urs on urs on urs urs urs urs urs urs urs urs
Second order no equations with Variation of pa problems. Module:2 Part Formation of par of first order part of variables Module:3 Lapl Definition- Prope transform of pe transform-Partial Module:4 Solu Solution of ODE' - Solving Non-ho Laplace transform Module:5 Fou Fourier series - series - RMS va Module:6 Fou	n- homogenous differential equations (ODE) n- homogenous differential equations with constant coef variable coefficients- method of undetermined coefficients- Solving Damped forced oscillations and L al Differential Equations (PDE) tial differential equations - Singular integrals - Solution ial differential equations - Lagrange's linear equation-Method ace Transform rties of Laplace transform-Laplace transform of standard riodic functions-Unit step function-Impulse function. fractions method and by Convolution theorem tion to ODE and PDE by Laplace transform s - Non-homogeneous terms involving Heaviside functior mogeneous system using Laplace transform - solution to n. rier Series Euler's formulae- Dirichlet's conditions - Change of in ue - Parseval's identity. rier Transform transform - properties - Relation between Fourier and La	ficier fficie _CR 	nts- E nts-r circ stand I of s tions erse pulse t ord al - F	6 Diffe neth uit 5 darc sepa 7 c tar Lap 7 c fur er P 6 Half 6 ans	ho ren hod the ho l typ arati ho aplac blac DE ho rar ho forr	urs itial of cory urs pes ion urs ace urs on urs urs mge urs mge
Module:1OrdSecond order no equations with Variation of pa problems.PartModule:2PartFormation of par of first order part of variablesPartModule:3LaplDefinition- Prope transform-PartialModule:4Solution Solution of ODE - Solving Non-ho Laplace transformModule:5Fou Fou Fourier series - series - RMS va Module:6Module:6Fou Fourier sine and	n- homogenous differential equations (ODE) n- homogenous differential equations with constant coef variable coefficients- method of undetermined coef rameters-Solving Damped forced oscillations and L al Differential Equations (PDE) tial differential equations - Singular integrals - Solution al differential equations - Lagrange's linear equation-Me ace Transform rties of Laplace transform-Laplace transform of standard riodic functions-Unit step function-Impulse function. fractions method and by Convolution theorem tion to ODE and PDE by Laplace transform s - Non-homogeneous terms involving Heaviside functior mogeneous system using Laplace transform - solution to n. rier Series Euler's formulae- Dirichlet's conditions - Change of in ue - Parseval's identity. rier Transform transform - properties - Relation between Fourier and La cosine transforms - Parseval's identity- Convolution Th	ficier fficie _CR _s of ethoc func Inve func func func func aplac eore	hts- E nts-r circ stand l of s tions erse pulse t ord al - h ce Tr m ar	6 Diffeeneth uit 5 darcc sepa 7 7 Carce 7 7 Carce 6 Half 6 ans od s	ho ren hod the ho d typ arati ho apla blac DE ho rar ho forr imp	urs ory urs pession urs ace urs on by urs by urs be
Module:1OrdiSecond order noequationswithVariationofproblems.Module:2PartiFormationofof first order partof variablesModule:3LapiDefinition-Propetransform-PartialModule:4SolutionSolution of ODE- Solving Non-hoLaplace transformModule:5FouFourier series -series -RMS vaModule:6FouComplex FourierFourier sine andapplications to so	n-homogenous differential equations (ODE) n-homogenous differential equations with constant coef variable coefficients- method of undetermined coef rameters-Solving Damped forced oscillations and L al Differential Equations (PDE) tial differential equations - Singular integrals - Solution al differential equations - Lagrange's linear equation-Me ace Transform rties of Laplace transform-Laplace transform of standard riodic functions-Unit step function-Impulse function. fractions method and by Convolution theorem tion to ODE and PDE by Laplace transform s - Non-homogeneous terms involving Heaviside functior mogeneous system using Laplace transform - solution to n. rier Series Euler's formulae- Dirichlet's conditions - Change of in ue - Parseval's identity. rier Transform transform - properties - Relation between Fourier and La cosine transforms - Parseval's identity- Convolution Th olve PDE.	ficier fficie _CR _s of ethoc _ func _ n, Im o Firs _ terva _ aplac	hts- E nts-r circ stand l of s tions erse pulse t ord al - H	6 Different uit 5 darce eepa 7 c - La Lap 7 c - Lap 7 c - Lap 1 ans nd s	ho rend the ho l type and black blac	urs of ace on urs on urs ace urs on urs on urs on urs on urs on urs on urs
Module:1OrdiSecond order noequationswithVariationofproblems.Module:2PartiFormationofof variablesModule:3LapiDefinition-PropetransformofpetransformPartiModule:3LapiDefinition-Propetransform-PartialModule:4SolutionSolution of ODE'-Solving Non-hoLaplace transformLaplace transformFouFourier series -series -series -RMS vaModule:6FouComplex FourierFourierFourier sineandapplicationsto setModule:7Z-Tr	n- homogenous differential equations (ODE) n- homogenous differential equations with constant coef variable coefficients- method of undetermined coef rameters-Solving Damped forced oscillations and L al Differential Equations (PDE) tial differential equations - Singular integrals - Solution al differential equations - Lagrange's linear equation-Me ace Transform rities of Laplace transform-Laplace transform of standard riodic functions-Unit step function-Impulse function. fractions method and by Convolution theorem tion to ODE and PDE by Laplace transform s - Non-homogeneous terms involving Heaviside function mogeneous system using Laplace transform - solution to n. rier Series Euler's formulae- Dirichlet's conditions - Change of in ue - Parseval's identity. rier Transform transform - properties - Relation between Fourier and La cosine transforms - Parseval's identity- Convolution Th olve PDE. ansform	ficier fficie _CR _S of ethoc Inve 	hts- E nts-r circ stand l of s tions trise pulse t ord al - F	6 Different uit 5 darccepa 7 cepa 7 cepa 7 cepa 1 arc 6 darcs 6 darcs 6 darcs 6 darcs 6 darcs 6 darcs 6 darcs 6 darcs 6 darcs 6 darcs 6 darcs 6 darcs 6 darcs 7 darcs 7 darcs 7 darcs 7 darcs 7 darcs 8 darcs 8 darcs 8 darcs 8 darcs 8 darcs 8 darcs 8 darcs 8 darcs 8 darcs 8 darcs 8 darcs 8 darcs 8 darcs 8 darcs 7 darcs 7 darcs 8 darcs 7 darcs 7 darcs 8 darcs 8 darcs 8 darcs 7 darc 7 darc 7 darc 7 darc 4 darc 7 darc 7 darc 7 darc 7 darc 7 darc 7 darc 7 darc 4 darc 7 darc 7 darc 7 darc 7 darc 7 darc 7 darc 7 darc 7 darc 7 darc 7 darc 7 darc 7 darc 7 darc 7 da da da da darc 7 darc 7 darc 7 darc 7 da darc 7 da da da da da da da da da da da da da	ho ren hod the ho d typ apla blac ho nctio DE ho rar ho forr imp ho	urs of tial of cory urs pession urs ace urs on by urs on urs urs on urs on urs on urs on urs on urs on urs on urs on urs on urs on urs on urs on urs urs urs on urs on urs on urs on urs on urs urs urs urs urs urs urs urs urs urs

convolution	method. Difference equation - fi	rst and se	cond orde	er difference eo	quations with
Module:8	Contemporary Issues				2 hours
		T . (45 1
		Tota	al Lectur al Tutoria	e nours: I hours:	45 hours 15 hours
Text Book	(s)				
 Erwin Kreyszig, Advanced Engineering Mathematics, 2015, 10th Edition, John Wiley India. B.S. Grewal, Higher Engineering Mathematics, 2020, 44th Edition, Khanna Publishers 					
Reference	Books				
 Michael D. Greenberg, Advanced Engineering Mathematics, 2006, 2nd Edition, Pearson Education, Indian edition. A First Course in Differential Equations with Modelling Applications, Dennis Zill, 2018, 11th Edition, Cengage Publishers. 					
Mode of Evaluation: CAT, written assignment, Quiz, FAT					
Recommer	Recommended by Board of Studies 24-06-2021				
Approved b	by Academic Council	No. 64	Date	16-12-2021	

BMAT201L Complex Variables and Linear Algebra L T p C						
			3	1	Ō	4
Pre-requisite	BMAT102L	Sy	/llabu	ls v	ersi	ion
			,	1.0		
Course Objective	es					
 To present important engineers To present important and the solution To provide deeply ab 	t comprehensive, compact, and integrated treatment branches of applied mathematics namely Comple and the scientists. Int comprehensive, compact, and integrated treatme branches of applied mathematics namely Linear Algel cientists. e students with a framework of the concepts that will h out many complex problems.	of o ex va nt of bra to help t	ne of ariabl f anc o the hem	the es other eng to a	i mo to 1 ine jine naly	ost che os [.] ers
Course Outcom	25					
At the end of the c	course the student should be able to					
 Construct Find the i analytic fu Evaluate r Use the po 	image of straight lines by elementary transformation inctions in power series. real integrals using techniques of contour integration. ower of inner product and norm for analysis.	ns an	nd to	exp	res	אנ. 5
5. Use matric	ces and transformations for solving engineering problem	1S.				
Madulad Anal	atia Francticana				-	
Module:1 Analy	ytic Functions				hou	urs
and Harmonic fu Applications of ar	Analytic functions and Cauchy - Riemann equation unctions; Construction of Harmonic conjugate and nalytic functions to fluid-flow and electric field problems	s; La anal <u>y</u>	ytic f	e eq unc	tion	on s;
Module:2 Conf	ormal and Bilinear transformations			7	ho	urs
Conformal mappi Inversion; Expon Cross-ratio-Image transformations;	ng - Elementary transformations; Translation, Magnific ential and Square transformations (w = $e^2 z^2$); Bilir es of the regions bounded by straight lines	catio near und	n, Ro trans er tł	tatic form ne	n, natic abo	on; ove
Module:3 Com	plex Integration			7	ho	urs
Functions given Residues; Integra theorem- Cauchy Indented contour	by Power Series - Taylor and Laurent series-Sing tion of a complex function along a contour; Statements 's integral formula-Cauchy's residue theorem-Evaluati integral.	gular of C on o	ities auch f real	- Po y-Go inte	oles ours egra	sat Is-
Module:4 Vector	or Spaces			6	ho	urs
Vector space - s bases; Dimension nullity.	ubspace; linear combination - span - linearly depende ns; Finite dimensional vector space. Row and column	nt - spa	Inder ces; l	bend Ran	dent k ar	- nd
Module:5 Linea	ar Transformations			6	ho	ur
Linear transformations; \	ations - Basic properties; Invertible linear transformatio /ector space of linear transformations; Change of bases	n; Ma ; Sin	atrice nilarity	es of y.	line	a
Module:6 Inner	Product Spaces			5	ho	urs
Dot products and	inner products; Lengths and angles of vectors; Matrix	repr	esent	tatio	ns (of
inner products; G	ram - Schmidt - Orthogonalization.	•		-		
Module:7 Matri	ices and System of Equations			5	ho	ur
Eigenvalues and Hamilton theoren methods.	l Eigen vectors; Properties of Eigenvalues and Eigen; n; System of linear equations; Gaussian elimination	en ve and	ectors Gaus	s; C ss J	ayle	∍y- an
Module:8 Con	temporary issues:			2	ho	urs

			1			
	Total Le	cture hour	'S:	45 hours		
	Total Tut	orial hours	s:	15 hours		
Text Book	(s)					
1 G	Dennis Zill Patrick D Shanah	an A firs	t cours	se in complex analysis with		
1. C.	plications 2013 3rd Edition long	and Bartle	tt Publ	ishers Series in Mathematics		
2 lin La Kurde Sungaria Hang Linder Algebra 2004 Second adition Springer						
2. JIL HO KWAK, Suligpyo Hong, Linear Algebra, 2004, Second edition, Springer.						
Reference	Books					
1. Erw	vin Kreyszig, Advanced Engineer	ing Mathe	matics,	2015, 10 th Edition, John		
Wile	ey & Sons (Wiley student Edition).	•				
2. Mic	hael. D. Greenberg. Advanced E	Ingineering	n Math	ematics. 2006. 2 nd Edition.		
Pea	arson Education		,			
3 Bor	nard Kolman David R Hill Introd	uctory Line		obra - An applied first course		
0. Dei 201	1 Oth Edition Boarson Education		sai Aigi	ebra - An applied hist course,		
201	r, sin Eulion Pearson Education.					
4. Gilb	ert Strang, Introduction to Linear A	lgebra, 20	15, 5th	Edition, Cengage Learning		
5. B.S	. Grewal, Higher Engineering	Mathemat	tics, 2	020, 44th Edition, Khanna		
Pub	olishers.					
Mode of Ev	aluation. Digital Assignments (Solu	itions by us	sina sof	t skill) Quiz Continuous		
	te Final Accessment Test		ing oor			
A33622011161	Assessments, Final Assessment Test.					
Recommer	Recommended by Board of Studies 24-06-2021					
Approved k	Academia Council	2 00-202 No. 64	- I Doto	16 12 2021		
Approved		110. 04	Dale	10-12-2021		

BMAT202L	Probability and Statistics	L	Τ	р	С		
December 1.11	DMAT404L DMAT404D	3	0	0	3		
Pre-requisite	BMAT101L, BMAT101P	Sylla	bus	vers	sion		
Course Objective	as ·		1.1	J			
1. To provide	e students with a framework that will help them choo	se the	apr	oropr	iate		
descriptive	e methods in various data analysis situations.		-1-1-				
2. To analyze	e distributions and relationship of real-time data.						
3. To apply	3. To apply estimation and testing methods to make inference and modelling						
techniques	s for decision making.						
Course Outcome	N:						
At the end of the c	ourse the student should be able to:						
1. Compute techniques	and interpret descriptive statistics using numeric	al and	gr	aphio	cal		
2. Understan	d the basic concepts of random variables and fir	nd an	арр	ropr	iate		
distributior	n for analyzing data specific to an experiment.						
3. Apply sta	tistical methods like correlation, regression analy	ysis in	an	alyzi	ng,		
Interpretin	g experimental data. propriate decisions using statistical inference that i	e tha	con	tral	to		
experiment	ital research	5 110	CEI	luai	10		
5. Use statist	ical methodology and tools in reliability engineering prob	olems.					
Module:1 Intro	duction to Statistics			6 ho	ours		
Statistics and da	ata analysis; Measures of central tendency; Measu	ure of	Dis	pers	ion,		
Moments-Skewne	ess-Kurtosis (Concepts only).						
Module:2 Rand	om variables			8 ha	ours		
Random variable	es- Probability mass function, distribution and dens	sitv fur	nctic	ns-J	oint		
probability distrib	ution and Joint density functions; Marginal, Conditior	nal dist	ribu	tion	and		
Density functions	s- Mathematical expectation and its properties- Co	ovarian	ce,	Mon	nent		
generating function	on.						
Modulo:2 Corre	Nation and Pogrossion			1 h			
Correlation and F	Regression - Rank Correlation: Partial and Multiple c	orrelati	on.	Mult	inle		
regression		oneiau	ΟΠ,	wicht	ipic		
Module:4 Prob	ability Distributions			7 hc	ours		
Binomial distribu	ition; Poisson distributions; Normal distribution; Ga	mma	dist	ribut	ion;		
Exponential distric	bution; Weibuli distribution.						
Module:5 Hypo	thesis Testing-I			4 ho	ours		
Testing of hypoth	esis -Types of errors - Critical region, Procedure for tes	sting of	hyp	othe	sis-		
Large sample tes	sts- Z test for Single Proportion- Difference of Propo	ortion-	Mea	n ar	nd		
difference of mea	ns.						
Module:6 Hypo	thesis Testing-II			9 ha	ours		
Small sample tests- Student's t-test. F-test- chi-square test- goodness of fit - independence							
of attributes- Desi	gn of Experiments - Analysis of variance - One way-Tv	vo way	-Th	ee v	vay		
classifications - C	RD-RBD- LSD.	,			-		
Modulor7 Dalla	hility			5 ha			
Basic conconto	Hazard function-Reliabilities of series and parellel	evetor			tom		
basic concepts-	nazaru runcuon-ivenavinues or series anu paraller	Syster	119-	Jys			

Reliability - Maintainability-Preventive and repair maintenance- Availability.

Module:8	Contemporary Issues	2 hours

		Total lecture ho	ours:	45 hours		
Text Book	Г					
1. R. eng	E. Walpole, R. H. Myers gineers and scientists, 201	s, S. L. Mayers, 2, 9 th Edition, Pea	K. Ye, F arson Edu	Probability and Statistics for cation.		
Reference	Reference Books					
1. Do En	 Douglas C. Montgomery, George C. Runger, Applied Statistics and Probability for Engineers, 2016, 6th Edition, John Wiley & Sons. 					
2. E.I	Balagurusamy, Reliability I	Engineering, 201	7, Tata Mo	Graw Hill, Tenth reprint.		
3. J. I Lea	L. Devore, Probability and arning.	d Statistics, 2012	2, 8 th Edi	tion, Brooks/Cole, Cengage		
4. R. edi	A. Johnson, Miller Freund tion, Prentice Hall India.	d's, Probability a	nd Statist	ics for Engineers, 2011, 8th		
5. Bila	al M. Ayyub, Richard H	. Mccuen, Prob	ability, S	tatistics and Reliability for		
En	gineers and Scientists, 20	11, 3 rd edition, Cl	RC press.			
Mode of	Evaluation: Digital Assig	nments, Continu	ous Asse	essment Tests, Quiz, Final		
Assessment Test.						
Recomme	nded by Board of Studies	24-06-2021				
Approved	by Academic Council	No. 64	Date	16-12-2021		

BMA	BMAT202P Probability and Statistics Lab L T p C						L T p C
Dro-	roquisito	BMAT1011 BMA	T101P			6,	0 0 2 1
FIC-	requisite					5	
Cou	rse Objective	S:					
-	I. To enable	the students for	having experime	ental knov	vledge of	bas	sic concepts of
	statistics u	ising R programmin	ıg.				
2	2. To study	the relationship of	real-time data	and decis	sion makir	ng tl	hrough testing
	methods u	ISING K. Students conchie t	o do ovporimont	al racaar	ob ucina d	ototia	stics in various
	engineerin	a problems		al leseal	sh using a	Slalls	Sucs III various
	ongineerin						
Cou	rse Outcome	es:					
At th	e end of the c	ourse the student s	should be able to				
	1. Demonstra	ate R programming	for statistical data	3. thada thra		rimo	ntal tachniquae
4	2. Carry out a	appropriate analysis	s of statistical me	thous thic	bugn expe	nine	ental techniques
-	doing rt.						
Indi	cative Experi	ments					
	-						
1.	Introduction:	Understanding Da	ta types; importin	g/exportir	ng data		
2.	Computing	Summary Statistic	s /plotting and v	isualizing	data usir	ng	
2	l abulation a	nd Graphical Repre	esentations		dal ta ra		
3.	dataset com	prietation and sim	ting the coefficie	nt of deter	mination	a	Total
4.	Applving mu	Itiple linear reares	sion model to rea	al dataset	computir	na	Laboratory
	and interpret	ting the multiple coe	efficients of deter	mination	,	.9	hours: 30
5.	Fitting the pr	obability distribution	ns: Binomial distr	ibution			
6.	Normal distri	bution, Poisson dis	tribution				
7.	Testing of h	ypothesis for one s	ample mean and	d proportio	on from re	eal	
0	time problem	1S					
δ.	time problem	/pothesis for two sa	ample means an	a proporti	on from re	ai	
9	Applying the	t-test for independe	ent and depende	nt sample	s		
10.	Applying Ch	i-square test for go	odness of fit test	and Conti	naencv te	est	
	to real datas	et			0)		
11.	Performing	ANOVA for real	dataset for Co	mpletely	randomize	ed	
-	design, Ran	domized Block desi	gn, Latin square	Design			
Text	BOOK	analyzia with D by	v loooph Cabin	Illor Job	o vulles i co		
1. Statistical analysis with R by Joseph Schmuller, John Wiley and					na		
Refe	Reference Books:						
	1. The Book of R: A First course in Programming and Statistics, by Tilman M Davies.						
	William Pollock, 2016.						
	2. R for Data Science, by Hadley Wickham and Garrett Grolemund, O' Reilly Media						
	Inc., 2017.						
Mod	e of assessm	ent: Continuous as	sessment, FAT/	Oral exam	nination ar	nd ot	hers
Rec	ommended by	/ Board of Studies	24-06-2021		40.40.53		
Арр	roved by Acad	demic Council	No. 64	Date	16-12-20	J21	

BMEE102P	Engineering Design Visualization Lab	ILITIPIC					
		10 10 14 12					
Pre-requisite	Nil Sy	Ilabus version					
		1.0					
Course Objectiv	ves						
1. Understand th	e importance of basic concepts and principles of engineering	drawing for					
representing eng	ineering components, sections, views by graphical represent	ation using					
CAD.							
2. Enable the stu	idents with various concepts like dimensioning, conventions a	and standards					
related to workin	related to working drawings in order to become professionally efficient.						
3. Develop the a	bility to communicate with others through the language of tec	hnical drawing					
and sketching.	dense from the surger of the term of the sector of the sector of the form to the	staat daa staa					
4. Apply the stan	dards for the use of international and traditional units for tech	nical drawing.					
Course Outcom	e						
Upon completion	of this subject, the student will be able to						
1. Apply BIS and	ISO standards in engineering drawing.						
2. Graphically co	Instruct two dimensional drawing for engineering applications						
3. Draw projectic	ons of point, lines, solids, sections of solids for regular polyned	arons and					
	ons using computer alded drawing.	annoiantiana					
4. Visualize geor	nemeal solids in 3D space through orthographic and isometin						
Introduction to	Engineering Drawing	o nours					
	Engineering Drawing, Drawing instruments, Drawing st	dimonoioning					
	Hond Skotobing						
Free band skote	a hina Distorial representation of angineering objects representation of angineering objects representation of angineering objects.	o nours					
three dimension	ching- Pictorial representation of engineering objects - re						
visualization skil	a objects in two unitensional media - need for multiple view	s - developing					
Modulo:2 Orth	a through thee thand sketching of three dimensional objects.	8 hours					
Introduction to	projections: General principles of orthographic projection	o - first angle					
	projections. General principles of orthographic projection ut of views - Projection of Points, Projection of lines, 2D draw						
Module:4 3D r	nodelling and Projections	12 hours					
Projection of S	olide: Classification of solids. Projection of solids in simple	nosition-Solid					
Modelling							
Sections of So	lids: Right regular solids and auxiliary views for the true	shape of the					
sections.							
Development of	Surfaces. Intersection of Solids: Intersection of two solids.						
Module:5 Ison	netric Projection and Perspective Projection	8 hours					
Isometric View	v/Projection: Isometric scales, Isometric projections	of simple and					
combination of s	olids. Conversion of pictorial view into orthographic Projection	on- 2D drawing					
from 3D drawing	- Missing views.	-					
Perspective Pro	jection: Orthographic representation of a perspective views.						
Module:6 Orth	ographic Projection into Isometric view	8 hours					
Conversion of O	rthographic projection into isometric view- 3D modelling from	2D drawing.					
Module:7 Proj	ect on Product Development	8 hours					
Project on a proc	luct development related to any engineering application.						
	Total Lecture hours	60 hours					
Text Book		·					
1. Venugopal	K and Prabhu Raja V, Engineering Graphics, New AGE	International					
Reference Root							
1 Rhatt N D	Financering Drawing Charotar Publishing House Put 1 td. 20	119					
Randy H C	Shih SOLIDWORKS 2021 and Engineering Graphics - A	n Integrated					
2 Approach, S	SOC Publications, 2021.	in integrated					

2	Dennis K. Lieu, Sheryl A. Sorby, Visualization, Modeling, and Graphics for					
3	Engineering Design, Delmar, Cengage Learning, 2009.					
Λ	Natarajan.K.V,A Textbook of Engineering Graphics, Dhanalakshmi Publishers,					
4.	Chennai, 2015.					
Ind	icative Experiments					
1	Free Hand Sketching					
2	2D drafting using CAD software					
3	Dimensioning of 2D figures					
4	Projection of points and lines -2D drafting					
5	Projection of solids in simple position- 3D modelling					
6	Section of solids- 3D modelling					
7	Conversion of pictorial drawing into orthographic projection-CAD					
8	Conversion of orthographic projection into isometric view-CAD					
9	Engineering design and visualization of an engineering product -I					
10	Engineering design and visualization of an engineering product -II					
	Total Laboratory Hours 60 hours					
Mo	de of Evaluation: Examination and evaluation is done for CAD exercises. Continuous					
ass	assessments in terms of CAD exercises, models/ products designed and created; FAT &					
Ora	Oral examination					
Red	commended by Board of Studies 02.07.2021					
Арр	proved by Academic Council No. 63 Date 23.09.2021					

BEEE101L	Basic Electrical Engineering	ILITIPIC				
		2 10 10 12				
Pre-requisite	NIL Syl	abus version				
		1.0				
Course Objective	S					
1. Provide ins	sights into relevant concepts and principles in electrical engin	eering				
2. Facilitate	understand and comprehend laws, rules and theorems	to compute				
parameter	s of electric circuits					
3. Enable con	3. Enable comprehend and analyze the concepts of electrical machines and measuring					
	5					
Course Outcome	this source, the students will be able to					
1 Evaluato D	this course, the students will be able to					
2 Analyze th	a parameters of magnetically coupled circuits and compare y	arious types				
2. Analyze in	e parameters of magnetically coupled circuits and compare v	anous types				
3 Comprehe	nd the measurement techniques of electrical parameters					
4 Understand	the concept of electric supply system and comprehend esser	tial				
electrical s	afety requirements					
Module:1 DC C	circuits	6 hours				
Basic circuit eler	ments and sources: Ohms law, Kirchhoff's laws; Series	and parallel				
connection of circ	uit elements: Source transformation: Node voltage analysis:	Mesh current				
analysis; Maximur	m power transfer theorem					
Module:2 AC C	ircuits	6 hours				
Alternating voltage	es and currents, RMS, average, form factor, peak factor; Sin	gle phase RL,				
RC, RLC series	and parallel circuits; Power and power factor; Balanced	three phase				
systems						
Module:3 Magr	netic Circuits	4 hours				
Electromagnetic	Induction: Self and mutual; Magnetically coupled circuits	s; Series and				
parallel magnetic	circuits; Dot convention					
Module:4 Elect	rical Machines	5 hours				
Principle of operat	tion, construction and applications of DC machines, transform	ers, induction				
motors, synchronc	ous generators, stepper motor, Brushless DC (BLOC) motor					
Module:5 Elect	rical Measurements	4 hours				
Principle, Constru	ction and operation of moving coil and moving iron instrumen	ts; Power and				
energy measurem	ent in single phase and three phase systems					
Module: 6 Elec	trical Supply Systems & Safety	3 hours				
Concepts of elec	trical power generation, transmission and distribution sys	tems; Wiring;				
Electrical safety; E	arthing; Protective devices	0.1				
Module: / Con	temporary issues	2 nours				
Guest lectures fro	om Industry and, Research and Development Organizations					
	Total Locture hours	20 hours				
Toxt Book(c)		30 110015				
	lay Electrical Engineering, Dringiples & Applications, 2010, 2	1 b adition				
	ey, Electrical Engineering. Principles & Applications, 2019, ?	rn ealuon,				
Reference Books						
1 DP Kothari &	> L.I.Nagrath Basic Electric Engineering 2019 4 th edition M	lcGraw Hill				
Education						
2 John Bird Electrical Circuit Theory and Technology 2013 5th edition Poutledge						
Publications		Routeuge				
3. S. Salivahnar	n, R Rengarai, G R Venkatakrishnan, Basic Electrical, Elect	ronics and				
Measurement	Engineering, 2018. McGraw Hill Education					
4. E.W Golding	, F.C Widdis, Electrical Measurements and Measuring Ir	struments				
	, i iiiiiii iiiiiiii iiiiiiiiiiiiiiiii					

I 2011, Reem Publications					
5. I V K Mehta and Rohit Mehta, Principles of Power System, 2005, S. Chand					
Mode of Evaluation: CAT, Written A	Mode of Evaluation: CAT, Written Assignment, Quiz, FAT				
Recommended by Board of Studies I 03.07.2021					
Approved by Academic Council No. 63 Date 23.09.2021					

BEEE101P	Basic El	ectrical Engir	eering La	ab	L.	ΓI	p C
					0) 2	2 1
Pre-requisite	I NIL			Syl	labus	ver	sion
					1.	0	
Course Objective	es						
1. Understan	iding the concepts	of electrical	enginee	ring for dev	elopm	ent	and
implement	tation of electrical syst	ems					
Impart kno	owledge and skill in wi	ring and its sta	ndards				
3. Facilitate	comprehend and ide	ntify appropria	ate meas	uring devices	for an	ele	ctric
circuit							
Course Outcome)						
On completion of	this course, the stude	nts will be able	to				
1. Understar	id, analyze and validat	te the electric of	circuit para	ameters			
2. Design an	d develop electrical sy	stems for dom	estic and	commercial ap	piicati	ons	
3. Acquire sk	a to uso modern ongin	i measuremen	t during e	xperimentation		aina	
4. Allalli Skill	mente			ii system layou	t plan	iing	
	of Kirchhoff's voltage k	0.4/					
Verification	of Kirchhoff's current l	aw					
2 Verification	of maximum power tra	aw nefor theorem					
3 Verification	teady state response	of PLC circuits					
4 Siliusoidal s	it for a single lamp and	a fan with rec	ulator				
6 Wiring circui	it for Godown with two		Julator				
7 Load test on	single phase transfor	mer/DC motor					
8 Measureme	nt of power in a single	nhase ACL or	hd				
9 Measureme	nt of power and energ	v consumed b	v a given i	hree phase AC	Cload		
10 Study of ear	thing and measureme	nt of earth pit r	esistance				
11 Cost estimat	tion of residential elect	rical wiring					
12 Electrical lay	out for a residential/co	ommercial/indu	strial appl	ication using C	AD so	oftwa	are
		Тс	tal Labor	atory Hours	;	30 h	ours
Text Book(s)				I			
1 Allan R. Han	nbley, Electrical Engine	ering: Principl	es & Appli	cations, 2019, '	?1h eo	lition	١,
Pearson Education							
Mode of assessm	ent: CAT, FAT, Oral e	xamination					
Recommended by	y Board of Studies	03.07.2021					
Approved by Acad	demic Council	No. 63	Date	23.09.2021			

BECE101L	Basic Electronics	LTPC
		2 0 0 2
Pre-requisite	l Nil Syl	abus version
		1.0
Course Objectiv	es	
1. To introduce	the students to the basic concepts of electronic compone	ents, sources,
measurements. a	ind instrumentation.	ovo olootronio
2. To apply the li	devices	Jus electronic
2 To fomiliarizo	devices	ligital logic
4. To opolygo th	and students with the basic concepts of number systems and to	ngital logic.
4. TO analyse the		nechanisms.
Studente will be	e abla ta	
1 Understand	able to	inmont
2 Comprehen	d the characteristics of diodes, transistors and their application	
2. Comprehen	a the characteristics of diodes, transistors and their application	13
4 Design and	implement simple digital circuits	
5 Analyse the	nerformance metrics of the measurement systems	
6 Comprehen	d the basic concept of various sensors and their sensing mech	anisms
	tronic Components Sources and Measuring Equipment	3 hours
Evolution of Elec	ctronice - Impact of Electronics in Industry and Society - Ear	miliarization of
Resistors Cana	citors Inductors - Colour Coding - types and specification	ns - Flectro-
mechanical com	ponents - Relay and Contactors - Regulated Power su	only Function
Generator - Mul	limeter - CRO	spiy, i unction
Module:2	tion Diodes	4 hours
Intrinsic and ext	rinsic semiconductors - doning - PN lunctions Formation	of lunction
Physical operation	on of diode Barrier Potential 1 - V Characteristics Rectifiers	Zener diode -
I-V Characteristi	rs Zener diode as Voltage regulator	
Module:3 Tran	sistors	5 hours
Bipolar Junction	Transistor (B.IT) - Device structure and physical operation C	oncept of CB
CF and CC Co	nfiguration Transistor as a Switch - Metal-Oxide Field Eff	ect Transistor
(MOSFET) - [Device Structure, mode of operation and Characteristi	cs. MOSFET
configurations (C	S. CD. CG).	
Module:4 Am	blifiers and Oscillators	4 hours
BJT as an am	olifier (CE configuration). MOSFET as an amplifier (CS	configuration).
Feedback conce	pt. Oscillators - Barkhaunsen's criteria for sustained oscillatio	on. RC Phase
Shift Oscillator, I	-C Oscillator.	,
Module:5 Digi	tal Logics	4 hours
Number systems	. conversion of bases. Boolean algebra, Logic Gates, Concept	of universal
gate. Simplificati	on and implementation of Boolean functions.	
Module:6 Prin	ciples of Measurement and Analysis	3 hours
Units and stand	dards. Errors. Functional Elements of a Measurement S	System and
Instruments, Apr	blications and Classification of Instruments. Types of measure	ed Quantities.
Measures of Dis	persion. Sample deviation and sample mean. Calibration and s	standard.
Module:7 Sen	sors and Transducers	5 hours
Sensor fundam	entals and characteristics - General concepts and te	erminology of
measurement s	stems. Sensors and transducers - Classification of sensor	rs. Static and
dynamic charac	teristics. Principle of Resistive Sensors Capacitive Senso	rs. Inductive
Sensors. Magnet	ic sensors. Optical sensor. Self-generating Sensors	,
Module:8 Con	temporary issues	2 hours
Guest lectures fr	om Industry and, Research and Development Organisations	
	Total Lecture hours:	30 hours
		50 110013

Te	kt Book(s)
1.	A. P. Malvina, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill.
2	Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and
	Measurement Techniques", 2016, First Edition, Pearson Education, Naida, India.
Re	ference Books
1.	David A Bell, Electronic Devices and Circuits, Oxford Press, 5th Edition, 2008
2	Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory,
	Prentice Hall of India, 11th Edition, 2017
3	D. Patranabis - Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003
4	A.K. Sawhney, Puneet Sawhney, A Course In Electrical and Electronic Measurements,
	and Instrumentation, Dhanpat Rai & Co., 2015
Мо	de of Evaluation: Internal Assessment (CAT, Quizzes, Digital Assignments) & FAT
Re	commended by Board of Studies 08.07.2021
Ар	proved by Academic Council No. 63 Date 23.09.2021

BECE101P	Basic Electronics Lab ILIIPIC
	IO IO I 2 I 1
Pre-requisite	Nil Syllabus version
Course Obiestin	1.0
	es
1. To learn the Va	aflous characteristics of diodes and transistors
3 To learn the ne	r the concept of digital logic functions and verify the final tables
sensors	sitematice metres of measurement systems and characteristics of various
Course Outcom	
Students will be	able to
1. Analyse the va	arious characteristics and applications of diodes and transistors
2. Design logic c	rcuits using logic gates and verify their truth tables
3. Measure the p	hysical parameters using different transducers
	Indicative Experiments
1 Identify, ma	irk the terminal and find the value of a particular component from the given
DSO function	ctronic components, Study of electronic measurement devices (Multimeter,
2 V-I Charact	eristics of PN Junction diodes and Zener diodes
3 Half Wave a	and Full Wave Rectifier circuits
4 Zener Diod	e as a voltage regulator
5 Characteris	tics of BJT in Common Emitter Configuration
6 Characteris	tics of MOSFET in Common Source Configuration
7 Frequency	response of B-IT single stage amplifier
8 Study of the	signal generation using RC Phase Shift Oscillator
9 Study of loc	ic gates and implementation of Boolean Functions
10 Strain daug	e sensors for measurement of normal strain
11 Displaceme	ent measurement using LVDT and LOR.
12 Temperatur	e measurement using RTD. Thermistor and Thermocouple
	Total Laboratory Hours 1 30 hours
Text Book(s)	
1. A. P. Malvin	a. D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill,
2 Albert D. H	lefrick and William D. Cooper, "Modern Electronic Instrumentation and
Measureme	nt Techniques", 2016, First Edition, Pearson Education, Naida, India.
Reference Book	S
1. Robert L.	Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory,
Prentice Ha	Il of India, 11th Edition, 2017
2 D. Patranak	bis - Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003
Mode of assessr	nent: Continuous assessment/ FAT/ Oral examination and others
Recommended b	by Board of Studies 08.07.2021
Approved by Aca	Idemic Council I No. 63 Date 23.09.2021

BMEE201L	Engineering Mechanics	
Pre-requisite	NIL	Syllabus version
Course Ohiostius		1.0
Course Objective	S:	ante ef visiel heeder
1. To enable	students to apply fundamental laws and basic conce	epts of rigid body
	the students to apply conditions of static equilibrium to	analysa nhysical
2. TO enable	the students to apply conditions of static equilibrium to	analyse physical
3 To comput	e the properties of areas and bodies	
Course Outcome		
Upon successful o	completion of the course the students will be able to	
1. Compute the r	esultant and analyse equilibrium (without and with fric	tion) of system of
forces acting o	n particles and rigid bodies in plane and space.	, - , ,
2. Predict the su	poort-reactions and the internal forces of the member	s of trusses and
frames.		
3. Apply transfer t	heorems to determine properties of various sections.	
4. Calculate motio	on parameters of particles and rigid bodies.	
Module:1 Statio	cs of Particles	5 hours
Fundamental con	cepts and principles - Resolution of a force -Resultant of	forces in a plane-
Equilibrium of a p	article in a plane; Addition of concurrent forces in space	- Equilibrium of a
particle in space.		
Module:2 Static	cs of Rigid Bodies	7 hours
Equivalent system	ns of forces- Principle of Transmissibility - Moment of a f	orce about a point
and an axis- Coup	bles and force-couple systems- Equilibrium of rigid bodie	es in two and three
dimensions- Type	es of beams, supports and reactions; Principle of virtual	work - System of
connected rigid be	odies.	
Module:3 Analy	rsis of Structures	5 hours
I Analysis of plane	trusses - Method of joints and method of sections- Frame	es – -
Module:4 Fricti	on	5 hours
The laws of dry	friction - Coefficients of Friction- Angles of Friction-	Types of Friction
Problems - Wedge	es and Ladder friction- Belt friction.	7 h a ura
First memories of	erties of Surfaces and Solids	7 nours
Pappus Guldinus	Second moment of area, Parallel axis theorem. Post	angular and Polar
Moments of inertia	of composite areas. Radius of Gyration. Product of Iner	tia- Principal Aves
and Principal Mon	pents of Inertia- Mass moments of inertia of thin plates	
Module:6 Dyna	mics of Particles	8 hours
Kinematics of Pa	rticles: Displacement, Velocity and Acceleration - Re	ctilinear motion -
Curvilinear motio	n - Tangential and Normal components - Radial	and Transverse
components.	5	
Kinetics of Particl	es: Newton's Second Law- Energy and Momentum Me	thods-Principle of
Work and Energy-	Principle of Impulse and Momentum- Direct Central Impa	ict
Module:7 Dyna	mics of Rigid Bodies	8 hours
Kinematics of rig	id bodies: Translation and fixed-axis rotation- Genera	l plane motion:
velocity- Instantar	neous centre of rotation- General plane motion: accelera	tion.
Kinetics of rigid b	odies:Equations of motion -Angular momentum- Plane	motion of a rigid
body- Principle of	work and energy for rigid bodies- Principle of impulse a	nd momentum for
rigid bodies.	T - (- 1) (AP 1
	I otal Lecture hours:	45 nours
Text Book(s)		
1. Beer, Johnsto	on, Cornwell, David Mazurek, and Sanghi, Vector Mechar	nics for Engineers:
Statics and D	ynamics, iin Edition, wcGraw-Companies, inc., New Yo	IK, 2019.

Russell C Hibbeler, Engineering Mechanics:	Statics a	nd Dynamics (14 ^m Edition),
Pearson Education Inc., Prentice Hall, 2016.		
Meriam J.L and Kraige L.G., Engineering Mech	anics, Vo	lume I - Statics, Volume II -
Dynamics, 9 th Edition, John Wiley & Sons, New Y	ork, 2018.	
e of Evaluation: CAT, Assignment, Quiz and FA	-	
ommended by Board of Studies 1 02.07.2021		
oved by Academic Council I 63	Date	23.09.2021
	Russell C Hibbeler, Engineering Mechanics: Pearson Education Inc., Prentice Hall, 2016. Meriam J.L and Kraige L.G., Engineering Mech Dynamics, 9 th Edition, John Wiley & Sons, New Y e of Evaluation: CAT, Assignment, Quiz and FAT ommended by Board of Studies I 02.07.2021 oved by Academic Council I 63	Russell C Hibbeler, Engineering Mechanics: Statics at Pearson Education Inc., Prentice Hall, 2016. Meriam J.L and Kraige L.G., Engineering Mechanics, Vo Dynamics, 9 th Edition, John Wiley & Sons, New York, 2018. e of Evaluation: CAT, Assignment, Quiz and FAT ommended by Board of Studies I 02.07.2021 oved by Academic Council I 63 Date

BCSE101E	Computer Programming: Python	TIPIC
	11	IO 4 3
Pre-requisite	NIL Syllab	us version
		1.0
Course Objectiv	/es	
1. To provide exp	posure to basic problem-solving techniques using computers.	
2. To inculcate the	he art of logical thinking abilities and propose novel solutions for re	eal world
problems thro	ough programming language constructs.	
Course Outcom		
1. Classify varie	ous algorithmic approaches, categorize the appropriate data repr	esentation,
and demonst	trate various control constructs.	
2. Choose app	ropriate programming paradigms, interpret and handle data us	sing files to
propose solu	ution through reusable modules; idealize the importance of m	odules and
packages.		
Module:1 Intro	oduction to Problem Solving	1 hour
Problem Solving	g: Definition and Steps, Problem Analysis Chart, Developing an	Algorithm,
Flowchart and P	seudocode.	
Module:2 Pyth	non Programming Fundamentals	2 hours
Introduction to p	bython - Interactive and Script Mode - Indentation - Comments -	· Variables
- Reserved Wor	ds - Data Types - Operators and their precedence - Expressions	s - Built-in
Functions - Imp	orting from Packages.	
Module:3 Cor	ntrol Structures	2 hours
Decision Making	g and Branching: if, if-else, nested if, multi-way if-elif statements	- Looping:
while loop, for I	loop - else clauses in loops, nested loops - break, continue	and pass
statements.		
Module:4 Col	lections	3 hours
Lists: Create, Ac	cess, Slicing, Negative indices, List methods, List comprehension	IS -
Tuples: Create, I	Indexing and slicing, Operations on tuples - Dictionary: Create, ad	dd, and
replace values, 0	Operations on dictionaries - Sets: Creation and operations.	
Module:5 Stri	ngs and Regular Expressions	2 hours
Strings: Compa	arison, Formatting, Slicing, Splitting, Stripping - Regular E	xpressions:
Matching,		
Search and repla	ace, Patterns.	
Module:6 Fun	Ictions and Files	3 hours
Functions - Pa	arameters and Arguments: Positional arguments, Keyword	arguments,
Parameters		
with default val	iues - Local and Global scope of variables - Functions with	in Arbitrary
arguments - Re	ecursive Functions - Lambda Function. Files: Create, Open, R	ead, vvrite,
Append and Clo	se - tell and seek methods.	0 -
	uules and Packages	∠ nours
I BUIIT-IN MODULES	- User-Defined modules - Overview of Numpy and Pandas packa	ages.
ļ	Tatal Lasting Darma	45 k
	I otal Lecture hours:	15 nours
Text Book(s)		
1. Eric Matthe	es, Python Crash Course: A Hands-On, Project-Based Introdu	ction to
Programmin	ng, 2nd Edition, No starch Press, 2019	
Reference Book	KS	h liele e ve
1. Martic C Bro	own, Python: The Complete Reference, 4th Edition, McGraw Hill P	ublishers,
2018.		
2. John V. Gu	uttag, Introduction to computation and programming using py	thon: with
applications	to understanding data. 2nd Edition, MIT Press, 2016.	

Мо	de of Evaluation: No separate evaluation for theory component.	
Ind	icative Experiments	
1.	Problem Analysis Chart, Flowchart and Pseudocode Practices.	
2.	Sequential Constructs using Python Operators, Expressions.	
3.	Branching (if, if-else, nested if, multi-way if-elif statements) and Looping (for, while,	
	nested	
	looping, break, continue, else in loops).	
4.	List, Tuples, Dictionaries & Sets.	
5.	Strings, Regular Expressions.	
6.	Functions, Lambda, Recursive Functions and Files.	
7	Madulas and Baakagaa (NumBy and Bandas)	
1.	Modules and Fackages (NulliFy and Fandas)	
7.	Total Laboratory Hours60 hours	
Tex	Total Laboratory Hours 60 hours kt Book(s) 60 hours	
7. Tex 1.	Total Laboratory Hours 60 hours tt Book(s) Mariano Anaya, Clean Code in Python: Develop maintainable and efficient code, 2 nd	
7. Tex 1.	Total Laboratory Hours 60 hours At Book(s) Mariano Anaya, Clean Code in Python: Develop maintainable and efficient code, 2 nd Edition, Packt Publishing Limited, 2021.	
7. Tex 1. Re	Total Laboratory Hours 60 hours Kt Book(s) Mariano Anaya, Clean Code in Python: Develop maintainable and efficient code, 2 nd Edition, Packt Publishing Limited, 2021. Ference Books	
7. Tex 1. Re	Total Laboratory Hours 60 hours tt Book(s) 60 hours Mariano Anaya, Clean Code in Python: Develop maintainable and efficient code, 2 nd Edition, Packt Publishing Limited, 2021. Ference Books Harsh Bhasin, Python for beginners, 1 st Edition, New Age International (P) Ltd., 2019,	
7. Tex 1. Re 1.	Total Laboratory Hours 60 hours tt Book(s) 60 hours Mariano Anaya, Clean Code in Python: Develop maintainable and efficient code, 2 nd Edition, Packt Publishing Limited, 2021. ference Books Harsh Bhasin, Python for beginners, 1 st Edition, New Age International (P) Ltd., 2019, Mode of assessment: Continuous assessments and FAT	
7. Tex 1. Re Re	Total Laboratory Hours 60 hours At Book(s) 60 hours Mariano Anaya, Clean Code in Python: Develop maintainable and efficient code, 2 nd Edition, Packt Publishing Limited, 2021. Ference Books Harsh Bhasin, Python for beginners, 1 st Edition, New Age International (P) Ltd., 2019, Mode of assessment: Continuous assessments and FAT commended by Board of Studies 03.07.2021	
7. Te : 1. Re : 1. Re : App	Total Laboratory Hours 60 hours At Book(s) Mariano Anaya, Clean Code in Python: Develop maintainable and efficient code, 2 nd Edition, Packt Publishing Limited, 2021. Ference Books Harsh Bhasin, Python for beginners, 1 st Edition, New Age International (P) Ltd., 2019, Mode of assessment: Continuous assessments and FAT commended by Board of Studies 03.07.2021 proved by Academic Council No. 63 Date 23.09.2021	
BCSE103E	Computer Programming : Java	IL IT Ip IC
--	--	--
		11 IO 14 I 3
Pre-requisite	NIL	Syllabus version
		1.0
Course Objectives	S:	
1. To introduc Object -Orie	e the core language features of Java and unders ented programming in Java.	stand the fundamentals of
2. To develop	the ability of using Java to solve real world problem	ems.
Course Outcome:		
At the end of this c	ourse, students should be able to:	
1. Understand Orientated enhancing	basic programming constructs; realize the Programming in Java; apply inheritance and code reusability.	fundamentals of Object d interface concepts for
2. Realize the	res in the collection framework for solving real v	world problems
	a Basics	
Basic programmin	-ealures of Java Language - JVM - Bylecode -	Java program structure -
	ig constructs - data types - variables - Java	naming conventions -
Module:2	oning Constructs and Arrays	2 hours
Control and loop	ing constructs - Arrays - one dimensional a	and multi-dimensional -
enhanced for loop	- Strings - Wrapper classes.	
Module:3 Clas	sses and Objects	2 hours
Class Fundamenta	als - Access and non-access specifiers - Declari	ng objects and assigning
object reference va	ariables - array of objects - constructors and des	structors - usage of "this"
and "static" keywo	rds.	
Module:4 Inh	eritance and Polymorphism	3 hours
Overriding - abstra	s use of "super" - final keyword - Polymorphict class - Interfaces.	hism - Overloading and
Module:5 Pac	kages and Exception Handling	2 hours
Packages: Creati	ng and Accessing - Sub packages.	
Exception Handlin	ng - Types of Exception - Control Flow in Exception	ons - Use of try, catch,
finally, throw, thro	ows in Exception Handling - User defined except	ions.
Module:6 10 St	reams and Files	2 hours
Java 1/0 streams	s - FileInputStream & FileOutputStream -	FileReader & FileWriter-
DataInputStream	& DataOutputStream - BufferedInputStream &	BufferedOutputStream -
PrintOutputStream	- Serialization and Deserialization.	
Module:7 Colle	ction Framework	2 hours
Generic classes ar	nd methods - Collection framework: List and Map	
	Total Lecture hours:	15 hours
Text Book(s)		
1. Y. Daniel Lia	and, "Introduction to Java programming" - cor	mprehensive version-11 th
Edition. Pears	on publisher, 2017.	
Reference Books	. ,	
1. Herbert Schild	tt , The Complete Reference -Java, Tata McGraw	/-Hill publisher, 10 ^m
Edition, 2017.		
2 Cay Horstmar	nn,"Big Java", 4th edition, John Wiley & Sons pub	lisher, 5 th edition, 2015
3 E.Balagurusa	my, "Programming with Java", Tata McGraw-Hill	publishers, 6 th edition,
2019		

Mode of Evaluation: No separate evaluation for theory component.

Indicative Experiments

1.	Programs using sequential and branching structures.

2. Experiment the use of looping, arrays and strings.

3. Demonstrate basic Object-Oriented programming elements.

4. Experiment the use of inheritance, polymorphism and abstract classes.

5. Designing packages and demonstrate exception handling.

6. Demonstrate the use of 10 streams, file handling and serialization.

7. Program to discover application of collections.

Total Laboratory Hours | 60 hours

Text Book(s)

1.	Marc Loy, Patrick Niemeyer and Daniel Leuck, Learning Java, O'Reilly Media, Inc	.,
	5 th Edition, 2020.	

Reference Books

1. Dhruti Shah, 100+ Solutions in Java: A Hands-On Introduction to Programming in Java, BPB Publications, 1st Edition, 2020.

Mode of assessment: Continuous assessments and FAT

Recommended by Board of Studie	es	03.07.2021	
Approved by Academic Council	No. 63	Date	23.09.2021

BEN	G101L	Technical English Communication	ILITIPIC
		· · · · · · · · · · · · · · · · · · ·	12 10 10 12
Pre-I	requisite	NIL Syl	abus version
-			1.0
Cou	rse Objectiv	res:	
1	. To develo	op LSRW skills for effective communication in professional situ	ations
2	2. Ioenhar	ice knowledge of grammar and vocabulary for meaningful com	munication
3	3. To under	stand information from diverse texts for effective technical com	munication
Cou	rse Outcom	es:	
1	. Use gram	mar and vocabulary appropriately while writing and speaking	
2	. Apply the	concepts of communication skills in formal and informal situat	ions
3	. Demonst	rate effective reading and listening skills to synthesize and dra	w intelligent
	inference	S	-
4	. Write clea	arly and significantly in academic and general contexts	
Mod	ule:1 Intr	oduction to Communication	4 hours
Natu	re and Proc	ess - Types of communication: Intra-personal, Interpersonal, G	roup-verbal
and I	non-verbal c	ommunication / Cross-cultural Communication - Communication	on Barriers
and	Essentials o	f good communication - Principles of Effective Communicatio	ns
Mod	ule:2 Gra	mmatical Aspects	4 hours
Sent	ence Patter	n - Modal Verbs - Concord (SVA) - Conditionals - Error detection	n
Mod	ule:3 Wri	tten Correspondence	4 hours
Job /	Application I	_etters - Resume Writing - Statement of Purpose	
Mod	ule:4 Bus	siness Correspondence	4 hours
Busi	ness Letters	: Calling for Quotation, Complaint & Sales Letter - Memo - Mir	nutes of
Meet	ting - Descri	bing products and processes	
Mod	ule:5 Pro	fessional Writing	4 hours
Para	phrasing &	Summarizing - Executive Summary - Structure and Types of Pi	oposal -
Reco	ommendatio	ns 	4 1
Niod			4 nours
Princ	cipies of Lea	dership - Leam Leadership Model - Negotiation Skills - Conflic	t
Iviana	agement	analy Ministra	4 6 6 4 9 6
IVIOO		search writing	4 nours
Inter	preting and	Analysing a research article - Approaches to Review Paper Wr	iting -
Struc		search anticle - Relefencing	2 hours
wiou	ule.o Gu	est Lecture noninindustry and R&D organizations	2110015
Cont	emporary Is	sues	
		Total Lecture hours:	30 hours
Text	Book(s)		
1.1R	aman, Mee	nakshi & Sangeeta Sharma. (2015). Technical Communicatic	n: Principles
ć	and Practice	e, (3 rd Edition). India: Oxford University Press.	
Refe	rence Bool	(S	
1. ₋ T	aylor, Shirle	ey & Chandra .V. (2010). Communication for Business A Pract	ical Approach
4	^{1™} Edition. Ir	ndia: Pearson Longman.	
2. ł	Kumar, Sanj Engineers. I	ay & Pushpalatha. (2018). <i>English Language and Communica</i> ndia: Oxford University Press.	tion Skills for
3. H	Koneru Arur Education.	a. (2020). English Language Skills for Engineers. India: McGra	aw Hill
4. F	Rizvi, M. Asł McGraw Hill	nraf. (2018). <i>Effective Technical Communication</i> 2 nd Edition. Cl Education.	nennai:
5. I	Mishra, Suni Pearson Edu	tha & Muralikrishna,C. (2014). <i>Communication Skills for Engin</i> ucation.	eers. India:

6.1Watkins, P. (2018). *Teaching and Developing Reading Skills: Cambridge Handbooks for Language teachers.* India: Cambridge University Press.

5.5			
Mode of Evaluation: CAT/ Assignment	t/ Quiz/ FAT/ (Group Disc	ussion
Recommended by Board of Studies	28.06.2021		
Approved by Academic Council	No. 63	Date	23.09.2021

BEN	G101P	Technical Er	nglish Comr	nunicatio	n Lab	ILITIPIC
			-			IO IO 2 1
Pre-r	equisite	NIL			S	yllabus version
						1.0
Cour	se Objective	es:				
1. To	use appropr	iate grammatical struct	ures in profe	ssional co	ommunication	
2. To	improve En	glish communication sk	ills for better	employat	oility	
3.To	enhance me	aningful communication	n skills in writ	ting and p	ublic speaking)
Cour	se Outcome	es:			-	
1.De	monstrate pr	ofessional rhetoric and	articulate ide	eas effecti	ively	
2. Int	erpret mater	ial on technology and d	eliver eloque	ent preser	ntations	
3. Ap	ply receptive	e and productive skills i	n real life situ	uations ar	nd develop wo	rkplace
comr	nunication	·				
Indic	ative Experi	ments				
1.	Grammar &	k Vocabulary				
	Error Detec	tion				
	Activity: -V	Vorksheets				
2.	Listening t	o Narratives				
	Interviews of	of eminent personalities	& Ted Talks	6		
	Activity: Li	stening Comprehensior	n / Summaris	sing		
3.	Video Resi	ume		0		
	SWOT Ana	lysis & digital resume te	echniques			
	Activity: P	reparing a digital resum	e for mock ir	nterview		
4.	Product &	Process Description				
	Describing	and Sequencing				
	Activity: D	emonstration of produc	t and proces	s		
5.	Mock Meet	inas	•			
	Types of m	eetings and meeting eti	auette			
	Activity: C	onduct of meetings a	nd drafting i	minutes	of the meeting	g
6.	Reading re	search article				•
	Scientific ar	nd Technical articles				
	Activity: W	riting Literature review				
7.	Analytical	Reading				
	Case Studio	es on Communication, ⁻	Team Buildir	ng and Le	adership	
	Activity: G	roup Discussion		0	•	
8.	Presentatio	ons				
	Preparing (Conference/Seminar par	per			
	Activity: In	dividual/ Group present	ations			
9.	Intensive L	istening				
	Scientific do	ocumentaries				
	Activity: N	ote taking and Summar	ising			
10.	Interview S	Skills	0			
	Interview au	uestions and techniques	S			
	Activity: M	ock Interviews				
		-	То	tal Labor	atory Hours	30 hours
Mod	e of Assess	ment: Continuous Ass	essment/ F/	AT/Writte	n Assianment	s/ Quiz/ Oral
Pres	entation and	Group Activity.				
Reco	mmended b	v Board of Studies	2s.06.2021			
Appr	oved by Aca	demic Council	No. 63	Date	23.09.2021	

BENG101N		Effective	e English Con	nmunicat	ion	ILITIPIC
						lo lo 1412
Pre-	requisite	Nil				Syllabus Version
						1.0
Cou	rse Objective	es:				
1.	Fo hone LSR\	N skills for effective co	ommunication			
2.	l o enhance c	ommunication skills fo	or future caree	r aspiratio	ns	
3.	l o gain critica	a communication skills	s in writing and	l public sp	eaking	
		S:	roprioto aroma	nor ond v	a a a b u l a m i	
1. 1		sentences using app	ropriate grami	nar and v	ocabulary	
2. 0	Spless clear	ivon lictoning inputs fo	sations with tu	olu pronul porobonci	on	
	Analyse the gi	t reading strategies t	o various texts	and use t	them annror	viately
India	ative Experi	ments				Ласегу
1	Fundament	als of Grammar: Pa	rts of Speech	Articles	Tenses Se	entence Structure
	Types of Se	ntences. Subject-Verb	Agreement	/ 110100,		
	Activity: Ex	ercises and workshee	ets			
2.	Speaking for	or Self-Expression: F	Formal Self-Int	roduction,	Expressing	Oneself
	Activity: Se	If-Introduction, Just a	Minute (JAM)	,		,
3.	Basic Liste	ning: Listening to Sim	ple Conversat	tions, Sho	rt Speeches	/Stories
	Activity: Ga	ap fill exercises			·	
4.	Reading Sk	tills: Reading Strateg	ies, Skimming	and Scar	nning	
	Activity: Gla	aze reading, Reading	comprehensio	n, Readin	g newspape	er articles
5.	Drafting Pa	ragraphs: Keywords	Development,	Writing P	aragraphs u	sing Connectives
	Activity: Pie	cture and poster interp	pretation			
6.	Vocabulary	Enrichment: Syno	nyms and An	itonyms,	Prefixes an	d Suffixes, Word
	Formation, (Jne Word Substitution	n, Frequently u	ised Idiom	is and Phras	ses, Homophones
	and Homon	yms	we which a sta			
7	Activity: Cr	ossword puzzles and	worksneets		Liotoping to	Notivo
1.	Speakers I	istoping to Various A		ionemes,	Listening to	inalive
	Activity lis	stening to various A	Snell Ree			
8	Interactive	Sneaking: Everyday	Conversations	Team In	teractions S	Simulations
0.	Activity: Sit	uational role plays	Conversations			
9.	Email and L	etter Writing: Types	and Format o	f Emails a	nd Letters	
	Activity: Of	ficial e-mails and lette	rs, personal le	tters		
10.	Reading for	r Comprehension: S	hort Stories by	Indian W	riters	
	Activity: Su	Immarising, loud readi	ing			
			То	tal Labora	atory Hours	60 hours
Mod	le of Evaluat	ion: Continuous asse	essment/ FAT/	/Written a	assignments	/ Quiz/ Oral
exan	nination / Gro	oup activity				
Reco	ommended by	y Board of Studies	l 2s.06.2021			
Аррі	roved by Acad	demic Council	I No. 63	Date	23.09.202	1

BSTS101P	Quantitative Skills Practice I	
		0 10 1 3 11.s
Pre-requisite	Nil Sy	llabus version
		1.0
Course Objective	es:	
1. To enhand	ce the logical reasoning skills of the students and help them i	mprove
problem-s	olving abilities	
2. To acquire	e skills required to solve quantitative aptitude problems	
3. TO DOOSE	the verbal ability of the students for academic and profession	lai purposes
Course Outcome	26.	
1 Exhibit so	und knowledge to solve problems of Quantitative Aptitude	
2. Demonstr	ate ability to solve problems of Logical Reasoning	
3. Display the	e ability to tackle questions of Verbal Ability	
Module:1 Logi	cal Reasoning	5 hours
Word group cate	egorization guestions	
Puzzle type class	involving students grouping words into right group orders of	logical sense
Cryptarithmetic		0
Module:2 Data	arrangements and Blood relations	6 hours
Linear Arrangeme	ent - Circular Arrangement - Multi-dimensional Arrangement -	Blood
Relations		
Module:3 Ratio	and Proportion	6 hours
Ratio - Proportion	n - Variation - Simple equations - Problems on Ages - Mixto	ures and
alligations		-
Module:4 Perce	entages, Simple and Compound Interest	6 hours
Percentages as F	ractions and Decimals - Percentage Increase/ Decrease -	Simple Interest
- Compound Inte	rest - Relation Between Simple and Compound Interest	
Module:5 Num	ber System	6 hours
Medula 6 Eco	Power cycle - Remainder cycle - Factors, Multiples - HCF	
		7 nours
Prepositio Adia ativas	ns and Advarba	
Adjectives Target	and Adverbs	
Iense Speech ov	ad Vision	
Speech al	d Phrasel Varba	
	o Pillasal Velos	
Collocatio Definite ex	ns, Gerunus and minimuves	
Definite an Omission	of Articles	
Onission Propositio	OF ATTICIES	
Frepositio Compound	IIS A Propositions and Propositional Phrases	
Compound Interrogati		
Module:7 Read	ing Comprehension for Placement	3 hours
Types of question	s - Comprehension strategies - Practice exercises	5 11001 3
Module:8 Voca	bulary for Placement	6 hours
Exposure to ques	stions related to Synonyms -Antonyms -Analogy - Confusing	a words -
Spelling correctne	ess	
	Total Lecture hours:	45 hours
t Book(s)		
SMART (20	18), Place Mentor 1 st (Ed.), Chennai: Oxford University Press	<u>.</u>
Addarwal R S	S. (2017). Quantitative Aptitude for Competitive Examination	s 3 rd (Ed.)
New Delhi: S	. Chand Publishing.	

3.	FACE. (2016). <i>Aptipedia Aptitude Encyclopedia</i> 1 St (Ed.). New Delhi: Wiley Publications.
4.	ETHNUS. (2016). Aptimithra, 1s ^t (Ed.) Bangalore: McGraw-Hill Education Pvt. Ltd.
Ref	erence Books
1.	Sharma Arun. (2016). Quantitative Aptitude, ?1\Ed.). Naida: McGraw Hill Education Pvt. Ltd.
Мо	de of evaluation: CAT, Assessments and FAT (Computer Based Test)
Red	commended by Board of Studies I 28.06.2021
App	roved by Academic Council I No. 63 Date 23.09.2021

BSTS102	P	Quantitative Skills Practi	
Bro-roquis	ito	Nii	
Fie-iequis	ale	NII	
Course Obj	jective	9S:	1.0
1. Help	, to trig	ger the students' logical thinking skills ar	nd apply it in real-life scenarios
2. Lear	n to de	eploy the strategies of solving quantitative	e ability problems
3. Toe	xpand	I the verbal ability of students	
4. Assi	st to ri	In the gamut of employability skills	
Course Out	tcome	s:	
1. Becc	ome pi	roficient in interacting and using decision	making models effectively
2. Help	to uno	derstand the given concepts expressly to	deliver an impactful presentation
3. Acqu	uire kn	owledge of solving quantitative aptitude a	and verbal ability questions
effor	tlessly	,	
Module:1	Logic	cal Reasoning puzzles -Advanced	2 hours
Advanced p	uzzles	:	
• Sud	loku		
• Min	d-bend	der style word statement puzzles	
• Ana	igrams	77/00	
Module:2	l ogi	cal connectives Syllogism and Venn	2 hours
module.2	diagr	ams	2 110013
Logical Con	nectiv	es - Advanced Syllogisms - 4, 5, 6 and o	other multiple statement problems
- Challengin	ig Ven	n Diagram questions: Set theory	
Module:3	Perm -Adva	utation, Combination and Probability anced	4 hours
Fundamenta	al Cou	nting Principle- Permutation and Combin	ation - Computation of
Permutation	- Adv	anced problems - Circular Permutations	- Computation of Combination -
Advanced p	roblem	ns -Advanced probability	
Module:4	Quan	titative Aptitude	6 hours
Logarithms	s, Pro	gressions, Geometry and Quadratic eq	uations - Advanced
• Loga	arithm		
Ariti	hmetic	Progression	
• Geo	ometric	Progression	
• Geo	ometry		
• Mer	nsuratio	on	
• Code	ed ine	qualities	
Qua	dratic	Equations	
Module:5	Imag	e interpretation	2 hours
Image inter	nretat	ion: Methods - Exposure to image intern	retation questions through
brainstormir	ng ang	t practice	
Module:6	Critic	al Reasoning - Advanced	3 hours
Concepts of	Critic	al Reasoning - Exposure to advanced qu	estions of GMAT level
Module:7	Recru	uitment Essentials	8 hours
Mock interv	views		
0			
Cracking of	ther k	inds of interviews	

Skype/ T	elephonic interviews	
Panel int	erviews	
Stress int	erviews	
Guesstin	ation	
1. B	est methods to approach Guesstimation question	s
2. P	actice with impromptu interview on Guesstimatio	n questions
Case stu	lies/ situational interview	
1.	Scientific strategies to answer case study and	situational interview questions
2.	Best ways to present cases	
3.	Practice on presenting cases and answering si recruitment rounds	tuational interviews asked in
Module:8	Problem solving and Algorithmic skills	18 hours
Logical m	ethods to solve problem statements in Program	ning - Basic algorithms
introduced	1	0
	Total Lecture hours:	45 hours
Text Boo	 k(s)	
Text Boo 1. SMA	∣ k(s) RT. (2018). <i>Place Mentor</i> 1s ^t (Ed.). Chennai: Oxf	ord University Press.
Text Boo 1. SMA 2. Agga	∣ k(s) RT. (2018). <i>Place Mentor</i> 1s ^t (Ed.). Chennai: Oxf rwal R.S. (2017). <i>Quantitative Aptitude for Comp</i>	ord University Press. <i>Netitive Examinations</i> 3 rd (Ed.).
Text Boo1.SMA2.AggaNew	k(s) RT. (2018). <i>Place Mentor</i> 1s ^t (Ed.). Chennai: Oxf rwal R.S. (2017). <i>Quantitative Aptitude for Comp</i> Delhi: S. Chand Publishing.	ord University Press. Detitive Examinations 3 rd (Ed.).
Text Boo1.SMA2.Agga New	k (s) RT. (2018). <i>Place Mentor</i> 1s ^t (Ed.). Chennai: Oxf rwal R.S. (2017). Q <i>uantitative Aptitude for Comp</i> Delhi: S. Chand Publishing.	ord University Press. <i>Tetitive Examinations</i> 3 rd (Ed.).
Text Boo1.SMA2.Agga New3.FACE	k (s) RT. (2018). <i>Place Mentor</i> 1s ^t (Ed.). Chennai: Oxf rwal R.S. (2017). <i>Quantitative Aptitude for Comp</i> Delhi: S. Chand Publishing.	ord University Press. <i>Tetitive Examinations</i> 3 rd (Ed.).
Text Boo1.SMA2.Agga New3.FACE Public	k (s) RT. (2018). <i>Place Mentor</i> 1s ^t (Ed.). Chennai: Oxf rwal R.S. (2017). <i>Quantitative Aptitude for Comp</i> Delhi: S. Chand Publishing. . (2016). <i>Aptipedia Aptitude Encyclopedia</i> 1 St (Ec cations.	ord University Press. <i>netitive Examinations</i> 3 rd (Ed.). d.). New Delhi: Wiley
Text Boo1.SMA2.Agga New3.FACE Public	k (s) RT. (2018). <i>Place Mentor</i> 1s ^t (Ed.). Chennai: Oxf rwal R.S. (2017). <i>Quantitative Aptitude for Comp</i> Delhi: S. Chand Publishing. (2016). <i>Aptipedia Aptitude Encyclopedia</i> 1 St (Ec cations.	ord University Press. <i>Petitive Examinations</i> 3 rd (Ed.). I.). New Delhi: Wiley
Text Boo1.SMA2.Agga New3.FACE Public4.ETHN Reterence	k (s) RT. (2018). <i>Place Mentor</i> 1s ^t (Ed.). Chennai: Oxf rwal R.S. (2017). <i>Quantitative Aptitude for Comp</i> Delhi: S. Chand Publishing. (2016). <i>Aptipedia Aptitude Encyclopedia</i> 1 St (Ed.) cations.	ord University Press. <i>Tetitive Examinations</i> 3 rd (Ed.). A.). New Delhi: Wiley Graw-Hill Education Pvt.Ltd.
Text Boo1.SMA2.Agga New3.FACE Public4.ETHN Reference1.Shar	k(s) RT. (2018). <i>Place Mentor</i> 1s ^t (Ed.). Chennai: Oxf rwal R.S. (2017). <i>Quantitative Aptitude for Comp</i> Delhi: S. Chand Publishing. (2016). <i>Aptipedia Aptitude Encyclopedia</i> 1 St (Ed cations. US. (2016). <i>Aptimithra</i> , 1 St (Ed.) Bangalore: McC BOOKS	ord University Press. <i>Netitive Examinations</i> 3 rd (Ed.). H.). New Delhi: Wiley Graw-Hill Education Pvt.Ltd.
Text Boo1.SMA2.Agga New3.FACE Public4.ETHN Reterenc1.Shar Ltd	k(s) RT. (2018). <i>Place Mentor</i> 1s ^T (Ed.). Chennai: Oxf rwal R.S. (2017). <i>Quantitative Aptitude for Comp</i> Delhi: S. Chand Publishing. (2016). <i>Aptipedia Aptitude Encyclopedia</i> 1 St (Ed cations. IUS. (2016). <i>Aptimithra</i> , 1 St (Ed.) Bangalore: McC e Books ma Arun. (2016). <i>Quantitative Aptitude</i> , ?1\Ed.).	ord University Press. <i>Tetitive Examinations</i> 3 rd (Ed.). d.). New Delhi: Wiley Graw-Hill Education Pvt.Ltd. Naida: McGraw Hill Education Pvt.
Text Boo1.SMA2.Agga New3.FACE Public4.ETHN Reference1.Shar Ltd.Mode of e	k(s) RT. (2018). <i>Place Mentor</i> 1s ^t (Ed.). Chennai: Oxf rwal R.S. (2017). <i>Quantitative Aptitude for Comp</i> Delhi: S. Chand Publishing. (2016). <i>Aptipedia Aptitude Encyclopedia</i> 1 St (Ed cations. IUS. (2016). <i>Aptimithra</i> , 1 St (Ed.) Bangalore: McC e Books ma Arun. (2016). <i>Quantitative Aptitude</i> , ?1\Ed.).	ord University Press. <i>netitive Examinations</i> 3 rd (Ed.). A.). New Delhi: Wiley Graw-Hill Education Pvt.Ltd. Naida: McGraw Hill Education Pvt. Iter Based Test)
Text Boo1.SMA2.Agga New3.FACE Public4.ETHN Referenc1.Shar Ltd.Mode of e	k(s) RT. (2018). <i>Place Mentor</i> 1s ^t (Ed.). Chennai: Oxf rwal R.S. (2017). <i>Quantitative Aptitude for Comp</i> Delhi: S. Chand Publishing. A. (2016). <i>Aptipedia Aptitude Encyclopedia</i> 1 St (Ed.) Aptimithra, 1 St (Ed.) Bangalore: McC BOOKS ma Arun. (2016). <i>Quantitative Aptitude,</i> ?1\Ed.).	ord University Press. <i>Netitive Examinations</i> 3 rd (Ed.). A.). New Delhi: Wiley Graw-Hill Education Pvt.Ltd. Naida: McGraw Hill Education Pvt. uter Based Test)
Text Boo1.SMA2.Agga New3.FACE Public4.ETHN Reference1.Shar Ltd.Mode of a Recommended	k(s) RT. (2018). <i>Place Mentor</i> 1s ^t (Ed.). Chennai: Oxf rwal R.S. (2017). <i>Quantitative Aptitude for Comp</i> Delhi: S. Chand Publishing. (2016). <i>Aptipedia Aptitude Encyclopedia</i> 1 St (Ed cations. US. (2016). <i>Aptimithra</i> , 1 St (Ed.) Bangalore: McC BOOKS ma Arun. (2016). <i>Quantitative Aptitude</i> , ?1\Ed.). Evaluation: CAT, Assessments and FAT (Compo nded by Board of Studies I 2a.06.2021	ord University Press. <i>Netitive Examinations</i> 3 rd (Ed.). H.). New Delhi: Wiley Graw-Hill Education Pvt.Ltd. Naida: McGraw Hill Education Pvt. uter Based Test)
Text Boo1.SMA2.Agga New3.FACE Public4.ETHN Reterenc1.Shar Ltd.Mode of e Approved	k(s) RT. (2018). Place Mentor 1s ^T (Ed.). Chennai: Oxf rwal R.S. (2017). Quantitative Aptitude for Comp Delhi: S. Chand Publishing. . (2016). Aptipedia Aptitude Encyclopedia 1 St (Eccations. IUS. (2016). Aptimithra, 1 St (Ed.) Bangalore: McC e Books ma Arun. (2016). Quantitative Aptitude, ?1\Ed.). evaluation: CAT, Assessments and FAT (Compo nded by Board of Studies 1 2a.06.2021 by Academic Council I No. 63	ord University Press. <i>Tetitive Examinations</i> 3 rd (Ed.). A.). New Delhi: Wiley Graw-Hill Education Pvt.Ltd. Naida: McGraw Hill Education Pvt. uter Based Test) 23.09.2021

BMEE101N	Intro	duction to En	gineerii	ng		L	TF) C
			•			0	0 0) 1
Pre-requisite	Nil				Syl	labu	is ver	sion
						1	.0	
Course Objecti	ve:							
To make the	student comfortable a	nd get familiar	ized with	n the facilitie	es avai	lable	e on	
campus			.,.					
I o make the	• To make the student aware of the exciting opportunities and usefulness of engineering to							
society	student understand th	o philosophy (of onging	oring				
				enng				
Course Outcon								
To know the	infrastructure facilities	available on c	ampus					
 To rationally 	utilize the facilities dur	ing their term	for their	professiona	l growt	h		
 To appreciat 	e the engineering prin	ciples, involve	in life-lo	ng learning	and ta	ke u	ıр	
engineering	practice as a service to	o society		0 0			•	
General Guidel	ines							
1. Student	should observe and inv	volve in the ac	tivities d	uring the inc	duction	pro	gram	me.
Both ger	eral activities and those	se which are d	iscipline	-specific sh	ould be	e inc	luded	Í
here.	ala avulat avat fa mailia nima al			f = = : : : :=======	-:			
2. Student	a donoral induction of	with the initias		nmo and al	allable	on (camp	us
institutio	e general induction, so nal website		i piograi		50 11011	i uie	-	
3. Student	should attend the lectu	ire by industrie	es, incluc	lina those o	n care	er		
opportur	ities, organized by the	School and p	obably i	nvolve in 'D	o-it-vo	urse	elf'	
projects	or projects involving re	verse-enginee	ering.		,			
Activities	under 'Do-it-Yourself'	will be detailed	d by the	School.				
5. Student	should prepare a repor	rt on the activit	ies and	observation	s, as p	er th	ne	
specified	format, and submit th	e same in insti	itutional	LMS, VTOF	o for fu	rthe	r	
evaluatio	n							
General	instruction on formattir	na: Document	to he nre	enared with	the titl	es a	iiven i	n
the temp	late: Arial type with for	nt size of 12 to	be used	: photograp	hs car	n be	incluc	led
in the do	cument as per the req	uirement; 1.5 l	ine spac	ing to be us	sed.			
	· · ·		·	<u> </u>				
Mode of Evaluat	ion: Evaluation of the	submitted repo	ort and in	teraction w	ith the	stud	ents	
Recommended	by Board of Studies	02.07.2021						
Approved by Ac	ademic Council	No. 63	Date	23.09.202	21			

BSSC101N	Essence of Traditional Knowledge	L	- T	. P	'T	С	
	N19		0 0) 0	Ť	2	
Pre-requisite	NI	Sylla	bus	vers	01	n	
Course Objectiv	/AS.		1.0	,			
1. To impar 2. To enable 3. To analy System.	the knowledge on Indian tradition and Culture. The students to acquire the traditional knowledge in differ ze and understand the Science, Management and Ind	ent se lian K	ector: (now	s. Iedg	e		
Course Outcom	es:						
 Familiariz Explore t Analyze a Gives a c basic prin Enable k 	te the concept of Traditional Indian Culture and Knowledge the Indian religion, philosophy and practices. and understand the Indian Languages, Culture, Literature a lear understanding on the Indian perspective of modern s inciples of Yoga and holistic health care system of India. howledge on Legal framework and traditional knowledge.	e. and Ar cientif	rts. fic w	orld	an	ıd	
Module:1 Intra	duction to Traditional Knowledge						
Traditional know traditional know vis Indigenous ki	ledge: Definition, nature and characteristics, scope and im edge, Indigenous Knowledge, characteristics, Traditional nowledge, Traditional knowledge Vs Western Knowledge.	portar know	nce, ledg	kind: e vis	5 C 3-2	of a-	
Nodule:2 Cult	ure and Civilization Culture and Haritage Characte	rictico	foo	turor		J.	
Indian Culture, Ir Modern India.	nportance of Culture, Cultural practices in Ancient India, N	/ledie	val Ir	idia :	an	ת d	
Module:3 Lan	Module:3 Languages and Literature						
Indian Language society, Indian p	es and Literature: the role of Sanskrit, significance of sc hilosophies, other Sanskrit literature and literatures of Sout	ripture th Indi	es to a.	curr	er	nt	
Module:4 Reli	gion and Philosophy				_		
Religion and Phi in Medieval India	losophy: Religion and Philosophy in ancient India, Religion, Religious Reform Movements in Modern India (selected in Arta in India)	on and mover	d Phi ment	ioso is or	ph ily)	у).	
	Arts in India						
Indian Painting, music, Dance a ancient, mediev Pranayama prac	Indian handicrafts, Music, divisions of Indian classic mus nd Drama. Science and Technology in India, Developm al and modern India. Traditional Medicine - Herbal He tices.	aic, mo ent o aling	oderi f sci - Yc	ו Inc ence ga a	lia ÷ii an	n n d	
Module:6 Trac	litional Knowledge in different sectors						
Traditional know in agriculture, I Importance of co biodiversity and	edge and engineering, Traditional medicine system, Tradit Dependence of Traditional Societies on food and hea onservation and sustainable development of environment, Protection of Traditional knowledge.	tional althcar Mana	knov re n agerr	/ledo eeds ient	je s; of		
Module:7 I Leg	al framework and Traditional Knowledge						
Introduction on Other Traditiona Protection and F and Rules 2004,	Legal framework and Traditional Knowledge: The Sche I Forest Dwellers (Recognition of Forest Rights) Act, 200 Farmer's Rights Act, 2001 (PPVFR Act); The Biological I The protection of traditional knowledge bill, 2016.	duled 06, Pl Divers	Trik ant \ sity A)es /arie (ct 2	an etie 200	d ∋s)2	
	Total Lecture Hours:		6	0 ha	วน	rs	
Text Books:							
1. Shikha Systems	lain, Parul G Munjal And Somya Joshi,(2020) Traditi And Cultural Heritage, Aryan Books International, India.	onal	Knov	vled	ge	;	
2. Anindya	Bhukta(2020), Legal Protection for Traditional Knowledge	e: Tow	ards	S A N	١e	w	

	Law for Indigenous Intellectual F Kingdom.	Property,	Emerald	Publishing Limited, United				
Refer	rence Books :							
-1	Traditional Knowledge System in Inc	dia, by Am	iit Jha, 200	09.				
	Basant Kumar Mohanta & Vipin Kun	nar Singh	(2012), "T	raditional Knowledge System				
2.	& Technology in India", Pratibha Prakashan, India.							
3–	S. Baliyan, Indian Art and Culture, Oxford University Press, India.							
4	http://indiafacts.org/author/michel-da	anino/						
5.	GN Jha (Eng. Trans.) Ed. R N Vidyanidhi Prakasham, Delhi,2016.	Jha, Yo	ga-darsha	nam with Vyasa Bhashya,				
Mode of Evaluation: Quiz and Term End - Quiz								
Recor	mmended by Board of Studies	16-11-202	21					
Appro	Approved by Academic Council No. 64 Date 16-12-2021							
			•					

BCHY102N	Environmental Sciences		L	Т	Ρ	С
			0	0	0	2
Pre-requisite	NIL	Syl	labu	s ve	rsi	on
Course Objecti			1	.0		
The course is a	ves:					
1 Underst	and and appreciate the unity of life in all its forms ar	nd the	ir			
implicati	ons of life style on the environment.		/11			
2. Identify t	he different causes for environmental degradation.					
3. Analyze	individual's contribution to environmental pollution.					
4. Evaluate	e the impact of pollution at the global/local level an	d find	d			
solutions	s for remediation.					
Course Outcor	nes					
At the end of the	e course, the students will be able to:					
I. Recogni perspect	ze the environmental issues in a problem-oriented, in ive.	terdis	ciplii	nary		
2. Classify potentia	the key environmental issues, the science behind the solutions.	ose p	roble	ems	and	ł
3. Demons	trate the significance of biodiversity and its preservation					
4. Identify	various environmental hazards.					
5. Design v	various methods for the conservation of resources.					
6. Formula	te action plans for sustainable alternatives that incorp	orate	scie	ence	÷,	
humanit	y, and social aspects.					
Module: 1 E	nvironment and Ecosystem		5 no	ours	5	
types. Key env chain, food wet stages involved	ironmental problems, their basic causes and sustainab and their significance, Energy flow in ecosystem; Eco , primary and secondary succession - hydrarch, mesarcl	h, con ble so logica h, xera	lution Iution I suo arch	ns. I cces	Foc sio	nd n-
Module: 2 B	iodiversity		4 h	ours	5	
Biodiversity-def	nition, levels and importance. Species: roles: types:	extir	nct,	ende	emi	C,
endangered an biodiversity due advantages and	d rare species. Hot-spots –Significance, Mega-biodiv to natural and anthropogenic activities, Conservation m I disadvantages.	versity iethoc	/. TI ls. G	nrea M c	ts rop	to s-
Module: 3 S	ustaining Environmental Quality		4 h	ours	5	
				<u>/N A</u>		
COVID-19), Ch quality manage	hazards: definition, types, causes and solutions: E emical (BPA, heavy metals), and Nuclear (Chernobyl); ment and conservation; Solid waste management metho	Air, w ds.	vater	(Ma ° anc	ları d so	a, oil
Module: 4 Cle	an and Green Energy		5 ho	ours		
Renewable en energy. Wind e Hydrogen energ	ergy resources: Solar energy-thermal and photovol nergy, Ocean thermal energy; Geothermal energy; Ene gy; Solar-hydrogen revolution. Electric and CNG vehicles	taic; ergy fr s.	Hyd om	roele biorr	ectr nas:	ic s;
Module: 5 En	vironmental Protection Policies		4 h	ours	5	
Environmental and Wild life p Impact assessn	Protection (EPA) objectives; Air Act, water Act, Fores protection Act. Environmental Impact Analysis: guidel ment methodologies.	t con: ines,	serva core	ation va	n Ar Iue:	ct s.
Module: 6 Su	stainable development		4 h	ours	5	
Effect of popula human societies awareness. Wo	ation-urban environmental problems; Population age s s: tools in economics, sustainable development goals s men and child welfare, Women empowerment.	tructu SDGs	re; S and	Susta pro	aina mo	able ting

Module: 7 Global Climate Change				4 ho	ours		
Global climate change and green-house	effect. Ky	oto Proto	col-carbon	credits,	The	Paris	
Agreement, carbon sequestration: defin	nition, type	es and n	nethodologi	ies. Oz	zone	layer	
depletion: causes and impacts. Mitigation of	of ozone lay	er depleti	on- Montrea	al Protoc	col. Ro	ole of	
Information Technology in environment.				n			
Total Lecture	hours:			30 ŀ	nours	;	
Assessment: Seminars, Quiz, Case Studies, Final Assessment Test.							
Text Books							
 G. Tyler Miller and Scott E. Spoolman (2016), Environmental Science, 15th Edition, Cengagelearning. Benny Joseph, (2012), Environmental Science and Engineering, 5th Edition, Tata McGraw Hill Education Private Limited, New Delhi, India. 							
Reference Book(s)							
 David M. Hassenzahl, Mary Catherine Hager, Linda. R. Berg (2011), Visualizing Environmental Science, 4th Edition, John Wiley & Sons, USA. Raj Kumar Singh, (2012), Environmental Studies, Tata McGraw Hill Education Private Limited, New Delhi, India. George Tyler Miller, Jr. and Scott Spoolman (2012), Living in the Environment – 							
		TUUKS/COP	e, USA.				
Recommended by Board of Studies	14-02-20)22					
Approved by Academic Council	No. 65	Date	17-03-202	22			

BHUM101NEthics and ValuesLTp						С
			0	0	0	2
Pre-requisite	Nil	Sy	llabu	s ve	ersio	on
				1.0		
Course Objectiv	es:					
1. To unders	stand and appreciate the ethical issues faced by an indiv	/idua	l in p	rofe	ssio	n,
society ar	nd polity.					
2. To unders	stand the negative health impacts of certain unnealthy be	navi	or.			- 1
3. To appre	clate the need and importance of physical, emotional	nea	aith a	ina :	SOC	a
nealth.						
Furne at a d Caura	o Outoomoo					
Expected Cours	e Outcomes:					
	will be able to:	hoor	oitiza			
2. FUIIOW SU	nd various social problems and learn to act othically	joou	CIUZE	INS.		
J. Understa	nd the concept of addiction and how it will affect the n	hvei		nd r	non	tal
4. Undersia	nd the concept of addiction and now it will affect the p	лтубі	cai a	nu i	nen	ilai
5 Identify e	thical concerns in research and intellectual contexts i	inclu	dina	202	don	nic
integrity	use and citation of sources the objective presentation	n of	i data	aca arar	nd t	hΔ
treatment	of human subjects		uald	а, аі	iu i	
6 Identify 1	the main typologies characteristics activities actor	ors	and	forr	ns	of
cvbercrim		510	ana	1011		01
0,00101111						
Module:1 Bein	g Good and Responsible					
Gandhian values	such as truth and non-violence - Comparative analysis	son	leade	erso	fpa	st
and present - S	Society's interests versus self-interests - Personal Soc	ial F	Resp	onsi	hilit	V'
Helping the need	ly, charity and serving the society.	noi i	toop	01101	o inc	<i>.</i>
Module:2 Soci	al Issues 1					
Harassment - Tv	pes - Prevention of harassment. Violence and Terrorism.	L				
Module:3 Soci	al Issues 2	<u> </u>				
Corruption: Ethic	al values, causes, impact, laws, prevention - Electoral ma	alpra	actice	s:		
White collar crim	es - Tax evasions - Unfair trade practices.			-,		
Module:4 Add	iction and Health					
Peer pressure -	Alcoholism: Ethical values, causes, impact, laws, preve	ntior	וו - וו	effe	cts	of
smoking - Prever	ntion of Suicides;					•
Sexual Health: P	revention and impact of pre-marital pregnancy and Sex	xuall	y Tra	ansn	nitte	ed
Diseases.						
Module:5 Drug	y Abuse					
Abuse of differer	t types of legal and illegal drugs: Ethical values, causes	s, im	pact,	law	s ar	nd
prevention.			-			
Module:6 Pers	onal and Professional Ethics					
Dishonesty - Stea	aling - Malpractices in Examinations - Plagiarism.					
Module:7 Abu	se of Technologies					
Hacking and othe	er cyber crimes, Addiction to mobile phone usage, Videc) gar	nes a	and S	Soci	ial
networking webs	ites.					
	Total Lecture Hours:			60	hοι	ırs
Text Books:						
A R R Gaur	, R Asthana, G P Bagaria, "A Foundation Course in Hur	man	Valu	es a	nd	
Profession	nal Ethics", 2019, 2nd Revised Edition, Excel Books, New	v Del	lhi.			
2. Hartmann	n, N., "Moral Values", 2017, United Kingdom: Taylor & Fi	ranci	is.			
Reference Book	IS :					
Rachels.	James & Stuart Rachels, "The Elements of Moral Philos	soph	ıy", 9	th e	ditio	n,
¹ • 2019, Nev	w York: McGraw-Hill Education.	•	•			

2.	Blackburn, S. "Ethics: A Very Short Introduction", 2001, Oxford University Press.							
3	Dhaliwal, K.K, "Gandhian Philosophy of Ethics: A Study of Relationship between his							
5.	Presupposition and Precepts", 2016	6, Writers Ch	oice, Nev	v Delhi, India.				
1	Ministry of Social Justice and Empo	owerment, "N	lagnitude	e of Substance Use in India",				
-	2019, Government of India.							
5	Ministry of Home Affairs, "Acci	idental Deat	hs and	Suicides in India", 2019,				
5.	Government of India.							
6	Ministry of Home Affairs, "A Handbook for Adolescents/ Students on Cyber Safety",							
0.	2018, Government of India.							
	·							
Mode	of Evaluation: Poster making, Quiz a	and Term End	d - Quiz					
_								
Recor	mmended by Board of Studies	27-10-2021						
Appro	Approved by Academic Council No. 64 Date 16-12-2021							

BMEE209L Materials Science and Engineering L T P C							
		3	0	0	3		
Pre-requisite	Nil	Syllabu	s vei	rsio	on		
			1.0				
Course Objectiv	/es						
1. To impart	knowledge on the correlation between structure-proper	ty of mate	rials.				
2. To provid	de knowledge on mechanical properties of materials	and streng	gther	ning			
mechanis	sms.						
To give ir	nsight into advanced materials such as polymers, ceram	ics and co	mpo	site	es		
and their	applications.						
Course Outcom	es						
At the end of	t the course, the student will be able to						
1. Compare	different structures based on the atomic arrangement.						
2. Examine	various phases of metals and alloys using phase diagra	ms.					
3. Assess tr	he mechanical benaviour of materials according to the st	andards.					
4. Recomm	end suitable neal treatment and sufface hardening proce	esses.					
5. Propose	ine suitable material based on the structure-property rea	auonsnips.					
	damentals to Materials engineering		3	hoi	ire		
Historical norsh	active of materials materials science. Materials and	ainoorina	Mat	oria			
classification M	aterials tetrahedron. Engineering requirement of adva	nced mat	ariale	cila S ar	nd		
smart materials -	- Diversified applications	nceu mat	enais	a	iu		
Module:2 Crvs	stallography and Defects		6	hoi	ırs		
Eundamental C	oncepts Crystal geometry Unit Cell Classification o	f Lattices	– B	rav	ais		
Lattice - Point	coordinates Crystallographic Directions and Plane	s Weiss	zon	e la	aw		
applications - S	ingle and Poly crystalline materials. Non-crystalline/A	morphous	Mat	eria	als.		
Crvstal Structure	of Metals. Ceramics and Polymers. Defects in crystals	– point de	fects	. lin	ne		
defects (dislocat	ions), Characteristics of Dislocations, Slip Systems, S	lip in Sinc	le C	rvst	tal,		
Deformation by 7	wining, surface defects and volume defects, Microscop	ic examination	ation				
Module:3 Solie	dification, Diffusion and Phase Transformation		8	hοι	ırs		
Nucleation - Ho	pmogeneous and Heterogeneous Nucleation- Growth	of crysta	als- I	Plar	nar		
growth – dendr	itic growth. Diffusion: Introduction - Fick's Law of	Diffusion	- Dif	fusi	ion		
Mechanisms, Ste	eady state and non-steady state diffusion. Basics of ph	ase diagr	am, (Gibl	b's		
phase rule, Leve	r rule, Unary phase Diagrams, Binary Isomorphous and	d Eutectic	Syste	ems	S,		
Interpretation of	Phase Diagram, Iron – iron carbide phase diagram –	Slow cooli	ng of	f hy	/ро		
and hyper eutect	oid steels, Phase transformations in steels and cast iror	า.					
Module:4 Mec	hanical behaviour of Materials		7	hοι	ırs		
Hardness Testir	g of Materials, Tensile properties of the materials, I	Effect of a	strain	n ra	ite,		
Impact Testing,	Fracture of Metals - Ductile Fracture, Brittle Fractu	re, Ductile	e to	Brit	ttle		
Transition Temp	erature (DBTT), Fatigue – Endurance limit, Fatigue test	, S-N cur∖	ves, f	acto	ors		
affecting fatigue	, structural changes accompanying fatigue; Creep a	and stres	s rup	otur	e-		
mechanism of c	reep – stages of creep and creep test, Mechanisms	of Streng	theni	ing	in		
Metals and alloys	S						
Module:5 Heat	Treatment		7	hοι	ırs		
Isothermal Tran	sformation diagrams and Continuous Cooling Trans	sformation	i dia	igra	ım.		
Principles of hea	at treatment, Annealing, Concept of Recovery, Recrys	tallization	and	Gra	ain		
Growth, Normali	zing, Hardening, Tempering, Solutionizing, Ageing, Sp	ecial heat	trea	tme	ent		
processes: Auste	emepering, Martempering, Austorming, Hardenability of	steel, Mic	rostr	ucti	ure		
changes during h	neat treatment.						
Surface hardeni	ng processes - Carburizing – Nitriding – Cyaniding	and carb	o-nit	ridii	ng,		
Induction and fla	me nargening, Laser and Electron beam hardening.	Г	6	har			
	anic materials	proportion	of		ar S ol		
Steels - Types (or steels, effect or alloying elements on structure and	properties	015	ieel	15,		

Alloy	Alloy Steel - Tool and Die Steel, Stainless steel, Speciality steel, Cast iron- White, Grey,							
Malle	eable	and Nodular - Properties	and applicat	ion of ca	ast irons. Non-fe	rrous Alloys,		
Alun	ninium,	copper, Nickel, Magnesium	and Titaniun	າ.				
Mod	lule:7	Non-metallic and Con	nposite Ma	aterials	& Economic,	6 hours		
		Environmental, and socie	etal issues i	n materia	Is Science and			
		Engineering						
Cera	Ceramics: types, properties and application of ceramics; Glass: classification of glass,							
prop	perties	and application of glass; P	olymer: clas	sification	of polymers - pr	operties and		
appl	lication	of polymers; Fibers: Natural	Fibers/Synth	etic Fiber	s; Composites: Cl	assification		
of C	ompos	ite Materials, Properties and	Application of	of Compos	site Materials.			
Mod	lule:8	Contemporary Issues				2 hours		
				Total	Lecture hours:	45 hours		
Text	t Book	S						
1.	William	D. Callister Jr., David G	B. Rethwisch	, Calliste	er's Materials Sci	ence and		
	Engine	ering, 2018, 10 th edition, Joh	n Wiley & So	ons, Inc.,	United states.			
2.	William	n F Smith, Javad Hasem	ii and Ravi	Prakash	n, Materials scie	nce and		
	Engine	ering, 2017, 5 th edition, McG	iraw Hill Pub	ications.				
Refe	erence	Books						
1.	Michae	el F. Ashby, Materials Selecti	on in Mecha	nical Desi	gn, 2016, 5 th editio	on, Elsevier		
	Butterv	vorth-Heinemann.						
2	Donalc	R. Askeland, Science and E	Engineering c	f Material	s, SI Edition, 2015	5, 7 th edition,		
	Spring	er, Boston, MA.						
3	Ragha	van V, Materials Science and	d Engineering	g, 2015, 6	th edition, Prentice	e Hall India		
	Learnir	ng Private Limited, United Ki	ngdom.	-	·			
4	Sidney	Avner, Introduction to Physi	cal Metallurg	y, 2017, 2	2 nd edition, McGrav	v Hill		
	Educat	ion	0					
Mod	le of Ev	aluation: CAT / Written assig	gnment / Quiz	z / FAT				
Recommended by Board of Studies 09-03-2022								
Аррі	roved b	y Academic Council	No. 65	Date	17-03-2022			

BMEE209P Materials Science and Engineering Lab L T P									
						0 0 2 1			
Pre-requ	isite	Nil				Syllabus version			
_						1.0			
Course (Objectiv	9							
1. To im	part pra	ctical exposure on op	otical microsc	opy, furr	nace, and i	mechanical testing			
equipr	nent.			e .					
2. To pro	ovide har	ids-on experience on i	mage analysi	s softwar	e.				
Course									
At the en	a or the (course, the student will	li be able to						
	gale ine	phases in the microst	nor the AST	ipies. Latandai	rdo				
2. Asses	s the me	chanical properties as	per treatments	n stanuai	ius.				
J. Devel	p and p		eattreatments	.					
Indicativ	e Fyner	iments							
1 The	rmal an	alveis of Ph-Sn allov	(To produce	cooling	curve and	report the eutertic			
tem	nerature			cooling					
2. Met	allograp	hic sample preparatior).						
3. To	study th	e microstructure of Fo	errous Materi	als a) St	teel b) Stai	nless Steel c) Cast			
Iron									
4. To s	To study the microstructure of Non- Ferrous Materials.								
5. Col	d work a	nd annealed microstru	cture of alloys	s (Ferrou	s/Non-ferro	us).			
6. Hea	at Treatm	ent of Steel (Annealin	g, Normalising	g, Quenc	ching and To	empering).			
7. Age	hardeni	ng studies of Aluminiu	m alloys.						
8. Stu	dy of sur	face hardened Steel -	Case Depth,	hardnes	s and micro	structure.			
9. Har	dness m	easurement of ferrous	and non-ferro	ous alloy	S.				
10. Har	denabilit	y of Steels by Jominy	end quench te	est accor	ding to AS	TM standards.			
11. Ten	sile pro	perty evaluation of	ductile and b	prittle m	aterials ac	cording to ASTM			
star	ndards.	matalla aran bu analim							
12. Qua	antitative	metallography and im	age analysis						
Tayt Dec			ΙΟ	ai Ladoi	ratory Hou	rs 30 nours			
	DK(S)	Callistan In David (Dethuriesh	Calliat	Notoria	ala Calanaa and			
I. VVIIIIa	am D. (Janister Jr., David G		Calliste	ers Materia	als Science and			
	neening,	2016, 10 th edition, Jor	in whey & Su	Drokool	United Stat	es la agionag and			
Z. VVIIIa	alli F S	2017 McGrow Hill Di	II allu Ravi	odition	n, materia	is science and			
3 Lah	Manual r	repared by course fac	culty member	euilion.					
Reference	e Book								
1 Mich	ael F A	shhv Materials Sele	ction in Mech	anical C	Design Flse	ovier Rutterworth-			
Hein	emann	2016 5th edition							
2 Don:	ald R As	keland Science and I	- - naineerina o	f Materia	ls SI Editic	on 2015 7 th edition			
Sprin	nder. Bo	ston. MA		matoria		, 2010, 7 Guidell,			
3 V. R	aghavan	, Materials Science ar	nd Engineerin	g, 2015.	6 th edition.	Prentice Hall India			
Lear	ning Priv	vate Limited, United Ki	ngdom	, 	,				
4 Mich	ael F. A	shby, Materials Sele	ction in Mech	nanical D	Design, Else	evier Butterworth-			
Hein	emann,	2016, 5th edition.							
Mode of a	assessm	ent: Continuous asses	ssment / FAT	/ Oral ex	amination				
Recomm	ended b	y Board of Studies	09-03-2022		-				
Approved	d by Aca	demic Council	No. 65	Date	17-03-202	22			

BMEE211L	Engineering Optimization		L	Т	Ρ	С		
Pre-requisite	Nil	Syllal						
				1.0				
Course Objective	es							
1. To impart know them.	ledge on linear, non-linear optimization problems and te	echni	que	s to s	solv	ə		
To develop modelling skills and to solve engineering optimization problems.								
3. To demonstrate	3. To demonstrate the use of software to solve optimization problems.							
4. To develop the	4. To develop the skills of using modern heuristic search algorithms.							
Course Outcome	Course Outcomes							
At the end of	the course, the student will be able to							
1. Formulate the	engineering problems as optimization problems.	ation		blon	00			
2. Identity optima 3. Solve linear pro	aramming problems	aliui	i più	Dien	15.			
4. Apply suitable	algorithm and solve constraint & unconstraint optimization	n pr	oble	ms.				
5. Justify modern	heuristic search algorithms for solving optimization prob		б. Б.					
Module:1 Optin	num Problem Formulation			6	hou	urs		
Introduction to O	ptimization - Statement of an Optimization Problem	– Cl	assif	icati	ons	of		
Optimization prol	blem – Optimum Problem Formulation: Problem Fo	rmula	atior	n Pr	oces	SS,		
Application proble	ms related Engineering Design and Manufacturing.							
Module:2 Optin	nality Criterion			6	hou	Jrs		
Introduction – C	ptimality Criterion: Single variable problems – Optir	nalit	y cr	iterio	ons	for		
unconstraint prol	plems. Multivariable Optimization problems – Optil	malit	y c	riteri	on	for		
	nization problems. Lagrangian Multiplier, Kunn-Tu	cker 1 an	o o b b	onet	uns rain			
problems (Hand C	problems (Hand Calculation)							
Module:3 Linear Programming 8 hours						urs		
Introduction – Standard form of a LPP problem - Graphical solution for LPP – Simplex								
Method – Revise	d Simplex method – Duality in LPP – Modelling of Trai	nspo	rtati	on p	robl	em		
as an Optimiza	tion problem – Exercise problems (limited to s	impl	ex	meth	nod	—		
Demonstration: S	olving LPP problems using software tool (MATLAB).			_				
Module:4 Non-	Linear Programming – Unconstrained Optimiz	atio	n	5	hou	Jrs		
Introduction – St	andard form of an unconstrained problem - Unimo	dal a	and	Mult	imo	dal		
functions – Intro	duction to One Dimensional minimization methods: I	Elimi	natio	on m	heth	od:		
FIDONACCI Metho	d. Interpolation methods: Newton Method Exercis	e p	PICION	ems	(na ta	ina		
(MATLAR)	won and Secant method) - Solving TD problems t	ising	501	twar	eit			
Module:5 Non-	Linear Programming – Unconstrained Optimiz	atio	n	6	hou	Jrs		
Multi variable unc	onstraint ontimization algorithms: Univariate Method -	Patt	arn	diroc	tion	<u> </u>		
Conjugate Direct	ion method (Powell's method) - Steepest Descent	meth	od	_ F	xerc	ise		
problems (hand o	calculation – Univariate and Steepest Descent metho	d) D	emc	nstr	atior	า:		
Solving unconstra	int problems using software tool (MATLAB).	,						
Module:6 Non-	Module:6 Non-Linear Programming – Constrained Optimization 5 hours							
Introduction - Sta	ndard form of a constrained problem – Transformation	n me	etho	ds- I	Pena	alty		
function method:	Interior and Exterior methods - Exercise problems: Cor	vert	ing o	cons	trair	ned		
problem into uno	constrained problems using various penalty function	- 1	Jem	onst	ratio	on:		
Solving Constraint problems using software tool (MATLAB).								
Introduction: Heu	ristics Meta-Heuristics Combinatorial Ontimization pro	hlon	19 -	Fva	mol	20 20		
of P. NP. NP-co	omplete and NP-Hard problems – Introduction to (Gene	tic	Alao	rithr	n.		
Simulated Annealing – Particle Swarm Optimization - Demonstration: Working of GA SA						A,		

PS	PSO using Software tools (MATLAB).							
Мс	odule:8	Contemporary Issues	S			2 hours		
				Tota	al Lecture hours:	45 hours		
Те	Text Book(s)							
1.	1. Rao S.S, Engineering optimization: theory and practice, 2020, 5 th Edition, John Wiley							
	& Sons	s, Inc., USA.						
2.	2. Deb K, Optimization for engineering design: Algorithms and examples, 2012, PHI							
	Learnir	ng Pvt. Ltd., India.						
Re	ference	Books						
1.	Arora J	I.S, Introduction to Optimu	m Design, 2016,	4 th Edition	n, Academic Press.			
2.	Igor Gr	iva, Stephen G. Nash, Ari	ela Sofer, Linear	and Non-I	Linear Optimizaton	, 2009, 2 nd		
	Edition	, Society of Industrial and	Applied Mathema	atics.				
Mc	de of Ev	aluation: CAT / written as	signment / Quiz /	FAT				
Re	commer	nded by Board of Studies	09-03-2022					
Ар	proved b	y Academic Council	No. 65	Date	17-03-2022			

BMEE308L Control Systems L T F									
									
Pre-requisite	NI	Syllabus version							
Course Objectives									
 To expose modelling a To enable t To enrich th 	 To expose the students to classical methods of control engineering, physical system modelling and control. To enable the students to design control system for various applications. To enrich the shifty of the students to engly a the performance of dynamic control. 								
systems.									
Course Outco	me								
At the end 1. Apply the c 2. Develop va 3. Infer the do 4. Analyse the 5. Demonstra 6. Design app	 At the end of the course, the student will be able to Apply the concepts of control systems and modelling techniques. Develop various representations of system based on the first principles approach. Infer the domain specifications from the time and frequency response. Analyse the stability of closed-loop systems using different techniques. Demonstrate the state-space representation and modern control theory. Design appropriate control systems for different applications. 								
Module:1 In	troduction	2 hours							
Concept of co	ntrol system. Classification of control systems – Open-	loop and closed-loop							
control system Characteristics	ms, Examples of control systems- Effects of f	eedback, Feedback							
Module:2 M	odel Representations	4 hours							
Transfer Fund Determining th using Mason's	ctions of LTI Systems, Concepts of Poles and Ze e Transfer function from Block Diagrams, Signal flow gain formula.	ros, Block diagram, graphs – Reduction							
Module:3 M	odelling of Physical Systems	5 hours							
Development of Hydraulic and I	of mathematical models: mechanical, electrical, electrom Pneumatic systems.	echanical, Thermal,							
Module:4 Ti	me Response Analysis	6 hours							
Standard test Transient resp errors and erro	signals, Time response of first order systems and sec onse of second order systems – Time domain specific r constants, General Controllers – P, PI, PD and PID con	cond order systems, ations, Steady state trollers.							
Module:5 St	ability Analysis	4 hours							
The concept conditional state	of stability – Routh-Hurwitz's stability criterion – qua bility – Root Locus Technique: Concept of root locus –	litative stability and Construction of root							
Module:6 Fi	equency Response Analysis	4 hours							
Frequency dor Nyquist Criteria	nain specifications, Bode plot, Phase margin and Gain	margin, Polar plots,							
Module:7 In	troduction to State Space Analysis	3 hours							
Concepts of sta the time invari Observability.	ate, state variables and state model, Modelling system in ant state equations, State Transition Matrix, Concepts	state space, Solving of Controllability and							
Module:8 C	ontemporary Issues	2 hours							
	Total Lecture h	ours: 30 hours							
Text Book(s)									
1. Nagrath I.J	l, and Gopal M, Control Systems Engineering, 2017, 6 th e al Publishers.	dition, New Age							
2. Ogata K, M Ltd.	Modern Control Engineering, 2015, 5th Edition, Prentice	Hall of India Pvt.							

Reference Books							
1.	Norman S Nise, Control Systems Engineering, 2018, 7 th edition, John Wiley and Sons,						
	Inc.						
2.	Benjamin C. Ku, Farid Golnaraghi, Automatic Control Systems, 2017, 10 th edition,						
	McGraw-Hill Education.						
Мо	de of Evaluation: CAT / Written assig	gnment / Quiz / FAT /	/ Semin	ar / Case studies			
Re	commended by Board of Studies	09-03-2022					
Ар	proved by Academic Council	No. 65	Date	17-03-2022			

BMEE308P Microcontrollers and Interfacing Lab				L	TP	' C			
-					•		0	0 2	1
Pre	-requisite	Nil				Sylla	abus	vers	ion
	-						1.	.0	
Οοι	urse Objectiv	res							
1.	To expose the	e students to fundament	tals of Micro	controlle	ſS.				
2.	To understan	d the functions of micro	controller pr	ogrammi	ng and inter	facing			
3.	To enable the	students to design app	ropriate mic	rocontro	ler-based s	ystem	s.		
Col	irse Outcom	es							
	At the end of	the course, the student	will be able	to					
1.	Demonstrate	and interface microcont	roller with se	ensors ai	nd actuators	5 .			
2.	Construct the	simulation model using	control syst	tem tool l					
0.		- simulation model using	control 3y3						
Indi	icative List o	f Experiments							
1	Study of em	bedded systems using	microcontrol	lers and	its architect	ural fe	ature	S.	
2	Push button	, Keypad and Display Ir	terfacing wi	th microc	ontroller.				
3	Programmir	ng Traffic Light Control u	ising microc	ontroller.					
4	Interfacing l	Jltrasonic Sensor with m	nicrocontrolle	ər.					
5	Open loop S	Speed and direction con	trol of a DC	motor us	ing microco	ntrolle	er.		
6	Closed loop	Speed control of a DC	motor based	d on PID	Controller u	Ising			
	microcontro	ller.							
7	Interfacing S	Stepper motor with micro	ocontroller.						
8	Microcontro	Iler Interfacing and Data	transmissio	on using	RF/Bluetoot	h/WIF	I.		
9	Developme	nt of a line following robo	ot	,					
10	Developme	nt of lol enabled data tr	ansmission	from sen	sors.				
11	Creating line	ear models of your conti	rol system u	sing tran	ster function	n, state	e-spa	ice, a	nd
12	other repres	sentations using IVIA I La	D Control Sy	/stem too	DIDOX.	auona	w do	moin	
12		ah control system toolh		une doi	nain anu ne	quenc	y uu	IIIaIII	
			<u> </u>	otal Lab	oratorv Hou	rs 30) hou	rs	
Tex	t Book(s)								
1.	Nagrath I.J.	, and Gopal M., Control	Systems Er	gineerin	g, 2017, 6 th	editior	n Nev	v Age	3
	Internationa	I Publishers.		0				0	
2.	K. Ogata, M	odern Control Engineer	ing, 2015, 5	th Edition	, Prentice H	all of I	ndia	Pvt. I	_td.
3.	Lab Manual	prepared by course fac	ulty member	rs.					
Ref	erence Book	S							
1.	Norman S N Inc	lise, Control Systems E	ngineering,	2018, 7 th	edition Joh	n Wile	y and	d Son	ıS,
2.	Benjamin C McGraw-Hil	. Ku and Farid Golnarag I Education.	hi, "Automa	tic Contro	ol Systems"	, 2017	′, 10 th	' editio	on
Мос	de of assessm	nent: Viva-voce examina	ation, Lab pe	erforman	ce & FAT				
Rec	commended b	y Board of Studies	09-03-202	2					
Арр	oroved by Aca	demic Council	No. 65	Date	17-03-202	22			

BMEE407L Artificial Intelligence L T									
			2 1 0 3						
Pre-requisite	BMAT202L, BMAT202P	Syllal	ous version						
			1.0						
Course Objectives									
 To provide b 	asic understanding on Artificial Intelligence with its su	b-sets.							
2. To impart kn	To impart knowledge of search algorithm, logics, reasoning and uncertainty.								
3. To introduce	e the basic concepts of machine learning and	its app	lication in						
mechanical	engineering.								
At the end of the ear	urea, the student will be able to								
At the end of the co	urse, the student will be able to a characteristics of artificial intelligence and its sub-set	te							
2 Implement a	ppropriate algorithm for problem solving by searching	13.							
3. Construct the	e logical agents and familiar in the application of fuzz	v in Al.							
4. Design the c	lecision making algorithm with the reasoning of uncert	ainties.							
5. Develop ma	chine learning programs based on supervised, unsupe	ervised	and						
reinforceme	nt learning.								
6. Experiment	the benefit of neural network in deep learning.								
Apply machi	ne learning approach to solve problems related to me	chanica	d						
engineering.									
Medule:4 Feu	ndation of Al		1 houro						
Wodule:1 Fou	ndation of Al		4 nours						
Introduction – Fou	indations of AI – Evolution of AI – intelligent Ag	genis: . f Knowl	Agents and						
system - Risks and	Separation for ΔI	RHOWI	euge baseu						
Module:2 Prol	plem-solving by searching		6 hours						
Lininformed search:	Proath first search Depth first search iterative deep	oning							
search: Greedy sea	rch A*search – Adversarial search: Minimax search	əlnhə-h							
Module:3 I og	ic (Knowledge, reasoning and planning)		8 hours						
Propositional Logic	- First Order Logic - Inference in First Order Lo	aic – k	(nowledge						
representations – a	utomated planning. Fuzzy: Fuzzy sets. operation and	propert	ies. Feature						
of membership func	tions, fuzzification and defuzzification, Fuzzy logic rule	es base	d system.						
Module:4 Rea	soning with uncertainty		6 hours						
Quantifying unce	rtainty – Probabilistic reasoning – Making Sim	ple De	ecisions –						
Making Complex [Decisions – Multiagent decision making.								
Module:5 Mac	hine Learning		6 hours						
Supervised learning	: Decision trees, linear regressing and classification,	and su	pport vector						
machine – Unsupe	ervised: Clustering, dimensionality reduction, Pr	incipal	component						
Module:6 Dee	n Learning		7 hours						
Simple feedforward	p Learning networks - Computation graph for deep learning - Co	nvoluti	n neural						
networks – Learning	algorithms – generalization – Recurrent Neural Netw	/orks - [Deen						
reinforcement learn	ing.		2000						
Module:7 Use	Cases		6 hours						
AI in manufacturin	g process: Materials characterization and machine	e proce	ess – Al in						
logistics and supply	chain management – Prediction of mechanica	al syste	m failure –						
diagnostic system – Human-in-loop for Machine human collaborative task.									
Module:8 Cont	temporary Issues		2 hours						
	Total Lecture h	ours:	45 hours						
Text Books									
1. Russell S, N	lorvig P, Artificial Intelligence - A Modern Approach, 2	2021, 4 ^{tt}	¹ edition,						
Prentice Hall.									

Ivan Vasilev, Advanced Dee	ep Learning wit	h Pythoi	n: Design and implement				
advanced next-generation AI	solutions using 7	FensorFlo	ow and PyTorch, 2019, 1 st				
edition, Packt Publishing Ltd.	-						
Reference Books							
Bishop C. M, Pattern Recognit	tion and Machine	e Learnin	g, 2011, 2 nd edition, Springer.				
Nilsson N.J, Artificial Intelligen	ce: A New Synt	hesis, 19	98, 1 st edition, Morgan				
Kaufmann.	-		-				
of Evaluation: CAT / Written ass	signment / Quiz /	FAT /					
Recommended by Board of Studies 09-03-2022							
ved by Academic Council	No. 65	Date	17-03-2022				
	Ivan Vasilev, Advanced Dee advanced next-generation Al s edition, Packt Publishing Ltd. Ence Books Bishop C. M, Pattern Recognit Nilsson N.J, Artificial Intelligen Kaufmann. of Evaluation: CAT / Written ass mended by Board of Studies ved by Academic Council	Ivan Vasilev, Advanced Deep Learning wit advanced next-generation AI solutions using 7 edition, Packt Publishing Ltd. ence Books Bishop C. M, Pattern Recognition and Machine Nilsson N.J, Artificial Intelligence: A New Synth Kaufmann. of Evaluation: CAT / Written assignment / Quiz / nmended by Board of Studies 09-03-2022 ved by Academic Council No. 65	Ivan Vasilev, Advanced Deep Learning with Python advanced next-generation AI solutions using TensorFloredition, Packt Publishing Ltd. ence Books Bishop C. M, Pattern Recognition and Machine Learnin Nilsson N.J, Artificial Intelligence: A New Synthesis, 198 Kaufmann. of Evaluation: CAT / Written assignment / Quiz / FAT / mended by Board of Studies 09-03-2022 ved by Academic Council No. 65				

BMEE202L	Mechanics of Solids		LT	Ρ	С				
			3 0	0	3				
Pre-requisite	BMEE201L	Syll	abus ve	ersio)n				
			1.0						
Course Objectiv	Course Objectives								
1. To understand static equilibri	d the fundamental concepts of mechanics of deforma um, geometry of deformation, and material constitutive b	ble so behav	olids; inc iour.	clud	ing				
2. To provide s	tudents with exposure on systematic methods for	solvin	ig engin	eer	ing				
problems in so	olid mechanics.	_							
3. To discuss the	e basic mechanical principles underlying modern appro	bache	s for des	sign	of				
various structi	ural members subjected to axial load, torsion, bending,	buckl	ing, tran	svei	rse				
snear, and co	mbined loading.	nd do		roo	•				
4. TO build the he		nu ue	sign cou	iise:	5.				
At the end of the	course, the student will be able to								
1 Δnalvee stree	sees and strains in simple and compound hars								
2 Illustrate the	relationship among load, shear force and bending m	omen	t for va	riou	9				
beams	relationship among load, shoar lotoe and behaing m	onion		nou	0				
3. Evaluate the	bending and shear stresses for beams with varving cros	s sect	ions						
4. Calculate the	slope and deflection of various beams								
5. Apply torsion	equation for shafts and helical springs								
6. Analyse the f	ailure of columns, thin and thick shells								
Module:1 Simp	ble stresses and strains		9	hοι	Jrs				
Definition/derivat	tion of normal stress, shear stress, and normal strain	and	shear s	trair	ι —				
Stress-strain dia	gram for brittle and ductile materials - Poisson's ratio &	s volu	metric s	trair	n —				
Elastic constants	- relationship between elastic constants and Poisson's	; ratio	– Gene	ralis	sed				
Hook's law - D	etormation of simple and compound bars – Creep	– Sti	rain ene	ergy	-				
Module:2 Bi-a	vial stress system	353.	6	hoi	ire				
Introduction – S	tresses on an inclined section of a har under axial k	nadinu			und				
stresses – Norm	al and tangential stresses on an inclined plane for his	vial s	J – CON	рос _ Т	wo				
perpendicular no	irmal stresses accompanied by a state of simple she	r = M	lohr's ci	rcle	of				
stresses and stra	in. Strain rosette – Principal stresses and strains – Ana	alvtica	l and gra	aphi	cal				
solutions. Theorie	es of failures.		<u>-</u>						
Module:3 She	ar Force and Bending Moment		6	hou	Jrs				
Definition of bea	m – Types of beams – Concept of shear force and be	nding	moment	t – S	S.F				
and B.M diagrar	ns for cantilever, simply supported and overhanging	beam	s subjec	cted	to				
point loads, unif	ormly distributed loads, uniformly varying loads and co	ombin	ation of	the	se				
loads – Point of	contra flexure – Relation between S.F., B.M and rate of	loadi	ng at a s	sect	ion				
of a beam.									
Module:4 Stre	sses in beams		6	hou	Jrs				
Theory of simple	bending – Assumptions – Derivation of bending equa	tion -	Neutral	axi	s –				
Determination of	bending stresses – section modulus of rectangular a	ina ci	rcular se		ons no				
Shoar Strossos	W), I, I, Angle and Channel Sections – Design of Sin	ipie r	various k		115, ne				
sections like rect	angular circular triangular I T sections	035 V	anous L	Jeai	115				
Module:5 Defl	ection of beams		5	hou	urs				
Deflection of be	ams by Double integration method - Macaulav's method	nod –	Area m	ome	ent				
theorems for con	nputation of slopes and deflections in beams - Conjugat	e bea	m metho	od.					
Module:6 Tors	sion		5	hou	ırs				
Introduction to	Forsion – derivation of shear strain – Torsion formu	ıla –	stresse	s a	nd				
deformations in c	circular and hollow shafts – Stepped shafts – shafts fixed	d at th	e both e	nds	,				
stresses in helica	al springs.								

Мо	dule:7	Thin and Thick Cylind	lers, Columr	าร		6 hours		
Thi	Thin cylinders and shells – deformation of thin cylinders and shells; Thick Cylinders, Shrink							
fits	fits, Compounding.							
The	eory of c	olumns – Long column and	d short column	- Euler's f	ormula – Rankin	e's formula.		
Мо	dule:8	Contemporary Issues				2 hours		
				Total	_ecture hours:	45 hours		
Tex	xtbooks							
1.	Ferdina	and P. Beer, E. Russell Joł	nnston, John T	. DeWolf,	David F. Mazure	ek, Sanjeev		
	Sangh	, Mechanics of Materials, 2	020, 8 th Editior	n, McGrav	v Hill Education,	India.		
2.	Russe	I C. Hibbeler, Mechanics o	f Materials in S	SI Units, 9	th Edition; 2018,	Pearson		
	Educat	ion, India.						
Re	ference	Books						
1.	James	M. Gere, Barry J. Goodno	, Mechanics of	Materials	s, 2019, 9 th Editio	n, Cengage		
	Learnii	ng India Pvt. Ltd.						
2.	Rattan	S. S., Strength of Materials	s, 2017, 3 rd edi	tion, McG	raw Hill Education	on, India.		
3.	Ramar	nrutham S, Narayanan R, S	Strength of Ma	terials, 20	20, 20 th Edition,	Dhanpat Rai		
	Publish	ning Company, India.						
4.	Popov	E. P, Nagarajan S, Lu Z.	A; Mechanics	of materia	als, SI version, 2	015, Prentice-		
	Hall of	India.						
5.	James	M. Gere, and Stephen Tim	noshenko, Mec	hanics of	Materials; 2004,	2 nd edition,		
	CBS p	ublishers and distributors.						
Mo	de of Ev	aluation: CAT, Written ass	ignment, Quiz	, FAT				
Re	commer	ided by Board of Studies	09-03-2022					
Ар	proved b	y Academic Council	No. 65	Date	17-03-2022			

BME	BMEE202P Mechanics of Solids Lab L T						
	00						
Pre-	requisite	BMEE201L	Sylla	ibus	versi	on	
				1.()		
Cou	rsa Objactiv	05					
1 T	o impart pra	es ctical skills in investigating the mechanical behavior of m	aterial	\$			
2. T	o demonstra	ate the importance of testing standards in the determinat	ion of	mech	anica	al	
p	properties.	······································					
	•						
Cou	rse Outcom	e					
At th	e end of the	course, the student will be able to					
1. E	valuate elas	tic constants of engineering materials as per the ASTM	standa	rds.	4		
2. L 3. F	velop stres	impact behavior of ductile materials as per the ASTM sta	I IVI Sta Indard	ndard	IS.		
J. L		impact behavior of ductile materials as per the Ao Thi sta		5.			
Indic	ative Exper	iments					
1.	Tensile an	d compression tests on the given specimens for dete	rminin	g Yo	ung's	3	
	modulus of	materials using Universal Testing Machine.		•	•		
2.	Determinat	ion of the Poisson's ratio of a metallic specimen in the li	near e	lastic	rang	е	
	of loading.						
3.	Estimation	of Notch Toughness of the metallic bar using Charpy/Izo	od Imp	act	esting	g	
Δ	Determinat	ion of the ultimate shear strength of mild steel specimen	by do		choo	r	
т.	test.	ion of the ditinate shear strength of third steel specifier	by uo	ubie	Silea	1	
5.	Determinat	ion of Young's modulus of the metallic/non-metallic	; bear	n us	ing t	he	
	deflection t	est method.			0		
6.	Verification	of the Maxwell's Reciprocal Theorem.					
7.	Determinat	ion of the Maximum bending stress of a mild steel beam	i using	defle	ction	l .	
0	test method).					
0. 0	Ectimation	of the stiffness and the rigidity modulus of the given h		corio		dor	
9.	axial loadin		lencai	spini	y un	uei	
10.	Torsion tes	t on mild steel or cast-iron specimens to find out modulu	s of ric	idity.			
11.	Verification	of the Euler buckling equations using steel columns sul	ojectec	to d	iffere	nt	
	end conditi	ons.					
12.	Strain mea	surement of the given beam using the Rosette Strain Ga	uge.				
		Total Laboratory Hou	rs	30 h	ours	;	
Toyt	Pook(c)						
1	Ferdinand	P Beer F Russell Johnston, John T DeWolf David F	Mazur		aniee		
	Sangh, Me	chanics of Materials, 2020, 8 th Edition, McGraw Hill Edu	cation	India	anjee A.	v	
2.	Russell C.	Hibbeler, Mechanics of Materials in SI Units, 2018, 9th E	dition,	Pear	son		
	Education,	India.	,				
3.	Lab Manua	I prepared by course faculty members					
Refe	rence Book	S Dava Davris I. Caadras, Masharias of Matariala, 2010, 01	ь Г а!:::				
1.	James IVI. (Jere, Darry J. GOOGHO, Mechanics of Materials, 2019, 9t	n Ealti	on, C	enga	ige	
2	Rattan S S	Strength of Materials, 2017 3rd edition. McGraw Hill F	ducati	on Ir	Idia		
3.	Ramamrut	nam S. Naravanan R. Strength of Materials, 2020, 20th F	Edition	. Dha	npat		
	Rai Publish	ning Company, India.		,			
4.	Popov E. P	, Nagarajan S, Lu Z. A; Mechanics of materials, SI vers	ion, 20	15,			

	Prentice-Hall of India.						
5.	James M. Gere, and Stephen Timoshenko, Mechanics of Materials; 2004, 2 nd edition,						
	CBS publishers and distributors						
Mode	e of assessment: Viva-voce exam	nination, Lab pe	erformanc	e & FAT			
Reco	ommended by Board of Studies	09-03-2022					
Appr	oved by Academic Council	No. 65	Date	17-03-2022			

BMEE203L	BMEE203L Engineering Thermodynamics L T						
Pre-requisite	Nil	Sy	llabı	is ve	ersio	n	
				1.0			
Course Objectiv	es						
1. To apply the laws of thermodynamics and describe their significance.							
2. To provide fur	ndamental knowledge of ideal and real gases.						
3. To analyse va	pour, gas power cycles and determining properties of ga	as m	ixtur	es.		_	
4. To establish the relationship between commonly measurable properties and the							
properties that	t cannot be measured directly.						
Course Outcome							
At the end of the	course the student will be able to						
1 Demonstrate	the understanding of basic thermodynamics concepts	SUC	h a	s sv	stem	าร	
forms of ener	ave work and heat, temperature.	out		<i>.</i>	01011	10,	
2. Analyse the p	roperties of pure substances, ideal and real gases.						
3. Apply the first	law of thermodynamics for closed and open systems.						
4. Apply the se	econd law of thermodynamics and entropy principle	s fo	r er	ngine	erin	g	
systems.				-		-	
5. Analyse the p	erformance of vapour and gas power cycles.						
6. Evaluate the	nixture properties using gas laws.						
7. Assess the su	bstance properties using thermodynamic relations.						
Module:1 Intro	duction and basic concepts of thermodynamics			4	hou	Irs	
Systems and co	ntrol volume, properties of a system, state and equili	Ibriu	m, c	uas	-sta	liC	
equilibrium, proc	esses and cycles, forms of energy, pressure, work ar	na n	eat	trans	ster,		
Module:2 Pron	artias of pure substances			6	hou	ire	
Phases of a pure	substance phase change process of pure substances	nro	nort	u cih v	aran	13	
for phase change	processes vanour property tables Ideal das equation of	of sta	ate i	eal (nase	10-	
Van der Waals er	puation of state, compressibility factor, Benedict-Webb R	Rubir	n eai	iatio	n.	.0	
Module:3 The f	irst law of thermodynamics			8	hou	ırs	
Energy analysis of	of closed and open systems, energy analysis of steady t	flow	devi	ces-	boile	er,	
turbine, heat excl	nangers, pumps and nozzles, energy analysis of unstead	dy flo	w p	roce	sses	s, [´]	
limitations of the	irst law of thermodynamics.	-					
Module:4 The	second law of thermodynamics			8	hοι	ırs	
Thermal energy	reservoirs, heat engines, heat pumps and refrigerators	, Ke	lvin-	Plan	ck a	ind	
Clausius stateme	ent and their equivalence, reversible and irreversible	pro	cess	es,	Carr	not	
cycle, Carnot pri	nciples, thermodynamic temperature scale, Entropy,	Clau	isius	-ine	qual	ity,	
IdS equations, e	ntropy change, entropy balance, the increase of entropy	prin	ciple	es, E	xerg	IY-	
Modulo 5 Van	eversibility.	-		-	hai	Iro	
	ower evelo deal Panking evelo ideal re heat Pan	kino		9 i ol	dool	112	
regenerative Ran	kine cycle, the effect of isentronic efficiencies. Air star	ndaro	l ace		ueai	e.	
Otto, Diesel cycle	Brayton, Stirling cycle and Fricsson cycles.	luar	1 03	Sann	511011	з,	
Module:6 Gas	mixtures			4	hou	ırs	
Composition of t	he gas mixture, mole and mass fractions. Dalton's la	w. A	mac	aťs	law		
properties of gas	mixtures.	,		, .		•	
Module:7 Ther	modynamic property relations			4	hοι	ırs	
Maxwell relations	, Clapeyron equation, General equations for du, dh, ds,	Cv a	nd C	p, J	oule	-	
Thomson coeffici	ent.						
Module:8 Cont	emporary Issues			2	hou	ırs	
	Total Lecture hours:			45	hοι	ırs	
Text Books							

1.	Yunus A. Cengel, Michael A. Bol	les and Mel	hmet Kar	oglu, Thermodynamics: An				
	Engineering Approach, 2019, 9 th Edit	tion, McGraw	Hill Educ	ation.				
Reference Books								
1.	Michael J Moran, Howard N Shapiro, Daisie D. Boettner and Margaret B. Bailey							
	Fundamentals of Engineering Therm	odynamics, 2	2015, 8 th E	dition, Wiley.				
2.	Nag P. K., Engineering Thermodynar	mics, 2017, 6	th Edition,	McGraw Hill Education.				
Мо	ode of Evaluation: CAT, Written assignr	ment, Quiz, F	AT.					
Re	ecommended by Board of Studies (09-03-2022						
Ар	proved by Academic Council	No. 65	Date	17-03-2022				

BMEE204L	Fluid Mechanics and Mach	nd Machines L T P					
		1	3	0	0	3	
Pre-requisite	NIL	S	yllabu	IS VE	ersi	on	
O a serie a O b is a the				1.0			
Course Objective	estatia la comina interactor de marca a la comunicación de la	and the state of the state of the					
1. To apply hydr Euler's and Be	ostatic law, principle of mass and mome	entum in fluid fic	ows, c	once	erts	; in	
2. To provide fur	ndamental knowledge of fluids, its properti	es and behaviou	r unde	er va	riou	S	
conditions of i	nternal and external flows.						
 I o determine To familiarize 	the losses in a flow system, flow through p the student with the various pumps and tu	opes, boundary I rbines.	ayer c	once	pts.	•	
Course Outcome	S						
At the end of the o	course, the student will be able to						
1. Demonstrate	he significance of fluid properties and law	s of fluid statics	to eng	inee	ring		
systems.							
2. Describe the f	low fields using Lagrangian and Eulerian a	approaches.					
3. Formulate suit	able governing equations to solve huid ho	w problems.					
4. Analyse the vi	scous now infough pipes and determine v	anous 1055es.					
6 Apply the hour	ndary layer concept and predict the flow se	enaration					
7. Analyse the p	erformance of hydraulic pumps and turbine	es.					
Module:1 Fluid	Statics and Buoyancy			8	ho	urs	
Definition of fluid	d, Concept of continuum, Fluid proper	ties, Rheologica	al clas	sific	atio	n.	
Pascal's Law and	Hydrostatic pressure and its measurement	nt -Manometry.					
Hydrostatic force	s on Plane, Inclined and Curved surf	aces, Buoyancy	/, Cor	nditic	on d	of	
Equilibrium for Su	bmerged and Floating Bodies, Centre of E	Buoyancy.					
Module:2 Fluid	Kinematics			5	ho	urs	
Description of flu	id motion – Lagrangian and Eulerian ap	proach, Types	of flov	vs, C	Cont	trol	
volume, Material o	derivative and acceleration, Streamlines, F	Pathlines and Str	eakline	es, S	strea	am	
function and veloc	city potential function, The Reynolds transp	port theorem.			<u> </u>		
	Dynamics			<u> </u>		urs	
tube Momentu	Jation, The Euler and Bernoulli equations	- venturimeter, c	onnicer	nete	r, P	ltot	
momentum The N	lin equation and its application – force davier_Stokes Equations	s on pipe be	nus, i	поп	ient	OI	
Module:4 Visco	bus Flow in pipes			6	ho	urs	
General Charact	eristics of nine flow Fully-developed is	l aminar flow H:	aden	Pois	euil		
equation. Turbule	nt flow. Darcy–Weisbach equation. Mood	v chart. maior a	nd mir	nor le	DSSE	es.	
Multiple pipe syste	ems.	,				,	
Module:5 Dime	nsional Analysis			5	ho	urs	
Dimensional hom	ogeneity, Rayleigh's method, Buckingha	m π theorem, N	lon-di	men	sior	nal	
numbers, Model la	aws and distorted models, Modelling and s	similitude.					
Module:6 Bour	idary layer flow			5	ho	urs	
Boundary layers,	Laminar flow and turbulent flow, Bound	lary layer thickn	ess, I	Nom	entı	JM	
integral equation,	Drag and lift, Separation of boundary I	ayer, Methods o	of prev	/enti	ng t	the	
boundary layer se	paration.	[-		
Module:7 Hydr	aulic Machines	<u> </u>		9	ho	urs	
Introduction - Ce	entrifugal pumps – Work done - Head	developed - P	ump	outp	uta	and	
Efficiencies - pri	ming - minimum starting speed - perfo	innance of mu	llistage	e pl f Lui	imp	S -	
turbings Polton	wheel - Francis turbing Kaplan and Pror	ius – UiassiiiCa Vollor turbinoo	Spoo	i Hy ific r	uial	JIIC	
Theory of draft tu	ne - Governing - Performance characterist	ics - Selection of	f turhi	1110 8	hee	. u -	
Module:8 Cont	emporarv issues			<u></u> 2	ho	urs	
		1					
	Total Lecture hours:			45	ho	urs	

Text Books									
1.	Som S K, Gautam Biswas, Chakraborty S, Introduction to Fluid Mechanics and Fluid								
	Machines, 2017, McGraw Hill.								
2.	Fox and McDonald, Introduction to Fluid Mechanics, 2020, 10 th Edition, Wiley.								
Reference Books									
1.	Yunus A. Cengel and John. M. Cimbala, Fluid Mechanics: Fundamentals and								
	Applications, 2019, 4 th Edition, McGraw Hill.								
Mode of Evaluation: CAT, Written assignment, Quiz, FAT									
Recommended by Board of Studies 09-03-2022									
Ар	proved by Academic Council	No. 65	Date	17-03-2022					

BMEE204P		Fluid Mechanics and Machines Lab					L	Τ	Ρ	С			
		NUL											
Pre-requisite		NIL				Syl	yllabus version						
1.0													
1 To train students practically with the procedures for measuring the co-efficient of													
discharge of orifice, mouthpiece, notches, orifice meter and venturi meter.													
2. T	2. To train the students to determine the friction factor and minor losses in pipe												
	components.												
results.													
Course Outcomes													
At the end of the course, the student will be able to													
1. Perform experiments on various flow measuring devices to calibrate them.													
 Perform experiments to determine triction factor and minor losses in pipe components. Conduct experiments on hydraulic machines to assess their performance 													
	ı	,											
List o	of Experime	nts											
1	Determinati	on of coefficient of	discharge of an c	rifice.									
2	Determination of coefficient of discharge of a mouthpiece.												
3	Determination of coefficient of discharge of a rectangular/triangular notch.												
4	Determination of coefficient of discharge of a venturi meter / orifice meter.												
5	Estimation of friction factor of a pipe.												
6	Estimation of minor losses in pipe fittings.												
7	Verification of the Bernoulli Theorem.												
8	Study and calibration of a pitot static tube.												
9	To study the performance of a centrifugal pump.												
10	Study the performance of a Pelton Turbine.												
11	Determination of static pressure distribution around an air foil.												
			Total L	aboratory	/ Hours			30	hou	urs			
Text	Books												
1	1 Som S K, Gautam Biswas, Chakraborty S, Introduction to Fluid Mechanics and Fluid Machines, 2017, McGraw Hill												
2	2 Lab Manual prepared by course faculty												
Mode	e of assessm	ent: Continuous ass	sessment, FAT, C	Dral exami	nation								
Keco	mmended by	/ Board of Studies	09-03-2022 No. 65	Data	17 02 0	022							
Abbu	oveu by Acat		CO .U/I	Dale	17-03-2	022							
BM	EE206P	Machine Drawing Lab			Т	Ρ	С						
----------------	--	--	-----------------	------------	-----------	-----------	----------						
				0	0	4	2						
Pre	-requisite	BMEE102P		Sylla	bus v	versio	n						
					1.0								
Cοι	urse Objectiv	/es											
1. T	o provide the	knowledge of design practices for common mach	nine e	eleme	nts.								
2. T	o train stude	nts to excel in part and assembly drawing of mech	nanica	al cor	npone	ents.							
3. T	o impart skill	s in applying CAD tools for conceptualizing produ-	ct.										
Οοι	urse Outcom	e											
At t	he end of the	course, the student will be able to											
1. L	1. Use CAD tools efficiently to design machine elements.												
2. L	emonstrate t	he use of ISO/BIS standards in machine drawing.											
3. A	pply the cond	cepts of conventional tolerancing and GD&I princ	iples.										
4. 11	iustrate the re	elative motion among parts in mechanical assemb	biy.										
Ind	cative Expe	riments											
1	Introductio	n to Machine Drawing. Study of Drawing St	heet	Lavo	ut an	d Dra	awing						
	Standards	Use of software packages for machine drawing ar	nd dra	aftina	ut un		wing						
2	Basics of	Machine Drawing: Study of basic specific	ation	s ar	nd co	nvent	ional						
	representati	on of standard components i.e. Bolts. Screw. Riv	/ets.	Kevs	Pins	. Was	shers:						
	Surface Rou	ughness and Welding symbols in machine drawing	g.			,							
3.	Basic of Li	mits, Fits and Tolerances: Study of fundament	al of	Devia	ations	, Shaf	t and						
	Hole Termir	nology, Method of placing limit dimensions. Study	of dif	feren	t type	s of F	its						
	and Toleran	ces. Reading of machining grade. Use of tolerar	nce ta	ables.									
4.	Introductio	n to Limits, Fits and Tolerances in Machin	e Dr	awin	g: In	corpoi	rating						
	Geometrica	I Tolerance and Dimensioning, GD&T Symbols	, LMO	C, MI	MC, c	oncep	ot in						
	engineering	drawing.				_							
5.	Part Mode	ling of machine components: 3D Modelin	ng o	of sta	andaro	d ma	chine						
0	components	s i.e. Snaft, Pulley, Springs, Plummer-Block, Brack	ket.				in ta						
б.	production c	rawing of Part: Draiting of standard machi- trawing-Orthographic Projection and Isometric Pro	ne p piectio	an c Sn	ompo	nents	; into						
7.	Modeling a	nd Assembly of machine elements: 3D Mod	elina	of st	andar	d ma	chine						
	elements i.e	Universal Coupling, Bench Vice, Radial Engine.	•g	0. 01									
8.	Detailed D	rawing of Assembly: Drafting of standard	asse	embly	elei	ments	into						
	Orthographi	c, Isometric and Section view. Applying Bill of Ma	terial	conc	ept.								
9.	Exploded A	Assembly Drawing: Understanding step of assen	nbly c	of con	npone	nts.							
1	Motion Stu	idy of Assembly: Applying motion among o	compo	onent	s in	asser	nbly.						
0.	Understand	ing Constraints Relations and Degree of Freedon	า.				-						
_		I otal Laboratory Hours				60	hours						
I ex		Machine Drowing 2000 Charater Dubliching Line		.4 1 1-		ام ما: -							
1.	Bhatt N. D,	Machine Drawing, 2008, Charotar Publishing Hou	ISE P	vt. Lir	nitea,	India.							
۷.	Technology	E, VIERCH, C. J, and FOSTER, R. J., Engineering	Drav	wing	and	Jraph	IC						
3	Lab Manual	prepared by course faculty members											
J. Dof													
1	Naravana K	No. Kannajah P. and Vonkata Poddy K. Machini	o Dro	wing	2016	с. т.h. г	Ed						
1.	New Are In	ternational Publishers India		wing,	2010	, 5 1	_u.,						
2		Text Book of Machine Drawing 2009 PHILearning	na Pv	/t Itd									
<u>د.</u> ۲	Lockhart S	Giesecke F F Dyadon I Spencer H Mitch	<u></u>		nson	<u> </u>	ood						
5.	man M To	chnical Drawing with Engineering Graphics 201	6 Pr	antice	Hall	Unite	d						
	Kingdom.	Shined Drawing war Engineering Graphies, 201	0 , i it		, i iaii,	Sinte	J						
4	Lakshminar	avanan, V., and Mathur, M. L., Text Book o	of Ma	chine) Dra	wina	(with						
•••							,						

	Computer Graphics), 2007, 12th Ed, Jain Br	others, Inc	dia.			
5.	SP 46: 1988 Engineering Drawing	g Practice	for Schoo	Is and Colleges, 1988, Bureau of		
	Indian Standards.					
6.	Design Data: Data Book of Engin	eers by PS	SG College	e, 2019, 4 th Ed., Kalaikathir		
	Achagham Coimbatore publication	n, India.	-			
Mo	de of assessment: Viva-voce exam	ination, La	ab perform	ance & FAT		
Red	ecommended by Board of Studies 09-03-2022					
Арр	proved by Academic Council	No. 65	Date	17-03-2022		

BMEE207L	-	Kinematics & Dynamics of Machines	LTP	С
			3 0 0	3
Pre-requis	ite	BMEE201L	Syllabus version	n
			1.0	
Course Ob	ojectiv	/es		
1. To enabl	e stud	dents to understand the fundamental concepts of mechar	nisms.	
2. To facilita	ate sti	udents to understand the functions of cams, gears, and fl	iywheel.	
3. To imp	art kr	nowledge on design of mechanisms and dynamic lo	ads acting on th	ıe
mechanism) .			
4. To give a	an insi	ght on the concepts of balancing, vibration and speed go	overning devices.	
		-		
Course Ou	Itcom			
At the end of	of the	course, the student will be able to		
1. Examine	e the k	inematic behaviour of various planar mechanisms.		
2. Construe	ct velo	ocity and acceleration diagrams for various planar mecha	nisms.	
3. Analyse	kinen	natics of cam and gear-train mechanisms.		
4. Investiga	ate the	e dynamic forces acting on planar mechanisms.		
5. Analyse	the ba	alancing of masses and vibrations of mechanical systems	S.	
6. Assess t	ine ch	aracteristics of governors and gyroscopic effects.		
Module:1	Mec	nanisms and kinematics	6 hou	rs
Introduction	n, me	echanisms and machines, terminology, planar mech	anism - Kinemati	iC
diagram ar	nd inv	ersion, Mobility, Coincident joints, Grubbler and Grash	off's law, Four ba	ır,
single and o	double	e slider mechanisms and their inversions.		
Module:2	Velo	city and Accelerations in Mechanisms	8 hou	rs
Velocity a	ndad	cceleration in planar mechanisms - Relative velocity	method, Corioli	S
component	of ac	celeration, Kennedy's Theorem, Instantaneous Centre m	iethod.	
Module:3	Kine	ematic analysis of Cams and Gears	7 hou	rs
Cams: Typ	es of	cams – Types of followers – Definitions – Motions of the	e followers – Layo	out
of cam prof	files.	Gear: terminology, fundamental of gearing, involute prof	ile, interference ar	nd
undercuttin	g, mir	nimum number of teeth, contact ratio - Gear trains: sim	ple, compound an	۱d
epicyclic.				
Module:4	Synt	thesis of planar mechanism	4 hou	rs
I wo positio	n and	I Three position synthesis of planar mechanism - Graphi	cal and analytical	
methods - I	-reud	enstein equation.	Chau	
		amic Force Analysis		IS
Introduction	1-U A	lembert's principle-static and inertial force analysis of re	eciprocating engin	ie-
Equivalent	dyna	Imic system. Turning moment diagram-four stroke	engine-multicylind	ler
engine-des	ign oi	inywheel of iC engine-design of hywheel him- design of i	iywneei or punchir	ıg
Modulo:6	Rala	ncing and Vibration	8 hou	ire
Statia and	Duna	mining and vibration	o nou	13
Static and	Dyna	withration Terminologica Single degree of free	dom dompod o	3S. nd
undamped	froo	and forced vibration Vibration isolation and Transmi	Join- uampeu ai issibility Transver	nu
unuampeu-	• nee	and forced vibration - vibration isolation and fransing	ssibility. Italisver	se no'
systems	515116	ans - writining of shart - forsional vibration of single re		5
Module:7	Gov	ernors and Gyroscope	4 hou	irs
Governors	Cen	trifugal Governors, types and its characteristics - M	Vorking principle	of
electronic	noveri	nor Gyroscope – Gyroscopic Effects on the Moveme	ont of airplanes a	nd
Ships $-Gv$	rnscn	ne Stabilization		nu -
Module 8	Con	temporarv Issues	2 hou	irs
	5011	Total Lecture hour	s: 45 hou	irs
Taxt Daal-	(a)			
	<u>(s)</u>	Theory of Machines Tate McCrow Lill 2010		
I. Rattan	১. ১,	Theory of Machines, Tata McGraw Hill, 2019		

Re	ference Books					
1.	Joseph Edward Shigley and John	i Joseph l	Jicker Jr	., Theory of Machines and		
	Mechanisms SI Edition, 2014, Oxford	d University	Press			
2	Norton R. L, Kinematics and Dynami	cs of Machi	nery, , 20	17, McGraw-Hill Education		
3	Norton R. L., Design of Machinery, A	n Introducti	on to the	Synthesis and Analysis of		
	Mechanisms and Machines, 2019Mc	Graw-Hill F	ligher Ed	ucation		
Мо	Node of Evaluation: CAT, Written assignment, Quiz, FAT					
Re	ecommended by Board of Studies 09-03-2022					
Ар	proved by Academic Council	No. 65	Date	17-03-2022		

BMEE207P	Kinematics	& Dynamics	of Machi	nes Lab		LTF	, C
		-				0 0 2	2 1
Pre-requisite	BMEE201L				Sylla	bus vers	sion
						1.0	
Course Object	ive			_			
1. To impart p	ractical skills in analyzi	ng different me	echanism				
2. To familiarize the use of cams and gears.							
3. To demonst	rate the importance of	governors and	gyroscop	es.			
Course Outco	mes						
At the end of th	e course, the student v	vill be able to					
1. Determine tr	e kinematic behaviour	of various plan	har mecha	anisms.			
2. Analyse the	free, forced, and damp	ed vibration of	different	systems.			
3. Investigate t	ne performance of vari	ous governors	and the g	yroscope.			
In dia atiwa Eve							
	eriments						
1. Study of a	tion of the Coriolis con	SITIS	aloration				
2. Determina	analysis of goar and g	porterit of acce					
3. Kinematic	analysis of year and y						
4. Calli Sylli	tion of the natural vibre	tion of the cori	na mace	evetor			
5. Determina	tion of the free torsion	luon or the spin	ng mass	vetom			
7 Determina	tion of the radius of av	a vibration of hifilar	8. trifilar s	vstem			
8 Determina	tion of the critical spee	d of the whirlin	a shafts v	vith differen	t fixina	\$	
9 Determina	tion of equilibrium spee	ds of Watt do	<u>ernor</u>	vian americin	t IIXii ig	0	
10 Determina	tion of equilibrium spec	eds of Porter a	overnor				
11 Determina	tion of equilibrium spec	eds of Hartnell	aovernor				
12 Determina	tion of avroscopic cour	ble acting on a	rotating d	lisc			
			Total Lab	pratory Hou	rs	30 h	ours
Text Book(s)							
1. Rattan S. S	, Theory of Machines,	Tata McGraw	Hill, 2019	•			
2. Lab Manua	I prepared by course fa	aculty member	S.				
Reference Bo	oks	2					
1. Joseph Ed	ward Shigley and J	ohn Joseph l	Jicker Jr	., Theory o	of Mad	chines a	nd
Mechanisn	ns SI Edition, 2014, Ox	ford University	Press	-			
2 Norton R. I	., Kinematics and Dyna	mics of Machi	nery, 201	7, McGraw-	Hill Ed	lucation	
3 Norton R. I	, Design of Machinery	, An Introductio	on to the S	Synthesis a	nd Ana	alysis of	
Mechanisn	ns and Machines, 2019	, McGraw-Hill	Higher E	ducation			
Mode of assess	sment: Viva-voce exam	nination, Lab po	erformand	æ & FAT			
Recommended	by Board of Studies	09-03-2022					
Approved by A	cademic Council	No. 65	Date	17-03-202	22		

BMEE210L Mechatronics and Measurement Systems						С
			3	0	0	3
Pre-requisite	Nil	Sylla	bus	s ve	rsic	on
			1	.0		
Course Objectiv	/es					
1. To familiarize	e key elements of mechatronics system, impart knowled	ge of th	ne e	lem	ents	6
and techniqu	es involved in mechatronics systems for industrial autor	nation.				
2. To impart the	theoretical and practical aspects of measurement syste	em desi	gn.	– 4	~	
3. To give insigi	nt to the principles of sensors & actuators, and their inter	tacing	witr	1 DA	Q.	
Course Outeers						
Course Outcom	es					
At the end of the	the basic concents, applications and elements of mach	otronio	0.001	om		
2 Apolyzo vorie	the basic concepts, applications and elements of mecha	ationic	5951	ems	5.	
2. Analyze valid	ious types of sensors and actuators used in mechatronic	re evet	ame			
1 1 1 1 1	cent of signal processing and use of interfacing system		51113	•		
	teept of signal processing and use of internating system.	5.				
Module: 1 Bas	sics of Mechatronics Systems			6	hou	ırs
Basic concepts i	n mechatronics. Mechatronics systems design approac	ch. Key	/ ele	eme	nts	of
mechatronics sv	stem. Role of sensors, actuators and measurem	nents-F	eec	lbac	k i	n
mechatronics sy	stems- Emerging application areas of mechatronics.					
Module: 2 Mea	asurement System			6	hοι	ırs
Introduction to	measurement, Standards of measurement, Modes	of mea	asur	eme	ent.	
generalized me	asurement system, Applications of Measurement	Syster	n, I	Erro	rs	in
measurement, s	ources of errors. Specifications: Sensitivity, resolution	, bias,	dea	ad s	pac	e-
Static and dynan	nic characteristics- System response.				•	
Module: 3 Bas	sic Sensors			7	hοι	ırs
Position and Spe	eed Measurement- Proximity Sensors and Switches, P	otentic	me	ter,	Line	ear
Variable Differen	tial Transformer, Digital Optical Encoder; Stress and S	train N	leas	sure	mer	nt -
Electrical Resist	ance Strain Gauge, Measuring Resistance Changes	with a	WI	neat	stor	ne
Bridge, Measurir	ig Different States of Stress with Strain Gauges.					
Module: 4 Adv	anced Sensors			7	hοι	ırs
Force Measure	ment with Load Cells; Temperature Measureme	ent- L	iqui.	d-in	-Gla	ass
Thermometer, B	imetallic Strip, Electrical Resistance Thermometer, The	rmocou	lple	; Vik	orati	ion
and Acceleration	n Measurement - Piezoelectric Accelerometer; F	ressur	e a	and	Η	ow
Measurement;	Capative sensors- Fiber optic sensors-Semicondu	ctor 3	Sens	sors	a	nd
Modulo: 5				6	hou	Irc
Floatromognatio	Dringinlag Colongida, and Dolova Electric Materia. D		oro	0 Cto		215 "
Motoro Hydroulic	Philicipies-Soleholds and Relays-Electric Motors- D		015-	Sie	ppe	1
Module:6 Data	$\Delta causisition$			6	hoi	ire
Introduction to D	ata Acquisition-Quantizing Theory-Analog-to-Digital Cor	Nersio	<u>п- Г</u>)iait:	al_to)-
Analog Conversi	on-Signal Conditioning-Computer Based Instrumentatio	n Svste	ms	-Sof	twa	, re
Design and De	evelopment-Data Recording and Logging-The Intelli	iaent	Mult	ivar	iabl	e
Measurement SV	/stem.	gon	, include			•
Module:7 Mea	surement Systems			5	hοι	ırs
Linear and angu	lar measurements – taper measurement, threads, surfa	ace fini	sh,	insp	ect	ion
of straightness,	flatness and alignment- Comparators - Gear testing-C	oordina	ate	mea	sur	ing
machines, Optica	al Tool Maker's Microscope, Profile Projector.		_			_
Module:8 Con	temporary Issues			2	hοι	ırs
	Total Lecture hours:			45	hou	urs

Te	ext Book(s)			
1	Alciatore, D.G. and Histand, M.B.	Introductio	on to me	chatronics and measurement
	systems. 2019, New York, Ny: Mcgrav	w-Hill Educ	cation.	
2	Bewoor, A.K. and Kulkarni, V.A., M	Metrology	& Meas	urement, 2009, McGraw-Hill
	Education.			
Re	eference Books			
1.	DeSilva, C.W., Farbod Khoshnoud,	, Li, M. a	and Halg	amuge, S.K, Mechatronics :
	Fundamentals and Applications. Boc	ca Raton:	2016, CF	RC Press, Taylor & Francis
	Group.			
2	William Charles Bolton, Mechatronics	s: electron	ic control	systems in mechanical and
	electrical engineering. 2019, Harlow, E	England: P	earson.	
3.	Thomas G. Beckwith, Roy D. Marango	oni, John H	I. Lienhar	d, Mechanical Measurements,
	2009, Pearson Education.			
4	Cesare Onwubolu Godfrey C Fantuzzi	i, Mechatro	onics: Pri	nciples and applications, 2020,
	S.L.: Butterworth-Heinemann Ltd.			
5	Bentley, J.P. (2008). Principles of mea	asurement	systems.	Harlow Pearson Prentice Hall.
Мо	ode of Evaluation: CAT, Written assignm	nent, Quiz,	FAT.	
Re	ecommended by Board of Studies 09	9-03-2022		
Ар	pproved by Academic Council No	lo. 65	Date	17-03-2022

BMEE210P Mechatronics and Measurement Systems Lab L T P							С			
							0	0	2	1
Pre-r	equisite	Nil				Syl	llabu	ls v	ersi	on
_								1.0		
Cour	se Objectiv	/es								
1. To	integrate th	ne mechanical systems	s with electric	al, electro	onics and co	ompu	uters	syste	ems	for
pro	oviding mult	idisciplinary approach.								
2. To	familiarize	the use of transducers	, sensors and	actuator	S					
3.10										
Cour	so Outcom	0								
	se Outcom	course the student wil	ll he able to							
1 Pr	actice the v	arious fluid nower syste								
2 Im	nlement diff	erent sensors for vario	us industrial.	applicatio	ns					
3 Ca	aliberate me	asuring instruments an	nd measure v	arious de	ometrical fe	ature	es			
0. 00				anodo go		atore				
Indic	ativo Expor	rimonte								
1		and analysis of hydrau	ulic pneuma	tic and c	lectro-ppeu	mati	ic cir	cuite	2 112	ina
	automat	ion software and hards	ulic, prieurra Nare		lectro-prieu	mau		cuit	5 US	ng
2	Stepper	motor. Traffic light, HM	Al Programmi	ina interf	ace using a	PLC).			
3	. Force ar	nd Torque measureme	nt using strai	n daude.	are aring a	•				
4	. Measure	ement of speed and dis	placement u	sina linea	r and rotarv	' sens	sors			
5.	. Pressure	e measurement system	ns usina sens	ors.				-		
6.	. Tempera	ature measurement us	ing RTD and	thermoco	ouple.					
7.	. Vibratio	n and acceleration mea	asurements u	sing Piez	o electric se	ensor	r.			
8.	. Develop	ment of data logging u	sing virtual in	strument	software.					
9.	. Calibrati	on and dimensiona	al measurer	nent us	sing Micro	mete	ər,	Mec	han	ical
	Compar	ator, Vernier Caliper a	nd Dial Gaug	e.	0		-			
1(0. Measure	ement of flatness of the	e object using	g dial gau	ge and tape	er ang	gle u	Ising	g Be	vel
	Protract	or, Dial Gauge and Si	ne-Bar. Mea	surement	of bores b	y us	sing I	Micr	ome	ter
	and Dia	bore indicator.								
1	1. Measure	ement of Gear tooth thi	ckness by us	ing Gear	tooth Vernie	er.				
12	2. Surface	roughness measureme	ent of machin	ied comp	onent.					
			То	tal Labo	ratory Hour	'S 3	30 ho	ours	5	
Text	Books				. –					
1. A	utor: Antho	ny Esposito (2014). Flu	and power with	n applicat	ions. Editori	ial: H	Harlo	W:		
	earson Edu	Ication Limited.	ania aantralla						Tinle	
	ablee, M. (4	2018). Programmable i Goodboort Willoox Co	ogic controlle	ers : nard	ware and pr	ogra		ng.	Ime	зу
2 N	lational Inst	ruments (Firm (2003)	lipany, inc. I ab\/IE\// · m	assuram	onte manua		ictin	Τον	<i>.</i> .	
5. N	lational Inst	ruments		leasurem	ents manua	u. Au	Jour,	16/	`	
4 1	ab Manual (of prepared by course f	faculty memb	ers						
Refe	rence Book	s								
1. F	luid Power	Hydraulics and Pneum	natics, 3rd Ed	lition. Lab	Manual					
2. 1	abVIEW TM	User Manual LabVIE	W User Manı	ual. (2003).					
Mode	of assessn	nent: Viva-voce examir	nation. Lab pe	erforman	, ce & FAT					
Reco	mmended b	by Board of Studies	09-03-2022							
Appro	oved by Aca	demic Council	No. 65	Date	17-03-202	2				
	.,	-	=							

3104Pre-requisiteBMEE202L, BMEE202PSyllabus versionI.0Course Objectives1. To impart the knowledge on materials selection in design2. To familiarize the effects of various types of loading on machine parts.
Pre-requisite BMEE202L, BMEE202P Syllabus version Course Objectives 1.0 1. To impart the knowledge on materials selection in design 2. To familiarize the effects of various types of loading on machine parts.
Course Objectives 1.0 1. To impart the knowledge on materials selection in design 2. To familiarize the effects of various types of loading on machine parts.
Course Objectives 1. To impart the knowledge on materials selection in design 2. To familiarize the effects of various types of loading on machine parts.
 To impart the knowledge on materials selection in design To familiarize the effects of various types of loading on machine parts.
2. To familiarize the effects of various types of loading on machine parts.
3. To develop the design methodology for mechanical components used in industries.
4. To adopt various standards in the design process.
Course Outcomes
At the end of the course, the student will be able to
1. Evaluate the design of machine components using theories of failure.
2. Analyse machine components subjected to dynamic loads against fatigue failure.
3. Recommend suitable mechanical springs for various applications.
4. Design shafts, keys and couplings as per the international standards.
5. Investigate the design aspects of temporary and permanent joints.
6. Design and develop the engine components.
Markela 4 Justice the Comment
Module:1 Introduction to Design 8 hours
Design Process – Factors Considered in Design – Selection of Materials – Use of Standards
in Design – Direct, Bending and Torsional Stresses in Machine Elements - Factor of Safety –
Design Stress – Theories of Failures.
Module:2 Fatigue Strength 8 nours
Stress Concentration – Theoretical Stress Concentration Factor – Size Factor – Surface
Finish Factor – Fatigue Stress Concentration Factor – Notch Sensitivity – Variable and
Cyclic Loads – Fatigue Strength – S-N Curve – Gerber, Soderberg and Goodman Equations
Module:3 Design of Mechanical Springs
Strasses and Deflections of Holical Springs Extension Springs Compression Springs
Springs for Fatigue Loading, Energy Storage Canacity – Leaf Springs – Helical Torsion
Springs - Flat Spiral Springs
Module:4 Design of Shafts. Keys and Couplings 9 hours
Design of Solid and Hollow Shafts for Strength and Rigidity – Design of Shafts for Combined
Bending, Torsion and Axial Loads – Design of Keys-Stresses in Keys – Design of Rigid and
Flexible couplings.
Module:5DesignofPermanentJointsandThreaded9 hours
Fasteners
Design of Riveted Joints – Design of Welded Joints – Design of Bolted Assembly – Direct
Module:6 Design of Cotter and Knuckle Joints 8 hours
Introduction to Cotter and Knuckle Joints - Design of Cotter Joints - Spigot and Socket
Sleeve and Cotter, Gib and Cotter – Design of Knuckle, Joint
Module:7 Design of Engine Components 8 hours
Introduction to IC engine components – Classification - Design of Flywheel – Design of
Connecting Rod – Design of Crankshaft – Design of Piston
Module:8 Contemporary Issues 2 hours
Total lecture hours: 60 hours
Text Book(s)
1. V. B. Bhandari, Design of Machine Elements, 2020, 5 th Edition, Tata McGraw Hill.
Reference Books
1. Richard G. Budynas and Keith Nisbett J, Shigley Mechanical Engineering Design, 2020,

	11 th Edition (in SI Units), McGraw	Hill		
2.	Harsha, A. P., Hornberger, L. E	E., Shoup, T. E.	, Spotts,	M. F., Design of Machine
	Elements, 2019, Pearson India E	ducation Service	es Pvt. Lin	nited.
3.	Robert L. Norton, Machine Desigi	n, 2018, 5 th Editio	on, Pearso	on.
4.	Juvinal, R.C and Kurt M.Marshek	, Machine Comp	onent Des	sign, 2016, Wiley.
5.	PSG Design Data: Data Book of B	Engineers, 2020,	, Kalaikath	nir Achchagam.
Мо	de of Evaluation: CAT, Written ass	ignment, Quiz, F	AT	
Re	commended by Board of Studies	09-03-2022		
Ар	proved by Academic Council	No. 65	Date	17-03-2022

BMEE302L	Metal Casting and Welding	LTPC
		
Pre-requisite	BMEE209L, BMEE209P	Syllabus version
Course Objectiv		1.0
	ves	
2 To impart kno	where on the welding processes for developing various	ioints
2. 10 impart line	smedge of the weiding proceeded for developing validat	
Course Outcom	es	
At the end of the	course, the student will be able to	
1. Interpret the s	olidification characteristics for designing gating system.	
2. Demonstrate	working principle of various casting processes.	
3. Use various m	nelting practices and explore casting defects.	
4. Apply suitable	welding process for different functional requirements.	
5. Examine weld	defects and suggest suitable methods to assess weld q	uality.
Madula:1 Cast	ing Fundamentala	7 hours
	ing Fundamentals	/ nours
Solidification of	pure metals and alloys. Mechanism of columnar an	a denaritic growth.
concept of prog	fluid flow: Perneulli's theorem and low of mass contin	he and Chvonnovs
componente ano	I functions. Design of the gating System. Different type	as of gatos Gating
ratio and its fu	actions. Definition and functions of the riser Types	of risers and their
application. Des	ian of riser. Aspiration effect. Use of insulating materi	al and exothermic
compounds in ris	ers.	
Module:2 Exp	endable Mould Casting	6 hours
Sand casting –	Types and properties of sand – Types, features and ste	ps involved in sand
mould – Pattern	making, pattern allowances - Mould and Core mater	als - Core making,
chaplets - Sanc	I-moulding machines – Procedural steps and applicati	ons of Shell mould
casting, Plaster a	and Ceramic mould casting, Lost-foam Casting, Investme	nt mould casting.
Module:3 Perr	nanent Mould Casting	5 hours
Procedural steps	and applications of Vacuum casting, Slush casting, Low	/-pressure casting,
Die-casting – n	ot chamber and cold chamber, Centrifugal casting,	Squeeze casting,
Module:4 Melt	ing Technology and Casting Defects	6 hours
Melting furnaces	tor ferrous and non-ferrous foundries. Electric and	fuel fired furnaces
Induction Furnace	ces: Types of Eurnaces Electromagnetic Stirring pow	er sunnlies: Recent
developments in	energy considerations. Melting practice – ferrous, non	-ferrous metals and
allovs and com	posites. Melting practices: Fluxing, inoculation, de	assing and grain
refinement treat	ments. Control of pouring temperature Heat treatment	s of castings, Shop
floor melt quality	tests.	U I
Residual stresse	s and Casting defects and factors responsible for them.	Different inspection
and testing meth	ods to evaluate the casting.	
Module:5 Join	ing Processes	8 hours
Classification of	welding processes -Fusion welding: Oxy-fuel gas	welding - types of
Tiames and uses	s, Arc weiging: power sources -methods of arc initiation	
arc stability, dut	y cycle, metal transfer. Non-consumable electrode - C	JIAVV, PAVV, AHVV.
consumable ele	CITODE - SIVIAVV, SAVV, GIVIAVV, FCAVV, EGVV, ESVV.	Electrodes and its
Solid State wel	ding (CDW & CDW).	a Friction welding
Friction stir well	ding Resistance welding Explosion welding Diffusio	n welding Thermit
welding.		
Brazing, Solder	ing and adhesive bonding: Principle of Operation. adv	antages, Limitations
and application.		
Module:5 Fund	damentals of welding	5 hours

So	idificatio	on of the weld metal, Heat flow in wel	ding, Meta	Illurgical trans	formation in and
aro	und we	Idment, Implication of cooling rates, He	at affected	zone (HAZ),	Shielding gases,
Cla	ssificati	on of Filler metals and Fluxes, Weldal	ility of pla	ain carbon ste	els, Low Carbon
Ste	els, Sta	inless steels and Aluminium Alloys.	• •		
Мо	dule:7	Welding Defects and Testing			6 hours
Spa	atter, U	nder-cutting, and over lapping Crack-	Initiation	and Propaga	tion - Incomplete
Pe	netratior	n, Inclusions, Porosity and blowholes,	_ack of fu	sion, Distortic	on (Distortion and
res	idual st	resses, Concept of distortion, Types of	distortion	, Control of w	velding distortion)
cau	ises and	d remedies for weld defects.			
Tes	sting ar	nd Inspection of welding: Visual Inspe	ction, We	dability, Dest	ructive testing of
we	ds, Nor	n-destructive testing of welds and Hot Cr	acking Tes	sts.	-
Мо	dule:8	Contemporary Issues			2 hours
			Total Lee	cture hours:	45 hours
Tex	kt Book	S	Total Lee	cture hours:	45 hours
Te x 1.	(t Book John k	s C.C, Metal casting and Joining, 2015, PH	Total Leo	ns.	45 hours
Te 1. 2.	(t Book John k P. L. J	s K.C, Metal casting and Joining, 2015, PH ain, Principles of Foundry Technology, 2	Total Lee publicatio 009, 5th eo	<mark>cture hours:</mark> ns. dition, TMH Pเ	45 hours
Te 1. 2. 3.	(t Book John K P. L. J Parma	s K.C, Metal casting and Joining, 2015, PH ain, Principles of Foundry Technology, 2 rr R.S, Welding Engineering and Techno	Total Lee publicatio 009, 5th eo ogy, 2013	cture hours: ns. dition, TMH Pu , Khanna Publ	45 hours ublications. ishers.
Te 1. 2. 3. Re	kt Book John k P. L. J Parma f erence	S K.C, Metal casting and Joining, 2015, PH ain, Principles of Foundry Technology, 2 or R.S, Welding Engineering and Techno Books	Total Lee publicatio 009, 5th eo ogy, 2013	cture hours: ns. dition, TMH Pւ , Khanna Publ	45 hours ublications. ishers.
Tex 1. 2. 3. Re 1.	(t Book John K P. L. J Parma ference Serope	s K.C, Metal casting and Joining, 2015, PH ain, Principles of Foundry Technology, 2 R.S, Welding Engineering and Techno Books Kalpakjian, and Steven Schmid, Mar	Total Lee publicatio 009, 5th ec ogy, 2013 ufacturing	cture hours: ns. dition, TMH Pu Khanna Publ Engineering	45 hours ublications. ishers. and Technology,
Tex 1. 2. 3. Ref 1.	tt Book John K P. L. J Parma ference Serope 2020, f	s K.C, Metal casting and Joining, 2015, PH ain, Principles of Foundry Technology, 2 ar R.S, Welding Engineering and Techno Books Kalpakjian, and Steven Schmid, Mar 8 th edition, Pearson education.	Total Lee publicatio 009, 5th ec ogy, 2013 ufacturing	cture hours: ns. dition, TMH Pu Khanna Publ Engineering	45 hours ublications. ishers. and Technology,
Te 2 1. 2. 3. Re 1.	(t Book John K P. L. J Parma ference Serope 2020, J P.N. R	S K.C, Metal casting and Joining, 2015, PH ain, Principles of Foundry Technology, 2 ar R.S, Welding Engineering and Techno Books e Kalpakjian, and Steven Schmid, Mar 8 th edition, Pearson education. ao, Manufacturing Technology Foundry,	Total Leo publicatio 009, 5th eo ogy, 2013 ufacturing Forming a	cture hours: ns. dition, TMH Pu Khanna Publ Engineering nd Welding, 2	45 hours ublications. ishers. and Technology, 003, 2nd Edition.
Tex 1. 2. 3. Re 1. 2. Mo	(t Book John K P. L. J Parma ference Serope 2020, P.N. R de of Ev	S K.C, Metal casting and Joining, 2015, PH ain, Principles of Foundry Technology, 2 ar R.S, Welding Engineering and Techno Books e Kalpakjian, and Steven Schmid, Mar 8 th edition, Pearson education. 2ao, Manufacturing Technology Foundry, valuation: CAT, Written assignment, Quiz	Total Lee publicatio 009, 5th ec ogy, 2013 ufacturing Forming a , FAT	cture hours: ns. dition, TMH Pu Khanna Publ Engineering nd Welding, 2	45 hours ublications. ishers. and Technology, 2003, 2nd Edition.
Tex 1. 2. 3. Ref 1. 2. Mo Ref	(t Book John k P. L. J Parma ference Serope 2020, 1 P.N. R de of Ev commer	s K.C, Metal casting and Joining, 2015, PH ain, Principles of Foundry Technology, 2 ar R.S, Welding Engineering and Techno Books Kalpakjian, and Steven Schmid, Mar 8 th edition, Pearson education. ao, Manufacturing Technology Foundry, valuation: CAT, Written assignment, Quiz anded by Board of Studies 09-03-2022	Total Lee publicatio 009, 5th ec ogy, 2013 ufacturing Forming a , FAT	cture hours: ns. dition, TMH Pu Khanna Publ Engineering nd Welding, 2	45 hours ublications. ishers. and Technology, 003, 2nd Edition.
Tex 1. 2. 3. Re 1. 2. Mo Re App	t Book John K P. L. J Parma ference Serope 2020, 1 P.N. R de of Ev commer	s K.C, Metal casting and Joining, 2015, PH ain, Principles of Foundry Technology, 2 ar R.S, Welding Engineering and Techno Books e Kalpakjian, and Steven Schmid, Mar 8 th edition, Pearson education. ao, Manufacturing Technology Foundry, valuation: CAT, Written assignment, Quiz nded by Board of Studies 09-03-2022 by Academic Council No. 65	Total Lee publicatio 009, 5th ec ogy, 2013 ufacturing Forming a , FAT	cture hours: ns. dition, TMH Pu Khanna Publ Engineering nd Welding, 2	45 hours ublications. ishers. and Technology, 2003, 2nd Edition.

BMEE302P Metal Casting and Welding Lab L T P						LTPC
						0 0 2 1
Pre	requisite	BMEE209L, BMEE2	09P			Syllabus version
						1.0
Cou	Irse Objective	es				
1. 2.	To provide an To impart prac	insight on foundry practical exposure on the	ctices. effect of weld	ling para	meters on jo	pint characteristics.
Cou	Irse Outcome	;				
At th	ne end of the o	course, the student wi	l be able to			
	Assess the pro	operties of moulding s	and and dem	onstrate	the melting	practices.
2.	Evaluate the e	effect of welding paran	neters on mici	rostructu	re and weld	quality.
з.	investigate the	e weldability of various	materials.			
Indi	cativo Expori	imonte				
1		nnems on of pormospility, sh	oar strongth (and com	prossion str	ongth of the given
1.	foundry sand	d.	ear strengtra		pression su	engin or the given
2.	Determinatio	on of the grain finenes	s of the given	foundry	sand.	
3.	Determinatio	on of clay content for	the given m	oulding	sand samp	le and to study the
	variation of o	compression strength	for various m	oisture c	ontents.	
4.	Determination	on of flowability for the	given foundry	y sand.		
5.	Prepare the	mould for the given pa	attern with the	e core us	ing two box	es and three – box
	moulding pro	ocess.				
6.	Foundry me	lting practice – demon	stration.			
7.	To study the	e effect of heat input	on microstru	cture of	weld metal	and HAZ of AI / Ni
	alloys perfor	med under GTAW pro	ocess.	<i>(</i> , , , , , , , , , , ,		
8.	To study the	effect of FSW proces	s parameters	(tool rot	ational spee	ed, axial load, and
0	travel speed) on the butt weiding (of Al alloy.	rofilo no	natration	and its dilution) on
9.	Austonitic st	ainloss stool by using	GMAW proce	ronie, pe	enetration, a	and its dilution) on
10	To study the	weldability of plastic r	naterial using	ultrasor	nic welding r	machine
11	To study the	residual stress meas	urement of the	e friction	stir welded	specimen
	(Demonstrat	ion).		o modon		opeeinen
12.	Effect of shie	elding gases on the we	eld performan	ce of GN	AW proces	s. (Case study)
			T	otal Lab	oratory Hou	irs 30 hours
Tex	t Books				-	
1.	John K.C, M	letal Casting and Joini	ng, 2015, PH	l publica [:]	tions.	
2.	P. L. Jain, P	rinciples of Foundry T	echnology, 20	009, 5th	edition, TMF	HPublications.
3.	Parmar R.S,	Welding Engineering	and Technolo	ogy, 201	3, Khanna F	Publishers.
3.	Lab Manual	prepared by course fa	loulty			
Ref	erence Books	S			<u></u>	
1.	Srinivasan N	I. K., 'Foundry Techno	logy', 1986, k	Khanna F	² ublications	
2.	Richard L Lit	ttle, Welding and weld	ing technolog	y, 2020,	Mc Graw H	
	e of assessm	ent: Continuous asses	ssment, FAT,	Ural exa	mination	
Rec	ommended by	y Board of Studies	09-03-2022	Det	47.00.000	20
App	roved by Acad	demic Council	NO. 65	Date	17-03-202	22

BMEE303L	Thermal Engineering Sys	stems		LT	Ρ	С		
				3 0	0	3		
Pre-requisite	BMEE203L		Syllal	ous ve	ersio	วท		
				1.0				
Course Objectiv	/es				<u> </u>			
1. To guide the s	students to apply the laws of thermodynan	nics in applica	tions of	therm	al			
systems.	a ta main ana an tint an dibanin ha sha ba an a							
2. To neip stude	nts gain essential and basic knowledge of	various types	or inter	nai an	a			
	uele		ie testii	ig oi				
3 To equip the s	3 To equip the students to analyse steam turbine gas turbine cycles, refrigeration and air –							
conditioning s	vstems.		ingeraa	onan	a an			
<u>_</u>	<i>,</i>							
Course Outcom	e							
At the end of the	course, the student will be able to							
1. Apply the ther	modynamics laws to the working of IC eng	gines.						
2. Analyze perfo	rmance parameters of IC engines.							
3. Design a stea	m nozzle for thermal power plant and ana	lyze the perfor	rmance	of				
reciprocating	air compressors.							
4. Analyze the p	erformance parameters of steam and gas	power cycles.						
5. Compare vari	ous refrigeration systems based on their p	erformance.						
6. Evaluate the c	cooling load requirements for conditioned s	space.						
	nginos				7 ho	ure		
Working princip	la of 2 stroka and 4 stroka SL and CL					uis		
diagrams Wank	el engine simple carburettor - Ignition s	eligilies - va	hustion	stanc	s un	n SI		
and CI engine -	Knocking and detonation - Fuel injection s	vstem - MPFI.	CRDI. (GDI –	Rati	ina		
of fuels - Cooling	system, Lubrication system - super charc	ging and Turbo	chargir)g.		g		
Module:2 IC E	ngines Performance				6 ho	urs		
Performance tes	st - Measurement of Brake power, Indic	ated power a	nd Frict	ional	pow	er,		
Fuel consumptio	n, Air consumption - Heat balance test - N	Morse test and	Retard	ation	test	on		
IC engine.					2 4 4			
Nodule:3 Air C	Compressor	at of algorithms				urs		
staging – Volume	ripressors - Construction - Working - Ene atric efficiency – Isothermal efficiency			3 - 1010	uiu-			
Module:4 Stea	m nozzle				6 ho	urs		
Steam Nozzles -	- One-dimensional steady flow of steam th	rough a conve	ergent a	nd div	erae	ent		
nozzle – Metasta	ble flow.	lieugii a conre	, goint a		orge			
Module:5 Stea	m turbine and Gas turbine			(6 ho	urs		
Steam turbine -	Impulse and Reaction turbine – Performar	nce						
Gas turbine - Op	en and Closed cycle gas turbine, Reheatir	ng, Regenerat	ion and	Interc	oolir	ıg.		
Module:6 Refr	igeration				6 ho	urs		
Air refrigeration s	system - Vapour compression refrigeration	n system - Co	mponen	its - W	/orki	ng		
- P-H and T-S c	liagrams - Calculation of COP - Effect o	f sub-cooling	and sup	ber-he	eatin	g –		
Selection and pi	roperties of refrigerant - Vapour absorpt	ion system -	NH3 - W	later s	syste	em,		
	on system. Cryogenic engineering - Introd	uction, Applica	alion, Cr	<u>yo-co</u>	s ho	S.		
Types of air-cond	ditioning system and its working principle	- Psychrometr		hrom	otrio	<u>ui 3</u>		
properties proce	esses and chart – heating and cooling load	d calculations	y - i Syt	/11011	0010			
Module:8 Con	temporary issues				2 ho	urs		
	Total Lecture hours:			45	5 ho	urs		
· I								

Text Book

1. Rajput R.K., Thermal Engineering, 2017, 10th Edition, Laxmi Publications (P) Ltd. **Reference Books**

1. Ganesan, V., Internal combustion engines. 2012, McGraw Hill Education (India) Pvt Ltd.

	· · · · · · · · · · · · · · · · · · ·
2.	Manohar Prasad., Refrigeration and Air Conditioning, 2015, 3 rd Edition, New Age
	International.
3.	Soman, K., Thermal Engineering. 2011, PHI Learning Pvt. Ltd.
N 4	

Mode of Evaluation: CAT, Written assignment, Quiz, FAT. Recommended by Board of Studies 09-03-2022

Necommended by Doard of Studies	09-03-2022		
Approved by Academic Council	No. 65	Date	17-03-2022

BM	E303P	Thermal	Engineering	Systems	s Lab		LT	Ρ	С	
							0 0	2	1	
Pre-	requisite	BMEE203L				Sylla	<u>ibus v</u>	ersi	on	
							1.0			
Cou	rse Objective	es estimation and a data and a								
1.	o apply theol	retical knowledge gain	led in theory a	and get n	ands-on ex	periend	ce of ti	ne		
2	2 To train students practically with the procedures for testing of engines, air compressor									
 	refrigeration a	nd air conditioning.	procedureer		, or originoe	, an ee	mproc	,,	'	
3.	To equip the s	students to analyse the	e experimenta	I data of	IC engines	s, air co	ompres	ssor,	,	
I	refrigeration a	nd air conditioning.								
Cou	rse Outcome	es .								
At th	ne end of the o	course, the student wil	I be able to		,					
1. 0	Conduct the e	xperiments on IC engl	ines to assess	s their pe	rformance.	n radiat	46			
2.	Conduct the e	innenis on reingeration	n and all cond	air blowe	r to assess	their n	erform	JOP	≏	
0.					10 000000		chonn			
Indi	cative Experi	iments								
1.	Draw the va	lve timing and port tim	ing diagram f	or the giv	en engines	and co	ompar	e wit	th	
	the theoretic	al value and give you	r comments.				<u> </u>			
2.	Compare the	e properties of differen	It fuels by per	forming f	lash point, f	ire poir	nt, visc	cosity	У	
	and calorific	value tests and find o	ut which is su	itable for	the better	perforn	nance	of tr	ıe	
3	Compare the	z. A nerformance of a sin	ale-cylinder (connected	with d	lifforon			
5.	dvnamomete	ers and suddest a suit	able dvnamor	neter for	better accu	i with u	f the re	asult	S.	
4.	Compare the	e energy distribution o	f a single-cylii	nder CI e	ngine conn	ected v	with di	ffere	ent	
	dynamomete	ers and suggest a suit	able dynamor	neter for	better accu	iracy of	f the re	sult	s.	
5.	Do the perfo	prmance test on a sing	le-cylinder SI	engine a	and compar	e your	result	s wit	:h	
	the engine s	pecifications. Sugges	t a suitable m	ethod to	improve the	e accu	racy of	f you	٦r	
6	results.	a friction nowar of a c	uiven four ovli	ador potr	ol ongino h	voorfo	rmina	Mor		
0.	test and con	nare the results with	Willan's line n	nder peu nethod	or engine b	y peno	inning	IVIOI	se	
7.	Determine th	ne friction power of a c	iven single-cv	vlinder di	esel engine	e by pe	rformir	าต		
	retardation t	est and compare the r	esults with W	illan's lin	e method.			.9		
8.	Determine th	ne actual index of com	pression and	compare	with the is	entropi	ic			
	compressior	n for a given reciproca	ting air comp	ressor.						
9.	Compare the	e performance of air b	lower with diff	erent var	ne profiles.					
10.	Calculate the	e COP of the given va	por compress	ion refrig	eration sys	tem an	nd air-			
11	conditioning	system and compare	with the theo	retical ca	Iculation.	ndition				
11.	Compare the	e power output for the	Steam turbine	e at unier	the given b		5.			
12.				otal Lah	are given b		houre			
Tex	t Book		I			13 50	nouis			
1.	Lab manual r	prepared by the faculty	′ .							
Mod	le of assessm	ent: Continuous asses	ssment, FAT.	Oral exa	mination					
Rec	ommended by	y Board of Studies	09-03-2022							
Арр	roved by Acad	demic Council	No. 65	Date	17-03-202	22				

BMEE304L	Metal Forming and Machining	L	Τ	Ρ	С
D		3	0	0	3
Pre-requisite	BMEE209L, BMEE209P	Sylla	abus	s ver	sion
Course Object			1	.0	
	IVES				
2. To give an ir	isight on metal cutting theories, machine tools, and machin	ing pi	roces	sses. sses	
Course Outcor	nes	0.			
At the end of the	e course, the student will be able to				
1. Develop the	yield criterion and workability behaviors of materials.				
2. Evaluate va	arious bulk and sheet metal forming processes for d	ifferer	nt fu	Incti	onal
requirement	S.				
3. Demonstrate	e various machine tools and machining operations.				
4. Analyse the	mechanics of metal cutting processes.				
5. Investigate i	ne neat flow, tool life and tool wear during metal cutting pro	ocess	-	~ -	
	ndamentals of Metal Forming	·		6 n	ours
Stress-Strain re	elations in elastic and plastic deformation, stress tensor,	yield	Crite	eria,	yield
locus, octaneor	al shear stress and shear strains, invariants of stress s	train,	sip	line	Tield
theory plastic	deformations of crystals temperature and strain	rate	aep	enae	ence,
recrystallization	Deformation zone geometry - Numerical problems	ine n	eiu a	anary	515,
Teerystamzation					
Module:2 Bu	Ik Forming of Metals			7 h	ours
Forging: Class	ification of forging processes - Forging machines & equ	ipmer	nt's -	– Fo	raina
pressure & loa	d in open die forging and closed die forging - Friction	' hill	– C)ie-d	esign
parameters – N	letal flowlines in forging - Forging defects - Residual st	resse	es in	fore	jing -
Powder metallu	rgy forging.				
Rolling: Classif	fication of rolling processes – Types of rolling mills – Ex	press	ion	for r	olling
load – Forces	and geometrical relationships in rolling – Effect of front	& ba	ack	tens	ion –
Friction hill – De	efects in rolled product.				
Extrusion: Cla	ssification of extrusion processes – Extrusion equipmer	it's –	Def	orma	ation,
lubrication & de	fects – Extrusion of tubes & seamless pipes – Hydrostatic	extru	sion.		
Drawing: Draw	ring equipment's & Dies – Determination of drawing	torce	Å	pow	er_
Estimation of r	edundant work – Optimal cone angle & dead zone tol	matic	on –	Dra	iwing
Module:3 Sh	e drawing processes.			5 h	oure
Conventional n	recesses Earces in circular cup drawing Podrawing dra	wina	of ti		from
annular sheet	dies forming limit diagram forming with hydrostatic n	rossu		aval	
forming electro	bydraulic forming magnetic pulse forming HERE electro	man	netic	for	mina
Forming limit cr	iteria defect in formed parts principles and process param	eters	- Ad	vant	anes
-Limitations and	Applications.		7.0	vant	ugoo
Module:4 Ma	chine Tools and Operations			6 h	ours
Generating mo	tions of machine tools, Machines using single-point too	ls, o	bera	tions	and
process param	eters - work and tool holding in engine lathe, horizont	al-bo	ring	mac	hine,
shaping machin	e, planning machine.				
Machines using	g multipoint tools, operations and process parameters -	– dril	ling	mac	hine,
horizontal-millin	g machine, vertical-milling machine, broaching machine, ta	aps ai	nd di	ies.	
Machines using	abrasive wheels, operations and process parameters -	- hori	zont	al-sp	oindle
surface-grinding	machine, vertical-spindle surface-grinding machine,	cyline	drica	l-gri	nding
machine, intern	al-grinding machine, centerless grinding machines.				c.,
Cutting tool nor	nenciatures. Numerical expressions and simple problems	on m	achi	nıng	time
And material rer	noval rate.			7 -	
Orthogonal & c	chanics of Millia culling	ain r	arino	in n	chin
Unitogonial & C	wilque culling, shear plane angle, shear siless and sil	ani, j	лпо	ipai	unh

types Shaf cuttir cuttir turnir	types, theoretical determination of cutting forces – Ernst and Merchant's theory, Lee and Shaffer's theory, Oxley's theory. shear angle relation, friction in metal cutting, energy in cutting process, Kronenberg relation and velocity relation, chip deviation and other effects on cutting forces, stress on tool, stress distribution, Dynamometers for measuring forces in turning, milling and drilling, numerical problems.								
Mod	ıle:6	Heat Flow in Metal Cutting	and Tool Life		7 hours				
Heat	gener	ation in metal cutting, heat at	tool-work interfac	e, heat at tool-c	hip interface, heat				
in ab	sence	of flow zone, Temperature d	istribution in meta	al cutting, Measu	rement of cutting				
temp	erature	e – Work-tool Thermocoupl	e, direct thermo	couple measure	ements, radiation				
meth	ods, e	valuation of machinability.		·					
Tool	life, Ta	aylor's equation, tool failure, va	ariables affecting	the tool life caus	es of tool failures,				
forms	s of we	ear in metal cutting, cutting to	ol materials, cutt	ing Fluids, actio	n of coolants and				
lubric	ants,	application of cutting fluid	ds, surface rou	ghness in ma	achining and its				
meas	sureme	ent, tool geometries for impl	roved surface fir	nish, economics	of metal-cutting				
opera	ations.				-				
Mod	ule:7	Gear generation and Uncor	nventional machi	ining	5 hours				
		methods							
Gear	gener	ating principles - Gear Hobber	r - Gear finishing r	methods - Bevel	gear generator.				
Class	sificatio	on of unconventional machinin	g process – Princ	iple of AJM, WJ	M, USM, EDM,				
ECM	, LBM	 Process characteristics – Application of the second second	oplications.						
Mod	ule:8	Contemporary Issues			2 hours				
			Total Le	cture hours:	45 hours				
Text	Books	6							
1.	B.L.	Juneja, Fundamentals of Meta national.	I Forming Process	ses, 2010, 2 nd ec	lition, New Age				
2.	K.C.	Jain, A.K. Chitale, Textbook of	Production Engir	neerina. 2014. P	HI Learning Pvt.				
	Ltd.	,,	5	J , J , J ,	5				
Refe	rence	Books							
1.	Geor	ge E Dieter, Mechanical Metal	lurgy, Tata McGra	w Hill, 1988					
2.	Helm	i A. Youssef, Hassan A.	El-Hofy, Mahmo	ud H. Ahmed,	Manufacturing				
	Tech	nology: Materials, Processes	, and Equipmen	it, 2011, CRC	Press, Taylor &				
	Franc	cis Group							
3.	Heinz	z Tschaetsch, Metal Forming	Practise, 2005,	Springer Berlin	Heidelberg New				
	York				-				
4.	Hosf	ord W.F. Caddell R.M., Meta	I Forming – Mec	hanics and Met	allurgy, 2011, 4 th				
	editio	n, Cambridge University Press	S.						
5.	Geof Tools	frey Boothroyd and Winston. A 3. 2005. CRC Press. 3 rd edition	. Knight, Fundam	entals of Machir	iing and Machine				
6.	Amita	abha Battacharvva. Metal Cutt	ing: Theory and F	Practice, 2011, N	lew Central Book				
	Agen	су		,					
7.	Amita	abha Ghosh and A.K. Mallik, M	lanufacturing Scie	ence, 2010, 2 nd e	dition, East-West				
0	Press	S.			ma and Decora				
8.	Dixit	U.S. and Ganesh Narayana	an R, Metal For	ming: rechnoic	gy and Process				
0		Billing, 2013, McGraw-Hill Educ	ation, Noida						
9.	P.N. 2, 4 th	Edition, McGraw Hill Educatio	gy: Metal Cutting a	and wachine 100	ois, 2018, Volume				
10.	Sero	be Kalpakjian, and Steven Sch 8 th edition, Pearson education	nmid, Manufacturii n	ng Engineering a	and Technology,				
11	P.1	B. Oxley, "The Mechanics of M	Machining" 1989	Ellis Horwood I t	d.				
Mode	e of Fv	aluation: CAT. Written assignme	nent. Quiz. FAT						
Reco	mmen	ded by Board of Studies	09-03-2022						
Appr	oved b	y Academic Council	No. 65	Date	17-03-2022				
		-			-				

BME	E304P	P Metal Forming and Machining Lab L T P C							
Pre-	requisite	BMEE209L, BMEE209P	Sv	llat) <u>(</u>) US) 2 versi	1 on		
	<u>i equiene</u>				1.0)	<u>•</u>		
Cou	irse Objecti	ves		_					
1. I 2 T	o provide p o impart ha	ractical exposure on deformation behavior of ferrous and n	ion-t	terr s	ous	meta	lS.		
	ompartna			<u>.</u>					
Cou	irse Outcon	nes							
At th	ne end of the	e course, the student will be able to the deformation characteristics of ferrous and non-ferrous a	us r	met	tals	as n	۵r		
	ASTM standard.								
2. I	Evaluate the	e effect of cutting parameters in machining operations.	20						
J. (Generale va	mous realures on components through machining operation	ns.						
Indi	cative Exne	priments							
1	Erichsen o	upping test to determine the formability of ferrous metals a	and r	nor	ferr	0115			
	metals.		ind i			540			
2.	Rolling of f	errous metals and non-ferrous metals.							
3.	Compress	ion test for flow stress analysis.							
4.	Deformatio	on and recrystallization in copper.							
5.	Cold work-	annealing cycle for deformation of low carbon steel.							
6.	Study the	effect of cutting parameters on temperature generation in n	nacł	hini	ng.				
7.	Measurem	ent and analysis of cutting forces in turning operation.							
8.	Measurem	ent of surface finish in grinding operation.							
9.	Grinding o	f single point cutting tool using tool and cutter grinder.							
10.	Gear man	ufacturing in milling machine.							
11.	Helical gea	ar cutting using gear hobbing and gear shaping.							
12.	Programin	g and profile cutting in wire-EDM.							
		Total Laboratory Hour	s 3	30 I	hou	rs			
Tex	t Books								
1.	B.L.Juneja 2 nd edition.	i, Fundamentals of Metal Forming Processes, 2010, New A	∖ge	Inte	ərna	tiona	l,		
2.	Geoffrey B Tools, 200	Boothroyd and Winston. A. Knight, Fundamentals of Machir 5, CRC Press, 3 rd edition.	זיng	an	d Ma	achin	е		
3.	K. C. Jain,	A. K. Chitale, Textbook of Production Engineering, 2014, F	PHI	Lea	arnir	וg Pv	ť.		
4.	Lab Manua	al prepared by course faculty.							
Kele				6 1 1	<u> </u>	<u> </u>			
1.	Amitabha East-West	Gnosh and Asok Kumar Mallik, Manufacturing Science, 20 Press.	10,	2 nd	edit	ion,			
2.	Dixit U.S. Modelling,	and Ganesh Narayanan R, Metal Forming: Technolo 2013, McGraw-Hill Education, Noida.	ogy	ar	nd F	roce	SS		
3.	Dieter G.E	., Mechanical Metallurgy, 1995, McGraw-Hill.							

4.	Hosford W.F. Caddell R.M., Metal Forming – Mechanics and Metallurgy, 2011, 4 th edition, Cambridge University Press.					
5.	Amitabha Battacharyya, "Metal Cutting, Theory and Practice", 1984, New Central Book Agency.					
6.	Hassan Abdel-Gawad ElHofy, Fundamentals of Machining Processes (Conventional and Nonconventional Processes), 2018, CRC press, 3rd Edition.					
7.	Rao P.N., Manufacturing Technology: Metal Cutting and Machine Tools, 2018, Volume 2, 4 th Edition, McGraw Hill Education.					
Mod	le of assessment: Continuous asse	ssment, FAT, Oral exa	mination			
Rec	ommended by Board of Studies	09-03-2022				
Арр	roved by Academic Council	No. 65	Date	17-03-2022		

Image: Second	BMEE306L Computer Aided Design and Finite Element Analysis L T P C					С		
Pre-requisite BMEE202L, BMEE202P Syllabus version Course Objectives 1.0 1. To impart knowledge on the design of engineering products and processes at continuum scale. 2. 2. To give insight to convert the physical problem into an engineering problem through geometrical and numerical modelling capabilities. 3. 3. To familiarize the application of finite element methods on structural, thermal and dynamic problems. 4. 4. To develop the knowledge and skills needed to evaluate design solutions. 5. Course Outcome At the end of the course, the student will be able to 1. 2. Apply suitable product data exchange techniques to convert geometric model into numerical model. 3. Generate mathematical representation of curves, surfaces and solids using interpolation and approximation concepts. 4. Formulate 1D and 2D finite element equations at element and assembly level for static structural, thermal and dynamic applications. 5. Apply finite element formulations using linear and quadratic shape functions to compute desired results. 6. Solve complex engineering problem using the first principles and course-Clubic spline-Bezier spline-Nucles-Bading Mours Module:1 Introduction to CAD 4 hours Rester-scan graphics-Coordinate systems-Database structures for graphic modelling-Chagineering problem scale structural, thermal and synthetic curves <					3	0	0	3
1.0 Course Objectives 1. To impart knowledge on the design of engineering products and processes at continuum scale. 2. To give insight to convert the physical problem into an engineering problem through geometrical and numerical modelling capabilities. 3. To familiarize the application of finite element methods on structural, thermal and dynamic problems. 4. To develop the knowledge and skills needed to evaluate design solutions. Course Outcome At the end of the course, the student will be able to 1. Develop concept model into CAD model using geometric modelling techniques. 2. Apply suitable product data exchange techniques to convert geometric model into numerical model. 3. Generate mathematical representation of curves, surfaces and solids using interpolation and approximation concepts. 4. Formulate 1D and 2D finite element equations at element and assembly level for static structural, thermal and dynamic applications. 5. Solve complex engineering problem using the first principles and commercial CAD/FEM tools. Modue:1 Introduction to CAD Modue:2 Geometric modelling -Analytical and Synthetic curves 4 hours Rester-scan graphics-Coordinate system -Transformation of geometry-3D Transformations-Clipping-Hidden Ine/Surface removal-Colour-Shading Module:3 Geometric modelling - Analytical and Synthetic curves 4 hours	Pre-requisit	te	BMEE202L, BMEE202P	Syl	labu	s ve	rsior	۱
Course Objectives 1 To impart knowledge on the design of engineering products and processes at continuum scale. 2 To give insight to convert the physical problem into an engineering problem through geometrical and numerical modelling capabilities. 3 To familiarize the application of finite element methods on structural, thermal and dynamic problems. 4 To develop the knowledge and skills needed to evaluate design solutions. Course Outcome At the end of the course, the student will be able to 1. Develop concept model into CAD model using geometric modeling techniques. 2. Apply suitable product data exchange techniques to convert geometric model into numerical model. 3. Generate mathematical representation of curves, surfaces and solids using interpolation and approximation concepts. 4. Formulaet 1D and 2D finite element equations at element and assembly level for static structural, thermal and dynamic applications. 5. Apply finite element formulations using the first principles and commercial CAD/FEM tools. Module:1 Introduction to CAD 4 hours Raster-scan graphics: Coordinate systems-Database structures for graphic modelling-Engineering Data Management system- Transformation of geometry-3D Transformations-Clipping-Hidden line/surface renoval-Colour-Shading 4 hours Requirements of geometric modelling - Analytical an						0.1		
1. To impart knowledge on the design of engineering products and processes at continuum scale. 2. To give insight to convert the physical problem into an engineering problem through geometrical and numerical modelling capabilities. 3. To familiarize the application of finite element methods on structural, thermal and dynamic problems. 4. To develop the knowledge and skills needed to evaluate design solutions. Course Outcome At the end of the course, the student will be able to 1. Develop concept model into CAD model using geometric modelling techniques. 2. Apply suitable product data exchange techniques to convert geometric model into numerical model. 3. Generate mathematical representation of curves, surfaces and solids using interpolation and approximation concepts. 4. Formulate 10 and 2D finite element equations at element and assembly level for static structural, thermal and dynamic applications. 5. Apply finite element formulations using linear and quadratic shape functions to compute desired results. 6. Solve complex engineering problem using the first principles and commercial CAD/FEM tools. Module:1 Introduction to CAD 4 hours Raster-scan graphics-Coordinate systems-Database structures for graphic modelling-Engineering problem using the first principles and conserved spline-Hidden line/surface removal-Colour-Shading Module:2 Geometric modelling -Analytical and Synthetic curves problems Module:3 Geometric modelling -Standardisation in graphics-Exchange of modelling-CAD 5 hours Standards Surface representation for departmention modelling-CAD 5 hours Standards Surface representation Functions Module:3 Introduction to approximation methods interpolation functions - Simplex, Complex, Multiplex elements, Selection of order ovariation approach. Weighted Residual formulation - Weak Formulation methods-constrained based modelling-parametric modelling-outpresentation aned approach. Weighted Residual for	Course Obj	ectives		•				
2. To give insight to convert the physical problem into an engineering problem through geometrical and numerical modeling capabilities. 3. To familiarize the application of finite element methods on structural, thermal and dynamic problems. 4. To develop the knowledge and skills needed to evaluate design solutions. 4. To develop the knowledge and skills needed to evaluate design solutions. 4. To develop the knowledge and skills needed to evaluate design solutions. 4. To develop the knowledge and skills needed to evaluate design solutions. 4. To draw in the end of the course, the student will be able to 1. Develop concept model into CAD model using geometric modelling techniques. 2. Apply suitable product data exchange techniques to convert geometric model into numerical model. 3. Generate mathematical representation of curves, surfaces and solids using interpolation and approximation concepts. 4. Formulate 1D and 2D finite element equations at element and assembly level for static structural, thermal and dynamic applications. 5. Apply finite element formulations using linear and quadratic shape functions to compute desired results. 6. Solve complex engineering problem using the first principles and commercial CAD/FEM tools. Module:1 Introduction to CAD	1. To impa	rt know	ledge on the design of engineering products and processes	at cont	tinuu	m sc	ale.	
and numerical modelling capabilities. 3. To familiarize the application of finite element methods on structural, thermal and dynamic problems. 4. To develop the knowledge and skills needed to evaluate design solutions. Course Outcome At the end of the course, the student will be able to 1. Develop concept model into CAD model using geometric modelling techniques. 2. Apply suitable product data exchange techniques to convert geometric model into numerical model. 3. Generate mathematical representation of curves, surfaces and solids using interpolation and approximation concepts. 4. Formulate 1D and 2D finite element equations at element and assembly level for static structural, thermal and dynamic applications. 5. Apply finite element formulations using linear and quadratic shape functions to compute desired results. 6. Solve complex engineering problem using the first principles and commercial CAD/FEM tools. Module:1 Introduction to CAD 4 hours Raster-scan graphics-Coordinate systems-Database structures for graphic modelling-Rigineering pata Management system: Transformation of geometry-3D Transformations-Clipping-Hidden line/surface removal-Colour-Shading Module:2 Geometric modelling - Analytical and Synthetic curves 4 hours Requirements of geometric modelling-Wirdframe modelling-analytical curves-Cubic spline-Bezier spline-NURBS. Solving analytical and Synthetic surfaces-Solid representation methods-constrained based modelling - Standardisat	2. To give	insight t	to convert the physical problem into an engineering problem	n throu	gh ge	eome	etrica	al
 To familiarize the application of finite element methods on structural, thermal and dynamic problems. To develop the knowledge and skills needed to evaluate design solutions. Course Outcome At the end of the course, the student will be able to Develop concept model into CAD model using geometric modelling techniques. Apply suitable product data exchange techniques to convert geometric model into numerical model. Generate mathematical representation of curves, surfaces and solids using interpolation and approximation concepts. Formulate 1D and 2D finite element equations at element and assembly level for static structural, thermal and dynamic applications. Apply finite element formulations using linear and quadratic shape functions to compute desired results. Solve complex engineering problem using the first principles and commercial CAD/FEM tools. Module:1 Introduction to CAD A hours Raster-scan graphics-Coordinate systems-Database structures for graphic modelling-Engineering Data Management system- Transformation of geometry-3D Transformations-Clipping-Hidden line/surface removal-Colour-Shading Module:2 Geometric modelling - Analytical and Synthetic curves A hours Standards A hours Standards Standards Geometric modelling - Surface and solid modelling-CAD S hours Standards A hours Introduction to Eproximation function. Minimum total potential energy formulation - Variational approach. Weighed Residual formulation - Weak Formulation B hours Ordene: System- Direct formulation. Minimum total potential energy formulation - Variational approach. Weighed Residual formulation - Weak Formulation B hours Standards A hours Introduction to Eproximation for various elements. Global local and natural coordinates system. Geometric	and nun	nerical r	nodelling capabilities.					
erroblems. 4. To develop the knowledge and skills needed to evaluate design solutions. Course Outcome At the end of the course, the student will be able to 1. Develop concept model into CAD model using geometric modelling techniques. 2. Apply suitable product data exchange techniques to convert geometric model into numerical model. 3. Generate mathematical representation of curves, surfaces and solids using interpolation and approximation concepts. 4. Formulate 1D and 2D finite element equations at element and assembly level for static structural, thermal and dynamic applications. 5. Apply finite element formulations using linear and quadratic shape functions to compute desired results. 6. Solve complex engineering problem using the first principles and commercial CAD/FEM tools. Module:1 Introduction to CAD 4 hours Raster-scan graphics-Coordinate systems-Database structures for graphic modelling-Engineering Data Management system- Transformation of geometry-3D Transformations-Clipping-Hidden line/surface removal-Colour-Shading 4 hours Requirements of geometric modelling - Analytical and Synthetic curves 4 hours Surface representation-Analytical and Synthetic surface-Solid representation methods-constrained based modelling-parametric modelling - Surface and solid modelling-CAD 5 hours Surface representation-Analytical and Synthetic surface-Solid representation methods-constrained based modelling-parametric modelling - Standardistion in graph	3. To fami	liarize t	he application of finite element methods on structural, t	hermal	and	dyn	amic	;
4. To develop the knowledge and skills needed to evaluate design solutions. Course Outcome At the end of the course, the student will be able to 1. Develop concept model into CAD model using geometric modelling techniques. 2. Apply suitable product data exchange techniques to convert geometric model into numerical model. 3. Generate mathematical representation of curves, surfaces and solids using interpolation and approximation concepts. 4. Formulate 1D and 2D finite element equations at element and assembly level for static structural, thermal and dynamic applications. 5. Apply finite element formulations using linear and quadratic shape functions to compute desired results. 6. Solve complex engineering problem using the first principles and commercial CAD/FEM tools. Module:1 Introduction to CAD 4 hours Raster-scan graphics-Coordinate systems-Database structures for graphic modelling-Finginering Data Management system - Transformation of geometry-3D Transformations-Clipping-Hidden line/surface removal-Colour-Shading Module:3 Module:3 Geometric modelling - Analytical and Synthetic curves 4 hours Standards Shours Shours Surface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-parametric modelling. Standardisation in graphics-Exchange of modelling data-software dovelopment-Ef	problem	S.				,		
Course Outcome At the end of the course, the student will be able to 1. Develop concept model into CAD model using geometric modelling techniques. 2. Apply suitable product data exchange techniques to convert geometric model into numerical model. 3. Generate mathematical representation of curves, surfaces and solids using interpolation and approximation concepts. 4. Formulate 1D and 2D finite element equations at element and assembly level for static structural, thermal and dynamic applications. 5. Apply finite element formulations using linear and quadratic shape functions to compute desired results. 6. Solve complex engineering problem using the first principles and commercial CAD/FEM tools. Module:1 Introduction to CAD 4 hours Raster-scan graphics-Coordinate systems-Database structures for graphic modelling-Engineering Data Management system-Transformation of geometry-3D Transformations-Clipping-Hidden Ine/Surface removal-Colour-Shading 4 hours Module:2 Geometric modelling - Analytical and Synthetic curves 4 hours Standards Standards 5 hours Standards Standards 4 hours Standards Introduction to approximation medoelling-analytical curves-Cubic spline-Bezier spline-Bulling-branatic modelling-Standardisation in graphics-Exchange of modelling data-software modules-software development-Efficient use of CAD software 4 hours	4. To deve	lop the	knowledge and skills needed to evaluate design solutions.					
Course Outcome At the end of the course, the student will be able to 1. Develop concept model into CAD model using geometric modelling techniques. 2. Apply suitable product data exchange techniques to convert geometric model into numerical model. 3. Generate mathematical representation of curves, surfaces and solids using interpolation and approximation concepts. 4. Formulate 1D and 2D finite element equations at element and assembly level for static structural, thermal and dynamic applications. 5. Apply finite element formulations using linear and quadratic shape functions to compute desired results. 6. Solve complex engineering problem using the first principles and commercial CAD/FEM tools. Module:1 Introduction to CAD 4 hours Raster-scan graphics-Coordinate systems-Database structures for graphic modelling-Engineering Data Management system- Transformation of geometry-3D Transformations-Clipping-Hidden line/surface removal-Colour-Shading 4 hours Requirements of geometric modelling - Analytical and Synthetic curves 4 hours Ruface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-parametric modelling-Standardisation in graphics-Exchange of modelling data-software modules-software development-Efficient use of CAD software 4 hours Module:2 Introduction to approximation methods 4 hours Module:3 Geometric modelling-Standardisation in graphics-Exchange of modelling data-softwar								
At the end of the course, the student will be able to 1. Develop concept model into CAD model using geometric modelling techniques. 2. Apply suitable product data exchange techniques to convert geometric model into numerical model. 3. Generate mathematical representation of curves, surfaces and solids using interpolation and approximation concepts. 4. Formulate 1D and 2D finite element equations at element and assembly level for static structural, thermal and dynamic applications. 5. Apply finite element formulations using linear and quadratic shape functions to compute desired results. 6. Solve complex engineering problem using the first principles and commercial CAD/FEM tools. Module:1 Introduction to CAD 4 hours Raster-scan graphics-Coordinate systems-Database structures for graphic modelling-Engineering pata Management system- Transformation of geometry-3D Transformations-Clipping-Hidden line/surface removal-Colour-Shading 4 hours Requirements of geometric modelling-Wireframe modelling-analytical curves-Cubic spline-Bezier spline-Bezier solime-Bezier soliding-Virieframe modelling-CAD 5 hours Standards Geometric modelling-Standardisation in graphics-Exchange of modelling data-software modules-software development-Efficient use of CAD software 4 hours Nudule:3 Geometric to approximation methods 4 hours Standards 4 hours 1 1 Module:3 Geometric modelling-Virieframe model	Course Out	come						
1. Develop concept model into CAD model using geometric modelling techniques. 2. Apply suitable product data exchange techniques to convert geometric model into numerical model. 3. Generate mathematical representation of curves, surfaces and solids using interpolation and approximation concepts. 4. Formulate 1D and 2D finite element equations at element and assembly level for static structural, thermal and dynamic applications. 5. Apply finite element formulations using linear and quadratic shape functions to compute desired results. 6. Solve complex engineering problem using the first principles and commercial CAD/FEM tools. Module:1 Introduction to CAD Anaagement system - Transformation of geometry-3D Transformations-Clipping-Hidden line/surface removal-Colour-Shading 4 hours Requirements of geometric modelling - Analytical and Synthetic curves 4 hours Surface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-parametric modelling - Surface and solid modelling-CAD 5 hours Surface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-parametric modelling - Surface and Solid modelling-CAD 4 hours Nodule:5 Interpolation Functions 8 hours Polynomial approach - Weighted Residual formulation - Minimum total potential energy formulation - Variational approach - Weighted Residual formulation - Minimum total potential energy formulation - Variational approach - Weighted Residual	At the end o	f the co	urse, the student will be able to					
 Apply suitable product data exchange techniques to convert geometric model into numerical model. Generate mathematical representation of curves, surfaces and solids using interpolation and approximation concepts. Formulate 1D and 2D finite element equations at element and assembly level for static structural, thermal and dynamic applications. Apply finite element formulations using linear and quadratic shape functions to compute desired results. Solve complex engineering problem using the first principles and commercial CAD/FEM tools. Module:1 Introduction to CAD 4 hours Raster-scan graphics-Coordinate systems-Database structures for graphic modelling-Engineering Data Management system. Transformation of geometry-3D Transformations-Clipping-Hidden line/surface removal-Colour-Shading Module:2 Geometric modelling – Analytical and Synthetic curves A hours Requirements of geometric modelling – Surface and solid modelling-CAD Standards Surface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-parametric modelling. Standardisation in graphics-Exchange of modelling data-software modules.software development-Efficient use of CAD software Module:4 Introduction to approximation methods 4 hours Polynomial form of interpolation functions - Simplex, Complex, Multiplex elerents, Selection of order of interpolation functions, Convergence requirements. Global local and natural coordinates system. Polynomial form of 1D finite element equations - Bar, Truss, Beam -1D thermal – Isoparametric elements. Numerical Integration-Problem solving Generic form of 2D finite element equations - Brang and quadratic - Beam element. Module:5 Analysis of One Dimensional and Two-dimensional problems Polynomial form of interpolation functions - Simp	1. Develop	concer	ot model into CAD model using acometric modelling technig	ues.				
model. 3. Generate mathematical representation of curves, surfaces and solids using interpolation and approximation concepts. 4. Formulate 1D and 2D finite element equations at element and assembly level for static structural, thermal and dynamic applications. 5. Apply finite element formulations using linear and quadratic shape functions to compute desired results. 6. Solve complex engineering problem using the first principles and commercial CAD/FEM tools. 4 hours Module:1 Introduction to CAD 4 hours Raster-scan graphics-Coordinate systems-Database structures for graphic modelling-Engineering Data Management system- Transformation of geometry-3D Transformations-Clipping-Hidden line/surface removal-Colour-Shading 4 hours Requirements of geometric modelling - Analytical and Synthetic curves 4 hours Requirements of geometric modelling - Surface and solid representation methods-constrained based modelling-standardisation in graphics-Exchange of modelling data-software modules-software development-Efficient use of CAD software 4 hours Surface representation Analytical and Synthetic surfaces-Solid representation 4 hours Module:3 Introduction to approximation methods 4 hours Introduction to proximation methods 4 hours 1 Polynomial form of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions - Simplex, Complex, Multiplex	2. Apply s	uitable	product data exchange techniques to convert geometric	model	into	nur	neric	al
3. Generate mathematical representation of curves, surfaces and solids using interpolation and approximation concepts. 4. Formulate 1D and 2D finite element equations at element and assembly level for static structural, thermal and dynamic applications. 5. Apply finite element formulations using linear and quadratic shape functions to compute desired results. 6. Solve complex engineering problem using the first principles and commercial CAD/FEM tools. Module:1 Introduction to CAD 4 hours Raster-scan graphics-Coordinate systems-Database structures for graphic modelling-Engineering Data Management system. Transformation of geometry-3D Transformations-Clipping-Hidden line/surface removal-Colour-Shading 4 hours Requirements of geometric modelling – Analytical and Synthetic curves 4 hours Requirements of geometric modelling – Surface and solid modelling-CAD 5 hours Standards Standards 5 hours Surface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-parametric modelling-Standardisation in graphics-Exchange of modelling data-software development-Efficient use of CAD software 4 hours Notcule:5 Introduction to approximation methods 4 hours Notcule:6 Introduction outcons - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of inter	model.							
approximation concepts. 4. Formulate 1D and 2D finite element equations at element and assembly level for static structural, thermal and dynamic applications. 5. Apply finite element formulations using linear and quadratic shape functions to compute desired results. 6. Solve complex engineering problem using the first principles and commercial CAD/FEM tools. 7. Module:1 Introduction to CAD 4. Hours Raster-scan graphics-Coordinate systems-Database structures for graphic modelling-Engineering Data Management system - Transformation of geometry-3D Transformations-Clipping-Hidden line/surface removal-Colour-Shading Module:2 Geometric modelling - Analytical and Synthetic curves 4 hours Requirements of geometric modelling - Surface and solid modelling-CAD 5 hours Module:3 Geometric modelling - Surface and solid modelling-CAD 5 hours Surface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-parametric modelling. Standardisation in graphics-Exchange of modelling data-software modules-software development-Efficient use of CAD software 4 hours Introduction to Finite Element Method - Direct formulation - Minimum total potential energy formulation - Variational approximation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions - Simplex, Complex, Multiplex element, Selection of order of interpolation functions - Simplex, Complex, Multiplex element, Selection of order of interpolation functions - Simplex, Complex, Multiplex element, Selection of	3 Generat	te math	ematical representation of curves surfaces and solids u	isina ir	terp	olatio	n ar	hd
4. Formulate 1D and 2D finite element equations at element and assembly level for static structural, thermal and dynamic applications. 5. Apply finite element formulations using linear and quadratic shape functions to compute desired results. 6. Solve complex engineering problem using the first principles and commercial CAD/FEM tools. Module:1 Introduction to CAD 4 hours Raster-scan graphics-Coordinate systems-Database structures for graphic modelling-Engineering Data Management system- Transformation of geometry-3D Transformations-Clipping-Hidden line/surface removal-Colour-Shading 4 hours Requirements of geometric modelling - Analytical and Synthetic curves 4 hours Requirements of geometric modelling - Surface and solid modelling-CAD 5 hours Standards Geometric modelling - Surface and solid modelling-CAD 5 hours Surface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-parametric modelling - Standardisation in graphics-Exchange of modelling data-software modules-software dovelopment-Efficient use of CAD software 4 hours Module:4 Introduction to approximation methods 4 hours Introduction to Finite Element Method - Direct formulation - Weak Formulation 8 hours Polynomial approach - Weighted Residual formulation - Weak Formulation 8 hours Polynomial form of interpolation functions - Simplex, Complex, Multiplex element, Selection of order of interpola	approxir	mation of	concepts	.eg				
thermal and dynamic applications. 5. Apply finite element formulations using linear and quadratic shape functions to compute desired results. 6. Solve complex engineering problem using the first principles and commercial CAD/FEM tools. Module:1 Introduction to CAD 4 hours Raster-scan graphics-Coordinate systems-Database structures for graphic modelling-Engineering Data Management system - Transformation of geometry-3D Transformations-Clipping-Hidden line/surface reroval-Colour-Shading Module:2 Geometric modelling - Analytical and Synthetic curves 4 hours Requirements of geometric modelling - Analytical and synthetic curves cubic spline-Bezier spline-B-Spline-NURBS- Solving analytical and synthetic curve problems Module:3 Geometric modelling - Surface and solid modelling-CAD 5 hours Surface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-parametric modelling- Standardisation in graphics-Exchange of modelling data- software module-software development-Efficient use of CAD software Module:4 Introduction to approximation methods Module:4 Introduction to approximation methods Nodule:5 Interpolation Functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions, Convergence requirements, Global local and natural coordinates system. Derivation of shape function equation solving Generic form of 1D finite element equations - Bar, Truss, Beam -1D thermal – Isoparametric elements-Numerical Integration-Problem solving Generic form of 2D finite element method - Eigen value and axisymmetric) and heat transfer Module:7 Dynamic Problems olving Generic form of 2D finite element method - Eigen value and Eigen vectors- 1D Bar and Beam- vibration problems – Problem solving Module:8 Contemporary Issues Taina McGraw Hill Education (India) P Ltd., SIE.	4. Formula	ate 1D a	nd 2D finite element equations at element and assembly le	vel for	statio	: stru	ctur	al.
 5. Apply finite element formulations using linear and quadratic shape functions to compute desired results. 6. Solve complex engineering problem using the first principles and commercial CAD/FEM tools. Module:1 Introduction to CAD 4 hours Raster-scan graphics-Coordinate systems-Database structures for graphic modelling-Engineering Data Management system - Transformation of geometry-3D Transformations-Clipping-Hidden line/surface removal-Colour-Shading Module:2 Geometric modelling - Analytical and Synthetic curves 4 hours Requirements of geometric modelling-Wireframe modelling-analytical curves-Cubic spline-Bezier spline-B-spline-NURBS- Solving analytical and synthetic curve problems Module:3 Geometric modelling - Surface and solid modelling-CAD 5 hours Standards Surface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-parametric modelling-Standardisation in graphics-Exchange of modelling data-software modules-software development-Efficient use of CAD software Module:3 Interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions - Simplex, Complex, Multiplex element, Selection of order of interpolation functions - Simplex, Complex, Multiplex element, linear, quadratic and cubic), Two dimensional elements - linear, bilinear and quadratic - Beam element. Module:6 Analysis of One Dimensional and Two-dimensional problems 14 hours Generic form of 1D finite element equations - Bar, Truss, Beam -1D thermal – Isoparametric elements-Numerical Integration-Problem solving Generic form of 2D finite element equations - Bar, Truss, Beam -1D thermal – Isoparametric elements - Imagular element - Rectangular elements - Applications in solid mechanics (plane stress, plane strain and axisy	thermal	and dvr	namic applications.			2.10		
esuits. 6. Solve complex engineering problem using the first principles and commercial CAD/FEM tools. Module:1 Introduction to CAD 4 hours Raster-scan graphics-Coordinate systems-Database structures for graphic modelling-Engineering Data Management system- Transformation of geometry-3D Transformations-Clipping-Hidden Ine/surface removal-Colour-Shading 4 hours Module:2 Geometric modelling – Analytical and Synthetic curves 4 hours Requirements of geometric modelling – Analytical and Synthetic curves 4 hours Requirements of geometric modelling – Surface and solid modelling-CAD Spline-NURES-Solving analytical and synthetic curve problems 5 hours Sufface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-parametric modelling- Standardisation in graphics-Exchange of modelling data-software modules-software development-Efficient use of CAD software 4 hours Introduction to Finite Element Method - Direct formulation - Winimum total potential energy formulation - Variational approach - Weighted Residual formulation - Weak Formulation 8 hours Polynomial form of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation function second equation for various elements: One dimensional element (linear, quadratic and cubic), Two dimensional element – linear, bilinear and quadratic - Beam element. Module:6 Analysis of One Dimensional and Two-dimensional problems 14 hours Generic form of 1D fini	5. Apply fir	nite eler	nent formulations using linear and guadratic shape function	ns to co	mput	te de	sire	1
6. Solve complex engineering problem using the first principles and commercial CAD/FEM tools. Module:1 Introduction to CAD 4 hours Raster-scan graphics-Coordinate systems-Database structures for graphic modelling-Engineering Data Management system- Ine/surface removal-Colour-Shading 4 hours Requirements of geometric modelling-Analytical and Synthetic curves 4 hours Requirements of geometric modelling-Wireframe modelling-analytical curves-Cubic spline-Bezier spline-NURBS- Solving analytical and synthetic curve problems Module:3 Geometric modelling - Standardisation in graphics-Exchange of modelling data-software modules-software development-Efficient use of CAD software 4 hours Surface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-standardisation in graphics-Exchange of modelling data-software modules-software development-Efficient use of CAD software 4 hours Nodule:4 Introduction to approximation methods 4 hours Nodule:5 Interpolation Functions 8 hours Polynomial form of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions, Convergence requirements, Global local and natural coordinates system. Perivation of shape function equation for various elements: One dimensional element. Module:6<	results							
Module:1 Introduction to CAD 4 hours Raster-scan graphics-Coordinate systems-Database structures for graphic modelling-Engineering Data Management system- Transformation of geometry-3D Transformations-Clipping-Hidden line/surface removal-Colour-Shading 4 hours Module:2 Geometric modelling – Analytical and Synthetic curves 4 hours Requirements of geometric modelling – Analytical and Synthetic curve problems 4 hours Module:3 Geometric modelling – Surface and solid modelling-CAD Standards 5 hours Surface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-parametric modelling. Standardisation in graphics-Exchange of modelling data- software modules-software development-Efficient use of CAD software 4 hours Introduction to approximation methods 4 hours Module:3 Introduction to approximation methods 4 hours Polynomial form of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions, Convergence requirements, Global local and natural coordinates system. Derivation of shape function equation for various elements: One dimensional element. (linear, quadratic and cubic), Two dimensional and Two-dimensional problems 14 hours Generic form of 1D finite element equations - Bar, Truss, Beam -1D thermal – Isoparametric elements-Numerical Integration-Problem solving 4 hours Module:6 Contemporary Issues <td>6. Solve co</td> <td>omplex</td> <td>engineering problem using the first principles and commerci</td> <td>al CAD</td> <td>/FEN</td> <td>/I too</td> <td>ls.</td> <td></td>	6. Solve co	omplex	engineering problem using the first principles and commerci	al CAD	/FEN	/I too	ls.	
Module:1 Introduction to CAD 4 hours Raster-scan graphics-Coordinate systems-Database structures for graphic modelling-Engineering Data Management system-Transformation of geometry-3D Transformations-Clipping-Hidden line/surface removal-Colour-Shading Module:2 Geometric modelling – Analytical and Synthetic curves 4 hours Requirements of geometric modelling – Markiga and synthetic curve problems 4 hours Module:3 Geometric modelling – Surface and solid modelling-CAD 5 hours Standards Standards 5 hours Surface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-standardisation in graphics-Exchange of modelling data-software modules-software development-Efficient use of CAD software 4 hours Module:4 Introduction to approximation methods 4 hours Introduction to Finite Element Method - Direct formulation – Minimum total potential energy formulation - Variational approach - Weighted Residual formulation – Weak Formulation Module:5 Interpolation Functions 8 hours Polynomial form of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions, Convergence requirements, Global local and natural coordinates system. Derivation of shape function equation for various elements: One dim								
Raster-scan graphics-Coordinate systems-Database structures for graphic modelling-Engineering Data Management system- Transformations-Clipping-Hidden line/surface removal-Colour-Shading Module:2 Geometric modelling - Analytical and Synthetic curves 4 hours Requirements of geometric modelling - Analytical and Synthetic curves Curves-Cubic spline-Bezier spline-Bezier Spline-B-spline-NURBS- Solving analytical and synthetic curve problems Module:3 Geometric modelling - Surface and solid modelling-CAD 5 hours Surface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-parametric modelling. Standardisation in graphics-Exchange of modelling data-software modules-software development-Efficient use of CAD software 4 hours Module:4 Introduction to approximation methods 4 hours Introduction to Finite Element Method - Direct formulation - Minimum total potential energy formulation - Variational approach - Weighted Residual formulation - Weak Formulation 8 hours Polynomial form of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order 9 dintero, 10 dineer, 20	Module:1	Introd	luction to CAD			4	1 hou	urs
Data Management system- Transformations-Clipping-Hidden line/surface removal-Colour-Shading Module:2 Geometric modelling - Analytical and Synthetic curves 4 hours Requirements of geometric modelling - Analytical and Synthetic curves 4 hours Surface representation modelling - Surface and solid modelling-CAD 5 hours Standards Geometric modelling - Surface and solid modelling-CAD 5 hours Surface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-parametric modelling- Standardisation in graphics-Exchange of modelling data-software modules-software development-Efficient use of CAD software 4 hours Module:4 Introduction to paproximation methods 4 hours Introduction to Finite Element Method - Direct formulation - Minimum total potential energy formulation - Variational approach - Weighted Residual formulation - Weak Formulation 8 hours Polynomial form of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions, Convergence requirements, Global local and natural coordinates system. 9 hours Generic form of 1D finite element equations - Bar, Truss, Beam -1D thermal - Isoparametric elements- or and cubic), Two dimensional and Two-dimensional problems 14 hours Module:6 Analysis of One Dimensional and Two-dimensional problems 4 hours Opnamic	Raster-scan	graphi	ics-Coordinate systems-Database structures for graphic	mode	lling-	Engi	neer	ing
line/surface removal-Colour-Shading Module:2 Geometric modelling - Analytical and Synthetic curves 4 hours Requirements of geometric modelling-Wireframe modelling-analytical curves-Cubic spline-Bezier spline-NURBS- Solving analytical and synthetic curve problems 4 hours Module:3 Geometric modelling - Surface and solid modelling-CAD 5 hours Standards Standards 5 hours Surface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-parametric modelling. Standardisation in graphics-Exchange of modelling data-software modules-software development-Efficient use of CAD software 4 hours Introduction to approximation methods 4 hours Introduction to Finite Element Method - Direct formulation - Minimum total potential energy formulation - Variational approach - Weighted Residual formulation – Weak Formulation 8 hours Polynomial form of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions equirements, Global local and natural coordinates system. Derivation of shape function equations -Bar, Truss, Beam -1D thermal – Isoparametric elements. Vumerical Integration-Problem solving 14 hours Generic form of 1D finite element equations - Triangular element - Rectangular elements - Applications in solid mechanics (plane stress, plane strain and axisymmetric) and heat transfer Module:7 M	Data Mana	ademen	t system- Transformation of geometry-3D Transform	nations	-Clip	pina	-Hido	den
Module:2 Geometric modelling – Analytical and Synthetic curves 4 hours Requirements of geometric modelling-Wireframe modelling-analytical curves-Cubic spline-Bezier spline-Bypline-NURBS- Solving analytical and synthetic curve problems Suntageometric modelling – Surface and solid modelling-CAD 5 hours Module:3 Geometric modelling – Surface and solid modelling-CAD 5 hours Surface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-parametric modelling. Standardisation in graphics-Exchange of modelling data-software modules-software development-Efficient use of CAD software 4 hours Module:4 Introduction to approximation methods 4 hours Introduction to Finite Element Method - Direct formulation – Minimum total potential energy formulation - Variational approach - Weighted Residual formulation – Weak Formulation 8 hours Polynomial form of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions, Convergence requirements, Global local and natural coordinates system. Derivation of shape function equation for various elements: One dimensional element (linear, quadratic and cubic), Two dimensional and Two-dimensional problems 14 hours Generic form of 1D finite element equations - Bar, Truss, Beam -1D thermal – Isoparametric elements-formed solving 4 hours Generic form of 2D finite element equations - Triangular element - Rectangular elements-Applications in solid mechanics (plane stress, plane strain and axisymmetric) and heat transfer	line/surface	remova	I-Colour-Shading			13		
Requirements of geometric modelling-Wireframe modelling-analytical curves-Cubic spline-Bezier Spline-B-spline-NURBS- Solving analytical and synthetic curve problems Geometric modelling standards Surface representation-Analytical and Synthetic surface and solid modelling-CAD 5 hours Surface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-parametric modelling- Standardisation in graphics-Exchange fmodelling data- software modelles-software development-Efficient use of CAD software 4 hours Module:4 Introduction to approximation methods 4 hours Introduction to Finite Element Method - Direct formulation – Weak Formulation Variational approach - Weighted Residual formulation – Weak Formulation 8 hours Polynomial form of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order 8 hours Derivation of shape function equation for various elements: One dimensional element 14 hours Generic form of 1D finite element equations - Bar, Truss, Beam -1D thermal – Isoparametric elements- Applications in solid mechanics (plane stress, pl	Module:2	Geom	etric modelling – Analytical and Synthetic curves			4	1 hou	urs
spline-B-spline-NURBS- Solving analytical and synthetic curve problems Solving analytical and synthetic curve problems Module:3 Geometric modelling – Surface and solid modelling-CAD 5 hours Surface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-parametric modelling. Standardisation in graphics-Exchange of modelling data-software modules-software development-Efficient use of CAD software 4 hours Module:4 Introduction to approximation methods 4 hours Introduction to Finite Element Method - Direct formulation - Meak Formulation 8 hours Polynomial form of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions, Convergence requirements, Global local and natural coordinates system. Derivation of shape function equation for various elements: One dimensional element (linear, quadratic and cubic), Two dimensional and Two-dimensional problems 14 hours Generic form of 1D finite element equations - Bar, Truss, Beam -1D thermal – Isoparametric elements-Numerical Integration-Problem solving 4 hours Generic form of 2D finite element method -Eigen value and Eigen vectors- 1D Bar and Beam-vibration problems 4 hours Module:7 Dynamic Problems 4 hours Module:7 Dynamic Problems 4 hours Module:8 Contemportary Issues 2 hours Module:7 Dynamic Problems 4 hours </td <td>Requiremen</td> <td>nts of a</td> <td>eometric modelling-Wireframe modelling-analytical curves</td> <td>s-Cubic</td> <td>spli</td> <td>ne-B</td> <td>eziel</td> <td>r</td>	Requiremen	nts of a	eometric modelling-Wireframe modelling-analytical curves	s-Cubic	spli	ne-B	eziel	r
Module:3 Geometric modelling – Surface and solid modelling-CAD Standards 5 hours Surface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-parametric modelling. Standardisation in graphics-Exchange of modelling data- software modules-software development-Efficient use of CAD software 4 hours Module:4 Introduction to approximation methods 4 hours Introduction to Finite Element Method - Direct formulation – Weak Formulation - Variational approach - Weighted Residual formulation – Weak Formulation 8 hours Polynomial form of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions (Convergence requirements, Global local and natural coordinates system. Derivation of shape function equation for various elements: One dimensional element (linear, quadratic and cubic), Two dimensional and Two-dimensional problems 14 hours Generic form of 1D finite element equations – Bar, Truss, Beam -1D thermal – Isoparametric elements-Numerical Integration-Problem solving Generic form of 2D finite element equations - Triangular element - Rectangular elements - Applications in solid mechanics (plane stress, plane strain and axisymmetric) and heat transfer Module:7 4 hours Dynamic Problems 4 hours Total Lecture hours: 4 hours Text Books 1 1 Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE.	spline-B-spl	ine-NUF	RBS- Solving analytical and synthetic curve problems		-1			
Standards Standards Surface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-parametric modelling- Standardisation in graphics-Exchange of modelling data-software modules-software development-Efficient use of CAD software Module:4 Introduction to approximation methods 4 hours Introduction to Finite Element Method - Direct formulation - Winimum total potential energy formulation - Variational approach - Weighted Residual formulation – Weak Formulation Module:5 Interpolation Functions 8 hours Polynomial form of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation function equation for various elements: One dimensional element (linear, quadratic and cubic), Two dimensional elements – linear, bilinear and quadratic - Beam element. Module:6 Analysis of One Dimensional and Two-dimensional problems 14 hours Generic form of 1D finite element equations –Bar, Truss, Beam -1D thermal – Isoparametric elements-Numerical Integration-Problem solving Isoparametric and exisymmetric) and heat transfer Module:7 Dynamic Problems 4 hours Dynamic analysis using finite element method -Eigen value and Eigen vectors - 1D Bar and Beam-vibration problems –Problem solving 4 hours Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours	Module:3	Geom	etric modelling - Surface and solid modelling-CA	D		Į	5 hou	urs
Surface representation-Analytical and Synthetic surfaces-Solid representation methods-constrained based modelling-parametric modelling-Standardisation in graphics-Exchange of modelling data-software modules-software development-Efficient use of CAD software Module:4 Introduction to approximation methods 4 hours Introduction to Finite Element Method - Direct formulation - Minimum total potential energy formulation - Variational approach - Weighted Residual formulation - Weak Formulation 8 hours Polynomial form of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions (Convergence requirements, Global local and natural coordinates system. Derivation of shape function equation for various elements: One dimensional element (linear, quadratic and cubic), Two dimensional and Two-dimensional problems 14 hours Generic form of 1D finite element equations -Bar, Truss, Beam -1D thermal - Isoparametric elements-Numerical Integration-Problem solving 14 hours Generic form of 2D finite element equations - Triangular element - Rectangular elements - Applications in solid mechanics (plane stress, plane strain and axisymmetric) and heat transfer 4 hours Module:8 Contemporary Issues 2 hours Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours		Stand	ards					
based modelling-parametric modelling- Standardisation in graphics-Exchange of modelling data- software modules-software development-Efficient use of CAD software Module:4 Introduction to approximation methods 4 hours Introduction to Finite Element Method - Direct formulation - Minimum total potential energy formulation 4 hours Introduction to Finite Element Method - Direct formulation - Weak Formulation 8 hours Module:5 Interpolation Functions 8 hours Polynomial form of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions equation for various elements: One dimensional element (linear, quadratic and cubic), Two dimensional elements – linear, bilinear and quadratic - Beam element. Module:6 Analysis of One Dimensional and Two-dimensional problems 14 hours Generic form of 1D finite element equations - Bar, Truss, Beam -1D thermal – Isoparametric elements-Numerical Integration-Problem solving 4 hours Module:7 Dynamic Problems 4 hours Dynamic analysis using finite element method -Eigen value and Eigen vectors- 1D Bar and Beam-vibration problems –Problem solving 4 hours Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours	Surface rep	resenta	tion-Analytical and Synthetic surfaces-Solid representation	n meth	ods-o	const	raine	ed
software modules-software development-Efficient use of CAD software Module:4 Introduction to approximation methods 4 hours Introduction to Finite Element Method - Direct formulation - Minimum total potential energy formulation - Variational approach - Weighted Residual formulation – Weak Formulation 8 hours Module:5 Interpolation Functions 8 hours Polynomial form of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions, Convergence requirements, Global local and natural coordinates system. Derivation of shape function equation for various elements: One dimensional element (linear, quadratic and cubic), Two dimensional elements – linear, bilinear and quadratic - Beam element. Module:6 Analysis of One Dimensional and Two-dimensional problems 14 hours Generic form of 1D finite element equations –Bar, Truss, Beam -1D thermal – Isoparametric elements-Numerical Integration-Problem solving 14 hours Generic form of 2D finite element equations – Triangular element - Rectangular elements - Applications in solid mechanics (plane stress, plane strain and axisymmetric) and heat transfer 4 hours Module:7 Dynamic Problems 4 hours Dynamic analysis using finite element method -Eigen value and Eigen vectors - 1D Bar and Beam- vibration problems –Problem solving 4 hours Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours	based mode	ellina-pa	arametric modelling- Standardisation in graphics-Exchance	ne of n	node	lina	data	l-
Module:4 Introduction to approximation methods 4 hours Introduction to Finite Element Method - Direct formulation - Minimum total potential energy formulation - Variational approach - Weighted Residual formulation – Weak Formulation 8 hours Module:5 Interpolation Functions 8 hours Polynomial form of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions, Convergence requirements, Global local and natural coordinates system. Derivation of shape function equation for various elements: One dimensional element (linear, quadratic and cubic), Two dimensional elements – linear, bilinear and quadratic - Beam element. Module:6 Analysis of One Dimensional and Two-dimensional problems 14 hours Generic form of 1D finite element equations - Bar, Truss, Beam -1D thermal – Isoparametric elements - Numerical Integration-Problem solving 14 hours Generic form of 2D finite element equations - Triangular element - Rectangular elements - Applications in solid mechanics (plane stress, plane strain and axisymmetric) and heat transfer 4 hours Module:8 Contemporary Issues 2 hours Module:8 Contemporary Issues 2 hours Module:8 Contemporary Issues 2 hours Introduction problems Problem solving 4 hours Interpolation problems Problem solving 4 hours Interpolation problems	software mo	dules-s	oftware development-Efficient use of CAD software			5		
Introduction to Finite Element Method - Direct formulation - Minimum total potential energy formulation - Variational approach - Weighted Residual formulation – Weak Formulation Module:5 Interpolation Functions 8 hours Polynomial form of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions, Convergence requirements, Global local and natural coordinates system. Derivation of shape function equation for various elements: One dimensional element (linear, quadratic and cubic), Two dimensional elements – linear, bilinear and quadratic - Beam element. Module:6 Analysis of One Dimensional and Two-dimensional problems 14 hours Generic form of 1D finite element equations - Bar, Truss, Beam -1D thermal – Isoparametric elements-Numerical Integration-Problem solving 14 hours Generic form of 2D finite element equations - Triangular element - Rectangular elements - Applications in solid mechanics (plane stress, plane strain and axisymmetric) and heat transfer 4 hours Module:8 Contemporary Issues 2 hours Module:8 Contemporary Issues 2 hours Text Books 1 Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE. 1	Module:4	Introd	uction to approximation methods			4	1 hou	urs
- Variational approach - Weighted Residual formulation – Weak Formulation 8 hours Module:5 Interpolation Functions 8 hours Polynomial form of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions, Convergence requirements, Global local and natural coordinates system. Derivation of shape function equation for various elements: One dimensional element (linear, quadratic and cubic), Two dimensional elements – linear, bilinear and quadratic - Beam element. Module:6 Analysis of One Dimensional and Two-dimensional problems 14 hours Generic form of 1D finite element equations –Bar, Truss, Beam -1D thermal – Isoparametric elements-Numerical Integration-Problem solving Isoparametric Generic form of 2D finite element equations - Triangular element - Rectangular elements - Applications in solid mechanics (plane stress, plane strain and axisymmetric) and heat transfer Module:7 Module:8 Contemporary Issues 4 hours Dynamic analysis using finite element method -Eigen value and Eigen vectors - 1D Bar and Beamvibration problems –Problem solving 2 hours Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours 1 Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE.	Introduction	to Finite	Element Method - Direct formulation - Minimum total poter	ntial en	erav	form	ulatio	n
Module:5Interpolation Functions8 hoursPolynomial form of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions, Convergence requirements, Global local and natural coordinates system. Derivation of shape function equation for various elements: One dimensional element (linear, quadratic and cubic), Two dimensional elements – linear, bilinear and quadratic - Beam element.Module:6Analysis of One Dimensional and Two-dimensional problems14 hoursGeneric form of 1D finite element equations -Bar, Truss, Beam -1D thermal - Isoparametric elements-Numerical Integration-Problem solving Generic form of 2D finite element equations - Triangular element - Rectangular elements- Applications in solid mechanics (plane stress, plane strain and axisymmetric) and heat transfer Module:74 hoursModule:8Contemporary Issues2 hoursModule:8Contemporary Issues2 hoursText Books1Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE.	- Variational	approa	ch - Weighted Residual formulation – Weak Formulation		- 37			
Polynomial form of interpolation functions - Simplex, Complex, Multiplex elements, Selection of order of interpolation functions, Convergence requirements, Global local and natural coordinates system. Derivation of shape function equation for various elements: One dimensional element (linear, quadratic and cubic), Two dimensional elements – linear, bilinear and quadratic - Beam element. Module:6 Analysis of One Dimensional and Two-dimensional problems 14 hours Generic form of 1D finite element equations –Bar, Truss, Beam -1D thermal – Isoparametric elements-Numerical Integration-Problem solving 14 hours Generic form of 2D finite element equations - Triangular element - Rectangular elements - Applications in solid mechanics (plane stress, plane strain and axisymmetric) and heat transfer 4 hours Module:7 Dynamic Problems 4 hours Dynamic analysis using finite element method -Eigen value and Eigen vectors- 1D Bar and Beamvibration problems –Problem solving 2 hours Module:8 Contemporary Issues 2 hours Text Books 1 Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE.	Module:5	Interp	olation Functions			8	3 hou	urs
of interpolation functions, Convergence requirements, Global local and natural coordinates system. Derivation of shape function equation for various elements: One dimensional element (linear, quadratic and cubic), Two dimensional elements – linear, bilinear and quadratic - Beam element. Module:6 Analysis of One Dimensional and Two-dimensional problems 14 hours Generic form of 1D finite element equations –Bar, Truss, Beam -1D thermal – Isoparametric elements-Numerical Integration-Problem solving 1 hours Generic form of 2D finite element equations - Triangular element - Rectangular elements- Applications in solid mechanics (plane stress, plane strain and axisymmetric) and heat transfer 4 hours Module:8 Contemporary Issues 2 hours Module:8 Contemporary Issues 2 hours Text Books 1 Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE. SIE	Polvnomial f	form of	interpolation functions - Simplex, Complex, Multiplex eleme	ents. Se	election	on of	orde	ər
Derivation of shape function equation for various elements: One dimensional element (linear, quadratic and cubic), Two dimensional elements – linear, bilinear and quadratic - Beam element. Module:6 Analysis of One Dimensional and Two-dimensional problems 14 hours Generic form of 1D finite element equations –Bar, Truss, Beam -1D thermal – Isoparametric elements-Numerical Integration-Problem solving 14 hours Generic form of 2D finite element equations - Bar, Truss, Beam -1D thermal – Isoparametric elements-Numerical Integration-Problem solving 14 hours Module:7 Dynamic Problems 4 hours Dynamic analysis using finite element method -Eigen value and Eigen vectors- 1D Bar and Beam-vibration problems –Problem solving 2 hours Module:8 Contemporary Issues 2 hours Text Books 1 Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE.	of interpolati	ion func	tions. Convergence requirements. Global local and natural	coordi	nates	SSVS	tem	
quadratic and cubic), Two dimensional elements – linear, bilinear and quadratic - Beam element. Module:6 Analysis of One Dimensional and Two-dimensional problems 14 hours Generic form of 1D finite element equations –Bar, Truss, Beam -1D thermal – Isoparametric elements-Numerical Integration-Problem solving Isoparametric Generic form of 2D finite element equations - Triangular element - Rectangular elements - Applications in solid mechanics (plane stress, plane strain and axisymmetric) and heat transfer Module:7 Dynamic Problems 4 hours Dynamic analysis using finite element method -Eigen value and Eigen vectors- 1D Bar and Beam-vibration problems –Problem solving 2 hours Module:8 Contemporary Issues 2 hours Text Books 1 Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE.	Derivation	of shan	e function equation for various elements: One dimension	sional	elem	ent	(line	ar.
Module:6 Analysis of One Dimensional and Two-dimensional problems 14 hours Generic form of 1D finite element equations –Bar, Truss, Beam -1D thermal – Isoparametric elements-Numerical Integration-Problem solving Isoparametric Generic form of 2D finite element equations - Triangular element - Rectangular elements - Applications in solid mechanics (plane stress, plane strain and axisymmetric) and heat transfer Module:7 Dynamic Problems 4 hours Dynamic analysis using finite element method -Eigen value and Eigen vectors- 1D Bar and Beamvibration problems –Problem solving 2 hours Module:8 Contemporary Issues 2 hours 1 Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE.	quadratic ar	nd cubic). Two dimensional elements – linear, bilinear and quadrati	c - Bea	m el	eme	nt.	,
Module:6 Analysis of One Dimensional and Two-dimensional problems 14 hours Generic form of 1D finite element equations –Bar, Truss, Beam -1D thermal – Isoparametric elements-Numerical Integration-Problem solving – Isoparametric Generic form of 2D finite element equations - Triangular element - Rectangular elementsApplications in solid mechanics (plane stress, plane strain and axisymmetric) and heat transfer – Module:7 Module:7 Dynamic Problems – 4 hours Dynamic analysis using finite element method -Eigen value and Eigen vectors- 1D Bar and Beamvibration problems –Problem solving – 2 hours Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours 1 Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE.	Jacobian and an			- 200				
Information of the primeinstonal and two-dimensional problems 14 hours Generic form of 1D finite element equations –Bar, Truss, Beam -1D thermal – Isoparametric elements-Numerical Integration-Problem solving – Isoparametric Generic form of 2D finite element equations - Triangular element - Rectangular elementsApplications in solid mechanics (plane stress, plane strain and axisymmetric) and heat transfer – Module:7 Module:7 Dynamic Problems – 4 hours Dynamic analysis using finite element method -Eigen value and Eigen vectors- 1D Bar and Beamvibration problems –Problem solving – 2 hours Module:8 Contemporary Issues 2 hours Text Books – 45 hours 1 Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE.	Module:6	Analy	sis of One Dimensional and Two-dimensional problems	.]		4	1 hai	ire
Generic form of 1D innite element equations –Bar, Truss, Beam -1D thermal – Isoparametric elements - Isoparametric elements - Isoparametric elements - Isoparametric elements - Applications in solid mechanics (plane stress, plane strain and axisymmetric) and heat transfer Module:7 Dynamic Problems Module:7 Dynamic Problems Dynamic analysis using finite element method -Eigen value and Eigen vectors- 1D Bar and Beamvibration problems –Problem solving Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours 1 Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE.					le.	14		JI S Inte
Beinnenical megration Problem solving Generic form of 2D finite element equations - Triangular element - Rectangular elements - Applications in solid mechanics (plane stress, plane strain and axisymmetric) and heat transfer Module:7 Dynamic Problems 4 hours Dynamic analysis using finite element method -Eigen value and Eigen vectors - 1D Bar and Beam-vibration problems –Problem solving 2 hours Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours 1 Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE.		umoriaa	Unime element equations – Dar, Truss, Beam - 1D IN	ennal	- 19	opara	amei	.IIC
Generic form of 2D finite element equations - mangular element - Rectangular elements - Applications in solid mechanics (plane stress, plane strain and axisymmetric) and heat transfer Module:7 Dynamic Problems 4 hours Dynamic analysis using finite element method -Eigen value and Eigen vectors - 1D Bar and Beam-vibration problems –Problem solving 1 Data 2 hours Module:8 Contemporary Issues 2 hours Text Books 45 hours 1 Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE.			r meyrallur-Frudietti Sulving	otor			onto	
Module:7 Dynamic Problems 4 hours Dynamic analysis using finite element method -Eigen value and Eigen vectors- 1D Bar and Beam- vibration problems –Problem solving 1D Bar and Beam- 2 hours Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours 1 Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE.	Applications		unine element equations - mangular element - Re	orangu		eiem	ents	
Dynamic analysis using finite element method -Eigen value and Eigen vectors- 1D Bar and Beam- vibration problems –Problem solving 2 hours Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours 1 Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE.	Applications		r mechanics (plane stress, plane strain and axisymmetric) a		a trai	isier	1 ho	Ire
Dynamic analysis using innite element method -Eigen value and Eigen vectors- 1D Bar and Beam- vibration problems –Problem solving Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Books Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE.			nic Froncino		Por		Poo	6 IL m
Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours Text Books 1 1 Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE.	vibration pro	iaiysis l blome	Broblem solving	15- ID	Dar	anu	Deg	111-
Total Lecture hours: 45 hours 1 Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE.	Module-8	Conte	morary Issues				2 hou	ILE
Text Books 45 hours 1 Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE.		Conte	Tatal I aatura kau	re		A	5 60	ai 3
Text Books 1 Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE.			i otal Lecture nou	13.		4:		S IL
1 Ibrahim Zeid, "Mastering CAD/CAM", 2013, McGraw Hill Education (India) P Ltd., SIE.	Text Books							
	1 Ibrahim	ı Zeid, "l	Mastering CAD/CAM", 2013, McGraw Hill Education (India)	P Ltd.,	SIE.			

2	2 Rao S. S., Finite Element Method in Engineering, 2010, 5 th edition, Butterworth-Heinemann.						
Ref	Reference Books						
1.	Saeed Moaveni, Finite Element Analysis, Theory and Application with ANSYS, 2021, Pearson						
	Fifth Edition.						
2.	Tirupathi R. Chandrupatla and Ashok D. Belugundu, Introduction to Finite Elements in						
	Engineering, 2011, 4th Edition, Prentic	e Hall.					
3.	Seshu. P, Finite Element Analysis, 201	3, Prentice Hall	of India.				
4.	J.N.Reddy, Introduction to Finite Eleme	ent Method, 201	9, McGraw	-Hill International Edition.			
Mo	de of Evaluation: CAT, Written assignme	ent, Quiz, FAT					
Red	commended by Board of Studies	09-03-2022					
Арр	proved by Academic Council	No. 65	Date	17-03-2022			

BM	EE306P	Computer Aided De	esign and Fir Lab	nite Eleme	ent Analys	is	L	Т	Ρ	С
							0	0	2	1
Pre	-requisite	BMEE202L, BMEE202	2P			Sy	lab	us v	ersi	ion
	•							1.0		
Cou	irse Objecti	ves								
1.	To enable	the student's skills in	CAD and F	EM softw	vare that	can	be	use	d a	ind
i	implemented	d for various engineering	g applications							
2.	2. To develop proficiency in the application of the finite element method (modelling, analysis, and interpretation of results) to realistic engineering problems.									
	-	•								
Cou	Irse Outcon	nes								
	At the end o	f the course, the studen	t will be able t	0						
1. (Create CAD	and FE models for trus	ses, frames, p	plate struc	tures, mac	hine	part	s, ar	nd	
	engineering	components using gen	eral-purpose (CAD and I	-E softwar	e.				
2.	Evaluate an	d interpret the results of	FEA analysis	of engine	ering prob	lems.				
Indi	cative Expe	eriments								
1.	Parametric	c modelling – Curves, so	olids and surfa	ces			6 ł	nour	S	
2.	Importing a	and exporting the CAD r	nodels to ana	lysis softw	are		2 ł	nour	S	
3.	Analysis o	f loading and stress dist	ribution in a s	imple & st	epped bar		6 ł	nour	s	
4		ent cross section area ai	different type	a 2D Trus	ss structure	•	11	2011		
4. 5	Analysis o	f stress on a flat plate w	ith a hale at it	s of idadii	ig		41		5	
Э. С	Analysis o	for englying using pure	in a note at its	s centre	arotion		21		<u>s</u>	
0.		ter analysis using pure of	conduction an	u neat gei	ieration.		21		5	
1.	Axis-symin			h a n a a fa u			21	iour	5	
ð.	structure	ng the natural frequencie	es and mode s	snapes for	simple		21	nours	S	
9.	Perform ha	armonic analysis on sim	ple structure a	and plot th	e frequenc	зy	2 ł	nour	S	
	response f	unction.					_			
10	Analysis o	f a 3D model		- / 11			21	nour	S	
.				I otal La	boratory H	ours	30	hou	ırs	
Iex			M" 0040 M-C			La alta	<u> </u>	(-1		
1	Ibrahim Ze	d, "Mastering CAD/CAI	<u>M″, 2013, MCC</u>	Fraw Hill E	ducation (India) P L	_td.,	SIE	•
2	Rao S. S.,	Finite Element Method	in Engineering	g, 2010, 5	" edition, E	sutter	wor	tn-		
2	Heinemani	n. A of propored by course	fooulty mome							
S Pof	ranco Boo	al of prepared by course	racuity memic							
1	Sacad Mar	no ovoni Einito Elomont Ar	alveis Theor	v and Anr	lication wi			<u>e 20</u>	121	
1.	Pearson F	ifth Edition.						0, 20	JZ I,	'
2.	Tirupathi R Engineerin	8. Chandrupatla and Ashing, 2011, 4th Edition, Press, 2011, 4th Edition, Press, 2011, 4th Edition, Press, 2014, 4th Edition,	nok D. Belugu entice Hall.	ndu, Intro	duction to F	-inite	Ele	men	its ir	۱
3.	Seshu. P,	Finite Element Analysis	, 2013, Prentic	ce Hall of	India.					
4.	Reddy J.N Edition.	, Introduction to Finite E	lement Metho	od, 2019, N	//cGraw -H	ill Int	erna	ation	al	
Moc	le of assess	ment: Continuous asses	ssment, FAT.	Oral exam	nination					
Rec	ommended	by Board of Studies	09-03-2022							
App	roved by Ac	ademic Council	No. 65	Date	17-03-202	22				
	2									

BMEE401L Computer Integrated Manufacturing L T										
			3 0 0 3							
Pre-requis	ite	Nil	Syllabus version							
			1.0							
Course Objectives										
1. To impa	1. To impart knowledge of CIM, various concepts of automation and applications.									
2. To prov	ide in	-depth knowledge on digital manufacturing, for and indi	JSTY 4.0.							
Course Ou	itcom	P6								
At the end	of the	course the student will be able to								
1. Differen	tiate t	he concepts of automation. CIM. CAD. and CAM.								
2. Develop	O CNC	part programs.								
3. Interface	e real-	time simulation with intelligent CNC machine tools using	g Digital Twins.							
4. Apply C	AM so	oftware tools for solving real time component machining.								
5. Analyze	the a	utomated flow lines through FMS.								
6. Visualiz	e the	concepts of future automated factory environments to di	gital transformation.							
Module:1	Basi	cs of CIM and Automation	6 hours							
Introduction	n to A	Automation, Basic elements of automated systems- I	evels of automation,							
Advanced	autor	nation functions, Automation to Autonomy. Introdu	uction to Computer							
Integrated	Manuf	acturing, computerized elements of a CIM system, Evo	lution of Computer							
Integrated	Manul	facturing, Nature and role of the elements of CIM Syste	m, Product life cycle							
Manageme	ent and	d Collaborative Product Development.								
Module:2	Com	puter Numerical Control	6 hours							
Principles of	eleme	nts of CNC system, Typical CNC Machine Tools, Desig	nation of Axis and							
Motion of (CNC I	Machines, Practical design considerations for CNC m	achined parts, CNC							
Controllers	-Oper	architecture, PC based, Look ahead functions, Paralle	I kinematic Machine							
Modulo:3		Ig CNC machines.	7 hours							
Manual na		aramming Computer assisted part programming Auto	mated programming							
of CNC-m	achine	tools Machining of Free form surfaces Tolerance	e based Machining							
Automatic I	Featu	re Recognition in CAM Programming Knowledge based	1 machining							
Module:4	Intel	ligent Manufacturing systems	6 hours							
Artificial In	ntellig	ence and Machine Learning impact on CNC Machin	ing, Intelligent fully							
autonomou	is CN	NC Machine tool, Real-Time Machine Monitorin	g, Real-time CAM							
simulation f	for Dig	gital Manufacturing and Digital Twins.								
Module:5	Com	puterized Manufacture Planning and Control	6 hours							
0	Syst	em								
Computer	Alded	Process Planning, Retrieval and Generative Systems	S, DENETITS OF CAPP,							
computer i	eren	Aled production management system, integration C	AD/CAPP/CAM/CNC							
Control Sh	onflo	or control	puter Alded Quality							
Module:6	Gro	in Technology and Elexible Manufacturing	6 hours							
module.0	Svst	ems	0 110013							
Fundamen	tals o	f Group Technology-types of part families and Flexik	le Manufacturing							
Systems,	types	of FMS, FMS components, Material handling ar	nd storage system,							
application	s, ben	efits, computer control systems.	0 1							
Module:7	Futu	re of Automated Factory	6 hours							
Digital Tra	ansfor	mation in manufacturing-Trends and Challenges, Ind	ustry 4.0, functions,							
application	s and	benefits. Internet of Things (IOT), IOT applications in	manufacturing, Big-							
Data and I	Data /	Analytics in manufacturing, Blockchain in Manufacturi	ng, cyber-physical							
manufactur	ing sy	stems.								
Module:8	Con	temporary issues	2 hours							
		Total Lecture hours:	45 hours							

Te	tt Books									
1.	Mikell P Groover, Automation, Production Systems and Computer-Integrated									
	Manufacturing, 2019, 5 th edition, Pearson.									
2.	Xun Xu, Integrating Advanced Computer-Aided Design, Manufacturing, and									
	Numerical Control: Principles and Implementations, 2015, IGI Global.									
3.	Radhakrishnan P, CADC/CAM/CIM, 2018, New Age International (P) Ltd.									
Re	erence Books									
1.	Kant Vajpayee S, Principles of Computer Integrated Manufacturing, 1999, Prentice Hall									
	of India, New Delhi.									
2.	Rao P.N, Tewari N. K. Computer Aided Manufacturing Tata McGraw Hill Pub, 2017,									
	New Delhi.									
3.	Ercan Oztemel, Intelligent Manufacturing Systems, Smart Factories and Industry									
	4.0: A General Overview, 2019, 1 st Edition.									
4.	Yáñez, Fran, and Brea, Francisco Yáñez. The 20 Key Technologies of Industry 4. 0 and									
	Smart Factories: The Road to the Digital Factory of the Future. 2017, Independently									
	Published.									
Mo	Mode of Evaluation: CAT, Written assignment, Quiz, FAT									
Re	Recommended by Board of Studies 09-03-2022									
Ар	proved by Academic Council No. 65 Date 17-03-2022									

BMEE401P Computer Integrated Manufacturing Lab L T						Т	Ρ	С	
						0	0	2	1
Pre	requisite	Nil	Syllabus vers						ion
							1.0)	
C οι	Irse Objective	es							
1.	To impart kno	wledge on CAM & C	CIM software for v	arious en	gineering	applica	tions	5.	
2.	l o develop pr	oficiency in the appl	lication of CIM to	the realist	tic enginee	ering pi	oble	ms.	
Col	urse Outcome	2							
At th	ne end of the o	, course the student	will be able to						
1.	Develop CNC	programs for variou	us aeometries us	ing CAM a	and CIM so	oftware	_		
2.	Evaluate and	interpret flexible inter	egrated digital fac	tory syste	ms.		-		
Indi	cative Experi	iments							
1.	Manual Prog	gramming for CNC 1	Funing / Milling M	achine.					
2.	Offline verific	cation of CNC progr	am using CNC c	ontroller si	imulator.				
3.	CAD/CAM b	ased Part Program	ming and operation	on of a 3 a		/IIIIng I	Vlach	ine.	
4.	Demonstrate	e automatic feature	recognition using	CAM soft	ware.				
5.	CNC tool pa	th verification and o	ptimization using	digital ma	anufacturin	ig softv	vare.		
б. 7	Simulation to	predict and optimize	ze performance c	of UNU ma	achining op	peration	ns.		
7. 8	Modeling an	d Simulation of CIM		ftware					
0. Q	Simulation of	n flevible manufacti	ring systems	niwale.					
10	Virtual Reali	ty simulation of digit	al manufacturing	machiner	v and facto	orv			
10	Virtual rtoai	cy officiation of algh	T	otal Labo	ratory Ho	urs 3	0 ho	urs	
Tex	t Books								
1.	Xun Xu, In	tegrating Advanced	d Computer-Aide	ed Desigi	n, Manufa	acturing	g, a	nd	
	Numerical C	ontrol: Principles ar	nd Implementatio	ns, 2015,	IGI Globa	l	-		
2.	Hans Bernh	ard Kief, Helmut A	. Roschiwal, Kar	sten Schv	warz, The	CNC	Hand	dboo	k:
-	Digital Manu	Ifacturing and Autor	nation from CNC	to Indust	ry 4.0, 202	1, Indu	istria	l Pre	SS.
3.	Lab Manual	prepared by course	faculty.						
Ref	erence Book	S One of the second s	Due du ettere	0					(a al
1.	Manufacturi	Grover, Automatic	on, Production	Systems	and C	omput	er-ini	egra	tea
2	Radbakrishr	ng, 2019, FealSOILE	merical Control	Aachines	and Comp	utor Ai	hah		
۷.	Manufacture	2018 New Age In	Inerical Control I Iternational (P) I f	d			ueu		
Mod	le of assessm	ent: Continuous as	sessment, FAT. C	Dral exami	ination				
Rec	ommended by	y Board of Studies	09-03-2022						
Арр	roved by Acad	demic Council	No. 65	Date	17-03-20	22			

3 0 Pre-requisite Nil Syllabus version	3								
Pre-requisite Nil Syllabus version	n								
Pre-requisite Nil Syllabus version									
1.0									
Course Objectives									
1. To impart a comprehensive knowledge of various modes of heat and mass transfer.									
2. To empower the students for solving heat transfer problems in the industry.									
S. To equip the student in the design of heat exchangers.									
At the end of the source, the student will be able to									
1 Solve the steady and unsteady heat conduction problems for simple geometries									
2 Analyse the natural and forced convective heat transfer processes									
3. Design the heat exchangers using the LMTD and effectiveness-NTU methods									
4. Solve the radiation heat transfer problems									
5. Analyse the various mass transfer processes									
Module:1 Conduction – I 8 ho	ırs								
Fundamental laws; Identification of significant modes of heat transfer in pract	cal								
applications. General equation of heat conduction in cartesian, cylindrical and spher	cal								
coordinates; One Dimensional steady state conduction in simple geometries - plane w	all,								
cylindrical and spherical shells; Electrical analogy; Conduction in composite walls and she	lls;								
Critical thickness of insulation; Thermal contact resistance; Overall heat transfer coefficiency	nt;								
One dimensional steady conduction neat transfer with internal neat generation in plar	е								
Module:2 Conduction – II 7 ho	ire								
Extended surfaces (Fins) Conduction shape factor: Unsteady state heat transfer - System	11 3								
with negligible internal resistance - Lumped heat canacity analysis: Infinite bodies - flat pla	15 D								
cylinder and sphere: Semi-Infinite bodies - Chart solutions.	.0,								
Module:3 Forced Convection 7 ho	ırs								
Equations of conservation of mass, momentum and energy. Boundary layers for flow over	а								
flat plate, curved objects and flow through circular pipes. External flow over flat pla	te,								
cylinder, sphere and bank of tubes; Internal flow through circular and non - circular pipes.									
Module:4 Natural Convection 5 ho	ırs								
Flow over vertical, horizontal and inclined plates; Flow over cylinders and sphere	s;								
Combined free and forced Convection; Introductory concepts of boiling and condensation									
Module:5 Heat Exchangers 6 ho	irs								
Classification of heat exchanger, LMTD, AMTD, Design of heat exchanger; Concentric pl	be								
neat exchanger, shell and tube neat exchanger, cross - flow neat exchanger; Analysi	S								
Modulo:6 Padiation 6 ho	ire								
Terminology and laws: black body gray body: Radiation from real surfaces: Effect	of								
orientation - view factor: Equivalent emissivity method electrical analogy - surface ar	4								
space resistances. Radiation shields.	a								
Module:7 Mass Transfer 4 ho	ırs								
Basic concepts - diffusion mass transfer - Fick's law of diffusion - steady state molecu	ar								
diffusion - convective mass transfer - momentum, heat and mass transfer analog	· -								
convective mass transfer correlations.									
Module:8Contemporary Issues2 ho	ırs								
Total Lecture hours: 45 hours									
Text Books									
1. Yunus A Cengel and Afshin J Ghajar, Heat and Mass Transfer: Fundamentals and Applications, 2015, 5 th edition, McGraw-Hill.									
2. Sachdeva R C, Fundamentals of Engineering Heat and Mass Transfer, 2017, 5 th edition, New Age International.									

3.	Necati Ozisik M, Heat Transfer – A Basic Approach, 2016, McGraw Hill, New York.									
Re	Reference Books									
1.	Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt,									
	Fundamentals of Heat and Mass Transfer, 2018, 8th edition, Wiley.									
2.	J P Holman and Souvik Bhattacha	aryya, Heat Tra	ansfer, 20	16, 10 th edition, McGraw-Hill.						
3.	Kothandaraman, C.P, "Fundamer	tals of Heat ar	nd Mass T	ransfer", 2015, New Age						
	International, New Delhi.			-						
Мо	de of Evaluation: CAT, Written assi	gnment, Quiz,	FAT							
Re	Recommended by Board of Studies 09-03-2022									
Ар	Approved by Academic Council No. 65 Date 17-03-2022									

BMEE402P Heat and Mass Transfer Lab							L	Т	Ρ	С
							0	0	2	1
Pre-	requisite	Nil				Sylla	abus	5 VE	ersi	on
							1	.0		
Cou	rse Objective	es								
1.	To impart a co	omprehensive knowled	dge of various	modes	of heat and	mass t	trans	sfer		
2.	To empower t	he students for solving	g heat transfe	r probler	ns in the ind	ustry.				
3.	To equip the s	student in the design c	of heat exchar	igers.						
	• • • • • • • • • • • • • • • • • • •									
Cou	rse Outcome	es and the standard and								
	e end of the o	course, the student wi	II DE ADIE TO	rmadaa						
	Conduct the e	xperiments on differen	to occoso ito r							
2.	Londorstand th		rogimos	Jenonna	ince					
J. 1	Domonstrato f	the mass transfer mee	banism							
4.	Demonstrate		1101115111							
Indi	cative Experi	iments								
1	Determination	on of the thermal cond	luctivity of a d	iven met	al sample a	nd con	nnai	riso	n w	ith
	tabulated va	lues.	detivity of a g		ai sampie a		npai	100	11 VV	
2.	Determinatio	on of the thermal cond	luctivity of a g	iven liqu	id and comp	arison	n wit	h		
	tabulated va	lues.		-	-					
3.	Heat conduc	ction in spherical coord	dinate system							
4.	Study of hea	at conduction by electr	ical analogy:	experim	ent on a con	nposite	e wa	Ш.		
5.	Determination	on of rate of heat trans	fer in natural	convect	ion from a cy	/linder				
	2 hours and	comparison with theo	retical calcula	ations.	-					
6.	Determination	on of rate of heat trans	sfer in forced o	convection	on from a he	eated p	oipe	and	k	
	comparison	with theoretical calcul	ations.							
7.	Prediction of	f temperature distribut	ion and efficie	ency of a	ı pin fin unde	er force	ed a	nd	free	÷
	convection a	and comparison with the	neoretical cal	culations	6.					
8.	Study of the	regimes of pool boilin	g and determ	ination c	f critical hea	at flux.				
9.	Determinatio	on of emissivity of a gi	ven surface.	_						
10.	Determinatio	on of Stefan-Boltzman	n constant an	d compa	arison with re	eferenc	ce v	alue	э.	
11.	Demonstrati	on of condenser, heat	pipe and mas	ss transf	er apparatus	5.				
	Laboratory e	examinations (model a	ind final)							
	_		Т	otal Lab	oratory Hou	rs 30) ho	urs	i	
Tex	t Books									
1.	Yunus A Ce	ngel and Afshin J Gha	ajar, Heat and	Mass T	ransfer: Fun	Idamei	ntals	s ar	۱d	
	Applications	<u>, 2015, 5th edition, Mc</u>	Graw-Hill.		<u> </u>			<u> </u>	- +b	
2.	Sachdeva F	C, Fundamentals of	f Engineering	Heat a	nd Mass Tr	ansfer	, 20	17,	, 5 ^m	
	edition, New	Age International.	<u> </u>		<u> </u>			<u> </u>		
3.	Necati Ozisi	<u>k M, Heat Transfer – A</u>	Basic Approa	ach, 201	6, McGraw I	HIII, NE	ew y	Ork	ί.	
4.	Lab Manual	prepared by course fa	aculty							
Refe	erence Book	<u>S</u>				<u> </u>				
1.	Theodore L	. Bergman, Adrienne	S. Lavine, F	rank P.	Incropera,	David	٢.	De	vvitt	,
2	Fundamentals of Heat and Wass Transfer, 2018, 8th edition, Wiley.						и-Ні			
<u>ک</u> . ۲	Kothandara	man C D "Eundama	ntale of Upot		see Transfor	r" 2∩1		No	ν-1 Π Λ/ Δ	<u></u> ae
5.	International	I New Delbi				ı, 201	10, 1	161	V A	ye
Moo	e of assessm	ent: Continuous assa	ssment FAT	Oral eva	mination					
Rec	ommended h	v Roard of Studies	09-03-2022							
Ann	roved by Acce	demic Council	No 65	Date	17-03-201	22				
- uhh	ioved by Acal		00.00	Dale	17-03-202					

BMEE205E Renewable Energy Systems L					Ρ	С			
Pre-requisite	Nil	Sy	lab	IS V	ersio	on			
				1.0					
Course Objective									
 To help students gain essential knowledge on the importance of various renewable energy sources. 									
2. To familiarize energy source	the students with principles of energy conversion for es.	vari	ous	rene	ewat	ole			
3. To understand	d the method for assessment of various input energy res	sourc	es f	or m	eeti	ng			
4. To know limita	tions in renewable energy conversion techniques.								
5. To do practica conditions.	al experiments for energy resource performance under d	liffer	ent o	pera	ating	J			
Course Outeers									
Course Outcome	es								
At the end of the c	course, the student will be able to	hla a	nor		otor	r			
2 Demonstrate t	the various components of solar thermal energy systems		nei	Jy Se	CLOI	•			
3. Analyse the n	uances of solar PV systems to assess their performance	.							
4. Analyse the	wind, hydel, ocean and geothermal energy system	s to	as	sess	the	eir			
performance.									
5. Perform the de	esign and analysis of various bio-energy systems.								
6. Summarize va	arious hybrid energy systems to solve real world problem	IS.							
7. Conduct expe	eriments, interpret the data, and analyse the perform	rmar	ice	of v	vario	us			
renewable ene	ergy systems.								
Module:1 Energ	ny Source and its Scenario			3	hoi	irs			
Energy chain and	common forms of usable energy - Present energy so	rena	rio -	Wo	rld a	and			
Indian energy sta	itus - Introduction to renewable energy resources – N	eed	for	Ren	ewa	ble			
energy sources -	- Renewable energy potentials - Indian and global	ren	ewa	ole	ener	gy			
scenario. Energy	Trilemma index of the World Energy Council.								
Module:2 Sola	r Thermal Energy Systems			5	hοι	urs			
Introduction to th	nermal systems and applications - Solar thermal col	lecto	ors -	Fla	t pla	ate			
collectors - Evacu	ated tube collectors - Compound parabolic collectors	- So	ar a	ir he	eater	rs -			
Solar dryers -sola	ar cookers - solar stills - Solar ponds - Concentrating c	ollec	tors	- 11	nerm	nai			
Module:3 Solar	Phase change materials.			5	hoi	ire			
Introduction to	Solar Energy - Spectral distribution of Solar rad	iatio	<u> </u>	Re	SOU	rce			
assessments -Ins	truments for measurement of solar radiation - Solar radi	ation	' h dat	a ar	alvs	sis			
- Physics of solar	cells - Cell and module – third generation solar cells -	Ma	nufa	cturi	ng a	and			
fabrication Proce	ss- Characteristics of cells and module - Performa	ance	ра	rame	eters	s —			
Balance of syste	ms- PV System applications - Stand-alone - Grid co	nneo	cted	sys	tems	s —			
integrated PV sys	stems – High performance solar cells – Energy storage	sys	tem	s — E	Batte	ery			
Analysis.	Analysis.								
Windomentale of	Energy Systems		<u></u>	4 :d	nol	Jrs			
Fundamentals of	wind energy – Resource assessment - measureme		JI W	inu de -	ene	igy			
regulation - variou	is methods of control - wind farms - site selection - off	shor	e w	ind f	arm	NCI 9 -			
Solar Wind Hybrid	l energy systems.	5.101	- 11		~~~	-			
Module:5 Hyde	I, Ocean, Geothermal Energy Systems			4	hou	urs			
Small hvdro svste	ms – Introduction – Resource Assessment – Estimation	of F	owe	r po	tenti	ial			
- Types - Components - Performance.									
– Types – Compo	nents – Performance.								

OTE	C syst	ems - Energy through wav	es and tides – G	eothermal	energy systems				
Moc	Module:6 Bio Energy Systems 4 hours								
Nee	Need of Bio Energy - Resource Assessment - Fermentation - Gasification - Pyrolysis -								
Pow	Power generation technique - Biofuels Production.								
Moc	lule:7	Hybrid Energy Systems	5			3 hours			
Ene	rgy sys	tems for processes and po	ower applications	– solar –	wind - Biomass	hybrid			
tech	nologie	<u>es, Solar – Fuel cell hybrid</u>	systems – Hydro	ogen gene	eration technolog	ies.			
Moc	lule:8	Contemporary Issues				2 hours			
			То	otal Lectu	ire hours:	30 hours			
Tex	t Book	(s)							
1.	Fang I	_in You, Hong ye, Renev	vable Energy Sy	vstems, 20	017, 3 rd Edition,	Advanced			
	conver	sion technologies and app	lications, CRC P	ress, ISB	N: 978-1138077	584.			
2.	BH Kh	an, Non-conventional En	ergy Sources, 2	017, 3 rd E	Edition, Tata- M	c. Graw Hill			
	Publica	ations. ISBN-13:978-00701	42763.						
Rete	erence	Books	<u> </u>		<u> </u>				
1.	John A	ndrews, Nick Jelley Energ	ly Science: Princ	iples, tech	inologies and im	pacts, 2017,			
	Oxford	Universities press. ISBN:	9/8-0198/5581	1 .					
2.	Ziyad S	Salameh, Renewable Ener	rgy Systems Des	ıgn, 2014,	1 st Edition, Aca	demic Press,			
Mad	ISBN:	978-0123749918.	ianment Oui- F	· ^ T					
Indi		Experimente	signment, Quiz, F	AI.					
	Solor	Experiments Rediction measurement h	V Duranamatar	wrholiom	tor Albodo mot	r			
ו. כ	JVou	Radiation measurement b	for different one	oting con	ditions using DV	training Kit			
2.	I-V Cu Porfo	rmance characteristics of	Solar liquid flat	alling colle	attor	tianing Kit.			
3. ⊿	Dotor	mination of power curve up	a Solar liquiu riat	<u>/ Evporim</u>	ontal Sat un				
4. 5	Detei	rmance Variation of Tip on	and ratio v/c Cp.		enial Sei up				
5.	Energ	W Generator Experimental	Set un		nergy Generator	using wind			
6	Perfo	rmance of Proton Exchance	ie Fuel Cell by Fr	(neriment:	al simulation				
7	Perfo	rmance estimation of a hou	usehold Biomass	stove usi	na briquette				
8	Fvalu	ation of Property measure	ments of differen	t biofuels.					
9.	Simul	ation of hybrid energy syst	tems using softwa	are tools					
10.	Perfo	rmance characteristics of a	a Solar Air heatin	a systems					
11.	Perfo	rmance characteristics of a	a Solar stills	9 0 9 0 10 110					
12.	Study	experiment based on rene	ewable energy so	ources.					
		• • • • • • • • • • • • • • • • • • •		Total	Laboratory Hour	s 30 hours			
Tex	tbook				,				
Lab	Manua	I prepared by the Faculty	member						
Mod	le of as	sessment: Continuous ass	sessment, FAT, C	Dral Exam	ination				
Rec	ommer	nded by Board of Studies	09-03-2022						
Арр	roved b	y Academic Council	No. 65	Date	17-03-2022				

BMEE208L	BMEE208L Industrial Engineering L T I									
Due ve suicite	versuisite Nil									
Pre-requisite		Sy	labi		ersi	on				
Course Objective				1.0						
1. To analyse different planning activities needed during the operations stage of a										
manufacturing or	a service industry.	0								
2. To apply produ	ctivity techniques for achieving continuous improvement.									
3. To analyse the	various project alternatives based on time and cost.									
Course Outcome	<u> </u>									
At the end of the	zourse the student will be able to									
1. Define producti	vity and reasons for poor productivity and ways of improv	/ina	it.							
2. Analyse the de	mand for a product and predict demand using suitable fo	reca	astin	q						
techniques.				0						
3. Identify the vari	ous elements of cost in production and estimate the unit	cos	t.							
4. Apply the know	ledge of work study and ergonomics for work standardiza	atior).							
5. Identify key fac	tors influencing facility location and layout decision.									
6. Apply the proje	ct management techniques for evaluation and scheduling) .								
7. Analyse and ev	aluate engineering projects alternatives.									
Module:1 Com	petitiveness and Strategy			5	ho	urs				
Competitiveness	- Operations Strategy - Productivity - Factors affecting	ng I	Prod	uctiv	ity	-				
Increasing produc	tivity of resources - Kinds of productivity measures - Cas	së s	tudy		,					
Module:2 Dema	and Analysis			6	ho	urs				
Demand and Su	upply – Elasticity of Demand – Demand Forecasting	g –	Fo	reca	stin	g				
Techniques – Tim	e Series Models – Causal Regression – Forecast Error.		-							
Module:3 Cost	of Production			6	ho	urs				
Cost concepts – C	Jassification of costs - Materials - Labour - Overneads -	- Pr	ime	COST	– L ain	Init				
selling price, Pro	incidence – CVP analysis - Applications	alys	S –	iviai	gin	OI				
Module:4 Work	C Design and Measurement			7	ho	urs				
Work Study – Me	thod study – Recording techniques – Methods analysis	– N	lotio	n stu	dv	_				
Work measureme	nt – Introduction to Ergonomics and its industrial applica	tion	s.		,					
Module:5 Facil	ities Design			7	ho	urs				
Plant Location -	Factors influencing location decision - Evaluating location	atior	n alte	erna	tive	s –				
Facilities Layout	 Types – Computer aided layout design techniques – 	- CF	RAF	-AL	DEI	P _				
CORELAP.	oct Schoduling			6	ho	ure				
Project Life Cycle	Work Broakdown structure – Planning and Schoduling	• •••it	h Cr	0 ntt (urte				
– PERT and CPM	- Time- Cost Trade off - Comparison of PERT and CPI	у vvit \Л	n Ga			115				
Module:7 Inves	tment Analysis	vi.		6	ho	urs				
Time value of mo	ney, present and future worth, Cash flow analysis - Econ	omi	c ev	alua	tion	of				
alternatives – Cap	pital budgeting – methods - Pay-back period – Net prese	nt va	alue	– Ra	ate	of				
return – .profitability index.										
Module:8 Cont	emporary Issues:			2	ho	urs				
	Total Lootura ha			45	ha					
	l otal Lecture no	urs		43	no	urs				
Text Books										
1. William J Ste Education, N	1. William J Stevenson, "Operations Management", 2020, 14 th Edition, McGraw-Hill Education, New Delhi.									
2. Martand T Telsang, "Industrial Engineering and Production Management", 2018, 3rd										
	on, o onanu anu oompany Llu., New Deim.									

Yates J K, "Engineering Economics', 2017, CRC Press, Taylor & Francis Group.										
Reference Books										
Dan Reid R and Nada R. Sanders, "Operations Management", 2012, 5th Edition, John										
Wiley and Sons.		-								
Panneerselvam R, "Productior	and Operatior	ns Manag	gement", 2012, 3 rd Edition,							
Prentice Hall of India Publication	S.	-								
Zahid A.Khan, et al., "Principles	of Engineering E	conomics	with Applications", 2018, 2 nd							
Edition, Cambridge University Pr	ess, India.									
Mode of Evaluation: CAT, Written assignment, Quiz, FAT										
Recommended by Board of Studies 09-03-2022										
proved by Academic Council	No. 65	Date	17-03-2022							
	Yates J K, "Engineering Econom ference Books Dan Reid R and Nada R. Sander Wiley and Sons. Panneerselvam R, "Production Prentice Hall of India Publication Zahid A.Khan, et al., "Principles Edition, Cambridge University Pr de of Evaluation: CAT, Written ass commended by Board of Studies proved by Academic Council	Yates J K, "Engineering Economics', 2017, CRC Iference BooksDan Reid R and Nada R. Sanders, "Operations MWiley and Sons.Panneerselvam R, "Production and OperationPrentice Hall of India Publications.Zahid A.Khan, et al., "Principles of Engineering EEdition, Cambridge University Press, India.de of Evaluation: CAT, Written assignment, Quiz, Fcommended by Board of Studies09-03-2022proved by Academic Council	Yates J K, "Engineering Economics', 2017, CRC Press, Tay ference Books Dan Reid R and Nada R. Sanders, "Operations Manageme Wiley and Sons. Panneerselvam R, "Production and Operations Manageme Prentice Hall of India Publications. Zahid A.Khan, et al., "Principles of Engineering Economics Edition, Cambridge University Press, India. de of Evaluation: CAT, Written assignment, Quiz, FAT commended by Board of Studies 09-03-2022 proved by Academic Council No. 65 Date							

BMEE212L	Quality Control and Improvement	L	Т	Р	С					
	· · · · · · · · · · · · · · · · · · ·	3	0	0	3					
Pre-requisite	BMAT202L, BMAT202P	Syllabus version								
			1	.0						
Course Objective	es la									
1. Develop th	1. Develop the understanding of process variability and guality control.									
2. Present a	2. Present a problem oriented in depth knowledge, underlying concepts, tools, and									
application	n of quality control.	-								
Demonstra	ate the ability to design and implement acceptance sam	pling	and I	reliabilit	ty					
principles.										
Course Outcome										
At the end of the c	course, the student will be able to									
1. Evaluate the t	pasic statistical concepts and quality tools an industrial o	ase.								
2. Demonstrate	the ability to design, use, and interpret control charts	s for	varia	bles a	nd					
attributes										
3. Determine the	e process capability indices for real time processes and	demo	onstra	ate Six-	-					
Sigma										
4. Design a sam	pling plan to construct OC curve and evaluate its effect	ivene	SS							
for a given pro	DCess.									
5. Implement the	e philosophy of Taguchi's DOE and other process impro	veme	nt me	ethods						
6. Apply the relia	ability concepts to solve real time industry problem.									
Module:1 Introd	duction to Statistical Quality Control		5	hours						
History of Quality	Control - Statistical Quality Control and Statistical Proce	ess C	ontro	ol – Nee	ed					
for Statistical Con	cepts – Important Quality Control Tools - Quality costs	and	Qual	ity loss	; —					
Quality Assurance	e – Taguchi's Quality Loss Function - limitation of SQC -	Serv	ice Q	uality						
Module:2 Conti	rol Charts For Variables		7	hours						
Control Charts for	or Variables - Control Charts for X^- and R - pro	cess	capa	ability	-					
interpretation- Co	ontrol Charts for X ⁻ and S - Control Chart for Individua	al Mea	asure	ements	-					
Applications of Co	ontrol Charts for Variables									
Module:3 Conti	rol Charts for Attributes			nours						
Control Chart for	Fraction-Nonconforming (UC curve of the control cha	π, va	riable	e samp	le					
size, nonmanutad	cturing application, the OC function and ARL calculation	on); C	ontro	ol Char	tS					
for Nonconformitie	es of Defects; Choices Between Attribute and Variab	ie Co	ntroi	Charts	3,					
Modulo:4 Proc	ementing Control Charls.		5	boure						
RCA opolygia ugit	ess Capability Allarysis and six signa	rotion		formor	200					
PCA analysis usin	PCA using a control chart, actimating natural toloronac	limit	, rei	norman	ice					
Six ciamo Con	cont of six sigma methods of six sigma DMAIC n	e ni i ni i i i i i i i i i i i i i i i	doloc		55. CC					
mothodology six	sigma control chart case studies	netho	uoioį	ју, DГ	33					
Medules CUC	IN Control Charte		6	<u> </u>						
				nours						
Cumulative-Sum	(CUSUM) Control Charts - CUSUM Control Chart	basic	prin	ciples	for					
monitoring the sh	int in process mean, CUSUM design parameters, CUS		or larg	ge snift	:S -					
Exponentially we	eignted Moving Average (EVVIVIA) control chart (EVVIV	IA CO	ntroi	chart i	or					
Modulo:6 Acco	ntanco Sampling		7	boure						
The Accentance	Plance Sampling Sompling Definition of a Single Sompling	ر ۷	/onto		nd					
Disadvantages of	- Sampling - Deminition of a Single-Sampling -	Auv	nina	yes a						
Sampling Disc	Disadvantages of Sampling - Types of Sampling Plan - OC Curve - Designing a Single-									
Producers risk Co	Double, multiple, and Sequential - The Douge-Romig	y San	hund	y mans	, –					
Module 7 Relia	hility Engineering		7	houre						
Definition of Relia	ability – Relationship between MTTF and MTRF - Haz	ard r	ate F	Reliahil	itv					
			, I	Cildoll	·· y					

Distributions, System reliability, Reliability block diagrams: series, parallel and mixed configuration - Achieving Product reliability – Maintainability and availability - Simple problems								
Мо	dule:8	Contemporary Issues:				2 hours		
		Total Lecture hours:				45 hours		
-								
lex	t Book	S						
1.	Amitav	a Mitra - Fundamentals of	Quality Control a	and Improv	ement, 4th Editio	on, Wiley		
2.	Eugen	e L. Grant and Richard	S. Leaven Worth	. Statistic	al Quality Contro	ol, 2017, 7 th		
	edition	, TMH.		•	2			
3.	Charle	s Ebeling, An Introductior	n To Reliability A	nd Mainta	inability Enginee	ring. 2017,		
	Mc Gra	aw Hill.						
Re	ference	Books						
1.	Douglu	is C. Montgomery. Introd	uction to Statisti	cal Quality	/ Control, 2013,	7th Edition,		
	John V	Viley & Sons.		-				
2.	Statisti	cal Quality Control. M. Ma	hajan, 2016, Dha	npat Rai 8	& Sons January.			
3.	L.S.Sri	nath, Reliability Engineeri	ng, 2005, Affiliate	d East we	st press.			
Mode of Evaluation: CAT, Written assignment, Quiz and FAT.								
Re	Recommended by Board of Studies 09-03-2022							
Ар	proved b	y Academic Council	No. 65	Date	17-03-2022			

BMAT206L	Numerical Analysis	L	Τ	P C				
Pro-roquisito		3 0 0 3						
Fie-iequisite	DWATTOTE, DWATTOZE, DWATTOZE							
Course Objectives								
1. To familiarize theory and application of numerical methods for most common mathematical problems.								
2. Clearly bring out role of approximation theory in the process of developing a numerical method for solving an angine problem								
 To provide the approximation techniques work with emphasis on accuracy and efficiency of the developed methods. 								
Course Outcome								
At the end of the course, the student will be able to								
 Examine errors in numerical procedures and assess the accuracy of the calculated results. 								
 Solve system of nonlinear equations numerically using direct and iterative methods. Compute approximations of functions and data using elementary functions. 								
4. Apply iterative techniques to solve linear systems and Eigenvalue problems.								
5. Use numerical techniques to estimate derivatives and integrals of functions.								
Module:1 Preli	minaries on computing		6	hours				
Basic concepts: Numerical algorithms and errors, round-off errors, floating point arithmetic,								
rounding, error analysis, conditioning, measuring efficiency of numerical procedures -								
Module:2 Numerical solution of nonlinear equations 6 hours								
Solutions of equations in one variable – Bisection method. Secant method. Fixed-point								
iteration, Newton's method and its variations for simple and multiple roots; Polynomial roots; System of nonlinear equations – Fixed-Point iteration, Newton's method and its variations for system; Steepest Descent method, Convergence analysis and order of convergence;								
Module:3 Interpolation and Approximation 6 hours								
Interpolating polynomials; Finite differences, Newton's forward and Backward interpolation,								
Divided differences – Lagrange and Newton's divided difference interpolations and error								
approximation, Chebyshev polynomials; Rational function approximation; Trigonometric								
Module:4 Num	erical solutions of linear system of		6	hours				
equa	tions		0	nours				
Linear systems of equations, Solution by direct methods – Gauss elimination, Gauss-Jordan								
Matrix conditioning - Ill and well-conditioned systems. Condition numbers and norms: Norms								
of vectors and Matrices, Solution by Iterative methods – Jacobi, Gauss-Siedel, SOR								
methods; Error bo	ounds and iterative refinement;							
Module:5 Eiger	nvalues and Eigenvectors		6	hours				
The Matrix Eigenvalue Problem, Characteristic polynomial, Gerschgorin's theorems, Reduction of matrices to simpler form - Diagonalization; Tridiagonalization and QR- Eactorization Methods for determination of Eigenvalues and Eigenvectors. Rever method								
Householder's method, QR method; Singular value decomposition; Applications of								
Eigenvalue Problems; Modulo:6 Numerical differentiation and Integration								
Approximating derivatives by difference equations error and instability. Richardson								
extrapolation; Derivatives of unequally spaced data; Partial derivatives; Elements of numerical integration, Newton-Cotes quadrature formulae; Romberg integration, Adaptive								
inte	integration, Gaussian quadrature, Error estimation, Multiple integrals;							
------	---	-----------------	----------------------------	--	--	--	--	--
Мо	dule:7 Numerical methods for d	ifferential equ	uations	7 hours				
Exi	Existence of solutions for ordinary differential equations, uniqueness; Solving IVPs by							
Тау	lor-Series method, Euler's method	and its modific	cations, Rung	ga-Kutta methods, Multistep				
Me	thods; Higher-order equations ar	nd systems;	Stability; Sc	lving BVPs by Shooting				
me	thods, Difference methods, Variation	onal methods;	Introduction	to numerical solutions for				
par	tial differential equations;							
Мо	dule: 8 Contemporary Issues			2 hours				
				r				
		Total Lec	ture hours:	45 hours				
Tex	t Books							
1.	Gerald C.F, Wheatley P.O, Appli	ed Numerical	Analysis, 20	004, 7 th Edition, Pearson				
	Education.		-					
2.	Burden R.L, Faires J.D, Numerical	Analysis, 201	1, 9 th Edition	, Cengage Learning.				
3.	Chapra S.C, Canale R.P, Numeric	al methods for	^r Engineers, 2	2010, 6 th Edition, McGraw-				
	Hill Education.							
4.	Stoer J, Bulirsch R, Introduction to	Numerical An	alysis, 2009,	Springer (India).				
Re	erence Books							
1.	Hildebrand F.B, Introduction to	Numerical	Analysis, 20	03, 2 nd Edition, Dover				
	Publications.							
2.	Endre Suli, Mayers D.F, An Intro	duction to Nu	umerical Ana	lysis, 2003, Cambridge				
	University Press.							
3.	Atkinson K.E, Han W, Elementary	Numerical Ana	alysis, 2006,	3 rd Edition, Wiley				
	International.							
4.	Conte S.D, De Boor C, Elementary	/ Numerical Ar	nalysis, 2010	, TATA McGraw-Hill.				
Mo	de of Evaluation: CAT, Written assiç	nment, Quiz,	FAT.					
Re	commended by Board of Studies	09-03-2022	_					
Ap	proved by Academic Council	No. 65	Date	17-03-2022				

BMEE305L	Manufacturing Planning and Control		L	Τ	Ρ	С		
			3	0	0	3		
Pre-requisite	NII	Syll	abu	s ve	rsio	'n		
Course Objectiv				1.0				
1 To import know	so	roooo	tina					
2 To develop sk	ills to estimate and use appropriate process planning	lavout	ung. Is In	catio	n ar	hd		
facility location).	layou		Julio	n ui			
3. To understand	I the importance of capacity planning, management, p	roduct	ion	sche	duli	ng		
and controlling	y systems.					0		
Course Outcome								
At the end of the o	course, the student will be able to							
1. Take the decise	sions in conversion process, manufacturing strategy, p	roduc	t pla	nnin	g ar	۱d		
forecasting pro	pduct demand					•.		
2. Take the dec	isions in process planning and design, performance	meas	sure	3, Ca	ipac	lity		
2 Take the decid	sions in soloction of facilities location and design the fa	cilitios		Suit				
4 Generate the	aggregate plans, master schedules, short-term schedu	iles	ay	Jui				
5. Generate mate	erial requirements planning and strategies for manufac	turing	exce	əllen	ce.			
Module:1 Oper	ations Strategy		5 h	ours	5			
Operations and P	roductivity: Operations / manufacturing, Operations fo	r good	ls ar	id se	rvic	es,		
Operations for G	oods and Services, The Productivity Challenge, De	ecision	ma	iking	, in	an		
organization / con	version process.							
Operations Strate	egy: A global view of operations, Developing miss	sions a	and	stra	tegi	es,		
	infities, issues in operations strategy, Strategy		elop	men	t a	ina		
strategy options	strategic planning, core competencies and outsourcing	y, Giu	Jai U	pera	luon	5		
Module:2 Prod	uct planning and Forecasting		7 h	our	5			
Design of Goods	and Services: Goods and services selection. Gene	rating	nev	v pro	oduc	cts.		
Product developm	nent, Issues for product design, Product development	t conti	nuur	n, D	efin	ing		
a product, Docu	ments for production - product life-cycle, Service	design	, Tr	ansi	tion	to		
production.								
Forecasting: Typ	es, Strategic importance, Steps, Approaches, Time	e-Serie	es, F	Fore	cast	ing		
methods, Monitor	ng and controlling forecasts.							
Wodule:3 Proc	ess planning	<u> </u>	5 h	ours	<u> </u>			
Process Strategy:	Process Strategies, Selection of equipment, Process	analys	sis a	nd d	esig	jn,		
Special considera	ations for service process design, Production techno	biogy,	rec	nnoi	ogy	IN		
Module:4 Facil	ities location		6 h	our				
Location Strategi	es: The Strategic importance of location - supply ch	nain c	onsi	dera	tion	9		
Factors affecting	location decisions. Methods of evaluating location a	alterna	tives	3 - C	ostir	na		
alternative locatio	ns - scoring models - geometric models, Locating mult	iple fa	cilitie	əs. S	servi	ice		
location strategy,	location strategy, Location of facilities on networks, Geographic information systems.							
Module:5 Layo	ut of facilities		7 h	ours	5			
Layout Strategies	: Strategic importance of layout decisions - Types	of la	yout	— F	orod	uct		
layouts, process l	ayouts, fixed-position layouts, hybrid/combination layo	outs, c	ellul	ar La	ayou	uts,		
service layouts, D	esigning product layouts and line-balancing, Designin	g proc	ess	layo	uts -	-		
Medulare of effecti	veness.		e l					
	city planning and constraint management		ΰn	ours	5			

Capacity planning and Constraint Management: Defining and measuring capacity, Determinants of effective capacity, Design of effective capacity, Bottleneck analysis and the theory of constraints, Break-even analysis, Reducing risk with incremental changes, Applying expected monetary value, Applying investment analysis to strategy-driven investments, Forecasting capacity requirements, Developing capacity strategies, Evaluating Alternatives.

Module:7	Production planning, So Control	cheduling, M	RP and	Inventory	7 hours	
Hierarchy	of planning decision, Planni	ing process, A	pproache	s for aggrega	te planning,	
Master sch	edule, Short-term schedules	, Control of scl	nedules.			
MRP proce	ss and extensions to MRP.					
Inventory c	ontrol, JIT systems, Lean op	erations, Toyo	ta Product	tion System		
Module:8	Contemporary Issues				2 hours	
			Total Le	cture hours:	45 hours	
Text Book						
1. Jay He	eizer, Barry Render, Munson	Chuck, and Sa	achan Am	it, Operations	Management,	
2017,	12 th Edition, Pearson.				-	
Reference	Books					
1. Stever	son William J,Operations Ma	anagement, 20	18, 13 th E	dition, McGrav	w-Hill.	
2. Mahac	levan B, Operations Mana	gement: Theo	ory and I	Practice, 2010), 2 nd Edition,	
Pearso	on India.	0				
Mode of Ev	aluation: CAT, Written assig	nment, Quiz, F	AT			
Recommer	Recommended by Board of Studies 09-03-2022					
Approved b	Approved by Academic Council No. 65 Date 17-03-2022					
••	•	1		1		

3 0 0 3 Pre-requisite Nil Syllabus version 1.0 1.0 1.0 Course Objectives Image: Second state of the second state						
Pre-requisite Nil Syllabus version Course Objectives 1.0 1. To discuss about Product requirement analysis, concept generation, detailed design verification by quick design techniques. 1. 2. To provide students with technical and practical knowledge and skills required to engage in Product development projects and intellectual property rights. 1.						
1.0 Course Objectives 1. To discuss about Product requirement analysis, concept generation, detailed design verification by quick design techniques. 2. To provide students with technical and practical knowledge and skills required to engage in Product development projects and intellectual property rights.						
 Course Objectives To discuss about Product requirement analysis, concept generation, detailed design verification by quick design techniques. To provide students with technical and practical knowledge and skills required to engage in Product development projects and intellectual property rights. 						
 To discuss about Product requirement analysis, concept generation, detailed design verification by quick design techniques. To provide students with technical and practical knowledge and skills required to engage in Product development projects and intellectual property rights. 						
 To provide students with technical and practical knowledge and skills required to engage in Product development projects and intellectual property rights. 						
in Product development projects and intellectual property rights.						
Course Outcome						
At the end of the course, the student will be able to						
1. Illustrate the basics of product design and development processes and organisation						
policies.						
2. Inter the workplace management, health and safety management.						
3. Apply the methods of generating, evaluating and testing to select the best product						
4 Demonstrate the methods of design problem solving and concept generation to testing						
5. Practice the industrial design and Design for X.						
6. Infer the process of intellectual property rights.						
Module:1 Introduction 7 hours						
The design process -product life cycle -product development process - Collaborative						
product development – concurrent engineering - Strategic Planning and Opportunity						
Identification for new products – identifying Market Opportunities – Communication with						
Module:2 Organizational Competency Management 6 hours						
Organization's policies and procedures for working with colleagues. Competency, skills and						
knowledge requirements for working effectively; health and safety management – OSHA;						
Competency development, Training need analysis; skills need analysis						
Module:3Product Specifications5 hours						
Voice of Customer – customer survey – need gathering methods – Explore systematically -						
Establishing product specification -competitive benchmarking; House of Quality, Lean						
Module: 1 Problem Solving 5 hours						
Need for design creativity - Creative thinking – creativity and problem solving – TRIZ-						
Morphological approach						
Module:5 Concept Generation 5 hours						
Concept Generation - Concept Screening- Concept Scoring - Concept Testing methods -						
Case Studies						
Module:6 Embodiment Design and Industrial design 6 hours						
Introduction to embodiment design – product architecture – Configuration Design –						
Parametric Design - Test and Validation – Detail design - Industrial design – numan factors						
Module:7 Design for X Prototype and IP 9 hours						
Design for Manufacture - Design for Assembly - Design for serviceability – design for						
environment Design for Quality - Reliability - Sustainability. Failure Mode and Effect						
Analysis - Test and Inspection -Warranty; Cost evaluation -categories of cost - overhead						
costs – activity based costing Prototyping and Testing; Product Testing- Standards,						
Certification and Documentation Intellectual Property Rights - Patents, Design Patents,						
Trade Marks, Trade Secrets and copyrights						
wodule:o Contemporary issues 2 hours						

				Total	Lecture hours:	45 hours		
Te	kt Book							
1.	I. Karl T. Ulrich, Steven D. Eppinger, Product Design and Development, 2015, 6th							
	Edition	i, McGraw-Hill.						
Re	ference	Books						
1.	George	e E. Dieter, Linda C. Schm	nidt, Engineering	design, 2	017, 4 th Edition, N	lcGraw-		
	Hill.			-				
2.	Kevin (Otto, Kristin Wood, Produc	t Design, 2004, I	Pearson E	ducation.			
3.	Armstr	ong S, Engineering and	Product Develop	ment Ma	nagement: The H	Holistic		
	Approa	ach, 2001, Cambridge Uni	versity Press.		-			
Мо	Mode of Evaluation: CAT, written assignment, Quiz, FAT.							
Re	Recommended by Board of Studies 09-03-2022							
Ар	proved b	y Academic Council	No. 65	Date	17-03-2022			

BMEE309L	Lean Manufacturing	LTPC						
Pre-requisite	NIL	Syllabus version						
		1.0						
Course Objective								
1. To provide pra	ctical level understanding of the key elements of lean pi	oduction systems.						
2. To impart know	wiedge on systematic approach for implementing values	stream mapping.						
S. TO Incuicate th		ay.						
At the end of the	sourse, the student will be able to							
1 Identify key re	nuirements and concents in lean production system							
2. Apply the stab	ility and standardized work systems							
3. Demonstrate t	he JIT and Jidoka and implement Lean culture.							
4. Map the value	chain, predict the value addition and apply the value str	eam.						
5. Implement the	14 principles of Toyoto's operational excellence.							
Module:1 Lean	Production System	5 hours						
Birth of lean pro	duction: Types of production systems-Craft Productio	n-Mass Production-						
Ford System, G	rowing Dysfunction, Birth of lean production, Virtue	of necessity, Lean						
revolution at Toyo	ota.							
Lean production	system: Why lean production? Systems and Systems the	inking, Basic image						
of lean production	h, Customer focus, Muda, Mura, Muri.	7 hours						
Stobility: Stopdar	hity and Standardized work	7 nours						
Stability: Standard	is in lean system, 55 system, 10tal Productive Maintena k: Lean thinking Why standardized work? Elements of	INCE.						
Charte Llead to I	K. Lean initiking, why standardized work? Elements of Defee Standardized Work, Mannower reduction, Overa							
Individual efficien	cy Standardized Work and Kaizen. Common lavouts	II EIIICIEIICY VEISUS						
Module:3 Just	-in-Time Production	7 hours						
Why JIT. Princin	oles of JIT. JIT system. Kanban, Kanban rules. E	xpanded role of						
conveyance, Proc	duction levelling, Three types of pull systems, Value stre	am mapping.						
Jidoka Concept:	Development of Jidoka concept, Why Jidoka, Pok	a-Yoke, Inspection						
systems and zone	e control, using Poka-Yokes and Implementing Jidoka	· •						
Module:4 Invo	lvement, Hoshin planning, and	6 hours						
Cult	ure							
Involvement: W	ny involvement? Terrible waste of humanity, A	ctivities supporting						
involvement, Kaiz	en circle activity, Practical kaizen training, Suggestion p	orograms.						
Hosnin planning:	vvnat is planning? vvny plan? Problems with planning	j, Hosnin planning,						
The culture of Lee	system, Four phases of noshin planning. In Production: What is lean culture? How does lean cult	ura faal?						
Module:5 Valu	e Stream Management Process	6 hours						
Why Lise Value S	tream Management? Attributes of Value Stream Manage	ement						
Commit to Lean	· Management Push or Worker Pull? Key Management	Activities Invest in						
Your People. Sh	ort-Term Pains and Long-Term Gains. Implementing	Lean Transforms a						
Business Culture	Commitment checklist.							
Choose the Va	lue Stream: What Is a Value Stream? Selecting	Value Streams for						
Improvement, Ad	ditional Considerations for Value Stream Selection.							
Learn about Le	an: Training and Doing, Key Concepts of Lean, Three	ee Stages of Lean						
Application, Ident	ify Non-Lean Conditions							
Module:6 Valu	e Stream Mapping	6 hours						
Map the Curren	t State: Value Stream Mapping, How to Map the Cu	irrent State, Case						
Study.	Activities - Fundamentals - Otama familitary it	Matrica Drawiser						
Identify Lean Manufacturing	Netrics: Fundamentals, Steps for Identifying Lean	ivietrics, Premiere						
Man the Euters	State: Focus on three stares, Lean Manufacturing As	Sessment.						
Map the Future State: Focus on three stages - Customer demand - Continuous flow -								

Cre Pre	Create and Implement Kaizen Plans: Value Stream "Kaizen" Events, Planning Recap, Prepare for Implementation, Recommendations.								
Мо	dule:7	The	world-class	pow	er o	f the	Toyota		6 hours
		way							
The Hov Phi cus visi des	The Toyota Way: using operational excellence as a Strategic Weapon, A storied history: How Toyota became the World's Best Manufacturer, 14 principles of Toyota way (Part 1 Philosophy: long-term systems thinking; Part 2 Process: struggle to flow value to each customer; Part 3 People: respect, challenge, and grow your people and partners toward a vision of excellence; Part 4 Problem Solving: think and act scientifically to improve toward a desired future. Part 5 Conclusion: Po thoughtful and evolve your enterprise)								
Мо	dule:8	Con	temporary Issu	es			-		2 hours
		1			T 1 1				45.1
То	+ Dook				l ota	I Lect	ure hours:		45 hours
1		S I Donn	ia Laan Dradus	tion C	molifi	iad. A	Diain Langu		uida ta tha Marld'a
1.	Most F UK.	Powerf	ul Production S	ystem	2015	5, Thir	Edition, Cl	age Gu RC Pres	ss-Taylor & Francis,
2.	Don T Steps New Y	appine to Plar ork, 20	g, Tom Luyster nning, Mapping, 002	r and and S	Tom Sustai	Shuke ning Lo	er, Value S ean Improve	tream M ments,	Management: Eight , Productivity Press,
3.	Jeffrey greate	⁷ K. L st mar	iker, The Toyot ufacturer, 2021	ta Wa , Seco	y: 14 ond ec	mana dition,	agement pr MaGraw-Hil	nciples Editior	s from the world's n.
Re	ference	Book	S	,		,			
1.	Masaa 1997,	iki Ima MaGra	i, Gemba Kaize aw-Hill.	n: A C	omm	onsen	se, Low-Cos	t Appro	bach to Management,
2.	James in You	P. Wo r Corp	omack and Dan oration, 2001, F	iel T. J Revise	ones d Edit	, Lean ion, Si	Thinking: B mon & Shu	anish W ster.	Vaste & Create Wealth
3.	Mike F MUDA	Rother , 2003	, Learning to S , Lean Enterpris	See: V se Inst	alue itute.	Strean	n Mapping	o Crea	ate Value & Eliminate
4.	Jeffrey Implen	 K Lil nenting 	ker and Divid N g Toyota's 4Ps,	<i>l</i> leier, 2006,	The Tata	Toyota MaGra	Way Field	Book: on.	A Practical Guide for
5.	John A Guide,	Allen, 2001,	Charles Robins Society of Mar	on an Iufactu	d Dav Iring E	vid Ste Engine	ewart, Lean ers, Michiga	Manufa n.	acturing: A Plant Floor
6.	6. Mike Rother, "Toyota Kata: Managing People for Improvement, Adaptiveness, and Superior Results", 2010, Tata MaGraw-Hill Edition.								
Мо	de of Ev	aluatio	on: CAT, Writter	n assig	nmer	nt, Quiz	z, FAT		
Re	commer	nded b	y Board of Stud	ies	09-03	3-2022		4-	
Ар	Approved by Academic Council No. 65 Date 17-03-2022								

BMEE310L	Supply Chain Management		L	Т	Ρ	С	
			3	0	0	3	
Pre-requisite	NIL	Syl	labi		ersic	ิวท	
Course Objective				1.0			
1 Provide an ov	erview and conceptual understanding of Supply Chain M	ana	nem	ent			
2 Introduce the	oretical models and applications in the area of	of S	Sunn	lv C	:hair	n	
Management.			MPP	.y C	// ICall		
3. Equip the stud	lents with tools and concepts to manage and improve Su	upply	y Ch	ain f	or		
operational ex	cellence.						
Course Outeers							
At the end of the c	course, the student will be able to						
1 Understand si	uply chain need, and analyze the strategies, and driver	s of	nerf	orma	ance	4	
of the supply of	chain.		pom	511110			
2. Evaluate diffe	rent distribution and network design options.						
3. Analyze the in	npact of information in achieving coordination.						
4. Optimize inve	ntory level in a Supply Chain.						
5. Evaluate diffe	rent transportation modes and pricing strategies.						
6. Analyze the c	challenges in the global Supply Chain network as well	as	in n	naint	ainir	ng	
sustainability	of the Supply Chain.						
Module:1 Introd	Juction to Supply Chain Management			5	hοι	ırs	
Definition – Stage	s – Objective - Importance of SC Decisions - Decision P	hase	es -	Proc	ess		
views of a SC							
Module:2 Strate	egic Fit and Drivers of Performance			6	hοι	ırs	
SC Strategies -	Achieving strategic fit - Uncertainty and Capabilities o	of SC	C - 3	Step	s ar	nd	
Challenges in ac	chieving the fit – Scope - Measures of performance	; - I	Drive	ers (of S	SC	
Module:3 Distr	ibution Systems and Networks			6	hoi	ırs	
Role of distribution	on – Influence of drivers on distribution systems - Dis	tribu	ition	Net	wor	k	
Options – Impact	of online sales on distribution						
Factors influencin	g network design decisions – phases in design decisions	s - m	node	ls –	facil	ity	
location - capacity	/ allocation						
Module:4 Coord	dination and Technology in Supply Chain			6	nou	irs	
Lack of coordina	tion and Bullwhip Effect – vendor Managed Inventory	and	d Co Shair	Jiiad	Ma	ive	
processes - Cus	tomer Relationship Management –Internal supply cha	ain r	nan	ı — ader	nent	510 t —	
Supplier Relation	ship Management - Supply chain IT in practice - Futu	ure o	of IT	in	supr	oly	
chain.							
Module:5 Plann	ing & Managing Inventories in a Supply Chain		<u> </u>	7	hou	ırs	
The role of cycle	inventory in a supply chain –Managing multi echelor) CY	cle i	nver	ntory	/ -	
supply chain – m	inventory – related costs in practice – the role of sa		nive nitim	nioi	.yi⊓ αar	nd	
managing safety inventory in practice.							
Module:6 Source	Module:6Sourcing, Transporting and Pricing of Products7 hours						
Sourcing decisior	is in supply chain - transportation in the supply chai	n –	trar	ispoi	rtatic	วท	
infrastructure - s	uppliers of transport services – transportation modes	and	trac	le-ot	ifs –	-	
pricing and revent	ue management in the supply chain.				<u> </u>		
Trend towards also	ar and Sustainable Supply Chains	and	Unc	b	nou intv	in in	
Global SCM – S	Sources – Sustainability in Supply Chain – Role a	anu nd i	imno	ortan	пцу Се		
sustainability pilla	rs and drivers – best practices.		C				

Мо	dule:8	Contemporary Issues			2 hour	rs	
			Total Lecture ho	ours:	45 hou	rs	
Te	kt Book	(s)					
1.	Chopra	a, S. and Meindl, P., S	Supply Chain Ma	anageme	nt: Strategy, Planning &		
	Operat	tions, 2018, 7th edition, Pe	earson India Edu	cation Se	rvices Pvt. Ltd., India.		
Re	ference	Books					
1.	Simchi	-Levi, D. Simchi-Levi, E. F	Ravi Shankar, and	d Kamins	ky, P., Designing & Managing	g	
	the Su	pply Chain: Concepts, Stra	ategies & Case S	tudies, 20	019, 3rd Edition, McGraw-Hil	ll,	
	New Y	ork.					
2.	Janat	Shah, Supply Chain Man	agement, Text a	nd Case	s, 2016, 2 nd edition, Pearso	n	
	India E	ducation Services Pvt. Ltd	d., India.				
3.	Martin	Christopher, Logistics and	d Supply Chain M	lanageme	ent, 2016, 5 th edition, Pearso	n	
	Educat	tion Limited, UK.					
Мо	Mode of Evaluation: CAT, Digital Assignment, Quiz, FAT						
Re	commer	nded by Board of Studies	09-03-2022				
Ар	proved b	y Academic Council	No. 65	Date	17-03-2022		

BMEE311L	BMEE311L Welding Engineering L					
Dre requisite						
Pre-requisite	BMEE302L, BMEE302P		5yliabus version			
Course Objectiv	/es		1.0			
1. Select their pr	ofession as an Engineer in Industries and	expand areas	s of materials, power,			
and energy-re	lated fields.	•				
2. Practice effect	tively in the emerging Industrial environr	ment with the	lead role and make			
timely develo	pment toward establishing newer techn	ology in weld	ling-related fields or			
3. Pursue their c	areers in academia and develop entreprer	neur skills.				
Course Outcom	e					
At the end of the	course, the student will be able to					
1. Select a suit	able process for producing quality well	dments base	d on materials and			
2 Design weld in	pints that serve under different loading and	d servicina				
3. Test and eval	uate the weldments in various environmen	its.				
4. Assess the qu	ality of weldments and suggest methods of	of producing q	uality joints.			
5. Apply suitable	consumables for welding involving different	ent types of ma	aterials.			
6. Develop and a	adopt energy-saving and eco-friendly tech	niques in the v	welding industry.			
Module:1 Fund	damentals and Principles of Arc		5 hours			
Weld	ding		o noui o			
Classification of	welding processes: heat sources, power s	ources, arc pl	nenomena, arc blow,			
power source ch	naracteristics, V-I, relationship, flux cove	ring, different	types of electrodes			
and their applica	tions, gas welding and cutting, flame char	acteristics.	6 hours			
Basic principles	different methods of control of volt-amo	ere character	istics operation volt			
control. slope c	ontrol. dual control. resistance welding	transformers	s. welding rectifiers.			
choice of diode	material; use of thyristors, inverters - M	leasurements	of welding current,			
voltage, tempera	ture, load and displacement.					
Module:3 Wel	ding metallurgy	in a hard flag	7 hours			
Heat flow in we	eiding: temperature distribution in weld	ing, neat tion	Wequations, simple			
stainless steels	(austenitic ferritic martensitic duplex	and PH stair	lless steels) use of			
Schaffler and D	elong diagrams, Welding of Cu, Al, Ti a	and Ni alloys	 microstructures, 			
defects and reme	edial measures. Preheating and post-heating	ing.				
Module:4 Des	ign of Weldments		7 hours			
Joint design ba	sed on stresses in the structure; Joir	nt design for	structural elements			
such as bars, l	peams, plates, slabs, columns, trusses	s, plate girde	rs, cylindrical snells			
sections and bra	anch connections: Welded joint design to	control disto	rtion and shrinkade.			
residual stresses	and cracking.		, and and an age,			
Module:5 Wel	ding codes and standards		6 hours			
Structural Weldi	ng Codes: Design requirements, allowabl	e stress value	es, workmanship and			
inspection. Petro	leum Piping Fabrication: Process and pr	oduct standar	ds for manufacturing			
Vessel Fabricatio	procedure and weider qualification, field	ods joint cate	apries welding and			
inspection, post	weld heat treatment and hydro testing.	ous, joint cale	gones, weiding and			
Module:6 Repa	air welding and Reclamation		6 hours			
Engineering asp	pects of repair, aspects to be conside	ered for repa	ir welding, techno-			
economics, repa	ir welding procedures for components ma	de of steel ca	sting and cast iron,			
nait bead, tempe	er bead techniques, usage of Ni-base fille	r metals - Dai	maged bends in gas			

trar	transmission pipeline, heat exchanger repair techniques-explosive expansion, plugging, etc.,							
Мо	Module:7 Welding applications 6 hours							
Ма	terials, p	processes, fabrication and co	onstruction, u	ise of a	utomatic welding and systems in			
the	automo	obile industry - Oil and ga	s industry -	nuclea	r industry, materials, processes,			
fab	rication,	inspection and testing, case	studies, rece	ent tren	ds and developments - Materials,			
pro	cesses,	fabrication, inspection and te	esting.					
Мо	dule:8	Contemporary Issues			2 hours			
		Tota	I Lecture ho	urs:	45 hours			
Tex	kt Book	S						
1.	Nadka	rni S.V., Modern Arc Welding	Technology	, 2010,	Oxford and IBH Publishing.			
2.	Khann	a O. P., A Textbook of Weldi	ng Technolog	y, 200	9, Dhanpat Rai Publishers.			
3.	Radha	krishnan V. M. Welding Tech	nnology and E	Design 2	2005, Revised Second Ed.,			
	New A	ge International Publishers.						
Re	ference	Books						
1.	Kou S.	, Welding Metallurgy, 2002, .	John Wiley, 2	002.				
2.	John N	lorrish. Advanced welding pr	ocesses Tecł	nnologie	es and process control, 2006,			
	Wood	head Publishing and Maney	Publishing. C	ambrid	ge, England.			
3.	3. Bhattacharya M. Weldment Design, Association of Engineers, 1991.							
Мо	Mode of Evaluation: CAT, Written assignment, Quiz, FAT							
Re	commer	ded by Board of Studies	09-03-2022					
Ap	proved b	y Academic Council	No. 65	Date	17-03-2022			

BMEE312L	Engineering Tribology	L 1	' P	С				
		3 (0 0	3				
Pre-requisite	BMEE201L, BMEE204L, BMEE204P	Sylla	bus ve	ersio	n			
			1.0					
Course Objectiv	es							
1. To introduce t of various ma	ribology as an important design consideration that a chine components in relative motion and in contact.	affects the	e perfo	rmar	nce			
2. To understan	d the importance of friction and wear while desig	ning cor	npone	nts fo	or			
3. To recognize	the importance of lubrication in machine component	ts and in	the de	sign	of			
various types	of bearings.		:h a l a au					
4. To provide ex	posure latest developments and applications in the i		gologi	/.				
Course Outcome	95							
At the end of the	course, the student will be able to							
1. Apply the prin	ciples of tribology in design of machine components							
2. Estimate the f	riction and wear characteristics in interacting surface	es.						
3. Use the princi	ples of lubrication in designing various types of bear	ings.						
4. Analyze the p	ressure and estimate the load carrying capacity of a	journal b	earing					
5. Examine com	ponents and characterize tribological failures.		- doo:	~~:~	~			
6. Apply the Kr	nowledge on surface modification/treatment tech	niques ir	n desi	gning	g			
components i								
Module:1 Intro	duction to Tribology	6 h	ours					
Introduction – Tril	pology in design – Tribology in Industry – Economic	aspects -	– Topo	grap	hy			
of engineering su	rfaces – Surface parameters – Geometric – Statistic	cal param	eters ·	-	,			
Measurements -	Surface contact – Types of contact – Hertz's theory	of elastic	conta	ct				
Module:2 Frict	on and Wear	6 h	ours					
Laws of friction –	Stick-slip phenomenon – Friction characteristics of	metals ar	nd non	-met	als			
- Ploughing the	bry of friction – Measurement of friction. Wear -	- Wear r	necha	nism	s –			
Interfacial wear a	nd Chemical wear – Wear measurements – Ferrogra	aphy and	oil ana	alysis	i.			
	Ication and Bearings	/ n	ours					
Lubrication types	- Regimes - Basic Modes of Lubrication - Pro	penies (of LUD	Ican	(S —			
	odynamic Lubrication		hours	anno	js			
Mechanism of pre	ssure development - Reynolds equation - Plane sl	ider bear	ina _	lourr	ادر			
bearing – Long b	earing and Short Rearing approximations – Lo	ad carry	ing -	nacit	1ai 1v —			
Friction – Somm	erfeld Number – Petroff's equation – Oil flow and	l Therma	l equil	ibriur	n –			
Squeeze film lubr	ication		. odau					
Module:5 Trib	ological testing and Instrumentation	5 h	ours					
Diagnosing Tribo	ological problems – Atomic Force Microscope (AFM) –	Challe	enge	s of			
Tribological Testi	ng at Small Scales - Methods and Instrumentation	on used	for Tri	poloc	gical			
Testing – Influence	ces of Test Parameters	-						
Module:6 Wea	r resistant coatings and surface treatments	5 4 h	ours					
Coating techniqu	es dependent on vacuum or gas at very low pre	ssure (Pl	hysica	vap	our,			
Chemical vapou	r and Physical-chemical vapour deposition to	echnique	s) –	Coa	ating			
processes requiri	processes requiring localized sources of intense heat (Surface welding, Thermal spraying							
Module:7 Appl	ications and case studies in Tribology	4 h	ours					
Triboloav in Auto	motive, Aerospace, Marine, Manufacturing, Biomed	ical and c	other					
applications	,							
Module:8 Cont	emporary Issues	2 h	ours					
	Total Lecture hou	ırs:	4	5 hc	ours			

Tex	xtBooks							
1.	Gwidon Stachowiak and Andrew W Batchelor, Engineering Tribology, 2016, Fourth							
	Edition, Butterworth Heinemann, Oxfordshire UK.							
Re	ference Books							
1.	Harish Hirani, Fundamentals of Engineering Tribology with Applications, 2016, First							
	Edition, Cambridge University Press, England.							
2.	Bharat Bhusan, Modern Tribology Handbook Volume 1, 2000, First Edition, CRC Press,							
	Florida US.							
3.	Prasanta Sahoo, Engineering Tribology, 2005, Prentice Hall of India, New Delhi, India.							
4.	Majumdar B.C., Introduction to Tribology of Bearings, 2018, Second Edition, S.Chand							
	Publisher, India.							
5.	lan Hutchings and Philip Shipway, Tribology: Friction and Wear of Engineering							
	Materials, 2017, Second Edition, Butterworth Heinemann, Oxfordshire UK.							
6.	Kenneth C. Ludema and Layo Ajayi, Friction, Wear, Lubrication, A Textbook in							
	Tribology, 2018, Second Edition, CRC Press, Florida US.							
7.	Yukio Hori, 2006, Hydrodynamic Lubrication, Springer Japan.							
8.	N.P. Suh, Tribophysics, 1986, Prentice-Hall, Englewood Cliffs, New Jersey.							
Мо	de of Evaluation: CAT, Written assignment, Quiz, FAT							
Re	commended by Board of Studies 09-03-2022							
Ар	proved by Academic Council No. 65 Date 17-03-2022							

BMEE313E	Non- destructive Testing		L	Τ	Ρ	С		
		3	0	2	4			
Pre-requisite BMEE302L, BMEE302P, BMEE304L, BMEE304P Syllabus version								
1.0								
 To provide a b Impart knowle To get knowle 	basic understanding with case studies on different NDT dge on inspecting materials with industry specifications dge about the advanced NDT techniques.	& E t and	echr stan	ique dard	S. S.			
Course Outcome								
 At the end of the course, the student will be able to 1. Infer the knowledge of various NDT techniques. 2. Apply the NDT techniques to identify surface defects of engineering components. 3. Use the subsurface NDT techniques to identify the defects. 4. Examine and quantify closed discontinuities to assess the structural integrity of engineering components. 5. Analyse the outputs of the acquired data from NDT techniques. 6. Evaluate the output results in the different modality. 								
Medule:4 Intro	duction NDT				hai			
Fundamentals of Materials due to attributes, enviror magnifiers, boros	characterisation studies, Codes, Standards and Specif various processing, Visual Testing – vision certification mental factors, visual perception, direct and indirect copes and fibroscopes– light sources and special lighting	icatio on, lig meth ng–ca	ns, l htin ods alibra	Defe g, m – m ation	cts i ateri nirroi	n ial rs,		
Module:2 Surfa	ce inspection Techniques			5	hοι	Jrs		
Dye penetrant tes of magnetism an (WMPT) and Dry	sting – visible, fluorescent method, Selection of penetr d Principle of Magnetic Particle Testing - Wet Magn Magnetic Particle Testing (DMPT).	ant m ietic I	Parti	od - cle ⁻	Theo Fest	ory ing		
Module:3 Ultras	sonic Testing			8	hou	Jrs		
Introduction, Elas fronts, Reflection transducers, Ins characterization, I	atic wave propagation in solids, Bulk waves, Particle and refraction at interfaces, Attenuation and se spection techniques, Flaw characterization, M mmersion testing, Applications.	e mo catter ateria	tion ing, al	and Ultr prop	Wa aso ertie	ave nic s		
Module:4 Acou	stic emission testing			4	hοι	Jrs		
AE sources, Wa media, AE equip Applications.	ve propagation in metals and alloys, AE signal inter ments, Signal features, Data collection and analys	nsity i is, so	in at ourc	tenu e lo	atio catio	n vn,		
Module:5 Eddy	current testing			7	hou	rs		
Generation of edd of eddy currents absolute, differen absolute, differen impedance - test p	Ay currents – effect of change of impedance on instrum – eddy current sensing elements, probes, type of tial, lift off, operation–Through encircling coils, type tial fill factor, operation - Factors affecting sensing part and test system– Applicable codes and standards.	ientat coil of a j eler	ion - arra arran nent	- pro nger igem :s ar	pert nent ents nd c	ies t – 3 – coil		
Module:6 Radio	ography Testing			7	hou	Jrs		
Introduction to Ra storage - Effect o Radiographic Te radiographs - Rac Radiography tech	adiography – radiography sources - Film Radiography f film processing on film characteristics - Radiographi chniques - Special Radiographic Techniques ar liation hazards evaluation and control - Applicable code niques.	- Fili ic Ima nd In es an	m ha age iterp d sta	andli Qual retat anda	ng a ity a ion rds (ากd and of of		
Module:7 Adva	nced NDT			6	hοι	Jrs		
Leak testing, Hyc In-situ metallogra in guided wave diffraction and sca	Iro testing, Holography, Thermography, Magnetic Bar phy. Industrial applications of flaw detection probability modes in isotropic and composite plate structures, attering of ultrasonic waves in isotropic and anisotropic	khau y, Wa , Moo medi	sen ive p de c a, P	Effe propa conve ulse	ct, a agati ersio d ede	ind ion on, dy		

current NDT, Electromagnetic acoustic technique (EMAT). Scanning Acoustic Microscopy									
Mo	dule 8 Contemporary ISsues	стозсору.			2 hours				
					2 110410				
	Total Lecture hours:				45 hours				
Тах									
Tex	(L BOOK(S)	Care Tracks	T 1	Deseties					
١.	Wong B. Stephen, Non-Destruct	tive resting	- Ineory	, Practice	and industrial				
Dof	Applications, 2015, 1° edition, Lam	bert Academic	2 Publishir	19, USA.					
Rei	Presed LO C Krishnadaa Nair		in Test		tion of Materiala				
1.	Prasad, J C. G. Krishnadas Nair,	Non-Destruct	tive lest	and Evalua	ation of Materials,				
	2017, 2 nd edition, McGraw Hill Educ	cation (India) H	Private Lin	nited.					
2.	Raviprakash, Non-Destructive Te	sting Lechniq	lues, 201	0, 1st edi	tion, New Age				
-	International Private Limited Publis	hed.							
3.	Baldev Raj, M. Thavasimuthu, an	d Jayakumar	I, Practio	cal Non-De	structive lesting,				
	2009, 3 rd edition, Narosa publicatio	ons.							
Mod	de of Evaluation: CAT / written assig	nment / Quiz /	FAT						
Ind	icative Experiments								
1.	Inspection of welds/samples using	solvent remo	vable visib	ole dye pene	etrant				
2.	Inspection of welds using solvent	removable fluc	prescent d	ye penetrar	nt.				
3.	Inspection of welds/samples by M	agnetic Particl	e Testing	 Dry method 	bc				
4.	Inspection of welds/samples by M	agnetic Particl	e Testing	 Wet meth 	od				
5.	Detection of surface flaws in non-	ferrous materi	al using e	ddy current	testing.				
6.	Non- conductive coating dimensio	nal variations	measuren	nent using e	eddy current				
	testing.								
7.	Calibration and detection of sub / of	deep surface f	laws using	g Ultrasonic	testing.				
8.	Evaluate the location of sub / deep	o surface flaws	s using Ult	rasonic test	ting.				
9	Detection of sub / deep surface fla	ws using Ultra	isonic test	ing.					
10	Evaluate the location of sub / deep	o surface flaws	s using Ult	rasonic test	ting.				
			Total	Laborato	ory 30 hours				
Ηοι	Jrs								
Text Book									
Lab manual prepared by the faculty member.									
Mode of assessment: Continuous assessment, FAT, Oral examination									
Rec	commended by Board of Studies	09-03-2022							
Арр	proved by Academic Council	No. 65	Date	17-03-202	22				

BMEE314E Mechanical Vibrations and Acoustics L					Ρ	С	
			3	0	2	4	
				Cullebue version			
Pre-requisite BMEE207L, BMEE207P Syl						<u>n</u>	
Course Objectives				1.0			
1 To opoble study	ante te understand the fundamental concents of r	nacha	nina	الريام	rotic		
and acoustics.	ledge on the concept of vibration for single, two	and r	nulti	dec	aree	of	
freedom system	s.				,	•	
3. To formulate ma	athematical models and complete solution of mech	nanica	l vib	oratio	on a	Ind	
4. Obtain linear vib MDOF).	ns. ratory models of dynamic systems with changing co	omplex	kities	s (SI	DOF	,	
Course Outeersee							
At the end of the cou	urse, the student will be able to						
 At the end of the course, the student will be able to Formulate the equations of motion for the given vibratory systems. Examine the free and forced vibration response of a single degree of freedom system under damped or un-damped condition. Investigate dynamic characteristics of two degree of freedom systems. Investigate the vibration response of multi-degree of freedom systems by performing modal analysis. 							
6. Demonstrate the	fundamentals concepts of acoustics and its control	metho	ods.				
Module:1 Fund	lamentals of Vibration	rmina		(/ L/a	5 ho	urs	
Motion, Periodic M moment balance, er	otion, Modelling of vibratory system, Equations of nergy methods.	of mot	iogy ion,	For	ce a	and	
Module:2 Sing	le degree of freedom System			(3 ho	urs	
Free vibration of un response of undar damping, Logarithm	ndamped and damped SDOF systems, Harmonic mped and damped SDOF systems, Transmiss ic decrement, Quality factor, Introduction to Transie	ally e ibility, nt vibr	xcite Es atio	ed v tima n.	ibrat tion	tion of	
Module:3 Two	Degree of Freedom System			(3 ho	urs	
Introduction to two degrees of freedom system, Equation of motion, Coordinate coupling and principal coordinates, Normal mode analysis, Properties of mode shapes, Forced vibration, Vibration absorber, Vibration isolation.							
Module:4 Mult	i Degree of Freedom System			7	7 ho	urs	
Derivation of equation of motion, Free and forced vibration systems, Eigen value and Eigen vector, Orthogonal properties, Modal matrix, Modal analysis, Influence Coefficients, Approximate Numerical Methods.							
Module:5 Vibra	ation of Continuous Systems			6	3 ho	urs	
Systems governed Vibration of bars, To	by wave equations, Transverse Vibration of s prsional Vibration of Shafts, Lateral Vibration of bear	trings, ms.	Lo	ngitu	Jdina	al	
Module:6 Fund	lamental of Acoustics			(3 ho	urs	
Introduction to acound octave, music scale and reverberant, in	estics, loudness, decibel scale, adding decibels, we es, sound pressure and power levels, sound fields verse square law, wave number, Equation of stat	eighting – nea e, cor	g so ar, fa ntinu	und ar a iity,	leve nd fi Eule	els, ree er's	

equa	equation. Linear wave equation and its solution.						
Mod	ule:7	Acoustics Concepts				6 hours	
Αςοι	ustic inter	nsity, specific acoustic	impedance, plar	ne waves	, spherical wa	ves, cylindrical	
wave	es, reflec	tion and transmission,	radiation, absor	ption and	attenuation,	noise control	
meth	nods, vibr	ation and acoustic measured	surements.				
Mod	ule:8	Contemporary issues	5:			2 hours	
		Total Lec	ture hours:			45 hours	
Text	Books						
1.	Rao S.S	3, Mechanical Vibrations	s, 2016, 6 th Editic	on, Pearso	on Education.		
2.	Lawren	ce E. Kinsler, Austin	R. Frey, Alan	B, 2000,	Coppens and	d James V.	
	Sander	s, Fundamentals of Aco	ustics, 4th Editio	n, John W	/iley & Sons In	c, Delhi.	
Refe	erence B	ooks					
1.	Dukkipa	ati RV, Advanced Mecha	anical Vibrations,	2012, Na	rosa Publicatio	ons.	
2.	Kelly So	G, Mechanical Vibration	s, 2013, Mcgraw	Hill (India	a) Ltd.,		
3.	W.T. Th	omson, Theory of Vibra	tion with Applica	itions, 201	3, 5 th Edition, 1	Prentice – Hall.	
4.	L. Meiro	witch, Elements of Vibra	ation Analysis, 20	001, Tata	McGraw-Hill: N	lew Delhi.	
5.	Munjal	M. L., Noise and Vibratio	on Control, , 201	3, World S	Scientific Publis	shers in	
	Collabo	ration with IISc Press, S	Singapore.				
Mod	e of Eval	uation: CAT, Written ass	signment, Quiz, F	FAT			
Indic	cative Ex	periments					
1.	To dete	rmine the radius of gyra	tion 'k' of Simple	and Com	pound Pendul	um.	
2.	To verif	y the Dunkerley's rule.					
3.	Determ	ination of Natural Freque	ency in Longitudi	inal Vibrat	ting System.		
4.	To stud	y the forced vibration of	the beam with d	ifferent bo	oundary conditi	ons.	
6.	To stud	y the forced damped vib	pration of spring r	mass syst	em.		
7.	To dete	rmine the radius of gyra	tion of using bi fi	lar systen	า.		
8.	To dete	rmine the radius of gyra	tion using tri-fila	r system.			
9.	To dete	rmine the natural freque	ency of undampe	ed torsiona	al vibration of a	single and	
	two roto	or shaft system.					
10.	To stud	y the damped torsional	vibration of single	e rotor sys	stem and to de	termine the	
	dampin	g coefficient.					
11.	Determ	ination of natural freque	ncy and damping	g of beam	using accelere	ometer and	
10	impact	hammer.					
12.	Measur	ement of Noise.					
-	B			otal Labo	ratory Hours	30 hours	
lext	BOOK						
Lab	manual p	repared by the faculty m		<u> </u>	• ••		
Mode	e of asse	ssment: Continuous ass	sessment, FAT, C	Jral exam	Ination		
Reco	ommende	a by Board of Studies	09-03-2022		17 00 0000		
Appr	oved by <i>l</i>	Academic Council	NO. 65	Date	17-03-2022		

BMEE315L	Micro-Electromechanical Systems	L	Т	Ρ	С	
		3	0	0	3	
Pre-requisite	BMEE201L, BMEE209L, BMEE209P	Syllab	is ve	ersio	on	
			1.0			
Course Objective	es					
1. To introduce th	e elements of MEMS and develop understanding on in	nportance	of so	calir	ng	
laws effect in p	henomenon.	_				
2. To introduce di	ifferent materials, fabrication process and micro manufa	acturing te	echni	que	s	
used in MEMs.						
3. To outline the t	basic principles and operation of micro sensors and mic	cro actuat	ors, a	and		
1 To bigblight the	nual components of micronuluic components.	odo ond i	otoar	otio	n	
4. TO Highlight the	technology areas		negi	allu	11	
Course Outcome						
At the end of the c	course the student will be able to					
1. Comprehend t	he MEMS importance and diverse application, and i	related er	naine	erin	a	
concepts.		olatou ol	igino	•••••	9	
2. Understand the	e importance of scaling laws in MEMS, and predict	the scalin	g eff	ect	in	
related phenon	nenon.		0			
3. Evaluate and s	elect appropriate material for MEMS devices and fabric	ation pro	cess.			
4. Select appropri	riate fabrication and micro manufacturing process, a	nd develo	op pr	oce	SS	
sequence for b	uilding MEMS devices.					
5. Grasp the func	tions of micro-sensors and actuators used in diverse ap	plications	i.			
6. Perceive the ap	pplication of physical, chemical, biological and enginee	ring princ	ples	in tr	1e	
design and ope	eration of micro devices and roles of MEINS devices for	addressi	ng so	ocie	tai	
Modulo:1 Intro	erging technology areas.	5 hours				
History of MEMS	development: Components of MEMS: Intrinsic charge	otoristics	of N		10.	
Interdisciplinary r	ature of MEMS: Overview of typical MEMS Produ	icts. Ann	licatio	n Liv	of	
MEMS in industri	es – Automotive, Healthcare, Aerospace, Telecomm	unications	Inc	lusti	rial	
products. Consur	ner Products: Review of essential concepts – Electric	cal and M	/echa	anic	al:	
Trends in MEMS -	- Technology, application and market.				,	
Module:2 Scal	ing laws in miniaturization	3 hours				
Introduction to S	caling - Need for scaling laws, Types of scaling	laws; Mo	tivati	on	for	
miniaturization; S	caling in-geometry, rigid body dynamics-Trimmers f	orce sca	ling v	vect	or,	
electrostatic force	es, electromagnetic forces, electricity, fluid mechanics	s, heat co	ondu	ctior	n ,	
heat convection, e	etc., Overview of MEMS design process.					
Module:3 Mate	erials for MEMS	5 hours		<u> </u>		
Single crystal silic	con – crystal structure and atomic arrangements, extrac	ction proc	ess;	Silic	on	
compounds – Sili	con Carbide, Silicon Nitride, polycrystalline silicon; Sil	licon piez	o-res	sisto	ors;	
	Germanium; Metals-Gold, Silver, Copper, Aluminium;	Polymer	mate	riais	;- 	
Other materiale Quartz: Coromics, Class						
	IS fabrication process and micro manufacturing	10 hours	\$			
Microfabrication p	processes-Photolithography. Ion implantation. Diffusion	Oxidatio	n. Pl	nvsi	cal	
Vapour Deposition (PVD), Chemical Vapour Deposition (CVD), Deposition by epitaxy. Bulk						
micro manufacturing- Etching, Isotropic and Anisotropic etching, Wet etching, Etchants,						
Etch stop, Dry etc	ching, Plasma etching, Deep reactive Ion Etching, Proc	cess step	s with	n ca	ise	
studies; Surface micromachining- Process steps with examples, Mechanical issues, , LIGA:						
Advantages and	limitation, Process steps with case studies, Mate	erials, SL	IGA;	S	oft	
lithography and its	s application; Wafer bonding; Microsystems packaging.					
Module:5 Micro	o sensors and Micro-actuators	6 hours				
. Micro sensors:	Elements and characteristics; Basic principles and o	peration of	ot dif	tere	nt	

types of micro sensors - surface acoustic wave micro sensors, bio-medical sensors, bio sensors, chemical sensors, optical Sensors, pressure sensors, thermal sensors, acceleration sensors. Micro actuators: Elements and characteristics; Basic principles and working of							
diff cap	erent typ bacitor a	es micro actuator-Electros ctuator, Thermal actuators	static actuators , Magnetic actu	, Piezoelectric actu iators. SMA actuato	ators, Parallel plate rs,		
Мо	dule:6	Microfluidics	-		6 hours		
Intr	oductior	; Motivation for microfluid	lics; Overview	of fluid mechanics	s – Viscosity, surface		
ten	sion, ca	oillary rise, flow types, Rey	nolds number;	Components of a	micro fluidic system –		
Ch	annels, I	Mixers, Sensors, reservoir	; Methods of f	luid movement in a	channels; Fabrication		
pro	cess of I	nicrofluidics components v	with examples		_		
Мо	dule:7	Case studies			8 hours		
Ар	olication	of MEMS devices for - S	mart home, vis	sually impaired, su	rgery, Brain sensors,		
Sel	f-driving	car, Wearable sensors, po	ollution monitor	ing and other emer	ging areas/products;		
Mo	delling a	nd analysis of MEMs devi	ces.				
Mo	dule:8	Contemporary Issues			2 hours		
			1	fotal lecture hours	s: 45 hours		
Tex	kt Books	6					
1.	Tai-Ra	n-Hsui, MEMS & Microsy	stems: Design	and Manufacture,	Wiley, Online, edition		
2.	,2020						
	Chang	Liu, Foundations of MEMS	S,Pearson,2012				
Re	ference	Books					
1.	Nadim	Maluf and Kirt Williams	(2004), An Inti	roduction to Micro	electro mechanical		
-	System	is Engineering, Second Ec	lition, Artech H	ouse			
2.	Stephe	n R.Santuria (2001), Micro	system Design	i, Springer Science	Business Media Inc.		
3.	Minhar	ig Bao (2005), Analysis an	d Design Princ	iples of MEMS devi	ces, Elsevier		
4.	4. Marc J. Madou (2002), Fundamentals of Micro Fabrication: The Science of						
-	Miniaturization, Second Edition, CRC						
5.	Gad-El	-Hak The MEMS Handbo	OK CRC Press	2002-modified 201	9		
6. V.K.Atre, Ananthasuresh, K.J.Vinoy. S.Gopalakrishnan, K.V.Bhat, Micro and Smart							
Systems,(WIND), 2010							
Mode of Evaluation: CAT / Written assignment / Quiz / FAT / Seminar / Case studies							
Re	commen	ded by Board of Studies	09-03-2022				
Ap	proved b	y Academic Council	NO. 65	Date 1	7-03-2022		

BMEE316E	Industrial Robotics	L	Т	Ρ	С			
	3	0	2	4				
Pre-requisite BMEE207L, BMEE207P Syllabus version								
1.0								
Course Objective								
1 To impart know	zə vledge on the fundamentals of industrial robot types and	l their no	neitio	nino				
systems.	wedge of the fundamentals of industrial robot types and		/5/110	ining				
2. To impart the	mathematic foundation of robot manipulators, trajector	ory plan	ning,	an	d			
control.		<i>.</i>	0,					
3. To provide kn	owledge to design, fabricate, and control the manipul	ator rob	otics	s wit	h			
gripper system	l.							
Course Outeema								
At the end of the c	; course the student will be able to							
1 Specify various	s types of Robots for industrial applications with sound k	nowledg	ne of	the				
positioning sys	stem.	inomou	,0 0.	uio				
2. Represent the	rigid body motion and its transformation mathematically.							
3. Solve and mod	lel the kinematics equations of various manipulator confi	guration	s.					
4. Solve and m	nodel the differential motion and dynamics of var	ious m	anipı	ulato	r			
configurations.	- Waltan for a factor to manda a factor							
5. Compute the c	iollision-free trajectory planning.							
7 Design and fat	pricate the gripping system for selected robot application	5						
Module:1 Anat	omy and Positioning System of robot		5	hou	ırs			
Introduction to I	ndustrial robotics – Manipulator configuration (exan	nples w	ith p	orod	uct			
specification): two	b link planar, Cartesian, Cylindrical, Polar, Articulated,	SCARA	, Del	ta a	nd			
Stewart platform -	- CAD modelling of manipulator configuration (students	by own) – A	naly	SIS			
Closed-loop study	with serve motor – Precision in Positioning system:	control	resc	non Slutic	.01, 10			
accuracy and repe	eatability – Harmonic drives in robotic manipulators.	control	1000	nutic	<i>/</i> 11,			
Module:2 Conf	iguration space and Rigid body motion		4	hou	ırs			
DOF – C-space:	Topology and representation, velocity constraints -	Rigid bo	ody I	Moti	on:			
Description of pos	sition, orientations and frames – Changing descriptions f	rom fran	ne to	fra	me			
(Homogeneous n	natrix) – Operation: Translation, rotation (rotation and	Euler n	natrix	() ar	าd			
transformation – L	penavit-Hartenberg representation – Numerical.		Q	hoi	Ire			
Forward and Inve	rse kinematics: Two link planar (RR), cylindrical robot (R	PP) and	0		113			
articulated arm (R	RR) with Modelling and 3D virtual realization – other ma	nipulato	rs					
configurations: 6D	OF articulated robotic arm, SCARA and Stewart platform	n.						
Module:4 Diffe	erential motion and dynamics of robot		8	hou	ırs			
Angular velocity	- Velocity kinematic: Jacobian for 2 link planar (RPP), cylind	Irical	rob	ot			
(RPP) and articulated arm (RRR) - Forward and inverse dynamics of simple pendulum,								
double stage pen	dulum and two link planar.		7	hou	Ire			
Path Planning -	Trajectory planning – Classification of Trajectory plan	nina -	Join	sna	13			
schemes: Cubic polynomials – Cubic polynomials via point – Higher order polynomials –								
Linear function with parabolic blends – Cartesian space schemes: Geometric problems with								
Cartesian paths – two link planar trajectory planning.								
Module:6 Manipulator control 5 hours								
Linear control of manipulator: second-order linear system, control of second order system								
trajectory followin	g control, disturbance rejection – Non-linear control: (Jontrol p	orobl	ems	IN			
manipulators, multi-input and multi-output control system – Lyapunov stability analysis –								

ada	ptive co	ntrol.					
Mod	dule:7	Gripper Design	6 hours				
Grip	per de	finitions and conceptual basics - Grasping in Natural system -	Prehension				
stra	strategy - Gripping procedure, conditions and force - Gripper Flexibility - Gripper						
clas	classification - Requirements and gripper characteristics - Planning and selection of						
grip	pers -	Impactive mechanical grippers: Single and multi-grippers- Ingressiv	/e gripper –				
Astr	ictive p	rehension – Special grippers: Microgrippers, soft grippers, compliance	gripper.				
NOC	aule:8	Contemporary Issues	2 hours				
T		I otal Lecture hours:	45 hours				
Iex	T BOOK						
1.	Craig,	John. J. (2008), Introduction to Robotics: Mechanics and Control,	Second				
Rof		Books					
1	Bruno	Siciliana (2010) Robotics Modelling, Planning and Control, Springer-V	orlag				
1			enay				
2	Mikell	P Groover Mitchell Weiss (2013) Industrial Robotics Technology					
2	Progra	mming and Applications McGraw Hill Edition 2					
3		Park and K. M. Lynch (2017). Introduction To Robotics Mechanics. Pla	nning And				
	Contro	I. First Edition. Cambridge University Press.					
4	Gareth	J.Monkman, Stefan Hesse (2007) Robot Grippers. WILEY-VH Verlag	GmbH &				
	Co, KC	GaA, Weinheim.					
Mod	de of Ev	aluation: CAT / written assignment / Quiz / FAT					
Indi	cative	Experiments					
1.	Devel	op the code to realize the Forward kinematics equation for the	3 hours				
	select	ed manipulator configuration. Matlab: Minimum 2DOF to Maximum of					
	4DOF	•					
2.	Devel	op the code to realize the Inverse kinematics equation for the	3 hours				
	select	ed manipulator configuration. Matlab: Minimum 2DOF to Maximum of					
	4DOF						
3.	Devel	op the code to realize the trajectory planning of single link arm using	3 hours				
	CUDIC	polynomial equation and plot the response of position, velocity and					
4		station. <u>Wallad/Mylnon</u>	2 hours				
4.		op the code to realize the trajectory planning of single link arm using function with parabolic blond (LEPR) and plat the response of	STIOUIS				
		n velocity and acceleration Matlab/Python					
5	Realiz	ration of selected manipulator configuration in the virtual	3 hours				
0.	enviro	nment, [Coppeliasim, gazebo simulator, Sim-Mechanics (Matlab-	0 110013				
	Simul	ink) and any other virtual simulatori.					
6.	Teach	the industrial robot with appropriate Tool Centre Point (TCP) valve	3 hours				
	and U	SER Frame valve for the given tool and targeted location using three					
	point	teaching approach. [Simulation/Robo machine].					
7.	Progra	am the Industrial robot to execute a 2D profile in a selected plane by	3 hours				
	record	ling the vertices of the 2D geometry profile using target teaching					
	appro	ach. [Simulation/Robo machine].					
8.	Progra	am the Industrial robot to execute a 2D profile in a selected plane	3 hours				
	using	position register, offset and other special functions (Target					
	calcul	ation approach). [Simulation/Robo machine].					
9.	Interfa	ace an End of Arm Tool (EOAT) for the selected industrial robot and	3 hours				
	estab	lish the Digital Input connection to communicate the EOAT.					
	[Simu	lation/Robo machine].					
10.	Desig	n the robotic work cell for the given application along with all system	3 hours				
	Integr	ation components. Estimate the cycle time into with task profile.					
	l Ieimn	Tatal Laborate and Laborate	20 h e				
		I otal Laboratory Hours	30 nours				

Textbook						
Lab Manual prepared by the Faculty member.						
Mode of assessment: Viva-voce exar	nination, Lab per	formance	& FAT			
Recommended by Board of Studies	09-03-2022					
Approved by Academic Council	No. 65	Date	17-03-2022			

BMEE317L		Mechatronic Systems Design		L	Т	Ρ	С
				3	0	0	3
Pre-requisite	9	BMEE210L, BMEE210P	Syl	labu	s ver	sio	n
					1.0		
Course Obje	ectives	8					
1. To empha elements	asize , mecl	an understanding of multi-disciplinary study dealir hanical devices, actuators, sensors, electronics, a	ng with t Ind intel	the ii ligen	ntegra t con	atior troll	າ of ers.
2. To impar	t knov	wledge of mechatronics device integration, conc	eptual	desi	gn, a	naly	/sis,
modelling	g, synt	hesis, prototyping, validation, installation, and tes	ting.				
3. To raise a	an awa	areness and provide pertinent engineering metho	dologies	s and	d gen	erat	e a
know-how	N core	in the integration of complex automation.					
Course Outo							
At the end of	the co	burse, the student will be able to					
1. Demons	strate t	ne knowledge of basic concepts, applications, and	d eleme	nts d	DT		
2 Develop	on int	ysiems.	hatroni		tome		
3 Recomm	nend t	o design the software that interacts with the hardw	are ele	nen	te) .	
4 Familiar	ize wit	b data acquisition and human machine interfaces		men			
5. Analyse	the m	odel-based design of mechatronics system.					
6. Design r	necha	tronics systems to solve real-world problems.					
Module:1	Intro	duction to Mechatronics			ļ	5 hc	ours
Introduction	to Me	chatronics system, Key elements, Mechatronics s	ystem c	lesig	n pro	ces	s,
Types of des	ign, C	omparison between Traditional and Mechatronics	approa	ich.	•		-
Module:2	Elen	nents of Mechatronics Systems				7 ho	ours
Hardware C	compo	nents in Mechatronics systems, Mechanisms,	Senso	rs, /	Actua	tors	\$,
Controllers -	- Pow	ver and Data transfer, signal conditioning and	process	ing,	Issu	es \	with
interfacing ar	nd Tro	ubleshooting.					
Module:3	Soft	ware Integration			(6 hc	ours
Software for	Mech	natronics, Needs and implementation, Control a	and Inte	ellige	ence	thro	ugh
Software in	tegrat	ion for embedded controllers, issues with	SOITWA	are	aesię	gn	and
Tioubleshool	.iriy.						
Module:4	Rea	Itime System Interfacing				6 hc	ours
Introduction	to dat	a acquisition- Interface and communication stand	lards, L	Jser	interf	ace	s in
automation,		lime interfacing, Human Machine Interfaces, Full	ndamer	tais	or gr	apn	lical
Module:5	Mod	al based design and development				5 hc	lire
Modelling an	d Sim	ulation Model based Design techniques Hardwa	re-in-lo	on S	imula	tion	
Code Implei	menta	tion and Automatic Code generation – Valida	ation ar	nd \	erific	atio	n -
Installation a	nd tes	tina.			onne		
Module:6	Cas	e Studies- I				7 hc	ours
Case studies	s in d	esign and integration of components in mechat	ronics s	svste	ms s	such	as
industrial rot	oot, m	otion control systems, Embedded vehicle contr	ol syste	em,	3D p	orinte	ərs,
micro-robot, mechatronic control in automated manufacturing, machine tool control systems,							
automated dispensing systems.							
Module:7 Case Studies- II 7 hours							
Cyber-Physic	Cyber-Physical Systems- home security using IoT, ADAS systems, electronic stability						
control, Unline surface measurement using image processing, automated testing and							
inspection systems, bio mechatronics, bionic arm, waste management, precision agriculture-							
crop monitoring and analysis.							
	COII	Total I poturo hou	re:		، ۸	5 hc	ui 5
Text Books			3.			5 110	/413
1 Rolton M	1 Bolton W. Mechatronics - Electronic Control Systems in Machanical and Electrical						
	v., ivic		anical	anu		inca	<u> </u>

Engineering, 2018, 7th Edition, Pearson Education.

2. Robert H. Bishop, The Mechatronics Handbook, 2017, CRC Press.

Reference Books

- 1. Nitaigour Premchand Mahalik, Mechatronics Principles, Concepts and Applications, 2015, McGraw Hill Education, New Delhi.
- 2 Peter Hehenberger, David Bradley, Mechatronic Futures: Challenges and Solutions for Mechatronic Systems and their Designers, 2016, Springer International.
- 3. Andy Judge, Mechatronics and Dynamic System Design, 2019, 3rd Edition.
- 4. Devadas Shetty, Richard A.Kolk, Mechatronics System Design, 2012, PWS Publishing Company.

Mode of Evaluation: CAT, Written assignment, Quiz, FAT							
Recommended by Board of Studies	09-03-202	22					
Approved by Academic Council	No. 65	Date	17-03-2022				

BMEE318E	L	Т	Ρ	С	
		3	0	2	4
Pre-requisite	BMEE204L, BMEE204P	Sylla	bus v	ersic	วท
Course Objective		1.0			
1 To introduce f	ndamontal principles of fluids for power transmission				
2 To impart con	structs to design fluid power circuits for widespread ind	ustrial	annlic:	ation	\$
3. To realize the	maintenance and troubleshooting procedures for fluid	powers	svsten	18.	5.
	51		<u> </u>		
Course Outcome	es				
At the end of the	ne course, the student will be able to				
1. Demonstrate t	he fundamental concepts governing fluid power.				
2. Analyse the fu	nctions of hydraulic and pneumatic components.				
3. Design fluid po	ower circuits for industrial applications.	untrial a	nnling	tion	
4. Develop electi	o-nyuraulic and electro-pheumatic systems for an indu	ustriar a	pplica	uon.	
6. Demonstrate f	luid power circuits and analyse the experimental data.				
Module:1 Basic	s of fluid power system and fluid characteristics			5 ho	urs
Introduction to flu	uid power systems - structure, advantages, limitatior	ns, and	appli	catio	ns.
Properties of fluid	ds, governing laws. Gas laws - Vacuum. Distribution	of flui	d pov	ver a	Ind
energy losses. IS	O symbols for fluid power system.			<u></u>	
Wodule:2 Hydra	autic and Pheumatic Power Sources		rocou	ono	urs
torque and nowe	- classification, charactenstics, and pump selection. I	rossor	ressures tr	e, ui	and
nerformance - sizi	ing Vacuum numns Pneumatic conditioners: filters re	aulator	s - ty s luh	ricato	ors
mufflers, and air d	ryers. Selection of prime movers for fluid power system	ns.	0, 1001	louic	<i>.</i>
Module:3 Fluid	power actuators and control valves			6 ho	urs
Fluid power actua	tors: cylinders and motors - selection and characterist	ics. Co	ntrol v	alves	s:
pressure, flow, an	d direction control - electronic control components - v	alve co	nfigur	ation	s -
selection criteria.				7 4 4	
Wodule:4 Basi	c fluid power circuits	dor r		/ no	urs
synchronizing se	auencing and pressure intensifier circuits. Pneumat	iaer, re	ite: m	alive	3, _in
meter-out and ble	ed-off circuits, fail-safe, and counter-balance circuits.		nto. 11	eter-	-11 1,
Module:5 Desig	n of fluid power circuits			7 ho	urs
Design of hydra	ulic and pneumatic circuits: Cascade and sequen	tial log	ic cir	cuit	-
Compound circuit	- Step counter circuit. Telescopic cylinder - Accumula	tor circ	uits.		
Module:6 Elect	ro-hydraulic and electro-pneumatic systems			6 ho	urs
Electrical control	of pneumatic and hydraulic circuits: relays, timers, cou	nters, p	rograi	nma	ble
logic controller, ar	nd servo systems - Applications.			<u>C ha</u>	
Installation and m	centratice of fluid power systems		mpor	o no	
temperature effec	ts - fault finding - safety procedures	sule co	mpen	Saliu	<i>)</i> -
Module:8 Contemporary issues 2 hou					
		1			
	Total Lecture hours	s:	4	5 ho	urs
Text Book		1			
1. John S. Cur	ndiff, Michael F. Kocher, Fluid Power Circuits and Cont	rols: Fu	Indam	enta	ls
and Applicat	ions, 2019, Second Edition. CRC Press.				
Reference Books	<u> </u>			<u></u>	
1. Daines, J. R	., Daines, M. J, Fluid Power: Hydraulics and Pneum	atics, 2	2019,	Unite	ed
States: Goo	aneart-willcox Company, incorporated.				

2.	Anthony Esposito, Fluid Power with Applications, India: Dorling Kindersley, 2014.				
Mod	e of Evaluation: CAT, Written a	ssignment, Quiz,	FAT		
Indic	cative Experiments				
1.	Study of hydraulic/pneumatic co	omponents and st	tandard sy	/mbols	
2.	Development of single cylinder	hydraulic circuit v	vith simula	ation softwa	re
3.	Development of single multi-cyl	inder hydraulic ci	rcuits with	simulation	software
4.	Development of electro-hydraul	ic circuits with sir	nulation so	oftware	
5.	Development of single cylinder	pneumatic circuit	s with sim	ulation soft	ware
6.	Development of multi-cylinder p	neumatic circuits	with simu	lation softw	are
7.	Development of electro-pneuma	atic circuits with s	imulation	software	
8.	Development of PLC controlled	fluid power circu	its with sir	nulation sof	tware
9.	Design hydraulic circuits with si	ngle acting cylind	er		
10.	Design hydraulic circuits with do	ouble acting cyline	der		
11.	Design hydraulic circuits with hy	/draulic rotary act	tuator		
12.	Design of pneumatic circuits with	th multi cylinders			
13.	Design of multi-cylinders seque	ncing with pilot co	ontrol valv	es	
14.	Design and control of multi-cylir	nders sequencing	with PLC	processor	
15.	Design fluid power circuits for a	n industrial applic	ation		
		Tota	Laborate	ory Hours	30 hours
Text	book				
Lab	manual prepared by the Faculty	member			
Mod	e of assessment: Continuous a	ssessment, FAT,	Oral exar	nination	
Reco	ommended by Board of Studies	09-03-2022			
Аррі	roved by Academic Council	No. 65	Date	17-03-202	22

BMEE319E	Advanced Materials Characterization Methods		LT	Ρ	С	
		C UI	3 0	2	4	
Pre-requisite	BMEE209L, BMEE209P	Sylla		ersi	on	
Course Objectives						
 To provide i technique. To understand To understand 	nsight into the structural information using various of theory and practice of diffraction phenomena.	chara etallic	cteriza materi	tion als.		
Course Outcome	25					
 At the end of the second of the	course, the student will be able to various specimen preparation methods for microscopic a ffraction phenomena and indexing of materials. different structural information by various microscopy. operation of SEM, TEM and EBSD.	nd sp	ectros	copie	0	
5. Explain the a	avanced characterization techniques such as <i>insitu</i> ar	na otr	ner cor	ndin	ea	
6. Apply advance characterization	ced lighting, thermal, chemical and imaging techniquon.	ues f	or ma	teria	ls	
Mashala 4 Otava						
Module:1 Struc	ctural Analysis	t of mi	iorootri		Jrs	
Grain Size Measu	urements, Quantitative Metallography.		icrostri	JCIUI	e,	
Module:2 Diffra	action and Imaging		7	΄ hοι	urs	
Crystallography, Diffraction, XRE Fundamentals of aberration and a Texture of materia	Bragg's Law, Radiation Interaction and Response D Analysis, Phase Analysis, Powdered and Te Imaging: magnification, resolution, depth of field an stigmatism; X-Ray reflectivity, Edward sphere, Kikuchi als.	e Sig exture id de patte	gnals, d Dif pth of ern, Inc	X-F fract foc dexir	≀ay ion ເບຣ, າg,	
Module:3 Micr	oscopy and Spectroscopy		7	' hou	urs	
Basic principles of Microscopy, Estir microscopes, Vo comparison. Basi	of operation (optical, SEM, AFM, TEM), Principles of O nation and comparison of grain size, grain boundary ar olume fraction, Structure revealed through various c principles of operation of EDS, WDS, EPMA, and ToF \$	ptical ea thi micro SIMS.	and E rough oscopy	lecti varic an	ron bus Id	
Module:4 Adva	anced Characterization Techniques		7	' hou	urs	
Introduction to O testing facilities, Temperature rela simulator, Gleeble	rientation Imaging Microscopy (OIM), 3-Dimensional F Nano indentation, Combined spectroscopy and micro ated measurement (TG+DTA) and DSC, Thermomed e, Neutron diffraction techniques.	IB/EE scopy chanic	3SD, Ir / techr cal ph	nsitu nique ysica	es, al	
Module:5 Surf	ace Properties		6	i hou	urs	
Microscopic Meth Characterizing Su	nods for Characterizing Surface Properties, Spectrosco	pic N	Nethod	s fo	r	
Module:6 Elec	trical Characterization Techniques		5	hou	Jrs	
	ty in bulk and thin tilms, Hall effect, Magnetoresistance.		6	ha	Irc	
Introduction to N	Agenetics Mageurement Methods Mageuring Mage	tizati		For	<u>5 IL</u>	
Measuring Mag magnetometers: magnetization, M Magnetic Resona	Introduction to Magnetism, Measurement Methods, Measuring Magnetization by Force, Measuring Magnetization by Induction method. Types of measurements using magnetometers: M-H loop, temperature dependent magnetization, time dependent magnetization, Measurements using AC susceptibility, Magneto-optical Kerr effect, Nuclear Magnetic Resonance, Electron Spin Resonance					
Module:8 Cont	emporary Issues		2	hou	urs	
Tota	Lecture hours:		45	hou	ırs	

Tex	xt Books				
1.	Materials Characterization, 2019, Volume 10, ASM Handbook.				
2.	Dalip Singh Verma, Latif Ullah Khan S	Shalendra k	Kumar, Sl	her Bahadar Kl	nan, Handbook
	of Materials Characterization, , 2018,	Springer In	iternation	al Publishing.	
Ref	ference Books				
1.	Ranganathan N., Materials Character	rization Mod	dern Meth	nods and Applic	cations, 2016,
	CRC press.				
Mod	de of Evaluation: CAT, Written assignm	nent, Quiz, I	FAT		
Indi	licative Experiments				
1.	Metallographic preparation of metallic	c specimen	S		
2.	Grain Size determination by linear int	tercept met	hods		
3.	Observation of structures by optical r	microscopy	and Scar	nning Electron	Microscopy
4.	Demonstration and Indexing of XRD	peaks			
5.	XRD peak identification by various m	nethods: ma	inual, dat	abase and soft	ware
6.	Study of fracture surface of materials	s by Scanni	ng Electro	on Microscopy	
7.	Image formation (bright and dark) and	id interpreta	tion by S	canning Electro	on Microscopy
8.	Demonstration of Nano Indentation a	and X-Ray L	Diffraction	Residual stres	S
9.	Demonstration of Spectroscopic anal	lysis (ICPM	IS and XF	PS)	
10.	Demonstration of Transmission Elect	tron Micros	copy and	Electron Back	scattered
	Diffraction				001
T		I	otal Labo	oratory Hours	30 nours
Iex					
Lab	p manual prepared by the Faculty mem	ber	0	·	
	de of assessment: Continuous assessn	ment, FAT,	Oral exar	nination	
Rec	commended by Board of Studies 0	9-03-2022	D (47.00.0000	
Арр	proved by Academic Council N	10.65	Date	17-03-2022	

BMEE320L	Refrigeration and Air-Condition	ning	L 1	P	С		
Pro-roquisito	RMEE3031 RMEE303P	3 0 0 3031 BMEE303P Svilabus versi					
Fielequisite	3y	1.0	101310	///			
Course objective	S						
1. To teach the pr	nciples of air and vapour refrigeration system	ns.					
2. To make the stu	idents understand the thermodynamics of va	arious refrigera	tion syst	ems.			
3. To enable the s	tudents to design summer and winter air con	iditioning syste	ms.				
4. To design vario	us components and controls of reingeration	systems.					
Course outcome							
At the end of the o	course, the student will be able to						
1. Analyse the per	formance of air cycle refrigeration systems.						
2. Analyse the per	formance of vapour compression refrigeration	on system for v	arious				
applications.	interne components and controls of refrigeration		d:1:0 0 :0 0				
3. Demonstrate sy	stem components and controls of reingeration	on and air-con	allioning				
4. Compare refrig	erants and system applications.						
5. Analyse the per	formance of different air-conditioning system	IS.					
6. Apply the know	ledge of psychrometry for calculating cooling	and heating lo	ads.				
Module:1 Intro	luction	Decie refrige	ention of	8 ho	urs		
	ion refrigeration system (VCRS), vanour a	bsorption refri	ation sy	stem	s – om		
(VARS), air cycle	refrigeration system, steam jet refrigeration	system, therm	oelectri	syst	em		
and vortex tube s	system. Joule thompson coefficient and inv	ersion tempera	ature. R	evers	ed		
carnot cycle and	its limitations, Bell-Coleman, joule or re-	versed brayto	n cycle.	Airc	raft		
refrigeration cycle	S.						
Module:2 Vapo	ur compression refrigeration systems			6 ho	urs		
Standard vapour	compression retrigeration cycle, actual	VCRS, superi	neat ho	rn ar	nd		
systems multi-ev	aporator systems, cascade systems, LiBr – F	-slaye vCRS - H2O based VAI	- muili-µ RS and	NH ₂ –			
H ₂ O based VARS				1113			
Module:3 Refri	geration system components			6 ho	urs		
Classifications of	compressors, performance characteristics	of reciprocatin	ng comp	resso	ors.		
Classifications of	evaporators & condensers and their charac	cteristics. Expa	insion d	evice	s –		
Capillary tube and	thermostatic expansion valves.			5 ho	ure		
Classification of r	ofrigorants, refrigorant properties, water an				tv		
		d lubricating (oil comr	atihili	un,		
i environmentai im	pact. montreal / kvoto protocols. eco-friend	nd lubricating of Iv refrigerants	oil comp . Refria	atibili eratio	'		
tools – evacuation	pact, montreal / kyoto protocols, eco-friend and charging unit, recovery and recycling u	nd lubricating o dly refrigerants nit, vacuum pu	oil comp . Refrig mps.	atibili eratio			
tools – evacuation Module:5 Psyc	pact, montreal / kyoto protocols, eco-friend and charging unit, recovery and recycling u hrometry and air-conditioning	nd lubricating of the set of the	oil comp . Refrig mps.	eratio	urs		
tools – evacuation Module:5 Psyc syste	and charging unit, recovery and recycling uni	nd lubricating of ally refrigerants nit, vacuum pu	oil comp . Refrig mps.	eratio	urs		
environmental im tools – evacuation Module:5 Psyc syste Composition of m couportion of m	and charging unit, recovery and recycling uni	nd lubricating of ally refrigerants nit, vacuum pu es and chart. F	oil comp . Refrig mps. Relation	6 hor	urs een		
environmental im tools – evacuation Module:5 Psyc syste Composition of m psychrometric pro evaporative coolir	and charging unit, recovery and recycling uni	nd lubricating of ally refrigerants nit, vacuum pu es and chart. F r processes, a	bil comp . Refrig mps. Relation diabatic	6 ho betwe	een ng,		
environmental im tools – evacuation Module:5 Psyc syste Composition of m psychrometric pro evaporative coolir Summer air-cond	hrometry and air-conditioning oist air, psychrometry – properties, processe operties, combined heat and mass transfer og, desiccants.	nd lubricating of ally refrigerants nit, vacuum pu es and chart. F r processes, a hot-drv weat	bil comp . Refrig mps. Relation diabatic her), wi	6 ho betwe mixi	urs een ng, air-		
environmental im tools – evacuationModule:5Psyc systemComposition of m psychrometric pro evaporative coolin Summer air-cond conditioning system	and charging unit, recovery and recycling uni	nd lubricating of ally refrigerants nit, vacuum pu es and chart. F r processes, a hot-dry weat	bil comp . Refrig mps. Relation diabatic her), wi	eratio eratio 6 ho betwe mixi	een ng, air-		
environmental im tools – evacuation Module:5 Psyc syste Composition of m psychrometric pro evaporative coolir Summer air-cond conditioning syste Module:6 Cool	and charging unit, recovery and recycling uni	nd lubricating of ally refrigerants nit, vacuum pu es and chart. F r processes, a hot-dry weat	oil comp . Refrig mps. Relation idiabatic her), wi	6 hor betweet mixin nter 7 hor	urs een ng, air- urs		
environmental im tools – evacuation Module:5 Psyc syste Composition of m psychrometric pro evaporative coolin Summer air-cond conditioning syste Module:6 Cool contine	oist air, psychrometry – properties, water and charging unit, recovery and recycling unit, recovery and	nd lubricating of ally refrigerants nit, vacuum pu es and chart. F r processes, a hot-dry weat	bil comp . Refrig mps. Relation diabation her), wi	atibili eratio 6 ho betwe mixi nter 7 ho	een ng, air- urs		
environmental im tools – evacuation Module:5 Psyc syste Composition of m psychrometric pro evaporative coolir Summer air-cond conditioning syste Module:6 Cool Thermal comfort, load extimations	and charging unit, recovery and recycling of the second systems (hot – wet weather and ms, all year air-conditioning systems. Ing-heating load estimations and rol systems infiltration and ventilation, winter heating load estimations units are second systems.	Ind lubricating of ally refrigerants nit, vacuum put es and chart. F r processes, a hot-dry weat d estimations,	bil comp . Refrig mps. Relation Idiabatic her), wi	atibili eratio 6 ho betwe mixi nter 7 ho	een ng, air- urs		
environmental im tools – evacuation Module:5 Psyc syste Composition of m psychrometric pro- evaporative coolin Summer air-cond conditioning syste Module:6 Cool contr Thermal comfort, load estimations, use of ERSHE and	and charging unit, recovery and recycling updates transferences, and the recovery and recycling updates the recovery and recovery and recycling updates the recovery and recycling updates the recovery and recycling updates the recovery and recovery and recycling updates the recovery and recycling updates the recovery and recovery and recovery and recevery	Ind lubricating of ally refrigerants nit, vacuum pu es and chart. F r processes, a hot-dry weat d estimations, ecified ventila	bil comp . Refrig mps. Relation idiabatic her), wi summe tion air	atibili eratio 6 ho betwe mixin nter 7 ho r cool quant	een ng, air- urs ing tity,		
environmental im tools – evacuation Module:5 Psyce Syste Composition of m psychrometric pro evaporative coolir Summer air-cond conditioning syste Module:6 Cool control Thermal comfort, load estimations, use of ERSHF and Control Systems	and charging unit, recovery and recycling (desiccants, combined heat and mass transfering, desiccants, all year air-conditioning systems. Ing-heating load estimations and rol systems (hot –wet weather and rol systems infiltration and ventilation, winter heating load RSHF, bypass factor. Applications with spot GRSHF, application with low latent heat load – selection, types and devices. control by the selection is the selection of the selection.	Ind lubricating of ally refrigerants nit, vacuum put es and chart. F r processes, a hot-dry weat d estimations, recified ventila ads and high la based on space	comp Refrig mps. Relation diabatic her), wi summe tion air tent hea ce temp	atibili eratio 6 ho betwe mixi nter 7 ho r cool quant t load eratu	een ng, air- urs ing tity, Is. re,		

outside te	outside temperature, cooling-heating medium.						
Module:7 Applications of refrig		geration and a	ir-	5 hours			
	conditioning						
Food proc	essing and preservation, fr	eezing and drying	g, cold sto	orage, refrigerated containers			
and truck	. Case studies.						
Module:8	Contemporary issues			2 hours			
		Total Lecture ho	urs:	45 hours			
Text Boo	(S						
1. Arora	C.P, Refrigeration and Air-	Conditioning, 202	20, Editior	n:4, McGraw Hill.			
2. Euge	ne Silberstein, Refrigeration	n and Air Conditic	ning Tec	hnology, 2016, Edition:9,			
Delm	ar publications.						
Referenc	e Books						
1. Frank	Kreith, Shan K Wang a	and Paul Norton	, Air Co	nditioning and Refrigeration			
Engir	eering, 2019, Edition:1, CF	RC Press.					
2. Andre	w D. Althouse, Carl H. Tur	nquist, A.F. Bracc	iano, D.C	C. Bracciano, G.M. Bracciano,			
Mode	rn Refrigeration and Air	Conditioning, 20	017, Edit	ion:20, Goodheart-Willcox			
Publi	Publications.						
Mode of E	valuation: CAT, Digital Ass	signment, Quiz, FA	λΤ				
Recomme	nded by Board of Studies	09-03-2022					
Approved	by Academic Council	No. 65	Date	17-03-2022			

BMEE321L	Composite Materials		L	T	Ρ	С	
Pro-requisite	BMEE202L BMEE202P	Svli	3 ahu	0 5 V6	0 arci	3 100	
Tre-requisite		Jyn		3 VC 1 N	51 31		
Course Objective	es			1.0			
1. Provide students a basic understanding and uses of composite materials, develop skill to							
understand differe	ent composites manufacturing methods.			•			
2. To enable the	students to find physical and mechanical properties of	com	posit	es	usir	ng	
micromechanics a	and experimental methods.						
3. Illuminate the	e knowledge and skills to design the composite lamir	hate s	SUDJe	ecte	dt	0 tha	
composite materia	als.		neoi	162	01	uie	
Course Outcome)						
At the end of the	course, the student will be able to						
1. Analyse the	various fabrication techniques and select suitable	meth	nod	for	giv	/en	
application.	ial proportion of componito material using micromochani	~~					
3 Calculate displ	acement strain and stresses in composite laminates	65.					
4. Propose the co	instruction of laminate for given loading conditions.						
5. Examine the fa	ilure of laminate using different failure theories.						
6. Evaluate exper	imentally the material properties of the composite lamina	ates.					
Module:1 Intro	duction			5	ho	ure	
Definition Classi	fication of Composites Applications of Composites	Rainf	orci	J	Fib	urs ore:	
Svnthetic fiber.	Natural Fibers: Matrix Materials: Polymers such as	Ther	mose	ettin	מו ו מ	and	
Thermoplastic Po	lymers, Metals and ceramics.				9		
Fabrication of PM	Č's, MMC's C/C and CMC's Composites.						
Module:2 Micro	omechanics of Unidirectional Composites			6	ho	urs	
Introduction, Micr	omechanical Analysis of a Lamina-Volume and Weight	Fract	tions	s an	d v	oid	
Content Predictio	n of Elastic constants using Micromechanics, Ultimate	e Stre	engti	าร (ot a	ł	
Module:3 Maci	o mechanical Analysis of Lamina			8	ho	urs	
Introduction. Str	ess–Strain Relations for Orthotropic Materials. Tra	nsve	rselv	' Is	otro		
Material, Isotropi	c Material, Transformation of Engineering Constants,	Hoo	ke's	La	wa	and	
Stiffness and Co	mpliance Matrices: General Anisotropic Material, Trans	forma	ation	of	Str	ess	
and Strain, Ortho	ptropic Material under Plane Stress Compliance Tenso	or and	d Co	omp	lian	ce	
Matrix, Relations	between Engineering Constants and Elements of Stiffne	ess ar	nd C	om	olia	nce	
Module:4 Anal	vsis of Laminated Composites			8	ho	urs	
Classical Lamina	tion Theory (CLT). Introduction Laminate Displacer	nents	an	d S	Stra	ins.	
Laminate Stress	es, Resultant Forces and Moments, Laminate Cor	nstitut	ive	Rel	atic	ons,	
Laminate Descrip	tion System Design, Construction and Properties of Lan	ninate	es: S	ymi	net	ric	
Laminates Unidirectional, Cross-Ply, and Angle-Ply Laminates Quasi-Isotropic Laminates							
Module:5 Theo	Module:5 Theories of Failures 6 hours						
Strengths of an	Urthotropic Lamina, Failure of Laminates, Maximu	m-Sti	ress	1 h	eor	y, for	
Waximum-Suam meory, Waximum-Work meory, Isal-min's Failure Criterion for Composites Tensor Polynomial (Tsai-Wu) Failure criterion Initial Failure Laminate Analysis						sis	
after Initial Failure	e, Hygrothermal Stresses in Laminates	Lam		u	.cry	5.5	
Module:6 Expe	erimental Characterization of Composites			4	ho	urs	
Introduction, Mea	surement of Physical Properties, Density, Constituent V	Veigh	nt an	d V	olur	me	
Fractions, Void V	olume Fraction, Thermal Expansion Coefficients, Moistu	ire Ab	sorp	otior	n ar	nd	
Diffusivity Moistui	e Expansion Coefficients						

Module:7	Mechanical Properti composites	es and I	Damage a	ssessment o	of 6 hours			
Properties Properties,	Properties in Tension, Properties in Compression, In-Plane Shear Properties, Flexural Properties, Interlaminar Shear Strength and Fracture Toughness, In-Plane Fracture							
Toughness Tests, Dynamic properties, Impact Tests, Tests for Aerospace Applications, Damage Identification Using Non-destructive Evaluation Techniques, Ultrasonics Acoustic								
Module:8	Contemporary Issues		arography		2 hours			
			Total L	_ecture hours:	45 hours			
TextBook								
1. Autar k	K. Kaw, Mechanics of Complexity	oosite Materia	ls, 2006, 2 nd I	Edition, Taylor &	Francis			
Reference	Books							
1. Robert	Millard Jones Mechanics	of Composite	Materials 2 nd I	Edition CRC Pre	SS.			
2. Jack R. material	Vinson, Robert L. Sierakov s, 2006, Springer, Dordred	vski The beha ht	vior of structu	ures composed c	of composite			
3. M. W. 2009 [3. M. W. Hyer, Scott R. White Stress Analysis of Fiber-reinforced Composite Materials, 2009 DEStech Publications.							
Mode of Ev	aluation: CAT, Written ass	ignment, Quiz	, FAT					
Recommer	nded by Board of Studies	09-03-2022						
Approved b	by Academic Council	No. 65	Date	17-03-2022				

BMEE322L Engineering Failure Analysis L T P						
			3 () 0	3	
Pre-requisite	BMEE202L, BMEE202P	Syllal	ous \	ersio	n	
			1.0			
Course Objectiv						
1. To familiarize	the importance of failure analysis of mechanical comp	onents.				
2. To provide ins	ight on various material characterization tools.	or failura	anal	veie		
	medge on design against failures and skins required to		anai	/313.		
Course Outcom	6:					
At the end of t	ne course, the student will be able to					
1. Differentiate	ypes of failure of engineering materials and their chara	acteristic	feat	ures.		
2. Apply various	theories of failure to the components subjected to mu	Itidirectio	onal I	oadin	ıg.	
3. Determine the	e life of a mechanical component subjected to variable	e loading.				
4. Design for fai	lure against corrosion, wear, creep and fracture.					
5. Develop expe	ertise on the experimental techniques and simulations	USED for	failu	e		
6 Apply concer	anous components and interpret the probable reasons	i or i aliu	ie.			
Module:1 Anal	vsis of a Mechanical Failure			4 hc	ours	
Preliminary Anal	vsis. Microscopic Analysis-Fractography. Mechanish	ns of Da	amad	e an	d	
Failure, Case-stu	idies involving failures.		0			
Module:2 Stati	stical Analysis of Failure			6 hc	ours	
Industrial Engin	eering Tools, Basics of statistics, Normal, Weik	oull and	log	norm	nal	
distribution, Stati	stical modelling of failure			7 64		
Tensile Deforma	tion of Ductile Metal Combined stress Principal	strassas	The			
failure. Tri-axial	stresses and constraint. Plane stress, Plane strain.	Stress	, IIK	entra	tion	
factors and notch	sensitivity. Shock and impact loading.	0	00110	onnia		
Module:4 Fatig	jue			7 hc	ours	
Loading under	high cycle fatigue conditions, Test methods, S-N	l curves	s, er	idura	nce	
diagrams, influer	ce factors - Low cycle fatigue, fretting fatigue; Fatigue	e design	for co	ombir	ned	
stress; cumulativ	e damage and life prediction, statistical interpretation	of fatigue	e tes	data	•	
Module:5 Env	ironmentally-Induced, Temperature Failures			7 hc	ours	
Failures related t	o corrosion, not corrosion and stress corrosion crackil	ng; Dama	ages	due t	.0	
Module:6 Frac	ture Mechanics	Fallures	aue	7 h	ar.	
Fracture process	ses Ductile and brittle fracture. Effect of strain ra	ite and	temn	eratu		
Fracture mechar	nics and Failures. Linear elastic fracture mechanics	. fracture	e me	chan	ics	
principles in desi	gn practice, Elastic Plastic Fracture Mechanics, Exam	ples of c	rack	grow	<i>ith</i>	
Analysis for cycli	c loading.	•		<u> </u>		
Module:7 Dam	age and Failure Mechanisms in Machinery			5 hc	ours	
Modes of Failure	in Shafts, Failures of Bearings, Failure of Transmiss	ion Elem	ients	Gea	rs	
and Coupling, F	allure of Fasteners, Bolts, and Other Threaded Eler	nents, C	hara	cteris	tic	
Module:8 Co	Machines			2 hr	ure	
	Total Lecture	hours		$\frac{2}{45}$ hc		
Text Book			••	<u> </u>		
	tegui, Failure Analysis, Springer International Public	sning, S	witze	riand	,	
Reference Book	s					
1. Jones. D.R.H	 I, , Failure Analysis Case Studies II.2001. ELSEVIER	SCIENC	CE Lt	d, UK		
2 Best Practice	e Guide on Statistical Analysis of Fatigue Data, Schne	ide C.R.	A and	,		
•				-		

	Maddox S J, 2015, TWI, Granta Park, Great Abington, Cambridge, UK					
3	George. E. Dieter, Mechanical Metallurgy, 2017, 3rd Edition, McGrawHill,					
4	Anderson T.L. Fracture Mechanics, 2005, 3rd Edition, CRC Press, Taylor & Francis					
	Group,					
5	Suresh S, Fatigue of Materials, 19	98(Print), 2 nd	^d Edition,	Cambridge University Press		
	2012(Online)					
Мо	de of Evaluation: CAT, Written assign	ment, Quiz, F	FAT			
Re	commended by Board of Studies	09-03-2022				
Ар	proved by Academic Council	No. 65	Date	17-03-2022		

BMEE323LGas DynamicsLTP							
			3	0	0	3	
Pre-requisite	Nil	Sylla	abus	ve	rsior	า	
			1	.0			
Course Objectives							
1. To introduce s wide range of	tudents to the basics of compressible flow, with a pa one-dimensional steady-flow problems.	rticular	emp	hasi	is on	а	
2. To provide a t	horough knowledge of supersonic flow characteristic	s such	as sl	nocl	ĸ		
waves and ex	pansion fans, as well as their applications in practica	l systen	ns.				
3. To impart the	knowledge of compressible flow through a constant a	rea duc	t wit	h fri	ction		
4. To impart the	knowledge of compressible flow through a constant a	irea duo	ct wit	n ne	eat		
5 To familiarize	the student with the numerical techniques suited for t	ha dasi	an o	f			
supersonic no	zzles.		gno	1			
Course Outcome	S						
At the end of the c	course, the student will be able to						
1. Explain the fea	atures of compressible flows.						
2. Design C-D n	ozzles by applying the concepts of isentropic compluct	pressibl	e flo	w t	hrou	gh	
3. Analyse norma	al shock, oblique shock and their interactions in high-	speed f	lows	_			
4. Apply the know	vledge of Prandtl-Meyer expansion fan and shock-ex	pansior	n the	ory.			
5. Apply the cond	cepts of Fanno flow and Rayleigh flow towards the de	esign of	com	bus	stion		
sections and j	et pipes.						
6. Apply the cond	cept of Method of Characteristics for the design of jet	engine	nozz	zle.			
Madulad Intera	duction to communicate fluid flow and control				hai		
analy	sis	o voiu	me	4	ιοι	irs	
Introduction to co	ompressible flow; Coefficient of Compressibility; S	peed o	of so	und	; Ma	ach	
number; Stagnat	ion state; Critical state; Classification of flows bas	sed on	Mac	h n	umb	er-	
Physical significal	nce of Mach number - Effect of Mach number on	compre	SSID	lity-	· Ma	ch	
atmosphere - Con	es between incompressible and compressible	nows.	FIC	per	ues	01	
Module:2 Isenti	ropic Variable area flows			6	hoi	ırs	
Isentropic flow the	rough a variable area duct: Mach number variation: A	Area rat	io as	af	unct	ion	
of Mach numbe	r; Impulse function; Mass flow rate through n	ozzles	and	di	ffuse	ers;	
Phenomenon of c	hoking; subsonic and supersonic designs; Effect o	f back p	oress	sure	; Ov	er-	
expanded and u	nder-expanded Convergent-Divergent nozzles; T-	S and	H-S	dia	agrar	ns	
showing Nozzle a	nd Diffuser process, Supersonic wind tunnels.				_		
Module:3 Norm	al shock waves			6	i hou	urs	
Flow with norma	al shock waves; Governing equations; Prandtl rel	lation;	Impo	ssit	oility	of	
rarefaction shock	, Mach number downstream of the shock; Property	/ variati	ons		OSS 1	tne	
Hudoniot equation	b) Shock wave, Enlippy change and stagnation pro-		ατορ Μονί	, Γ. nα	norm	ne- nal	
shock waves: Phy	vsical features of wave propagation: Shock tube and	propert	v rela	atior	nom ns.		
Module:4 Oblig	ue Shock Waves		,	7	hοι	ırs	
Oblique shock wa	ave and its governing equations, θ - β -M relations,	The Ho	dogi	aph	nano	d	
Shock Polar, Sup	ersonic flow over wedges and cones, Mach line, At	tached	and	De	tache	ed	
shock, Reflections	shock, Reflections and interaction of oblique shock waves, Oblique shock wave applications.						
Module:5 Pran	ati-meyer Flows and Shock-Expansion Theo	ry		6	hou	Irs	
Expansion waves	, Pranati-Meyer flow and its governing equations,	Supers		tio	W O	ver	
waves: Expansion	ave conters, Approximation of continuous expansion fan interactions and reflections. Shock-Expansion	Theor	/es[/ Iif	Jy C ton	uscie d dr	an	
calculation for Dia	mond airfoil.	meory	', ∟⊓	an	u ul	ay	

Module:6Fanno and Rayleigh Flows7 h	ours								
Fanno flow governing equations and their closed-form solutions; Fanno curves; Variation of									
flow properties with duct length; Frictional choking; Applications; Normal shocks in F	anno								
flow.									
Rayleigh flow equations; Rayleigh line; Variation of flow properties; Maximum heat trai	nsfer,								
thermal choking; Applications; Normal shocks in Rayleigh flow.									
Module: / Method of Characteristics / r	ours								
Philosophy of the method of characteristics, MoC for Planar flow, determination o	f the								
characteristic lines; compatibility equations, unit processes; Initial value line; Zone	es of								
Influence and Dependence; Properties of characteristic regions; Centered expans	ions;								
Compression turns; Supersonic nozzie design									
Module:8 Contemporary issues: 2 r	ours								
I otal Lecture nours: 45 r	ours								
Text Book									
1. Hodge B.K, Koenig C, Compressible Fluid Dynamics with personal compute	r								
applications, 2015, 1 st edition, Pearson Education India.									
Reference Books									
1. Anderson J.D, Modern Compressible Flow: With Historical Perspective, 2021 Edition. McGrawHill.	, 4 th								
2. Robert D. Zucker, Oscar Biblarz, Fundamentals of Gas Dynamics, 2019, 3 rd Edition.									
John Wiley & Sons Inc.									
3. Oosthuizen, Patrick H, William E. Carscallen, Introduction to compressible fluid flow	,								
2013, CRC press.									
4. Saad M.A, Compressible Fluid Flow, 1993, 2 nd ed. Upper Saddle River, NJ: Prentice) -								
Hall.									
5. Rathakrishnan E, Gas Dynamics, 2017, 6 th Edition. Prentice-Hall of India Pvt. Ltd.									
Mode of Evaluation: CAT, written assignment, Quiz, FAT.									
Recommended by Board of Studies 09-03-2022									
Approved by Academic Council No. 65 Date 17-03-2022									
BMEE324E Turbomachines L								С	
---	----------------------------	---	--------------------	-------------	-------------	------------	------------	------------	--
				2) 1	2	3	
Pre-requisit	te	Nil	Syll	abu	S	vers	sio	n	
					1.0)			
Course Obj	Course Objectives								
1. To familia	rize the	e student with the working of various Turbo machines	. I. S						
2. To impart	the de	sign-oriented knowledge related to various 1 urbo ma	cnines	•					
3. To develo	n the s	kills of experimental design							
4. 10 develo									
Course Out	come								
At the end o	f the co	ourse, the student will be able to							
1. Apply Eul	er's eq	uation of energy transfer for turbomachines.							
2. Demonstr	rate the	aerofoil and cascade nomenclature.							
3. Design th	e stage	es of centrifugal compressors and fans.							
4. Analyse t	the stag	e parameters and performance characteristics of A	kial Fa	ns a	nc	l Ax	ial		
Compress	sors.								
5. Evaluate	the per	formance parameters of radial and axial turbines.							
6. Experime	entally of	letermine the performance characteristics of both po	wer a	bsor	bi	ng a	and	b	
power	a turba	machinaa							
generalin	g turbo	Induinies.							
Module:1	Ener	ny Transfer			Т	5 ł		irs	
Definition ar	nd clas	sification of turbo machines. Specific work - T-s and	h-s di	aara	m	- F		ar's	
equation of	enera	/ transfer - Losses - Various efficiencies - Effect	of reh	ieat	-	Pre	he	at-	
Incompressible vs. compressible turbomachines - review of incompressible turbomachines:									
Peloton, Francis, Kaplan Turbines and Centrifugal Pump.									
Module:2	Module:2 Cascading 3 hours							ırs	
Aerofoil section - Cascading of compressor and Turbine blades - Energy Transfer in terms of									
lift and drag	co-effi	cient for compressor and turbine blades - variation of	of lift -	Defl	ec	tion	n ar	nd	
stagnation p	pressur	e loss with incidence.							
Module:3	Cent	rifugal Compressors				4 r	<u>101</u>	Jrs	
Centrifugal I	Fans, E	Diffusor Volute apping store work. Store p	Jucers	- Ba	3CI	kwa c	ra Stor	~~	
	-efficie	- Dilluser - Volue casing slage work - Slage p at - Stage efficiency - Degree of reaction - Various slip	o facto	ד ווצ re	ье	- 3	na	Je	
Module:4	Axia	Fans	5 10010	10.	Т	4 k	າວເ	irs	
Axial flow F	ans wi	th various guide vane mechanisms. Stage with ups	stream	aui	de	. va	ne	<u>s -</u>	
Stage with	downs	ream guide vanes - Stage with both upstream an	id dow	/nstr	es.	am	aui	ide	
vanes- Stag	e veloc	ity triangles - Flow coefficient - Stage pressure coeff	icient -	- T-S	3 c	liagi	ran	n	
and h-s diag	gram - I	Degree of reaction.				Ũ			
Module:5	Axial	Compressors				4 h	າວເ	ırs	
Axial Comp	ressors	with guide vane mechanisms - Stage velocity triang	les - F	low					
coefficient-	Stage p	ressure coefficient - Static pressure rise- T-S diagrar	n and	h-S	dia	agra	am	-	
Degree of re	eaction	work done factors - Stalling and Surging.							
Module:6	Radi	al Turbines				<u>3 h</u>	າວເ	ırs	
Inward flow	radial f	low turbine stages - Cantilever IFR turbine and 90 If	-R Iur	bine	÷ -	Sta	ge		
Velocity triar	ngles -	1-5 diagram and n-s diagram - Degree of reaction.			Т	<u>5 h</u>	~	r0	
Avial turbing	Axia	Chara valacity triangles. To diagram and his diag				<u>5 n</u>	bu	15	
stare Impul	siaye:	ine - Speed ratio maximum utilization factor - Multist	yıdılı - ado ve	NON	rx · tv/	– अ	ng	ю	
compounde	d impul	se - Multi stare pressure compounded impulse - Res	aye ve	noun	יץ ב	- De	ar	مم	
of reaction -	Fiftv n	ercent reaction stages.		Jiay		26	gr	00	
Module:8	Cont	emporary Issues			Τ	2 h	າວເ	Jrs	
		Total Lectu	re hou	ırs:	1:	30 h	IOU	irs	
L	I								

Tex	t Book(s)				
1.	Yahya S.M, Turbine, Fans and C	ompressors, 201	7, 4 th Edit	ion, Tata McGraw-Hill.	
	Dubey M, Prasad BVSSS, Nema	A, Turbomachin	ery, 2019	, 1 st Edition, McGraw Hill	
2.	Education (India).				
Ref	erence Books				
1.	Larry Dixon S, Cesare Hall, Fluid 2013, 7 th Edition, Butterworth-He	Mechanics and inemann.	Thermody	namics of Turbomachinery,	
2.	Kadambi, Prasad, Energy con	nversion Vol.III-	Turbom	achines, 2011, New Age	
2	Karpala Sappa A Dringinlag of T	urbomochinory (2010 Joh	n Wilov & Sono	
3.	Korpela, Seppo A, Principles of T	urbomachinery, A	<u>2019, Jon</u>	n wiley & Sons.	
4.	Round, George Frederick, Incor	npressible Flow	Turboma	chines: Design, Selection,	
N 4	Applications and Theory, 2004, E	lsevier.	-		
IVIOC	te of Evaluation: CAT, written assi	gnment, Quiz, FA	<u> </u>		
4		Icative Experim			
1.	I o study the performance of gea	ir pump at differe	nt dischai	ge pressures	
2	To study the Performance of Re	ciprocating Pum	at differe	ent discharge pressures	
3	To study the performance chara	cteristics of Varia	hle Snee	d Centrifugal Pump at	
0.	different speeds and different dis	scharge pressure	es.	a commagair amp at	
4.	To study the performance of jet I	Pump at different	discharge	e pressures.	
5.	To study the performance of Sub	omersible Pump a	at differen	t discharge pressures.	
6.	To study the performance of Kap	plan turbines at c	onstant s	peed, constant load and	
	different vane and blade position	าร			
7.	To study the performance of Fra	ncis Turbine at c	onstant sp	beed, constant load and	
	different vane positions		-		
8.	To study the impact of jet on var	ies.			
9.	To study the performance of a ra	adial blower at dif	ferent dis	charge pressures	
10.	To study the performance of a co	onstant speed Ax	kial Fan		
11.	To study the flow characteristics	in a Boundary la	yer		
			Total	Laboratory Hours 30 hours	
Moc	le of assessment: Continuous ass	essment, FAT, C	ral Exami	nation.	
Rec	Recommended by Board of Studies 09-03-2022				
Арр	roved by Academic Council	No. 65	Date	17-03-2022	

BMEE325L	Internal Combustion Engines		L	Т	Ρ	С			
_			3	0	0	3			
Pre-requisite	BMEE303L, BMEE303P	Syll	abu	s ve	rsio	n			
Course Objective				1.0					
1 To introduce students to the working of spark ignition and compression ignition engines									
2. To provide an	2. To provide an in-depth knowledge of combustion process and engine management								
systems used	in the engines.								
3. To teach stude	ents about the usage of alternative fuels for IC engines		اء ما						
4. To enhance th	e understanding of students in engine emissions and o	contro	tec	nniqi	Jes.				
6 To impart know	5. To impart knowledge on the modern trends in IC engines								
Course Outcome									
At the end of the o	ourse, the student will be able to								
 Compare the systems used 	nerits and demerits of different types of fuel injection a in IC engines.	and po	wer	boo	sting	J			
2. Realize the co engine manag	mbustion process in engines and the various sensors ement systems.	incorp	orat	ted i	n the	;			
3. Analyze the environment.	emissions from IC engines and its effects on hu	man	beir	igs	and				
4. Comprehend t	he various engine testing and certification process.								
5. Identify and cr	itically evaluate different types of alternative fuels for a	utomo	otive	engi	ines.				
6. Demonstrate t	he recent developments to enhance the performance of	of IC e	ngin	es.					
Module:1 Engir	e configurations and mixture formation	1.0/10.0		8	hou	Irs			
engine, classifica parameters. Mixtu requirements, fee and multipoint inje Mixture formation properties of fuel,	tion and application of IC engines, working or rour stro tre formation in spark ignition engines - spark ignition dback control carburetors, properties of fuel, injection ection, gasoline direct injection - air motion. in compression ignition (CI) engines - direct and indire fuel spray behaviour, spray structure, spray penetrat	nance n (SI) syste ect inje	eng eng ms, ection	d er ine r mor n sys	nissi nixtu nopc stem	ion ure pint is, on,			
air motion - injecto	ors and nozzles.			-					
Module:2 Com	oustion process in SI and CI engines			6	hou	ırs			
combustion stor combustion in en engines, cyclic va	chiometric, stages of combustion in SI and CI gines, features and design consideration of combus riations, heat release rate correlations.	engi stion c	nes, chan	kn hber	ockir s foi	וס י			
Module:3 Engir	e management systems			6	hοι	ırs			
Fuel injection co	ntrol, ignition timing control, lambda control, idle s	peed	con	trol,	kno	ck			
control, emission	control, on-board diagnostics (OBD), open loop and	close	ed lo	op (conti	ol,			
basic sensor arra	ngement, types of sensors - oxygen sensor, fuel me	etering) Sei	nsor	, cra	ink m			
altitude sensor th	rottle position sensor, engine oil/coolant temperature s	sensor	allo	n se	nsor	s,			
Module:4 Engir	e emissions and control		·	6	hοι	ırs			
Pollutant - source	s and types, effect on environment and human health,	forma	tion	of N	Юx,				
hydrocarbon emi	ssion mechanism, carbon monoxide formation, pa	rticula	ate	emis	sion	iS,			
methods of controlling emissions - catalytic converters and particulate traps, selective									
Module 5	Catalytic reduction (SCR), diesel oxidation catalyst (DOC), emissions measurement.								
Alcohol hydroger	natural das liquefied petroleum das producer das	hind	iese	U I hi					
properties and pro Indian and Euro n	orms.	nallen	ges	as fu	iels,	•			

Мо	dule:6	Engines testing and ce	rtification			5 hours	
Eng	gine dy	namometer, engine in:	strumentation -	fuel flo	w measureme	nt, air flow	
me	asurem	ent, temperature and pre	essure measuren	nent, in-c	ylinder combus	tion pressure	
me	measurement-Fuel injection pressure measurement.						
Eng	gine cer	tification - regulations over	erview (ECE, EE	C, FMVS	S, BS, ADR), t	ype approval	
and	confor	mity of production, regulation	ion norms for eng	jine, engir	ne power test, In	dian driving	
сус	le, vehi	cle mass emission, evapor	ative emission.				
Mo	dule:7	Advanced engine techr	ologies			6 hours	
Lov	v heat re	ejection engines, learn bur	n engines, stratif	ied charge	e spark ignition e	engine, low	
tem	peratur	e combustion mode, sol	ar powered veh	icles, pla	sma ignition, e	electric/hybrid	
ver	nicles, fu	el cell vehicles, six stroke	engine concept,	rotary eng	ines.	0 h aurra	
IVIO	aule:8	Contemporary issues		T ()		2 nours	
				I otal L	ecture hours:	45 hours	
Tex	kt Book						
1.	Ganes Delhi.	an V, Internal Combustion	Engine, 2017, 4	ⁿ edition,	Tata Mc-Graw H	lill, New	
2.	Plint, I	Michael a Martyr, Anthon	y, Engine Testin	g:Theor	y and Practice,	2007, 3 rd	
Ro	ference	Books					
1	lohn	B Heywood Internal C	mbustion Engin	e Funda	montale 2018	2 nd Edition	
1.	McGra	w-Hill Education.			mentais, 2010.		
2.	Richar	d Stone, Introduction to In	ternal Combustic	on Engines	s, 2012, 4 th editi	on, Palgrave	
•	Macmi	lian.			h - D (l D l	- Kana Cana	
3.	Gasoli	he Engine Management, 2	$5004, 3^{\circ}$ Edition, I	Kopert Bo	sch, Bentley Pul	blications.	
4.	Diesei	Engine Management, 200	5, 4" Edition, Ro			lications.	
4.	Colin	K. Ferguson, Allan T.	Kirkpatrick, Inte	ernal Con	noustion Engin	es: Applied	
Mo	Mode of Evaluation: CAT, written assignment, Ouiz, EAT						
Do	Decommended by Decided Chudice 00.02.2022						
Apr	around k	NA codomic Council	No 65	Data	17 03 2022		
н	Approved by Academic Council No. 65 Date 17-03-2022						

BMEE326L	Power Plant Engineering		L	Т	Ρ	С			
			3	0	0	3			
Pre-requisite	Nil	Syll	abu	s ve	rsio	n			
_				1.0					
Course Objectives									
 To equip students about the working of various power generation units and steam cycles. To educate the students about the steam generators, combustion and firing methods in order to make the fullest use of thermal power potentialities. Enable the students to understand in detail about nuclear, gas turbine, diesel and renewable power plants, which play an important role in power generation. 									
Course Outcome									
At the end of the of 1. Demonstrate th 2. Analyze the diff 3. Analyze the ga 4. Assess the sele 5. Evaluate the end	course, the student will be able to the various components and layouts of steam power pla ferent types of steam generators and their subsystems is turbine, nuclear and diesel power plants. ection and layout of different renewable power plants. conomic aspects of power plant installation and operation	int. ion.							
Module:1 Introc	luction to Power Plants			4	hou	irs			
classification pow capita energy con storage.	sumption - Energy trilemma index - Climate change -	wer ge Carbo	ener n ca	atior	i, pe e an	er d			
Module:2 Steam	n Power Plant			7	hοι	irs			
Site selection, Components and Layouts - Coal handling and preparation - Combustion equipment and firing methods - Mechanical stokers - Pulverized coal firing systems - Cyclone furnace - Ash handling systems- Dust collection - Electrostatic precipitator- Fabric filter and Bag house - Chimney draught systems									
Module:3 Steam	n Generators and heat exchangers			6	hοι	irs			
Vapor power cycl tube boilers, High bed boiler - Waste Heat Exchangers Condenser - Cool	es - Steam Generators - Classification of Boilers: F pressure and Supercritical boilers - Positive circulation heat recovery boiler. Feed water heaters - Super heaters - Reheat ing tower.	Fire tu on boil ter -	be a ers · Eco	and ' · Flu nom	Wate idize izer	er ed -			
Module:4 Nucle	ar Power Plants			7	hοι	ırs			
Site selection, Principles of nuclear energy - Energy from nuclear reactions - Indian nuclear programme. Components and Layout, Thermal reactors: Boiling water reactor - Pressurized water reactor - Pressurized Heavy Water Reactor - Gas cooled reactor - High temperature gas cooled reactor - Fast breeder reactor - reactor materials - Radiation shielding- Nuclear waste disposal.									
Module:5 Gas T	urbine and Diesel Power Plants			8	hou	Irs			
Gas Turbine plar Intercooling - Rel plants. Diesel power pla stopping air intak	nt: Site selection, Components and Layout, Open a neating and Regenerating - Combined cycle power nt: Site selection, Components and Layout, Subsys e and exhaust systems - Lubricating and Cooling syst	and cl plant, stems:	osec Co sta	d cy gene rting	cles ratic and ints	- on d in			
operating range.									
Module:6 Renewable power plants 6 hours									
Hydroelectric pow potential, Classific turbines. Introduc	Hydroelectric power plant: Site selection, Components and Layout, Estimation of power potential, Classification of Hydro - electric power plants- Selection of turbines- Governing of turbines, Introduction to solar wind tidal and geo-thermal power plants								
Module:7 Economics of Power Plants 5 hours									
Terminologies in p	power plant economics - Load curves - Cost of electric	c ener	gy g	ener	atior	า			

-En	-Energy rates - Types of tariffs – Payback period- Affordable and clean energy.							
Мо	dule:8	Contemporary issues				2 hours		
				Tota	I Lecture hours:	45 hours		
Tex	xt Book	S						
1.	El-Wał	kil M.M, Power Plant Tech	nology, 2017, 1 st	Edition, T	ata McGraw-Hill P	ublishing		
	Company Ltd., New Delhi.							
2.	Nag F	P.K, Power Plant Engine	ering: Steam a	nd Nuclea	ar, 2017, 4 th Edit	ion, Tata		
	McGra	w-Hill Publishing Compan	y Ltd., New Delhi	i, 2017.				
Re	ference	Books						
1.	Hegde	R.K, Power Plant Engir	eering, 2015, 1 ^s	t edition,	Pearson India Ed	ucation		
	service	es (P) Ltd., Noida, India.	-					
Мо	de of Ev	aluation: CAT, written ass	signment, Quiz, F	AT.				
Re	Recommended by Board of Studies 09-03-2022							
Ар	proved b	y Academic Council	No. 65	Date	17-03-2022			

To impart knowledge on the principles of jigs and fixtures design, locating principles, locating elements and clamping Devices. 1.0 Course Objectives: 1.0 To impart knowledge on the principles of jigs and fixtures design, locating principles, locating elements and clamping Devices. 1.70 impart knowledge on the principles of press working. 3. To select appropriate work holding devices for various applications. Course Outcome: At the end of the course, the student will be able to 1. 1. Justify the requirements of jigs and fixtures for manufacturing, testing and assembly. 2. Design and develop locating and clamping systems for the given component based on geometrical and dimensional features. 3. 3. Uo all assifications - tool design objectives - tool design in manufacturing processes. 4 hours Tool engineening - tool classifications - tool design objectives - tool design in manufacturing-challenges and requirements - standards in tool design-tool drawings -surface finish - fits and tolerances - tooling Materials. 4 hours Module:3 Clamping elements 4 hours Principles of clamps-clamping force calculation - preumatic and hydraulic actuation standard parts - types of clamps-clamping force calculation-design of clauston - locating methods and devices - function and advantages of jigs and fixtures - grinding, planning and shaping fixtures, assembly, inspection and wantages of presses - press accesscores - compatato devigns - foresting force calculation-design of	BMEE403L	Design of Jigs Fixtures and Press Tools	L	Т	Ρ	С			
Pre-requisite Nil Syllabus version Course Objectives: 1.0 1. To impart knowledge on the principles of jigs and fixtures design, locating principles, locating adements and clamping Devices. 1. To design and analyze Jigs, Fixtures and dies for press working. 3. To select appropriate work holding devices for various applications. Course Outcome: At the end of the course, the student will be able to 1. Justify the requirements of jigs and fixtures for manufacturing, testing and assembly. 2. Design and develop locating and clamping systems for the given component based on geometrical and dimensional features. 3. Design and develop jigs fixtures, press tools and forming dies for various manufacturing processes. Module:1 Tool Design 4 hours Tool engineering – tool classifications- tool design objectives – tool design in manufacturing-challenges and requirements - standards in tool design-tool drawings -surface finish – fits and toirances - tooling Materials. 4 hours Module:2 Locating elements 4 hours Jigs and Fixtures- basic elements – degrees of freedom- principles of location – locating methods and devices – function and advantages of jigs and fixtures - redundant location. Module:3 Clamping elements 4 hours Types of clamps-clamping force calculation-design of clamps-smart work holding devices. 8 hours General principle			3	0	0	3			
1.0 Course Objectives: 1. To impart knowledge on the principles of jigs and fixtures design, locating principles, locating elements and clamping Devices. 2. To design and analyze Jigs, Fixtures and dies for press working. 3. To select appropriate work holding devices for various applications. Course Outcome: At the end of the course, the student will be able to 1. Justify the requirements of jigs and fixtures for manufacturing, testing and assembly. 2. Design and develop locating and clamping systems for the given component based on geometrical and dimensional features. 3. Design and develop jigs fixtures, press tools and forming dies for various manufacturing processes. 4. Design of smart work holding for industrial applications. 5. Suggest and design appropriate tools for various manufacturing processes. Module:1 Tool Design 4 hours Tool engineering - tool classifications- tool design objectives - tool design in manufacturing-challenges and requirements- standards in tool design-tool drawings -surface finish – fits and tolerances - tooling Materials. Module:2 Locating elements 4 hours Jigs and fixtures basic elements - degrees of freedom- principles of location - locating methods and devices – function and advantages of jigs and fixtures redundant location. Module:3 Clamping elements 4 hours Principles of	Pre-requisite	Nil	Syllal	ous v	ersio	on			
Course Objectives: 1 To impart knowledge on the principles of jigs and fixtures design, locating principles, locating elements and clamping Devices. 2. To design and analyze Jigs, Fixtures and dies for press working. 3. To select appropriate work holding devices for various applications. Course Outcome: At the end of the course, the student will be able to 1. Justify the requirements of jigs and fixtures for manufacturing, testing and assembly. Design and develop locating and clamping systems for the given component based on geometrical and dimensional features. 3. Design of smart work holding for industrial applications. Suggest and design appropriate tools for various manufacturing processes. Module:1 Tool Design 4 hours Tool engineering – tool classifications- tool design objectives – tool design in manufacturing-challenges and requirements- standards in tool design-tool drawings -surface finish – fits and tolerances - tooling Materials. 4 hours Module:2 Locating elements 4 hours Jigs and Fixtures- basic elements – degrees of freedom- principles of location – locating methods and devices – function and advantages of jigs and fixtures - redundant location. Module:3 Clamping elements 4 hours Totary bes of clamps-clamping force calculation-design of clamps-smart work holding devices. 4 hours				1.0					
1. To impart knowledge on the principles of jigs and tixtures design, locating principles, locating elements and clamping Devices. 2. To design and analyze, Jigs, Fixtures and dies for press working. 3. To select appropriate work holding devices for various applications. Course Outcome: At the end of the course, the student will be able to 1. Justify the requirements of jigs and fixtures for manufacturing, testing and assembly. 2. Design and develop locating and clamping systems for the given component based on geometrical and dimensional features. 3. Design and develop jigs fixtures, press tools and forming dies for various manufacturing processes. 4. Design of smart work holding for industrial applications. 5. Suggest and design appropriate tools for various manufacturing-challenges and requirements- standards in tool design-tool drawings -surface finish – fits and tolerances - tooling Materials. Module:1 Tool Design 4 hours Vidual devices – function and advantages of jigs and fixtures -redundant location. Module:3 Quartices - function and advantages of jigs and fixtures - redundant location and devices – function and advantages of jigs and fixtures - guirding, planning and evices. 7 hours Principles of clamps-clamping force calculation – pneumatic and hydraulic actuation standard parts – types of ligs; plate, latch, channel, box, post, angle plate, angular post, turnover, pot jigs- jig bushes- types of bushes- automatic drill jigs-rack and pinion operated - air operated ji	Course Obje	ctives:							
Course Outcome: At the end of the course, the student will be able to 1. Justify the requirements of jigs and fixtures for manufacturing, testing and assembly. 2. Design and develop locating and clamping systems for the given component based on geometrical and dimensional features. 3. Design and develop jigs fixtures, press tools and forming dies for various manufacturing processes. 4. Design of smart work holding for industrial applications. 5. Suggest and design appropriate tools for various manufacturing processes. Module:1 Tool Design 4 hours Tool engineering - tool classifications- tool design objectives - tool design in manufacturing-challenges and requirements - standards in tool design-tool drawings -surface finish - fits and tolerances - tooling Materials. Module:2 Locating elements 4 hours Jigs and Fixtures- basic elements - degrees of freedom- principles of location - locating methods and devices - function and advantages of jigs and fixtures -redundant location. Module:3 Clamping elements 4 hours Principles of clamping - mechanical actuation - pneumatic and hydraulic actuation standard parts - types of busines- automatic drill jigs-rack and pinion operated - air operated jigs - design and development of jigs or specified components. 8 hours Module:4 Design of Fixtures for specified component. 8 hours Module:5 Design of Preses Tool and D	 Io impari locating e To design To select 	e knowledge on the principles of jigs and fixtures design lements and clamping Devices. and analyze Jigs, Fixtures and dies for press working. appropriate work holding devices for various applications.	, locatir	ıg pri	ncipi	es,			
At the end of the course, the student will be able to 1. Justify the requirements of jigs and fixtures for manufacturing, testing and assembly. 2. Design and develop locating and clamping systems for the given component based on geometrical and dimensional features. 3. Design and develop jigs fixtures, press tools and forming dies for various manufacturing processes. 4. Design of smart work holding for industrial applications. 5. Suggest and design appropriate tools for various manufacturing processes. Module:1 Tool Design 4 hours Tool engineering – tool classifications- tool design objectives – tool design in manufacturing-challenges and requirements- standards in tool design-tool drawings -surface finish – fits and tolerances - tooling Materials. 4 hours Module:2 Locating elements 4 hours Jigs and Fixtures- basic elements – degrees of freedom- principles of location – locating methods and devices – function and advantages of jigs and fixtures - redundant location. Module:3 Principles of clamping – mechanical actuation – pneumatic and hydraulic actuation standard parts – types of clamps-clamping force calculation-design of clamps-smart work holding devices. 7 hours Module:4 Design of Fixtures 8 hours General principles of bushes- automatic drill jigs-rack and pinion operated - air operated jigs - design and development of fixtures for specified component. 8 hours Module:5 Design of Pr	Course Outc	ome:							
 Justify the requirements of jigs and fixtures for manufacturing, testing and assembly. Design and develop locating and clamping systems for the given component based on geometrical and dimensional features. Design of smart work holding for industrial applications. Suggest and design appropriate tools for various manufacturing processes. Module:1 Tool Design 4 hours Tool engineering – tool classifications- tool design objectives – tool design in manufacturing-challenges and requirements- standards in tool design-tool drawings -surface finish – fits and tolerances - tooling Materials. Module:2 Locating elements – degrees of freedom- principles of location – locating methods and devices – function and advantages of jigs and fixtures - redundant location. Module:3 Clamping elements – degrees of freedom- principles of location – locating methods and devices – function and advantages of jigs and fixtures - redundant location. Module:4 Design of Jigs 7 hours Types of jigs; plate, latch, channel, box, post, angle plate, angular post, turnover, pot jigs- jig bushes + types of bushes- automatic drill jigs-rack and pinion operated - air operated jigs - design and development of jigs for specified components. Module:5 Design of Fixtures Tool and Dies 8 hours Press working terminologies – operations – types of presses – press accessories – computation of press Tool and Dies 1 sharing action – locating eleances – press work materials – centre of pressure- design considerations in forging, extrusion, casting and lade and plate disc. Module:7 Design of Fixtures for specified component. Module:7 Design of Fixtures for and Dies 8 hours Press working terminologies – operations – types of presses – press accessories – computation of press Tool and Dies (Presse – press accessories – computation of press Tool and Dies (Presser – press access	At the end of	the course the student will be able to							
 Design of sinal work holding for industrial applications. Suggest and design appropriate tools for various manufacturing processes. Module:1 Tool Design Tool classifications- tool design objectives - tool design in manufacturing- challenges and requirements- standards in tool design-tool drawings -surface finish - fits and tolerances - tooling Materials. Module:2 Locating elements - degrees of freedom- principles of location - locating methods and devices - function and advantages of jigs and fixtures -redundant location. Module:3 Clamping elements - degrees of freedom- principles of location - locating methods and devices - function and advantages of jigs and fixtures -redundant location. Module:3 Clamping of mechanical actuation - pneumatic and hydraulic actuation standard parts - types of clamping force calculation-design of clamps-smart work holding devices. Module:4 Design of Jigs 7 hours Types of jigs; plate, latch, channel, box, post, angle plate, angular post, turnover, pot jigs; a design and development of jigs for specified components. Module:5 Design of Fixtures to begreight of bushes - automatic drill jigs-rack and pinion operated - air operated jigs - design and development of fixtures for specified component. Module:5 Design of Press Tool and Dies 8 hours General principles of boring, lathe, milling and broaching fixtures - grinding, planning and shaping fixtures, assembly, inspection and welding fixtures - modular fixtures - quick change fixtures-design and development of fixtures for specified component. Module:6 Design of Press Tool and Dies 8 hours Press working terminologies - operations - types of presses - press accessories - computation of press capacity - strip layout - material utilization - shearing action - clearances - press work materials - centre of pressure design of various elements of dies - design of blanking, pi	 Justify the Design ar geometric Design ar processes 	 Justify the requirements of jigs and fixtures for manufacturing, testing and assembly. Design and develop locating and clamping systems for the given component based on geometrical and dimensional features. Design and develop jigs fixtures, press tools and forming dies for various manufacturing processes. 							
Module:1 Tool Design 4 hours Tool engineering – tool classifications– tool design objectives – tool design in manufacturing- challenges and requirements- standards in tool design-tool drawings -surface finish – fits and tolerances - tooling Materials. 4 hours Module:2 Locating elements – degrees of freedom- principles of location – locating methods and devices – function and advantages of jigs and fixtures -redundant location. 4 hours Module:3 Clamping elements 4 hours Principles of clamping – mechanical actuation – pneumatic and hydraulic actuation standard parts – types of clamps-clamping force calculation-design of clamps-smart work holding devices. 7 hours Module:4 Design of Jigs 7 hours Types of jigs; plate, latch, channel, box, post, angle plate, angular post, turnover, pot jigs- jig bushes- types of bushes- automatic drill jigs-rack and pinion operated - air operated jigs - design and development of jigs for specified components. 8 hours Module:5 Design of Fixtures 8 hours General principles of boring, lathe, milling and broaching fixtures - quick change fixtures-design and development of fixtures for specified component. 8 hours Module:6 Design of Press Tool and Dies 8 hours Press working terminologies – operations – types of presses – press accessories – computation of press capacity – strip layout – material utilization – shearing action – clearances – press	5. Suggest a	and design appropriate tools for various manufacturing proc	esses.						
Tool engineering - tool classifications- tool design objectives - tool design in manufacturing- challenges and requirements- standards in tool design-tool drawings -surface finish - fits and tolerances - tooling Materials. Module:2 Locating elements 4 hours Jigs and Fixtures- basic elements - degrees of freedom- principles of location - locating methods and devices - function and advantages of jigs and fixtures -redundant location. Module:3 Clamping elements 4 hours Principles of clamping - mechanical actuation - pneumatic and hydraulic actuation standard parts - types of clamps-clamping force calculation-design of clamps-smart work holding devices. 7 hours Module:4 Design of Jigs 7 hours Types of jigs; plate, latch, channel, box, post, angle plate, angular post, turnover, pot jigs- jig bushes- types of bushes- automatic drill jigs-rack and pinion operated - air operated jigs - design and development of jigs for specified components. 8 hours Module:5 Design of Fixtures 8 hours General principles of boring, lathe, milling and broaching fixtures - quick change fixtures-design and development of fixtures for specified component. 8 hours Press working terminologies – operations – types of presses – press accessories – computation of press capacity – strip layout – material utilization – shearing action – clearances – press work materials – centre of pressure- design of various elements of dies – design of blanking, piercing dies- compound and progressive dies - design considerations in forging, extrusion, casting and plastic dies.	Module:1	Tool Design			4 ho	urs			
challenges and requirements- standards in tool design-tool drawings -surface finish – fits and tolerances - tooling Materials. 4 hours Module:2 Locating elements 4 hours Jigs and Fixtures- basic elements – degrees of freedom- principles of location – locating methods and devices – function and advantages of jigs and fixtures - redundant location. 4 hours Module:3 Clamping elements 4 hours Principles of clamps – mechanical actuation – pneumatic and hydraulic actuation standard parts – types of clamps-clamping force calculation-design of clamps-smart work holding devices. 7 hours Module:4 Design of Jigs 7 hours Types of jigs; plate, latch, channel, box, post, angle plate, angular post, turnover, pot jigs- jig bushes- types of bushes- automatic drill jigs-rack and pinion operated - air operated jigs - design and development of jigs for specified components. 8 hours General principles of boring, lathe, milling and broaching fixtures - grinding, planning and shaping fixtures, assembly, inspection and welding fixtures - modular fixtures – quick change fixtures-design and development of fixtures for specified component. 8 hours Press working terminologies – operations – types of presses – press accessories – computation of press capacity – strip layout – material utilization – shearing action – clearances – press work materials – centre of pressure design of various elements of dies – design of blanking, piercing dies- compound and progressive dies - design considerations in forging, extrusion, casting and plastic dies. 8 hours	Tool enginee	ing – tool classifications– tool design objectives – tool design	an in ma	anufa	cturir	na-			
Module:2Locating elements4 hoursJigs and Fixtures- basic elements – degrees of freedom- principles of location – locating methods and devices – function and advantages of jigs and fixtures -redundant location.Module:3Clamping elements4 hoursPrinciples of clamping elements4 hoursPrinciples of clamps-clamping force calculation – pneumatic and hydraulic actuation standard parts – types of clamps-clamping force calculation-design of clamps-smart work holding devices.7 hoursModule:4Design of Jigs7 hoursTypes of jigs; plate, latch, channel, box, post, angle plate, angular post, turnover, pot jigs - design and development of jigs for specified components.8 hoursModule:5Design of Fixtures8 hoursGeneral principles of boring, lathe, milling and broaching fixtures - guick change fixtures-design and development of fixtures for specified component.8 hoursModule:6Design of Press Tool and Dies8 hoursPress working terminologies – operations – types of presses – press accessories – computation of press capacity – strip layout – material utilization – shearing action – clearances – press work materials – centre of pressure- design of various elements of dies – design of blanking, piercing dies- compound and progressive dies - design considerations in forging, extrusion, casting and plastic dies.Module:7Design of Forming Dies8 hoursDifference between bending and drawing – blank development for above operations – types of bending dies – press capacity – spring back – knockouts – direct and indirect – pressure pads – ejectors – variables affecting metal flow in drawing operations – draw die inserts – draw beads- iro	challenges and requirements- standards in tool design-tool drawings -surface finish – fits and tolerances - tooling Materials.								
Jigs and Fixtures- basic elements – degrees of freedom- principles of location – locating methods and devices – function and advantages of jigs and fixtures -redundant location.Module:3Clamping elements4 hoursPrinciples of clamping – mechanical actuation – pneumatic and hydraulic actuation standard parts – types of clamps-clamping force calculation-design of clamps-smart work holding devices.7 hoursModule:4Design of Jigs7 hoursTypes of jigs; plate, latch, channel, box, post, angle plate, angular post, turnover, pot jigs- jig bushes- types of bushes- automatic drill jigs-rack and pinion operated - air operated jigs - design and development of jigs for specified components.8 hoursModule:5Design of Fixtures8 hoursGeneral principles of boring, lathe, milling and broaching fixtures - grinding, planning and shaping fixtures, assembly, inspection and welding fixtures - modular fixtures – quick change fixtures-design and development of press Tool and Dies8 hoursPress working terminologies – operations – types of presses – press accessories – computation of press capacity – strip layout – material utilization – shearing action – design of blanking, piercing dies- compound and progressive dies - design considerations in forging, extrusion, casting and plastic dies.8 hoursDifference between bending and drawing – blank development for above operations – types of bending dies – press capacity – spring back – knockouts – direct and indirect – pressure pads – ejectors – variables affecting metal flow in drawing operation – draw die inserts – draw beads- ironing – design and development of bending, forming, drawing, reverse redrawing and combination dies – blank development for axisymmetric, rectangular and ell	Module:2	Locating elements			4 ho	urs			
methods and devices – function and advantages of jigs and fixtures -redundant location.Module:3Clamping elements4 hoursPrinciples of clamping – mechanical actuation – pneumatic and hydraulic actuation standard parts – types of clamps-clamping force calculation-design of clamps-smart work holding devices.7 hoursModule:4Design of Jigs7 hoursTypes of jigs; plate, latch, channel, box, post, angle plate, angular post, turnover, pot jigs- jig bushes- types of bushes- automatic drill jigs-rack and pinion operated - air operated jigs - design and development of jigs for specified components.8 hoursModule:5Design of Fixtures8 hoursGeneral principles of boring, lathe, milling and broaching fixtures - grinding, planning and shaping fixtures, assembly, inspection and welding fixtures - modular fixtures – quick change fixtures-design and development of fixtures for specified component.8 hoursModule:6Design of Press Tool and Dies8 hoursPress working terminologies – operations – types of presses – press accessories – computation of press capacity – strip layout – material utilization – shearing action – clearances – press work materials – centre of pressure- design of various elements of dies – design of blanking, piercing dies- compound and progressive dies - design considerations in forging, extrusion, casting and plastic dies.8 hoursDifference between bending and drawing – blank development for above operations – types of bending dies – press capacity – spring back – knockouts – direct and indirect – pressure pads – ejectors – variables affecting metal flow in drawing operations, – draw die inserts – draw beads- ironing – design and development of bending, forming, drawing, reverse redra	Jigs and Fixtu	ires- basic elements - degrees of freedom- principles of lo	cation -	locati	ng				
Module:3Clamping elements4 hoursPrinciples of clamping – mechanical actuation – pneumatic and hydraulic actuation standard parts – types of clamps-clamping force calculation-design of clamps-smart work holding devices.ThoursModule:4Design of Jigs7 hoursTypes of jigs; plate, latch, channel, box, post, angle plate, angular post, turnover, pot jigs- jig bushes- types of bushes- automatic drill jigs-rack and pinion operated - air operated jigs - design and development of jigs for specified components.8 hoursModule:5Design of Fixtures8 hoursGeneral principles of boring, lathe, milling and broaching fixtures - grinding, planning and shaping fixtures, assembly, inspection and welding fixtures- modular fixtures – quick change fixtures-design and development of fixtures for specified component.8 hoursModule:6Design of Press Tool and Dies8 hoursPress working terminologies – operations – types of presses – press accessories – computation of press capacity – strip layout – material utilization – shearing action – clearances – press work materials – centre of pressure- design of various elements of dies – design of blanking, piercing dies- compound and progressive dies - design considerations in forging, extrusion, casting and plastic dies.8 hoursDifference between bending and drawing – blank development for above operations – types of bending dies – press capacity – spring back – knockouts – direct and indirect – pressure pads – ejectors – variables affecting metal flow in drawing operations – draw die inserts – draw beads- ironing – design and development of bending, forming, drawing, reverse redrawing and combination dies – blank development for axisymmetric, rectangular and elliptic parts – single	methods and devices – function and advantages of jigs and fixtures -redundant location.								
Principles of clamping – mechanical actuation – pneumatic and hydraulic actuation standard parts – types of clamps-clamping force calculation-design of clamps-smart work holding devices.Module:4Design of Jigs7 hoursTypes of jigs; plate, latch, channel, box, post, angle plate, angular post, turnover, pot jigs- jig bushes- types of bushes- automatic drill jigs-rack and pinion operated - air operated jigs - design and development of jigs for specified components.8 hoursModule:5Design of Fixtures8 hoursGeneral principles of boring, lathe, milling and broaching fixtures - grinding, planning and shaping fixtures, assembly, inspection and welding fixtures- modular fixtures – quick change fixtures-design and development of fixtures for specified component.8 hoursModule:6Design of Press Tool and Dies8 hoursPress working terminologies – operations – types of presses – press accessories – computation of press capacity – strip layout – material utilization – shearing action – clearances – press work materials – centre of pressure- design of various elements of dies – design of blanking, piercing dies- compound and progressive dies - design considerations in forging, extrusion, casting and plastic dies.8 hoursDifference between bending and drawing – blank development for above operations – types of bending dies – press capacity – spring back – knockouts – direct and indirect – pressure pads – ejectors – variables affecting metal flow in drawing operations – draw die inserts – draw backs – ironing – design and development of bending, forming, drawing, reverse redrawing and combination dies – blank development for axisymmetric, rectangular and elliptic parts – single and double action dies.Module 8Contemporary	Module:3	Clamping elements			4 ho	urs			
Module:4Design of Jigs7 hoursTypes of jigs; plate, latch, channel, box, post, angle plate, angular post, turnover, pot jigs- jig bushes- types of bushes- automatic drill jigs-rack and pinion operated - air operated jigs - design and development of jigs for specified components.8 hoursModule:5Design of Fixtures8 hoursGeneral principles of boring, lathe, milling and broaching fixtures - grinding, planning and shaping fixtures, assembly, inspection and welding fixtures- modular fixtures – quick change fixtures-design and development of fixtures for specified component.8 hoursModule:6Design of Press Tool and Dies8 hoursPress working terminologies - operations - types of presses - press accessories - computation of press capacity - strip layout - material utilization - shearing action - clearances - press work materials - centre of pressure- design of various elements of dies - design of blanking, piercing dies- compound and progressive dies - design considerations in forging, extrusion, casting and plastic dies.8 hoursModule:7Design of Forming Dies8 hoursDifference between bending and drawing - blank development for above operations - types of bending dies - press capacity - spring back - knockouts - direct and indirect - pressure pads - ejectors - variables affecting metal flow in drawing operations - draw die inserts - draw beads- ironing - design and development of bending, forming, drawing, reverse redrawing and combination dies - blank development for axisymmetric, rectangular and elliptic parts - single and double action dies.Module 8Contemporary issues:2 hours	Principles of clamping – mechanical actuation – pneumatic and hydraulic actuation standard parts – types of clamps-clamping force calculation-design of clamps-smart work holding devices.								
Types of jigs; plate, latch, channel, box, post, angle plate, angular post, turnover, pot jigs- jig bushes- types of bushes- automatic drill jigs-rack and pinion operated - air operated jigs - design and development of jigs for specified components.8 hoursModule:5Design of Fixtures8 hoursGeneral principles of boring, lathe, milling and broaching fixtures - grinding, planning and shaping fixtures, assembly, inspection and welding fixtures - modular fixtures – quick change fixtures-design and development of fixtures for specified component.8 hoursModule:6Design of Press Tool and Dies8 hoursPress working terminologies – operations – types of presses – press accessories – computation of press capacity – strip layout – material utilization – shearing action – clearances – press work materials – centre of pressure- design of various elements of dies – design of blanking, piercing dies- compound and progressive dies - design considerations in forging, extrusion, casting and plastic dies.8 hoursModule:7Design of Forming Dies8 hoursDifference between bending and drawing – blank development for above operations – types of bending dies – press capacity – spring back – knockouts – direct and indirect – pressure pads – ejectors – variables affecting metal flow in drawing operations – draw die inserts – draw beads- ironing – design and development of bending, forming, drawing, reverse redrawing and combination dies – blank development for axisymmetric, rectangular and elliptic parts – single and double action dies.2 hours	Module:4	Design of Jigs			7 ho	urs			
Module:5Design of Fixtures8 hoursGeneral principles of boring, lathe, milling and broaching fixtures - grinding, planning and shaping fixtures, assembly, inspection and welding fixtures- modular fixtures - quick change fixtures-design and development of fixtures for specified component.9Module:6Design of Press Tool and Dies8 hoursPress workingterminologies - operations - types of presses - press accessories - computation of press capacity - strip layout - material utilization - shearing action - clearances - press work materials - centre of pressure- design of various elements of dies - design of blarking, piercing dies- compound and progressive dies - design of various elements of dies - design of blarking, piercing dies- compound and progressive dies - design or blarking, piercing dies- compound and progressive dies - design or blarking, piercing dies - compound and progressive dies - design or blarking, piercing dies - compound and progressive dies - design or blarking, piercing dies - compound and progressive dies - design or service8 hoursModule:7Design of Forming Dies8 hoursDifference between bending and drawing - blank development for above operations - types of bending dies - press capacity - spring back - knockouts - direct and indirect - pressure pads - ejectures - variables affecting metal flow in drawing operations - draw wite inserts - draw beads- ironing - design and development of bending, forming, drawing, reverse redrawing and combination dies - blank development for axisymmetric, retangular and elliptic parts - single and double action dies.2 hours	Types of jigs; bushes- types design and de	plate, latch, channel, box, post, angle plate, angular post, as of bushes- automatic drill jigs-rack and pinion operated - a evelopment of jigs for specified components.	turnover air opera	, pot j ated ji	igs- j gs -	jig			
General principles of boring, lathe, milling and broaching fixtures - grinding, planning and shaping fixtures, assembly, inspection and welding fixtures- modular fixtures – quick change fixtures-design and development of fixtures for specified component.Module:6Design of Press Tool and Dies8 hoursPress working terminologies – operations – types of presses – press accessories – computation of press capacity – strip layout – material utilization – shearing action – clearances – press work materials – centre of pressure- design of various elements of dies – design of blanking, piercing dies- compound and progressive dies - design considerations in forging, extrusion, casting and plastic dies.8 hoursModule:7Design of Forming Dies8 hoursDifference between bending and drawing – blank development for above operations – types of bending dies – press capacity – spring back – knockouts – direct and indirect – pressure pads – ejectors – variables affecting metal flow in drawing operations – draw die inserts – draw beads- ironing – design and development of bending, forming, drawing, reverse redrawing and combination dies – blank development for axisymmetric, rectangular and elliptic parts – single and double action dies.2 hours	Module:5	Design of Fixtures		1	8 ho	urs			
Module:6Design of Press Tool and Dies8 hoursPress working terminologies – operations – types of presses – press accessories – computation of press capacity – strip layout – material utilization – shearing action – clearances – press work materials – centre of pressure- design of various elements of dies – design of blanking, piercing dies- compound and progressive dies - design considerations in forging, extrusion, casting and plastic dies.8 hoursModule:7Design of Forming Dies8 hoursDifference between bending and drawing – blank development for above operations – types of bending dies – press capacity – spring back – knockouts – direct and indirect – pressure pads – ejectors – variables affecting metal flow in drawing operations – draw die inserts – draw beads- ironing – design and development of bending, forming, drawing, reverse redrawing and combination dies – blank development for axisymmetric, rectangular and elliptic parts – single and double action dies.2 hoursModule 8Contemporary issues:2 hours	General prino shaping fixtur fixtures-desig	siples of boring, lathe, milling and broaching fixtures - gri es, assembly, inspection and welding fixtures - modular fixt n and development of fixtures for specified component.	nding, p ares – c	lanni Juick	ng a chan	nd Ige			
Press working terminologies – operations – types of presses – press accessories – computation of press capacity – strip layout – material utilization – shearing action – clearances – press work materials – centre of pressure- design of various elements of dies – design of blanking, piercing dies- compound and progressive dies - design considerations in forging, extrusion, casting and plastic dies.Module:7Design of Forming Dies8 hoursDifference between bending and drawing – blank development for above operations – types of bending dies – press capacity – spring back – knockouts – direct and indirect – pressure pads – ejectors – variables affecting metal flow in drawing operations – draw die inserts – draw beads- ironing – design and development of bending, forming, drawing, reverse redrawing and combination dies – blank development for axisymmetric, rectangular and elliptic parts – single and double action dies.2 hours	Module:6	Design of Press Tool and Dies			8 ho	urs			
forging, extrusion, casting and plastic dies.Module:7Design of Forming Dies8 hoursDifference between bending and drawing – blank development for above operations – types of bending dies – press capacity – spring back – knockouts – direct and indirect – pressure pads – ejectors – variables affecting metal flow in drawing operations – draw die inserts – draw beads- ironing – design and development of bending, forming, drawing, reverse redrawing and combination dies – blank development for axisymmetric, rectangular and elliptic parts – single and double action dies.2 hours	Press workin computation clearances – design of blar	g terminologies – operations – types of presses – of press capacity – strip layout – material utilization press work materials – centre of pressure- design of vario nking, piercing dies- compound and progressive dies - des	oress a – shea us elem ign cons	ccess ring a ents c sidera	ories actior of die tions	s – n – es – s in			
Woodule:/Design of Forming Dies8 hoursDifference between bending and drawing – blank development for above operations – types of bending dies – press capacity – spring back – knockouts – direct and indirect – pressure pads – ejectors – variables affecting metal flow in drawing operations – draw die inserts – draw beads- ironing – design and development of bending, forming, drawing, reverse redrawing and combination dies – blank development for axisymmetric, rectangular and elliptic parts – single and double action dies.2 hours	rorging, extru	sion, casting and plastic dies.			0 6 -				
Difference between bending and drawing – blank development for above operations – typesof bending dies – press capacity – spring back – knockouts – direct and indirect – pressurepads – ejectors – variables affecting metal flow in drawing operations – draw die inserts –draw beads- ironing – design and development of bending, forming, drawing, reverseredrawing and combination dies – blank development for axisymmetric, rectangular andelliptic parts – single and double action dies.Module 8Contemporary issues:2 hours	Module: /	Design of Forming Dies			s no	urs			
Module 8Contemporary issues:2 hours	Difference between bending and drawing – blank development for above operations – types of bending dies – press capacity – spring back – knockouts – direct and indirect – pressure pads – ejectors – variables affecting metal flow in drawing operations – draw die inserts – draw beads- ironing – design and development of bending, forming, drawing, reverse redrawing and combination dies – blank development for axisymmetric, rectangular and elliptic parts – single and double action dies								
•	redrawing an elliptic parts -	d combination dies – blank development for axisymme - single and double action dies.	tric, rec	tangu	ılar a	and			

				Total Le	cture hours:	45 hours			
Text E	Text Books								
1.	Dona	dson C, Tool Design, 2012	2, Tata McGrav	v-Hill.					
2.	Edwa	rd G Hoffman, Jigs & Fi>	kture Design, I	2004, Tho	omson – Delm	ar Learning,			
	Singa	pore.							
Refer	ence B	ooks							
1.	Kemp	ster, Jigs & Fixtures Desig	n, 1978, The E	Inglish Lar	nguage Book S	Society.			
2.	Joshi,	P.H, Jigs & Fixtures, 2004	1, 2 nd Edition, 7	ata McGra	aw-Hill Publish	ing Company			
	Limite	ed, New Delhi.							
3.	Hiram	E Grant, Jigs and Fixture,	2003, Tata M	cGraw-Hill	, New Delhi.				
4	Funda	amentals of Tool Design, 1	983, CEEE Ed	ition, AST	ME.				
Mode	of Eval	uation: CAT, written assigr	nment, Quiz, F	AT.					
Recor	nmende	ed by Board of Studies	09-03-2022						
Appro	ved by	Academic Council	No. 65	Date	17-03-2022				

BMEE404L	Design of Transmission Systems	L T P C					
Due ve avriette	N1:1						
Pre-requisite	NI	Syllabus version					
Course Objectiv	202	1.0					
1 To provide the knowledge on materials selection and mechanical properties from							
manufacturer's c	atalogue.						
2. To impart kno	wledge on design procedure of flexible and rigid mecha	nical transmission					
drives.							
To analyze va	rious components of forces acting on the power transmi	ssion elements and					
evaluate load ca	rrying capacity.						
Course Outcom	85						
At the end of the	course, the student will be able to						
1. Design flexible	power transmission systems such as belt drives, chain	drives and wire					
ropes.							
2. Examine the s	election of rolling and sliding contact bearings in power	transmission					
systems.							
3. Recommend s	suitable materials and design gears using manufacturer's	s catalogue.					
4. Analyze lorces	s acting on the gear tooth and design based on strength	and wear					
5 Construct the	avout of multispeed gearbox used in machine tools						
6. Design differe	nt types of clutches and brakes used in the mechanical	drives.					
Module:1 Desi	gn of Flexible Mechanical Drives	7 hours					
Introduction to fle	exible drives – Design of flat belt drive and pulley – Des	ign of V-belt drive					
and pulley – Rat	tio of Tensions – Belt materials – Design procedure u	sing manufacturer's					
catalogue – Desi	gn of chain drives and sprockets – Load carrying capac	ity – Design of wire					
Module:2 Desi	an of Bearings	6 hours					
Rolling contact	pearings – Types – Designation – Design procedure -	- Selection of rolling					
contact bearings	s – Design of sliding contact bearings – Types –	Basic concepts of					
hydrodynamic lul	prication – Bearing characteristics number – Design par	ameters for journal					
bearing – Bearing	g life – Heat generation and heat dissipation.						
Module:3 Para	allel Axes Gear Drives	/ nours					
Gear Nomenciat	ure – Stresses on gear tooth – Gear Materials – Desig	n of spur gear pair –					
Force analysis of	n gear pair – Surface compressive stress and bending	strength and wear					
considerations –	Gear tooth failures.	i olioligir and would					
Module:4 Des	ign of Bevel Gears	5 hours					
Introduction to b	evel gear drive - Types - Terminology of bevel gears	- Stresses on bevel					
gear tooth – Des	ign of bevel gear drive using manufacturer's catalogue	 Equivalent number 					
of teeth – Force	e analysis on bevel gear – Design based on beam	strength and wear					
Considerations	an of Warm and Warm Whool	6 hours					
Friction in worm	gi of worm and worm wheel	wheel - Selection of					
materials – Effic	iency of worm gear drive – Modes of failure – Therr	nal considerations -					
Analysis of force	s – Design based on beam strength and wear considera	ations.					
Module:6 Des	ign of Multispeed Gearbox	5 hours					
Introduction to n	nultispeed gearbox - Components of speed reduction	unit - Principles for					
optimum gearbo	x design – Progression ratio – Construction of kinema	tic layout and speed					
diagram – Centre distance calculation – Selection of number of teeth.							
Friction motorial	gn or clutches and Brakes	rm woor theories					
Friction material	s – Types of clutches – Uniform pressure and Unifo	ini wear theories –					

Design of disc or plate clutches – Cone clutch – Centrifugal clutch – Types of mechanical							
bra	kes – D	esign procedure – Block br	akes with sh	ort and lo	ong shoe – Interna	l expanding	
sho	be brake	s – Band brakes – Disc brak	es – Therma	l conside	rations.		
Module:8 Contemporary Topics						2 hours	
				Tota	I Lecture hours:	45 hours	
Te	kt Book						
1.	Bhanda	ari V.B, Design of Machine E	lements, 202	20, 5th edi	ition, Tata Mc Graw	/ Hill.	
Re	ference	Books					
1.	Richar	d G. Budynas, Keith Nisbett	J, Shigley's N	/lechanica	al Engineering Desi	ign, 2020,	
	11 th ed	ition (in SI Units), McGraw H	lill.			-	
2.	Robert	L. Norton, Machine Design,	2018, 5th ed	ition, Pea	rson.		
3.	Juvina	R.C, Kurt M. Marshek, 2016	6, Machine Co	omponent	t Design, Wiley.		
4.	Robert	L Mott, Machine Elements in	n Mechanical	Design, 2	2020, Pearson Edu	cation.	
5.	PSG D	esign Data: Data Book of En	gineers, Kala	aikathir Ao	chchagam, 2020.		
Мо	de of Ev	aluation: CAT, Written assig	nment, Quiz,	FAT.			
Re	Recommended by Board of Studies 09-03-2022						
Ар	Approved by Academic Council No. 65 Date 17-03-2022						

BMEE405L Industrial Automation L T										
Dro roguicito	N:I	6.	3	0 0	3					
Pre-requisite		Sy	liabu	1 0	sion					
Course Objectiv	es:			1.0						
1. To gain kn construction,	owledge on the industrial automation process a operation and installation of PLCs.	nd u	nders	stand	the					
 To provide the knowledge on interfacing the PLCs and field devices with communication protocols. To understand the concents of DCS and SCADA systems. 										
4. To acquire sl	kills on wireless sensor networks and the industrial networks	vorkin	g.							
Expected Cours	e Outcome:									
 Comprehend Differentiate Illustrate the p Formulate va Perform supe 	the need for industrial process automation. various types of automation systems and components of programmable logic controller and distributed control sy rious types of industrial networking.	of auto stems	omatic S.)n.						
6. Develop simp	le automation programs for application specific automa	tion.		<u> </u>						
Module:1 Indu	strial Process Automation			5 n	ours					
Architecture of Information Tec Intelligent Instrum	essity and Evolution of Automation-Definition of Process-Me Industrial Automation Network-Types of Automation Indogy in Process Automation-Process Automati nents-Challenges of Process Automation-Industry 1.0 t	o in Pr on Sy on w o Indu	roces ystem ith S	s Indu s Indu s-Role Smart 4.0.	ation istry- e of and					
Module:2 Prog	rammable Logic Controller (PLC)			7 h	ours					
Basics of PLC-	I/O Devices of PLC-PLC Programming Devices-PL	C Se	lectio	n Crit	teria-					
Design and Ope Modes of PLC.	ration of PLC-Architecture of PLC-Central Control U	nit of	PLC-	Funct	ional					
Module:3 PLC	Programming		6 ho	ours						
PLC Program St	ructure and Execution-Programming Devices for PL	C-PLC	C Pro	gramn	ning					
Protocols-Selecti	on and Commissioning of PLC.	Com	munic	ation-	PLC					
Module:4 Distr	ibuted Control System (DCS)			<u>6 h</u>	ours					
Computers in Pr System-Hardward Control Loop-Sa DCS-Communica Monitoring, Contr DCS based Proc	Computers in Process Automation-Architecture of Computer-Based Industrial Automation System-Hardware and Software Configuration-Process Automation Network-PC-Based Control Loop-Sampling of Process Data- Distributed Control System-Hardware Units of DCS-Communications in DCS Architecture-Software Packages of DCS-Operation, Monitoring, Control, and Data Acquisition in DCS-Integration of DCS with PLC and SCADA- DCS based Process Control Simulations.									
Module:5 Supe	ervisory Control and Data Acquisition (SCADA)	<u> </u>		6 h	ours					
Introduction-SCA SCADA Architect Comparison-SCA Standards Orga Implementations	DA Basics-Different SCADA System Topologies-E ture-Functions of SCADA-Elements of SCADA-SCAD ADA Security: Threats, Vulnerabilities, and Co anizations-Application Areas of SCADA-SCADA for Automation Industries.	volutio A, DC onseq and	on of CS, ar uence IloT	f SCA nd PL es-SC SCA	ADA- C: A ADA ADA					
Module:6 Indu	strial Networking			7 h	ours					
Introduction to in Foundation Fiel PROFIBUS-Com Addressable F Network(WSN) - Sensor Network	dustrial Networking-Network Devices- Fieldbus-Type dbus-Comparison with OSI Model-Medium Acce munication via PROFIBUS,PROFINET,DP Bus Acc Remote Transducer-Wireless field bus-WHAR Introduction-Types-ISM Band-Wireless Standards-St Arrangement-Characteristic Features of a W	s- Top ss C ess-H F-Wire ructur SN-Ch	Contro Contro IART eless e of nallen	y-Ben ol (M : High Se a No nges	efits- AC)- nway nsor de-A and					

Со	nstraints	s-Integrating	WSN	in	Internet-Topolo	ogy in	Wireless	Sensor	Networks-
Adv	vantage	s/Disadvanta	ges.						
Мо	dule:7	Applied Au	Itomation	n					6 hours
Bui	ilding A	utomation, H	lome Aut	oma	tion, Systems	Design 8	Coperatio	n, Automa	ated HVAC
sys	stems,Pr	oduction	Autom	natio	n,Business	Autom	ation,Was	te N	lanagement
Au	tomatior	<u>n,Highway Sy</u>	/stem Aut	oma	ation.				
Мо	dule:8	Contempo	rary Issu	es					2 hours
					Tota	al Lectur	e hours:		45 hours
Tex	xt Book	S							
1.	Dey, C	chanchal, and	d Sunit Ku	uma	r Sen, Industrial	automat	ion technc	logies. CR	C Press,
2.	2020.								
	Gilchri	st, Alasdair. I	Industrial	Inte	rnet use-cases.	Industry	4.0., Apre	ss, Berkele	эу, CA,
	2016.								
Re	ference	Books							
1.	Johnso	on, David. Pr	ogramma	able	Controllers for	 Factory 	Automat	ion. N.p.: 2	2020, CRC
2.	Press.								
3.	Sharm	a, K. L. S. Oי	verview o	f ind	lustrial process	automati	on, 2016,	Elsevier.	
	Mikell	P Groove	r., Auto	mati	on,Production	Systems	s and C	Computer-	Integrated
4.	Manuf	acturing, 201	6, Pears	on.					
	Frank	D. Petruzella	.,Progran	nma	ble Logic Contro	ollers, 20	19, McGra	awHill.	
Mo	de of E	aluation: CA	T, Writter	n as	signment, Quiz	, FAT			
Re	Recommended by Board of Studies 09-03-2022								
Ар	Approved by Academic Council No. 65 Date 17-03-2022								

BMEE406E	Advanced Manufacturing Processes	esses L T P						
			3	0	2	4		
Pre-requisite	BMEE302L, BMEE302P, BMEE304L, BMEE304	P Sy	llabu	s ve	ersio	on		
			1	1.0				
Course Objective	95							
 To impart kn processes. 	owledge on the advancements of metal formin	ng and i	metal	ca	sting	g		
2. To give an in	sight on specialized moulding process, microm	achining	and	finis	shing	g		
processes with	n potential applications in medical field.							
3. To facilitate s	tudents to understand the advanced machining	and hybri	d ma	achi	ning	I		
processes.								
Course Outcome	S							
At the end of the c	ourse, the student will be able to							
1. Demonstrate t	he basics of advanced metal forming and metal cas	sting proc	esses	s.				
2. Discuss variou	is advanced metal casting process with industrial a	pplication	S. ,.					
3. Select the ap	propriate machining process based on tool-work	piece inte	eracti	on a	and			
4. Recognize the	material removal mechanism and process parame	eters of ul	tra-p	reci	sion	I		
machining pro	cess and micromanufacturing process.							
5. Identify and us	se various hybrid machining process for state of art	application	on.					
Module:1 Adva	nced Metal forming Process			6	hoi	ire		
Unconventional	Forming Methods: Classification Process	Principle	An	nlic	ation	ns		
Equipment's, Pro	cess Analysis and Die Design of Explosive Fo	rmina. S	tretch	n fo	rmir	na.		
Contour roll formir	a Laser Beam Bending and Laser Assisted Deep	Drawing,	Micro	b Fo	rmir			
Processes: Classi	fication, Process Principle and Applications of Cor	ventional	Micr	o Fo	ormi	ing		
Processes, Uncor	ventional Micro-Forming Processes.		-	-	-	3		
Module:2 Adva	nced Metal casting Process			5	hοι	ırs		
Metal mould cast	ing basics, continuous casting, permanent moul	d casting	, pre	ssu	re d	lie		
casting, Vacuum	mould casting, Evaporative pattern casting (EPC	C)- Hybrid	and	l va	cuu	m,		
Ceramic shell inve	estment casting.							
Module:3 Spec	ialized Molding Techniques			6	hοι	ırs		
Injection moulding	g using pressurized gas assistance, Injection mou	Ilding usir	ng rea	actio	on g	jas		
assistance, Injecti	on Moulding for Thin-Wall Applications, Multi-Mat	terial Inje	ction	Мо	uldir	ng,		
Water-Assisted Fo	paming, Moulding by direct compounding, Injection	Compres	ssion	Mo	uldir	ng.		
Ultrasonic Molding	g Technology: Recent Advances and Potential App	lications i	n the	Me	dica	al		
Industry, Variable	e Mold Temperature Technologies, Micro injec	ction mo	lding∙	-lssi	Jes	in		
Molding Parts with	Microfeatures, Influencing Factors in Microinjectic	on Molding	g, Ap	plica	atior	າຣ.		
Module:4 Weld	ing-Based Additive Manufacturing (WAM)			6	hοι	ırs		
Classification of V	VAM by motion controller, raw material and heat s	source. P	owde	r-be	ed A	M:		
Selective laser sil	ntering (SLS), Selective Laser Melting (SLM) and	Electron	Bea	mΝ	/lelti	ng		
(EBM). Wire-feed	based WAM: Wire and Laser Additive Manufact	uring (WI	_AM)	, Ele	ectro	on		
Beam Freeform Fa	abrication (EBF3), Wire and Arc Additive Manufactu	uring (WA	AM).					
Module:5 Ultra	-Precision Machining			6	hοι	ırs		
Diamond turning-	mechanism of material removal - process Paramet	ters and (Optim	izat	ion-			
tool path strategie	s in surface generation- applications.				-			
Module:6 Micro				.7	nou	ırs		
⊢ocused ion bear	n (FIB) Micro-/Nano-fabrication, Laser Micro stru	cturing. F	lot E	mbo	ossir	ng,		
Hot punching, Ro	iler Embossing, Applications-Micro optical device	es, Micro	tluidi	c de	evice	es.		
Net Shape Mar	nuracture of Freestanding Ceramic Micro-con	nponents	thro	bugh	١S	oft		
Litnography, mici	o-rieids-activated sintering technology (Micro-FA	451). Mi	croma	achi	ning]-		
IVIICIO turning, M	icro grinding, Ultra Sonic Micromachining, Abr	asive W	ater	Jet	IVIIC	oro		
iviachining, Chem	ical and Electro Unemical Micro Machining – E	ectric di	schal	ige	mic	10		

mac	nining, Laser Beam Micro Machining. Handling for Mi	cromanufacturing.				
Mod	ule:7 Hybrid Machining Process (HMPs)		7 hours			
Clas (Hyb	sification of Hybrid Machining process, Elements rid Machine Tools, Hybrid Tooling, Hybrid Machin	of Hybrid Machining ing Processes, Metrolo	Technology gy System,			
Wor	K Handling System, Process Monitoring Technic	que). Vibration assiste	d grinding,			
Vibra	ation Assisted EDM, Ultrasonic assisted ECM. He	at Assisted HMPs, Las	er assisted			
turni	ng, laser-assisted ECM(LAECM), Laser-Assisted	EDM (LAEDM). Mag	netic Field			
assis	sted EDM, Magnetic field Assisted electro discharge	deposition (EDD) proce	ess. Electro			
cher	nical discharge machining (ECDM), Electro chemical	honing, Electro chemica	al discharge			
grind	ling.	0	C			
Mod	ule:8 Contemporary Issues		2 hours			
		•				
	Total Lectu	re hours:	45 hours			
Text	Books					
1.	Kalpakjian and Schmid, Manufacturing Processes for edition, Prentice Hall.	r Engineering Materials,	2017, 5 th			
2.	Hassan Abdel-Gawad ElHofy, Fundamentals of Mac	hining Processes (Conv	entional			
	and Nonconventional Processes), 2018, 3rd Edition,	CRC press.				
3.	A. Ghosh, and A.K. Mallik, Manufacturing Science, A New Delhi.	Affiliated East-West Pres	s Pvt. Ltd.			
4.	V.K.Jain, Micro manufacturing processes, 2013, CR	C Press.				
Refe	rence Books					
1.	Balasubramaniam R, Sarepaka RV, Subbiah S. Dial practice, 2017, CRC press.	mond turn machining: Th	neory and			
2.	Heine R. W., Loper C. R., and Rosenthal P. C. Princ	ciples of Metal Castings.	1997. 2 nd			
	Edition. Tata McGraw Hill. New Delhi					
3.	3. Murty, R. L., Precision Engineering in Manufacturing, New Age International (P)					
	Limited, New Delhi.					
4.	4. Mark J. Jackson, Micro and Nano fabrication, 2010, CRC Press, Taylor & Francis Group					
5.	Yi Qin, Micro-Manufacturing Engineering and Tec ISBN: 978-0-8155-1545-6	hnology, 2010, Elsevier	[·] Publisher,			
6.	MuammerKoc, TrugelOzel, Micro manufacturing, E products, 2011, Wiley Publishers	esign and manufacturin	ng of micro			
Mod	e of Evaluation: CAT, Written assignment, Quiz, FAT					
Indic	ative Experiments					
1.	Learn the forming characteristics of sheet metal spe operation.	cimens with Deep Drawi	ng			
2.	Extrude a cylindrical cup by backward extrusion, det thickness of the bottom of the cup.	ermine the load variatior	n with the			
3.	Evaluate the machinability of difficult to machine ma EDM milling.	terials by EDM die sinkir	ng and			
4.	Evaluate the process parameters (Wire feed, wire te machining the given material by WEDM process.	nsion, wire material, WV	VR) for			
5	Study on Electric discharge coating process by P/M	tool and conventional too	ol			
6	Study on Micro turning process parameters on the g	iven ich				
0. 7	Experimental investigation on motols and allove by	nicro drilling process on	d analyzing			
1.	the responses and tool wear	mero unimi y process and	anaiyzing			
8	Experimental Analysis on drill proparation by micro	trilling on natural fiber of	omnositos			
0.	and studying the roundness error	ming on natural liber CC	mposites			
a	Experimental study on slot preparation by micro milli	ng on metals and allove				
10	Experimental study on slot preparation by micro milli	ng on natural fiber com	osites			
10.			houre			
	I Ola		110013			

Text book				
Lab manual prepared by the Faculty member				
Mode of assessment: Continuous assessment, FAT, Oral examination				
Recommended by Board of Studies	tudies 09-03-2022			
Approved by Academic Council	No. 65	Date	17-03-2022	

BMEE408E Additive Manufacturing L T P							
		3 0 2 4					
Pre-requisite	Nil	Syllabus version					
		1.0					
Course Objectives							
1. To impart the knowledge on additive manufacturing fundamentals and various 3D printing							
technologies.							
2. TO laminarize t	The concept of preprocessing and post processing metho						
3. To explore the	various 3D printing tools for components.						
	······································						
Course Outcome	9						
At the end of the	course, the student will be able to						
1. Demonstrate th	ne concepts, capabilities and limitations of additive technology	ologies.					
2. Develop 3D co	mponents using various software and 3D printing tools.	-					
3. Construct cust	omized extrusion-based 3D printers for specific choice of	applications.					
4. Explore the cap	pabilities and design freedom provided by 3D printing tec	hnologies.					
5. Recognize the	post processing concept for additive Manufacturing.						
Modulo:1 Intro	duction to Additive Manufacturing	6 hours					
Nodule:1 Intro	duction to Additive Manufacturing						
Additive Manufac	cturing Terminologies – Concepts of Layer Manufac	turing – Additive					
Scenarios – Role	of AM in Product Development - Applications of AM	I in Automotive					
Aerospace and B	io-medical	in Automotive,					
Module:2 Plan	ning for Additive Manufacturing	6 hours					
3D Model Data C	Creation, Concept of Reverse Engineering, Data collection	n. Modeling for					
printing – File For	rmats: STL, OBJ, AMF, 3MF, CLI – STL file Errors, Corre	ection and					
Printability Analys	sis – Optimization of Part Orientation and Support Structu	ure Generation -					
Types of Support	s – Slicing Parameters – Tool Path Generation.						
Module:3 Addi	tive Manufacturing Technologies	6 hours					
Extrusion Based	Technologies – FDM, Stereolithography and other Phote	o polymerization					
based lechnolog	ies – SLA & DLP, Laser Sintering – SLS & DMLS, Laser	and Electron					
Beam Powder Be	d Fusion Technologies – SLIVAEBM, Wire and Powder I	based Direct					
Module:4 Post	-Processing for Additive Manufacturing	6 hours					
Support Structure	Processing for Additive Manuacturing	reatments –					
Polymer & Metal	Heat Treatment – HIP & Residual Stress Relieving, UV	Curing – Cleaning					
& de-powdering -	- Machining – Surface Coating & Infiltration.	earing creaning					
Module:5 Desi	gn for Additive Manufacturing	6 hours					
General Guidelin	es – Exploring Unique Capabilities and Design Freedom	– Complex					
Geometries – Cu	stomized Geometries – Part Consolidation – Tooling Des	sign – Design					
Guidelines for Pri	nting Polymer parts, Metal parts, Ceramic and Sand mou	uld – Functionality					
based DFAM – C	ase Studies.						
Module:6 AM S	Simulation and Characterization Techniques	7 hours					
I raditional analys	sis – Microstructural Analysis – Parameter Optimization –	- Failure Detection					
- Wetting Benavi	our – Balling Effect – Stress Analysis – Melt Pool Life – F	Heat transfer					
Modulo:7 Mate	rials for AM	6 hours					
Selection of cand	idate materials for Additive Manufacturing, Nature of Pol						
environment Am	thermonlastics and thermosetting polymers. Types of D	olymerizations at					
3D printing enviro	pnment. Properties of Polymers based on FDM. SI A/DI F	P. and SLS					
Degradation of P	olymers after printing. Metal and Ceramic Powders for A	M, Composites.					
Functionally Grad	led Materials (FGM's) for 3D printing.	, v ,					
Module:8 Cont	emporary Issues	2 hours					

			Total Lo	cture hours:	45 hours
				cture nours.	45 11001 5
Tex	t Books				
1.	Andreas Gebhardt, Jan-Steffen H	ötter, Additive	Manufac	turing: 3D Prin	ting for
	Prototyping and Manufacturing, 2	016, Hanser F	ublishers	, Munich.	
2.	Olaf Diegel, Axel Nordin, Damien	Motte, A Prac	tical Guid	e to Design for	r Additive
	Manufacturing, 2020, Springer Na	ature Singapor	e Pte Ltd		
3.	C P Paul, A N Jinoop, Additive N	lanufacturing -	- Pricniple	es, technologie	es and
D (Applications, 2021, Mc Graw Hill	Publication.			
Ret					L 0047 0D
1.	Ben Redwood, Filemon Schoffer,	Brian Garret,	The 3D P	rinting Handbo	ook, 2017, 3D
2	Srivatsan T.S. Sudarshan T.S.	Additive man	ufacturing	: innovations	advances and
2.	applications 2016 CRC Press		alaotanny	<i>j.</i> IIII ovations,	
Мо	de of Evaluation: CAT, Assignm	ent, Quiz, FA	T. Lab		
Ind	icative Experiments	, , ,	,		
1	3D CAD model creation by Rever	se Engineering] .		
2	Printing and dimensional evaluati	on of simple p	art with or	ne material / or	ne colour –
	FDM.				
3	Printing and dimensional evaluation	on of simple p	art with tw	vo material / tw	o colour – FDM.
4	Printing and dimensional evaluation	on of simple pa	art by SLS	5.	
5	Printing and evaluation of simple	part by SLA/D	_P.		
6	Evaluation of print orientation (x, y	, z) effects or	ASTM st	andard Tensile	e Test specimen
	using FDM				
7	Evaluation of print orientation (x, y using SLS	/, z) effects on	ASTM st	andard Tensile	e Test specimen
8	Evaluation of print orientation (x,	/, z) effects or	ASTM st	andard Tensile	e Test specimen
	using SLA				
9	Comparing the surface quality of t FDM.	he parts printe	ed at diffe	rent print orien	tation using
10	Finding optimum depth to diamete	er ratio to print	holes usi	ng FDM.	
11	Finding optimum width to length r	atio to print sq	uare bear	ns using FDM.	
12	Demo on SLM.				
			Total Lab	oratory Hours	30 hours
Тех	t Book				
1.	Lab Manual prepared by course fa	aculty member	S		
Moo	de of assessment: Continuous asse	essment, FAT,	Oral exa	mination and o	others
Rec	commended by Board of Studies	09-03-2022	1		
Арр	proved by Academic Council	No. 65	Date	17-03-2022	

BMEE409E Computational Fluid Dynamics L T P						
		2	0	2	3	
Pre-requisite Nil S	Sylla	abus	s ve	rsio	'n	
		1	.0			
Course Objectives						
 To familiarise students with the mathematical representation of governing fluid flow and heat transfer problems. 	ng e	equa	ation	is fo	r	
2. To equip the students to address complex fluid flow and heat transfer p	robl	lems	s by			
approximating the governing equations through Finite difference and fir	nite	volu	ıme			
discretization methods.						
3. To enable students to understand different types of grids and their suita	bilit	y foi	r diff	erer	nt	
engineering applications.						
4. Develop the students to use appropriate turbulence model for solving er	igin	een	ng			
Course Outcomes						
At the end of the course, the student will be able to						
1. Apply mathematical and engineering fundamentals to recognize the	typ	e of	flo	w ai	nd	
arrive at equations governing the flow.	ohr			tion	<u> </u>	
3 Generate appropriate type of grids required for solving engineering prob	lem	aic e Is	qua		з.	
4. Solve governing equations using finite difference and finite volume appr	oac	hes.				
5. Apply suitable turbulence model for the analysis of real world engineering	ig p	robl	ems	-		
6. Solve fluid flow and heat transfer problems using commercial CFD tools						
		-				
Module:1 Fundamental of Fluid Dynamics and Governing Equations			6	hοι	Jrs	
Introduction and fundamentals of CFD, Classification of flows, Overview an	d In	npoi	tand	ce o	f	
CFD, Physical verses Numerical Techniques, Applications of CFD	rav	00	4 0,		~~	
Transport Equations Simplified Mathematical models – Incompressible – It	nyisi	cid -	- Po	tont	55 tial	
- Creeping flow, Characteristics of PDE: Elliptic, Parabolic and Hyperbolic,	1110	oiu	10			
Module:2 Solution of Linear Algebraic Equations			4	hou	Jrs	
Direct Methods - Elimination methods, Tri-diagonal Algorithm, LU Decor	npo	sitio	n m	etho	od,	
Error Analysis. Iteration Methods - Point iterative/block iterative metho	ds,	Ga	uss	Sei	del	
iteration (concept of central coefficient and residue, Success over Relax	katio	on)	and	oth	er	
			_			
Module:3 Grid Generation			3	hοι	Jrs	
Overview or mesh generation, Structured and Unstructured meshes, Gu	liae	iine	on	mes	۶N	
Module:4 Finite Difference Method and Discretization			6	hoi	irs	
Comparison of finite difference and finite volume techniques. Converger	ICE	Co	nsis	tend		
Error and Stability. Accuracy. Boundary conditions. CFD model formulation		00	11010		<i>.</i> ,	
Finite Difference Method: Taylor series - Forward, Backward and C	ent	ral	diffe	erend	се	
schemes, One Dimension and Two Dimension FDM Problems - Explicit, In	nplio	cit a	nd S	Sem	i-	
Implicit schemes.						
Module:5 Finite Volume Method			3	hou	ırs	
Integral form of Discretization – Steady and Transient One and Two-dimens	sion:	al d	ttus	ion.		
ropenies of discretization schemes – Conservativeness, boundedness an transportiveness	u					
Convection and Diffusion: Central difference, upwind and QUICK schemes						
Module:6 Solution Techniques for Incompressible Flows			3	hοι	urs	
Pressure-Velocity coupling, collocated and staggered grid arrangements	, ve	eloci	ty-s	trea	m	
function approach, MAC algorithm, SIMPLE and PIMPLE algorithms.			-			
Module:7 Turbulence Modelling			3	hou	rs	

Intro	Introduction – Types of Turbulence modelling – Reynolds Time Averaging, Boussinesq						
app	roach -	One equation and Two eq	uation models,	Introduction	n to LES, DES a	nd DNS.	
Mod	dule:8	Contemporary Issues				2 hours	
				Total L	ecture hours:	30 hours	
Tex	t Book						
1.	 Joel H. Ferziger, Milovan Peric, Robert L. Street, Computational Methods for Fluid Dynamics, 2020, 4th Edition, Springer Publisher. 						
Ref	erence	Books					
1.	Verste Finite	eg H.K, Malalasekara W, A Volume Method, 2011, 3 rd E	n Introduction Edition, Pearso	to Computa n.	tional Fluid Dyna	amics – The	
2.	John E Editior) Anderson, Computational , McGraw Hill 2012.	l Fluid Dynamic	cs – The Ba	sics with Applic	ations, 1st	
3.	Muralio Narosa	dhar K, Sundararajan T, (a Publications, New Delhi.	Computational	Fluid Flow	and Heat Tran	sfer, 2014,	
4.	Chung	T.J, 2014, Computational I	-luid Dynamics	, Cambridge	e University Pres	SS.	
Moc	de of Ev	aluation: CAT, written assig	gnment, Quiz, I	FAT.			
Indi	cative	Experiments				-	
1.	Mode	ling of simple and Complex	geometries			2 hours	
2.	Mesh	ing of simple and complex	geometries			2 hours	
3.	Pre-p mode	rocessing : Case setup and I	analysing for a	already mes	h generated	2 hours	
4.	Stead	ly state temperature distribu	ution in rectang	ular plate		2 hours	
5.	Flow	in a circular pipe – Laminar	and Turbulent			2 hours	
6.	Flow	over an air foil – Laminar ai	nd Turbulent flo	W		2 hours	
7.	Diffus	er for a hydro-power turbin	e			2 hours	
8.	Two	phase flow in a pipe				2 hours	
9.	Supe	rsonic flow past a wedge in	a channel			2 hours	
10.	Exerc	ise Problem (for each stude	ent – different e	exercise) : P	re-	2 hours	
	proce	ssing, solver and post-proc	essing				
				i otal Labo	oratory Hours:	30 hours	
Moc	te of as	sessment: Viva-voce exam	ination, Lab pe	rtormance,	FAI.		
Kec	commer	nded by Board of Studies	09-03-2022	Dete	47.00.0000		
Арр	roved t	by Academic Council	10.65	Date	17-03-2022		

BMEE391J Technical An	swers to Real Pro	oblems Pr	oject	L	T	P	C
Pre-requisite NIL			-	Svlla	abus	versi	ы ion
				- Oyin	1.0)	
Course Objectives:							
1. To gain an understanding of	real-life issues fac	ed by soc	iety.				
2. To study appropriate technologies in order to find a solution to real life issues.							
3. Students will design system components intended to solve a real-life issue.							
Course Outcome:							
1. Identify real life issue(s) face	d by society.						
2. Apply appropriate technolog	es to suggest a so	olution to tl	he identifi	ed iss	ue(s).		
3. Design the related system co	omponents/proces	ses intend	ded to pro	vide a	solut	ion to	c
the identified issue(s).							
Module Content							
Students are expected to perform a	survey and intera	ct with soc	ciety to fin	d out f	he re	al life)
issues.	2						
Logical steps with the application of	appropriate techn	ologies sh	nould be s	ugges	ted to	o solv	/e
the identified issues.		-					
Subsequently the student should de	sign the related s	/stem com	nponents	or pro	cesse	s wh	ich
is intended to provide the solution to	the identified real	-life issues	S.				
General Guidelines:							
1. Identification of real-life prob	lems						
2. Field visits can be arranged	by the faculty cond	cerned	- /-l: ff - n - n	د مازم ماس	(line)		
 Maximum of 3 students can Minimum of eight hours on s 	orm a team (within alf-managed team	n the same	e/aineren	t aiscip	oline)		
5 Appropriate scientific method	hologies to be utiliz	ractivity zed to solv	e the ide	ntified	issue		
6. Solution should be in the for	n of fabrication/co	ding/mode	elling/proc	luct de	esign/	proce	ess
design/relevant scientific me	thodology(ies)	0	51		0		
Consolidated report to be su	bmitted for assess	ment					
8. Participation, involvement ar	nd contribution in g	roup discu	ussions d	uring t	he co	ntact	
hours will be used as the mo	dalities for the cor	ntinuous a	ssessme	nt of th	e the	ory	
9 Project outcome to be evaluate	ated in terms of te	chnical ec	onomical	socia			
environmental, political and	demographic feas	ibilitv		, 30012	,		
10. Contribution of each group n	nember to be asse	ssed					
Mode of Evaluation: Evaluation inv	volves periodic rev	iews by th	e faculty	with w	hom	the	
student has registered. Assessment	on the project – N	lark weigh	ntage of 2	0:30:5	0 – R	epor	t to
be submitted, presentation and proj	ect reviews						
Recommended by Board of Studies	09-03-2022						
Approved by Academic Council	No 65	Date	17-03-20)22			

BMEE392J	Desi	gn Project			L	T	P	C
Pre-requisite	NIL				Svlla	abus	versi	ion
						1.0)	
Course Objective	es:							
1. Students v	1. Students will be able to upgrade a prototype to a design prototype.							
2. Describe and demonstrate the techniques and skills necessary for the project.								
3. Acquire knowledge and better understanding of design systems.								
Course Outcome	:							
 Develop new skills and demonstrate the ability to upgrade a prototype to a design prototype or working model. Utilize the techniques, skills, and modern tools necessary for the project. Synthesize knowledge and use insight and creativity to better understand and improve design systems. Module Content Students are expected to develop new skills and demonstrate the ability to develop prototypes to design prototype or working models related to an engineering product or a set of the set of t								
process.					01			
Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Mark weightage of 20:30:50 – Report to be submitted, presentation and project reviews.								
Recommended by	/ Board of Studies	09-03-202	2					
Approved by Acad	demic Council	No. 65	Date	17-03-20)22			

BMEE393J	L	aboratory Proje	ct		L	T	Р	C
Pro-roquisito	NII	, , , , , , , , , , , , , , , , , , ,			0 Svili	0 abus	0 Vors	3
Fie-iequisite					Syn	abus 1.()	
Course Objective	es:						<u> </u>	
 The student will be able to conduct experiments on the concepts already learnt. Analyse experimental data. Present the results with appropriate interpretation. 								
Course Outcome):							
 Design and conduct experiments in order to gain hands-on experience on the concepts already studied. Analyse and interpret experimental data. Write clear and concise technical reports and research articles 								
Module Content								
Students are expe	ected to perform ex	periments and g	ain hands	-on experi	ience	on th	e the	ory
courses they have	e already studied o	r registered in the	e ongoing	semester.	The	theory	y cou	irse
registered is not	expected to have	laboratory comp	onent and	d the stud	lent is	s exp	ectec	to t
register with the s	same faculty who h	nandled the theo	ry course.	This is m	nostly	appli	cable	ε to
the elective course	es. The nature of th	e laboratory expe	eriments is	depende	d on t	he co	urse.	
Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Mark weightage of 20:30:50 – Report to be submitted, presentation and project reviews.								
Recommended by	/ Board of Studies	09-03-2022						
Approved by Acad	demic Council	No. 65	Date	17-03-20	22			

BMEE394J	Produc	ct Development	Project		L T		P	C
Pre-requisite	NII	-	-		Svila	U abus	U Vers	3 ion
					Oyin	1.0)	
Course Objective	es:							
1. Studen	nts will be able to tra	anslate a prototvo	e to a use	ful produc	:t.			
 Apply relevant codes and standards during product development. 								
3. The stu	udent will be able to	present his resu	Its by mea	ins of clea	r tech	nical	repor	ts.
		•	,				•	
Course Outcome):							
1. Demor	nstrate the ability to	translate the dev	eloped pr	ototype/w	orking	mod	el to	а
viable	product useful to so	ociety/industry.						
Apply t	he appropriate cod	es/regulations/sta	andards d	uring prod	uct de	velop	ment	i.
3. Write c	clear and concise te	chnical reports a	nd resear	ch articles				
Module Content								
Students are expe	ected to translate th	e developed prot	otypes / w	orking mo	dels i	nto a	prod	uct
which has applica	tion to society or inc	dustry.						
Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Mark weightage of 20:30:50 – Report to be submitted, presentation and project reviews								
Recommended by	/ Board of Studies	09-03-2022						
Approved by Acad	demic Council	No.65	Date	17-03-20	22			

BMEE395J	Computer Project					T	P	C 3
Pre-requisite	NIL				Syll	abus	vers	sion
•						1.	0	
Course Objective	es:							
1. Students will be able to analyse complex engineering processes.								
2. Describe the applications and limitations of a given engineering process.								
3. Present the results in written reports and oral presentations.								
Course Outcome):							
1. Utilize programming skills/modelling to analyse complex engineering								
2. Demor	nstrate the ability to evalu	uate the app	olicability a	and limitati	ons o	f the	giver	า
engine	ering process.							
3. Comm	unicate effectively throug	gh written re	eports, ora	l presenta	tions,	and		
discus	sion.							
Module Content								
Students are ex engineering proc limitations of the s	pected to use progran esses. The student sh aid engineering process	nming skills nould be a es.	s or mod ble to ev	elling to /aluate th	analy: e ap	se co plicati	omple ion a	ex and
Mode of Evaluate student has registed be submitted, pre-	Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Mark weightage of 20:30:50 – Report to be submitted, presentation and project reviews.							
Recommended by	Board of Studies	09-03-202	2					
Approved by Acad	demic Council	No.65	Date	17-03-20	22			

BMEE396J		Reading Course	ourse		L T 0 0			C 3		
Pre-requisite	NIL				Syll	vers	sion			
-					-	1.0	0			
Course Objective	es:									
1. The student will be able to analyse and interpret published literature for information										
pertaining to niche areas.										
2. Scrutinize	technical literature	and arrive at con	clusions.							
Use insight	t and creativity for a	a better understa	nding of th	e domain	of inte	erest.				
Course Outcome	.									
1 Retrieve	analyse and interr	oret nublished lit	erature/ho	oks provi	dina i	nform	nation	<u>ר</u>		
related to r	niche areas/focuse	d domains			ung i		autor	•		
2 Examine te	echnical literature	resolve ambiguity	, and deve	on conclu	usions					
3 Synthesize	knowledge and us	se insight and cre	ativity to h	ofter und	oretan	,. nd tha	dom	ain		
of interest					cistari		uon			
Module Content										
This is oriented t	owards reading pu	ublished literature	e or book	s related	to nic	he a	reas	or		
focussed domains	s under the guidanc	e of a faculty.								
		· · · ·	·	6 10						
Mode of Evaluati	on: Evaluation invo	olves periodic rev	views by tr	le faculty	with w	nom i	the			
student has regist	ered. Assessment	on the project – N	lark weigi	ntage of 20	0:30:5	0 – R	epor	t to		
be submitted, pres	sentation and proje	ct reviews.								
Recommended by	Board of Studies	09-03-2022								
Approved by Academic Council No.65 Date 17-03-2022										

BMEE397J	Spo	Special Project				T	P	C		
Pre-requisite	NIL	-			U Svll	vers	່ ວ sion			
					• • • • •	1.0)			
Course Objective	es:									
1. Students will be able to identify and solve problems in a time-bound manner.										
2. Describe r	2. Describe major approaches and findings in the area of interest.									
3. Present th	e results in a clear and	concise man	ner.							
0										
):							!		
	y, formulate, and sol	ve problems	using a	opropriate	e intor	matic	on ai	าต		
approache	es in a time-bound man	ner.								
2. To demon	istrate an understandi	ng of major	approact	nes, conc	epts,	and	curre	nt		
research f	indings in the area of in	terest.								
3. Write cle	ar and concise re	search artic	cles for	publication	on in	CO	nfere	nce		
proceeding	gs/peer-reviewed journa	als.								
Module Content	<u> </u>			•				<u> </u>		
This is an open-e	ended course in which	the student	is expect	ed to wo	rk on	a tim	e bo	und		
research project	under the supervision (of a faculty.	The result	may be	a tang	gible of	outpu	itin		
terms of publicati	on of research articles	in a confere	ence proce	eaing or	in a p	beer-r	eviev	ved		
Scopus indexed ju	Jumai.									
Mode of Evaluat	tion: Evaluation involv	ves periodic	roviows h	v the fac	ulty w	ith w	hom	tho		
	torod Accossment on	the project	Mark wa	iahtaga a	f 20.2		non	viact		
student has regis	itted procentation and	ne project –		igniage o	1 20.5	0.50 -	– pro	jeci		
report to be submitted, presentation and project reviews.										
Recommended by Board of Studies 09-03-2022										
Approved by Acad	demic Council	No. 65	Date	17-03-20)22					

BMEE398J	S	imulation Proje	L	T 0	P	C 3				
Pre-requisite	NIL				Syll	vers	ion			
•						1.0)			
Course Objective	es:									
1. Students will be able to simulate a real system.										
Identify the variables which affect the system.										
3. Describe t	he performance of	a real system.								
Course Outeema										
		imulate and ariti		vaa tha u	vorking	n of a	. roo			
T. Demonstra	ate the ability to s	inulate and chu	cally anal	yse the v	vorking	у 01 а	a rea	d		
system.										
2. Identify an	a study the differen	t variables which	affect the	system e	labora	itely.				
3. Evaluate ti	ne impact and perfo	ormance of the re	al system.							
Module Content										
The student is exi	pected to simulate	and critically ana	lvse the w	orkina of	a real	svste	em. F	₹ole		
of different variab	oles which affect th	ne system has to	be studi	ed extens	sively	such	that	the		
impact of each st	ep in the process i	s understood, the	ereby the	performa	nce of	ⁱ each	n step	o of		
the engineering p	rocess is evaluated	•	•	•			•			
Mode of Evaluation: Evaluation involves periodic reviews by the faculty with whom the student has registered. Assessment on the project – Mark weightage of 20:30:50 – project report to be submitted, presentation and project reviews.										
Recommended by Studies	Board of	09-03-2022								
Approved by Acad	demic Council	No. 65	No. 65 Date 17-03-2022							

BMEE399J	Summ	ummer Industrial Internship					P	C
Pre-requisite	NIL		Svllabus version					
						1.0)	
Course Objective	es:							
1. The cours	e is designed so as	to expose the st	udents to	industry e	enviror	nment	and	to
take up or	n-site assignment a	s trainees or inte	ms.					
Course Outcome):							
1. Demonstra	ate professional and	d ethical responsi	bility.					
2. Understan	nd the impact of eng	ineering solution	s in a gloł	bal, econo	mic, e	nviror	nmen	tal
and societ	tal context.							
Develop the	ne ability to engage	in research and	o involve	in life-long	g learn	ing.		
4. Comprehe	end contemporary is	sues.			-	•		
Module Content								
Four weeks of wo	ork at industry site.		·					
Supervised by an	expert at the indust	try.						
		,						
Mode of Evaluati	ion: Internship Rep	ort, Presentation	and Proje	ect Review	1			
Recommended by Board of Studies 09-03-2022								
Approved by Acad	demic Council	No. 65 Date 17-03-2022						

BMEE497J	Project - I		Т	Ρ	С
	Project - I	0	0	0	3
Pre-requisite	NIL	Syll	abus	vers	ion
		10			

Course Objectives:

To provide sufficient hands-on learning experience related to the design, development and analysis of suitable product / process so as to enhance the technical skill sets in the chosen field.

Course Outcome:

- 1. Demonstrate professional and ethical responsibility.
- 2. Evaluate evidence to determine and implement best practice.
- 3. Mentor and support peers to achieve excellence in practice of the discipline.
- 4. Work in multi-disciplinary teams and provide solutions to problems that arise in multidisciplinary work.

Module Content

Project may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities.

Can be individual work or a group project, with a maximum of 3 students.

In case of group projects, the individual project report of each student should specify the individual's contribution to the group project.

Carried out inside or outside the university, in any relevant industry or research institution.

Publications in the peer reviewed journals / International Conferences will be an added advantage.

Mode	of	Evaluation:	Assessment	on	the	project	-	project	report	to	be	submitted,
presentation and project reviews												

Recommended by Board of Studies	09-03-2022		
Approved by Academic Council	No. 65	Date	17-03-2022

BMEE498J	BMEE498J Project – II / Internship						P 0	C 5	
Pre-requisite	NIL		Syll	abus	vers	ion			
•		1.0							
Course Objective	es:								
To provide suffici	ent hands-on learning	g experience r	elated to	the desig	n, dev	elopn	nent a	and	
analysis of suitable product / process so as to enhance the technical skill sets in the chosen									
field.									
Course Outcome):								
1. Formulate	specific problem st	tatements for	well-defir	ned real	life pi	robler	ns		
with reaso	onable assumptions a	nd constraints							
2. Perform lit	erature search and / c	or patent searc	h in the ar	ea of inte	rest.				
3. Conduct e	xperiments / Design a	and Analysis /	solution ite	erations a	nd doo	cumer	nt the	;	
results.									
4. Perform er	rror analysis / benchm	arking / costing	g.						
5. Synthesize	e the results and arrive	e at scientific c	onclusion	s / produc	ts / so	lution.			
6. Document	the results in the forn	n of technical r	eport / pre	sentation					
Module Content									
 Project may analysis, prot data, software 	be a theoretical ar otype design, fabrica development, applied	nalysis, mode ation of new e d research and	ling & sin equipment I any othe	mulation, , correlat r related a	expei ion an activitie	riment d ana es.	tatior alysis	۱& Sof	
2. Project can be	e for one or two seme	esters based o	n the com	pletion of	requir	ed nu	umbe	r of	
3. Can be individ	lual work or a group p	roiect. with a n	naximum o	of 3 stude	nts.				
4. In case of grou	up projects, the individ	dual project rep	port of eac	ch student	shoul	d spe	cify t	he	
individual's co	ntribution to the group	o project.							
5. Carried out i	nside or outside the	e university, i	n any re	levant in	dustry	or r	esea	rch	
Institution.	the peer reviewed in	urnale / Intorn	ational Co	nforoncos	will b	0 00 <i>0</i>	oddor	ч	
advantage.				merences			auuei	L	
Mode of Evaluation: : Assessment on the project - project report to be submitted, presentation and project reviews.									
Recommended by	Board of Studies	09-03-2022							
Approved by Acad	demic Council	No. 65	Date	17-03-20	022				