

SCHOOL OF MECHANICAL ENGINEERING

B.Tech Mechanical Engineering Specialization in Manufacturing Engineering (BMM)

Curriculum (2021-2022 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

• Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

- World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.
- **Cutting edge Research:** An innovation ecosystem to extend knowledge and solve critical problems.
- Impactful People: Happy, accountable, caring and impactful workforce and students.
- Rewarding Co-Creations: Active collaboration with national & international industries
 & universities for productivity and economic development.
- Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

To be a leader in imparting world class education in Mechanical Engineering, leading to nurturing of scientists and technologists of highest caliber who would engage in sustainable development of the globe.

MISSION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

- To create and maintain an environment for Excellence in Instruction, Learning and Applied Research in the area of Mechanical and allied disciplines.
- To equip our students with necessary knowledge and skills for higher education / employment.
- To meet the social demands.

B.Tech Mechanical Engineering Specialization in Manufacturing Engineering

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.
- Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies in engineering or management.
- 6. Graduates will pursue career paths in teaching or research.

B.Tech Mechanical Engineering

Specialization in Manufacturing Engineering

PROGRAMME OUTCOMES (POs)

- PO_1: Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PO_2: Problem Analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- **PO_3**: Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO_4: Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions for complex problems
- PO_5: Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- PO_6: The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and

the consequent responsibilities relevant to the professional engineering practice.

- PO_7: Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO_8**: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO_9**: Individual and Teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO_10**: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO_11: Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO_12: Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

B.Tech Mechanical Engineering

Specialization in Manufacturing Engineering

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of B. Tech. Mechanical Engineering Specialization in Manufacturing Engineering programme, graduates will be able to

- **PSO_1**: Model, design and analyse mechanical systems and components taking into account social, economic and environmental implications
- **PSO_2**: Realize components and products using appropriate materials and machine tools
- **PSO_3**: Work professionally in Manufacturing and related systems

Bachelor of Technology in Mechanical Engineering Specialisation in Manufacturing Engineering School of Mechanical Engineering

Programme Credit Structure		С	redit	BENG102P BSTS101P	Technical Report Writing Quantitative Skills Practice I	0 0	0 0	2 3	1 1.5
Foundation Core Courses			56	BSTS102P	Quantitative Skills Practice II	0	0	3	1.5
Basic Sciences and Mathematics			24	BSTS201P	Qualitative Skills Practice I	0	0	3	1.5
Engineering Sciences			17	BSTS202P	Qualitative Skills Practice II	ñ	ñ	3	15
Humanities Social Sciences and			••	BEI E2001	Eoroign Languago	2	0	0	2
Management (HSM)			15			2	0	0	2
Dissipling linked Engineering Science Course	~		10	DH9M200L		3	0	0	3
Discipline-linked Engineering Science Course	S		13						
			49	Discipline-	linked Engineering Science Cour	ses	5		13
Discipline Elective Courses			21		3 3 3 1 1				
Open Elective Courses			03	BMEE209L	Materials Science and Engineer-	3	0	0	3
Project and Internship			09		ing				
Total Graded Credit Requirement			151	BMEE209P	Materials Science and Engineer-	0	0	2	1
Non-Graded Credit Requirement			11	DWEELEOOI	ing Lab	U	U	2	•
•					Engineering Optimization	S	4	Δ	2
						2	4	0	0
Basic Sciences and Mathematics			24	BIMEE407L	Artificial Intelligence	2		0	3
L	. Т	F	Р С	BMEE308L	Control Systems	2	0	0	2
BPHY101L Engineering Physics 3	0	0) 3	BMEE308P	Microcontrollers and Interfacing	0	0	2	1
BPHY101P Engineering Physics Lab 0	0	2	2 1		Lab				
BCHY101L Engineering Chemistry 3	0	0) 3						
BCHY101P Engineering Chemistry Lab 0	0		> 1	Dissipling	Coro Coursos				10
BMAT1011 Calculus 3	0) 3 3	Discipline	core courses				49
BMAT101P Calculus Lab) U	BMEE2021	Mechanics of Solids	S	Λ	Λ	3
DMAT102 Differential Equations and 2	- U	2	<u> </u>		Mechanics of Solida Lab	0	0	2	4
BINATIOZE Differential Equations and 3		U) 4	DIVIEE202F		0	1	2	
Iransforms				BMEE203L	Engineering Inermodynamics	2		0	3
BMAT201L Complex Variables and Linear 3	1	C) 4	BMEE204L	Fluid Mechanics and Machines	3	0	0	3
Algebra				BMEE204P	Fluid Mechanics and Machines	0	0	2	1
BMAT202L Probability and Statistics 3	0) () 3		Lab				
BMAT202P Probability and Statistics Lab 0	0	2	2 1	BMEE206P	Machine Drawing Lab	0	0	4	2
				BMEE207L	Kinematics and Dynamics of	3	0	0	3
Engineering Sciences			17		Machines				
Engineering Sciences			17	BMEE207P	Kinematics and Dynamics of	0	0	2	1
BMEE102P Engineering Design Visualisa	0		1 2		Machines Lab				
tion Leb	0	4	• 2	BMEE210	Mechatronics and Measurement	3	0	0	3
IUII LAD			、	DMELEIOE	Systems	0	Ŭ	Ŭ	U
BEEETUTL Basic Electrical Engineering 2	0) 2		Mochatronics and Moasuromont	Δ	Δ	2	1
BEEE101P Basic Electrical Engineering Lab 0	0	2	2 1	DIVILLZIU	Systema Lab	0	0	2	1
BECE101L Basic Electronics 2	0) () 2		Systems Lab	~		~	
BECE101P Basic Electronics Lab 0	0	2	2 1	BIVIEE301L	Design of Machine Elements	3		0	4
BMEE201L Engineering Mechanics 2	1	C) 3	BMEE302L	Metal Casting and Welding	3	0	0	3
BCSE101E Computer Programming: Python 1	0	4	13	BMEE302P	Metal Casting and Welding Lab	0	0	2	1
BCSE103E Computer Programming: Java 1	0	4	13	BMEE303L	Thermal Engineering Systems	3	0	0	3
				BMEE303P	Thermal Engineering Systems	0	0	2	1
				BMEE304	Metal Forming and Machining	3	0	٥	3
Humanities, Social Sciences and Management	t		15	BMEE304P	Metal Forming and Machining	0	ñ	2	1
				DIVILLUU		0	0	2	1
BENG101N Effective English Communica- 0	0	4	12		Lau Computer Aided Desire and E	~	~	^	0
tion (NGC)				BIVIEE306L	Computer Aldea Design and FI-	3	U	U	კ
BENG101L Technical English Communica- 2	0	0) 2		nite Element Analysis	-	~	-	
tion				BMEE306P	Computer Aided Design and Fi-	0	0	2	1
BENG101P Technical English Communica- 0	0	2	2 1		nite Element Analysis Lab				
tion Lab	0	-	•••						

03

BMEE401L	Computer Integrated Manufac-	3	0	0	3
BMEE401P	Computer Integrated Manufac- turing Lab	0	0	2	1
BMEE402L	Heat and Mass Transfer	3	0	0	3
BMEE402P	Heat and Mass Transfer Lab	ñ	ñ	ŝ	1
		U	U	2	I
Discipline E	Elective Courses				21
BMEE212L	Quality Control and Improve- ment	3	0	0	3
BMEE305L	Manufacturing Planning and Control	3	0	0	3
BMEE307L	Product Design and Develop- ment	3	0	0	3
BMEE309L	Lean Manufacturing	3	0	0	3
BMEE310	Supply Chain Management	3	0	0	3
BMEE316E	Industrial Robotics	3	Ô	2	4
BMEE310E	Advanced Material Characteria	3	ñ	2	1
DIVILLUTUL	zation Methods	0	0	2	4
BMEE403L	Design of Jigs, Fixtures and Press Tools	3	0	0	3
BMEE406E	Advanced Manufacturing Pro-	3	0	2	4
	cess				
BMEE410L	Industrial Revolution 4.0	3	0	0	3
BMEE412E	Manufacturing Systems Design	3	0	2	4

Open Elective Courses

Engineering Disciplines | Projects | Sciences | Humanities | Social Sciences | Liberal Arts | Economics | Finance| Entrepreneurship | Management | Skills | Reading

Project and Internship9BMEE399JSummer Industrial Internship1

BMEE497J	Project-I	3
BMEE498J	Project-II / Internship	5
BMEE499J	One Semester Internship	14
Non-Gradeo	11	
BMEE101N	Introduction to Engineering	1
BSSC101N	Essence of Traditional Knowl- edge	2
BSSC102N	Indian Constitution	2
BEXC100N	Extracurricular Activities	2
BCHY102N	Environmental Sciences	2
BHUM101N	Ethics and Values	2

BCHY101L	Engineering Chemistry		т	n				
		L	1	P	C			
		3	0	0	3			
Pre-requisite	NIL S	yllak	ous y	versi	on			
			1.0					
Course Objecti	ves							
1. To enable st	udents to have fundamental understanding of the basic cond	cepts	s of o	differ	ent			
disciplines o	t chemistry.							
2. To provide a	avenues for learning advanced concepts from school to unive	ersity	/ £1::	_				
3. To empowel	r students with emerging concepts in applied chemistry to be	use	tui ir	ו				
addressing s	SOCIEI al needs		ooto					
4. TO Integrate	analytical and computational ability with experimental skills		eale					
5 To offer one	5 To offer opportunities to create pathways for solf reliant in terms of knowledge and							
bigher learn	ing	leuy	e ai	u				
1 Understand	the fundamental concepts in organic inorganic physica	l ar	nd a	nalvt	ical			
chemistry	The fundamental concepts in organic, morganic, physica	i, ai	iu a	Πάτγι	icai			
2 Analyze the	principles of applied chemistry in solving the societal issues	:						
3 Apply chem	ical concepts for the advancement of materials	•						
4 Appreciate	the fundamental principles of spectroscopy and the related a	inda	catio	ns.				
5. Desian ne	w materials, energy conversion devices and new pro	otect	ive	coat	tina			
techniques.	, , , , , , , , , , , , , , , , , , ,				5			
Module:1 Che	mical thermodynamics and kinetics			6 ho	urs			
Laws of thermo	dynamics - entropy change (selected processes) – spontane	ity o	fac	hem	ical			
reaction and Gil	obs free energy - heat transfer; Kinetics - Concept of active	tion	ene	rgy a	and			
energy barrier -	Arrhenius equation- effect of catalysts (homo and heterogen	eous	s) —	Enzy	me			
catalysis (Micha	elis-Menten Mechanism).							
Module:2 Met	al complexes and organometallics			6 ho	urs			
Inorganic comp	exes - structure, bonding and application; Organometallic	s —	intro	duct	ion,			
stability, structu	re and applications of metal carbonyls, ferrocene and G	rigna	ard i	reage	ent;			
Metals in biology	/ (haemoglobin, chlorophyll- structure and property).							
Module:3 Org	anic intermediates and reaction transformations			6 ho	urs			
Organic interme	ediates - stability and structure of carbocations, carbanion	ns a	nd ı	radic	als;			
Aromatics (arom	naticity) and heterocycles (3, 4, 5, 6 membered and fused sy	vster	ns);	Orga	inic			
transformations	for making useful drugs for specific disease targets (two	exa	mpl	es) a	and			
dyes (addition, e	limination, substitution and cross coupling reactions).							
Module:4 Ene	rgy devices			6 ho	urs			
Electrochemical	and electrolytic cells – electrode materials with examples (se	emi-	conc	lucto	rs),			
electrode-electro	blyte interface- chemistry of Li ion secondary batteries, supe	rcap	acito	ors; F	uel			
cells: $H_2 O_2$ and	solid oxide fuel cell (SOFC); Solar cells - photovoltaic cell	(sili	con	base	эd),			
photoelectroche	mical cells and dye-sensitized cells.							
Module:5 Fun	ctional materials			/ ho	urs			
Oxides of AB,	AB_2 , ABO_3 type (specific examples); Composites - types	anc	pro	pert	ies;			
Polymers - therr	nosetting and thermoplastic polymers – synthesis and applic		n (I		JN,			
dovices enseifie	to OLEDe: Nano materials introduction bulk to page (and	niiSt	1 y 01 n da	uisp	лау			
devices specific	TO OLEDS, Natio materials – introduction, bulk vs hand (qua	mui	nuc	ns), i	.op-			
	etroscopic diffraction and microscopic techniques			5 60	ure			
Fundamental	oncente in enectroscopic and instrumental techniques	. D.	incir	<u>טוו ט</u> אם י	and			
annlications of I	N-Visible and XRD techniques (numericals): Overview of va	rioue	n icik s too	hnia.				
Such as $\Delta\Delta$	NMR SEM and TEM	nous	5 100	μηγ	100			
Module:7 Indu	ustrial applications			7 ho	urs			

Water purification methods - zeolites, ion-exchange resins and reverse osmosis; Fuels and combustion -LCV, HCV, Bomb calorimeter (numericals), anti-knocking agents); Protective coatings for corrosion control: cathodic and anodic protection - PVD technique; Chemical sensors for environmental monitoring - gas sensors; Overview of computational methodologies: energy minimization and conformational analysis.

Мос	lule:8	Contemporary topics				2 hours			
Gue	st lectu	ires from Industry and, F	Research and De	evelopment O	rganizations				
				Total Le	cture hours:	45 hours			
Tex	<u>tbook</u>								
1.	Theo	dore E. Brown, H Euge	ne, LeMay Brud	ce E. Bursten	, Catherine M	urphy, Patrick			
	Wood	lward, Matthew E. Stoltz	zfus, Chemistry:	The Central	Science, 2017	, 14th edition,			
	Pears	on Publishers, 2017. Uk	Κ						
Refe	erence	Books							
1.	Peter	Vollhardt, Neil Schore,	Organic Chemis	stry: Structure	and Function,	2018, 8th ed.			
	WH Freeman, London								
2.	Atkins	s' Physical Chemistry: I	nternational, 20	18, Eleventh	edition, Oxf	ord University			
	Press	; UK							
3.	Colin	Banwell, Elaine McCasl	h, Fundamental	s for Molecula	r Spectroscop	y, 4th Edition,			
	McGr	aw Hill, US				-			
4.	Solid	State Chemistry and its	Applications, Ar	hthony R. We	st. 2014, 2nd	edition, Wiley,			
	UK.	-	••	•		•			
5.	AngÃ	le Reinders, Pierre	Verlinden, Wilf	ried van Sa	ark, Alexandro	e Freundlich,			
	Photo	voltaic solar energy: Fro	om fundamental	ls to Application	ons, 2017, Wil	ey publishers,			
6.	UK.	0,			, ,	51			
	Lawre	ence S. Brown and Thor	nas Holme, Che	emistry for end	aineerina stude	ents, 2018, 4 th			
	editio	n – Open access versior	, 1	, ,	5 5	, ,			
Mod	e of Ev	aluation: CAT, Written a	ssignment, Qui	z and FAT					
Rec	ommer	nded by Board of	28.06.2021						
Stuc	lies								
App	roved b	y Academic Council	No. 63	Date	23.09.2021				

BCł	HY101P	Enginee	ring Che	mistry Lab		L	Т	Ρ	С
						0	0	2	1
Pre	-requisite	NIL				Sylla	bus	vers	sion
							1	.0	
Cou	irse Objectiv	/e							
To a	apply theoret	ical knowledge gained ir	n the theo	ry course and	get hand	ls-on e	expe	erienc	e of
the	he topics.								
Cou	Irse Outcom	ie :							
At th	he end of the	course the student will b	be able to						
	1. Understa	nd the importance and	hands-on	experience o	n analysi	is of r	neta	lion	s by
	means of	experiments.							
-	2. Get pract	incal experience on syntr		characterizati	on or the	orgar		noiec	ules
.	anu nanu 3 Annly th	eir knowledge in the	iy. Irmodynai	mic functions	kinotic	e an	d ,	nolor	rular
	aeometrie	es through the experime	nte	nic functions	, KINELIC	s an	uı	noiet	Julai
Indi	cative Expe	riments	1.0.						
1.	Thermodyn	amics functions from EN	1F measu	rements : Zinc	- Coppe	er svste	em		
2.	Determinati	ion of reaction rate, orde	r and mol	ecularity of eth	vlacetate	hvdro	olvsi	s	
3.	Colorimetri	c estimation of Ni ²⁺ usi	ing conve	entional and s	smart pho	one d	igita	l-ima	ging
	methods		0		•		•		
4.	Laboratory	scale preparation of imp	ortant dru	ig intermediate	e - para a	iminop	her	ol fo	r the
	synthesis fo	or acetaminophen							
5.	Magnesium	n-sea water activated	cell – E	ffect of salt	concent	ration	on	vol	tage
	generation								
6.	Analysis of	iron in an alloy sample b	y potentic	ometry					
7.	Preparation	of tin oxide by sol- gel	method a	nd its characte	erization				
8.	Size depen	dent colour variation of (Cu ₂ O nano	particles by s	pectropho	otome	ter	_	<u> </u>
9.	Determinati	ion of hardness of wat	er sample	e by complexe	ometric tit	tration	be	efore	and
10	after ion-ex	change process				c ,			
10.	Computatio	nal Optimization of mole	cular geo	metry using A	vogadro s	sottwa	re		
Mar		manti Mada of apacasing	IOI	al Laboratory	/ HOURS	<u>;</u>	<u>su n</u>	ours	
	ie of assessn	others	ni: Contin	uous assessn	ieni / FAI	i / Ura	11		
Rec	ommended b	v Board of Studies	28.06.20	21					
Ann	roved by Aca	ademic Council	No 63	Date	23 09 20	121			
- Uhh	I UVEU DY AUC		140.00	Date	20.00.20				

BPHY101L		Engineering Physics		L	Т	Ρ	С
				3	0	0	3
Pre-requis	ite	12 th of equivalent	Sy	llab	us v	vers	ion
					1.0		
Course Ob	ojectiv	es					
1. To expl	lain th	e dual nature of radiation and matter.					
2. To app	ly Sch	rödinger's equation to solve finite and infinite potential pr	oble	ems	anc	l ap	oly
quantu	m idea	as at the nanoscale.					
3. Io und	erstan	d the Maxwell's equations for electromagnetic waves and	d ap	ply	the		
concep	ots to s	emiconductors for engineering applications.					
Course Ou	itcom	a					
At the end of	of the	course the student will be able to					
1 Compr	ehenc	the phenomenon of waves and electromagnetic waves					
2 Unders	stand t	the principles of quantum mechanics					
3. Apply o	quanti	im mechanical ideas to subatomic domain.					
4. Appred	ciate th	ne fundamental principles of a laser and its types.					
5 Design	n a typ	ical optical fiber communication system using optoelectro	onic	dev	ices		
Module:1	Intro	duction to waves			7	7 ho	urs
Waves on a	a strin	g - Wave equation on a string (derivation) - Harmonic wa	aves	- re	flect	ion	and
transmissio	n of w	vaves at a boundary - Standing waves and their eigenfr	equ	enci	es -	· wa	ves
with dispers	sion -	Superposition of waves and Fourier method (qualitative	e) -	Wa	ve p	back	et -
phase velo	city an	d group velocity.					
Module:2	Elect	romagnetic waves			7	7 ho	urs
Physics of	diverg	ence - gradient and curl - surface and volume integral -	Max	wel	l Eq	uati	ons
(Qualitative	e) - (Continuity equation for current densities - Displa	cem	ent	cu	rren	t -
Electromag	inetic v	wave equation in free space - Plane electromagnetic wa	ives	in f	ree	spa	ce -
Hertz s exp	Flom	nt.				7 ha	
Nood for O		m Mochanics: Idea of Quantization (Planck and Einstein	<u> </u>	Con	nto	n of	foct
(Qualitative		- Broglie hypothesis - justification of Bohr postulate -	. Da	viss	ipio	n ei Geri	mer
experiment	- Wav	e function and probability interpretation - Heisenberg un	cert	aint	v nri	incir	ole -
Gedanken	expe	riment (Heisenberg's microscope) - Schrödinger wa	ve	eau	atio	יין און און און און און און און און און או	ime
dependent	and ti	me independent).				. (-	
Module:4	Appl	ications of quantum mechanics			6	6 ho	urs
Eigenvalue	s and	eigenfunction of particle confined in one dimensional	al b	ox ·	- Ba	asics	s of
nanophysic	:s - Q	uantum confinement and nanostructures - Tunnel effe	ct (d	qual	itativ	/e) a	and
scanning tu	Innelir	g microscope.	-	-		-	
Module:5	Lase	rs			6	i ho	urs
Laser char	acteris	stics - spatial and temporal coherence - Einstein coe	effic	ients	s ar	nd t	heir
significance	e - Pop	pulation inversion - two, three and four level systems - F	Pum	ping	sch	nem	es -
threshold g	jain co	pefficient - Components of a laser - He-Ne, Nd:YAG a	nd (CO_2	lase	ers	and
their engine	ering	applications.					
Module:6	Prop	agation of EM waves in optical fibers				<u>ho</u>	urs
		optical fiber communication system - light propagatio	n tr	nrou	gn tan		- s -
	e angl	e - Numerical apendre - V-parameter - Types of fibe	ng - oqoa		lient	Jatic	лт -
Modula 7	Onto	electronic devices		ουρ	у. Г	5 ho	lire
Introduction	to se	electronic devices amiconductors - direct and indirect bandgan - p.n. junci	tion	80			
and laser d	inde P	Photodetectors: PN and PIN	u011,	50		,3. L	
Module:8	Cont	emporary Topics			2	2 ho	urs
Guest lectu	ires fro	om Industry and, Research and Development Organisation	ons		-		
		Total Lecture hou	rs:		4	5 ho	urs

Text Book(s) H. D. Young and R. A. Freedman, University Physics with Modern Physics, 2020, 15th 1. Edition, Pearson, USA. D. K. Mynbaev and Lowell L. Scheiner, Fiber Optic Communication Technology, 2. 2011, Pearson, USA **Reference Books** H. J. Pain, The Physics of vibrations and waves, 2013, 6th Edition, Wiley Publications, 1. 2. India. R. A. Serway, J. W. Jewett, Jr, Physics for Scientists and Engineers with Modern Physics, 2019, 10th Edition, Cengage Learning, USA. 3. K. Krane, Modern Physics, 2020, 4th Edition, Wiley Edition, India. 4. M.N.O. Sadiku, Principles of Electromagnetics, 2015, 6th Edition, Oxford University 5. Press, India.

W. Silfvast, Laser Fundamentals, 2012, 2nd Edition, Cambridge University Press, India.

Recommended by Board of Studies	26.06.2021							
Approved by Academic Council	No. 63	Date	23.09.2021					

BPH	IY101P	Engir	neering Phys	ics Lab		L	Т	Ρ	С
						0	0	2	1
Pre-	-requisite	12 th or equivalent			S	Syllab	us \	/ers	ion
							1.0		
Cou	rse Objectiv	es							
To a	apply theoretic	cal knowledge gained i	in the theory of	course and	d get hands-o	on exp	perie	ence	of
the t	the topics.								
Cou	rse Outcom	e							
At th	ne end of the	course the student will	be able to						
	1. Comprehe	end the dual nature of i	radiation and	matter by	means of ex	perim	ents	•	
	2. Get hand	ls-on experience on	the topics of	of quantu	im mechanic	cal id	eas	in	the
	laboratory	'. 		1. (.					
, Lucali	3. Apply low	power lasers in optics	and optical fi	ber relate	a experiment	s.			
Indi		iments				مريح ما	14000	<u></u>	<u></u>
1.	10 determin	e the dependence of h	undamental ir	equency	with the lengi	in and	lien	sion	01
2		string using sonometer		oina Hort-	, ovporimont				
2.	To determin	e the wavelength of la			r and diodo l	acore	ofd	iffor	ont
3.	wavelength	s) using diffraction grat	ina			asei s	oru	men	5110
4	To demonst	rate the wave nature o	f electron by	diffraction	through gran	nhite s	hee	t	
5	To determin	e the Planck's constar	nt using electr	oluminesc	cence proces	s	,	•	
6.	To numerica	ally demonstrate the di	screte enerav	levels an	d the wavefu	Inctior	าร บร	sina	
	Schrödinger	equation (e.g., particle	e in a box pro	blem can	be given as a	an ass	signi	men	t)
7.	To determin	e the refractive index of	of a prism usi	ng spectro	meter (angle	e of pr	ism	will I	je je
	given)		·	0		•			
8.	To determin	e the efficiency of a so	olar cell						
9.	To determin	e the acceptance angl	e and numeri	cal apertu	re of an optic	cal fibe	ər		
10.	To demonst	rate the phase velocity	and group ve	elocity (sir	nulation)				
		· · ·		Total Labo	oratory Hours	30	hou	rs	
Mod	le of assessm	ent: Continuous asses	ssment / FAT	/ Oral exa	mination				
Rec	Recommended by Board of Studies 26.06.2021								
App	roved by Aca	demic Council	No. 63	Date	23.09.2021				

BMAT101L	Calculus		L	Τ	Ρ	С		
			3	0	0	3		
Pre-requisite	Nil	Syl	lab	us v	ersi	on		
				1.0				
Course Objecti	ves							
1. To provide the	e requisite and relevant background necessary to undersi	tand	the	othe	۶r			
important engine	eering mathematics courses offered for Engineers and So	cientis	sts.					
2. To introduce i	mportant topics of applied mathematics, namely Single a	nd M	ultiv	/aria	ble			
Calculus and Ve	ctor Calculus etc.		_		_			
3. Enhance to us	se technology to model the physical situations into mathe	matio	cal p	orob	lems	\$,		
experiment, inte	rpret results, and verify conclusions.							
Course Outcon	les							
At the end of the	course the student should be able to:							
1. Apply single v	ariable differentiation and integration to solve applied pro	blem	is in	í –				
engineering and	find the maxima and minima of functions							
2. Evaluate parti	al derivatives, limits, total differentials, Jacobians, Taylor	serie	es a	па				
2 Evoluate mult	olems involving several variables with of without constrain	กเร อโออ	ordi	nata	~			
3. Evaluate mult	iple integrals in Carlesian, Polar, Cylindrical and Spherica		Jiui	late	5.			
5 Understand a	radient directional derivatives divergence curl Green's	Stak	00	and	Gau	66		
Divergence the	reme	SIUM	162	anu	Gau	55		
Module:1 Sin	ale Variable Calculus			\$	t hou	ire		
Differentiation-	Extreme on an Interval Rolle's Theorem and the Me	an v	سادر	a th	AOre	<u></u>		
Increasing and c	lecreasing functions -First derivative test-Second derivati	ive te	st_N	Javi	ma s	and		
Minima-Concavi	ty Integration-Average function value - Area between of		S-10	Voli	imes	tina tina		
solids of revoluti	on	Juive	5	VOIC	mee			
Module:2 Mul	tivariable Calculus			Ę	5 hoi	urs		
Functions of two	variables-limits and continuity-partial derivatives -total	differ	enti	al-Ja	acob	ian		
and its propertie	S.							
Module:3 App	blication of Multivariable Calculus			5	5 hoi	urs		
Taylor's expansi	on for two variables-maxima and minima-constrained m	axim	a ar	nd m	inim	a-		
Lagrange's mult	iplier method.							
Module:4 Mul	tiple integrals			3	3 hoi	urs		
Evaluation of do	uble integrals-change of order of integration-change of v	variat	bles	bet	weer	า		
Cartesian and p	olar co-ordinates - evaluation of triple integrals-change of	i varia	able	s be	etwee	эn		
Cartesian and c	lindrical and spherical co-ordinates.							
Module:5 Spe	cial Functions			6	i hoi	Jrs		
Beta and Gamr	na functions-interrelation between beta and gamma fun	ction	s-e	valua	ation	of		
multiple integra	ls using gamma and beta functions. Dirichlet's integ	ral -I	Erro	r fu	nctio	ons		
complementary	error functions.							
Module:6 Vec	tor Differentiation			5	່ hoເ	Jrs		
Scalar and ve	ctor valued functions – gradient, tangent plane–dir	ectio	nal	der	ivati	ve-		
divergence and	curl-scalar and vector potentials. Statement of vector	tor ic	lent	ities	-sim	ple		
problems.								
Module:7 Vec	Module:7 Vector Integration 6 hours							
Line, surface an	d volume integrals - Statement of Green's, Stoke's and G	auss	s div	erge	ence			
theorems -verific	ation and evaluation of vector integrals using them.							
Module:8 Con	temporary Topics			2	<u> hou</u>	Jrs		
Guest lectures fi	rom Industry and, Research and Development Organizati	ons						
	Total Lecture hou	irs:		45) hoi	Jrs		
Text Book		L						
1. Georae B.1	homas, D.Weir and J. Hass, Thomas Calculus. 20 ⁻	14, 1	3th	edi	tion.			
Pearson					,			

Re	ference Books							
1.	Erwin Kreyszig, Advanced Enginee	ring Mathen	natics, 20	15, 10th Edition, Wiley India				
2.	B.S. Grewal, Higher Engineering M	athematics,	2020, 44	th Edition, Khanna Publishers				
3.	John Bird, Higher Engineering Mathematics, 2017, 6th Edition, Elsevier Limited.							
4.	James Stewart, Calculus: Early Transcendental, 2017, 8th edition, Cengage Learning.							
5.	K.A.Stroud and Dexter J. Booth, Er	ngineering M	lathemati	ics, 2013, 7th Edition, Palgrave				
	Macmillan.							
Мо	de of Evaluation: CAT, Assignment,	Quiz and FA	λΤ					
Re	commended by Board of Studies	24.06.2021						
Ap	proved by Academic Council	No. 63	Date	23.09.2021				

BMAT101P Calculus Lab L T P								С		
							0	0	2	1
Pre-	requisite	NIL				Syll	abı	is v	ersi	on
								1.0		
Cou	rse Objectiv	es								
1. To	o familiarize v	vith the basic syntax,	semantics and	d library f	unctions of I	MATL	_AB	whi	ch	
serv	es as a tool r	ot only in calculus bu	t also many co	ourses in	engineering	g and	scie	ence	s	
2. To	o visualize ma	athematical functions	and its related	l properti	es.					
3. T	o evaluate sir	ngle and multiple integ	rals and unde	erstand it	graphically.					
Cou	rse Outcom	es								
At th	ne end of the	course the student sh	ould be able t	0:						
1. D	emonstrate N	IATLAB code for chal	lenging proble	ems in en	gineering			_		
2. U	sing plots/dis	plays, interpret and ill	ustrate eleme	ntary mat	thematical fu	unctio	ons a	and		
proc	procedures.									
Indi	cative Exper	iments								
1.	Introduction	to MATLAB through I	matrices and g	general S	yntax			4!	_	
2.	Plotting and	Plotting and visualizing curves and surfaces in MATLAB – Symbolic computations								
		AB Tutu a management a standard								
3.	Evaluating E	Extremum of a single		on						
4.	Understand	ing integration as Area	a under the cu	Irve						
5.	Evaluation of	of volume by integrals	(Solids of Re	volution)	blac					
0.	Evaluating r	naxima and minima o	ritunctions of t	wo varia	bles					
/. 0	Evoluting La	grange multiplier optir /elume.under.eurfeee		50						
0.	Evaluating V	riple integrale	5							
9.	Evaluating t	nple integrals	raonco							
10.	Evaluating (ina integrals in vector								
12		oon's theorem to real	s world problem	20						
12.	Applying Gr			otal Labo	ratory Hour	c 30) ho	lire		
Τον	Book				natory nour	3 0		uis		
1	Brian H Ha	hn Daniel T Valentin	e Essential M	ATI AR f	or Engineer	s and				
'.	Scientists A	Academic Press 7th e	dition 2019			5 and				
Refe	erence Book	s	anion, 2010.							
1	Amos Gilat	MATLAB [.] An Introduc	ction with App	lications	Wiley 6/e	2016				
				lioutionio,	viiloy, 0/0,	2010.	•			
2	Maritn Broka	ate. Pammy Manchar	nda. Abul Has	an Siddio	ai. Calculus	for Sc	cien	tists	and	1
	Engineers.	Springer, 2019	,		,					
Mod	e of assessm	ent: DA and FAT								
Rec	ommended b	y Board of Studies	24.06.2021							
Арр	roved by Aca	demic Council	No. 63	Date	23.09.202	1				

BMAT102L Differential Equations and Transforms L T P									
		3 1 0							
Pre-requisite	BMAT101L, BMAT101P	Sy	llabus version						
			1.0						
Course Objective	es								
1 To impart	1. To impart the knowledge of Laplace transform, an important transform techniques for								
Engineers	which requires knowledge of integration.								
2 Presenting	I the elementary notions of Fourier series, this is vital in	n pra	ctical harmonic						
analysis.									
3. Enriching	the skills in solving initial and boundary value problems.	d tha	7 transform in						
4. Impart me	knowledge and application of difference equations and		Z-transform in						
uiscrete sy	stems that are innerent in natural and physical process	es.							
Course Outcome	es								
At the end of the of	course the student should be able to:								
1. Find solut	ion for second and higher order differential equation	ons,	formation and						
solving pa	rtial differential equations.								
2. Understan	d basic concepts of Laplace Transforms and solve pro	blem	is with periodic						
functions,	step functions, impulse functions and convolution.								
3. Employ the	e tools of Fourier series and Fourier transforms.								
4. Know the	techniques of solving differential equations and	par	tial differential						
equations.									
5. Know the	2-transform and its application in population dynamic	s an	d digital signal						
processing									
Module:1 Ordin	ary Differential Equations (ODE)		6 hours						
Second order nor	- homogenous differential equations with constant coe	fficie	nts- Differential						
equations with	variable coefficients- method of undetermined coe	fficie	nts-method of						
Variation of par	ameters-Solving Damped forced oscillations and I	LCR	circuit theory						
problems.			,						
Module:2 Partia	al Differential Equations (PDE)		5 hours						
Formation of part	ial differential equations – Singular integrals — Solutior	ns of	standard types						
of first order partia	al differential equations – Lagrange's linear equation-W	letho	d of separation						
of variables									
Module:3 Lapla	ce Transform		7 hours						
Definition- Proper	ties of Laplace transform-Laplace transform of standard	l func	tions - Laplace						
transform of pe	riodic functions-Unit step function-Impulse function	i. In	verse Laplace						
transform-Partial	ractions method and by Convolution theorem.		<u> </u>						
Module:4 Solu	tion to ODE and PDE by Laplace transform		7 hours						
Solution of ODE's	- Non-homogeneous terms involving Heaviside function	n, Im	ipulse function						
- Solving Non-nor	nogeneous system using Laplace transform - solution to	DHIR	t order PDE by						
Modula:5	l. Ior Sariaa		6 hours						
	iei Jeiles Eularia formulaa Dirichlatia conditiona Change of it	ator							
series – RMS valu	Luers formulae- Differences conditions - Change of in ie – Parseval's identity.	nerva	ai - ⊓ali range						
Module:6 Four	ier Transform		6 hours						
Complex Fourier	transform - properties - Relation between Fourier and L	apla	ce Transforms-						
Fourier sine and	cosine transforms – Parseval's identity- Convolution T	heor	em and simple						
applications to so	ve PDE.		•						
Module:7 Z-Tra	ansform		6 hours						
Definition of Z-trai	nsform and Inverse Z-transform - Standard functions -	Partia	al fractions and						

convolution method. Difference equation - first and second order difference equations with								
constant co	constant coefficients - solution of simple difference equations using Z-transform.							
Module:8	Contemporary Issues				2 hours			
		Tot	al Lectur	e hours:	45 hours			
		Tota	al Tutoria	I hours :	15 hours			
Text Book	(s)							
1. Erw	in Kreyszig, Advanced Engineer	ing Mathe	matics, 2	015, 10th	Edition, John Wiley			
Indi	a.							
2. B.S	. Grewal, Higher Engineering	g Mather	natics, 2	020, 44th	n Edition, Khanna			
Pub	olishers.							
Reference	Books							
1. Mic	hael D. Greenberg, Advanced	Enginee	ring Math	ematics,	2006, 2nd Edition,			
Pea	rson Education, Indian edition.	-	-					
2. A F	irst Course in Differential Equ	ations wit	h Modell	ing Applic	ations, Dennis Zill,			
201	8, 11th Edition, Cengage Publish	ners.		• • • •				
Mode of Ev	aluation: CAT, written assignme	nt, Quiz, F	FAT					
Becommon	Decomposed of human at Churling 24.00 2024							
Recommen		24-00-20		40.40.00	204			
Approved b	y Academic Council	NO. 64	Date	16-12-20	J21			

BMAT201L	BMAT201L Complex Variables and Linear Algebra L T P						С
						4	
Pre-requisite	Pre-requisite BMAT102L Syllabus versi						
					1.0		
Course Objective	es	·					
1. To preser	t comprehensive, compact, and integrate	ed treatment	of o	ne c	of th	e m	ost
important	branches of applied mathematics nan	nely Complex	k va	riab	es	to '	the
engineers	and the scientists.						
2. To preser	nt comprehensive, compact, and integra	ated treatmen	t of	and	othe	r m	ost
important	branches of applied mathematics namely	Linear Algeb	ra to	o the	enç	gine	ers
and the so	ientists.						
3. To provide	e students with a framework of the concept	ots that will he	elp ti	nem	to a	analy	/se
	but many complex problems.						
Course Outeem	-						
At the and of the	25						
At the end of the d	course the student should be able to						
1 Construct	analytic functions and find complex potent	ial of fluid flow			otric	fial	de
2 Find the	image of straight lines by elementary	transformatio	ne i	and	to c		us. See
2. Thu the	nctions in nower series	lansionnalio	115 0	anu	10 0	spre	533
3 Evaluate r	eal integrals using techniques of contour i	ntegration					
4. Use the po	ower of inner product and norm for analysis	S.					
5. Use matric	ces and transformations for solving engine	erina problem	s.				
		01					
Module:1 Analy	/tic Functions				7	7hoi	urs
Complex variable	- Analytic functions and Cauchy - Riem	ann equations	s; La	plac	e e	quat	ion
and Harmonic f	unctions; Construction of Harmonic co	njugate and	ana	lytic	fur	ictio	ns;
Applications of an	alytic functions to fluid-flow and electric fie	ld problems.					
Module:2 Confe	ormal and Bilinear transformations				7	ho	urs
Conformal mappir	ng - Elementary transformations; Transla	tion, Magnifica	ation	, Ro	tatio	n,	
Inversion; Expone	ential and Square transformations (w =	e^{2} , z^{2}); Bilin	ear	tran	sfori	mati	on;
Cross-ratio-Image	es of the regions bounded by stra	aight lines i	unde	er t	he	abo	ve
transformations;							
Wodule:3 Com	plex Integration	t agrica Cing	Jari	line	<u></u>		urs
Punctions given	tion of a complex function along a contour	C Series-Siriyi	of C	lies	- P		; —
theorem Cauchy	's integral formula-Cauchy's residue theo	, Statements		ros	ll int	odra	sai ale-
Indented contour	integral formula-caucity's residue theo			166		eyra	19- 19
Module:4 Vecto	or Spaces				6	ho	urs
Vector space – s	ubspace linear combination - span - line	arly depende	nt –	Inde	eper	uder	11 –
bases: Dimensior	ns: Finite dimensional vector space. Row	and column	spa	ces:	Ra	nk a	and
nullity.			•	,			
Module:5 Linea	r Transformations				6	ho	urs
Linear transforma	tions – Basic properties; Invertible linear	transformatior	n; Ma	atric	es o	f lin	ear
transformations; \	/ector space of linear transformations; Cha	ange of bases	; Sin	nilari	ty.		
Module:6 Inner	Product Spaces				5	ho	urs
Dot products and	inner products; Lengths and angles of ve	ctors; Matrix	repro	eser	ntatio	ons	of
inner products; G	ram - Schmidt – Orthogonalization.						
Module:7 Matri	ces and System of Equations				5	ho	urs
Eigenvalues and	Eigen vectors; Properties of Eigenvalu	es and Eige	n ve	ector	rs; (Cayl	ey-
Hamilton theoren	n; System of linear equations; Gaussiar	elimination	and	Gaı	JSS	Jorc	lan
methods.							
Module:8 Con	temporary issues:				2	hoi	urs

	Total Le	cture hou	rs:	45 hours					
	Total Tut	orial hour	s :	15 hours					
Text Bo	pok(s)								
1. G. Dennis Zill, Patrick D. Shanahan, A first course in complex analysis with applications 2013 3rd Edition Jones and Bartlett Publishers Series in Mathematics									
2.	2. Jin Ho Kwak, Sungpyo Hong, Linear Algebra, 2004, Second edition, Springer.								
Refere	nce Books								
1.	Erwin Kreyszig, Advanced Engineer Wiley & Sons (Wiley student Edition).	ring Mathe	ematics,	2015, 10 th Edition, John					
2.	Michael, D. Greenberg, Advanced Pearson Education.	Engineerir	ng Matl	hematics, 2006, 2 nd Edition,					
3.	Bernard Kolman, David, R. Hill, Introc 2011, 9th Edition Pearson Education.	ductory Lin	ear Alg	ebra - An applied first course,					
4. 5.	 Gilbert Strang, Introduction to Linear Algebra, 2015, 5th Edition, Cengage Learning B.S. Grewal, Higher Engineering Mathematics, 2020, 44th Edition, Khanna Publishers. 								
Mode o	f Evaluation: Digital Assignments(Soli	utions by u	sing sol	ft skill), Quiz, Continuous					
Assess	ments, Final Assessment Test.								
Recom	Recommended by Board of Studies 24-06-2021								
Approv	ed by Academic Council	No. 64	Date	16-12-2021					

BMAT202L	Probability and Statistics	LTPC							
		3 0 0 3							
Pre-requisite	BMAT101L, BMAT101P	Syllabus version							
		1.0							
Course Objective	es :								
1. To provide	1. To provide students with a framework that will help them choose the appropriate								
descriptive	e methods in various data analysis situations.								
2 To analyze	e distributions and relationship of real-time data.								
3. To apply	estimation and testing methods to make interen	ice and modelling							
techniques	s for decision making.								
Course Outcome	、 •								
At the end of the	; .								
1 Computo	and interpret descriptive statistics using numeri	cal and graphical							
techniques		sai anu yrapincai							
2 Understan	d the basic concepts of random variables and fi	nd an appropriate							
distribution	for analyzing data specific to an experiment	na an appropriate							
3. Apply sta	atistical methods like correlation, regression analy	vsis in analvzing.							
interpreting	g experimental data.	,							
4. Make app	propriate decisions using statistical inference that	is the central to							
experimen	tal research.								
5. Use statist	ical methodology and tools in reliability engineering pro	blems.							
Module:1 Intro	duction to Statistics	6 hours							
Statistics and da	ata analysis; Measures of central tendency; Meas	ure of Dispersion,							
Moments-Skewne	ess-Kurtosis (Concepts only).								
Modulo:2 Band	om variables	8 hours							
Random variable	es- Probability mass function distribution and den	sity functions-loint							
probability distribut	ution and loint density functions: Marginal Condition	nal distribution and							
Density functions	- Mathematical expectation and its properties- Cr	ovariance Moment							
denerating function	in								
Module:3 Corre	elation and Regression	4 hours							
Correlation and F	Regression – Rank Correlation; Partial and Multiple (correlation; Multiple							
regression.									
Module:4 Prob	ability Distributions	7 hours							
Binomial distribu	tion: Poisson distributions: Normal distribution: G	amma distribution.							
Exponential distrib	oution. Weibull distribution	annia alothouton,							
Module:5 Hypo	thesis Testing-I	4 hours							
Testing of hypoth	esis –Types of errors - Critical region, Procedure for te	sting of hypothesis-							
Large sample te	sts- Z test for Single Proportion- Difference of Pro	portion- Mean and							
difference of mean	ns.								
	thesis Testing-II	9 houre							
Small sample test	ts- Student's t-test E-test- chi-square test- goodness o	f fit - independence							
of attributes- Desi	ian of Experiments - Analysis of variance – One way-1	wo way-Three way							
classifications - C	RD-RBD- I SD	the may rince may							
Module:7 Relia	bility	5 hours							
Basic concepts-	Hazard function-Reliabilities of series and parallel	systems- System							

Reliability - Maintainability-Preventive and repair maintenance- Availability.						
Module:8	Contemporary Issues			2 hours		
		Total lecture ho	urs:	45 hours		
Text Book	•					
1. R. eng	E. Walpole, R. H. Myers ineers and scientists, 201	s, S. L. Mayers, 2, 9 th Edition, Pea	K. Ye, arson Edu	Probability and Statistics for location.		
Reference	Books					
 Reference Books 1. Douglas C. Montgomery, George C. Runger, Applied Statistics and Probability for Engineers, 2016, 6th Edition, John Wiley & Sons. 2. E. Balagurusamy, Reliability Engineering, 2017, Tata McGraw Hill, Tenth reprint. 3. J. L. Devore, Probability and Statistics, 2012, 8th Edition, Brooks/Cole, Cengage Learning. 4. R. A. Johnson, Miller Freund's, Probability and Statistics for Engineers, 2011, 8th edition, Prentice Hall India. 5. Bilal M. Ayyub, Richard H. McCuen, Probability, Statistics and Reliability for Engineers and Scientists, 2011, 3rd edition, CRC press. 						
Mode of Evaluation: Digital Assignments, Continuous Assessment Tests, Quiz, Final Assessment Test.						
Recommer	nded by Board of Studies	24-06-2021				
Approved b	y Academic Council	No. 64	Date	16-12-2021		

BMAT202P	Prob	ability and Stat	istics Lab	Lab L T P C							
D		T 101D									
Pre-requisite	BMAI101L, BMA	1101P			S	Syllabus versio					
Course Objectiv							1.0				
1 To enable	the students for	having experim	ental kno	wledge of	ha	sic (conc	·ent«	s of		
statistics u	ising R programmin	ia.		meage of	bu bu	510	00110	,cpi	, 01		
2. To study	the relationship of	f real-time data	and dec	ision maki	ing	thro	ugh	tes	ting		
methods ι	ising R.				•		•		•		
3. To make	students capable t	o do experimer	ntal resear	ch using	stat	istic	s in	vari	ous		
engineerir	ng problems.										
O											
At the end of the	es:	should be able to	<u>.</u>								
			J.								
1. Demonstra	ate R programming	for statistical da	ta.								
2. Carry out	appropriate analysis	s of statistical m	ethods three	ough expe	rim	enta	l tec	hniq	ues		
using R.				• •							
Indicative Experi	iments										
1 Introduction	· Understanding Da	ta tunes: importi	na/evnorti	na data							
2 Computing	Summary Statistics	s /plotting and	visualizino	i data usi	na						
Tabulation a	and Graphical Repre	esentations	visualizing		''9						
3 Applying co	prrelation and sim	ple linear regre	ession mo	odel to re	al						
dataset; con	nputing and interpre	eting the coefficie	ent of dete	rmination		Tot	al				
4. Applying mu	ultiple linear regres	sion model to re	eal datase	t; computi	ng	Lab	orat	lory			
and interpre	ting the multiple co	efficients of dete	rmination	· •	Ŭ	hοι	irs: 3	30			
5. Fitting the p	robability distributio	ns: Binomial dist	tribution								
6. Normal distr	ibution, Poisson dis	stribution									
7 Testing of h	ypothesis for one s	sample mean ar	nd proporti	on from re	al						
time probler	ns	•									
8. Testing of h	ypothesis for two s	ample means ar	nd proport	ion from re	al						
9 Applying the	115 ht-test for independ	ent and depend	ent samnle	26							
10 Applying the	i-square test for go	odness of fit tes	t and Cont	tingency te	st						
to real datas	set			ingeney ie							
11. Performing	ANOVA for real	dataset for Co	ompletely	randomize	ed						
design, Ran	domized Block des	ign, Latin square	Design								
Text Book											
1. Statistical	analysis with R b	y Joseph Schm	nuller, Joh	n wiley aı	nd						
sons Inc.,	New Jersey 2017.										
Reference Books			in a seed Of	atistics by	. т:			Davi			
I. The BOOK	UNCK 2016	se in Programm	ing and Si	austics, by	уп	Imar	1 IVI	Dav	ies,		
2 R for Date	a Science by Hadl	ev Wickham an	d Garrett	Grolemu	nd	O' F	کونالہ	, Me	eihe		
Inc. 2017					. iu,	U 1	Com	, 1010	2010		
Mode of accord	ent: Continuous as	easement EAT	Oral over	nination or	nd c	thor	<u>c</u>				
Recommended by	Roard of Studies	24-06-2021			iu C	Junel	3				
Approved by Aca	demic Council	No 64	Date	16-12-20)21						
			Daio	10-12-20	1 - 1						

BMEE102P	Engineering Design Visualization Lab		L	Т	Ρ	С			
		0 0 4							
Pre-requisite	Nil	Syllabus version							
				1.0					
Course Objectiv	/es								
1. Understand the importance of basic concepts and principles of engineering drawing for									
representing eng	representing engineering components, sections, views by graphical representation using								
CAD.	ulanta with various, concents like dimensioning, conventio			+	امیرا	•			
2. Enable the sit	a drawings in order to become professionally efficient	ins ar	iu s	lanc	aru	5			
3 Develop the a	bility to communicate with others through the language of	i tach	nics	al dr	Jwir	ha			
and sketching	bindy to communicate with others through the language of	leen	mod			ig			
4 Apply the stan	dards for the use of international and traditional units for	techr	nical	dra	win	a			
Course Outcom			nou	uiu	vvii i	<u>j.</u>			
Upon completion	of this subject, the student will be able to								
1. Apply BIS and	ISO standards in engineering drawing.								
2. Graphically co	nstruct two dimensional drawing for engineering applicati	ions.							
3. Draw projectio	ns of point, lines, solids, sections of solids for regular pol	yhed	rons	s and	d				
solids of revolution	ons using computer aided drawing.	-							
4. Visualize geor	netrical solids in 3D space through orthographic and ison	<u>netric</u>	pro	jecti	ons				
Module:1 Intro	oduction to Engineering Drawing			8	hou	ırs			
Introduction to	Engineering Drawing, Drawing instruments, Drawing	, sta	nda	rds	(Bl	S),			
Lettering in engir	neering, Sheet layout, elements of dimensioning - system	<u>.s of c</u>	dime	ensio	<u>onin</u>	g.			
Module:2 Free	Hand Sketching			8	hou	irs			
Free hand sket	ching- Pictorial representation of engineering objects -	- rep	res	enta	tion	of			
three dimensiona	al objects in two dimensional media – need for multiple	views	5 –	deve	elop	ing			
Visualization skill	s through free hand sketching of three dimensional object	<u>.is.</u>		0	hai				
Introduction to	prejectione: Conoral principles of orthographic projection			0 firct					
projection – Javo	ut of views - Projection of Points Projection of lines 2D d	Juon Irawir	- 	ni si Isina	an LCA	yie .D			
Module:4 3D n	nodelling and Projections		ig u	<u>12</u>	hoi	Irs			
Projection of S	olids: Classification of solids. Projection of solids in si	mple	pos	sitior	1-Sc	blid			
Modelling		mpio	р с ,	510101					
Sections of So	lids: Right regular solids and auxiliary views for the	true	sha	ape	of	the			
sections.	č			•					
Development of	Surfaces, Intersection of Solids: Intersection of two solids	i							
Module:5 Ison	netric Projection and Perspective Projection			8	hou	ırs			
Isometric View	//Projection: Isometric scales, Isometric projections	s of	si	mple	e a	ind			
combination of s	olids. Conversion of pictorial view into orthographic Proj	ectio	n- 2	2D d	raw	ing			
from 3D drawing	– Missing views.								
Perspective Pro	jection: Orthographic representation of a perspective vie	}WS.							
Module:6 Orth	ographic Projection into Isometric view			8	nou	ırs			
Conversion of O	thographic projection into isometric view- 3D modelling fr	<u>om 2</u>		raw	ing.				
Project on a proj	ect on Product Development			0	not	irs			
	Total Lecture bo	Ire		60	hou	ire			
Text Book		113		00	1100	112			
1 Venugonal	K and Prabhu Raja V Engineering Graphics New A	GE h	nter	natio	nal				
Publishers. 2	2018.			nanc	- a				
Reference Bool	(S								
1. Bhatt N. D.,	Engineering Drawing, Charotar Publishing House Pvt. Ltd	d, 20	19.						
Randy H. S	Shih, SOLIDWORKS 2021 and Engineering Graphics	- An	Int	egra	ated				
Approach, S	DC Publications, 2021.								

3	Dennis K. Lieu, Sheryl A. Sorby, Visualization, Modeling, and Graphics for
0.	Engineering Design, Delmar, Cengage Learning, 2009.
1	Natarajan.K.V,A Textbook of Engineering Graphics, Dhanalakshmi Publishers,
4.	Chennai, 2015.
Ind	icative Experiments
1	Free Hand Sketching
2	2D drafting using CAD software
3	Dimensioning of 2D figures
4	Projection of points and lines -2D drafting
5	Projection of solids in simple position- 3D modelling
6	Section of solids- 3D modelling
7	Conversion of pictorial drawing into orthographic projection-CAD
8	Conversion of orthographic projection into isometric view-CAD
9	Engineering design and visualization of an engineering product -I
10	Engineering design and visualization of an engineering product -II
	Total Laboratory Hours 60 hours
Mod	de of Evaluation: Examination and evaluation is done for CAD exercises. Continuous
ass	essments in terms of CAD exercises, models / products designed and created; FAT &
Ora	I examination
Red	commended by Board of Studies 02.07.2021
Арр	proved by Academic Council No. 63 Date 23.09.2021

BEEE101L	Basic Electrical Engineering		L	Т	Ρ	С		
		2 0 0						
Pre-requisite	NIL	Syllabus version						
				1.0				
Course Objectives								
1. Provide in: 2. Eacilitate	signts into relevant concepts and principles in electrical (engin	eeri	ng	mni	ıto		
2. Facilitate	s of electric circuits	nems			mp	JLE		
3. Enable co	mprehend and analyze the concepts of electrical machi	nes a	nd	mea	suri	ina		
instrument	S		a		0011	ng		
Course Outcome								
On completion of	this course, the students will be able to							
1. Evaluate D	DC and AC circuit parameters using various laws and the	eoren	าร					
Analyze th	e parameters of magnetically coupled circuits and comp	are v	aric	ous t	ype	s		
of electrica	al machines							
3. Comprehe	nd the measurement techniques of electrical parameters	S						
4. Understan	a the concept of electric supply system and comprehence	a ess	enti	ai				
				6	hoi	ire		
Basic circuit ele	ments and sources: Ohms law, Kirchhoff's laws: S	eries	ar	nd r	ara	liai		
connection of circ	uit elements: Source transformation: Node voltage anal	vsis:	Me	sh c	curre	ent		
analysis; Maximu	n power transfer theorem	<i>j</i> e.e,						
Module:2 AC C	ircuits			6	hοι	ırs		
Alternating voltag	es and currents, RMS, average, form factor, peak factor	r; Sin	gle	pha	se F	₹L,		
RC, RLC series	and parallel circuits; Power and power factor; Bala	anced	th	ree	pha	ise		
systems								
Module:3 Magr	netic Circuits			4	hοι	irs		
Electromagnetic	Induction: Self and mutual; Magnetically coupled ci	rcuits	s; S	erie	s a	nd		
Modulo:4 Elect				5	hou	irc		
Principle of opera	tion construction and applications of DC machines tran	eforn	ore	inc	lucti	ion		
motors synchrone	nus generators, stepper motor, Brushless DC (BLDC) m	otor		, пте	ucu			
Module:5 Elect	rical Measurements			4	hou	ırs		
Principle, Constru	ction and operation of moving coil and moving iron instr	umer	nts:	Pow	er a	nd		
energy measurem	nent in single phase and three phase systems		,					
Module: 6 Elec	trical Supply Systems & Safety			3	hοι	ırs		
Concepts of elec	ctrical power generation, transmission and distribution	n sys	stem	is; N	Viriı	ng;		
Electrical safety; I	Earthing; Protective devices							
Module: 7 Con	temporary Issues			2	hοι	ırs		
Guest lectures fro	m Industry and, Research and Development Organization	ons						
	Total Lecture bo	ure:		30	hoi	ire		
Text Book(s)		лэ.		50	not	113		
1 Allan R Ham	bley, Electrical Engineering: Principles & Applications	2019	7 th	edit	ion			
Pearson Edu	cation	_010,	'	oun	юн,			
Reference Books	6							
1. DP Kothari &	I J Nagrath, Basic Electric Engineering, 2019, 4 th editi	on, N	/lcG	raw	Hill			
Education								
2. John Bird, E	lectrical Circuit Theory and Technology, 2013, 5" ed	lition,	Rc	utle	dge			
3. S. Salivahna	n, R Rengaraj, G R Venkatakrishnan, Basic Electrical,	Elec	tron	ics a	and			
Measuremen	t Engineering, 2018, McGraw Hill Education							
4. E.W Golding	, F.C Widdis, Electrical Measurements and Measuri	ng Ir	nstr	ume	nts,			

2011, Reem Publications					
5. V K Mehta and Rohit Mehta, Principles of Power System, 2005, S. Chand					
Mode of Evaluation: CAT, Written Assignment, Quiz, FAT					
Recommended by Board of Studies 03.07.2021					
Approved by Academic Council	No. 63	Date	23.09.2021		

BEEE101P Basic Electrical Engineering Lab		L	T	Ρ	С			
		0	0	2	1			
Pre-requisite NIL	Syl	labu	s ve	ersi	on			
			1.0					
Course Objectives								
1. Understanding the concepts of electrical engineering f	or dev	elopi	men	t a	and			
implementation of electrical systems								
Impart knowledge and skill in wiring and its standards								
3. Facilitate comprehend and identify appropriate measuring c	levices	for a	an e	elec	tric			
circuit								
Course Outcome								
On completion of this course, the students will be able to								
1. Understand, analyze and validate the electric circuit parameter	S.							
2. Design and develop electrical systems for domestic and comm	ercial ap	oplica	atior	าร				
3. Acquire skills for interpretation of measurement during experim	entatior) 						
4. Attain skills to use modern engineering tools for electrical syste	m layou	it pia	nnir	ıg				
Indicative Experiments								
Verification of Kirchnoff's current law								
2 Venification of Kirchnoll's current law								
3 Verification of maximum power transfer theorem								
4 Sinusoidal steady state response of RLC circuits								
5 Winng circuit for Codewa with two way owitch								
7 Lead test on single phase transformer/DC mater								
Load lest on single phase transformer/DC motor Accurate a single phase ACL and								
Measurement of power and energy consumed by a given three p	hace A(4					
9 Measurement of power and energy consumed by a given time p	nase Au	5 10a	u					
10 Study of earthing and measurement of earth pit resistance								
12 Electrical layout for a residential/commercial/industrial application	uleina (חאר	soft	war	<u> </u>			
		JAD	3011	ho				
Text Book(s)	10013		50	1100	115			
Allan R. Hambley, Electrical Engineering: Principles & Application	ns. 2019	. 7 th	editi	ion.				
Pearson Education	,	,.	0 01 0	·•··,				
Mode of assessment: CAT, FAT, Oral examination								
Recommended by Board of Studies 03.07.2021								
Approved by Academic Council No. 63 Date 23.09	.2021							

BECE101L	E101L Basic Electronics L T P C							
						2		
Pre-requisite	-requisite Nil Syllabus versio				on			
1.0								
Course Objectives								
1. To introduce	1. To introduce the students to the basic concepts of electronic components, sources,							
measurements. a	and instrumentation.							
2. To apply the i	nculcated knowledge for developing simple circuits using	g var	ious	ele	ctro	nic		
components and	devices							
3. To familiarize	the students with the basic concepts of number systems	and o	digit	al lo	gic.			
4. To analyse the	e concepts associated with multiple sensors and their ser	nsing	me	char	iism	s.		
Course Outcom	e							
Students will be	able to							
1 Understand	the basic electronic components, sources, and measurin	g equ	lipm	ient				
2 Comprehen	d the characteristics of diodes, transistors and their appli	catior	าร					
3. Design and	analyse the amplifiers and oscillators							
4. Design and	Implement simple digital circuits							
5. Analyse the	performance metrics of the measurement systems.	maal						
6. Comprenen	a the basic concept of various sensors and their sensing	mecr	ani	sms				
	tronic Components, Sources, and Measuring Equipm			3	nou	irs		
Evolution of Ele	cironics – impact of Electronics in Industry and Society	– ra		anza E	lloot	OI		
Resistors, Capa	citors, inductors – Colour Coding – types and specific		is, oplu	- c	leci	ion		
Generator Mult	iponenis – Relay and Contactors – Regulated Powe	si su	opiy	, гі	Incl	1011		
Modulo:2 Jun	nineter – CRO			1	hou	Ire		
Intrincia and avt	ringia apprisenductora doning DN lunctiona Form	otion		4 f lu	noti	215		
Physical operation	nnsic semiconductors – doping - FN Junctions, Form	fiore	701		liod	on,		
LV Characteristic	STOLUOUE, Damei Foleniai, I - V Characlensiics, Reci rs. Zeper diode as Voltage regulator	ners,	Zei		noue	5 —		
Module:3 Tran				5	hou	ire		
Bipolar Junction	Transistor (BIT) - Device structure and physical operation	on (`onc	<u>ont</u>		`B		
CE and CC Co	nfiguration Transistor as a Switch - Metal-Oxide Fiel	d Ff	fect	Tra	nsis	stor		
(MOSFFT) - [Device Structure mode of operation and Charac	teristi	CS.	MC)SF	FT		
configurations (C	S. CD. CG).		,					
Module:4 Amr	lifiers and Oscillators			4	hou	urs		
BJT as an am	olifier (CE configuration), MOSFET as an amplifier	(CS	con	fiau	atio	n).		
Feedback conce	pt, Oscillators - Barkhaunsen's criteria for sustained os	cillati	on,	RC	Pha	ase		
Shift Oscillator, L	.C Oscillator.		,					
Module:5 Digi	tal Logics			4	hou	urs		
Number systems	, conversion of bases, Boolean algebra, Logic Gates, Co	ncep	t of	univ	ersa	al		
gate, Simplificati	on and implementation of Boolean functions.	•						
Module:6 Prin	ciples of Measurement and Analysis			3	hou	Jrs		
Units and stan	dards, Errors, Functional Elements of a Measurer	ment	Sy	ster	n a	ind		
Instruments, App	plications and Classification of Instruments, Types of me	easur	ed	Qua	ntiti	es,		
Measures of Dis	persion, Sample deviation and sample mean, Calibration	and	stan	dard	J.			
Module:7 Sen	sors and Transducers			5	hou	Jrs		
Sensor fundamentals and characteristics - General concepts and terminology of								
measurement systems, Sensors and transducers - Classification of sensors, Static and								
dynamic characteristics. Principle of Resistive Sensors, Capacitive Sensors, Inductive								
Sensors, Magne	tic sensors, Optical sensor, Self-generating Sensors					_		
Module:8 Con	temporary issues			2	hou	ırs		
Guest lectures fr	om Industry and, Research and Development Organisati	ons						
	iii							
	Total Lecture ho	urs:		30	hou	ırs		

Tex	Text Book(s)							
1.	A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill.							
2	Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and							
	Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India.							
Ret	ference Books							
1.	David A Bell, Electronic Devices and Circuits, Oxford Press, 5 th Edition, 2008							
2	Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory							
	Prentice Hall of India, 11th Edition, 2017							
3	D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003							
4	A.K. Sawhney, Puneet Sawhney, A Course In Electrical and Electronic Measurements							
	and Instrumentation, Dhanpat Rai & Co., 2015							
Мо	Mode of Evaluation: Internal Assessment (CAT, Quizzes, Digital Assignments) & FAT							
Recommended by Board of Studies 08.07.2021								
Ар	proved by Academic Council No. 63 Date 23.09.2021							

Pre-requisite Nil Syllabus version 1.0 1.0 Course Objectives 1.0 2. To understand the concept of digital logic functions and verify the truth tables 3. To learn the performance metrics of measurement systems and characteristics of various sensors Course Objectives Students will be able to 1. Analyse the various characteristics and applications of diodes and transistors 2. Design logic circuits using logic gates and verify their truth tables 3. Measure the physical parameters using different transducers 2. Design logic circuits using logic gates and verify their truth tables 3. Measure the physical parameters using different transducers 3. Measure the physical parameters using different transducers Indicative Experiments 1 Identify, mark the terminal and find the value of a particular component from the given group of electronic components, Study of electronic measurement devices (Multimeter, DSO, function generator) 2 V-1 Characteristics of PN Junction diodes and Zener diodes 3 Half Wave and Full Wave Rectifier circuits 4 Zener Diode as a voltage regulator 5 Characteristics of MOSFET in Common Source Configuration 6 Characteristics of MOSFET in Common Source Configuration 10 Study of logic gates and implementation of Boolean Functions	BEC	3ECE101P Basic Electronics Lab L T P (С		
Pre-requisite Nil Syllabus version Course Objectives 1.0 1. To learn the various characteristics of diodes and transistors 1.0 2. To understand the concept of digital logic functions and verify the truth tables 3. To learn the performance metrics of measurement systems and characteristics of various sensors Course Outcome 5 Students will be able to 1. Analyse the various characteristics and applications of diodes and transistors 2. Design logic circuits using logic gates and verify their truth tables 3. 3. Measure the physical parameters using different transducers Indicative Experiments Identify, mark the terminal and find the value of a particular component from the given group of electronic components, Study of electronic measurement devices (Multimeter, DSO, function generator) 2 V-I Characteristics of PN Junction diodes and Zener diodes 3 Half Wave and Full Wave Rectifier circuits 4 Zener Diode as a voltage regulator 5 Characteristics of MOSFET in Common Source Configuration 6 Characteristics of MOSFET in Common Source Configuration 7 Frequency response of BJT single stage amplifier 8 Study of the signal generation using RC Phase Shift Oscillator 9 Study of logic gates and implementation of B						0 0 2				1
Course Objectives 1. To learn the various characteristics of diodes and transistors 2. To understand the concept of digital logic functions and verify the truth tables 3. To learn the performance metrics of measurement systems and characteristics of various sensors Course Outcome Students will be able to 1. Analyse the various characteristics and applications of diodes and transistors 2. Design logic circuits using logic gates and verify their truth tables 3. Measure the physical parameters using different transducers Indicative Experiments 1 Identify, mark the terminal and find the value of a particular component from the given group of electronic components, Study of electronic measurement devices (Multimeter, DSO, function generator) 2 V-I Characteristics of PN Junction diodes and Zener diodes 3 Half Wave and Full Wave Rectifier circuits 4 Zener Diode as a voltage regulator 5 Characteristics of MOSFET in Common Source Configuration 6 Characteristics of MOSFET in Common Source Configuration 7 Frequency response of BJT single stage amplifier 8 Study of logic gates and implementation of Boolean Functions 10 Strain gauge sensors for measurement of normal strain.	Pre-	requisite	Nil			Sylla	bu	s ve	ersio	on
Course Objectives 1. To learn the various characteristics of digital logic functions and verify the truth tables 3. To learn the performance metrics of measurement systems and characteristics of various sensors Course Outcome Students will be able to 1. Analyse the various characteristics and applications of diodes and transistors 2. Design logic circuits using logic gates and verify their truth tables 3. Measure the physical parameters using different transducers Indicative Experiments 1 Identify, mark the terminal and find the value of a particular component from the given group of electronic components, Study of electronic measurement devices (Multimeter, DSO, function generator) 2 V-I Characteristics of PN Junction diodes and Zener diodes 3 Half Wave and Full Wave Rectifier circuits 4 Zener Diode as a voltage regulator 5 Characteristics of MOSFET in Common Source Configuration 6 Characteristics of MOSFET in Common Source Configuration 7 Frequency response of BJT single stage amplifier 8 Study of logic gates and implementation of Boolean Functions 10 Strain gauge sensors for measurement of normal strain. 11 Displacement measurement using RTD, Thermistor and Thermocouple. Total Laborato	Cou						1	.0		
 1. To understand the concept of digital logic functions and verify the truth tables 3. To learn the performance metrics of measurement systems and characteristics of various sensors Course Outcome Students will be able to 1. Analyse the various characteristics and applications of diodes and transistors 2. Design logic circuits using logic gates and verify their truth tables 3. Measure the physical parameters using different transducers Indicative Experiments 1 Identify, mark the terminal and find the value of a particular component from the given group of electronic components, Study of electronic measurement devices (Multimeter, DSO, function generator) 2 V-I Characteristics of PN Junction diodes and Zener diodes 3 Half Wave and Full Wave Rectifier circuits 4 Zener Diode as a voltage regulator 5 Characteristics of BJT in Common Emitter Configuration 6 Characteristics of BJT in Common Source Configuration 7 Frequency response of BJT single stage amplifier 8 Study of the signal generation using RC Phase Shift Oscillator 9 Study of logic gates and implementation of Boolean Functions 10 Strain gauge sensors for measurement of normal strain. 11 Displacement measurement using RTD, Thermistor and Thermocouple. Temperature measurement using RTD, Thermistor and Thermocouple. 1 A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill. 2 Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India. Reference Books 1. Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall of India, 11th Edition, 2017 2 D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003 		o learn the va	res arious characteristics (of diodes and	transistors					
 3. To learn the performance metrics of measurement systems and characteristics of various sensors Course Outcome Students will be able to 1. Analyse the various characteristics and applications of diodes and transistors 2. Design logic circuits using logic gates and verify their truth tables 3. Measure the physical parameters using different transducers Indicative Experiments 1 Identify, mark the terminal and find the value of a particular component from the given group of electronic components, Study of electronic measurement devices (Multimeter, DSO, function generator) 2 V-I Characteristics of PN Junction diodes and Zener diodes 3 Half Wave and Full Wave Rectifier circuits 4 Zener Diode as a voltage regulator 5 Characteristics of MOSFET in Common Source Configuration 6 Characteristics of MOSFET in Common Source Configuration 7 Frequency response of BJT single stage amplifier 8 Study of the signal generation using RC Phase Shift Oscillator 9 Study of logic gates and implementation of Boolean Functions 10 Strain gauge sensors for measurement of normal strain. 11 Displacement measurement using LVDT and LDR. 12 Temperature measurement using RTD, Thermistor and Thermocouple. Total Laboratory Hours 30 hours Text Book(s) 1. A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill. Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India. Reference Books 1. Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall of India, 11th Edition, 2017 2 D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003 	2 T	o understand	the concept of digital	logic function	s and verify the tru	th table	s			
Sensors Course Outcome Students will be able to 1. Analyse the various characteristics and applications of diodes and transistors 2. Design logic circuits using logic gates and verify their truth tables 3. Measure the physical parameters using different transducers Indicative Experiments 1 Identify, mark the terminal and find the value of a particular component from the given group of electronic components, Study of electronic measurement devices (Multimeter, DSO, function generator) 2 V-I Characteristics of PN Junction diodes and Zener diodes 3 Half Wave and Full Wave Rectifier circuits 4 Zener Diode as a voltage regulator 5 Characteristics of MOSFET in Common Source Configuration 6 Characteristics of MOSFET in Common Source Configuration 7 Frequency response of BJT single stage amplifier 8 Study of the signal generation using RC Phase Shift Oscillator 9 Study of logic gates and implementation of Boolean Functions 10 Strain gauge sensors for measurement of normal strain. 11 Displacement measurement using RTD, Thermistor and Thermocouple. Total Laboratory Hours 30 hours <t< td=""><td>3. T</td><td>o learn the pe</td><td>erformance metrics of</td><td>measuremen</td><td>t systems and chara</td><td>acteristi</td><td>cs o</td><td>of va</td><td>ariou</td><td>JS</td></t<>	3. T	o learn the pe	erformance metrics of	measuremen	t systems and chara	acteristi	cs o	of va	ariou	JS
Course Outcome Students will be able to 1. Analyse the various characteristics and applications of diodes and transistors 2. Design logic circuits using logic gates and verify their truth tables 3. Measure the physical parameters using different transducers Indicative Experiments Indicative Experiments 1 Identify, mark the terminal and find the value of a particular component from the given group of electronic components, Study of electronic measurement devices (Multimeter, DSO, function generator) 2 V-I Characteristics of PN Junction diodes and Zener diodes 3 Half Wave and Full Wave Rectifier circuits 4 Zener Diode as a voltage regulator 5 Characteristics of BJT in Common Emitter Configuration 6 Characteristics of MOSFET in Common Source Configuration 7 Frequency response of BJT single stage amplifier 8 Study of the signal generation using RC Phase Shift Oscillator 9 Study of logic gates and implementation of Boolean Functions 10 Strain gauge sensors for measurement of normal strain. 11 Displacement measurement using RTD, Thermistor and Thermocouple. Total Laboratory Hours	sens	sors								
Students will be able to 1. Analyse the various characteristics and applications of diodes and transistors 2. Design logic circuits using logic gates and verify their truth tables 3. Measure the physical parameters using different transducers Indicative Experiments 1 Identify, mark the terminal and find the value of a particular component from the given group of electronic components, Study of electronic measurement devices (Multimeter, DSO, function generator) 2 V-I Characteristics of PN Junction diodes and Zener diodes 3 Half Wave and Full Wave Rectifier circuits 4 Zener Diode as a voltage regulator 5 Characteristics of BJT in Common Emitter Configuration 6 Characteristics of MOSFET in Common Source Configuration 7 Frequency response of BJT single stage amplifier 8 Study of the signal generation using RC Phase Shift Oscillator 9 Study of logic gates and implementation of Boolean Functions 10 Strain gauge sensors for measurement of normal strain. 11 Displacement measurement using RTD, Thermistor and Thermocouple. Total Laboratory Hours 30 hours Text Book(s) 1. A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-H	Cou	rse Outcom	е							
 Analyse the various characteristics and applications of diodes and transistors Design logic circuits using logic gates and verify their truth tables Measure the physical parameters using different transducers Indicative Experiments Identify, mark the terminal and find the value of a particular component from the given group of electronic components, Study of electronic measurement devices (Multimeter, DSO, function generator) V-I Characteristics of PN Junction diodes and Zener diodes Half Wave and Full Wave Rectifier circuits Zener Diode as a voltage regulator Characteristics of BJT in Common Emitter Configuration Characteristics of MOSFET in Common Source Configuration Frequency response of BJT single stage amplifier Study of the signal generation using RC Phase Shift Oscillator Study of logic gates and implementation of Boolean Functions Strain gauge sensors for measurement of normal strain. Displacement measurement using LVDT and LDR. Temperature measurement using RTD, Thermistor and Thermocouple. A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill. Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India. Reference Books Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall of India, 11th Edition, 2017 D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003 	Stuc	lents will be a	able to		C 11 1 1 1 1					
 2. Design logic circuits using logic gates and verify their itulit tables 3. Measure the physical parameters using different transducers Indicative Experiments 1 Identify, mark the terminal and find the value of a particular component from the given group of electronic components, Study of electronic measurement devices (Multimeter, DSO, function generator) 2 V-I Characteristics of PN Junction diodes and Zener diodes 3 Half Wave and Full Wave Rectifier circuits 4 Zener Diode as a voltage regulator 5 Characteristics of BJT in Common Emitter Configuration 6 Characteristics of MOSFET in Common Source Configuration 7 Frequency response of BJT single stage amplifier 8 Study of the signal generation using RC Phase Shift Oscillator 9 Study of logic gates and implementation of Boolean Functions 10 Strain gauge sensors for measurement of normal strain. 11 Displacement measurement using RTD, Thermistor and Thermocouple. Text Book(s) 1. A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill. 2 Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India. Reference Books 1. Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall of India, 11th Edition, 2017 2 D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003 	1. A	nalyse the va	arious characteristics a	and application	ns of diodes and tra	insistors	5			
Ideastic the physical parameters unique experiments 1 Identify, mark the terminal and find the value of a particular component from the given group of electronic components, Study of electronic measurement devices (Multimeter, DSO, function generator) 2 V-I Characteristics of PN Junction diodes and Zener diodes 3 Half Wave and Full Wave Rectifier circuits 4 Zener Diode as a voltage regulator 5 Characteristics of BJT in Common Emitter Configuration 6 Characteristics of MOSFET in Common Source Configuration 7 Frequency response of BJT single stage amplifier 8 Study of the signal generation using RC Phase Shift Oscillator 9 Study of logic gates and implementation of Boolean Functions 10 Strain gauge sensors for measurement of normal strain. 11 Displacement measurement using LVDT and LDR. 12 Temperature measurement using RTD, Thermistor and Thermocouple. Total Laboratory Hours 30 hours Total Laboratory Hours 30 hours Text Book(s) 1. A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill. 2 Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India.	2. D	lesign logic ci	hysical parameters us	ing different t	ransducers					
1 Identify, mark the terminal and find the value of a particular component from the given group of electronic components, Study of electronic measurement devices (Multimeter, DSO, function generator) 2 V-I Characteristics of PN Junction diodes and Zener diodes 3 Half Wave and Full Wave Rectifier circuits 4 Zener Diode as a voltage regulator 5 Characteristics of BJT in Common Emitter Configuration 6 Characteristics of MOSFET in Common Source Configuration 7 Frequency response of BJT single stage amplifier 8 Study of the signal generation using RC Phase Shift Oscillator 9 Study of logic gates and implementation of Boolean Functions 10 Strain gauge sensors for measurement of normal strain. 11 Displacement measurement using LVDT and LDR. 12 Temperature measurement using RTD, Thermistor and Thermocouple. Total Laboratory Hours 30 hours Text Book(s) 1. A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill. 2 Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India. Reference Books 1. 1. Robert L. Bolys	0.10		Indic	ative Experi	ments					
group of electronic components, Study of electronic measurement devices (Multimeter, DSO, function generator) V-I Characteristics of PN Junction diodes and Zener diodes Half Wave and Full Wave Rectifier circuits Zener Diode as a voltage regulator Characteristics of BJT in Common Emitter Configuration Characteristics of MOSFET in Common Source Configuration Characteristics of MOSFET in Common Source Configuration Characteristics of BJT single stage amplifier Study of the signal generation using RC Phase Shift Oscillator Study of the signal generation using RC Phase Shift Oscillator Study of logic gates and implementation of Boolean Functions Study of logic gates and implementation of Boolean Functions Strain gauge sensors for measurement of normal strain. In Displacement measurement using LVDT and LDR. Total Laboratory Hours AD helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India. Reference Books ARE Reference Books Reference Books Device Hall of India, 11th Edition, 2017 Device Hall, New Delhi, 2003	1	Identify, ma	rk the terminal and fir	nd the value of	of a particular comp	onent fr	om	the	e giv	/en
DSO, function generator) 2 V-I Characteristics of PN Junction diodes and Zener diodes 3 Half Wave and Full Wave Rectifier circuits 4 Zener Diode as a voltage regulator 5 Characteristics of BJT in Common Emitter Configuration 6 Characteristics of MOSFET in Common Source Configuration 7 Frequency response of BJT single stage amplifier 8 Study of the signal generation using RC Phase Shift Oscillator 9 Study of logic gates and implementation of Boolean Functions 10 Strain gauge sensors for measurement of normal strain. 11 Displacement measurement using LVDT and LDR. 12 Temperature measurement using RTD, Thermistor and Thermocouple. Total Laboratory Hours 30 hours Text Book(s) 1. A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill. 2 Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India. Reference Books I. 1. Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall of India, 11th Edition, 2017 2 D. Patranabis – Sensor and Transd		group of ele	ectronic components, S	Study of elect	ronic measurement	t device:	s (N	∕lult	imet	ter,
 V-I Characteristics of PN Junction diodes and Zener diodes Half Wave and Full Wave Rectifier circuits Zener Diode as a voltage regulator Characteristics of BJT in Common Emitter Configuration Characteristics of MOSFET in Common Source Configuration Characteristics of MOSFET in Common Source Configuration Frequency response of BJT single stage amplifier Study of the signal generation using RC Phase Shift Oscillator Study of logic gates and implementation of Boolean Functions Strain gauge sensors for measurement of normal strain. Displacement measurement using LVDT and LDR. Temperature measurement using RTD, Thermistor and Thermocouple. Text Book(s) A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill. Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India. Reference Books Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall of India, 11th Edition, 2017 D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003 		DSO, functi	on generator)							
 Half Wave and Full Wave Rectifier circuits Zener Diode as a voltage regulator Characteristics of BJT in Common Emitter Configuration Characteristics of MOSFET in Common Source Configuration Frequency response of BJT single stage amplifier Study of the signal generation using RC Phase Shift Oscillator Study of logic gates and implementation of Boolean Functions Strain gauge sensors for measurement of normal strain. Displacement measurement using RTD, Thermistor and Thermocouple. Temperature measurement using RTD, Thermistor and Thermocouple. Text Book(s) A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill. Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India. Reference Books Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall of India, 11th Edition, 2017 D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003 	2	V-I Characteristics of PN Junction diodes and Zener diodes								
4 Zener Diode as a voltage regulator 5 Characteristics of BJT in Common Emitter Configuration 6 Characteristics of MOSFET in Common Source Configuration 7 Frequency response of BJT single stage amplifier 8 Study of the signal generation using RC Phase Shift Oscillator 9 Study of logic gates and implementation of Boolean Functions 10 Strain gauge sensors for measurement of normal strain. 11 Displacement measurement using LVDT and LDR. 12 Temperature measurement using RTD, Thermistor and Thermocouple. Total Laboratory Hours 30 hours Text Book(s) 1. A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill. 2 Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India. Reference Books 1. Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall of India, 11th Edition, 2017 2 D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003	3	Half Wave and Full Wave Rectifier circuits								
 5 Characteristics of BJT in Common Emitter Configuration 6 Characteristics of MOSFET in Common Source Configuration 7 Frequency response of BJT single stage amplifier 8 Study of the signal generation using RC Phase Shift Oscillator 9 Study of logic gates and implementation of Boolean Functions 10 Strain gauge sensors for measurement of normal strain. 11 Displacement measurement using LVDT and LDR. 12 Temperature measurement using RTD, Thermistor and Thermocouple. Text Book(s) 1. A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill. 2 Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India. Reference Books 1. Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall of India, 11th Edition, 2017 2 D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003 	4	Zener Diode as a voltage regulator								
6 Characteristics of MOSFET in Common Source Configuration 7 Frequency response of BJT single stage amplifier 8 Study of the signal generation using RC Phase Shift Oscillator 9 Study of logic gates and implementation of Boolean Functions 10 Strain gauge sensors for measurement of normal strain. 11 Displacement measurement using LVDT and LDR. 12 Temperature measurement using RTD, Thermistor and Thermocouple. Total Laboratory Hours 30 hours Text Book(s) 1 A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill. 2 Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India. Reference Books I. 1. Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall of India, 11th Edition, 2017 2 D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003	5	Characteristics of BJT in Common Emitter Configuration								
 Frequency response of BJT single stage amplifier Study of the signal generation using RC Phase Shift Oscillator Study of logic gates and implementation of Boolean Functions Strain gauge sensors for measurement of normal strain. Displacement measurement using LVDT and LDR. Temperature measurement using RTD, Thermistor and Thermocouple. Text Book(s) A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill. Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India. Reference Books Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall of India, 11th Edition, 2017 D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003 	6	Characteris	tics of MOSFET in Co	mmon Source	e Configuration					
 8 Study of the signal generation using RC Phase Shift Oscillator 9 Study of logic gates and implementation of Boolean Functions 10 Strain gauge sensors for measurement of normal strain. 11 Displacement measurement using LVDT and LDR. 12 Temperature measurement using RTD, Thermistor and Thermocouple. 12 Temperature measurement using RTD, Thermistor and Thermocouple. 13 Text Book(s) 1. A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill. 2 Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India. Reference Books 1. Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall of India, 11th Edition, 2017 2 D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003 	7	Frequency	response of BJT single	e stage amplif	ier					
9 Study of logic gates and implementation of Boolean Functions 10 Strain gauge sensors for measurement of normal strain. 11 Displacement measurement using LVDT and LDR. 12 Temperature measurement using RTD, Thermistor and Thermocouple. Total Laboratory Hours 30 hours 30 hours Text Book(s) 1. A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill. 2 Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India. Reference Books 1. Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall of India, 11th Edition, 2017 2 D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003	8	Study of the	e signal generation usi	ng RC Phase	Shift Oscillator					
10 Strain gauge sensors for measurement of normal strain. 11 Displacement measurement using LVDT and LDR. 12 Temperature measurement using RTD, Thermistor and Thermocouple. 12 Temperature measurement using RTD, Thermistor and Thermocouple. Total Laboratory Hours 30 hours Text Book(s) 1. A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill. 2 Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India. Reference Books 1. Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall of India, 11th Edition, 2017 2 D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003	9	Study of log	ic gates and impleme	ntation of Boo	lean Functions					
11 Displacement measurement using LVDT and LDR. 12 Temperature measurement using RTD, Thermistor and Thermocouple. Total Laboratory Hours 30 hours Text Book(s) 1. A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill. 2 Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India. Reference Books 1. Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall of India, 11th Edition, 2017 2 D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003	10	Strain gaug	e sensors for measure	ement of norm	nal strain.					
12 Temperature measurement using RTD, Thermistor and Thermocouple. Total Laboratory Hours 30 hours Text Book(s) 1. A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill. 2 Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India. Reference Books 1. Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall of India, 11th Edition, 2017 2 D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003	11	Displaceme	ent measurement usin	g LVDT and L	.DR.					
Total Laboratory Hours 30 hours Text Book(s)	12	Temperatur	e measurement using	RTD, Thermi	stor and Thermoco	uple.				
Text Book(s) 1. A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill. 2 Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India. Reference Books 1. Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall of India, 11th Edition, 2017 2 D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003	Total Laboratory Hours 30 hours									
 A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill. Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India. Reference Books Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall of India, 11th Edition, 2017 D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003 	Tex	t Book(s)								
 Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida, India. Reference Books Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall of India, 11th Edition, 2017 D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003 	1.	A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill.								
Reference Books 1. Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall of India, 11th Edition, 2017 2 D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003	Albert D. Helirick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 2016, First Edition, Pearson Education, Noida. India.									
 Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall of India, 11th Edition, 2017 D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003 	Reference Books									
Prentice Hall of India, 11th Edition, 20172D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003	1.	Robert L. Bolysted and Louis Nashelsky, Electronic Devices and Circuit Theory,								
2 D. Patranabis – Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003		Prentice Hall of India, 11th Edition, 2017								
	2	D. Patranab	bis – Sensor and Trans	sducers (2e) F	Prentice Hall, New [<u>Delhi, 20</u>	03			
Mode of assessment: Continuous assessment / FAT / Oral examination and others	Mod									
Recommended by Board of Studies U8.07.2021	Kec	ommended b	by Board of Studies	U8.07.2021	Data 22.00.00	01				

BMEE201L Engineering Mechanics L T P (С	
						3
Pre-requisite	NIL Syllabus version					sion
1.0						
Course Objective	Course Objectives:					
1. To enable	students to apply fundamental laws and basic con	icept	ts o	f rig	jid t	ody
mechanics	to solve problems of bodies under rest or in motion.					
2. To enable	the students to apply conditions of static equilibrium	to a	analy	/se	phys	sical
systems.						
3. To comput	e the properties of areas and bodies.					
Course Outcome						
Upon successful of	completion of the course the students will be able to			_		
1. Compute the r	esultant and analyse equilibrium (without and with fr	rictio	n) c	of sy	/ster	n of
forces acting o	n particles and rigid bodies in plane and space.					
2. Predict the su	pport-reactions and the internal forces of the memb	pers	of	trus	ses	and
frames.						
3. Apply transfer	heorems to determine properties of various sections.					
4. Calculate motion	on parameters of particles and rigid bodies.					
Module:1 Static	es of Particles				<u>5 hc</u>	ours
Fundamental con	cepts and principles - Resolution of a force -Resultant	of fo	rces	s in a	a pla	ane-
Equilibrium of a p	article in a plane; Addition of concurrent forces in spa	ice-	Equ	ilibri	ium	of a
particle in space						
Module:2 Static	cs of Rigid Bodies				<u>7 hc</u>	ours
Equivalent system	ns of forces- Principle of Transmissibility - Moment of a	a for	ce a	bou	tap	oint
and an axis- Cou	bles and force-couple systems- Equilibrium of rigid bod	lies i	in tw	vo a	nd tl	nree
dimensions- Type	s of beams, supports and reactions; Principle of virtua	al wo	ork ·	– Sy	/stei	m of
connected rigid bo	odies.					
Module:3 Analy	vsis of Structures				<u>5 ho</u>	ours
Analysis of plane	trusses - Method of joints and method of sections- Fran	nes				
Module:4 Fricti	on				<u>5 hc</u>	ours
The laws of dry	friction – Coefficients of Friction- Angles of Friction	1- IJ	ypes	s of	Fric	ction
Problems - Wedge	es and Ladder friction- Belt friction.					
Module:5 Prop	erties of Surfaces and Solids	.			7 hc	ours
First moments of	areas and lines- Centroids of composite areas and li	ines-	1	hec	rem	is of
Pappus-Guldinus-	Second moment of area- Parallel axis theorem- Re	ctan	gula	ir ar	ום ד	'olar
Noments of Inertia	a of composite areas- Radius of Gyration- Product of In	iertia	i- Pr	incip	bal A	٠xes
and Principal Mon	nents of Inertia- Mass moments of Inertia of thin plates.				0 6 4	
woodule:o Dynamics of Particles 8 hours Kingersation of Derticles 0						
Kinematics of Particles: Displacement, Velocity and Acceleration – Rectilinear motion –						
Curvilinear motion – Langential and Ivormal components – Radial and Transverse						
Components. Kinatics of Particles: Newton's Second Law, Energy and Momentum Methods Drinsing of						
Work and Energy-Principle of Impulse and Momentum-Direct Central Impact						
Module:7 Dynamics of Rigid Bodies						oure
Kinematics of rigid bodies: Translation and fixed axis rotation. Constal plans matical						
velocity Instantaneous centre of rotation. Ceneral plane motion: acceleration						
Kinetice of rigid bodies: Equations of motion -Angular momentum- Plane motion of a rigid						
body- Principle of work and energy for rigid bodies- Principle of impulse and momentum for						
rigid bodies						
	Total Lecture hours			4	5 h/	ours
		-				
I EXT BOOK(S)		•				
Statics and D	vn, Comwell, David Mazurek, and Sangni, vector Mech vnamics 12 th Edition McGraw-Companies Inc. New Y	ianiC York	5 10 20'	r⊏n 19	gine	ers:

Reference Books								
Russell C Hibbeler, Engineeri	ng Mechanics:	Statics	and Dynamics (14 th Edition),					
Pearson Education Inc., Prentice Hall, 2016.								
2. Meriam J.L and Kraige L.G., Engineering Mechanics, Volume I - Statics, Volume II -								
Dynamics, 9 th Edition, John Wiley & Sons, New York, 2018.								
Mode of Evaluation: CAT, Assignment , Quiz and FAT								
Recommended by Board of Studies 02.07.2021								
proved by Academic Council	63	Date	23.09.2021					
	ference Books Russell C Hibbeler, Engineerin Pearson Education Inc., Prentice Meriam J.L and Kraige L.G., E Dynamics, 9 th Edition, John Wiley de of Evaluation: CAT, Assignmer commended by Board of Studies proved by Academic Council	ference BooksRussell C Hibbeler, Engineering Mechanics: Pearson Education Inc., Prentice Hall, 2016.Meriam J.L and Kraige L.G., Engineering Mech Dynamics, 9th Edition, John Wiley & Sons, New Note: de of Evaluation: CAT, Assignment , Quiz and FA commended by Board of Studies 02.07.2021 proved by Academic Council 63	ference BooksRussell C Hibbeler, Engineering Mechanics: StaticsPearson Education Inc., Prentice Hall, 2016.Meriam J.L and Kraige L.G., Engineering Mechanics, V Dynamics, 9th Edition, John Wiley & Sons, New York, 201de of Evaluation: CAT, Assignment , Quiz and FAT commended by Board of Studies02.07.2021 oroved by Academic Council63					

BCSE101E	CSE101E Computer Programming: Python L T P C				С			
D	1		1	0	4	3		
Pre-requisite	Pre-requisite NIL Syllabus version				on			
1.0								
Lourse Objectives								
 To provide exposure to basic problem-solving techniques using computers. To inculcate the art of logical thinking abilities and propose povel solutions for real world. 								
problems through	ich programming language constructs	113 10						
Course Outcom	e							
1. Classify vario	bus algorithmic approaches, categorize the appropriate da	ata r	epre	eser	ntatio	on,		
and demonst	rate various control constructs.		•			,		
2. Choose appl	opriate programming paradigms, interpret and handle	data	usi	ng t	files	to		
propose solu	ition through reusable modules; idealize the importance	e of	mc	dule	es a	nd		
packages.								
Module:1 Intro	duction to Problem Solving			A 1	1 hc	bur		
Problem Solving	: Definition and Steps, Problem Analysis Chart, Develo	ping	an	Alg	orith	m,		
Modulo:2 Dyth	seudocode.			2	hou	Irc		
Introduction to n	vthon - Interactive and Script Mode - Indeptation - Com	mor	te -		riah			
- Reserved Wor	ts – Data Types – Operators and their precedence – Expr	raeei	ns - one	- va _ R	na∪ uilt_i	in		
Functions – Imp	orting from Packages	0331	0113	- 0	unt-			
Module:3 Con	trol Structures			2	hoi	ırs		
Decision Making	and Branching; if if-else nested if multi-way if-elif state	emei	nts	-10	noc	na.		
while loop for	oon – else clauses in loops nested loops – break o	contir	nue	and	d na	ig. ISS		
statements			iuc	un	a pe	100		
Module:4 Coll	ections			3	hou	ırs		
Lists: Create, Ac	cess, Slicing, Negative indices, List methods, List compre	hens	sion	s –				
Tuples: Create, I	ndexing and slicing, Operations on tuples – Dictionary: Cr	reate	, ac	ld, a	nd			
replace values, C	Dperations on dictionaries – Sets: Creation and operations	3.						
Module:5 Strir	ngs and Regular Expressions			2	hοι	ırs		
Strings: Compa	rison, Formatting, Slicing, Splitting, Stripping – Reg	jular	Ex	pre	ssio	ns:		
Matching,								
Search and repla	ace, Patterns.							
Module:6 Fun	ctions and Files			3	hοι	ırs		
Functions – Pa	arameters and Arguments: Positional arguments, Key	ywor	'd a	argu	mer	nts,		
Parameters								
with default val	ues – Local and Global scope of variables – Function	ons	with	ר A	rbitra	ary		
arguments – Recursive Functions – Lambda Function. Files: Create, Open, Read, Write,								
Append and Clos	se – tell and seek methods.				I			
	lules and Packages			2	nou	ırs		
Built-in modules	- User-Defined modules - Overview of Numpy and Panda	as pa	аска	ages	.			
	Total Lactura h	oure		15	hor	ire		
Taxt Back(a)		ours	•	15	not	115		
1 Eric Matthe	s Puthan Crash Course: A Hands On Project Based	Intr	odu	otion	$\frac{1}{2}$			
Programmin	a 2nd Edition No starch Press 2019	muv	ouu	CliOI	1 10			
Reference Books								
1. Martic C Brown, Python: The Complete Reference, 4th Edition. McGraw Hill Publishers.								
2018.								
2. John V. Guttag, Introduction to computation and programming using python: with								
applications	to understanding data. Zha Edition, MIT Press, 2016.							

Мо	de of Evaluation: No separate eval	uation for th	heory componer	nt.			
Ind	Indicative Experiments						
1.	Problem Analysis Chart, Flowchart and Pseudocode Practices.						
2.	Sequential Constructs using Pyth	on Operato	rs, Expressions.				
3.	Branching (if, if-else, nested if, m	ulti-way if-e	lif statements) a	nd Loopir	ng (for, while,		
	nested						
	looping, break, continue, else in le	oops).					
4.	List, Tuples, Dictionaries & Sets.						
5.	Strings, Regular Expressions.						
6.	Functions, Lambda, Recursive Functions and Files.						
7.	7. Modules and Packages (NumPy and Pandas)						
	Total Labora	tory Hours			60 hours		
Tex	(t Book(s)						
1.	Mariano Anaya, Clean Code in F	ython: Dev	elop maintainab	le and ef	ficient code, 2 nd		
	Edition, Packt Publishing Limited, 2021.						
Reference Books							
1.	1. Harsh Bhasin, Python for beginners, 1 st Edition, New Age International (P) Ltd., 2019,						
Mode of assessment: Continuous assessments and FAT							
Re	commended by Board of Studies	03.07.202	1				
Δ	Approved by Academic Council No. 63 Date 23.09.2021						
- ADI							
BCSE103E Computer Programming : Java L T						С	
--	---	-------------------	-------------------	----------------------	-----------	-----------------	
						3	
Pre-requisite	Pre-requisite NIL						
	S:	11 <i>C</i> .			- 4 - 1 -	- 6	
1. To introduc	ented programming in Jova	the fi	unda	amer	ntais	; of	
2 To dovelop	the ability of using Java to solve real world problems.						
	the ability of using Java to solve real world problems.						
Course Outcome							
At the end of this c	ourse, students should be able to:						
1. Understand	d basic programming constructs; realize the funda	amen	tals	of	Obj	ect	
Orientated	Programming in Java; apply inheritance and inte	erface) cc	nce	ots	for	
enhancing	code reusability.						
2. Realize the	e exception handling mechanism; process data withi	n file	s a	nd ı	ise i	the	
data structi	ures in the collection framework for solving real world p	roble	ms.				
Module:1 Java	a Basics			2	hou	ırs	
OOP Paradigm - I	Features of Java Language - JVM - Bytecode - Java	progr	am	stru	cture	э —	
Basic programmir	ng constructs - data types - variables – Java nar	ning	con	vent	ions	; —	
operators.							
Module:2 Loc	oping Constructs and Arrays			2	hou	ırs	
Control and loop	ing constructs - Arrays – one dimensional and r	nulti-	dime	ensio	onal	-	
enhanced for loop	– Strings - Wrapper classes.						
Module:3 Clas	ses and Objects			2	hou	ırs	
Class Fundamenta	als – Access and non-access specifiers - Declaring ob	jects	and	lass	signi	ng	
object reference va	ariables – array of objects – constructors and destructor	ors –	usa	ge o	t "th	IS″	
And static keywo	rus.			2	hai		
Inhoritanco type	entance and Polymorphism	0	orlo	ر مانه		ans be	
Overriding - abstra	s use of super - final keyword - Polymorphism	- 00	eno	aum	y ai	u	
Module:5 Pac	kages and Excention Handling			2	hoi	irs	
Packages: Creati	ng and Accessing - Sub packages					110	
Exception Handlin	ng - Types of Exception - Control Flow in Exceptions -	Use d	of tr	/. ca	tch.		
finally, throw, thro	ws in Exception Handling - User defined exceptions.		•	, ,	,		
Module:6 IO St	reams and Files			2	hou	urs	
Java I/O streams	s – FileInputStream & FileOutputStream – FileRe	ader	&	File	Writ	er-	
DataInputStream	& DataOutputStream – BufferedInputStream & Buffe	eredC	utp	utStr	ean	– ו	
PrintOutputStream	- Serialization and Deserialization.						
Module:7 Colle	ction Framework			2	hοι	ırs	
Generic classes a	nd methods - Collection framework: List and Map.						
	Total Lecture hours:			15	hou	urs	
Toxt Book(s)							
1 V Daniel Lia	and "Introduction to Java programming" - compret	onsi		<u>orci</u>	on_1	1 th	
Fdition Pears	son publisher 2017	121131		10131			
Reference Books							
1. Herbert Schild	t . The Complete Reference -Java. Tata McGraw-Hill	oublis	sher	. 10 ^t	h		
Edition. 2017				,			
2 Cay Horstma	nn,"Big Java", 4th edition, John Wilev & Sons publishe	, 5 th	edit	ion.	201	5	
3 E.Balagurusa	my, "Programming with Java", Tata McGraw-Hill publis	hers	, 6 th	edit	ion,		
2019	· ·			<u> </u>			

Mode of Evaluation: No separate evaluation for theory component.

Indicative Experiments

- Programs using sequential and branching structures. 1.
- Experiment the use of looping, arrays and strings. 2.
- 3. Demonstrate basic Object-Oriented programming elements.
- 4. Experiment the use of inheritance, polymorphism and abstract classes.
- 5. Designing packages and demonstrate exception handling.
- 6. Demonstrate the use of IO streams, file handling and serialization.
- 7. Program to discover application of collections. Total Laboratory Hours | 60 hours

Text Book(s)

1.	Marc Loy, Patrick Niemeyer and Daniel Leuck, Learning Java, O'Reilly Media, Inc., 5 th Edition, 2020.

Reference Books

1.	Dhruti Shah, 100+ Solutions in Java: A Hands-On Introduction to Programming in
	Java, BPB Publications, 1 st Edition, 2020.

Mode of assessment: Continuou	us assessments and FAT
-------------------------------	------------------------

Mode of assessment: Continuous assessments and FAT						
Recommended by Board of Studie	es	03.07.2021				
Approved by Academic Council No. 63		Date	23.09.2021			

BENG101L		L	ТР	С				
Pre-requisite	NIL	Sylla	bus	s versi	on			
			1	.0				
Course Objecti	/es:							
1. To devel	1. To develop LSRW skills for effective communication in professional situations							
2. To enhai	ice knowledge of grammar and vocabulary for meaningfu	I com	nun	cation				
3. To under	stand information from diverse texts for effective technica	al com	mun	Ication	1			
Course Outcon								
	ics. Image and vocabulary appropriately while writing and spea	kina						
2 Apply the	concepts of communication skills in formal and informal	situati	ons					
3. Demonst	rate effective reading and listening skills to synthesize a	nd dra	w in	telliae	nt			
inference	s			0				
4. Write cle	arly and significantly in academic and general contexts							
Module:1 Inti	oduction to Communication		4	hours	5			
Nature and Proc	ess - Types of communication: Intra-personal Interperso	nal G	rour	-verha	al			
and non-verbal	communication / Cross-cultural Communication - Commu	nicatio	n Ba	arriers				
and Essentials of	f good communication - Principles of Effective Communic	cations	3					
Module:2 Gra	mmatical Aspects		4	hours	5			
Sentence Patter	n - Modal Verbs - Concord (SVA) - Conditionals - Error de	etectic	n					
Module:3 Wr	tten Correspondence		4	hours	5			
Job Application	Letters - Resume Writing - Statement of Purpose							
Module:4 Bus	siness Correspondence		4	hours	5			
Business Letters	: Calling for Quotation, Complaint & Sales Letter – Memo	o - Min	utes	of				
Meeting - Descr	bing products and processes							
Module:5 Pro	fessional Writing		4	hours	5			
Paraphrasing & Recommendation	Summarizing - Executive Summary - Structure and Type:	s of Pr	opos	sal –				
Module:6 Tea	m Building & Leadershin Skills		4	hour	5			
Principles of Lea	dership - Team Leadership Model - Negotiation Skills - C	Conflict		nour	<u> </u>			
Management								
Module:7 Res	earch Writing		4	hours	5			
Interpreting and	Analysing a research article - Approaches to Review Pap	er Wr	iting	-				
Structure of a re	search article - Referencing							
Module:8 Gu	est Lecture from Industry and R&D organizations		2	hours	5			
Contemporary Is	sues							
	Total Lecture ho	urs:	30) hour	S			
Text Book(s)								
1. Raman, Me	enakshi & Sangeeta Sharma. (2015). Technical Commur	nicatio	n: Pi	rinciple	es			
and Practice	, (3 rd Edition). India: Oxford University Press.			•				
Reference Boo	(S							
1. Taylor, Shirl	ey & Chandra .V. (2010). Communication for Business A	Practi	cal /	Approa	ach			
4 th Edition. I	ndia: Pearson Longman.							
2. Kumar, San Engineers. I	ay & Pushpalatha. (2018). <i>English Language and Comm</i> ndia: Oxford University Press.	unicat	ion S	Skills f	or			
3. Koneru Arur Education	a. (2020). English Language Skills for Engineers. India: I	McGra	wΗ	ill				
4. Rizvi, M. As McGraw Hill	nraf. (2018). <i>Effective Technical Communication</i> 2 nd Edition Education.	on. Ch	enn	ai:				
5. Mishra, Sun	tha & Muralikrishna, C. (2014). Communication Skills for	Engine	ers.	India	:			
Pearson Ed	ucation.							

6. Watkins, P. (2018). *Teaching and Developing Reading Skills: Cambridge Handbooks for Language teachers*. India: Cambridge University Press.

Mode of Evaluation : CAT / Assignment / Quiz / FAT / Group Discussion							
Recommended by Board of Studies	28.06.2021						
Approved by Academic Council	No. 63	Date	23.09.2021				

BEN	G101P	Technical En	glish Comr	nunicatio	on Lab		L	Τ	Ρ	С
							0	0	2	1
Pre-	requisite	NIL				Syl	labı	is v	ersi	on
	•							1.0		
Cour	se Objectiv	es:								
1. To	use approp	riate grammatical struct	ures in profe	ssional c	ommunicat	ion				
2. To	improve En	alish communication sk	ills for better	emplova	bility					
3.To	enhance me	aningful communicatior	n skills in wri	ting and p	public speal	king				
Cour	se Outcom	es:			ľ					
1.De	monstrate pr	ofessional rhetoric and	articulate ide	eas effect	tively					
2. Int	erpret mater	ial on technology and d	eliver eloque	ent presei	ntations					
3. Ap	ply receptive	e and productive skills i	n real life sit	uations a	nd develop	work	plac	ce		
comr	nunication				·		•			
Indic	ative Exper	iments								
1.	Grammar &	& Vocabulary								
	Error Detec	tion								
	Activity: -V	Vorksheets								
2.	Listening t	o Narratives								
	Interviews of	of eminent personalities	& Ted Talks	5						
	Activity: Li	stening Comprehensior	n / Summaris	sing						
3.	Video Res	ume								
	SWOT Ana	lysis & digital resume te	echniques							
	Activity: P	reparing a digital résum	é for mock i	nterview						
4.	Product &	Process Description								
	Describing	and Sequencing								
	Activity: D	emonstration of product	and proces	SS						
5.	Mock Meet	tings								
	Types of m	eetings and meeting eti	quette	_		_				
	Activity: C	onduct of meetings ar	nd drafting	minutes	of the mee	ting				
6.	Reading re	esearch article								
	Scientific ai	nd Technical articles								
	Activity: W	riting Literature review								
1.	Analytical	Reading								
		es on Communication,	i eam Buildir	ig and Le	adersnip					
	Activity: G									
8.	Presentatio	ons Conformac/Cominer ne								
	Activity In	Jonierence/Seminar pa	per							
0	Activity.	idividual/ Group present	allons							
9.	Scientifie d									
	Activity: N	ote taking and Summar	isina							
10	Activity. N	Skille	ising							
10.	Interview a	uestions and techniques	2							
	Activity: Mock Interviews									
			ratory Hou	rs 🤇	30 h	our				
Mod	e of Assess	ment: Continuous Asse	ssment / FA	T / Writte	n Assianm	ents	/ 00)ral	
Pres	entation and	Group Activity			n nooigriffi	ontor	પ્ર	11 <i>21</i> C	-101	
Reco	mmended b	v Board of Studies	28 06 2021							
Annr	oved by Aca	demic Council	No 63	Date	23 09 202	21				
Appr	oved by Aca	demic Council	No. 63	Date	23.09.202	21				

BEN	IG101N	Effective I	English Con	nmunicat	ion		L	Т	Ρ	С
							0	0	4	2
Pre-	requisite	Nil				Syl	llabu	s V	ersi	on
								1.0		
Cou	rse Objectiv	es:								
1.	To hone LSR\	N skills for effective cor	nmunication							
2.	To enhance c	ommunication skills for	future caree	r aspiratio	ns					
3.	To gain critica	I communication skills i	in writing and	l public sp	beaking					
Cou	rse Outcome	es:								
1.	Nrite effective	e sentences using appro	opriate grami	mar and v	ocabulary					
2. E	=xpress clear	ly in everyday conversa	itions with lu	cid pronur	nciation					
3. /	Analyse the g	iven listening inputs for	effective cor	nprehens	ion					
4. /	Apply differen	t reading strategies to	various texts	and use	them appro	opria	ately			
Indi	cative Experi	iments		A (1				<u> </u>		
1.	Fundament	tals of Grammar: Part	s of Speech,	Articles,	Tenses, S	Sent	ence	Str	uctu	ire,
	Types of Se	ntences, Subject-Verb	Agreement							
		ercises and worksneets	S was al. C alf. luat		F			16		
2.	Speaking to	or Self-Expression: Fo	rmal Self-Int	roduction,	Expressir	ng O	nese	ŧΠ		
	Activity: Se						.			
3.	Basic Liste	ning: Listening to Simp	le Conversa	tions, Sho	ort Speeche	es/51	tories	;		
4	Activity: Ga	ap fill exercises	01							
4.	Reading Sk	IIIS: Reading Strategie	es, Skimming	and Scar	nning		- mtiala			
E	Activity: Cit	Sze reading, Reading C			ig newspap			35	otiv	
5.	Activity: Pic	cture and poster interpret	etation	writing P	aragraphs	usin	ig CC	nne	CUV	es
6.	Vocabulary	Enrichment: Synony	ms and An	itonyms,	Prefixes a	nd	Suffix	xes,	W	ord
	Formation, C	One Word Substitution,	Frequently u	used Idion	ns and Phr	ases	s, Ho	mor	bhor	ies
	and Homony	yms						•		
	Activity: Cr	ossword puzzles and w	orksheets							
7.	Listening for	or Pronunciation: Intro	duction to P	honemes,	Listening	to Na	ative			
	Speakers, L	istening to Various Acc	cents							
	Activity: Lis	stening and imitating, S	pell Bee							
8.	Interactive	Speaking: Everyday C	onversations	, Team In	teractions,	Sim	nulati	ons		
	Activity: Sit	uational role plays								
9.	Email and L	_etter Writing: Types a	ind Format o	f Emails a	nd Letters					
	Activity: Of	ficial e-mails and letters	s, personal le	etters						
10.	Reading for	r Comprehension: Sho	ort Stories by	[,] Indian W	riters					
	Activity: Su	immarising, loud readin	g							
			To	tal Labora	atory Hou	rs		60	hou	Jrs
Mod	le of Evaluati	ion: Continuous assess	sment / FAT	/ Written a	assignment	ts / C	Quiz/	Ora	d	
exar	nination / Gro	oup activity								
Rec	ommended by	y Board of Studies	28.06.2021							
App	roved by Acad	demic Council	No. 63	Date	23.09.202	21				

BSTS101P	Quantitative Skills Practice I		L	Т	Ρ	С	
			0	0	3	1.5	
Pre-requisite	ite Nil Syll						
Course Objectiv	ves:						
1. To enhan	ce the logical reasoning skills of the students and help the	em i	imp	rove	;		
problem-s	olving admittes						
2. To acquire	e skills required to solve quantitative aptitude problems			r n		•	
3. TO DOOSL	the verbal ability of the students for academic and profes	SIO	nal p	burp	ose	S	
Course Outcom	es'						
1 Exhibit so	und knowledge to solve problems of Quantitative Aptitude	e					
2 Demonstr	ate ability to solve problems of Logical Reasoning	Ū					
3. Display th	e ability to tackle questions of Verbal Ability						
Module:1 Logi	cal Reasoning			ļ	5 hc	ours	
Word group cat	egorization guestions		1				
Puzzle type class	involving students grouping words into right group orders	s of	log	ical	sen	se	
Cryptarithmetic			Ū				
Module:2 Data	arrangements and Blood relations			(6 hc	ours	
Linear Arrangem	ent - Circular Arrangement - Multi-dimensional Arrangeme	ent	- Bl	ood			
Relations							
Module:3 Ratio	o and Proportion			(6 hc	ours	
Ratio - Proportio	n - Variation - Simple equations - Problems on Ages - N	Vixt	ures	s an	d		
alligations							
Module:4 Perc	entages, Simple and Compound Interest			(<u>6 hc</u>	ours	
Percentages as I	Fractions and Decimals - Percentage Increase / Decrease	е-	Sim	nple	Inte	erest	
 Compound Inte 	erest - Relation Between Simple and Compound Interest						
Module:5 Num	ber System			(<u>6 hc</u>	ours	
Number system-	Power cycle - Remainder cycle - Factors, Multiples - H	ICF	and	1 LC	M		
Module:6 Esse	ential grammar for Placement				7 hc	ours	
 Preposition 	ons						
 Adjectives 	s and Adverbs						
Tense							
 Speech a 	nd Voice						
 Idioms an 	d Phrasal Verbs						
Collocatio	ons, Gerunds and Infinitives						
 Definite a 	nd Indefinite Articles						
Omission	of Articles						
 Preposition 	ons						
Compoun	d Prepositions and Prepositional Phrases						
 Interrogat 	ives						
Module:7 Read	ling Comprehension for Placement				<u>3 hc</u>	ours	
Types of question	ns - Comprehension strategies - Practice exercises		-				
Module:8 Voca	abulary for Placement	<u> </u>			6 hc	ours	
Exposure to ques	stions related to Synonyms – Antonyms – Analogy - Confi	usin	ng w	ord	s -		
	Total Lactura ha	irei		1	5 h/	lire	
		JI 5.		4	5 110	JUI 5	
Text Book(s)							
1. SMART. (20	18), <i>Place Mentor</i> 1 st (Ed.), Chennai: Oxford University P	res	s.				
2 Aggarwal R	S. (2017). Quantitative Aptitude for Competitive Examina	atior	is 3	3 rd (E	Ed.).		
New Delhi: S	6. Chand Publishing.			、 -	,		

3.	FACE. (2016). Aptipedia Aptitude Encyclopedia 1 st (Ed.). New Delhi: Wiley							
	Publications.			-				
4.	ETHNUS. (2016). <i>Aptimithra</i> ,1 st (Ed.) Bangalore: McGraw-Hill Education Pvt. Ltd.							
Reference Books								
1.	Sharma Arun. (2016). Quantitative Aptitude, 7 th (Ed.). Noida: McGraw Hill Education Pvt.							
	Ltd.	-						
Mode of evaluation: CAT, Assessments and FAT (Computer Based Test)								
Re	commended by Board of Studies 2							
App	proved by Academic Council N	No. 63	Date	23.09.2021				

BSTS102P Quantitative Skills Practice II L T F					Ρ	С
			0	0	3	1.5
Pre-requisite	Nil	Sy	llab	us	vers	sion
1.0						
Course Objectiv	es:	1.1.6				
1. Help to tri	gger the students' logical thinking skills and apply it in rea	al-lite	e so	ena	arios	\$
2. Learn to c	lepioy the strategies of solving quantitative ability problem	ns				
3. To expand	the verbal ability of students					
4. ASSIST 10 1	un the gamut of employability skills					
Course Outcom	es:					
1. Become p	roficient in interacting and using decision making models	s effe	ectiv	/elv		
2. Help to un	derstand the given concepts expressly to deliver an impa	actfu	l pr	ese	ntat	ion
3. Acquire kr	nowledge of solving quantitative aptitude and verbal abilit	y qu	Jest	ions	6	
effortlessl	y c c .					
Medular1 Logi	al Passaning puzzlas Advanced				<u>)</u> h.	
					2 110	Jurs
	5.					
 Mind-ben 	der style word statement puzzles					
Anagram	s					
 Rebus pt 	izzles					
Module:2 Logi	cal connectives, Syllogism and Venn				2 ho	ours
diag	rams					
Logical Connectiv	ves - Advanced Syllogisms - 4, 5, 6 and other multiple s	tate	mer	nt pi	oble	ems
- Challenging Ver	nn Diagram questions: Set theory					
Module:3 Perm	nutation, Combination and Probability				4 ho	ours
- Adv	/anced	1 . 1				
Fundamental Col	Inting Principle- Permutation and Combination - Completion	utati	on	JT I.:		
Permutation - Ad	vanced problems - Circular Permutations - Computatio	on oi	00	am	nau	on -
Advanced proble	ms -Advanced probability					
Module:4 Quar	ntitative Aptitude				6 ho	ours
Logarithms, Pro	gressions, Geometry and Quadratic equations - Adva	ance	ed			
 Logarithm 						
Arithmetic	c Progression					
Geometri	c Progression					
Geometry	/					
 Mensurat 	ion					
 Coded ine 	equalities					
Quadratic	Equations					
Concepts followe	d by advanced questions of CAT level					
Module:5 Imag	e interpretation				2 hc	ours
Image interpreta	tion: Methods - Exposure to image interpretation questio	ns t	hro	ugh		
brainstorming and	d practice					
Module:6 Critic	cal Reasoning - Advanced				3 ho	ours
Concepts of Critic	cal Reasoning - Exposure to advanced questions of GMA	T le	vel		-	
					<u>.</u>	
wodule: / Recr					8 ho	ours
Cracking other	kinds of interviews					

Panel interviews								
Stress interviews	Stress interviews							
Guesstimation								
 Best methods to approach Gues 	sstimation ques	stions						
2. Practice with impromptu intervie	w on Guesstim	nation q	uestions					
Case studies/ situational interview								
 Scientific strategies to answer 	er case study a	and situa	ational interview ques	stions				
2. Best ways to present cases								
3. Practice on presenting cases	s and answerir	ng situat	ional interviews aske	d in				
Medule 2 Problem och ing and Algo				10 h a				
Wodule:8 Problem solving and Algo		<u> </u>	Dest's starting	18 nours				
Logical methods to solve problem state	ments in Progr	ramming) - Basic algorithms					
introduced								
Tota	al Lecture hou	ırs'		45 hours				
				io nouro				
Text Book(s)		0.001						
Text Book(s) 1. SMART. (2018). Place Mentor 1 st (E	Ed.). Chennai:	Oxford	University Press.					
Text Book(s) 1. SMART. (2018). Place Mentor 1 st (E 2. Aggarwal R.S. (2017). Quantitative	Ed.). Chennai: Aptitude for C	Oxford	University Press.	(Ed.).				
Text Book(s)1.SMART. (2018). Place Mentor 1 st (E2.Aggarwal R.S. (2017). Quantitative New Delhi: S. Chand Publishing.	Ed.). Chennai: Aptitude for C	Oxford	University Press. ive Examinations 3 rd	(Ed.).				
Text Book(s)1.SMART. (2018). Place Mentor 1 st (E2.Aggarwal R.S. (2017). Quantitative New Delhi: S. Chand Publishing.	Ed.). Chennai: Aptitude for C	Oxford	University Press. <i>ive Examinations</i> 3 rd	(Ed.).				
Text Book(s) 1. SMART. (2018). Place Mentor 1 st (E 2. Aggarwal R.S. (2017). Quantitative New Delhi: S. Chand Publishing. 3. FACE. (2016). Aptipedia Aptitude E	Ed.). Chennai: Aptitude for C Encyclopedia 1 ^s	Oxford Competit	University Press. <i>ive Examinations</i> 3 rd New Delhi: Wiley	(Ed.).				
Image: Colspan="2">Image: Colspan="2" Text Book(s) 1. SMART. (2018). Place Mentor 1 st (E 2. Aggarwal R.S. (2017). Quantitative New Delhi: S. Chand Publishing. 3. FACE. (2016). Aptipedia Aptitude E Publications.	Ed.). Chennai: Aptitude for C Encyclopedia 1 ^s	Oxford Competit	University Press. <i>ive Examinations</i> 3 rd New Delhi: Wiley	(Ed.).				
Text Book(s) 1. SMART. (2018). Place Mentor 1 st (E 2. Aggarwal R.S. (2017). Quantitative New Delhi: S. Chand Publishing. 3. FACE. (2016). Aptipedia Aptitude E Publications. 4. ETHNUS. (2016). Aptimithra.1 st (E	Ed.). Chennai: Aptitude for C Encyclopedia 1 ^s	Oxford Competities (Ed.).	University Press. <i>ive Examinations</i> 3 rd New Delhi: Wiley w-Hill Education Pyt.I	(Ed.).				
Text Book(s) 1. SMART. (2018). Place Mentor 1 st (E 2. Aggarwal R.S. (2017). Quantitative New Delhi: S. Chand Publishing. 3. FACE. (2016). Aptipedia Aptitude E Publications. 4. ETHNUS. (2016). Aptimithra, 1 st (Ed Beference Books	Ed.). Chennai: Aptitude for C Encyclopedia 1 ^s d.) Bangalore:	Oxford Competit. st (Ed.). McGrav	University Press. <i>ive Examinations</i> 3 rd New Delhi: Wiley w-Hill Education Pvt.I	(Ed.). _td.				
Text Book(s) 1. SMART. (2018). Place Mentor 1 st (E 2. Aggarwal R.S. (2017). Quantitative New Delhi: S. Chand Publishing. 3. FACE. (2016). Aptipedia Aptitude E Publications. 4. ETHNUS. (2016). Aptimithra, 1 st (Eo Reference Books 1. Sharma Arun (2016). Quantitative	Ed.). Chennai: Aptitude for C Encyclopedia 1 ^s d.) Bangalore:	Oxford competiti st (Ed.). McGrav	University Press. <i>ive Examinations</i> 3 rd New Delhi: Wiley w-Hill Education Pvt.I	(Ed.). _td.				
Text Book(s) 1. SMART. (2018). Place Mentor 1 st (E 2. Aggarwal R.S. (2017). Quantitative New Delhi: S. Chand Publishing. 3. FACE. (2016). Aptipedia Aptitude E Publications. 4. ETHNUS. (2016). Aptimithra, 1 st (Ed Reference Books 1. Sharma Arun. (2016). Quantitative A Ltd.	Ed.). Chennai: Aptitude for C Encyclopedia 1 ^s d.) Bangalore: Aptitude, 7 th (Ed	Oxford competit	University Press. <i>ive Examinations</i> 3 rd New Delhi: Wiley <u>w-Hill Education Pvt.I</u> da: McGraw Hill Educ	(Ed.). _td.				
Text Book(s) 1. SMART. (2018). Place Mentor 1 st (E 2. Aggarwal R.S. (2017). Quantitative New Delhi: S. Chand Publishing. 3. FACE. (2016). Aptipedia Aptitude E Publications. 4. ETHNUS. (2016). Aptimithra, 1 st (Ed Reference Books 1. 1. Sharma Arun. (2016). Quantitative A Ltd. Mode of evaluation: CAT, Assessment	Ed.). Chennai: Aptitude for C Encyclopedia 1 ^s d.) Bangalore: Aptitude, 7 th (Ed	Oxford Competit. St (Ed.). McGrav d.). Noic	University Press. <i>ive Examinations</i> 3 rd New Delhi: Wiley w-Hill Education Pvt.I da: McGraw Hill Educ	(Ed.). _td. cation Pvt.				
Text Book(s) 1. SMART. (2018). Place Mentor 1 st (E 2. Aggarwal R.S. (2017). Quantitative New Delhi: S. Chand Publishing. 3. FACE. (2016). Aptipedia Aptitude E Publications. 4. ETHNUS. (2016). Aptimithra, 1 st (Ed Reference Books 1. 1. Sharma Arun. (2016). Quantitative A Ltd. Mode of evaluation: CAT, Assessment	Ed.). Chennai: Aptitude for C Encyclopedia 1 ^s d.) Bangalore: Aptitude, 7 th (Ed is and FAT (Co	Oxford competit st (Ed.). McGrav d.). Noid	University Press. <i>ive Examinations</i> 3 rd New Delhi: Wiley <u>w-Hill Education Pvt.I</u> da: McGraw Hill Educ Based Test)	(Ed.). _td. cation Pvt.				
 Text Book(s) 1. SMART. (2018). Place Mentor 1st (E 2. Aggarwal R.S. (2017). Quantitative New Delhi: S. Chand Publishing. 3. FACE. (2016). Aptipedia Aptitude E Publications. 4. ETHNUS. (2016). Aptimithra,1st (Ed Reference Books 1. Sharma Arun. (2016). Quantitative A Ltd. Mode of evaluation: CAT, Assessment Recommended by Board of Studies 	Ed.). Chennai: Aptitude for C incyclopedia 1 ^s d.) Bangalore: Aptitude, 7 th (Ed is and FAT (Co	Oxford Competit (Ed.). McGrav d.). Noic	University Press. <i>ive Examinations</i> 3 rd New Delhi: Wiley <u>w-Hill Education Pvt.I</u> da: McGraw Hill Educ Based Test)	(Ed.). _td. cation Pvt.				

Pre-requisite Nil Syllabus version Course Objective: 1.0 • To make the student comfortable and get familiarized with the facilities available on campus 1.0 • To make the student aware of the exciting opportunities and usefulness of engineering to society • • To make the student understand the philosophy of engineering • • To know the infrastructure facilities available on campus • • To rationally utilize the facilities during their term for their professional growth • • To rationally utilize the facilities available on campus • • To rationally utilize the facilities during their term for their professional growth • • To ationally utilize the facilities available on campus • • To arationally utilize the facilities during their term for their professional growth • • To ationally utilize the facilities available on campus • • To ationally utilize the facilities during the induction programme. Both general activities and those which are discipline-specific should be included here. • Student should get familiarized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website. • Student should get familiarized by industries, including those on career opportunities, organized by the School and p	B	MEE101N		Intro	duction to En	aineerir	na		L	TF	, C
Pre-requisite Nil Syllabus version Course Objective: 1.0 To make the student comfortable and get familiarized with the facilities available on campus To make the student aware of the exciting opportunities and usefulness of engineering to society To make the student understand the philosophy of engineering To make the student understand the philosophy of engineering Course Outcome: • To rationally utilize the facilities during their term for their professional growth To appreciate the engineering principles, involve in life-long learning and take up engineering practice as a service to society General Guidelines 1. Student should observe and involve in the activities during the induction programme. Both general activities and those which are discipline-specific should be included here. 2. Student should get familiarized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website. 3. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering. 4. Activities under 'Do-it-Yourself' will be detailed by the School. 5. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS						5	- J		0	0 0) 1
1.0 Course Objective: • To make the student comfortable and get familiarized with the facilities available on campus • To make the student aware of the exciting opportunities and usefulness of engineering to society • To make the student understand the philosophy of engineering • To know the infrastructure facilities available on campus • To rationally utilize the facilities during their term for their professional growth • To appreciate the engineering principles, involve in life-long learning and take up engineering practice as a service to society General Guidelines 1. 1. Student should observe and involve in the activities during the induction programme. Both general activities and those which are discipline-specific should be included here. 2. Student should get familiarized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website. 3. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects involving reverse-engineering. 4. Activities under 'Do-it-Yourself' will be detailed by the School. 5. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instructio	Pr	e-requisite		Nil				Syl	labu	s ver	sion
Course Objective: • To make the student comfortable and get familiarized with the facilities available on campus • To make the student aware of the exciting opportunities and usefulness of engineering to society • To make the student understand the philosophy of engineering Course Outcome: • To rationally utilize the facilities available on campus • To rationally utilize the facilities during their term for their professional growth • To appreciate the engineering principles, involve in life-long learning and take up engineering practice as a service to society General Guidelines 1. Student should observe and involve in the activities during the induction programme. Both general activities and those which are discipline-specific should be included here. 2. Student should get familiarized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website. 3. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects involving reverse-engineering. 4. Activities under 'Do-it-Yourself' will be detailed by the School. 5. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photogra		•							1	.0	
 To make the student comfortable and get familiarized with the facilities available on campus To make the student aware of the exciting opportunities and usefulness of engineering to society To make the student understand the philosophy of engineering Course Outcome: To know the infrastructure facilities available on campus To rationally utilize the facilities during their term for their professional growth To appreciate the engineering principles, involve in life-long learning and take up engineering practice as a service to society General Guidelines Student should observe and involve in the activities during the induction programme. Both general activities and those which are discipline-specific should be included here. Student should get familiarized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering. Activities under 'Do-it-Yourself' will be detailed by the School. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the document as per the requirement; 1.5 line spacing to be used. 	Сс	ourse Objec	tiv	e:							
 Campus To make the student aware of the exciting opportunities and usefulness of engineering to society To make the student understand the philosophy of engineering Course Outcome: To know the infrastructure facilities available on campus To rationally utilize the facilities during their term for their professional growth To appreciate the engineering principles, involve in life-long learning and take up engineering practice as a service to society General Guidelines Student should observe and involve in the activities during the induction programme. Both general activities and those which are discipline-specific should be included here. Student should get familiarized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering. Activities under 'Do-it-Yourself' will be detailed by the School. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. 	٠	To make th	ne s	student comfortable a	nd get familiar	ized with	n the facilitie	es ava	ilable	e on	
 To make the student aware of the exciting opportunities and usefulness of engineering to society To make the student understand the philosophy of engineering To make the student understand the philosophy of engineering To nake the student understand the philosophy of engineering To nake the student understand the philosophy of engineering To know the infrastructure facilities available on campus To rationally utilize the facilities during their term for their professional growth To appreciate the engineering principles, involve in life-long learning and take up engineering practice as a service to society General Guidelines Student should observe and involve in the activities during the induction programme. Both general activities and those which are discipline-specific should be included here. Student should get familiarized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering. Activities under 'Do-it-Yourself' will be detailed by the School. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. 		campus									
 society To make the student understand the philosophy of engineering To make the student understand the philosophy of engineering To make the student understand the philosophy of engineering To know the infrastructure facilities available on campus To rationally utilize the facilities during their term for their professional growth To appreciate the engineering principles, involve in life-long learning and take up engineering practice as a service to society General Guidelines Student should observe and involve in the activities during the induction programme. Both general activities and those which are discipline-specific should be included here. Student should get familiarized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering. Activities under 'Do-it-Yourself' will be detailed by the School. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. Mode of Evaluation: Evaluation of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Approved by Academic Council No. 63 Date 23.09.2021 	٠	To make th	ne s	student aware of the e	exciting opport	unities a	nd usefulne	ess of	engi	neerii	ng to
To make the student understand the philosophy of engineering Course Outcome: To know the infrastructure facilities available on campus To rationally utilize the facilities during their term for their professional growth To appreciate the engineering principles, involve in life-long learning and take up engineering practice as a service to society General Guidelines 1. Student should observe and involve in the activities during the induction programme. Both general activities and those which are discipline-specific should be included here. 2. Student should get familiarized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website. 3. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering. 4. Activities under 'Do-it-Yourself' will be detailed by the School. 5. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used.		society									
Course Outcome: • To know the infrastructure facilities available on campus • To rationally utilize the facilities during their term for their professional growth • To appreciate the engineering principles, involve in life-long learning and take up engineering practice as a service to society General Guidelines 1. Student should observe and involve in the activities during the induction programme. Both general activities and those which are discipline-specific should be included here. 2. Student should get familiarized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website. 3. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering. 4. Activities under 'Do-it-Yourself' will be detailed by the School. 5. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the document as per the requirement; 1.5 line spacing to be used. Mode of Evaluation: Evaluation of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Approved by Academic Council No. 63 Date 23.09.2021	٠	To make th	ne s	student understand th	e philosophy c	of engine	ering				
 To know the infrastructure facilities available on campus To know the infrastructure facilities during their term for their professional growth To appreciate the engineering principles, involve in life-long learning and take up engineering practice as a service to society General Guidelines Student should observe and involve in the activities during the induction programme. Both general activities and those which are discipline-specific should be included here. Student should get familiarized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering. Activities under 'Do-it-Yourself' will be detailed by the School. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. Mode of Evaluation: Evaluation of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 											
 To know the infrastructure facilities available on campus To rationally utilize the facilities during their term for their professional growth To appreciate the engineering principles, involve in life-long learning and take up engineering practice as a service to society General Guidelines Student should observe and involve in the activities during the induction programme. Both general activities and those which are discipline-specific should be included here. Student should get familiarized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering. Activities under 'Do-it-Yourself' will be detailed by the School. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. Mode of Evaluation: Evaluation of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Approved by Academic Council No. 63 Date 23.09.2021 	Co	ourse Outco	ome	9:							
 To rationally utilize the facilities during their term for their professional growth To appreciate the engineering principles, involve in life-long learning and take up engineering practice as a service to society General Guidelines Student should observe and involve in the activities during the induction programme. Both general activities and those which are discipline-specific should be included here. Student should get familiarized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering. Activities under 'Do-it-Yourself' will be detailed by the School. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. 	٠	To know th	e i	nfrastructure facilities	available on c	ampus					
 To appreciate the engineering principles, involve in life-long learning and take up engineering practice as a service to society General Guidelines Student should observe and involve in the activities during the induction programme. Both general activities and those which are discipline-specific should be included here. Student should get familiarized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering. Activities under 'Do-it-Yourself' will be detailed by the School. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. Mode of Evaluation: Evaluation of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Approved by Academic Council No. 63 Date 23.09.2021 	٠	To rational	ly ι	itilize the facilities dur	ing their term	for their	professiona	al grow	rth		
engineering practice as a service to society General Guidelines 1. Student should observe and involve in the activities during the induction programme. Both general activities and those which are discipline-specific should be included here. 2. Student should get familiarized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website. 3. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering. 4. Activities under 'Do-it-Yourself' will be detailed by the School. 5. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. Mode of Evaluation: Evaluation of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Approved by Academic Council No. 63 Date 23.09.2021	٠	To appreci	ate	the engineering princ	ciples, involve	in life-loi	ng learning	and ta	ake u	ıр	
General Guidelines 1. Student should observe and involve in the activities during the induction programme. Both general activities and those which are discipline-specific should be included here. 2. Student should get familiarized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website. 3. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering. 4. Activities under 'Do-it-Yourself' will be detailed by the School. 5. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. Mode of Evaluation: Evaluation of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Approved by Academic Council No. 63 Date 23.09.2021	_	engineerin	<u>g p</u>	ractice as a service to	o society						
 Student should observe and involve in the activities during the induction programme. Both general activities and those which are discipline-specific should be included here. Student should get familiarized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering. Activities under 'Do-it-Yourself' will be detailed by the School. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. Mode of Evaluation: Evaluation of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Approved by Academic Council No. 63 Date 23.09.2021 	Ge	eneral Guid		nes			·	1 (*			
 Both general activities and those which are discipline-specific should be included here. 2. Student should get familiarized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website. 3. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering. 4. Activities under 'Do-it-Yourself' will be detailed by the School. 5. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. Mode of Evaluation: Evaluation of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Approved by Academic Council No. 63 Date 23.09.2021 		1. Studen	t si	nould observe and inv	olve in the act	ivities du	uring the ind	duction	n pro	gram	me.
 Student should get familiarized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering. Activities under 'Do-it-Yourself' will be detailed by the School. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. 		Boin ge	ene	ral activities and thos	e which are di	scipline-	specific she		e inc	luded	
 2. Student should get raminalized with the infrastructure facilities available on campus during the general induction, school induction programme and also from the institutional website. 3. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering. 4. Activities under 'Do-it-Yourself' will be detailed by the School. 5. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. 		2 Studen	tek	hould get familiarized	with the infrae	tructure	facilities av	ailahle	on	camn	
 3. Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering. 4. Activities under 'Do-it-Yourself' will be detailed by the School. 5. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. Mode of Evaluation: Evaluation of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Approved by Academic Council No. 63 Date 23.09.2021 		during	the	deneral induction sc	hool induction	program	nme and al	so fror	n the	u ann p	us
 Student should attend the lecture by industries, including those on career opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering. Activities under 'Do-it-Yourself' will be detailed by the School. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. Mode of Evaluation: Evaluation of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Approved by Academic Council No. 63 Date 23.09.2021 Contended of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Approved by Academic Council No. 63 Date 23.09.2021 Contended of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Contended of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Contended of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Contended of the submitted report and interaction with the students Recommended by Board of Studies Contended of the submitted report and interaction with the students Contended of Studies Contended of Studies		instituti	ona	al website		program		50 1101			
 opportunities, organized by the School and probably involve in 'Do-it-yourself' projects or projects involving reverse-engineering. 4. Activities under 'Do-it-Yourself' will be detailed by the School. 5. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. Mode of Evaluation: Evaluation of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Approved by Academic Council No. 63 Date 23.09.2021 		3. Studen	t sł	hould attend the lectu	re bv industrie	s. includ	ina those o	n care	er		
 Activities under 'Do-it-Yourself' will be detailed by the School. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. Mode of Evaluation: Evaluation of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Approved by Academic Council No. 63 Date 23.09.2021 		opportu	Init	ies, organized by the	School and pr	obably i	nvolve in 'D	o-it-yc	ourse	elf'	
 4. Activities under 'Do-it-Yourself' will be detailed by the School. 5. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. Mode of Evaluation: Evaluation of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Approved by Academic Council No. 63 Date 23.09.2021 		project	s o	r projects involving re	verse-enginee	ring.		,			
 5. Student should prepare a report on the activities and observations, as per the specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. Mode of Evaluation: Evaluation of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Approved by Academic Council No. 63 Date 23.09.2021 		4. Activitie	es i	under 'Do-it-Yourself'	will be detailed	d by the	School.				
specified format, and submit the same in institutional LMS, VTOP for further evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. Mode of Evaluation: Evaluation of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Approved by Academic Council No. 63 Date 23.09.2021		5. Studen	t sł	nould prepare a repor	t on the activit	ies and o	observation	s, as p	oer th	ne	
evaluation General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. Mode of Evaluation: Evaluation of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Approved by Academic Council No. 63 Date 23.09.2021		specifie	ed f	format, and submit the	e same in insti	tutional l	_MS, VTOF	for fu	rther	•	
General instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used.Mode of Evaluation: Evaluation of the submitted report and interaction with the studentsRecommended by Board of Studies02.07.2021Approved by Academic CouncilNo. 63Date23.09.2021		evaluat	ion	l							
General Instruction on formatting: Document to be prepared with the titles given in the template; Arial type with font size of 12 to be used; photographs can be included in the document as per the requirement; 1.5 line spacing to be used. Mode of Evaluation: Evaluation of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Approved by Academic Council No. 63 Date 23.09.2021		0						000			
Intertemplate, Analytype with font size of 12 to be used, photographs can be included in the document as per the requirement; 1.5 line spacing to be used. Mode of Evaluation: Evaluation of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Approved by Academic Council No. 63 Date 23.09.2021		Genera	u ir	Istruction on formattin	g: Document i	o be pre	pared with		es g	iven i	n N
Mode of Evaluation: Evaluation of the submitted report and interaction with the students Recommended by Board of Studies 02.07.2021 Approved by Academic Council No. 63 Date 23.09.2021		ine ten	ipia	umont as por the rog	ii Size of 12 to		, priolograp	ons cai	i be	Inclue	Jea
Mode of Evaluation: Evaluation of the submitted report and interaction with the studentsRecommended by Board of Studies02.07.2021Approved by Academic CouncilNo. 63Date23.09.2021				ument as per the requ	inement, 1.5 ii	ne spac	ing to be us	seu.			
Mode of Evaluation: Evaluation of the submitted report and interaction with the studentsRecommended by Board of Studies02.07.2021Approved by Academic CouncilNo. 63Date23.09.2021											
Recommended by Board of Studies02.07.2021Approved by Academic CouncilNo. 63Date23.09.2021	Mo	ode of Evalu	atio	on: Evaluation of the s	submitted repo	ort and in	teraction w	ith the	stuc	lents	
Approved by Academic Council No. 63 Date 23.09.2021	Re	commende	d b	y Board of Studies	02.07.2021						
	Ac	proved by A	ca	demic Council	No. 63	Date	23.09.202	21			

BSSC101N	Essence of Traditional Knowledge		L	Т	Ρ	С			
			0	0	0	2			
Pre-requisite	Pre-requisite Nil Syllab				ersi	on			
				1.0					
Course Objectiv	/es:								
1. To impar	the knowledge on Indian tradition and Culture.								
2. To enable	e the students to acquire the traditional knowledge in diff	ferent	sec	tors					
3. To analy	ze and understand the Science, Management and	India	n l	۲no	wlea	lge			
System.	-					-			
Course Outcom	es:								
1. Familiariz	1. Familiarize the concept of Traditional Indian Culture and Knowledge.								

- Explore the Indian religion, philosophy and practices.
- 3. Analyze and understand the Indian Languages, Culture, Literature and Arts.
- 4. Gives a clear understanding on the Indian perspective of modern scientific world and basic principles of Yoga and holistic health care system of India.
- 5. Enable knowledge on Legal framework and traditional knowledge.

Module:1 Introduction to Traditional Knowledge

Traditional knowledge: Definition, nature and characteristics, scope and importance, kinds of traditional knowledge, Indigenous Knowledge, characteristics, Traditional knowledge vis-a-vis Indigenous knowledge, Traditional knowledge Vs Western Knowledge.

Module:2 Culture and Civilization

Introduction to Culture and Civilization, Culture and Heritage, Characteristics features of Indian Culture, Importance of Culture, Cultural practices in Ancient India, Medieval India and Modern India.

Module:3 | Languages and Literature

Indian Languages and Literature: the role of Sanskrit, significance of scriptures to current society, Indian philosophies, other Sanskrit literature and literatures of South India.

Module:4 | Religion and Philosophy

Religion and Philosophy: Religion and Philosophy in ancient India, Religion and Philosophy in Medieval India, Religious Reform Movements in Modern India (selected movements only). **Module:5** Fine Arts in India

Indian Painting, Indian handicrafts, Music, divisions of Indian classic music, modern Indian music, Dance and Drama. Science and Technology in India, Development of science in ancient, medieval and modern India. Traditional Medicine – Herbal Healing - Yoga and Pranayama practices.

Module:6 Traditional Knowledge in different sectors

Traditional knowledge and engineering, Traditional medicine system, Traditional knowledge in agriculture, Dependence of Traditional Societies on food and healthcare needs; Importance of conservation and sustainable development of environment, Management of biodiversity and Protection of Traditional knowledge.

Module:7 | Legal framework and Traditional Knowledge

Introduction on Legal framework and Traditional Knowledge: The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmer's Rights Act, 2001 (PPVFR Act); The Biological Diversity Act 2002 and Rules 2004, The protection of traditional knowledge bill, 2016.

	Total Lecture Hours:	60 hours
Text E	Books :	
1.	Shikha Jain, Parul G Munjal And Somya Joshi,(2020) Tradition Systems And Cultural Heritage, Aryan Books International, India.	nal Knowledge
2.	Anindya Bhukta(2020), Legal Protection for Traditional Knowledge: 1	owards A New

	Law for Indigenous Intellectual Property, Emerald Publishing Limited, United									
	Kingdom.									
Reference Books :										
1.	Traditional Knowledge System in India, by Amit Jha, 2009.									
2	Basant Kumar Mohanta & Vipin Kumar Singh (2012), "Traditional Knowledge System									
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~									
3.	S. Baliyan, Indian Art and Culture, Oxford University Press, India.									
4	http://indiafacts.org/author/michel-danino/									
5.	GN Jha (Eng. Trans.) Ed. R N Jha, Yoga-darshanam with Vyasa Bhashya, Vidyanidhi Prakasham, Delhi,2016.									
Mode	of Evaluation: Quiz and Term End – Quiz									
Recor	mmended by Board of Studies 16-11-2021									
Appro	Approved by Academic Council No. 64 Date 16-12-2021									
	ž i i i									

BCHY102N Environmental Sciences L T						С
		0 0 0				
Pre-requisite	NIL	Syl	abu	S V	ersi	on
			1	.0		
Course Objective						
1 Lindoraton	ed al sludents to	and	thai	~		
implication	s of life style on the environment	anu	uieii			
2. Identify the	different causes for environmental degradation					
3. Analyze inc	dividual's contribution to environmental pollution.					
4. Evaluate t	he impact of pollution at the global/local level a	nd fir	d			
solutions for	pr remediation.					
Course Outcome	S					
At the end of the c	ourse, the students will be able to:					
1. Recognize	the environmental issues in a problem-oriented,	interc	liscip	olina	ary	
perspective	Э					
2. Classify th	e key environmental issues, the science behind the	nose p	orob	em	s an	Id
3 Demonstra	Julions.	`				
4 Identify var	ious environmental hazards	1.				
5 Design var	ious methods for the conservation of resources					
6. Formulate	action plans for sustainable alternatives that inco	orpora	te s	cier	ice.	
humanity, a	and social aspects.				,	
Module: 1 Env	ironment and Ecosystem		5 h	our	s	
types. Key enviro chain, food web a stages involved, p	nmental problems, their basic causes and sustainal nd their significance, Energy flow in ecosystem; Eco rimary and secondary succession - hydrarch, mesarc	ole so logica h, xera	lutio I suo arch	ns. cces	Foo	od n-
Module: 2 Bio	diversity		4 h	our	S	
Biodiversity-definit endangered and biodiversity due to advantages and d	ion, levels and importance. Species: roles: types: rare species. Hot-spots –Significance, Mega-biodi natural and anthropogenic activities, Conservation m isadvantages.	extir versity nethoo	ict, /. Tl ls. G	end hrea 3M c	emi ats crop	c, to s-
Module: 3 Sus	taining Environmental Quality		4 h	our	S	
Environmental ha COVID-19), Chem quality manageme	zards: definition, types, causes and solutions: Encal (BPA, heavy metals), and Nuclear (Chernobyl); ent and conservation; Solid waste management metho	Biologi Air, v ods.	cal /atei	(Ma r an	alari d so	a, ɔil
Module: 4 Clear	and Green Energy		5 ho	ours	5	
Renewable energ	y resources: Solar energy-thermal and photovol	taic;	Hyd	roel	ectr	ic
energy. Wind ene Hydrogen energy;	rgy, Ocean thermal energy; Geothermal energy; Energy; Solar-hydrogen revolution. Electric and CNG vehicles	ergy fr s.	om	bior	nas	s;
Module: 5 Envi	ronmental Protection Policies		4 h	our	'S	
Environmental Pro and Wild life pro Impact assessmer	otection (EPA) objectives; Air Act, water Act, Fores tection Act. Environmental Impact Analysis: guide nt methodologies.	st con: lines,	serv core	atio 9 va	n A alue	ct s.
Module: 6 Susta	ainable development		4 h	our	S	
Effect of population	on-urban environmental problems; Population age s	tructu	re; S	Sus'	taina	able
human societies: awareness. Wome	tools in economics, sustainable development goals and child welfare, Women empowerment.	SDGs	anc	l pro	omc	oting

Module: 7 Global Climate Change				4 ho	ours		
Global climate change and green-house	effect. Ky	oto Proto	col-carbon	credits,	The	Paris	
Agreement, carbon sequestration: defin	tion, types	s and m	ethodologie	s. Oz	one	layer	
depletion: causes and impacts. Mitigation	of ozone lay	yer depleti	on- Montrea	al Protoc	ol. R	ole of	
Information Technology in environment.				T			
Total Lecture	hours:			30 h	nours	5	
Assessment: Seminars, Quiz, Case Stud	es, Final A	ssessmer	it Test.				
Text Books							
Cengagelearning. 2. Benny Joseph, (2012), Environmental S McGraw Hill Education Private Limited, Ne	cience and w Delhi, In	l Engineer dia.	ing, 5 th Edit	ion, Tata	a		
Reference Book(s)							
 David M. Hassenzahl, Mary Catherine Hager, Linda. R. Berg (2011), Visualizing Environmental Science, 4th Edition, John Wiley & Sons, USA. Raj Kumar Singh, (2012), Environmental Studies, Tata McGraw Hill Education Private Limited, New Delhi, India. George Tyler Miller, Jr. and Scott Spoolman (2012), Living in the Environment – Principles, Connections and Solutions, 17th Edition, Brooks/Cole, USA. 							
Recommended by Board of Studies	14-02-20)22					
Approved by Academic Council	No. 65	Date	17-03-202	2			

BHUM101N Ethics and Values						Ρ	С		
				0	0	0	2		
Pre-re	equisite	Nil	Sy	llabı	is ve	ersio	on		
					1.0				
Cours	e Objectiv	es:							
1.	 To understand and appreciate the ethical issues faced by an individual in profession, society and polity. 								
2.	To unders	tand the negative health impacts of certain unhealthy be	hav	ior.					
3.	To appred	ciate the need and importance of physical, emotional	he	alth	and	soc	cial		
	health.								
Exped	ted Cours	e Outcomes:							
1.	Students	will be able to:							
2.	Follow sou	und morals and ethical values scrupulously to prove as g	ood	l citiz	ens.				
3.	Understar	nd various social problems and learn to act ethically.							
4.	Understar	nd the concept of addiction and how it will affect the pl	hvsi	ical a	and	men	tal		
	health.		,						
5.	Identify et	thical concerns in research and intellectual contexts, i	nclu	iding	aca	ader	nic		
	integrity,	use and citation of sources, the objective presentatior	n of	dat	a, a	nd t	he		
	treatment	of human subjects			,				
6.	Identify t	he main typologies, characteristics, activities, acto	rs	and	for	ms	of		
	cybercrim	e.							
Modu	le:1 Bein	g Good and Responsible							
Gand	nian values	such as truth and non-violence – Comparative analysis	on	lead	ers	of pa	ast		
and p	resent – S	Societv's interests versus self-interests - Personal So	cial	Res	pon	sibili	itv:		
Helpin	a the need	v. charity and serving the society.					,		
Modu	e:2 Socia	al Issues 1							
Haras	sment – Ty	pes - Prevention of harassment, Violence and Terrorism.	l						
Modu	le:3 Socia	al Issues 2							
Corru	otion: Ethica	al values, causes, impact, laws, prevention – Electoral ma	alpr	actic	es:				
White	collar crime	es - Tax evasions – Unfair trade practices.	•		,				
Modu	le:4 Addi	ction and Health							
Peer I	oressure - A	Alcoholism: Ethical values, causes, impact, laws, prever	ntior	1 – I	l eff	ects	of		
smoki	na - Preven	tion of Suicides:							
Sexua	l Health: P	revention and impact of pre-marital pregnancy and Se	exue	allv T	rans	smitt	ed		
Disea	ses.			,					
Modu	le:5 Drug	Abuse							
Abuse	of differen	t types of legal and illegal drugs: Ethical values, causes	s, in	1pac	t, lav	vs a	nd		
prevei	ntion.		•	•					
Modu	le:6 Pers	onal and Professional Ethics							
Disho	nesty - Stea	aling - Malpractices in Examinations – Plagiarism.							
Modu	le:7 Abus	e of Technologies							
Hacki	ng and othe	er cyber crimes, Addiction to mobile phone usage, Video	ga	mes	and	Soc	cial		
netwo	rking websi	tes	0						
		Total Lecture Hours:			60	hοι	ırs		
Text E	Books :								
1	R R Gaur	, R Asthana, G P Bagaria, "A Foundation Course in Hur	man	ı Val	ues	and			
1.	Profession	nal Ethics", 2019, 2nd Revised Edition, Excel Books, New	<u>v</u> De	elhi.					
2.	Hartmann	, N., "Moral Values",2017, United Kingdom: Taylor & Fr	ranc	sis.					
Refer	ence Book	<u> </u>							
	Rachels	ames & Stuart Rachels "The Flements of Moral Philos	sont	י "v	9th e	ditio	on		
1.	2019 New	VYork: McGraw-Hill Education		· , ,		and	<i></i> ,		
	2010,1100								

2.	Blackburn, S. "Ethics: A Very Short Introduction", 2001, Oxford University Press.							
2	Dhaliwal, K.K , "Gandhian Philosophy of Ethics: A Study of Relationship between his							
J.	Presupposition and Precepts", 2016, Writers Choice, New Delhi, India.							
4	Ministry of Social Justice and Emp	owerment, "N	lagnitude	e of Substance Use in India",				
4	2019, Government of India.							
5	Ministry of Home Affairs, "Acc	idental Deat	hs and	Suicides in India", 2019,				
J.	Government of India.							
6	Ministry of Home Affairs, "A Hand	book for Ado	lescents/	Students on Cyber Safety",				
0.	2018, Government of India.							
Mode	of Evaluation: Poster making, Quiz a	and Term End	d - Quiz					
		r						
Recor	mmended by Board of Studies	27-10-2021						
Appro	ved by Academic Council	No. 64	Date	16-12-2021				

BMEE209L Materials Science and Engineering L T P						
	3 0 0					
Pre-requisite	Nil	Syllabus versior				
		1.0				
Course Objectiv	/es					
1. To impart	knowledge on the correlation between structure-proper	rty of materials.				
2. To provid	le knowledge on mechanical properties of materials	s and strengthenin				
mechanis	ms.	_				
To give ir	nsight into advanced materials such as polymers, cerar	nics and composite				
and their	applications.					
Course Outcom	es					
At the end of	f the course, the student will be able to					
1. Compare	different structures based on the atomic arrangement.					
2. Examine	various phases of metals and alloys using phase diagra	ams.				
Assess the	e mechanical behaviour of materials according to the s	tandards.				
4. Recomme	end suitable heat treatment and surface hardening proc	esses.				
5. Propose	he suitable material based on the structure-property rel	ationships.				
Module:1 Fund	damentals to Materials engineering	3 hour				
Historical persp	ective of materials, materials science, Materials en	gineering, Materia				
classification, Ma	aterials tetrahedron, Engineering requirement of adva	anced materials an				
smart materials -	- Diversified applications.					
Module:2 Crys	tallography and Defects	6 hour				
Fundamental Co	oncepts, Crystal geometry, Unit Cell, Classification o	f Lattices – Brava				
Lattice - Point	coordinates, Crystallographic Directions and Planes	s, vveiss zone la				
applications - Si	ngle and Poly crystalline materials, Non-crystalline/Al	morphous Material				
Crystal Structure	of Metals, Ceramics and Polymers, Defects in crystals	5 – point defects, lin				
Deformation by 7	ions), Characteristics of Dislocations, Silp Systems, S	ip in Single Crysta				
Modulo:2 Soli	Mining, surface defects and volume defects, Microscop					
Nucleation	more provide and Hotorogeneous Nucleation Growth	of crystals Plan				
arowth dondri	tic growth Diffusion: Introduction Eick's Low of I	Di Crystais- Fland				
Mechanisms St	adv state and non-steady state diffusion. Basics of n	Dinusion - Dinusio Jase diagram, Cibb				
nhase rule I eve	r rule . Unary phase Diagrams Binary Isomorphous ar	nd Futectic System				
Interpretation of	Phase Diagram Iron – iron carbide phase diagram – 9	Slow cooling of hyp				
and hyper eutect	oid steels. Phase transformations in steels and cast iror	n				
Module:4 Mec	hanical behaviour of Materials					
Hardness Testin	g of Materials. Tensile properties of the materials	Effect of strain rate				
Impact Testing	Fracture of Metals – Ductile Fracture Brittle Fractu	re Ductile to Britt				
Transition Temp	erature (DBTT) Fatigue – Endurance limit Fatigue test	S-N curves factor				
affecting fatigue	structural changes accompanying fatigue: Creep a	and stress rupture				
mechanism of c	reep – stages of creep and creep test. Mechanisms	of Strenathening				
Metals and allow	S.					
Module:5 Heat	Treatment	7 hour				
Isothermal Tran	sformation diagrams and Continuous Cooing Trans	sformation diagran				
Principles of hea	at treatment, Annealing, Concept of Recovery, Recrys	tallization and Grai				
Growth, Normali	zing, Hardening, Tempering, Solutionizing, Ageing, Sp	ecial heat treatme				
processes: Auste	emepering, Martempering, Ausforming, Hardenability of	steel, Microstructur				
changes during h	neat treatment.					
Surface hardeni	ng processes - Carburizing - Nitriding - Cyaniding	and carbo-nitriding				
Induction and fla	me hardening, Laser and Electron beam hardening.					
Module:6 Meta	Illic Materials	6 hour				
Steels – Types of	of Steels, Effect of alloying elements on structure and	properties of steel				

Alloy Steel - Tool and Die Steel, Stainless steel, Speciality steel, Cast iron- White, Grey,							
Malleable and Nodular - Properties and application of cast irons. Non-ferrous Alloys,							
Aluminium, copper, Nickel, Magnesium and Titanium.							
Module:7 Non-metallic and Composite Materials & Economic,	6 hours						
Environmental, and societal issues in materials Science and							
Engineering							
Ceramics: types, properties and application of ceramics; Glass: classification	on of glass,						
properties and application of glass; Polymer: classification of polymers - pro	operties and						
application of polymers; Fibers: Natural Fibers/Synthetic Fibers; Composites: C	Classification						
of Composite Materials, Properties and Application of Composite Materials.							
Module:8 Contemporary Issues	2 hours						
Total Lecture hours:	45 hours						
Text Books							
1. William D. Callister Jr., David G. Rethwisch, Callister's Materials Scie	ence and						
Engineering, 2018, 10 th edition, John Wiley & Sons, Inc., United states.							
2. William F Smith, Javad Hasemi and Ravi Prakash, Materials scie	ence and						
Engineering, 2017, 5 th edition, McGraw Hill Publications.							
Reference Books							
1. Michael F. Ashby, Materials Selection in Mechanical Design, 2016, 5 th editional technology of the second seco	tion, Elsevier						
Butterworth-Heinemann.							
2 Donald R. Askeland, Science and Engineering of Materials, SI Edition, 2015	, 7 th edition,						
Springer, Boston, MA.							
3 Raghavan V, Materials Science and Engineering, 2015, 6 th edition, Prentice	e Hall India						
Learning Private Limited, United Kingdom.							
4 Sidney Avner, Introduction to Physical Metallurgy, 2017, 2 nd edition, McGraw	v Hill						
Education							
Mode of Evaluation: CAT / Written assignment / Quiz / FAT							
Recommended by Board of Studies 09-03-2022							
Approved by Academic Council No. 65 Date 17-03-2022							

BMEE209P Materials Science and Engineering Lab L T I							Ρ	С	
	0 0						0 0	2	1
Pre	-requisite	Nil				Sylla	bus v	ersi	on
							1.0		
Οοι	urse Objectiv	e							
1. 1	Го impart pra	ctical exposure on o	ptical micros	copy, fu	rnace, and	mecha	anical	test	ting
e	equipment.								
2. 7	Γo provide har	nds-on experience on	image analysi	is softwa	re.				
	-								
Cou	urse Outcome	9							
At t	he end of the o	course, the student wi	ll be able to						
1. li	nvestigate the	phases in the microst	ructure of san	nples.					
2. A	ssess the me	chanical properties as	per the AST	VI standa	rds.				
3. L	Develop and pr	ropose the industrial h	eat treatment	S.					
<u> </u>									
Ind	icative Experi	iments	· ·						
1.	Thermal and	alysis of Pb-Sn alloy	(To produce	cooling	curve and	report	the o	eute	ctic
_	temperature								
2.	Metallograph	hic sample preparation	<u>ו.</u>					<u> </u>	
3.	lo study the	e microstructure of F	errous Materi	als a) S	teel b) Sta	inless S	Steel	c) C	ast
	Iron.								
4.	To study the	e microstructure of Nor	n- Ferrous Ma	iterials.					
5.	Cold work a	nd annealed microstru	icture of alloy	s (Ferrou	us/Non-ferro	ous).			
6.	Heat Treatm	ent of Steel (Annealin	g, Normalisin	g, Quen	ching and T	emperi	ng).		
7.	Age hardeni	ng studies of Aluminiu	im alloys.						
8.	Study of sur	face hardened Steel -	Case Depth,	hardnes	s and micro	ostructu	ire.		
9.	Hardness m	easurement of ferrous	and non-ferr	ous alloy	/S.				
10.	Hardenabilit	y of Steels by Jominy	end quench t	est acco	rding to AS	TM star	ndards	S.	
11.	Tensile pro	perty evaluation of	ductile and	brittle i	materials a	ccordin	ng to	AS	ΤM
	standards.								
12.	Quantitative	metallography and im	lage analysis				_		
			Tot	al Labo	ratory Hour	rs 30	hours	5	
Тех	t Book(s)								
1.	William D. (Callister Jr., David C	6. Rethwisch	, Callist	er's Materia	als Sci	ence	anc	ł
-	Engineering,	2018, 10 ^{⁴¹ edition, Jol}	nn Wiley & Sc	ons, Inc.,	United state	es			
2.	William F S	Smith, Javad Hasen	ni and Ravi	Prakas	sh, Materia	als scie	ence	anc	1
	Engineering,	2017, McGraw Hill Pu	iblications, 5"	edition.					
3.	Lab Manual p	prepared by course fac	culty member						
Ref	erence Books	S							
1.	Michael F. A	Ashby, Materials Sele	ection in Me	chanical	Design, E	lsevier	Butte	erwo	rth-
	Heinemann, 2	2016, 5th edition.			· · · · · · · · · · · · · · · · · · ·		tb		
2	Donald R. As	keland, Science and	Engineering o	of Materia	als, SI Editio	on, 201	5, 7"	editi	ion,
	Springer, Bos	ston, MA		. - ·	eth ····	_	/		
3	V. Raghavan	, Materials Science a	nd Engineerir	ng, 2015	6, 6" edition	, Prent	ice Ha	all In	ıdia
L_	Learning Priv	ate Limited, United Ki	ngdom		<u> </u>				
4	Michael F. A	Ashby, Materials Sele	ection in Me	chanical	Design, E	Isevier	Butte	erwo	rth-
	Heinemann, 2	2016, 5th edition.							
Mo	de of assessm	ent: Continuous asse	ssment / FAT	/ Oral ex	amination				
Rec	commended by	y Board of Studies	09-03-2022						
App	proved by Acad	demic Council	No. 65	Date	17-03-202	22			

BMEE211L	Engineering Optimization		L	Т	Ρ	С	
			2	1	0	3	
Pre-requisite	site Nil Syllabus						
O a serie a O bia a the				1.0			
Course Objective	es Jadas en linean non linean antimization nuchlance and to			- 1-	<u></u>		
1. To impart know	ledge on linear, non-linear optimization problems and te	scuu	que	s to	SOIV	e	
2 To develop mo	delling skills and to solve engineering ontimization probl	ome					
3 To demonstrate	the use of software to solve ontimization problems	ems	•				
4 To develop the	skills of using modern heuristic search algorithms						
Course Outcome	S						
At the end of	the course, the student will be able to						
1. Formulate the	engineering problems as optimization problems.						
2. Identify optima	lity conditions for unconstrained and constrained optimiz	zatio	n pr	oblei	ms.		
3. Solve linear pro	ogramming problems.		-				
4. Apply suitable	algorithm and solve constraint & unconstraint optimization	on p	roble	ems.			
5. Justify modern	heuristic search algorithms for solving optimization prob	olem	s.				
Module:1 Optin	num Problem Formulation			6	hοι	Irs	
Introduction to O	ptimization – Statement of an Optimization Problem	– Cl	assi	ficati	ons	of	
Optimization prol	olem – Optimum Problem Formulation: Problem Fo	rmul	atio	n Pr	oce	SS,	
Application proble	ems related Engineering Design and Manufacturing.			<u> </u>	<u>k a i</u>		
Introduction	nality Criterion Intimality Criterion: Single veriable problems Optin	nolity	/ or	b	nou	irs for	
unconstraint pro	plimality Chieffon. Single variable problems – Oplin blems Multivariable Optimization problems – Optim	mailt		ritori	on	for	
constrained ontir	nization problems: Lagrangian Multiplier Kubn-Tucl	nan. kor	y C Con	ditio	ne	-	
Exercise problem	as to identify optimality conditions for unconstrained	d ar	nd o	cons	train	ed	
problems (Hand C	Calculation).	u ui		0110	ann	- Cu	
Module:3 Line	ar Programming			8	hοι	ırs	
Introduction – St	andard form of a LPP problem - Graphical solution	for l	_PP	– S	imp	lex	
Method – Revised	d Simplex method – Duality in LPP – Modelling of Trar	າspo	rtati	on p	roble	em	
as an Optimiza	tion problem – Exercise problems (limited to s	impl	ex	met	nod	-	
Demonstration: S	olving LPP problems using software tool (MATLAB).						
Module:4 Non-	Linear Programming – Unconstrained Optimi	zati	on	5	hοι	ırs	
Introduction – St	andard form of an unconstrained problem – Unimor		and	Mult	imo	dal	
functions – Intro	duction to One Dimensional minimization methods. F	-limi	natio	n m	hite	od.	
Fibonacci Meth	od. Interpolation methods: Newton Method Exercis	e p	roble	ems	(ha	ind	
calculation - Net	wton and Secant method) – Solving 1D problems ເ	Jsinc	so	ftwa	rè t	ool	
(MATLAB).	, C .						
Module:5 Non-	Linear Programming – Unconstrained Optimiz	atio	n	6	hοι	ırs	
Nulti verieble une	onstraint antimization algorithms: University Mathed	Dott	orn (liroo	tion		
Conjugate Direct	ion method (Powell's method) - Steepest Descent r	r alle meth		лес _ Е		ise	
problems (hand	calculation – Univariate and Steepest Descent method	neur od)	Den		tratic	on.	
Solving unconstra	int problems using software tool (MATLAB)	Ju)	DCII	10113	uan	511.	
Module:6 Non-	Linear Programming – Constrained Optimizati	ion		5	hoi	Jrs	
Introduction - Sta	ndard form of a constrained problem – Transformation	n me	etho	ds- F	Pena	alty	
function method:	Interior and Exterior methods - Exercise problems: Cor	vert	ing d	cons	train	ied	
problem into uno	constrained problems using various penalty function	ı —	Den	nons	tratio	on:	
Solving Constrain	t problems using software tool (MATLAB).						
Module:7 Mod	ern Methods of Optimization			7	hοι	irs	
Introduction: Heu	ristics, Meta-Heuristics, Combinatorial Optimization pro	bler	ns -	Exa	amp	les	
of P, NP, NP-c	omplete and NP-Hard problems – Introduction to	Gen	etic	Alg	orith	im,	
Simulated Annealing – Particle Swarm Optimization - Demonstration: Working of GA, SA,							

PS	O using	Software tools (MATLAB)				
Mo	odule:8	Contemporary Issue	s			2 hours
				Tota	I Lecture hours:	45 hours
Te	xt Book	(s)				
1.	Rao S.	S, Engineering optimization	on: theory and pr	actice, 20	20, 5 th Edition, Joł	nn Wiley
	& Sons	s, Inc., USA.				
2.	Deb K	, Optimization for engine	ering design: Al	gorithms	and examples, 20	012, PHI
	Learnir	ng Pvt. Ltd., India.				
Re	ference	Books				
1.	Arora J	I.S, Introduction to Optimu	m Design, 2016,	4 th Edition	n, Academic Press	
2.	Igor Gr	iva, Stephen G. Nash, Ari	ela Sofer, Linear	and Non-	Linear Optimizator	n, 2009, 2 nd
	Edition	, Society of Industrial and	Applied Mathema	atics.		
Мо	de of Ev	aluation: CAT / written as	signment / Quiz /	FAT		
Re	Recommended by Board of Studies 09-03-2022					
Ар	proved b	y Academic Council	No. 65	Date	17-03-2022	

BMEE308L	Control Systems		L	ΓP	С		
			2	0 0	2		
Pre-requisite	Nil	Sylla	bus	versi	on		
Course Obiest	ivee		1.()			
	(IVes the students to classical methods of control ongineering	nhyoior		tom			
modelling a	modelling and control.						
2. To enable t	he students to design control system for various applicati	ions.					
3. To enrich th	ne ability of the students to analyse the performance of dy	ynamic	cont	ol			
systems.							
Course Outco	me						
At the end	of the course, the student will be able to						
1. Apply the c	oncepts of control systems and modeling techniques.			L			
2. Develop va	nous representations of system based on the first princip	ies app	roac	n .			
3. Inter the do	stability of closed loop systems using different technique	е.					
4. Analyse the	to the state space representation and modern control the	35. Orv					
5. Demonstra	reprinte control systems for different applications	ory.					
0. Design app	rophate control systems for unreferit applications.						
Module:1 In	troduction			2 ho	urs		
Concept of co	ntrol system, Classification of control systems – Open-I	loop an	d clo	sed-l	oop		
control syster	ns, Examples of control systems- Effects of f	eedbac	k, F	eedb	ack		
Characteristics	. del Denne entetiene	<u> </u>		4 4 4			
	odel Representations			4 no	urs		
	tions of LTI Systems, Concepts of Poles and Zei	ros, Bl	OCK	diagr	am,		
Determining th	e Transfer function from Block Diagrams, Signal flow	graphs	; — F	educ	tion		
Using Mason's	gain formula.	1		5 ho			
Dovelopment c	ouening of Physical Systems	nochan	ical	<u>5 IIU</u> Thorr	mol		
Hydraulic and F	n mainematical models. mechanical, electrical, electron Pneumatic systems	nechan	icai,	men	nai,		
Module:4 Ti	me Response Analysis			6 ho	urs		
Standard test	signals. Time response of first order systems and se	cond o	rder	svste	ms		
Transient resp	onse of second order systems – Time domain specific	cations	Stea	adv s	tate		
errors and erro	r constants General Controllers – P. PI. PD and PID con	trollers	0.00				
Module:5 St	ability Analysis		<u> </u>	4 ho	urs		
The concept	of stability – Routh-Hurwitz's stability criterion – qua	alitative	stat	oility	and		
conditional stal	pility – Root Locus Technique: Concept of root locus –	Constr	ructic	n of	root		
locus.	, i - i	-					
Module:6 Fr	equency Response Analysis			4 ho	urs		
Frequency dor	nain specifications, Bode plot, Phase margin and Gain	margir	ι, Po	lar pl	ots,		
Nyquist Criteria	l.						
Module:7 In	troduction to State Space Analysis			<u>3 ho</u>	urs		
Concepts of sta	ate, state variables and state model, Modelling system in	state s	space	⊧, Sol∖	ving		
the time invaria	ant state equations, State Transition Matrix, Concepts	of Cont	trolla	oility	and		
Observability.				<u> </u>			
Module:8 C	ontemporary Issues			2 ho	urs		
	Total Locturo h	oure		30 ho	ure		
Text Book(s)		Juij.		20 110	uið		
1. Nagrath I.J	l, and Gopal M, Control Systems Engineering, 2017, 6 th	edition	, Ne	w Age	Э		
Internation	al Publishers.						
2. Ogata K, N	Nodern Control Engineering, 2015, 5 th Edition, Prentice	Hall of	f Indi	a Pvt	i.		

Re	Reference Books							
1.	Norman S Nise, Control Systems I	Engineering, 2018, 7 th edition, John Wiley and Sons,						
	Inc.			-				
2.	Benjamin C. Ku, Farid Golnaraghi, Automatic Control Systems, 2017, 10 th edition,							
	McGraw-Hill Education.							
Мо	de of Evaluation: CAT / Written assig	gnment / Quiz / FAT	/ Semir	nar / Case studies				
Re	commended by Board of Studies	09-03-2022						
Ар	proved by Academic Council	No. 65	Date	17-03-2022				

BMEE308P Microcontrollers and Interfacing Lab L T					Ρ	С			
							0 0	2	1
Pre	-requisite	Nil				Sylla	abus v	ersi	on
							1.0		
Οοι	irse Objectiv	/es							
1.	To expose the	e students to fundament	tals of Micro	ocontrolle	ers.	<i>.</i> .			
2.	lo understan	d the functions of micro	controller p	rogramm	ing and inte	rfacing) .		
3.	I o enable the	students to design app	propriate mi	crocontro	oller-based s	system	S.		
Col	Irse Outcom								
000	At the end of	the course the student	will be able	to					
1.	Demonstrate	and interface microcont	roller with s	ensors a	nd actuator	S.			
2.	Develop spee	ed control techniques us	ing microco	ontroller.					
3.	Construct the	simulation model using	control sys	tem tool	box.				
Indi	cative List o	f Experiments							
1	Study of em	bedded systems using I	microcontro	llers and	its architec	tural fe	eatures	•	
2	Push button	i, Keypad and Display Ir	iterfacing w	ith micro	controller.				
3	Programmin	Ig Traffic Light Control L	ising microo		•				
4		Shood and direction con	trol of a DC	motor u	ning microo	ontrolle	or .		
5	Closed loop	Speed and direction con	motor base	d on PID	Controller I		51.		
	microcontro	ller				Joing			
7	Interfacing S	Stepper motor with micro	ocontroller.						
8	Microcontro	ller Interfacing and Data	a transmissi	on using	RF/Bluetoo	th/WIF	1.		
9	Developmer	nt of a line following rob	ot.						
10	Developmer	nt of IoT enabled data tr	ansmission	from ser	nsors.				
11	Creating line	ear models of your conti	rol system ι	ising trar	sfer functio	n, state	e-spac	e, ar	nd
	other repres	entations using MATLa	b Control S	ystem too	olbox.				
12	Interface an	d visualize system beha	aviour in the	time dor	main and fre	equenc	y dom	ain	
	USING IVIA I L	ab control system toolb	ОХ. г	- 	orotony Hou	ro 20	houro		
Τον	t Book(s)		I		Diatory Hou	15 30	nours		
1	Nagrath I.J	and Gonal M. Control	Systems F	naineerin	a 2017 6 th	edition	n New	Δne	
'.	Internationa	l Publishers.		Igineenn	9, 2017, 0	Cultor		rige	
2.	K. Ogata, M	odern Control Engineer	ing, 2015, 5	5 th Edition	, Prentice H	all of l	India P	vt. L	td.
3.	Lab Manual	prepared by course fac	ulty membe	ers.	,				
Ref	erence Book	KS	•						
1.	Norman S N Inc	lise, Control Systems E	ngineering,	2018, 7 th	edition Joh	n Wile	y and \$	Son	З,
2.	Benjamin C McGraw-Hill	. Ku and Farid Golnarag I Education.	jhi, "Automa	atic Contr	ol Systems'	', 2017	′, 10 th €	ditio	วท
Mod	le of assessm	nent: Viva-voce examina	ation, Lab p	erforman	ce & FAT				
Rec	ommended b	y Board of Studies	09-03-202	2					
Арр	roved by Aca	demic Council	No. 65	Date	17-03-202	22			

BMEE407L	Artificial Intelligence	I	L T P	С	
		2	2 1 0	3	
Pre-requisite	BMAT202L, BMAT202P	Syllab	ous versi	on	
			1.0		
Course Objectives	· · · · · ·				
1. To provide b	asic understanding on Artificial Intelligence with its su	b-sets.			
2. To impart kn	owledge of search algorithm, logics, reasoning and ur	ncertain	ty.		
3. To introduce	e the basic concepts of machine learning and	its ap	plication	in	
mechanical e	engineering.				
Course Outcome					
At the end of the co	urse, the student will be able to				
1. Translate the	e characteristics of artificial intelligence and its sub-se	ts.			
2. Implement a	ppropriate algorithm for problem solving by searching				
Construct the	e logical agents and familiar in the application of fuzz	y in AI.			
Design the d	ecision making algorithm with the reasoning of uncert	ainties.			
5. Develop mad	chine learning programs based on supervised, unsupe	ervised	and		
reinforcemer	nt learning.				
Experiment t	he benefit of neural network in deep learning.				
Apply machi	ne learning approach to solve problems related to me	chanica	l –		
engineering.					
Module:1 Fou	ndation of Al		4 hou	urs	
Introduction – Fou	indations of AI – Evolution of AI – Intelligent Ag	gents:	Agents a	and	
environments, Cond	cept of rationality, structure of agents – Structure of	Knowl	edge bas	sed	
system - Risks and	Benefits of AI.		•		
Module:2 Problem-solving by searching 6					
Uninformed search:	Breath first search. Depth first search, iterative dee	epening	– Heuris	stic	
search: Greedv sea	rch. A*search – Adversarial search: Minimax search.	alpha-b	eta-prunii	na.	
Module:3 Log	ic (Knowledge, reasoning and planning)	<u> </u>	8 hoi	urs	
Propositional Logic	– First Order Logic – Inference in First Order L	oaic –	Knowled	lae	
representations – a	utomated planning, Fuzzy: Fuzzy sets, operation and	propert	ies. Feat	ure	
of membership func	tions, fuzzification and defuzzification. Fuzzy logic rule	es base	d system		
Module:4 Rea	soning with uncertainty		6 hou	urs	
Quantifying unce	rtainty – Probabilistic reasoning – Making Sir	nple D	ecisions	. –	
Making Complex	Decisions – Multiagent decision making.	·			
Module:5 Mac	hine Learning		6 hoi	Jrs	
Supervised learning	: Decision trees, linear regressing and classification,	and su	pport vec	;tor	
machine – Unsup	ervised: Clustering, dimensionality reduction, Pr	rincipal	compon	ent	
analysis – Reinford	cement: Passive and active reinforcement learning.				
Module:6 Dee	p Learning		7 hou	Jrs	
Simple feedforward	networks – Computation graph for deep learning – Co	onvoluti	on neural	I	
networks – Learning	algorithms – generalization – Recurrent Neural Netw	/orks - [Сеер		
reinforcement learni	ng.				
Module:7 Use	cases		6 hoi	Jrs	
Al in manufacturin	g process: Materials characterization and machine	e proce	ess – Al	in	
logistics and suppl	y chain management – Prediction of mechanica	il syste	m failure	; —	
diagnostic system – Human-in-loop for Machine human collaborative task.					
Module:8 Cont	temporary Issues		2 hou	Jrs	
	Total Lecture h	ours:	45 hou	Jrs	
Text Books					
1. Russell S. N	Iorvig P, Artificial Intelligence - A Modern Approach.	2021. 4	th edition.		
Prentice Ha	I		,		

2.	Ivan Vasilev, Advanced Dee	ep Learning wit	ng with Python: Design and implement					
	advanced next-generation AI	solutions using	TensorFl	low and PyTorch, 2019, 1 st				
	edition, Packt Publishing Ltd.							
Refere	Reference Books							
1.	Bishop C. M, Pattern Recognition and Machine Learning, 2011, 2 nd edition, Springer.							
2.	Nilsson N.J, Artificial Intelligen	ce: A New Synt	hesis, 19	98, 1 st edition, Morgan				
	Kaufmann.							
Mode	of Evaluation: CAT / Written ass	signment / Quiz ,	/ FAT /					
Recommended by Board of Studies 09-03-2022								
Approved by Academic Council		No. 65	Date	17-03-2022				

BMEE202L Mechanics of Solids L T P									
		3 0							
Pre-requisite	BMEE201L	Syllabus versi							
			1	.0					
Course Objectiv	/es		<u></u>	<u> </u>					
1. To understan static equilibri	d the fundamental concepts of mechanics of deforma um, geometry of deformation, and material constitutive b	ble so behav	olids; iour.	inc	lud	ing			
2. To provide s	tudents with exposure on systematic methods for	solvin	ig er	ngin	eer	ing			
problems in so	blid mechanics.		-	•		-			
3. To discuss the	e basic mechanical principles underlying modern appro	bache	s for	des	sign	of			
various struct	ural members subjected to axial load, torsion, bending,	buckl	ing, t	rans	sve	rse			
shear, and co	mbined loading.								
4. To build the n	ecessary theoretical background for structural analysis a	and de	esign	COL	urse	es.			
Course Outcom	es								
At the end of the	course, the student will be able to								
1. Analyse stres	ses and strains in simple and compound bars								
2. Illustrate the	relationship among load, shear force and bending	mome	ent to	or v	aric	ous			
2 Evoluate the	handing and about attacages for beams with varying area		tiona						
J. Evaluate the	slope and deflection of various beams	s sec	uons						
5 Apply torsion	equation for shafts and belical springs								
6 Analyse the f	ailure of columns, thin and thick shells								
Module:1 Sim	ble stresses and strains			9	hoi	urs			
Definition/derivat	tion of normal stress, shear stress, and normal strain	and	shea	ir st	trair	<u> </u>			
Stress-strain dia	gram for brittle and ductile materials - Poisson's ratio &	s volu	metr	ic s	trai	n –			
Elastic constants	– relationship between elastic constants and Poisson's	s ratio	– Ge	ener	ralis	sed			
Hook's law – D	eformation of simple and compound bars - Creep	– St	train	ene	ergy	/ -			
Resilience – Gra	dual, sudden, impact and shock loadings – thermal stre	sses.			•••				
Module:2 Bi-a	xial stress system			6	hou	urs			
Introduction – S	tresses on an inclined section of a bar under axial le	oadin	g – c	com	ροι	Ind			
stresses – Norm	al and tangential stresses on an inclined plane for bia	ixial s	tress	es	– T	WO			
perpendicular no	rmal stresses accompanied by a state of simple shea	ar — N	/lohr's	s ci	rcle	of			
stresses and stra	ain, Strain rosette – Principal stresses and strains – Ana	alytica	l and	gra	aphi	cal			
solutions. Theori	es of failures.								
Module:3 She	ar Force and Bending Moment			6	<u>ho</u>	Jrs			
Definition of bea	m – Types of beams – Concept of shear force and ber	nding	mom	ient	`	5.⊢			
and B.W diagram	ns for cantilever, simply supported and overnanging	beam	s sui	Jec		to			
point loads, unit	ormiy distributed loads, uniformity varying loads and c		nalior		une No ot	ion			
of a beam		Iuaui	ny at	as	eci	1011			
Module:4 Stre	ssas in haams			6	hoi	ire			
Theory of simple	bending – Assumptions – Derivation of bending equa	tion -	Neur	tral	avi	<u> </u>			
Determination of	bending stresses – section modulus of rectangular a	and ci	rcula	r se	an	s ns			
(Solid and Hollo	w) I T Angle and Channel sections – Design of sig	nnle h	beam	se	ctio	ns			
Shear Stresses:	Derivation of formula – Shear stress distribution ac	ross	vario	us I	bea	ms			
sections like rect	angular, circular, triangular, I, T sections.								
Module:5 Defl	ection of beams			5	hou	urs			
Deflection of be	ams by Double integration method – Macaulay's meth	nod –	Area	a m	om	ent			
theorems for con	<u>nputation of slopes and deflections in beams – Conjugat</u>	e bea	<u>im</u> m	ethc	od.				
Module:6 Tors	sion			5	hou	urs			
Introduction to	Forsion – derivation of shear strain – Torsion form	ula –	stre	sse	s a	and			
deformations in o	circular and hollow shafts – Stepped shafts – shafts fixe	ed at	the b	oth	en	ds,			
stresses in helica	al springs.								

Мо	dule:7	Thin and Thick Cyline	ders, Colum	ns		6 hours
Thi	n cylind	ers and shells – deformati	on of thin cylin	ders and	shells; Thick Cy	linders, Shrink
fits	, Compo	ounding.				
The	eory of c	<u>olumns – Long column and</u>	d short column	- Euler's	<u>formula – Rankir</u>	ne's formula.
Мо	dule:8	Contemporary Issues				2 hours
				Total I	Lecture hours:	45 hours
Tex	ktbooks	i				
1.	Ferdin	and P. Beer, E. Russell Jo	hnston, John T	. DeWolf	, David F. Mazur	ek, Sanjeev
	Sangh	, Mechanics of Materials, 2	020, 8 th Editior	n, McGrav	w Hill Education,	India.
2.	Russe	I C. Hibbeler, Mechanics	of Materials in	SI Units,	9 th Edition; 201	8, Pearson
	Educa	tion, India.				
Ret	ference	Books				
1.	James	M. Gere, Barry J. Goodne	o, Mechanics o	of Materia	als, 2019, 9 th Ed	ition, Cengage
	Learni	ng India Pvt. Ltd.				
2.	Rattan	S. S., Strength of Material	s, 2017, 3 rd edi	tion, McO	Graw Hill Education	on, India.
3.	Ramar	nrutham S, Narayanan R,	Strength of Ma	aterials, 2	2020, 20 th Editior	n, Dhanpat Rai
	Publis	ning Company, India.				
4.	Popov	E. P, Nagarajan S, Lu Z.	A; Mechanics	of materi	als, SI version, 2	2015, Prentice-
	Hall of	India.				
5.	James	M. Gere, and Stephen Ti	imoshenko, Me	echanics	of Materials; 200	04, 2 nd edition,
	CBS p	ublishers and distributors.				
Мо	de of Ev	aluation: CAT, Written ass	ignment, Quiz	, FAT		
Re	commer	nded by Board of Studies	09-03-2022			
Ар	proved b	y Academic Council	No. 65	Date	17-03-2022	

BME	E202P	Mechanics of Solids Lab		LT	Ρ	С
			(0 0	2	1
Pre-	requisite	BMEE201L	Syllab	ous ve	ersi	on
				1.0		
<u> </u>						
	rse Objectiv	es ctical skills in investigating the mechanical behavior of n	atorial			
1. 1 2 T	o impart pra	ate the importance of testing standards in the determin	ation of	s. Emec	hani	ical
2. I	roperties.			mee	nan	ioui
P						
Cou	rse Outcom	e				
At th	e end of the	course, the student will be able to				
1. E	valuate elas	tic constants of engineering materials as per the ASTM	standar	ds.		
2. C	evelop stres	s-strain diagram of engineering materials as per the AS	TM stai	ndard	S.	
3. E	xamine the	impact behavior of ductile materials as per the ASTM sta	andards			
India	ativo Expor	imonte				
1	Tensile an	d compression tests on the given specimens for d	etermin	ina Y	ั _{oun}	ıa's
	modulus of	materials using Universal Testing Machine.	otorrini	ing i	oun	90
2.	Determinat	ion of the Poisson's ratio of a metallic specimen in the	linear e	elastic	rar	nge
	of loading.					-
3.	Estimation	of Notch Toughness of the metallic bar using Charpy/	Izod Im	pact -	Test	ing
	Machines.					
4.	Determinat	ion of the ultimate shear strength of mild steel specim	en by c	IOUDIE	e sn	ear
5	Determinat	ion of Young's modulus of the metallic/non-metalli	c bean	n usi	na	the
•	deflection t	est method.			.9	
6.	Verification	of the Maxwell's Reciprocal Theorem.				
7.	Determinat	ion of the Maximum bending stress of a mild steel be	am usir	ng de	flect	ion
0	test method). acts using Princil and Paskwall test rigs				
0. Q	Estimation	of the stiffness and the rigidity modulus of the given	helical	snrinc	un	der
0.	axial loadin	d.		spring		uci
10.	Torsion tes	t on mild steel or cast-iron specimens to find out modulu	is of rig	idity.		
11.	Verification	of the Euler buckling equations using steel columns s	ubjecte	d to d	iffer	ent
	end conditi	ons.				
12.	Strain mea	surement of the given beam using the Rosette Strain Ga	auge.			
		I otal Laboratory Hou	rs	<u>30 ho</u>	urs	
Tovt	Book(e)					
1.	Ferdinand	P. Beer, E. Russell Johnston, John T. DeWolf, David F	Mazure	k. Sa	niee	٧
	Sangh, Me	chanics of Materials, 2020, 8 th Edition, McGraw Hill Edu	cation,	India.	njee	
2.	Russell C.	Hibbeler, Mechanics of Materials in SI Units, 2018, 9 th E	dition, F	Pears	on	
	Education,	India.				
3.	Lab Manua	l prepared by course faculty members				
	<u> </u>					
Refe	rence Book	S Dava Davar I. Caadua, Maakaniaa of Mataviala, 2010, 0	u. F alitia			
1.	James IVI. (dia Pyt 1 td		л, се	nga	цe
2.	Rattan S. S.	6. Strength of Materials. 2017. 3rd edition. McGraw Hill F	Educatio	on. Inc	dia.	
3.	Ramamrut	nam S, Narayanan R, Strength of Materials, 2020, 20th	Edition.	Dhar	pat	
	Rai Publish	ing Company, India.	,		•	
4.	Popov E. P	, Nagarajan S, Lu Z. A; Mechanics of materials, SI vers	sion, 20 ⁻	15,		

	Prentice-Hall of India.					
5.	James M. Gere, and Stephen Timoshenko, Mechanics of Materials; 2004, 2 nd edition,					
	CBS publishers and distributors.					
Mode	e of assessment: Viva-voce exam	nination, Lab pe	erformanc	e & FAT		
Reco	Recommended by Board of Studies 09-03-2022					
Appr	Approved by Academic Council No. 65 Date 17-03-2022					

BMEE203L	Engineering Thermodynamics		L	Τ	Ρ	С
Due as suitaite	N111		2	1	0	3
Pre-requisite	NII	Syl	labu		ersi	on
Course Objective				1.0		
1 To apply the la	eso					
2. To provide fur	damental knowledge of ideal and real gases.					
3. To analyse va	pour, gas power cycles and determining properties of a	as m	ixtur	es.		
4. To establish	the relationship between commonly measurable r	orope	erties	s ar	۱d	the
properties that	t cannot be measured directly.					
Course Outcome						
At the end of the o	course, the student will be able to					
1. Demonstrate	the understanding of basic thermodynamics concepts	suc	ch as	s sy	ste	ms,
forms of energy	y - work and heat, temperature.					
2. Analyse the pl	low of thormodynamics for closed and open systems					
4 Apply the se	cond law of thermodynamics and entropy principle	es f	or e	nair	ופפו	rina
systems.	sona law of thermodynamice and entropy principa	00 1		ngn	1001	ing
5. Analyse the pe	erformance of vapour and gas power cycles.					
6. Evaluate the r	nixture properties using gas laws.					
7. Assess the su	bstance properties using thermodynamic relations.					
Module:1 Intro	duction and basic concepts of thermodynamics			4	ho	urs
Systems and cor	ntrol volume, properties of a system, state and equi	libriu	m, c	luas	i-st	atic
equilibrium, proce	esses and cycles, forms of energy, pressure, work	and	hea	at tr	ans	fer,
temperature and t	the Zeroth law of thermodynamics.				<u> </u>	
Decose of a pure	erties of pure substances		nort		no	urs
for phases of a pure	substance, phase change process of pure substances	, pro	peny	y ala roal	igra	ims
Van der Waals en	ulation of state compressibility factor Benedict-Webb R	UI SLA Ruhin	ale, i edu	iatio	yas n) C S-
Module:3 The f	irst law of thermodynamics			8	ho	urs
Energy analysis of	of closed and open systems, energy analysis of steady	flow	dev	ices	-bo	iler.
turbine, heat exch	nangers, pumps and nozzles, energy analysis of unstea	ady f	low	proc	ess	ses,
limitations of the f	irst law of thermodynamics.	,				
Module:4 The	second law of thermodynamics			8	ho	urs
Thermal energy r	eservoirs, heat engines, heat pumps and refrigerators	, Kel	vin-F	Plan	ck a	and
Clausius stateme	nt and their equivalence, reversible and irreversible	proc	cess	es,	Car	not
cycle, Carnot pri	nciples, thermodynamic temperature scale, Entropy,	Clau	Isius	-ine	qua	lity,
IdS equations, er	ntropy change, entropy balance, the increase of entropy	/ prin	icipie	βs, Ε	:xer	gy-
Modulo:5 Vano	eversibility.			0	ho	
Carnot vapour r	nower cycle Ideal Rankine cycle ideal re-heat R	ankir		vcle	ic	urs Ieal
regenerative Ran	kine cycle, the effect of isentropic efficiencies. Air stal	ndar	d as	sum	, ic	ons
Otto. Diesel cvcle	. Bravton. Stirling cycle and Ericsson cycles.	- a a a		oann	P.10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Module:6 Gas	mixtures			4	ho	urs
Composition of t	he gas mixture, mole and mass fractions, Dalton's	law,	Ama	agat	's l	aw,
properties of gas	mixtures.					
Module:7 Ther	modynamic property relations			4	ho	urs
Maxwell relations	, Clapeyron equation, General equations for du, dh, ds	, Cv	and	Cp,	Joi	ule-
	Sill.				<u> </u>	
	tilipulary ISSUES Total Lastura haura			<u>ک</u> ۸۶	<u>110</u>	
Taxt Backs	Total Lecture nours	•		43	110	u13
I EXT BOOKS						

1.	Yunus A. Cengel, Michael A. E	Boles and Me	hmet Ka	noglu, Thermodynamics: An			
	Engineering Approach, 2019, 9 th Eo	dition, McGraw	Hill Educ	ation.			
Reference Books							
1.	Michael J Moran, Howard N Shapiro, Daisie D. Boettner and Margaret B. Bailey						
	Fundamentals of Engineering Thermodynamics, 2015, 8 th Edition, Wiley.						
2.	Nag P. K., Engineering Thermodynamics, 2017, 6 th Edition, McGraw Hill Education.						
Mode of Evaluation: CAT, Written assignment, Quiz, FAT.							
Ree	commended by Board of Studies	09-03-2022					
Approved by Academic Council		No. 65	Date	17-03-2022			

BMEE204L	Fluid Mechanics and Machines				Τ	P C	
				3	0	0 3	
Pre-requisite	NIL		Syllabus version				
Course Objectiv				1	.0		
Course Objectives							
Fuler's and B	ernoulli equations		u now	5, 0	JIICE	spis in	
2. To provide fu	ndamental knowledge of fluids, its proper	ties and beha	aviour	und	ler v	arious	
conditions of i	nternal and external flows.						
3. To determine	the losses in a flow system, flow through p	pipes, bounda	ary lay	er c	once	epts.	
4. To familiarize	the student with the various pumps and tu	irbines.					
Course Outcome	es						
At the end of the	course, the student will be able to	we of fluid of	tation	to o	nain	ooring	
	the significance of fluid properties and la		latics	lo e	ngin	eening	
2 Describe the f	low fields using Lagrangian and Eulerian	approaches					
3. Formulate sui	table governing equations to solve fluid flo	w problems.					
4. Analyse the vi	scous flow through pipes and determine v	arious losses	S.				
5. Perform dime	nsional analysis of various flow problems.						
6. Apply the bou	ndary layer concept and predict the flow s	eparation.					
7. Analyse the p	erformance of hydraulic pumps and turbin	es.					
Module:1 Fluid	Statics and Buoyancy		· .		8	hours	
Definition of flui	d, Concept of continuum, Fluid prope	rties, Rheolo	ogical	cla	SSITI	cation,	
Hydrostatic force	a plane inclined and Curved sur	rfaces Buoy	y. /ancv	Co	ndit	ion of	
Fauilibrium for Su	bmerged and Floating Bodies Centre of F	Ruovancy	ancy,	00	nun		
Module:2 Fluid	Kinematics				5	hours	
Description of flu	id motion – Lagrangian and Eulerian ap	proach, Typ	es of	flow	vs, C	Control	
volume, Material	derivative and acceleration, Streamlines, F	Pathlines and	Strea	akline	es, S	Stream	
function and veloc	city potential function, The Reynolds trans	port theorem.					
Module:3 Fluid	Dynamics				5	hours	
The continuity eq	uation, The Euler and Bernoulli equations	– venturimete	er, ori	licen	nete	r, Pitot	
tube, Momentu	m equation and its application – force	s on pipe	bena	s, n	nom	ent of	
Module:4 Visc	Navier-Stokes Equations.				6	hours	
General Charact	eristics of nine flow Fully-developed	l Iaminar flow	/ Ha	nen	Poi	seuille	
equation, Turbule	ent flow, Darcy–Weisbach equation, Mood	ly chart, majo	or and	l mir	nor l	osses,	
Multiple pipe syst	ems.	, , ,				,	
Module:5 Dime	ensional Analysis				5	hours	
Dimensional hom	nogeneity, Rayleigh's method, Buckingha	am π theore	m, No	on-di	mer	nsional	
numbers, Model I	aws and distorted models, Modelling and s	similitude.					
Module:6 Bour	ndary layer flow				5	hours	
Boundary layers,	Laminar flow and turbulent flow, Bound	dary layer th	icknes	ss, N	/lom	entum	
Integral equation, Drag and lift, Separation of boundary layer, Methods of preventing the							
Modulo:7 Hydraulic Machines 9 hours						houre	
Introduction - Ce	autrifugal numps - Work done - Head	developed .	- Pun	n o	<u>g</u>	it and	
Efficiencies - priming - minimum starting speed - performance of multistage pumps -							
Cavitation - methods of prevention - Pump characteristics – Classification of hydraulic							
turbines - Pelton wheel - Francis turbine - Kaplan and Propeller turbines Specific speed -							
Theory of draft tu	be - Governing - Performance characterist	ics - Selectio	n of tu	urbin	es.		
Module:8 Cont	emporary issues				2	hours	
	Total Lecture hours:				45	hours	

Text Books								
1.	Som S K, Gautam Biswas, Chakraborty S, Introduction to Fluid Mechanics and Fluid							
	Machines, 2017, McGraw Hill.							
2.	Fox and McDonald, Introduction to Fluid Mechanics, 2020, 10 th Edition, Wiley.							
Reference Books								
1.	Yunus A. Cengel and John. Applications, 2019, 4 th Edition, Mo	M. Cimbala, F cGraw Hill.	Fluid Mea	chanics: Fundamentals and				
Mode of Evaluation: CAT. Written assignment, Quiz. FAT								
Re	Recommended by Board of Studies 09-03-2022							
Approved by Academic Council		No. 65	Date	17-03-2022				

BMEE204P		Fluid Mechanics and Machines Lab				Ρ	С			
				0	0	2	1			
Pre-requisite		NIL	Syl	Syllabus version						
Cours	1.0									
	1 To train students practically with the procedures for measuring the co-efficient of									
dis	discharge of orifice mouthpiece notches orifice meter and venturi meter									
2. To	2. To train the students to determine the friction factor and minor losses in pipe									
cor	components.									
3. To	3. To equip the students to perform experiments in hydraulic machines and analyse the									
res	results.									
Cours	e Outcome									
At the	end of the c	course, the student will be able to								
1. Per	rform exper	iments on various flow measuring devices to calibrate t	hem.							
2. Pe	2. Perform experiments to determine friction factor and minor losses in pipe components.									
3. Co	nduct expe	riments on hydraulic machines to assess their performa	ance.							
List of	Exporimo	nte								
LISCO										
1	Determinati	on of coefficient of discharge of an orifice.								
2 I	Determinati	on of coefficient of discharge of a mouthpiece.								
3 I	Determinati	on of coefficient of discharge of a rectangular/ triangula	ir not	ch.						
4 I	Determinati	on of coefficient of discharge of a venturi meter / orifice	mete	er.						
5 I	Estimation of	of friction factor of a pipe.								
6 I	Estimation of minor losses in pipe fittings.									
7	Verification of the Bernoulli Theorem.									
8 3	Study and calibration of a pitot static tube.									
9	To study the performance of a centrifugal pump.									
10 \$	Study the performance of a Pelton Turbine.									
11	Determination of static pressure distribution around an air foil.									
Total Laboratory Hours 30 hours										
Text B	Text Books									
1	1 Som S K, Gautam Biswas, Chakraborty S, Introduction to Fluid Mechanics and Fluid									
	Machines, 2017, McGraw Hill									
∠ ∠ Mode (<u>2 Lab ivialitial prepared by course racuity</u> Mode of assessment: Continuous assessment EAT. Oral examination									
Recom	Recommended by Board of Studies 09-03-2022									
Approv	Approved by Academic Council No. 65 Date 17-03-2022									
BM	EE206P	Machine Drawing Lab		L	Т	Ρ	С			
------------------	----------------	--	----------------	----------------	---------------	--------------------	----------			
				0	0	4	2			
Pre	-requisite	BMEE102P		Sylla	bus v	ersio	n			
	_				1.0					
Со	urse Objectiv	/es								
1. 1	To provide the	knowledge of design practices for common mach	hine	eleme	ents.					
2. 1	To train stude	nts to excel in part and assembly drawing of mech	nanic	al co	mpone	ents.				
3. 1	o impart skill	s in applying CAD tools for conceptualizing produ	ct.							
Co	urse Outcom									
At t	he end of the	course, the student will be able to								
1.0	Jse CAD tool	s efficiently to design machine elements.								
2. L		ne use of ISO/BIS standards in machine drawing.								
3. F	Apply the cond	cepts of conventional tolerancing and GD&T princ	spies							
4.1		elative motion among parts in mechanical assemb	JIY.							
Ind	icative Expe	riments								
1	Introductio	n to Machine Drawing: Study of Drawing Sl	heet	Lavo	out ar	nd Dra	awing			
	Standards	Use of software packages for machine drawing ar	nd dr	afting						
2.	Basics of	Machine Drawing: Study of basic specific	catio	ns a	nd c	onven	tional			
	representati	on of standard components i.e.Bolts, Screw, Riv	/ets,	Keys	, Pins	, Was	shers;			
	Surface Rou	ughness and Welding symbols in machine drawing	g.	•						
3.	Basic of Li	mits, Fits and Tolerances: Study of fundamentation	al of	Devia	ations	, Shaf	t and			
	Hole Termir	nology, Method of placing limit dimensions. Stud	ly of	differ	ent ty	vpes o	of Fits			
	and Toleran	ces. Reading of machining grade. Use of tolerar	nce ta	ables	-					
4.	Introductio	n to Limits, Fits and Tolerances in Machin	e D	rawir	ig: In	corpo	rating			
	Geometrica	Tolerance and Dimensioning, GD&T Symbols	s, LN	1C, N	1MC,	conce	əpt in			
_	engineering	drawing.		<u> </u>			<u>.</u>			
5.	Part Mode	ling of machine components: 3D Modelli	ng c	of sta	andaro	d ma	chine			
6	Detailed D	rowing of Part: Drofting of standard mashi	kel. no r	ort	omno	nonto	into			
0.	production of	rawing Of Fail. Draining of Standard Machine	ne p niecti	ion	ompo	ments	into			
7	Modeling a	ind Assembly of machine elements: 3D Mod	elina	of s	tanda	rd ma	chine			
1.	elements i e	Universal Coupling Bench Vice Radial Engine	cinig	01.0	anda		onnic			
8.	Detailed D	rawing of Assembly: Drafting of standard	ass	embly	/ ele	ments	into			
	Orthographi	c, Isometric and Section view. Applying Bill of Ma	terial	cond	ept.					
9.	Exploded A	ssembly Drawing: Understanding step of assem	nbly o	of cor	npone	ents.				
1	Motion Stu	udy of Assembly: Applying motion among of	comp	onen	ts in	asse	mbly.			
0.	Understand	ing Constraints Relations and Degree of Freedom	۱.							
		Total Laboratory Hours				60 ł	iours			
Tex	t Books									
1.	Bhatt N. D,	Machine Drawing, 2008, Charotar Publishing Hou	ise P	<u>vt. Lii</u>	<u>nited,</u>	India	<u>.</u>			
2.	French, I.	E, Vierch, C. J, and Foster, R. J., Engineering	g Dra	awing	and	Grap	nic			
2		propored by course feedby merchant								
ა. Р ი	Lab Manual	prepared by course faculty members.								
1	Naravana K	No Kannajah D. and Venkata Poddy K. Machir	ים מי	awin	a 204	16 5 th	Ed			
1.	New Age In	ternational Publishers India		awin	y, 20	10, 5	Eu.,			
2	John K C	Text Book of Machine Drawing 2009 PHI Learning	na Pi	vt I te	1					
3	Lockhart S	Giesecke F F Dvadon J Spencer H Mitche		Joh	nson	C G	ood			
0.	man. M. Te	chnical Drawing with Engineering Graphics. 2016	6. Pro	entice	Hall.	Unite	d			
	Kingdom.		-,		,	2				
4.	Lakshminar	ayanan, V., and Mathur, M. L., Text Book o	of Ma	achin	e Dra	wing	(with			

	Computer			
	Graphics), 2007, 12th Ed, Jain Br	rothers, In	dia.	
5.	SP 46: 1988 Engineering Drawir	ng Practice	e for Scho	ols and Colleges, 1988, Bureau of
	Indian Standards.	-		-
6.	Design Data: Data Book of Engin	eers by P	SG Colleg	e, 2019, 4 th Ed., Kalaikathir
	Achagham Coimbatore publicatio	n, India.	-	
Mo	de of assessment: Viva-voce exam	nination, La	ab perform	nance & FAT
Red	commended by Board of Studies	09-03-20)22	
App	proved by Academic Council	No. 65	Date	17-03-2022

Image: Second	BMEE207L	-	Kinematics & Dynamics of Machines		L 1	ГР	С
Pre-requisite BMEE201L Syllabus version 1.0 1.0 Course Objectives 1.0 2. To facilitate students to understand the functions of cares, gears, and flywheel. 1.0 3. To impart knowledge on design of mechanisms and dynamic loads acting on the mechanism. 1.0 4. To give an insight on the concepts of balancing, vibration and speed governing devices. Course Outcome 2. At the end of the course, the student will be able to 1. Examine the kinematic behaviour of various planar mechanisms. 2. Construct velocity and acceleration diagrams for various planar mechanisms. 2. 3. Analyse kinematics of carn and gear-train mechanisms. 4. 5. Analyse the balancing of masses and wibrations of mechanical systems. 6. Assess the characteristics of governors and gyroscopic effects. Module:1 Mechanisms and machines, terminology, planar mechanism - Kinematic diagram and inversion, Mobility, Coincident joints, Grubbler and Grashoff's law, Four bar, single and double slider mechanisms and their inversions. 8 hours Velocity and acceleration in planar mechanisms - Relative velocity method. Coriolis component of acceleration, Kennedy's Theorem, Instantaneous Centre method. Module:3 Module:3 Kinematic analysis of Carns and Gears 7 hours Carns: Types of cans - T					3 0) 0	3
1.0 Course Objectives 1. To enable students to understand the functions of cams, gears, and flywheel. 3. To impart knowledge on design of mechanisms and dynamic loads acting on the mechanism. 4. To give an insight on the concepts of balancing, vibration and speed governing devices. Course Outcome At the end of the course, the student will be able to 1. Examine the kinematic behaviour of various planar mechanisms. 2. Construct velocity and acceleration diagrams for various planar mechanisms. 3. Analyse the balancing of masses and vibrations of mechanical systems. 5. Analyse the characteristics of governors and gyroscopic effects. Module:1 Mechanisms and kinematics 6 hours Introduction, mechanisms and machines, terminology, planar mechanism. 8 houres 8 houres Velocity and accelerations in Mechanisms - Relative velocity method, Coriolis component of acceleration in planar mechanisms - Relative velocity method, Coriolis component of acceleration in planar mechanisms - Relative velocity method, Coriolis component of acceleration in planar mechanisms - Motins of the followers - Layout of cam profiles. Gear: terminology, fundamental of gearing, involute profile, interference and undercutting, minimum number of teeth, contact ratio - Garat trains: simple, compound and epicyclic. Module:3 Synthesis of planar mechanism 6 hours Introduction and Three position synthe	Pre-requis	ite	BMEE201L	Syl	labus	versi	ion
Course Objectives 1. To enable students to understand the fundamental concepts of mechanisms. 2. To facilitate students to understand the functions of cams, gears, and flywheel. 3. To impart knowledge on design of mechanisms and dynamic loads acting on the mechanism. 4. To give an insight on the concepts of balancing, vibration and speed governing devices. Course Outcome At the end of the course, the student will be able to 1. Examine the kinematic behaviour of various planar mechanisms. 2. Construct velocity and acceleration diagrams for various planar mechanisms. 3. Analyse kinematics of cam and gear-train mechanisms. 4. Investigate the dynamic forces acting on planar mechanisms. 5. Analyse the balancing of masses and vibrations of mechanical systems. 6. Assess the characteristics of governors and gyroscopic effects. Module:1 Mechanisms and kinematics 6. Assess the characteristics of governors and gyroscopic effects. Module:2 Velocity and Accelerations in Mechanisms Not and acceleration in planar mechanisms - Relative velocity method, Coriolis component of acceleration in planar mechanisms - Relative velocity method, Coriolis component of acceleration, Kennedy's Theorem, Instantaneous Centre method. Module:3 Kinematic analysis of Cams and Gears Trains: simple, compound and underptiles. Gear: terminology, fundamental of gearing, involute profile, interfe					1.0)	
1. Io enable students to understand the fundamental concepts of mechanisms. 2. To facilitate students to understand the functions of cams, gears, and flywheel. 3. To impart knowledge on design of mechanisms and dynamic loads acting on the mechanism. 4. To give an insight on the concepts of balancing, vibration and speed governing devices. Course Outcome At the end of the course, the student will be able to 1. Examine the kinematic behaviour of various planar mechanisms. 2. Construct velocity and acceleration diagrams for various planar mechanisms. 3. Analyse kinematics of cam and gear-train mechanisms. 4. Investigate the dynamic forces acting on planar mechanical systems. 6. Assess the characteristics of governors and gyroscopic effects. Module:1 Mechanisms and machines, terminology, planar mechanism - Kinematic diagram and inversion, Mobility, Coincident joints, Grubbler and Grashoff's law, Four bar, single and double slider mechanisms a their inversions. Module:2 Velocity and Accelerations in Mechanisms - Relative velocity method, Coriolis component of acceleration in planar mechanisms - Relative velocity method, Coriolis component of acceleration in planar mechanisms - Relative velocity method, Coriolis component of accelerations in Mechanisms - Relative velocity and acceleration, fundamental of gearing, involute profile, interference and velocite. Site is of Cams and Gears 7 hours Cams: Types of cams - Types of followers - Definitions - Motions of the followers - Layout of cam profiles. Gear: terminology, fundamental of gearing, involute profile, interference and epicyclic. Module:3 Dynamic Force Analysis of planar mechanism - Graphical and analytical methods - Freudenstein equation. Module:4 Synthesis of planar mechanism - Graphical and analytical methods - Freudenstein equation. Module:5 Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. Introduction-D' Alembert's principle-static and insertial force analysis of reciprocating dave or otors' systems. Static and Dynamic Balancing of R	Course Ob	ojectiv					
2. Io taclitite students to understand the functions of cams, gears, and flywheel. 3. To impart knowledge on design of mechanisms and dynamic loads acting on the mechanism. 4. To give an insight on the concepts of balancing, vibration and speed governing devices. Course Outcome At the end of the course, the student will be able to 1. Examine the kinematic behaviour of various planar mechanisms. 2. Construct velocity and acceleration diagrams for various planar mechanisms. 3. Analyse kinematics of cam and gear-train mechanisms. 4. Investigate the dynamic forces acting on planar mechanisms. 5. Analyse the balancing of masses and vibrations of mechanical systems. 6. Assess the characteristics of governors and gyroscopic effects. Module:1 Mechanisms and kinematics Module:2 Mechanisms and kinematics for double silder mechanisms and their inversions. Module:2 Velocity and Accelerations in Mechanisms Velocity and acceleration in planar mechanisms. Shours Velocity and accelerations in Mechanisms Velocity and acceleration in planar mechanisms. Module:3 Kinematic analysis of Cams and Gears T hours Cams: Types of cams – Types of followers – Definitions – Motions of the followers – Layout module:3 Strimentic analysis of Cams and Gears T hours Cams of planar mechanism A hours Module:3 Synthesis of planar mechanism for achitae store of the proce Analysis for coloration, Kennedy's Indorrental of gearing, involute profile, interference and undercutting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic. Module:3 Synthesis of planar mechanism for bours Introduction-D' Alembert's principle-static and inertial force analysis of reciprocating engine- Equivalent dynamic Balancing of Rotating Masses, Balancing of flywheel of punching press. Module:7 Governors and Gyroscope Songle degree of freedom- damped and undamped free and forced wibration – Vi	1. Io enabl	le stud	dents to understand the fundamental concepts of mecha	anism	S.		
3. To Impair knowledge on design of mechanisms and dynamic loads acting on the mechanism. 4. To give an insight on the concepts of balancing, vibration and speed governing devices. Course Outcome At the end of the course, the student will be able to 1. Examine the kinematic behaviour of various planar mechanisms. 2. Construct velocity and acceleration diagrams for various planar mechanisms. 3. Analyse kinematics of cam and gear-train mechanisms. 4. Investigate the dynamic forces acting on planar mechanisms. 5. Analyse the balancing of masses and vibrations of mechanical systems. 6. Assess the characteristics of governors and gyroscopic effects. Module:1 Mechanisms and machines, terminology, planar mechanism - Kinematic diagram and inversion, Mobility, Coincident joints, Grubbler and Grashoff's law, Four bar, single and double slider mechanisms - Relative velocity method, Coriolis component of acceleration in planar mechanisms - Relative velocity method, Coriolis component of acceleration, Kennedy's Theorem, Instantaneous Centre method. Module:3 Kinematic analysis of Cams and Gears 7 hours Cams: Types of cams - Types of followers – Definitions – Motions of the followers – Layout of cam profiles. Gear: terminology, fundamental of gearing, involute profile, interference and undercuting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic. Module:4 Synthesis of planar mechanism 6 hours Introduction-D	2. To facilit	ate sti	udents to understand the functions of cams, gears, and	TIYWN	eel.	n	the
A. To give an insight on the concepts of balancing, vibration and speed governing devices. A. To give an insight on the concepts of balancing, vibration and speed governing devices. At the end of the course, the student will be able to 1. Examine the kinematic behaviour of various planar mechanisms. 2. Construct velocity and acceleration diagrams for various planar mechanisms. 3. Analyse kinematics of cam and gear-train mechanisms. 4. Investigate the dynamic forces acting on planar mechanisms. 5. Analyse kinematics of governors and gyroscopic effects. Module:1 Mechanisms and kinematics 6 hours Introduction, mechanisms and machines, terminology, planar mechanism - Kinematic diagram and inversion, Mobility, Coincident joints, Grubbler and Grashoff's law, Four bar, single and double slider mechanisms and their inversions. Module:2 Velocity and Acceleration in planar mechanisms - Relative velocity method. Coriolis component of acceleration in planar mechanisms - Relative velocity method. Module:3 Kinematic analysis of Cams and Gears 7 hours Cams: Types of cams - Types of followers - Definitions - Motions of the followers - Layout of cam profiles. Gear: terminology, fundamental of gearing, involute profile, interference and undercutting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic. Module:4 Synthesis of planar mechanism 6 hours Introduction-D' Alembert's pr	5. TO imp mechanism	ari Ki า	lowledge of design of mechanisms and dynamic in	uaus	acting	OII	uie
To gree an insight of the concepte of each only, fundational procession of the concepte of each only fundation of the construct velocity and acceleration diagrams for various planar mechanisms. 2. Construct velocity and acceleration diagrams for various planar mechanisms. 3. Analyse kinematics of cam and gear-train mechanisms. 4. Investigate the dynamic forces acting on planar mechanisms. 5. Analyse the balancing of masses and vibrations of mechanical systems. 6. Assess the characteristics of governors and gyroscopic effects. Module:1 Mechanisms and kinematics 6. Assess the characteristics of governors and gyroscopic effects. Module:2 Velocity and Accelerations in Mechanisms 8. Moute:3 Nonedview for the concept in planar mechanisms. 9. Velocity and acceleration in planar mechanisms - Relative velocity method, Coriolis component of acceleration, Kennedy's Theorem, Instantaneous Centre method. Module:3 Kinematic analysis of Cams and Gears 7 hours Cams: Types of cams – Types of followers – Definitions – Motions of the followers – Layout of cam profiles. Gear: terminology, fundamental of gearing, involute profile, interference and undercutting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic. Module:3 Synthesis of planar mechanism 6 hours Introduction-D' Alembert'		ı. an insi	ight on the concepts of balancing, vibration and speed o	noveri	nina de	vice	\$
Course Outcome At the end of the course, the student will be able to 1. Examine the kinematic behaviour of various planar mechanisms. 2. Construct velocity and acceleration diagrams for various planar mechanisms. 3. Analyse kinematics of cam and gear-train mechanisms. 4. Investigate the dynamic forces acting on planar mechanisms. 5. Analyse the balancing of masses and vibrations of mechanical systems. 6. Assess the characteristics of governors and gyroscopic effects. Module:1 Mechanisms and machines, terminology, planar mechanism - Kinematic diagram and inversion, Mobility, Coincident joints, Grubbler and Grashoff's law, Four bar, single and double slider mechanisms and their inversions. Velocity and acceleration in planar mechanisms - Relative velocity method, Coriolis component of acceleration, Kennedy's Theorem, Instantaneous Centre method. Module:2 Velocity and Accelerations in Mechanism 8 hours Cams: Types of cams – Types of followers – Definitions – Motions of the followers – Layout of cam profiles. Gear: terminology, fundamental of gearing, involute profile, interference and undercutting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic. Module:5 Dynamic Force Analysis 6 hours Introduction-D' Alembert's principle-static and inertial force analysis of reciprocating engine-Equivalent dynamic system. Turning moment diagram-four stroke engine-multicylinder engine-design of flywheel of IC engine-design of flywheel rim- desig	1. 10 give t		gin on the concepte of balancing, vibration and speed g	,01011	ing do	1000	5.
At the end of the course, the student will be able to 1. Examine the kinematic behaviour of various planar mechanisms. 2. Construct velocity and acceleration diagrams for various planar mechanisms. 3. Analyse kinematics of cam and gear-train mechanisms. 4. Investigate the dynamic forces acting on planar mechanisms. 5. Analyse kinematics of governors and gyroscopic effects. Module:1 Mechanisms and kinematics 6 hours Introduction, mechanisms and machines, terminology, planar mechanism - Kinematic diagram and inversion, Mobility, Coincident joints, Grubbler and Grashoff's law, Four bar, single and double slider mechanisms and their inversions. 8 hours Velocity and acceleration in planar mechanisms 8 hours Velocity and acceleration, Kennedy's Theorem, Instantaneous Centre method. Corolis component of acceleration, Kennedy's Theorem, Instantaneous Centre method. Module:3 Kinematic analysis of Cams and Gears 7 hours Cams: Types of cams - Types of followers – Definitions – Motions of the followers – Layout of care profiles. Gear: terminology, fundamental of gearing, involute profile, interference and undercutting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic. Module:4 Synthesis of planar mechanism 4 hours Two position and Three position synthesis of planar mechanism - Graphical and analytical methods - Freudenstein equation. 6 hours I	Course Ou	utcom	6				
1. Examine the kinematic behaviour of various planar mechanisms. 2. Construct velocity and acceleration diagrams for various planar mechanisms. 3. Analyse kinematics of cam and gear-train mechanisms. 4. Investigate the dynamic forces acting on planar mechanisms. 5. Analyse the balancing of masses and vibrations of mechanical systems. 6. Assess the characteristics of governors and gyroscopic effects. Module:1 Mechanisms and kinematics 6 hours Introduction, mechanisms and machines, terminology, planar mechanism - Kinematic diagram and inversion, Mobility, Coincident joints, Grubbler and Grashoff's law, Four bar, single and double slider mechanisms and their inversions. 8 hours Module:1 Velocity and Accelerations in Mechanisms - Relative velocity method, Coriolis component of acceleration, Kennedy's Theorem, Instantaneous Centre method. Module:3 Kinematic analysis of Cams and Gears 7 hours Cams: Types of cams - Types of followers - Definitions - Motions of the followers - Layout of cam profiles. Gear: terminology, fundamental of gearing, involute profile, interference and undercutting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic. 4 hours Module:4 Synthesis of planar mechanism Gentrains 6 hours Introduction-D'Alembet's principle-static and inertial force analysis of reciprocating engine-furtions. Module:1 Module:1 Module:5	At the end	of the	course, the student will be able to				
 2. Construct velocity and acceleration diagrams for various planar mechanisms. 3. Analyse kinematics of cam and gear-train mechanisms. 4. Investigate the dynamic forces acting on planar mechanisms. 5. Analyse the balancing of masses and vibrations of mechanical systems. 6. Assess the characteristics of governors and gyroscopic effects. Module:1 Mechanisms and kinematics 6 hours Introduction, mechanisms and machines, terminology, planar mechanism - Kinematic diagram and inversion, Mobility, Coincident joints, Grubbler and Grashoff's law, Four bar, single and double slider mechanisms and their inversions. Module:2 Velocity and Accelerations in Mechanisms - Relative velocity method, Coriolis component of acceleration, Kennedy's Theorem, Instantaneous Centre method. Module:3 Kinematic analysis of Cams and Gears 7 hours Cams: Types of cams – Types of followers – Definitions – Motions of the followers – Layout of cam profiles. Gear: terminology, fundamental of gearing, involute profile, interference and undercutting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic. Module:4 Synthesis of planar mechanism / 4 hours Two position and Three position synthesis of planar mechanism - Graphical and analytical methods - Freudenstein equation. Module:5 Dynamic Force Analysis 6 hours Introduction-D' Alembert's principle-static and inertial force analysis of reciprocating engine-Equivalent dynamic system. Turning moment diagram-four stroke engine-multicylinder engine-design of flywheel of IC engine-design of flywheel rim- design of flywheel of punching press. Module:7 Governors and Gyroscope (Stration – Vibration isolation and Transmissibility. Transverse vibrations of shafts – Whirling of shaft -Torsional vibration of single rotor and two rotors' systems. Module:7 Governors a	1. Examine	e the k	kinematic behaviour of various planar mechanisms.				
 3. Analyse kinematics of cam and gear-train mechanisms. 4. Investigate the dynamic forces acting on planar mechanisms. 5. Analyse the balancing of masses and vibrations of mechanical systems. 6. Assess the characteristics of governors and gyroscopic effects. Module:1 Mechanisms and kinematics 6 hours Introduction, mechanisms and machines, terminology, planar mechanism - Kinematic diagram and inversion, Mobility, Coincident joints, Grubbler and Grashoff's law, Four bar, single and double slider mechanisms and their inversions. Module:2 Velocity and Accelerations in Mechanisms 8 8 hours Velocity and acceleration in planar mechanisms - Relative velocity method, Coriolis component of acceleration, Kennedy's Theorem, Instantaneous Centre method. Module:3 Kinematic analysis of Cams and Gears 7 hours Cams: Types of cams – Types of followers – Definitions – Motions of the followers – Layout of cam profiles. Gear: terminology, fundamental of gearing, involute profile, interference and undercutting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic. Module:3 Dynamic Force Analysis of planar mechanism - Graphical and analytical methods - Freudenstein equation. Module:5 Dynamic Force Analysis of planar mechanism of reciprocating engine-Equivalent dynamic system. Turning moment diagram-four stroke engine-multicylinder engine-design of flywheel of IC engine-design of flywheel rim- design of flywheel of punching press. Module:6 Balancing and Vibration Netation and Transmissibility. Transverse vibration so fishats – Whirling of shaft -Torsional vibration of single rotor and two rotors' systems. Module:7 Governors and Gyroscope – Gyroscopic Effects on the Movement of airplanes and Ships – Gyroscope Stabilization. Module:8 Contemporary Issues Total Lecture hours: 45 hours 	2. Constru	ct velo	ocity and acceleration diagrams for various planar mech	anisn	ns.		
 Investigate the dynamic forces acting on planar mechanisms. Analyse the balancing of masses and vibrations of mechanical systems. Assess the characteristics of governors and gyroscopic effects. Module:1 Mechanisms and kinematics Figure 1 (1998) Introduction, mechanisms and machines, terminology, planar mechanism - Kinematic diagram and inversion, Mobility, Coincident joints, Grubbler and Grashoff's law, Four bar, single and double slider mechanisms and their inversions. Module:2 Velocity and Accelerations in Mechanisms (1998) Velocity and acceleration in planar mechanisms - Relative velocity method, Coriolis component of acceleration, Kennedy's Theorem, Instantaneous Centre method. Module:3 Kinematic analysis of Cams and Gears 7 hours Cams: Types of cams – Types of followers – Definitions – Motions of the followers – Layout of cam profiles. Gear: terminology, fundamental of gearing, involute profile, interference and undercutting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic. Module:4 Synthesis of planar mechanism - Graphical and analytical methods. – Freudenstein equation. Module:5 Dynamic Force Analysis of planar mechanism - Graphical and analytical methods. Module:6 Balancing and Vibration 8 hours Static and Dynamic System. Turning moment diagram-four stroke engine-multicylinder engine-design of flywheel of IC engine-design of flywheel of punching press. Module:7 Governors and Gyroscope - Single degree of freedom - damped and undamped- free and forced vibration – Vibration isolation and Transmissibility. Transverse vibrations of shafts – Whirling of shaft -Torsional vibration of single rotor and two rotors' systems. Module:7 Governors and Gyroscope – Gyroscopic Effects on the Movement of airplanes and Ships – Gyroscope Stabilization. Module:8 Contemporary Issues –	3. Analyse	kinen	natics of cam and gear-train mechanisms.				
5. Analyse the balancing of masses and vibrations of mechanical systems. 6. Assess the characteristics of governors and gyroscopic effects. Module:1 Mechanisms and kinematics 6 hours Introduction, mechanisms and machines, terminology, planar mechanism - Kinematic diagram and inversion, Mobility, Coincident joints, Grubbler and Grashoff's law, Four bar, single and double slider mechanisms and their inversions. Module:2 Velocity and Accelerations in Mechanisms - Relative velocity method, Coriolis component of acceleration in planar mechanisms - Relative velocity method, Coriolis component of acceleration, Kennedy's Theorem, Instantaneous Centre method. Module:3 Kinematic analysis of Cams and Gears 7 hours Cams: Types of cams – Types of followers – Definitions – Motions of the followers – Layout of cam profiles. Gear: terminology, fundamental of gearing, involute profile, interference and undercutting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic. Module:3 Synthesis of planar mechanism 4 hours Two position and Three position synthesis of planar mechanism - Graphical and analytical methods - Freudenstein equation. Module:5 Dynamic Force Analysis 6 flanar mechanism - Graphical and analytical methods - Freudenstein equation. Module:5 Dynamic Force Analysis of flywheel flc engine-design of flywheel of punching press. Module:6 Balancing and Vibration 8 hours Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. Introduction to vibration - Terminologies - Single degree of freedom- damped and undamped- free and forced vibration – Vibration isolation and Transmissibility. Transverse vibrations of shafts – Whirling of shaft -Torsional vibration of single rotor and two rotors' systems. Module:7 Governors and Gyroscope – Gyroscopic Effects on the Movement of airplanes and Ships – Gyroscope Stabilization. Module:8 Contemporary Issues 7 total Lecture hours: 45 hours	4. Investig	ate the	e dynamic forces acting on planar mechanisms.				
6. Assess the characteristics of governors and gyroscopic effects. 6 hours Module:1 Mechanisms and kinematics 6 hours Introduction, mechanisms and machines, terminology, planar mechanism - Kinematic diagram and inversion, Mobility, Coincident joints, Grubbler and Grashoff's law, Four bar, single and double slider mechanisms and their inversions. 8 hours Module:2 Velocity and Accelerations in Mechanisms - Relative velocity method, Coriolis component of acceleration, Kennedy's Theorem, Instantaneous Centre method. 8 hours Velocity and acceleration of planar mechanisms - Relative velocity method, Coriolis component of acceleration, Kennedy's Theorem, Instantaneous Centre method. 7 hours Cams: Types of cams – Types of followers – Definitions – Motions of the followers – Layout of cam profiles. Gear: terminology, fundamental of gearing, involute profile, interference and undercutting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic. 4 hours Module:3 Dynamic Force Analysis 6 hours Introduction-D' Alembert's principle-static and inertial force analysis of reciprocating engine-design of flywheel of IC engine-design of flywheel of punching press. 8 hours Module:6 Balancing of Rotating Masses, Balancing of Reciprocating Masses. 8 hours Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. 9 hours Introduction to vibration - Terminologies - Single degree of freedom- damped and undamped-	5. Analyse	the b	alancing of masses and vibrations of mechanical systen	ns.			
Module:1 Mechanisms and kinematics 6 hours Introduction, mechanisms and machines, terminology, planar mechanism - Kinematic diagram and inversion, Mobility, Coincident joints, Grubbler and Grashoff's law, Four bar, single and double slider mechanisms and their inversions. 8 hours Wedocity and Accelerations in Mechanisms 8 hours Velocity and acceleration in planar mechanisms - Relative velocity method, Coriolis component of acceleration, Kennedy's Theorem, Instantaneous Centre method. 7 hours Module:3 Kinematic analysis of Cams and Gears 7 hours Cams: Types of cams - Types of followers - Definitions - Motions of the followers - Layout of cam profiles. Gear: terminology, fundamental of gearing, involute profile, interference and undercutting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic. Module:4 Synthesis of planar mechanism 4 hours Two position and Three position synthesis of planar mechanism - Graphical and analytical methods - Freudenstein equation. 6 hours Module:5 Dynamic Force Analysis 6 hours Module:6 Balancing and Vibration 8 hours Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. Introduction to vibration - Terminologies - Single degree of freedom- damped and undamped- free and forced vibration minologies - Single degree of freedom- damped and undamped- free and forced vibration - Vibration isolation and	6. Assess	the ch	aracteristics of governors and gyroscopic effects.	<u> </u>			
Introduction, mechanisms and machines, terminology, planar mechanism - Kinematic diagram and inversion, Mobility, Coincident joints, Grubbler and Grashoff's law, Four bar, single and double slider mechanisms and their inversions. Module:2 Velocity and Accelerations in Mechanisms - Relative velocity method, Coriolis component of acceleration in planar mechanisms - Relative velocity method, Coriolis component of acceleration, Kennedy's Theorem, Instantaneous Centre method. Module:3 Kinematic analysis of Cams and Gears 7 hours Cams: Types of cams – Types of followers – Definitions – Motions of the followers – Layout of cam profiles. Gear: terminology, fundamental of gearing, involute profile, interference and undercutting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic. Module:4 Synthesis of planar mechanism 4 hours Two position and Three position synthesis of planar mechanism - Graphical and analytical methods - Freudenstein equation. Module:5 Dynamic Force Analysis 6 hours Introduction-D' Alembert's principle-static and inertial force analysis of reciprocating engine- Equivalent dynamic system. Turning moment diagram-four stroke engine-multicylinder engine-design of flywheel of IC engine-design of flywheel of punching press. Module:6 Balancing and Vibration 8 hours Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. Introduction to vibration - Terminologies - Single degree of freedom- damped and undamped- free and forced vibration – Vibration isolation and Transmissibility. Transverse vibrations of shafts – Whirling of shaft -Torsional vibration of single rotor and two rotors' systems. Module:7 Governors and Gyroscope – Gyroscopic Effects on the Movement of airplanes and Ships – Gyroscope Stabilization. Module:8 Contemporary Issues Total Lecture hours: 45 hours	Module:1	Mec	hanisms and kinematics	<u> </u>		<u>6 ho</u>	ours
Glagram and inversion, Mobility, Coincident joints, Grubbler and Grashoft's law, Four bar, single and double slider mechanisms and their inversions. 8 hours Module:2 Velocity and Accelerations in Mechanisms 8 hours Velocity and acceleration, Kennedy's Theorem, Instantaneous Centre method. 7 hours Cams: Types of cams – Types of followers – Definitions – Motions of the followers – Layout of cam profiles. Gear: terminology, fundamental of gearing, involute profile, interference and undercutting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic. 4 hours Module:3 Synthesis of planar mechanism 4 hours Two position and Three position synthesis of planar mechanism - Graphical and analytical methods - Freudenstein equation. 6 hours Module:5 Dynamic Force Analysis 6 hours Introduction-D' Alembert's principle-static and inertial force analysis of reciprocating engine-Equivalent dynamic system. Turning moment diagram-four stroke engine-multicylinder engine-design of flywheel of IC engine-design of flywheel of punching press. Module:6 Balancing and Vibration 8 hours Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. Introduction or vibration - Terminologies - Single degree of freedom- damped and undamped- free and forced vibration - Vibration isolation and Transmissibility. Transverse vibrations of shafts – Whirling of shaft -Torsional vibration of single rotor and two rotors' systems. Module:7	Introductio	n, me	echanisms and machines, terminology, planar mech	nanisi	m - K	Inem	atic
Single and double sider mechanisms and then inversions. 8 hours Module:2 Velocity and Acceleration in planar mechanisms - Relative velocity method, Coriolis component of acceleration, Kennedy's Theorem, Instantaneous Centre method. Module:3 Kinematic analysis of Cams and Gears 7 hours Cams: Types of cams - Types of followers - Definitions - Motions of the followers - Layout of cam profiles. Gear: terminology, fundamental of gearing, involute profile, interference and undercutting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic. Module:4 Synthesis of planar mechanism 4 hours Two position and Three position synthesis of planar mechanism - Graphical and analytical methods - Freudenstein equation. 6 hours Module:5 Dynamic Force Analysis 6 hours Introduction-D' Alembert's principle-static and inertial force analysis of reciprocating engine-fuquident dynamic system. Turning moment diagram-four stroke engine-multicylinder engine-design of flywheel of IC engine-design of flywheel rim- design of flywheel of punching press. Module:6 Balancing and Vibration 8 hours Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. Introduction to vibration - Terminologies - Single degree of freedom- damped and undamped- free and forced vibration – Vibration isolation and Transmissibility. Transverse vibrations of shafts – Whirling of shaft -Torsional vibration of single rotor and two rotors' systems. Module:7 Governors and Gyro	diagram ar	na inv	ersion, Mobility, Coincident joints, Gruppler and Grasi	nott s	iaw, F	our	bar,
Welocity and Accelerations in MechanismsO nousVelocity and acceleration in planar mechanisms - Relative velocity method, Coriolis component of acceleration, Kennedy's Theorem, Instantaneous Centre method.Module:3Kinematic analysis of Cams and Gears7 hoursCams: Types of cams – Types of followers – Definitions – Motions of the followers – Layout of cam profiles. Gear: terminology, fundamental of gearing, involute profile, interference and undercutting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic.Module:4Synthesis of planar mechanism4 hoursTwo position and Three position synthesis of planar mechanism - Graphical and analytical methods - Freudenstein equation.6 hoursModule:5Dynamic Force Analysis6 hoursIntroduction-D' Alembert's principle-static and inertial force analysis of reciprocating engine- Equivalent dynamic system. Turning moment diagram-four stroke engine-multicylinder engine-design of flywheel of IC engine-design of flywheel rim- design of flywheel of punching press.8 hoursStatic and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. Introduction to vibration - Terminologies - Single degree of freedom- damped and undamped- free and forced vibration – Vibration isolation and Transmissibility. Transverse vibrations of shafts – Whirling of shaft -Torsional vibration of single rotor and two rotors' systems.4 hoursModule:7Governors and Gyroscope4 hoursGovernors: Centrifugal Governors- types and its characteristics - Working principle of electronic governor. Gyroscope – Gyroscopic Effects on the Movement of airplanes and Ships – Gyroscope Stabilization.2 hoursModule:8<	Single and		e sider mechanisms and their inversions.			0 ha	
velocity and acceleration if planar mechanisms - Netative velocity interview, Contons component of acceleration, Kennedy's Theorem, Instantaneous Centre method. Module:3 Kinematic analysis of Cams and Gears 7 hours Cams: Types of cams – Types of followers – Definitions – Motions of the followers – Layout of cam profiles. Gear: terminology, fundamental of gearing, involute profile, interference and undercutting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic. Module:4 Synthesis of planar mechanism 4 hours Two position and Three position synthesis of planar mechanism - Graphical and analytical methods - Freudenstein equation. 6 hours Module:5 Dynamic Force Analysis 6 hours Introduction-D' Alembert's principle-static and inertial force analysis of reciprocating engine-Equivalent dynamic system. Turning moment diagram-four stroke engine-multicylinder engine-design of flywheel of IC engine-design of flywheel rim- design of flywheel of punching press. Module:6 Balancing and Vibration 8 hours Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. Introduction to vibration - Terminologies - Single degree of freedom- damped and undamped- free and forced vibration – Vibration isolation and Transmissibility. Transverse vibrations of shafts – Whirling of shaft -Torsional vibration of single rotor and two rotors' system. Module:7 Governors and Gyroscope 4 hours Module:8 Contemporary Issues 2 hours	Velocity a	nd a	city and accelerations in mechanisms – Pelative veloci	tv m	ethod		
Module:3 Kinematic analysis of Cams and Gears 7 hours Cams: Types of cams – Types of followers – Definitions – Motions of the followers – Layout of cam profiles. Gear: terminology, fundamental of gearing, involute profile, interference and undercutting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic. 4 hours Module:4 Synthesis of planar mechanism 4 hours Two position and Three position synthesis of planar mechanism - Graphical and analytical methods - Freudenstein equation. 6 hours Module:5 Dynamic Force Analysis 6 hours Introduction-D' Alembert's principle-static and inertial force analysis of reciprocating engine-Equivalent dynamic system. Turning moment diagram-four stroke engine-multicylinder engine-design of flywheel of IC engine-design of flywheel rim- design of flywheel of punching press. Module:6 Balancing and Vibration 8 hours Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. Introduction to vibration - Terminologies - Single degree of freedom- damped and undamped- free and forced vibration – Vibration isolation and Transmissibility. Transverse vibrations of shafts – Whirling of shaft -Torsional vibration of single rotor and two rotors' systems. Module:7 Governors and Gyroscope 4 hours Governors: Centrifugal Governors- types and its characteristics - Working principle of electronic governor. Gyroscope – Gyroscopic Effects on the Movement of airplanes and Ships – Gyroscope Stabilization. 2 hours	component	nu au	celeration Kennedy's Theorem Instantaneous Centre r	nethc	ethou, nd	001	10115
Cams: Types of cams - Types of followers - Definitions - Motions of the followers - Layout of cam profiles. Gear: terminology, fundamental of gearing, involute profile, interference and undercutting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic.Module:4Synthesis of planar mechanism4 hoursTwo position and Three position synthesis of planar mechanism - Graphical and analytical methods - Freudenstein equation.6 hoursModule:5Dynamic Force Analysis6 hoursIntroduction-D' Alembert's principle-static and inertial force analysis of reciprocating engine- Equivalent dynamic system. Turning moment diagram-four stroke engine-multicylinder engine-design of flywheel of IC engine-design of flywheel rim- design of flywheel of punching press.8 hoursModule:6Balancing and Vibration8 hoursStatic and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. Introduction to vibration - Terminologies - Single degree of freedom- damped and undamped- free and forced vibration - Vibration isolation and Transmissibility. Transverse vibrations of shafts - Whirling of shaft -Torsional vibration of single rotor and two rotors' systems.Module:7Governors and Gyroscope4 hoursGovernors: Centrifugal Governors- types and its characteristics - Working principle of electronic governor. Gyroscope – Gyroscopic Effects on the Movement of airplanes and Ships – Gyroscope Stabilization.2 hoursModule:8Contemporary Issues2 hours	Module:3	Kine	matic analysis of Cams and Gears		<u>.</u>	7 hc	ours
of cam profiles. Gear: terminology, fundamental of gearing, involute profile, interference and undercutting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic. Module:4 Synthesis of planar mechanism 4 hours Two position and Three position synthesis of planar mechanism - Graphical and analytical methods - Freudenstein equation. 6 hours Module:5 Dynamic Force Analysis 6 hours Introduction-D' Alembert's principle-static and inertial force analysis of reciprocating engine- Equivalent dynamic system. Turning moment diagram-four stroke engine-multicylinder engine-design of flywheel of IC engine-design of flywheel rim- design of flywheel of punching press. Module:6 Balancing and Vibration 8 hours Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. Introduction to vibration - Terminologies - Single degree of freedom- damped and undamped- free and forced vibration – Vibration isolation and Transmissibility. Transverse vibrations of shafts – Whirling of shaft -Torsional vibration of single rotor and two rotors' systems. Module:7 Governors and Gyroscope 4 hours Governors: Centrifugal Governors- types and its characteristics - Working principle of electronic governor. Gyroscope – Gyroscopic Effects on the Movement of airplanes and Ships – Gyroscope Stabilization. 2 hours Module:8 Contemporary Issues 2 hours	Cams ⁻ Typ	es of	cams – Types of followers – Definitions – Motions of th	e foll	owers	<u> </u>	vout
undercutting, minimum number of teeth, contact ratio - Gear trains: simple, compound and epicyclic. Module:4 Synthesis of planar mechanism 4 hours Two position and Three position synthesis of planar mechanism - Graphical and analytical methods - Freudenstein equation. 6 hours Module:5 Dynamic Force Analysis 6 hours Introduction-D' Alembert's principle-static and inertial force analysis of reciprocating engine-Equivalent dynamic system. Turning moment diagram-four stroke engine-multicylinder engine-design of flywheel of IC engine-design of flywheel of punching press. Module:6 Balancing and Vibration 8 hours Static and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. Introduction to vibration - Terminologies - Single degree of freedom- damped and undamped- free and forced vibration – Vibration isolation and Transmissibility. Transverse vibrations of shafts – Whirling of shaft -Torsional vibration of single rotor and two rotors' systems. Module:7 Governors and Gyroscope 4 hours Governors: Centrifugal Governors- types and its characteristics - Working principle of electronic governor. Gyroscope – Gyroscopic Effects on the Movement of airplanes and Ships – Gyroscope Stabilization. 2 hours Module:8 Contemporary Issues 2 hours	of cam prot	files.	Gear: terminology, fundamental of gearing, involute pro	file. ir	nterfere	ence	and
epicyclic.Module:4Synthesis of planar mechanism4 hoursTwo position and Three position synthesis of planar mechanism - Graphical and analytical methods - Freudenstein equation.A hoursModule:5Dynamic Force Analysis6 hoursIntroduction-D' Alembert's principle-static and inertial force analysis of reciprocating engine- Equivalent dynamic system. Turning moment diagram-four stroke engine-multicylinder engine-design of flywheel of IC engine-design of flywheel rim- design of flywheel of punching press.Module:6Balancing and Vibration8 hoursStatic and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. Introduction to vibration - Terminologies - Single degree of freedom- damped and undamped- free and forced vibration - Vibration isolation and Transmissibility. Transverse vibrations of shafts - Whirling of shaft -Torsional vibration of single rotor and two rotors' systems.Module:7Governors and Gyroscope4 hoursGovernors: Centrifugal Governors- types and its characteristics - Working principle of electronic governor. Gyroscope - Gyroscopic Effects on the Movement of airplanes and Ships - Gyroscope Stabilization.2 hoursModule:8Contemporary Issues2 hours	undercuttin	ig, mir	nimum number of teeth, contact ratio - Gear trains: sin	nple,	compo	und	and
Module:4Synthesis of planar mechanism4 hoursTwo position and Three position synthesis of planar mechanism - Graphical and analytical methods - Freudenstein equation.analytical analyticalModule:5Dynamic Force Analysis6 hoursIntroduction-D' Alembert's principle-static and inertial force analysis of reciprocating engine- equivalent dynamic system. Turning moment diagram-four stroke engine-multicylinder engine-design of flywheel of IC engine-design of flywheel rim- design of flywheel of punching press.Module:6Balancing and Vibration8 hoursStatic and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. Introduction to vibration - Terminologies - Single degree of freedom- damped and undamped- free and forced vibration - Vibration isolation and Transmissibility. Transverse vibrations of shafts - Whirling of shaft -Torsional vibration of single rotor and two rotors' systems.Module:7Governors and Gyroscope4 hoursGovernors: Centrifugal Governors- types and its characteristics - Working principle of electronic governor. Gyroscope – Gyroscopic Effects on the Movement d'airplanes and Ships – Gyroscope Stabilization.2 hoursModule:8Contemporary Issues2 hours	epicyclic.	0		•	•		
Two position and Three position synthesis of planar mechanism - Graphical and analytical methods - Freudenstein equation.Module:5Dynamic Force Analysis6 hoursIntroduction-D' Alembert's principle-static and inertial force analysis of reciprocating engine- Equivalent dynamic system. Turning moment diagram-four stroke engine-multicylinder engine-design of flywheel of IC engine-design of flywheel rim- design of flywheel of punching press.Module:6Balancing and Vibration8 hoursStatic and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. Introduction to vibration - Terminologies - Single degree of freedom- damped and undamped- free and forced vibration - Vibration isolation and Transmissibility. Transverse vibrations of shafts - Whirling of shaft -Torsional vibration of single rotor and two rotors' systems.Module:7Governors and Gyroscope4 hoursGovernors: Centrifugal Governors- types and its characteristics - Working principle of electronic governor. Gyroscope - Gyroscopic Effects on the Movement of airplanes and Ships - Gyroscope Stabilization.2 hoursModule:8Contemporary Issues2 hours	Module:4	Synt	hesis of planar mechanism			4 ho	ours
methods - Freudenstein equation.6 hoursModule:5Dynamic Force Analysis6 hoursIntroduction-D' Alembert's principle-static and inertial force analysis of reciprocating engine- equivalent dynamic system. Turning moment diagram-four stroke engine-multicylinder engine-design of flywheel of IC engine-design of flywheel rim- design of flywheel of punching press.Module:6Balancing and Vibration8 hoursStatic and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. Introduction to vibration - Terminologies - Single degree of freedom- damped and undamped- free and forced vibration - Vibration isolation and Transmissibility. Transverse vibrations of shafts - Whirling of shaft -Torsional vibration of single rotor and two rotors' systems.Module:7Governors and Gyroscope4 hoursGovernors: Centrifugal Governors- types and its characteristics - Working principle of electronic governor. Gyroscope - Gyroscopic Effects on the Movement of airplanes and Ships - Gyroscope Stabilization.2 hoursModule:8Contemporary Issues2 hours	Two position	on and	d Three position synthesis of planar mechanism - Gra	phica	I and a	inaly	tical
Module:5Dynamic Force Analysis6 hoursIntroduction-D' Alembert's principle-static and inertial force analysis of reciprocating engine- Equivalent dynamic system. Turning moment diagram-four stroke engine-multicylinder engine-design of flywheel of IC engine-design of flywheel rim- design of flywheel of punching press.Module:6Balancing and Vibration8 hoursStatic and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. Introduction to vibration - Terminologies - Single degree of freedom- damped and undamped- free and forced vibration - Vibration isolation and Transmissibility. Transverse vibrations of shafts - Whirling of shaft -Torsional vibration of single rotor and two rotors' systems.Module:7Governors and Gyroscope4 hoursGovernors: Centrifugal Governors- types and its characteristics - Working principle of electronic governor. Gyroscope - Gyroscopic Effects on the Movement of airplanes and Ships - Gyroscope Stabilization.2 hoursModule:8Contemporary Issues2 hours	methods -	Freud	enstein equation.				
Introduction-D' Alembert's principle-static and inertial force analysis of reciprocating engine- Equivalent dynamic system. Turning moment diagram-four stroke engine-multicylinder engine-design of flywheel of IC engine-design of flywheel rim- design of flywheel of punching press.Module:6Balancing and Vibration8 hoursStatic and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. Introduction to vibration - Terminologies - Single degree of freedom- damped and undamped- free and forced vibration – Vibration isolation and Transmissibility. Transverse vibrations of shafts – Whirling of shaft -Torsional vibration of single rotor and two rotors' systems.Module:7Governors and Gyroscope4 hoursGovernors: Centrifugal Governors- types and its characteristics - Working principle of electronic governor. Gyroscope – Gyroscopic Effects on the Movement of airplanes and Ships – Gyroscope Stabilization.2 hoursModule:8Contemporary Issues2 hours	Module:5	Dyna	amic Force Analysis			6 ho	ours
Equivalent dynamic system. Turning moment diagram-four stroke engine-multicylinder engine-design of flywheel of IC engine-design of flywheel rim- design of flywheel of punching press.Module:6Balancing and Vibration8 hoursStatic and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. Introduction to vibration - Terminologies - Single degree of freedom- damped and undamped- free and forced vibration – Vibration isolation and Transmissibility. Transverse vibrations of shafts – Whirling of shaft -Torsional vibration of single rotor and two rotors' systems.Module:7Governors and Gyroscope4 hoursGovernors: Centrifugal Governors- types and its characteristics - Working principle of electronic governor. Gyroscope – Gyroscopic Effects on the Movement of airplanes and Ships – Gyroscope Stabilization.2 hoursModule:8Contemporary Issues2 hours	Introduction	n-D' A	lembert's principle-static and inertial force analysis of r	ecipro	ocating	eng	ine-
engine-design of flywheel of IC engine-design of flywheel rim- design of flywheel of punching press.Module:6Balancing and Vibration8 hoursStatic and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. Introduction to vibration - Terminologies - Single degree of freedom- damped and undamped- free and forced vibration – Vibration isolation and Transmissibility. Transverse vibrations of shafts – Whirling of shaft -Torsional vibration of single rotor and two rotors' systems.Module:7Governors and Gyroscope4 hoursGovernors: Centrifugal Governors- types and its characteristics - Working principle of electronic governor. Gyroscope – Gyroscopic Effects on the Movement of airplanes and Ships – Gyroscope Stabilization.2 hoursModule:8Contemporary Issues2 hours	Equivalent	dyna	mic system. Turning moment diagram-four stroke	engir	ne-muli	licylir	nder
Module:6Balancing and Vibration8 hoursStatic and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses. Introduction to vibration - Terminologies - Single degree of freedom- damped and undamped- free and forced vibration – Vibration isolation and Transmissibility. Transverse vibrations of shafts – Whirling of shaft -Torsional vibration of single rotor and two rotors' systems.Module:7Governors and Gyroscope4 hoursGovernors:Centrifugal Governors- types and its characteristics - Working principle of electronic governor. Gyroscope – Gyroscopic Effects on the Movement of airplanes and Ships – Gyroscope Stabilization.2 hoursModule:8Contemporary Issues2 hours	engine-des	sign of	flywneel of IC engine-design of flywneel rim- design of	Tiywn	eel of p	Junci	ning
Module:0Dataficing and vibrationChoursStatic and Dynamic Balancing of Rotating Masses, Balancing of Reciprocating Masses.Introduction to vibration - Terminologies - Single degree of freedom- damped and undamped- free and forced vibration – Vibration isolation and Transmissibility. Transverse vibrations of shafts – Whirling of shaft -Torsional vibration of single rotor and two rotors' systems.Module:7Governors and Gyroscope4 hoursGovernors: Centrifugal Governors- types and its characteristics - Working principle of electronic governor. Gyroscope – Gyroscopic Effects on the Movement of airplanes and Ships – Gyroscope Stabilization.2 hoursModule:8Contemporary Issues2 hours	press.	Bala	ncing and Vibration			8 hc	
Introductionto vibrationTerminologiesSingle degree of freedom- damped and undamped- free and forced vibration – Vibration isolation and Transmissibility. Transverse vibrations of shafts – Whirling of shaft -Torsional vibration of single rotor and two rotors' systems.Module:7Governors and Gyroscope4 hoursGovernors:Centrifugal Governors- types and its characteristics - Working principle of electronic governor. Gyroscope – Gyroscopic Effects on the Movement of airplanes and Ships – Gyroscope Stabilization.2 hoursModule:8Contemporary Issues2 hours	Static and	Dyna	mic Balancing of Rotating Masses Balancing of Re	cipro	cating	Mas	<u>013</u>
Indecdedition Ferminelogies Generation Terminelogies Generation undamped- free and forced vibration – Vibration isolation and Transmissibility. Transverse vibrations of shafts – Whirling of shaft -Torsional vibration of single rotor and two rotors' systems. Module:7 Governors and Gyroscope 4 hours Governors: Centrifugal Governors- types and its characteristics - Working principle of electronic governor. Gyroscope – Gyroscopic Effects on the Movement of airplanes and Ships – Gyroscope Stabilization. Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours	Introduction	n to	vibration - Terminologies - Single degree of free	dom_	. damr	ned	and
vibrations of shafts – Whirling of shaft -Torsional vibration of single rotor and two rotors' systems. Module:7 Governors and Gyroscope 4 hours Governors: Centrifugal Governors- types and its characteristics - Working principle of electronic governor. Gyroscope – Gyroscopic Effects on the Movement of airplanes and Ships – Gyroscope Stabilization. 2 hours Module:8 Contemporary Issues 2 hours	undamped	- free	and forced vibration – Vibration isolation and Transm	issibil	litv Tra	ansve	erse
systems. Module:7 Governors and Gyroscope 4 hours Governors: Centrifugal Governors- types and its characteristics - Working principle of electronic governor. Gyroscope – Gyroscopic Effects on the Movement of airplanes and Ships – Gyroscope Stabilization. 2 hours Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours	vibrations	of sha	afts – Whirling of shaft -Torsional vibration of single r	otor	and tw	o rot	tors'
Module:7Governors and Gyroscope4 hoursGovernors:Centrifugal Governors- types and its characteristics - Working principle of electronic governor.Gyroscope - Gyroscopic Effects on the Movement of airplanes and Ships - Gyroscope Stabilization.Module:8Contemporary Issues2 hoursTotal Lecture hours:45 hours	systems.					0.0	
Governors: Centrifugal Governors- types and its characteristics - Working principle of electronic governor. Gyroscope - Gyroscopic Effects on the Movement of airplanes and Ships - Gyroscope Stabilization.Module:8Contemporary Issues2 hoursTotal Lecture hours:	Module:7	Gov	ernors and Gyroscope			4 hc	ours
electronic governor. Gyroscope – Gyroscopic Effects on the Movement of airplanes and Ships – Gyroscope Stabilization. Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours	Governors:	Cen	trifugal Governors- types and its characteristics - V	Norki	ng prir	nciple	e of
Ships – Gyroscope Stabilization. 2 hours Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours	electronic	goveri	nor. Gyroscope – Gyroscopic Effects on the Moveme	ent of	f airpla	nes	and
Module:8Contemporary Issues2 hoursTotal Lecture hours:45 hours	Ships – Gy	rosco	pe Stabilization.				
Total Lecture hours: 45 hours	Module:8	Con	temporary Issues			2 ho	ours
			Total Lecture hour	rs:	4	5 ho	ours
Text Book(s)	Text Book	(s)		I			
1. Rattan S. S, Theory of Machines, Tata McGraw Hill, 2019	1. Rattan	S. S,	Theory of Machines, Tata McGraw Hill, 2019				

Ret	ference Books			
1.	Joseph Edward Shigley and Joh	n Joseph	Uicker 、	Jr., Theory of Machines and
	Mechanisms SI Edition, 2014, Oxford	d University	Press	
2	Norton R. L, Kinematics and Dynami	cs of Mach	inery, , 20)17, McGraw-Hill Education
3	Norton R. L., Design of Machinery, A	n Introduct	ion to the	Synthesis and Analysis of
	Mechanisms and Machines, 2019Mc	Graw-Hill F	ligher Ed	ucation
Мо	de of Evaluation: CAT, Written assign	ment, Quiz,	FAT	
Ree	commended by Board of Studies	09-03-202	2	
Арр	proved by Academic Council	No. 65	Date	17-03-2022

BM	EE207P	Kinematics	& Dynamics	of Mach	ines Lab		LT	Ρ	С
							0 0	2	1
Pre	-requisite	BMEE201L				Syl	labus v	ersi	on
							1.0		
Co	urse Objectiv	/e							
1.	To impart pra	ctical skills in analyzi	ng different me	echanisn	n.				
2.	To familiarize	the use of cams and	gears.						
3	To demonstrat	te the importance of	governors and	gyrosco	pes.				
Co	urse Outcom	es							
At t	he end of the	course, the student v	vill be able to						
1. L	Determine the	kinematic behaviour	of various plan	har mech	anisms.				
2. F	Analyse the fre	e, forced, and damp	ed vibration of	different	t systems.				
3.1	nvestigate the	performance of vario	ous governors	and the	gyroscope.				
Ind	iaatiya Eynar	vimanta							
1	Study of diff	aront planar mochani	cmc						
1.	Determination	on of the Coriolis com	nonent of acc	eleration					
2.	Kinematic ar	nalysis of dear and d	ar train						
<u> </u>	Cam synthe	sis and jump phenor							
5	Determinatio	on of the natural vibra	tion of the spri	ina mass	system				
6	Determinatio	on of the free torsiona	al vibration of t	wo rotor	system				
7	Determinatio	on of the radius of av	ration of bifilar	& trifilar	system				
8.	Determinatio	on of the critical spee	d of the whirlin	a shafts	with differe	nt fixir	nas		
9.	Determinatio	on of equilibrium spee	eds of Watt gov	vernor			0		
10	Determinatio	on of equilibrium spee	eds of Porter g	overnor					
11	Determinatio	on of equilibrium spee	eds of Hartnell	governo	r				
12	Determinatio	on of gyroscopic coup	ole acting on a	rotating	disc				
			Т	otal Lab	oratory Hou	urs	30	ho	urs
Тех	t Book(s)								
1.	Rattan S. S,	Theory of Machines,	Tata McGraw	Hill, 201	9.				
2.	Lab Manual p	prepared by course fa	aculty member	S.					
Ref	ference Book	S							
1.	Joseph Edw	ard Shigley and J	lohn Joseph	Uicker	Jr., Theory	y of	Machine	es a	and
	Mechanisms	SI Edition, 2014, Ox	ford University	Press					
2	Norton R. L,	Kinematics and Dyna	amics of Machi	nery, 20	17, McGrav	v-Hill E	Educatio	n	
3	Norton R. L,	Design of Machinery	, An Introductio	on to the	Synthesis	and Ai	nalysis c	of	
	Mechanisms	and Machines, 2019	, McGraw-Hill	Higher E	ducation				
Mo	de of assessm	nent: Viva-voce exam	ination, Lab pe	erformar	ice & FAT				
Red	commended b	y Board of Studies	09-03-2022						
App	proved by Aca	demic Council	No. 65	Date	17-03-20	22			

BMEE210L Mechatronics and Measurement Systems L T P C 3 0 0 3					С		
				3	0	0	3
Pre-requisit	te	Nil	Syll	abu	s ve	rsic	on
•				1	.0		
Course Obi	ectiv	es					
1 To famili	iarize	key elements of mechatronics system impart knowle	dae o	f the	ele	me	nts
and tech	nique	es involved in mechatronics systems for industrial autor	nation				
2 To impai	rt the	theoretical and practical aspects of measurement syste	m de	sian			
3 To give i	insiał	t to the principles of sensors & actuators and their inte	rfacino	n wit	h D	AO	
0. 10 91/01	noigi		Πασιτίζ	<i>,</i> , , , , , , , , , , , , , , , , , ,		nœ.	
Course Out	com	86					
At the end o	f tho	es course, the student will be able to					
		the basic concents, applications and elements of much	otropia		tom		
	vorio	the basic concepts, applications and elements of mech	auonio	Sys	sterr	15.	
2. Analyze	vano	us measuring instruments for unreferit applications.		tom	_		
3. Compare	e van	ous types of sensors and actuators used in mechation	cs sys	tem	5.		
4. Apply the	e con	cept of signal processing and use of interfacing system	S.				
-							
Madult		ing of Necketnenies Orestand			_	I a :	
Module: 1	Ваз	ics of Mechatronics Systems			6	nou	Jrs
Basic conce	epts i	n mechatronics, Mechatronics systems design approa	ch, Ke	ey_el	eme	ents	ot
mechatronic	s sy	stem, Role of sensors, actuators and measure	ments	-Fe	edba	ack	in
mechatronic	s sys	tems- Emerging application areas of mechatronics.				_	
Module: 2	Mea	asurement System			6	hou	Jrs
Introduction	to	measurement, Standards of measurement, Modes	s of	mea	sur	eme	ent,
generalized	mea	asurement system, Applications of Measurement	Syste	m,	Err	ors	in
measureme	nt, so	ources of errors. Specifications: Sensitivity, resolution	, bias	, de	ad	spa	ce-
Static and d	ynam	ic characteristics- System response.					
Module: 3	Bas	ic Sensors			7	hou	Jrs
Position and	d Spe	ed Measurement- Proximity Sensors and Switches, P	otenti	ome	ter,	Line	ear
Variable Diff	feren	tial Transformer, Digital Optical Encoder; Stress and S	train N	/leas	sure	mer	nt -
Electrical R	esista	ance Strain Gauge, Measuring Resistance Changes	with	a W	/hea	atsto	one
Bridge, Mea	surin	g Different States of Stress with Strain Gauges.					
Module: 4	Adv	anced Sensors			7	hou	urs
Force Mea	asure	ment with Load Cells; Temperature Measureme	ent- I	_iqui	d-in	-Gla	ass
Thermomete	er, Bi	metallic Strip, Electrical Resistance Thermometer, The	rmoco	uple	; Vil	brat	ion
and Accele	eratio	n Measurement - Piezoelectric Accelerometer; F	ressu	re	and	FI	ow
Measureme	nt; (Capative sensors- Fiber optic sensors-Semicondu	ictor	Sen	sor	s a	and
Microelectro	mech	nanical Devices:IMU,Gyroscope.					
Module: 5	Act	uators			6	hou	urs
Electromag	netic	Principles-Solenoids and Relays-Electric Motors-		/loto	rs-S	tep	oer
Motors-Hvdr	raulic	s- Hydraulic Valves. Hydraulic Actuators: Pneumatics.					
Module:6	Data	Acquisition			6	hoi	irs
Introduction	to D	ata Acquisition-Quantizing Theory-Analog-to-Digital Co	nvers	ion-	Dic	uital.	to-
Analog Con	versi	on-Signal Conditioning-Computer Rased Instrumentation	n Sve	tem	2.50	oftwa	are
Design and		evelopment-Data Recording and Logging-The Inte	lliaent	M	iltiv	aria	ble
Measureme	nt Sv	stem	ingoin			una	
Module:7	Meas	surement Systems			5	hoi	irs
Linear and a	angul	ar measurements - taner measurement threads ourfo	ace fin	ich	iner		ion
of straighter	angul acc f	armeasurements - taper measurement, initedus, surfa	nordin	ate	mer		ing
machines C	Joo, I Intica	il Tool Maker's Microscope Drofile Drojector	Joiuil			JUL	чч
Modula:0	Cant	a rooriviare s ivicioscope, rione riojeciol.			n	her	Irc
	COIII	eniporary issues			2	nol	εı
l					1=	I a .:	
		I OTAL LECTURE HOURS:			45	noı	Jrs

Tex	xt Book(s)			
1	Alciatore, D.G. and Histand, M.B.	Introductio	on to me	echatronics and measurement
	systems. 2019, New York, Ny: Mcgra	aw-Hill Educ	cation.	
2	Bewoor, A.K. and Kulkarni, V.A.,	Metrology	& Mea	surement, 2009, McGraw-Hill
	Education.			
Re	eference Books			
1.	DeSilva, C.W., Farbod Khoshnoud	d, Li, M. a	and Halo	gamuge, S.K, Mechatronics :
	Fundamentals and Applications. B	oca Raton:	2016, 0	CRC Press, Taylor & Francis
	Group.			
2	William Charles Bolton, Mechatroni	cs: electror	nic contro	ol systems in mechanical and
	electrical engineering. 2019, Harlow,	, England: P	earson.	
3.	Thomas G. Beckwith, Roy D. Marang	goni, John H	H. Lienha	rd, Mechanical Measurements,
	2009, Pearson Education.	-		
4	Cesare Onwubolu Godfrey C Fantuz	zzi, Mechatr	onics: Pr	inciples and applications, 2020,
	S.L.: Butterworth-Heinemann Ltd.			
5	Bentley, J.P. (2008). Principles of me	easurement	systems	. Harlow Pearson Prentice Hall.
Мо	ode of Evaluation: CAT, Written assign	ment, Quiz,	FAT.	
Re	ecommended by Board of Studies	09-03-2022		
Ар	proved by Academic Council	No. 65	Date	17-03-2022

BMEE2	10P	Mechatronics	and Measure	ement Sy	stems Lab)	L .	ГР	С
							0 () 2	1
Pre-req	uisite	Nil				Syllal	bus	vers	ion
							1.0)	
Course	Objectiv	/es							
1. To in	itegrate th	ne mechanical system	s with electric	al, electr	onics and c	ompute	r sys	stems	s for
provi	iding mult	idisciplinary approach				-	-		
2. To fa	amiliarize	the use of transducers	s, sensors an	d actuato	rs.				
3. To u	se of soft	ware tools for measure	ement, perce	ption and	signal cond	ditioning	J.		
Course	Outcom	e							
At the e	nd of the	course, the student w	ill be able to						
1. Prac	tice the va	arious fluid power syst	ems.	RR					
2. Imple	ement diff	erent sensors for vario	ous industrial	application	ons.	4			
3. Calib	perate me	asuring instruments a	nd measure \	arious ge	eometrical f	eatures			
		· · ·							
Indicati	ive Exper	riments							<u> </u>
1.	Design a	and analysis of hydra	iulic, pneuma	atic and e	electro-pnei	umatic o	circu	its u	sing
	automat	ion software and hard	ware.		с ·				
2.	Stepper	motor, Traffic light, Hi	VII Programm	ing inter	race using a	a PLC.			
<u> </u>	Force ar	nd Torque measureme	ent using stra	in gauge.					
4. 	Neasure	ement of speed and di		ising linea	ar and rotar	y senso	rs.		
5.	Pressure	e measurement syster	ns using sens	SORS.					
0. 7	Tempera	ature measurement us	ang RID and		oupie.				
<i>1</i> .	Vibration	and acceleration me		astrumon		ensor.			
<u>ð.</u>	Develop			nstrumen	isonware.	motor	Ma	ahar	
9.	Calibrati	on and unnensiona	nd Dial Caus	ment us	sing wildro	meter,	IVIE	cnar	lical
10	Moasure	alor, vernier Caliper a	nu Diai Gaug	r dial dai	ide and tan	or angle		na B	مريما
10.	Protracto	or Dial Gauge and S	ine-Bar Mea	y ulai yat Isuremen	t of hores l	by using	r USI r Mi	rom	otor
	and Dial	bore indicator		Surchien		by using	y 1011	CIOIII	CICI
11	Measure	ement of Gear tooth th	ickness by us	sing Gear	tooth Vern	ier			
12.	Surface	roughness measurem	ent of machin	ned comp	onent.	101.			
			To	tal Labo	ratory Hou	rs 30	hou	rs	
Text Bo	ooks							-	
1. Aut	or: Anthoi	ny Esposito (2014). Fl	uid power wit	h applica	tions. Edito	rial: Har	low:		
Pea	arson Edu	ication Limited.							
2. Rat	oiee, M. (2	2018). Programmable	logic controlle	ers : hard	ware and p	rogrami	ming	J. Tin	ley
Par	k, II: The	Goodheart-Willcox Co	mpany, Inc.			-			-
3. Nat	ional Insti	ruments (Firm (2003).	LabVIEW : n	neasurem	ients manua	al. Austi	in, T	ex.:	
Nat	ional Instr	ruments.							
4. Lab	Manual o	of prepared by course	faculty mem	oers.					
Referen	nce Book	S							
1. Flui	d Power:	Hydraulics and Pneur	natics, 3rd Eo	dition, La	b Manual.				
2. Lab	VIEW TM	1 User Manual LabVIE	W User Man	ual. (2003	3).				
Mode o	t assessn	nent: Viva-voce exami	nation, Lab p	erforman	ce & FAT				
Recom	mended b	y Board of Studies	09-03-2022		4	~~			
Approve	ed by Aca	idemic Council	No. 65	Date	17-03-202	22			

BMEE301L	Design of Machine Elements		L	Т	Ρ	С
Due ve veloite			3	1	0	4
Pre-requisite	BMEE202L, BMEE202P	Syl	llabu	<u>IS V</u>	ers	ion
Course Objective				1.0		
1 To impart the k	rowledge on materials selection in design					
2 To familiarize t	the effects of various types of loading on machine parts					
3. To develop the	e design methodology for mechanical components used	in in	dust	ries		
4. To adopt vario	us standards in the design process.					
•	.					
Course Outcome	9S					
At the end of the o	course, the student will be able to					
1. Evaluate the d	esign of machine components using theories of failure.					
2. Analyse machi	ne components subjected to dynamic loads against fati	gue f	failur	e.		
3. Recommend s	uitable mechanical springs for various applications.					
4. Design shafts,	keys and couplings as per the international standards.					
5. Investigate the	design aspects of temporary and permanent joints.					
6. Design and de	velop the engine components.					
Modulo:1 Intro	duction to Dosign	1		Q	bo	
Dosign Process	Eactors Considered in Design Selection of Materials			0 Sta	nd	orde
in Design – Direct	Bending and Torsional Stresses in Machine Elements	- Us		of S	nuc	aius atv_
Design Stress – T	bending and Torsional Stresses in Machine Elements	- 1 a	CIOI	010	aic	iy —
Module:2 Fatig	ue Strength	Τ		8	ho	ours
Stress Concentra	tion – Theoretical Stress Concentration Factor – Size	e Fa	actor	- 5	Surf	face
Finish Factor – F	Fatique Stress Concentration Factor – Notch Sensitiv	vitv -	– Va	ariat	le	and
Cyclic Loads – Fa	tigue Strength – S-N Curve – Gerber, Soderberg and C	Jood	man	Eq.	uati	ions
– Combined Cycli	c Stresses – Minor's rule – Basquin's equation.			•		
Module:3 Desi	gn of Mechanical Springs			8	ho	ours
Stresses and Def	lections of Helical Springs – Extension Springs – Com	pres	ssion	ı Sp	rinç	js –
Springs for Fatig	ue Loading, Energy Storage Capacity – Leaf Spring	s —	Helic	al ⁻	For	sion
Springs – Flat Spi	ral Springs.					
Module:4 Desi	gn of Shafts, Keys and Couplings				ho	ours
Design of Solid ar	nd Hollow Shafts for Strength and Rigidity – Design of S	Shaft	s for	Col	mbi	ned
Bending, Torsion	and Axial Loads – Design of Keys-Stresses in Keys –	Desi	gn o	t Rić	JID	and
Flexible couplings	an of Dormonont Jointo and Threaded	T			ha	
Module:5 Dest	gn of Permanent Joints and Inreaded			9	no	Jurs
Design of Riveter	d Joints – Design of Welded Joints – Design of Bolted		emt	JV -	- Di	rect
Loading and Ecce	entric Loading	/ \00		''y		1000
Module:6 Desi	an of Cotter and Knuckle Joints			8	hc	ours
Introduction to Co	otter and Knuckle Joints - Design of Cotter Joints -	Spig	ot a	nd 🕄	Soc	ket,
Sleeve and Cotter	r, Gib and Cotter – Design of Knuckle Joint.	10				
Module:7 Desi	gn of Engine Components			8	ho	ours
Introduction to IC	c engine components – Classification - Design of Fly	whe	el –	De	sigı	n of
Connecting Rod -	- Design of Crankshaft – Design of Piston.	_				
Module:8 Cont	emporary Issues			2	ho	ours
	Total lecture hours:			60	ho	ours
Text Book(s)						
1. V. B. Bhanda	ri, Design of Machine Elements, 2020, 5 th Edition, Tata	McG	raw	Hill.		
Reference Books	8					
1. Richard G. B	udynas and Keith Nisbett J, Shigley Mechanical Engine	erinç	ן De	sign	, 20)20,

	11 th Edition (in SI Units), McGraw	v Hill		
2.	Harsha, A. P., Hornberger, L.	E., Shoup, T. E	E., Spotts	, M. F., Design of Machine
	Elements, 2019, Pearson India E	Education Service	es Pvt. Lin	nited.
3.	Robert L. Norton, Machine Desig	jn, 2018, 5 th Editi	on, Pears	on.
4.	Juvinal, R.C and Kurt M.Marshel	k, Machine Comp	onent De	sign, 2016, Wiley.
5.	PSG Design Data: Data Book of	Engineers, 2020	, Kalaikatł	nir Achchagam.
Мо	de of Evaluation: CAT, Written as	signment, Quiz, F	FAT	
Re	commended by Board of Studies	09-03-2022		
Ар	proved by Academic Council	No. 65	Date	17-03-2022

BMEE302L	Metal Casting and Welding	LTPC
		3 0 0 3
Pre-requisite	BMEE209L, BMEE209P	Syllabus version
		1.0
Course Objectiv	/es	
1. To provide a	n insight on the casting fundamentals and processes.	
2. To impart kno	owledge on the welding processes for developing various	s joints.
Course Outcom	es	
At the end of the	course, the student will be able to	
1. Interpret the s	olidification characteristics for designing gating system.	
2. Demonstrate	working principle of various casting processes.	
3. Use various n	nelting practices and explore casting defects.	
4. Apply suitable	welding process for different functional requirements.	
5. Examine weld	defects and suggest suitable methods to assess weld q	uality.
	Su o Francisco de la	7 Is a sum
	ing Fundamentals	/ nours
Solidification of	pure metals and alloys. Mechanism of columnar an	a denaritic growth.
Concept of prog	ressive and directional solidifications. Solidification tin	ne and Chvorinov's
rule. Principles c	If fluid flow: Bernoulli's theorem and law of mass continu	uity. Gating system-
components and	I functions. Design of the gating System. Different typ	es of gates. Gating
ratio and its ful	inclions. Definition and functions of the riser. Types	of risers and their
application. Des	ign of fiser. Aspiration effect. Use of insulating mater	hai and exolhermic
Modulo:2 Exp	ordable Mould Casting	6 hours
Sond costing	Fundable Mould Castilly	
Sanu casung –	making nattorn allowances. Mould and Core materi	als Coro making
chaplete Sanc	making, pattern allowances – would and core matern	ans - Core making,
chapiels - Sand	-moulding machines – Procedural sleps and application	ons of Shell mould
Module:3 Per	nanent Mould Casting	5 hours
Procedural steps	and applications of Vacuum casting. Slush casting I of	
Die-casting - h	ot chamber and cold chamber. Centrifugal casting	Squeeze casting,
Thixomolding an	d Rheocasting Casting Techniques for single-crystal co	monents
Module:4 Melt	ing Technology and Casting Defects	6 hours
Melting furnaces	for ferrous and non-ferrous foundries. Electric and	fuel fired furnaces
Induction Furnad	ces. Types of Furnaces Electromagnetic Stirring power	er supplies. Recent
developments in	energy considerations. Melting practice – ferrous, non	-ferrous metals and
allovs and com	posites Melting practices. Fluxing inoculation de	dassing and grain
refinement treat	ments. Control of pouring temperature Heat treatments	s of castings. Shop
floor melt quality	tests.	· · · · · · · · · · · · · · · · · · ·
Residual stresse	s and Casting defects and factors responsible for them.	Different inspection
and testing meth	ods to evaluate the casting.	I
Module:5 Join	ing Processes	8 hours
Classification of	welding processes -Fusion welding: Oxy-fuel gas	welding - types of
flames and uses	, Arc welding: power sources -methods of arc initiation	n and maintenance,
arc stability, dut	y cycle, metal transfer. Non-consumable electrode - G	STAW, PAW, AHW.
Consumable ele	ctrode - SMAW, SAW, GMAW, FCAW, EGW, ESW.	Electrodes and its
coatings. Beam	velding (EBW & LBW).	
Solid State wel	ding: Cold welding and roll bonding, Ultrasonic weldin	ig, Friction welding,
Friction stir well	ding, Resistance welding, Explosion welding, Diffusio	n welding, Thermit
welding.		
Brazing, Solder	ing and adhesive bonding: Principle of Operation, adva	antages, Limitations
and application.		
Module:5 Fund	damentals of welding	5 hours

Soli	idification of the weld metal, Heat f	flow in weld	ing, Meta	Ilurgical trans	formation in and
arou	und weldment, Implication of cooling	g rates, Hea	t affected	zone (HAZ),	Shielding gases,
Clas	ssification of Filler metals and Fluxe	es, Weldabi	lity of pla	in carbon ste	els, Low Carbon
Stee	els, Stainless steels and Aluminium A	Alloys.			
Мос	dule:7 Welding Defects and Testi	ing			6 hours
Spa	atter, Under-cutting, and over lappi	ing Crack- I	nitiation a	and Propagat	tion - Incomplete
Pen	netration, Inclusions, Porosity and b	olowholes, La	ack of fu	sion, Distortio	n (Distortion and
resi	dual stresses, Concept of distortion	n, Types of	distortion,	Control of w	velding distortion)
caus	ses and remedies for weld defects.				
Test	ting and Inspection of welding: Vis	isual Inspect	tion, Wel	dability, Dest	ructive testing of
weld	ds, Non-destructive testing of welds a	and Hot Crac	cking Tes	ts.	-
Мос	dule:8 Contemporary Issues				2 hours
	· · · · · · · · · · · · · · · · · · ·				
			Total Lec	ture hours:	45 hours
Tex	t Books		Total Leo	ture hours:	45 hours
Tex	t Books John K.C, Metal casting and Joining	, 2015, PHI	Total Leo	ture hours:	45 hours
Tex 1. 2.	t Books John K.C, Metal casting and Joining P. L. Jain, Principles of Foundry Tec	g, 2015, PHI chnology, 20	Total Leo publicatio 09, 5th eo	ns. dition, TMH P	45 hours ublications.
Tex 1. 2. 3.	t Books John K.C, Metal casting and Joining P. L. Jain, Principles of Foundry Tec Parmar R.S, Welding Engineering a	g, 2015, PHI chnology, 20 and Technolo	Total Lec publicatio 09, 5th ec ogy, 2013,	ture hours: ns. dition, TMH P Khanna Pub	45 hours ublications. lishers.
Tex 1. 2. 3. Ref	t Books John K.C, Metal casting and Joining P. L. Jain, Principles of Foundry Teo Parmar R.S, Welding Engineering a Ference Books	g, 2015, PHI chnology, 20 and Technolo	Total Lec publicatic 09, 5th ec ogy, 2013,	t ure hours: ns. dition, TMH P Khanna Pub	45 hours ublications. lishers.
Tex 1. 2. 3. Ref 1.	t Books John K.C, Metal casting and Joining P. L. Jain, Principles of Foundry Teo Parmar R.S, Welding Engineering a Ference Books Serope Kalpakjian, and Steven Sc	g, 2015, PHI chnology, 20 and Technolo chmid, Manu	Total Lec publicatic 09, 5th ec ogy, 2013, ifacturing	t ure hours: Ins. dition, TMH Pu Khanna Pub Engineering	45 hours ublications. lishers. and Technology,
Tex 1. 2. 3. Ref 1.	t Books John K.C, Metal casting and Joining P. L. Jain, Principles of Foundry Teo Parmar R.S, Welding Engineering a Ference Books Serope Kalpakjian, and Steven Sc 2020, 8 th edition, Pearson education	g, 2015, PHI chnology, 20 and Technolo chmid, Manu n.	Total Lec publicatic 09, 5th ec ogy, 2013, ifacturing	ture hours: Ins. dition, TMH Pi Khanna Pub Engineering	45 hours ublications. lishers. and Technology,
Text 1. 2. 3. Refe 1. 2.	t Books John K.C, Metal casting and Joining P. L. Jain, Principles of Foundry Teo Parmar R.S, Welding Engineering a Ference Books Serope Kalpakjian, and Steven Sc 2020, 8 th edition, Pearson education P.N. Rao, Manufacturing Technolog	g, 2015, PHI chnology, 20 and Technolo chmid, Manu 1. gy Foundry, F	Total Lec publicatic 09, 5th ec ogy, 2013, ifacturing Forming a	ture hours: ons. dition, TMH Po Khanna Pub Engineering nd Welding, 2	45 hours ublications. lishers. and Technology, 2003, 2nd Edition.
Tex 1. 2. 3. Refe 1. 2. Moor	t Books John K.C, Metal casting and Joining P. L. Jain, Principles of Foundry Teo Parmar R.S, Welding Engineering a ference Books Serope Kalpakjian, and Steven Sc 2020, 8 th edition, Pearson education P.N. Rao, Manufacturing Technolog de of Evaluation: CAT, Written assign	g, 2015, PHI chnology, 20 and Technolo chmid, Manu n. gy Foundry, F nment, Quiz,	Total Lec publicatic 09, 5th ec ogy, 2013, ufacturing -orming a FAT	eture hours: Ins. dition, TMH Pr Khanna Pub Engineering nd Welding, 2	45 hours ublications. lishers. and Technology, 2003, 2nd Edition.
Tex 1. 2. 3. Refe 1. 2. Moc Rec	t Books John K.C, Metal casting and Joining P. L. Jain, Principles of Foundry Tec Parmar R.S, Welding Engineering a ference Books Serope Kalpakjian, and Steven Sc 2020, 8 th edition, Pearson education P.N. Rao, Manufacturing Technolog de of Evaluation: CAT, Written assign commended by Board of Studies 0	g, 2015, PHI chnology, 20 and Technolo chmid, Manu n. gy Foundry, F nment, Quiz, 99-03-2022	Total Lec publicatic 09, 5th ec ogy, 2013, ifacturing Forming a FAT	ture hours: ns. dition, TMH Pu Khanna Pub Engineering nd Welding, 2	45 hours ublications. lishers. and Technology, 2003, 2nd Edition.
Tex 1. 2. 3. Refe 1. 2. Moor Rec App	at Books John K.C, Metal casting and Joining P. L. Jain, Principles of Foundry Teo Parmar R.S, Welding Engineering a ference Books Serope Kalpakjian, and Steven Sc 2020, 8 th edition, Pearson education P.N. Rao, Manufacturing Technolog de of Evaluation: CAT, Written assign commended by Board of Studies 0 proved by Academic Council	g, 2015, PHI chnology, 20 and Technolo chmid, Manu n. gy Foundry, F nment, Quiz, 09-03-2022 No. 65	Total Lec publicatic 09, 5th ec ogy, 2013, ifacturing forming a FAT Date	ture hours: ons. dition, TMH Pu Khanna Pub Engineering nd Welding, 2	45 hours ublications. lishers. and Technology, 2003, 2nd Edition.
Tex 1. 2. 3. Ref 1. 2. Moor Rec App	At Books John K.C, Metal casting and Joining P. L. Jain, Principles of Foundry Teo Parmar R.S, Welding Engineering a ference Books Serope Kalpakjian, and Steven Sc 2020, 8 th edition, Pearson education P.N. Rao, Manufacturing Technolog de of Evaluation: CAT, Written assign commended by Board of Studies 0 proved by Academic Council	g, 2015, PHI chnology, 20 and Technolo chmid, Manu n. gy Foundry, F nment, Quiz, 09-03-2022 No. 65	Total Lec publicatic 09, 5th ec ogy, 2013, ifacturing forming a FAT Date	ture hours: ns. dition, TMH Pr Khanna Pub Engineering nd Welding, 2 17-03-2022	45 hours ublications. lishers. and Technology, 2003, 2nd Edition.

BMI	EE302P	Metal C	asting and V	Velding	Lab		LT	Ρ	С
			<u> </u>	U			0 0	2	1
Pre	-requisite	BMEE209L, BMEE2	209P			Sylla	abus v	ersi	on
	•						1.0		
Cou	Irse Objectiv	es							
1.	To provide an	insight on foundry pra	actices.						
2.	To impart prac	ctical exposure on the	effect of weld	ling para	meters on j	oint ch	aracte	eristio	cs.
Cou	irse Outcome	9							
At th	ne end of the o	course, the student wi	ll be able to						
1. /	Assess the pr	operties of moulding s	and and dem	onstrate	the melting	praction	ces.		
2.	Evaluate the e	effect of welding parar	neters on mic	rostructu	re and weld	d qualit	iy.		
3.	Investigate the	e weldability of various	s materials.						
Indi	cative Exper	iments			· · ·		6.0	<u> </u>	
1.	Determinatio	on of permeability, sh	ear strength	and com	pression s	trengtr	n of th	e gr	ven
2	Determination	J. on of the grain finance	a of the given	foundry	aand				
2.	Determinatio	on of eleve content for	s of the given		sand.com		to of	udv	the
5.	Variation of	on of clay content for	for various m	oisturo o	sanu samp	ne anu		uuy	uie
Λ	Determinatio	ompression strength		v sand	Jillenis.				
4 . 5	Determination	mould for the given n	attern with th	y Sanu. A cora III	sing two bo	ves an	d thro	A _ [hoy
5.	moulding pr	nould for the given p						e – I	DOX
6	Foundry me	Iting practice - demor	stration						
7	To study the	effect of heat input	on microstru	cture of	weld metal	and H	IA7 of		/ Ni
1.	allovs perfor	med under GTAW pro	Cess					/ 11 /	, 111
8.	To study the	e effect of FSW proce	ess parameter	rs (tool re	otational sp	eed. a	xial lo	ad, a	and
•	travel speed) on the butt welding of	of Al allov.	- (,		, .	
9.	Study the b	ead on plate experir	nent (bead p	orofile, p	enetration,	and it	s dilut	ion)	on
	Austenitic st	ainless steel by using	GMAW proce	ess.	,			,	
10.	To study the	weldability of plastic	material using	g ultrasor	nic welding	machir	ne.		
11	To study the	residual stress meas	urement of th	e friction	stir welded	specir	men		
	(Demonstrat	tion).							
12.	Effect of shie	elding gases on the w	eld performar	nce of GN	AW proces	ss. (Ca	ise stu	idy)	
			Т	otal Labo	pratory Hou	rs 30	hours	5	
Tex	t Books								
1.	John K.C, M	etal Casting and Joini	ng, 2015, PH	I publica	tions.				
2.	P. L. Jain, P	rinciples of Foundry T	echnology, 20	009, 5th	edition, TM	H Publ	icatior	IS.	
3.	Parmar R.S,	Welding Engineering	and Technol	ogy, 201	3, Khanna I	Publish	ners.		
3.	Lab Manual	prepared by course fa	aculty						
Ref	erence Books	S	1	<u>/ </u>	Note Ran C				
1.	Srinivasan N	I. K., Foundry lechno	biogy, 1986, I	<u>Inanna F</u>	ublications	<u>.</u> 			
Z.	Kichard L Li	uie, vveiding and weld		y, 2020,	IVIC GRAW F	1111			
	e of assessm	ent: Continuous asse	ssment, FAT,	Ural exa	mination				
Kec	ommended by	y board of Studies	09-03-2022	Dete	17 00 000	<u></u>			
Арр	roved by Aca		CO . 0VI	Date	17-03-202	ZZ			

BMEE303L	Thermal Engineering Syst	tems		Γ.	ΓР	С
				3 () ()	3
Pre-requisite	BMEE203L		Sylla	bus	versi	on
				1.0)	
Course Object	ives					
1. To guide the	students to apply the laws of thermodynam	ics in applica	tions of	f ther	mal	
systems.						
2. To help stud	ents gain essential and basic knowledge of	various types	of inte	rnal a	and	
external com	bustion engines and train them with the pro	cedures for th	ne testi	ng of		
engines and	fuels.			•		
3. To equip the	students to analyse steam turbine, gas turb	oine cycles, re	efrigera	tion a	and ai	ir —
conditioning	systems.	-	-			
	•					
Course Outco	me					
At the end of th	e course, the student will be able to					
1. Apply the the	ermodynamics laws to the working of IC eng	ines.				
2. Analyze perf	formance parameters of IC engines					
3 Design a ste	am nozzle for thermal power plant and analy	vze the perfo	rmance	م of		
reciprocating	air compressors	y20 the perio	manoc			
4 Analyze the	performance parameters of steam and das i	nower cycles				
5 Compare va	rious refrigeration systems based on their pr	power cycles. arformance				
5. Compare va	appling load requirements for conditioned a					
	cooling load requirements for conditioned s	pace.				
Madula:1	Enginee				7 ho	
	Eligines			d 100	7 110	urs
diagrama War	pie of z-stroke and 4-stroke Si and Ci e	engines - va	live an	u po		iiiig S Si
diagrams, wan	Ker engine, simple carburellor - ignition sy	vstem - Com	DUSLION		jes ir	I OI
and Crengine	Knocking and detonation - Fuel injection sy	Stern - MPFI,		GDI	– ка	ung
Modulo:2	Engines Performance	ing and Turbe	Junary	ing.	6 ho	
Dorformonoo t	Engines Performance	tad nowar a	nd Erid	otiona		
Full concumpti	on Air consumption Heat belongs tost	aleu power a	nu rnu d Dotor	datio	n tool	t on
	on, All consumption - Heat balance test - W		i Relai	ualio	nies	1 OII
Modulo:2 Air	Compressor				6 ho	
Nodule:3 Air	Compressor	t of cloorana			0 110	urs
	compressors - Construction - Working - Errec		e volun	le – I	viuiu-	
Modulo:4 Sta	neuro eniciency – isolnermai eniciency.				6 ho	
Steem Nezzlee	One dimensional steady flow of steam the	rough a conv	raont	anda		urs
Steam Nozzies	- One-dimensional steady now of steam the	rougn a conve	ergent	and c	iiverg	ent
Modulo:5	apie now.				6 ho	
Steam turbing	Impulse and Desetion turbing Derformen				0 110	urs
Steam turbine -	- Impulse and Reaction turbine – Performan		ion on	ما اسام	reed	
Gas turbine - O	pen and Closed cycle gas lurbine, Renealin	ig, Regeneral	lon and	i inte		ing.
NOQUIE:6 Rei						urs
Air retrigeration	system - vapour compression retrigeration	i system - Co	mpone	ents -	VVOr	king
- P-H and I-S	diagrams - Calculation of COP - Effect of	sub-cooling	and su	per-r	ieatin	g –
	ion evotem. Once apple and - vapour absorption	un system - I	$N\Pi_3 - N$	water	syst	em,
vapour adsorption system. Cryogenic engineering - Introduction, Application, Cryo-coolers.						
	-conditioning	Development	., D-	a la :: -	ono	urs
i ypes of air-col	nultioning system and its working principle –		y - Psy	cnro	metric	;
properties, proc	cesses and chart – neating and cooling load	calculations.			0 1-	
	ntemporary issues				∠ no	urs
	I otal Lecture hours:			4	15 ho	urs

Text Book

1. Rajput R.K., Thermal Engineering, 2017, 10th Edition, Laxmi Publications (P) Ltd. **Reference Books**

1. Ganesan, V., Internal combustion engines. 2012, McGraw Hill Education (India) Pvt Ltd.

2. Manohar Prasad., Refrigeration and Air Conditioning, 2015, 3rd Edition, New Age International.

3. Soman, K., Thermal Engineering. 2011, PHI Learning Pvt. Ltd.

Mode of Evaluation: CAT, Written assignment, Quiz, FAT.

Recommended by Board of Studies09-03-2022Approved by Academic CouncilNo. 65Date17-03-2022

BMEE303P Thermal Engineering Systems Lab L T P						С				
						n	0	0	2	1
Pre-	requisite	BMEE203L				Sylla	abı	IS V	ersi	on
								1.0		
Cou	rse Objective	es estimation and a second						- 5 - 1		
1.	l o apply theol	retical knowledge gair	led in theory a	and get n	lands-on ex	cperier	nce	ort	ne	
2	.opic. To train stude	nts practically with the	nrocedures f	or testing	n of engine	s air c	'nm	nreg	seor	
<u> </u>	refrigeration and air conditioning.									
3.	3. To equip the students to analyse the experimental data of IC engines, air compressor,									
1	efrigeration a	nd air conditioning.	•		, , , , , , , , , , , , , , , , , , ,			•		
Cou	rse Outcome	es								
At th	ne end of the o	course, the student wi	ll be able to							
1. (Conduct the e	xperiments on IC eng	ines to asses	s their pe	erformance.				005	
2. 1	Perform exper	riments on retrigeratio	n and air cond	aitioning	systems to	predic		neir (form		<i>.</i>
3. 0		xperiments on air con	ipressor and	all plowe	l lo assess	lineir	per	юп	lanc	e.
Indi	cative Experi	iments								
1.	Draw the val	lve timing and port tim	ing diagram f	or the giv	/en engines	s and o	con	npar	e wi	th
	the theoretic	al value and give you	comments.	0	0			•		
2.	Compare the	e properties of differer	nt fuels by per	forming f	lash point,	fire po	oint,	, viso	cosit	ty
	and calorific	value tests and find o	ut which is su	itable for	the better	perfor	ma	nce	of th	ıe
	given engine).								
3.	Compare the	e performance of a sin	igle-cylinder (Cl engine	connected	with o	ditte of th	eren	t	ta
1	Compare the	ers and suggest a suit	able uynamor f a single cyli	nder CL	peller acci	uracy o		he re	fforc	<u>.s.</u> nt
7.	dvnamomete	ers and suddest a suit	able dvnamor	meter for	better accı	Jracv (of th	he re	esult	ts.
5.	Do the perfo	rmance test on a sing	le-cylinder SI	engine a	and compar	e vour	r re	sults	s wit	h
	the engine s	pecifications. Suggest	t a suitable m	ethod to	improve the	e áccu	rac	y of	you	r
	results.							-	-	
6.	Determine th	ne friction power of a g	given four-cyli	nder peti	rol engine b	y perf	orn	ning	Mor	se
	test and com	pare the results with	Willan's line n	nethod.	·					
1.	Determine tr	ne triction power of a g	given single-c	ylinder di illon's lin	esel engine	e by pe	ertc	ormir	ng	
8	Determine th	est and compare the r	pression and	compare	e memou. with the is	entror	nic			
0.	compression	for a given reciproca	ting air comp	essor.			010			
9.	Compare the	e performance of air b	lower with diff	ferent va	ne profiles.					
10.	Calculate the	e COP of the given va	por compress	sion refrig	geration sys	stem a	nd	air-		
	conditioning	system and compare	with the theory	retical ca	lculation.					
11.	Compare the	e power output for the	steam turbine	e at differ	rent load co	onditio	ns.			
12.	Compare the	e boiler efficiency for c	lifferent load l	evels for	the given b	ooiler.				
-			Т	otal Labo	pratory Hou	rs 30) hc	ours		
		reported by the facult								
I.	Lap manual p	ont: Continuous acces	$\frac{1}{2}$	Oral ava	mination					
Rec	ommended by	Roard of Studies	$\frac{1}{00-03-2022}$	Utal exa	Innination					
Ann	roved by Aca	demic Council	No 65	Date	17-03-20	22				
, Lhh	Loved by Acal		140.00	Date	11-00-20	<u> </u>				

BMEE304L	Metal Forming and Machining	L	Т	Ρ	С
		3	0	0	3
Pre-requisite	BMEE209L, BMEE209P	Sylla	abus	ver	sion
			1.	.0	
Course Object	ives				
1. To impart kn 2. To give an ir	owledge on the basic principles of metal forming theories a nsight on metal cutting theories, machine tools, and machir	and p ning p	roce roce	sses sses	;. S.
Course Outcor	nes				
At the end of the	e course, the student will be able to				
1. Develop the	yield criterion and workability behaviors of materials.				
2. Evaluate va	arious bulk and sheet metal forming processes for o	differe	ent f	func	tional
requirement	S.				
3. Demonstrat	e various machine tools and machining operations.				
4. Analyse the	mechanics of metal cutting processes.				
5. Investigate	the neat flow, tool life and tool wear during metal cutting pr	ocess	S	<u> </u>	
	ndamentals of Metal Forming	·	••	6 n	ours
Stress-Strain re	elations in elastic and plastic deformation, stress tensor,	yield	crite	eria,	yield
locus, octanedr	al shear stress and shear strains, invariants of stress s	train,	siip	line	TIEID
theory plastic	deformations of crystals temperature and strain		aep	ena	ence,
	Deformation zono geometry Numerical problems	line	neiu	ana	iysis,
Tecrystallization	, Deformation zone geometry - Numerical problems.				
Module:2 Bu	Ik Forming of Metals			7 h	ours
Forging: Class	ification of forging processes – Forging machines & equi	pmer	nt's -	- Fo	raina
pressure & loa	d in open die forging and closed die forging – Friction	hill	– D	ie-d	esian
parameters – N	letal flowlines in forging – Forging defects – Residual st	resse	s in	ford	ina -
Powder metallu	rgy forging.				, 0
Rolling: Classi	fication of rolling processes – Types of rolling mills – Ex	press	ion 1	for r	olling
load – Forces	and geometrical relationships in rolling - Effect of front	& ba	ack 1	tens	ion –
Friction hill – De	efects in rolled product.				
Extrusion: Cla	ssification of extrusion processes – Extrusion equipmen	ťs –	Def	orma	ation,
lubrication & de	fects – Extrusion of tubes & seamless pipes – Hydrostatic	extru	sion.		
Drawing: Drav	ving equipment's & Dies – Determination of drawing	force	&	pow	/er –
Estimation of r	edundant work – Optimal cone angle & dead zone for	matic	n –	Dra	awing
variables – Tub	e drawing processes.				
Module:3 Sh	eet Metal Forming			<u>5 n</u>	ours
Conventional pi	rocesses, Forces in circular cup drawing, Redrawing, dra	wing	of tu	bes	from
annular sneet	dies, forming limit diagram, forming with hydrostatic p	ressu	re,	expi	osive
Forming, electro	inydraulic forming, magnetic pulse forming, HERF, electro	omag			ning.
	liena, delect in formed parts, principles and process param	leters	- Au	van	.ayes
Module:4 Ma	chine Tools and Operations			6 h	oure
Generating mo	tions of machine tools. Machines using single-point too	ls or	erat	tions	and
process param	eters – work and tool holding in engine lathe horizont	al-bor	ina	mac	hine
shaping machin	e planning machine.		g	mae	
Machines using	multipoint tools, operations and process parameters -	- drill	ina	mac	hine.
horizontal-millin	g machine, vertical-milling machine, broaching machine, ta	aps ar	nd di	es.	,
Machines using abrasive wheels, operations and process parameters - horizontal-spindle					
surface-grinding machine, vertical-spindle surface-grinding machine, cylindrical-grinding					
machine, intern	machine, internal-grinding machine, centerless grinding machines.				
Cutting tool nor	nenclatures. Numerical expressions and simple problems	on m	achi	ning	time
and material removal rate.					
Module:5 Me	chanics of Metal Cutting			7 h	ours
Orthogonal & c	oblique cutting, shear plane angle, shear stress and st	rain,	princ	cipal	chip

types, theoretical determination of cutting forces – Ernst and Merchant's theory, Lee and Shaffer's theory, Oxley's theory. shear angle relation, friction in metal cutting, energy in cutting process, Kronenberg relation and velocity relation, chip deviation and other effects on cutting forces, stress on tool, stress distribution, Dynamometers for measuring forces in turning, milling and drilling, numerical problems.					
Module:	6 Heat Flow in Metal Cuttin	a and Tool Life		7 hours	
Heat der	eration in metal cutting, heat	at tool-work interfac	e, heat at tool-o	chip interface, heat	
in absen	ce of flow zone. Temperature	distribution in meta	al cutting. Meas	urement of cutting	
temperat	ure – Work-tool Thermocou	ple direct thermo	couple measur	rements radiation	
methods	evaluation of machinability				
Tool life	Taylor's equation tool failure	variables affecting	the tool life caus	ses of tool failures	
forms of	wear in metal cutting, cutting	tool materials, cutt	ing Fluids, actio	on of coolants and	
lubricant	s. application of cutting fl	uids. surface rou	ughness in m	achining and its	
measure	ment, tool geometries for in	proved surface fi	nish. economic	s of metal-cutting	
operation	IS.	· · · · · · · · · · · · · · · · · · ·	,	- ·····	
Module:	7 Gear generation and Ung	onventional mach	inina	5 hours	
	methods		5		
Gear ger	erating principles - Gear Hobb	er - Gear finishing	methods - Beve	l gear generator.	
Classific	ation of unconventional machi	ning process – Pri	nciple of AJM, V	WJM, USM, EDM,	
ECM, LE	M – Process characteristics –	Applications.	•		
Module:	8 Contemporary Issues			2 hours	
		Total Le	cture hours:	45 hours	
Text Bo	oks				
1. B.I	. Juneia, Fundamentals of M	etal Forming Proce	sses, 2010, 2 nd	edition, New Age	
Int	ernational.	5	, ,	, 3	
2. K.	C. Jain. A.K. Chitale. Textbool	of Production End	ineerina. 2014.	PHI Learning Pvt.	
Lto	l. , , , ,		, 0, ,	0	
Referen	ce Books				
1. Ge	orge E Dieter, Mechanical Me	allurgy, Tata McGr	aw Hill, 1988		
2. He	lmi A. Youssef, Hassan A	A. El-Hofy, Mahm	oud H. Ahme	ed, Manufacturing	
Te	chnology: Materials, Process	es, and Equipme	nt, 2011, CRC	Press, Taylor &	
Fra	ancis Group				
3. He	inz Tschaetsch, Metal Formi	ng Practise, 2005,	Springer Berlin	n Heidelberg New	
Yo	rk	-		-	
4. Ho	sford W.F. Caddell R.M., Me	tal Forming – Med	chanics and Me	etallurgy, 2011, 4 th	
ed	tion, Cambridge University Pre	ess.			
5. Ge	offrey Boothroyd and Winston	. A. Knight, Fundan	nentals of Mach	ining and Machine	
To	ols, 2005, CRC Press, 3 rd editi	on			
6. An	nitabha Battacharyya, Metal C	utting: Theory and	Practice, 2011,	New Central Book	
Ag	ency		here		
7. An	itabha Ghosh and A.K. Mallik	Manufacturing Sci	ence, 2010, 2 ^{na}	edition, East-West	
Pr	ess.				
8. Dix	tit U.S. and Ganesh Naraya	anan R, Metal Fo	rming: Technol	ogy and Process	
MC	delling, 2013, McGraw-Hill Ed	ucation, Noida	<u> </u>		
9. P.I 2,	N. Rao, Manufacturing Techno 4 th Edition, McGraw Hill Educa	logy: Metal Cutting tion.	and Machine To	ools, 2018, Volume	
10. Se 20	rope Kalpakjian, and Steven S 20, 8 th edition, Pearson educat	Schmid, Manufactu ion.	ring Engineering	g and Technology,	
11. P.	L. B. Oxley, "The Mechanics o	f Machining", 1989.	Ellis Horwood L	_td.	
Mode of	Mode of Evaluation: CAT. Written assignment. Quiz. FAT.				
Recomm	Recommended by Board of Studies 09-03-2022				
Approve	by Academic Council	No. 65	Date	17-03-2022	

BMEE304P Metal Forming and Machining Lab L T P							С
Pre-	requisite	BMEE2091 BMEE209P	Sv	0 Ilabu	0	2 ersi	1 01
110			0,	inaba	1.0		511
Cou	rse Objecti	ves		_			
1.T	o provide p	ractical exposure on deformation behavior of ferrous and r	non-	-ferro	us r	neta	ıls.
2. 1	o impart na	nus-on experience on machine tools and machining proce	330	5.			
Cou	rse Outcon	nes					
At th	ne end of the	e course, the student will be able to		mot		<u></u>	nor
	ASTM stand	ard.	Jus	met	ais		Jei
2. I	Evaluate the	effect of cutting parameters in machining operations.					
3. (Generate va	rious features on components through machining operatio	ons.				
Indi		eriments					
1.	metals.	upping test to determine the formability of ferrous metals a	and	nont	erro	us	
2.	Rolling of f	errous metals and non-ferrous metals.					
3.	Compression test for flow stress analysis.						
4.	Deformatio	on and recrystallization in copper.					
5.	Cold work-	annealing cycle for deformation of low carbon steel.					
6.	Study the	effect of cutting parameters on temperature generation in r	mac	chinin	g.		
7.	Measurem	ent and analysis of cutting forces in turning operation.					
8.	Measurem	ent of surface finish in grinding operation.					
9.	Grinding o	f single point cutting tool using tool and cutter grinder.					
10.	Gear manu	ufacturing in milling machine.					
11.	Helical gea	ar cutting using gear hobbing and gear shaping.					
12.	Programin	g and profile cutting in wire-EDM.					
		Total Laboratory Hours	s :	30 ho	ours	5	
Text	t Books						
1.	B.L.Juneja 2 nd edition.	, Fundamentals of Metal Forming Processes, 2010, New A	٩ge	Inter	nati	onal	Ι,
2.	Geoffrey B Tools, 200	oothroyd and Winston. A. Knight, Fundamentals of Machir 5, CRC Press, 3 rd edition.	ning	g and	Ma	chin	е
3.	K. C. Jain,	A. K. Chitale, Textbook of Production Engineering, 2014,	PH	l Lea	rninę	g Pv	νt.
4.	Lab Manua	al prepared by course faculty.					
Rete	erence Boo	KS					
1.	Amitabha (East-West	Shosh and Asok Kumar Mallik, Manufacturing Science, 20 Press.	010,	2 ^{nα} ε	ditio	on,	
2.	Dixit U.S. Modelling,	and Ganesh Narayanan R, Metal Forming: Technol 2013, McGraw-Hill Education, Noida.	logy	/ and	d P	roce	ess
3.	Dieter G.E	., Mechanical Metallurgy, 1995, McGraw-Hill.					

4.	Hosford W.F. Caddell R.M., Metal edition, Cambridge University Pre	. Caddell R.M., Metal Forming – Mechanics and Metallurgy, 2011, 4 th Ibridge University Press.			
5.	5. Amitabha Battacharyya, "Metal Cutting, Theory and Practice", 1984, New Central Book Agency.				
6.	Hassan Abdel-Gawad ElHofy, Fundamentals of Machining Processes (Conventional and Nonconventional Processes), 2018, CRC press, 3rd Edition.				
7.	 Rao P.N., Manufacturing Technology: Metal Cutting and Machine Tools, 2018, Volume 2, 4th Edition, McGraw Hill Education. 				
Mod	e of assessment: Continuous asse	ssment, FAT, Oral exa	mination		
Rec	ommended by Board of Studies	09-03-2022			
Арр	Approved by Academic CouncilNo. 65Date17-03-2022				

BMEE306L	Computer Aided Design and Finite Element Analys	sis	L	Т	Ρ	С
			3	0	0	3
Pre-requisite	BMEE202L, BMEE202P	Syl	labu	s ve	rsio	n
			1	0.1		
Course Objectives						
1. To impart knowle	edge on the design of engineering products and processes	s at cor	ntinuu	ım s	cale.	
2. To give insight to	2. To give insight to convert the physical problem into an engineering problem through geometrical					
and numerical m	odelling capabilities.					
3. To familiarize th	ne application of finite element methods on structural,	therm	al a	nd c	lyna	mic
problems.						
4. To develop the k	nowledge and skills needed to evaluate design solutions.					
Course Outcome						
At the end of the cou	rse, the student will be able to					
1. Develop concept	model into CAD model using geometric modelling technic	lues.				
2. Apply suitable p	product data exchange techniques to convert geometric	c mode	el int	ο ηι	Imer	ical
model.	meetical memory whether of summer sumfrage and called			-1-4		ام مر م
3. Generate mathe	matical representation of curves, surfaces and solids	using i	nterp	olati	on a	and
approximation co	nicepis. In 2D finite element equations at element and essembly in	avol for	otot	in nt-		Irol
4. FUITIUIALE ID AN	amic applications		รเสเ	ic sti	นตเน	ıdı,
5 Apply finite elom	anno applications, using linear and guadratic shape functions	one to	com	oute	deei	rod
	inter initiations using inter and quadratic shape function		com	Juie	uesi	ieu
6 Solve complex e	ngineering problem using the first principles and commerce	ial CAI		M to	ols	
	ngineering problem doing the mot principles and commerce				013.	
Module:1 Introdu	uction to CAD				1 ho	ure
Raster-scan graphic	s-Coordinate systems-Database structures for graphic	mode	llina-	Engi	neer	ring
Data Management	system- Transformation of geometry-3D Transform	nations	-Clin	nina	Hide	den
line/surface removal-	Colour-Shading	adons	-Onp	ping	-i nut	1011
Module:2 Geome	tric modelling – Analytical and Synthetic curves				1 ho	urs
Requirements of ge	cometric modelling-Wireframe modelling-analytical curv	es-Cut	nic s	nline	-Re	zier
spline-B-spline-NUR	BS- Solving analytical and synthetic curve problems	03-0u	10 3	pint	-00/	2101
Module:3 Geome	tric modelling – Surface and solid modelling-C			1	5 ho	urs
Standa	rds					uio
Surface representati	on-Analytical and Synthetic surfaces-Solid representation	n met	nods	-con	strair	ned
based modelling-par	rametric modelling. Standardisation in graphics-Exchar	nae of	mod	lellin	a da	ata-
software modules-so	ftware development-Efficient use of CAD software	.go oi	mee		9 40	
Module:4 Introdu	ction to approximation methods				1 ho	urs
Introduction to Finite	Element Method - Direct formulation - Minimum total pote	ntial er	nerav	forr	nulat	tion
- Variational approac	h - Weighted Residual formulation – Weak Formulation		57			
Module:5 Interpo	lation Functions			8	3 ho	urs
Polynomial form of ir	nterpolation functions - Simplex, Complex, Multiplex elem	ents, S	elec	tion	of or	der
of interpolation functi	ons, Convergence requirements, Global local and natural	coordi	nates	svs	tem.	
Derivation of shape	function equation for various elements: One dimen	sional	elem	nent	(line	ear,
quadratic and cubic),	Two dimensional elements - linear, bilinear and quadrati	c - Bea	m el	eme	nÌ.	
	· · · · ·					
Module:6 Analys	is of One Dimensional and Two-dimensional problem			1.	1 ho	ure
Generic form of 1) finite element equations _Rar Trues Room 1D th	ermal	_ 10	11 10 10	- 110	atric
elements-Numerical	Integration-Problem solving	Ginal	- 15	opai	ante	,u io
Generic form of 2) finite element equations - Triangular element - Ré	ectano	ılar	elem	ente	s
Applications in solid	mechanics (plane stress plane strain and axisymmetric) a	ind her	nt trai	nsfer		
Module:7 Dvnam	ic Problems			.5.01	1 ho	urs
Dynamic analysis us	sing finite element method -Figen value and Figen vector	ors- 1D	Bar	and	Bea	am-
vibration problems –	Problem solving		Jai	and	200	
Module:8 Conten	nporary Issues				2 ho	urs
	Total Lecture hou	rs:		4	5 ho	urs
Taxt Daala						
			01-			
i i inranim Zeid "M	iastering CAD/CAWL 2013. McGraw Hill Education (India)	r līd.	, SIE			

2	Rao S. S., Finite Element Method in Engineering, 2010, 5 th edition, Butterworth-Heinemann.					
Ref	Reference Books					
1.	Saeed Moaveni, Finite Element Analysis, Theory and Application with ANSYS, 2021, Pearson					
	Fifth Edition.					
2.	Tirupathi R. Chandrupatla and Ash	nok D. Belugu	ndu, Intro	duction to Finite Elements in		
	Engineering, 2011, 4th Edition, Prentic	e Hall.				
3.	Seshu. P, Finite Element Analysis, 201	13, Prentice Hal	of India.			
4.	J.N.Reddy, Introduction to Finite Elem	ent Method, 201	9, McGrav	/ -Hill International Edition.		
Mo	Mode of Evaluation: CAT, Written assignment, Quiz, FAT					
Red	Recommended by Board of Studies 09-03-2022					
App	Approved by Academic Council No. 65 Date 17-03-2022					

BMI	EE306P	Computer Aided De	esign and Fin	ite Elem	ent Analys	is	L	Т	Ρ	С
			Lab				0	0	2	1
Pro	roquisito	BMEE2021 BMEE20	2P			Svll	ahi	0 IS V	2 orei	ion
110	requisite		2 1			- Oyn	abt	10	6131	on
Соц	ırse Obiecti	ives						1.0		
1	To enable	the student's skills in	CAD and F	EM soft	ware that	can	be	use	d a	and
i	implemented	d for various engineerin	a applications							
2.	To develop	proficiency in the ap	plication of t	he finite	element r	netho	od (mo	delli	ng,
	analysis, an	d interpretation of result	ts) to realistic	engineerii	ng problem	S.				0.
Cou	Irse Outcon	nes								
	At the end o	f the course, the studer	nt will be able t	to						
1. (Create CAD	and FE models for trus	ses, frames, p	plate struc	tures, mac	hine p	oart	s, a	nd	
	engineering	components using gen	eral-purpose (CAD and I	FE software	Э.				
2. 1	Evaluate and	d interpret the results of	FEA analysis	s of engine	eering prob	lems.				
Indi	cative Expe	eriments								
1.	Parametric	<u>c modelling – Curves, so</u>	olids and surfa	ices			<u>6</u> h	nour	s	
2.	Importing a	and exporting the CAD I	models to ana	lysis soft	ware		<u>2</u> h	our	S	
3.	Analysis of	f loading and stress dist	ribution in a s	imple & si	tepped bar		6 h	our	S	
	with differe	ent cross section area a	nd analysis of	a 2D Tru	ss structure	9				
4.	Analysis of	t beam deflection under	different type	s of loadii	ng		4 r	our	S	
5.	Analysis of	t stress on a flat plate w	ith a hole at it	s centre			2 hours			
6.	Heat trans	ter analysis using pure	conduction an	d heat ge	neration.		2 hours			
1.	Axis-symm	netric analysis					<u>2 r</u>	our	S	
8.	Determinin	ng the natural frequencie	es and mode s	snapes to	r simple		2 r	our	S	
0	Borform br	armonic analysis on sim	nlo structuro (and plat th	o froquono	N/	2 1	our		
9.	response f	function		and plot ti	le llequenc	<i>,</i> y	21	iour	3	
10	Analysis of	f a 3D model					2 h	our	c	
10	Analysis			Total La	horatory Ho	nurs	30	hoi	irs	
Tex	t Books				bolatory ric	Juis	00	1100	115	
1	Ibrahim Ze	id. "Mastering CAD/CA	M". 2013. McC	Graw Hill F	Education (India)	PI	td.	SIF	=
2	Rao S. S.	Finite Element Method	in Engineering	a. 2010. 5	th edition. E	Butter	wor	<u>th-</u>	0.12	
	Heinemani	n.		j , , .	, -					
3	Lab Manua	al of prepared by course	e faculty memb	oers						
Ref	erence Boo	ks								
1.	Saeed Mo	aveni, Finite Element A	Analysis, Theo	ory and A	pplication v	with A	١NS	SYS,	20	21,
	Pearson Fi	ifth Edition.								
2.	Tirupathi R	R. Chandrupatla and Asl	nok D. Belugu	ndu, Intro	duction to F	Finite	Ele	mer	nts i	n
	Engineerin	g, 2011, 4th Edition, Pro	entice Hall.							
3.	Seshu. P,	Finite Element Analysis	, 2013, Prentie	ce Hall of	India.					
4.	Reddy J.N	, Introduction to Finite E	element Metho	od, 2019, I	McGraw -H	lill Inte	erna	atior	nal	
	Edition.			<u> </u>						
Mod	le of assess	ment: Continuous asse	ssment, FAT,	Oral exar	nination					
Rec	ommended	by Board of Studies	09-03-2022		4					
Арр	roved by Ac	ademic Council	No. 65	Date	17-03-202	22				

BMEE401L	-	Computer Integrated Manufacturing	L T P C				
Pre-requis	ite	NI	Syllabus version				
			1.0				
Course On	Jectiv	es					
1. To impa	1. To impart knowledge of CIM, various concepts of automation and applications.						
2. To prov	ide in	-depth knowledge on digital manufacturing, lol and Ind	ustry 4.0.				
0							
Course Ou	Itcom	es					
At the end of	or the	course, the student will be able to					
1. Dilleren		ne concepts of automation, CIM, CAD, and CAM.					
2. Develop		time simulation with intelligent CNC machine tools usin	a Digital Twine				
J. Apply C		affware tools for solving real time component machining	iy Digital Twills.				
5 Analyze	the a	utomated flow lines through EMS					
6 Visualiz	e the	concepts of future automated factory environments to d	ligital transformation				
Module:1	Basi	cs of CIM and Automation	6 hours				
Introduction	n to A	Automation, Basic elements of automated systems-	evels of automation,				
Advanced	autor	nation functions, Automation to Autonomy. Introdu	uction to Computer				
Integrated	Manu	facturing, computerized elements of a CIM system, Ev	volution of Computer				
Integrated	Manut	acturing, Nature and role of the elements of CIM Syste	em, Product life cycle				
Manageme	nt and	Collaborative Product Development.					
Module:2	Com	puter Numerical Control	6 hours				
Principles	eleme	nts of CNC system, Typical CNC Machine Tools, Des	signation of Axis and				
Motion of (CNC	Machines, Practical design considerations for CNC m	nachined parts, CNC				
Controllers	-Oper	architecture, PC based, Look ahead functions, Paralle	el kinematic Machine				
Tools, Mult	itaskir	ng CNC machines.	-				
Module:3	CAN	Programming	7 hours				
Manual par	rt prog	gramming, Computer assisted part programming, Auto	mated programming				
of CNC-ma	achine	e tools, Machining of Free form surfaces, Toleranc	e based Machining,				
Automatic I	-eatur	e Recognition in CAM Programming, Knowledge based	a machining,				
Module:4	Intel	ligent Manufacturing systems	6 nours				
		ence and machine Learning impact on CNC machine	ning, intelligent fully				
simulation	S Or For Dic	vital Mapufacturing and Digital Twins	ig, Real-ume CAM				
Module:5		nuterized Manufacture Planning and Control	6 hours				
Woulde.5	Svst	om	0 Hours				
Computer	Aided	Process Planning Retrieval and Generative System	s benefits of CAPP				
computer i	intear	ated production management system. Integration C	AD/CAPP/CAM/CNC				
based on	STEP	Standards, ISO14649 STEPNC in Machining, Com	puter Aided Quality				
Control, Sh	op flo	or control.	······				
Module:6	Grou	p Technology and Flexible Manufacturing	6 hours				
	Syst	ems					
Fundamen	tals c	f Group Technology-types of part families and Fle	exible Manufacturing				
Systems,	types	of FMS, FMS components, Material handling a	nd storage system,				
applications	applications, benefits, computer control systems.						
Module:7	Futu	re of Automated Factory	6 hours				
Digital Tra	nsfori	nation in manufacturing-Trends and Challenges, Ind	lustry 4.0, functions,				
applications	s and	benefits. Internet of Things (IOT), IOT applications in	manufacturing, Big-				
Data and	Data and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physical						
manufactur	ing sy	stems.					
Module:8	Cont	emporary Issues	2 hours				
		Total Lecture hours:	45 hours				

Tex	tt Books				
1.	Mikell P Groover, Automation, Production Systems and Computer-Integrated				
	Manufacturing, 2019, 5 th edition, Pearson.				
2.	Xun Xu, Integrating Advanced Computer-Aided Design, Manufacturing, and				
	Numerical Control: Principles and Implementations, 2015, IGI Global.				
3.	Radhakrishnan P, CADC/CAM/CIM, 2018, New Age International (P) Ltd.				
Re	ference Books				
1.	Kant Vajpayee S, Principles of Computer Integrated Manufacturing, 1999, Prentice Hall				
	of India, New Delhi.				
2.	Rao P.N, Tewari N. K. Computer Aided Manufacturing Tata McGraw Hill Pub, 2017,				
	New Delhi.				
3.	Ercan Oztemel, Intelligent Manufacturing Systems, Smart Factories and Industry				
	4.0: A General Overview, 2019, 1 st Edition.				
4.	Yáñez, Fran, and Brea, Francisco Yáñez. The 20 Key Technologies of Industry 4. 0 and				
	Smart Factories: The Road to the Digital Factory of the Future. 2017, Independently				
	Published.				
Мо	de of Evaluation: CAT, Written assignment, Quiz, FAT				
Re	commended by Board of Studies 09-03-2022				
Ар	proved by Academic Council No. 65 Date 17-03-2022				

BMI	EE401P	Computer I	ntegrated Manu	facturing	Lab	L	Т	Ρ	С
		•	0			0	0	2	1
Pre	-requisite	Nil				Syllal	bus	versi	ion
							1.0)	
Cou	Irse Objective	es							
1.	To impart kno	wledge on CAM & C	CIM software for	various er	ngineering	applica	ation	s.	
2.	To develop pr	oficiency in the app	lication of CIM to	the realis	tic enginee	ering p	roble	ems.	
	0 1								
	Irse Outcome) acurac the student	will be able to						
	ne end of the d	brograms for variou	will be able to		and CIM or	oftword	`		
1. 2	Evelop CNC	interpret flexible inter	erated digital fac	ny CAN a	and Chivi Su Seme	Jitware	5.		
2.			Sgratod digital la	Story by bit					
Indi	cative Experi	iments							
1.	Manual Prog	ramming for CNC 7	Funing / Milling M	lachine.					
2.	Offline verific	cation of CNC progr	am using CNC c	ontroller s	imulator.				
3.	CAD/CAM b	ased Part Program	ming and operation	on of a 3 a	axis CNC N	Ailling	Macl	hine.	
4.	Demonstrate	e automatic feature	recognition using	CAM sof	tware.				
5.	CNC tool pa	th verification and o	ptimization using	digital m	anufacturir	ng soft	ware		
6.	Simulation to	predict and optimized optimiz	ze performance o	of CNC ma	achining op	peratio	ns.		
7.	Demonstrate	s factory shop floor	data collection m	ethods.					
8.	Modeling and	d Simulation of CIM	system using so	oftware.					
9.	Simulation o	n flexible manufacti	uring systems.						
10	Virtual Realit	ty simulation of digit		machine	ry and fact	ory.	0 6 6		
Toy	t Books		10	Dial Lado	ratory Hol	irs 3	U NO	urs	
1		ntegrating Advance	ed Computer-A	ided Des	ian Man	ufactu	rina	and	1
1.	Numerical C	ontrol: Principles ar	nd Implementatio	ns, 2015,	IGI Global		nng,	and	4
2.	Hans Bernh	ard Kief, Helmut A	. Roschiwal, Ka	rsten Sch	warz, The	e CNC	Ha	ndbc	ok:
0	Digital Manu	facturing and Auton	nation from CNC	to Industi	ry 4.0, 202	1, Indi	istria	I Pre	SS.
3. Def	Lab Manual	prepared by course	faculty.						
Ret		<u>S</u> Crover Automotic	Draduation	Custome	and C		<u>an In</u>	+	tod
1.	Mikell P. Grover, Automation, Production Systems and Computer-Integrated								
2	Radhakrishnan P. Computer Numerical Control Machines and Computer Aided								
	Manufacture, 2018, New Age International (P) I td								
Мос	le of assessm	ent: Continuous as	sessment, FAT, (Dral exam	ination				
Rec	ommended by	y Board of Studies	09-03-2022						
Арр	roved by Acad	demic Council	No. 65	Date	17-03-20	22			

BMEE402L	Heat and Mass Transfer		LT	P	С	
			3 0	0	3	
Pre-requisite	Nil	Sylla	ibus v	/ersi	on	
O a suma a O b i a atia			1.0			
Course Objectiv	'es		4	·		
1. To impart a c	1. To impart a comprehensive knowledge of various modes of heat and mass transfer.					
2. To empower	the students for solving heat transfer problems in the ind	Justry.				
S. To equip the						
At the end of the	course, the student will be able to					
1 Solve the ste	adv and unsteady heat conduction problems for simple	aeome	tries			
2 Analyse the r	adural and forced convective heat transfer processes	goomo				
3. Design the he	eat exchangers using the LMTD and effectiveness-NTU	metho	ds			
4. Solve the rad	iation heat transfer problems	meane	40			
5. Analyse the v	arious mass transfer processes					
Module:1 Con	duction – I			8 ho	urs	
Fundamental la	ws; Identification of significant modes of heat tr	ansfer	in	pract	ical	
applications. Get	neral equation of heat conduction in cartesian, cylin	drical	and s	pher	ical	
coordinates; One	e Dimensional steady state conduction in simple geor	netries	- pla	ne w	/all,	
cylindrical and sp	herical shells; Electrical analogy; Conduction in composition	site wa	ills and	d she	ells;	
Critical thickness	of insulation; Thermal contact resistance; Overall heat	t transf	ier co	efficie	ent;	
One dimensiona	I steady conduction heat transfer with internal heat	genera	ation i	in pla	ane	
walls, cylinders a	nd spheres.					
Module:2 Con	duction – II	<u> </u>		7 ho	urs	
Extended surfac	es (Fins). Conduction shape factor; Unsteady state hea	it trans	fer - S	Syste	ms	
with negligible inf	ernal resistance - Lumped heat capacity analysis; Infini	te bodi	les - fl	at pla	ate,	
cylinder and sphe	ere; Semi-Infinite bodies - Chart solutions.					
Module:3 Ford	ced Convection			7 ho	urs	
Equations of con	servation of mass, momentum and energy. Boundary la	ayers f	or flov	N OVE	er a	
flat plate, curved	d objects and flow through circular pipes. External i	low o	ver fla	at pla	ate,	
cylinder, sphere a	and bank of tubes; Internal flow through circular and hor	<u> 1 - CIrci</u>	ular pi	pes.		
Module:4 Natu	Iral Convection			<u>5 no</u>	urs	
Flow over vertic	cal, horizontal and inclined plates; Flow over cylin	iders	and s	spher	es;	
Combined free a	nd forced Convection; introductory concepts of boiling a	na cor	idensa	ation.		
Clossification of	LEXCHANGERS	aori C		tric n	urs	
	abell and tube best exchanger gross flow best	ger; Co	Shcen	uic p Anali	ipe	
oncilon NTU m	shell and tube heat exchanger, cross - now heat exchanger	sxchan	iger, <i>i</i>	Analy	/515	
Modulo:6 Pad	iation			6 ho	ure	
	lation Laws: black body, gray body: Radiation from real	surfa		Effect	of	
orientation - view	v factor: Equivalent emissivity method electrical and		JES, L		and	
snace resistance	s Radiation shields	logy -	Sund		anu	
Module:7 Mas	s Transfer			4 ho	urs	
Basic concepts	diffusion mass transfer - Fick's law of diffusion - ste	adv st	ate m	oleci	ılar	
diffusion - conv	ective mass transfer - momentum, heat and mass	trans	fer ar	nalog	V -	
convective mass	transfer correlations.				,	
Module:8 Cont	emporary Issues			2 ho	urs	
	Total Lecture hours:		4	5 ho	urs	
Text Books						
1. Yunus A Ce	ngel and Afshin J Ghajar, Heat and Mass Transfer: F 2015, 5 th edition, McGraw-Hill	undam	entals	s and	1	
2. Sachdeva R	C. Fundamentals of Engineering Heat and Mass Tr	ansfer	201	7.5 th	۱	
edition. New	Age International.		, _01	., 0		
,,	0					

3.	Necati Ozisik M, Heat Transfer – A Basic Approach, 2016, McGraw Hill, New York.						
Ret	Reference Books						
1.	Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt,						
	Fundamentals of Heat and Mass Transfer, 2018, 8th edition, Wiley.						
2.	J P Holman and Souvik Bhattacha	aryya, Heat Tra	ansfer, 20)16, 10 th edition, McGraw-Hill.			
3.	Kothandaraman, C.P, "Fundamer	ntals of Heat a	nd Mass 1	Fransfer", 2015, New Age			
	International, New Delhi.			-			
Мо	Mode of Evaluation: CAT, Written assignment, Quiz, FAT						
Ree	Recommended by Board of Studies 09-03-2022						
App	Approved by Academic Council No. 65 Date 17-03-2022						

BMI	EE402P	Heat a	and Mass Tra	ansfer La	ab	L	. T	Ρ	С
						0	0	2	1
Pre	requisite	Nil				Syllab	us v	ersi	on
							1.0		
Cou	Course Objectives								
1.	l o impart a co	omprehensive knowled	ige of various	s modes	of heat and	mass tra	anste	er.	
2.	l o empower t	ne students for solving	g neat transfe	r probler	ns in the ind	dustry.			
3.	to equip the s	student in the design o	or neat exchar	igers.					
Соц	rse Outcome	25							
At th	e end of the o	course the student wi	ll he able to						
1.	Conduct the e	experiments on differen	nt heat transfe	er modes	5				
2	Conduct the e	experiments on pin fin	to assess its	performa	ince				
3.	Jnderstand th	e various pool boiling	reaimes						
4.	Demonstrate t	the mass transfer med	hanism						
Indi	cative Experi	iments							
1.	Determinatio	on of the thermal cond	uctivity of a g	iven met	al sample a	and comp	pariso	on w	rith
2	Labulated va	lues.		ivon ligu	id and com	orioon	vith		
۷.	tabulated va	lues.	uctivity of a g	iven iiqu			VILII		
3.	Heat conduc	ction in spherical coord	dinate system						
4.	Study of hea	at conduction by electr	ical analogy:	experime	ent on a cor	nposite	wall.		
5.	Determinatio	on of rate of heat trans	fer in natural	convecti	on from a c	ylinder			
	2 hours and	comparison with theo	retical calcula	ations.					
6.	Determinatio	on of rate of heat trans	fer in forced	convectio	on from a he	eated pip	e an	d	
	comparison	with theoretical calculation	ations.						
7.	Prediction of	f temperature distribut	ion and efficie	ency of a	pin fin und	er forcec	l and	free	3
	convection a	and comparison with the	neoretical cal	culations					
8.	Study of the	regimes of pool boilin	g and determ	ination o	f critical hea	at flux.			
9.	Determinatio	on of emissivity of a given of a	ven surface.						
10.	Determinatio	on of Stefan-Boltzman	n constant ar	id compa	arison with r	eference	e valu	le.	
11.	Demonstrati	on of condenser, heat	pipe and ma	ss transf	er apparatu	IS.			
	Laboratory e	examinations (model a	ind final)						
			Т	otal Labo	pratory Hou	rs 30 h	ours	•	
Tex	t Books								
1.	Yunus A Ce	ngel and Afshin J Gh	ajar, Heat an Crow Hill	id Mass	Transfer: F	undame	ntals	and	i
<u>ں</u>	Applications Societaria	$\frac{1}{2010}$, $\frac{1}{20}$ euilion, ivic	Glaw-Hill.		d Mass T	ranofar	2017	⊆ th	1
Ζ.	Sachdeva R	(C, Fundamentals of	Engineering	neat a	na mass in	ansier,	2017	, ວ	
2	Noooti Oziai	Age International.	Pagia Appro	ach 201	6 McCrow		Vor	4	
J.		ropared by course for	aulty	ach, 201	0, MCGIAW		V TOI	<u>n.</u>	
4. Rof	rence Rook	prepared by course la	icuity						
1	Theodore I Borgmon Adriance & Loving Frank D Instances Dovid D DoWitt								
'.	Fundamentals of Heat and Mass Transfer. 2018. 8th edition. Wilev.					,,			
2.	J P Holman	and Souvik Bhattacha	aryya, Heat Tr	ansfer, 2	2016, 10 th e	dition, M	cGra	w-H	ill.
3.	Kothandarar	man, C.P, "Fundame	ntals of Heat	and Ma	ass Transfe	er", 2015	5, Ne	w A	٩ge
	International	l, New Delhi.							-
Mod	e of assessm	ent: Continuous asses	ssment, FAT,	Oral exa	mination				
Rec	ommended by	y Board of Studies	09-03-2022						
Арр	roved by Acad	demic Council	No. 65	Date	17-03-202	22			

BMEE212L	Quality Control and Improvement	L	Т	Ρ	С
		3	0	0	3
Pre-requisite	BMAT202L, BMAT202P	Syl	labu	s versi	ion
			1	.0	
Course Objective	es				
 Develop th 	ne understanding of process variability and quality contr	ol.			
2. Present a	problem oriented in depth knowledge, underlying c	oncep	ots, to	ools, a	and
application	n of quality control.				
Demonstra	ate the ability to design and implement acceptance sar	npling	and	reliabi	lity
principles.					
Course Outcome					
At the end of the o	course, the student will be able to				
1. Evaluate the b	pasic statistical concepts and quality tools an industrial	case.			
2. Demonstrate	the ability to design, use, and interpret control chart	s for	varia	ables a	ind
attributes					
3. Determine the	e process capability indices for real time processes ar	nd der	nons	strate S	Six-
Sigma					
4. Design a sam	pling plan to construct OC curve and evaluate its effe	ective	ness		
for a given pro	DCess.				
5. Implement the	e philosophy of Taguchi's DOF and other process impro	veme	nt m	ethods	
6 Apply the relia	ability concepts to solve real time industry problem			ourouo	
Module:1 Intro	duction to Statistical Quality Control		5	hours	
History of Quality	Control - Statistical Quality Control and Statistical Proc	ess (Contro	ol – Ne	ed
for Statistical Con	cepts – Important Quality Control Tools - Quality costs	s and	Qua	lity loss	s –
Quality Assurance	e – Taguchi's Quality Loss Function - limitation of SQC	- Serv	ice C	Duality	-
Module:2 Cont	rol Charts For Variables		7	hours	
Control Charts for	or Variables - Control Charts for X and R - pro	cess	cap	ability	_
interpretation- Co	ontrol Charts for X ⁻ and S - Control Chart for Individua	al Mea	asure	ements	-
Applications of Co	ontrol Charts for Variables				
Module:3 Conti	rol Charts for Attributes		6	hours	
Control Chart for	Fraction-Nonconforming (OC curve of the control cha	rt. var	iable	samp	le
size, nonmanufac	turing application, the OC function and ARL calculation	on): C	ontro	l Char	ts
for Nonconformiti	es or Defects; Choices Between Attribute and Variat	ole Co	ontrol	Chart	s,
Guideline for Impl	ementing Control charts.				-
Module:4 Proce	ess Capability Analysis and six sigma		5	hours	
PCA analysis usir	ng a histogram and probability plot, process capability	ratios	, Per	formar	nce
index calculation,	PCA using a control chart, estimating natural tolerance	e limits	s of a	proce	SS.
Six sigma - Con	cept of six sigma, methods of six sigma, DMAIC n	netho	dolog	y, DF	SS
methodology, six	sigma control chart, case studies.		-		
Module:5 CUSL	JM Control Charts		6	hours	
Cumulative-Sum	(CUSUM) Control Charts - CUSUM Control Chart	basic	prin	ciples	for
monitoring the shi	ift in process mean CUSUM design parameters CUS	UM fo	r lar	ne shift	s -
Exponentially We	ighted Moving Average (EWMA) control chart (EWN	/A co	ntrol	chart	for
monitoring proces	s mean, design of an EWMA control chart.				
Module:6 Acce	ptance Sampling		7	hours	
The Acceptance	-Sampling - Definition of a Single-Sampling -	Adv	anta	des a	nd
Disadvantages of	Sampling - Types of Sampling Plan - OC Curve - I	Desia	nina	a Sino	ile-
Sampling Plan -	Double, Multiple, and Sequential - The Dodge-Romic	ı San	nilar	a Plans	s —
Producers risk Co	insumers risk - AOQL LTPD calculation.	,		,	
Module:7 Relia	bility Engineering		7	hours	
Definition of Relia	ability – Relationship between MTTF and MTBF - Haz	zard r	ate.	Reliabi	lity
L	· · ·		,		,

Distributions, System reliability, Reliability block diagrams: series, parallel and mixed configuration - Achieving Product reliability – Maintainability and availability - Simple problems						
Мо	Module:8 Contemporary Issues: 2 hours					
		Total Lecture hours:				45 hours
Tex	t Book	S				
1.	Amitav	a Mitra - Fundamentals of	f Quality Control a	and Impro	vement, 4th Editi	on, Wiley
2.	Eugen	e L. Grant and Richard	S. Leaven Worth	n, Statistic	al Quality Contr	ol, 2017, 7 th
	edition	, TMH.				
3.	Charle	s Ebeling, An Introductio	n To Reliability A	And Maint	ainability Engine	ering. 2017,
	Mc Gra	aw Hill.				
Ref	ference	Books				
1.	Douglu	is C. Montgomery. Introd	uction to Statisti	cal Qualit	y Control, 2013,	7th Edition,
	John V	/iley &Sons.				
2.	Statisti	cal Quality Control. M. Ma	hajan, 2016, Dha	anpat Rai	& Sons January.	
3. L.S.Srinath, Reliability Engineering, 2005, Affiliated East west press.						
Mode of Evaluation: CAT, Written assignment, Quiz and FAT.						
Red	Recommended by Board of Studies 09-03-2022					
App	proved b	y Academic Council	No. 65	Date	17-03-2022	

BMEE305L	Manufacturing Planning and Control		L	T	Ρ	С
			3	0	0	3
Pre-requisite	Nil	Syll	abus	s ver	sio	n
			1.	.0		
Course Objective	es					
1. To impart knowledge on operations strategy, product planning and forecasting.						
2. To develop sk	ills to estimate and use appropriate process planning	, layou	its loo	catio	n a	nd
facility location) .					
3. To understand	I the importance of capacity planning, management, p	broduc	tion s	sche	duli	ng
and controlling	g systems.					
Course Outcome)					
At the end of the o	course, the student will be able to					
1. Take the decis	sions in conversion process, manufacturing strategy,	produc	ct pla	Innin	g a	nd
forecasting pro	oduct demand					
2. Take the dec	isions in process planning and design, performance	e meas	sures	s, ca	pac	ity
planning						
3. Take the decis	sions in selection of facilities location and design the fa	acilities	s layc	but		
4. Generate the	aggregate plans, master schedules, short-term schedu	les				
5. Generate mate	erial requirements planning and strategies for manufact	cturing	exce	ellen	ce.	
Module:1 Oper	ations Strategy		5 ho	ours		
Operations and P	roductivity: Operations / manufacturing, Operations for	r good	s and	d ser	vice	es,
Operations for G	oods and Services, The Productivity Challenge, De	cision	mał	king	in	an
organization / con	version process.					
Operations Strate	egy: A global view of operations, Developing miss	ions a	and	strate	egie	es,
Competitive price	rities, Issues in operations strategy, Strategy	deve	elopn	nent	а	nd
implementation, S	strategic planning, Core competencies and outsourcir	ıg, Glo	obal o	opera	atio	ns
strategy options.						
Module:2 Prod	uct planning and Forecasting		7 ho	ours		
Design of Goods	and Services: Goods and services selection, Gene	rating	new	pro	duc	;ts,
Product developm	nent, Issues for product design, Product development	t conti	nuum	ı, De	fini	ng
a product, Docur	ments for production - product life-cycle, Service of	design	, Tra	ansiti	on	to
production.						
Forecasting: Type	es, Strategic importance, Steps, Approaches, Time	:-Serie	es, Fo	orec	asti	ng
methods, Monitori	ng and controlling forecasts.					
Module:3 Proc	ess planning		5 ho	ours		
Process Strategy:	Process Strategies, Selection of equipment, Process	analy	sis ai	nd d	esio	gn,
Special considera	ations for service process design, Production technology	ology,	Tech	nnolo	bgy	in
services, Process	redesign.					
Module:4 Facil	ities location		6 ho	ours		
Location Strategie	es: The Strategic importance of location - supply of	chain	consi	idera	ntior	ns,
Factors affecting	location decisions, Methods of evaluating location a	alterna	atives	- C	osti	ng
alternative locations - scoring models - geometric models, Locating multiple facilities. Service						ice
location strategy, Location of facilities on networks, Geographic information systems.						
Module:5 Layout of facilities 7 hours						
Layout Strategies	: Strategic importance of layout decisions - Types	of la	yout	– pr	odu	uct
layouts, process l	ayouts, fixed-position layouts, hybrid/combination layo	outs, c	ellula	r La	you	ts,
service layouts, D	esigning product layouts and line-balancing, Designi	ng prc	cess	layo	outs	s –
measure of effecti	veness.					
Module:6 Capa	city planning and Constraint management		6 h	ours		

Capacity p	planning and Constraint Management: Defining and measu	ring capacity,		
Determinan	ts of effective capacity, Design of effective capacity, Bottleneck and	nalysis and the		
theory of	constraints, Break-even analysis, Reducing risk with increme	ental changes,		
Applying e	expected monetary value, Applying investment analysis to	strategy-driven		
investments	s, Forecasting capacity requirements, Developing capacity strateg	ies, Evaluating		
Alternatives).	-		
Module:7	Production planning, Scheduling, MRP and Inventory	7 hours		
	Control	7 Hours		
Hierarchy of	of planning decision, Planning process, Approaches for aggre	gate planning,		
Master sch	edule, Short-term schedules, Control of schedules.			
MRP process and extensions to MRP.				
•				
Inventory co	ontrol, JIT systems, Lean operations, Toyota Production System			

				Total Le	cture hours:	45 hours		
Tex	Text Book							
1.	Jay Heizer, Barry Render, Munson Chuck, and Sachan Amit, Operations Management,							
	2017, 1	12 th Edition, Pearson.						
Re	ference	Books						
1.	Steven	son William J,Operations Ma	anagement, 20)18, 13 th E	dition, McGra	aw-Hill.		
2.	Mahad	evan B, Operations Mana	gement: The	ory and	Practice, 201	0, 2 nd Edition,		
	Pearso	on India.	-	-				
Мо	Mode of Evaluation: CAT, Written assignment, Quiz, FAT							
Re	commen	ided by Board of Studies	09-03-2022					
Ap	Approved by Academic Council No. 65 Date 17-03-2022							

BMEE307L		L	Т	Ρ	С	
			3	0	0	3
Pre-requisite	Nil	Syl	labı	IS VO	ersio	on
				1.0		
Course Objective	98 					
1. To discuss ab	out Product requirement analysis, concept generation, c	letai	lea c	lesig	In	
2 To provide stu	duick design technical and practical knowledge and skills	roqu	irod	to o	naa	20
in Product dev	velopment projects and intellectual property rights	requ	neu	10 0	nya	Ъс
Course Outcome						
At the end of the o	course, the student will be able to					
1. Illustrate the b	asics of product design and development processes an	d org	ganis	satio	n	
policies.						
2. Infer the work	place management, health and safety management.					
3. Apply the met	hods of generating, evaluating and testing to select the	best	proc	duct		
concept.	the methods of design problem solving and concept as	noral	ion	to to	otina	,
4. Demonstrate	dustrial design and Design for X	leia	1011	io ie	sung	J.
6 Infer the proce	ess of intellectual property rights					
Module:1 Intro	duction			7	hοι	ırs
The design proc	ess –product life cycle –product development proce	ess -	- Co	ollab	orat	ive
product developr	nent – concurrent engineering - Strategic Planning	g ar	nd (Эрро	ortur	nity
Identification for	new products – Identifying Market Opportunities – C	Comn	nuni	catic	n w	/ith
Stake holders in li	ne with organizational policy and requirements					
Module:2 Orga	nizational Competency Management			6	<u>hοι</u>	irs
Organization's po	licies and procedures for working with colleagues, Con	npete	ency	′, SKI ⁺	lls a	nd
Competency deve	ements for working effectively; nealth and safety mar	nage	men	τ –	055	1A;
Module:3 Produ	ict Specifications			5	hoi	irs
Voice of Custome	er – customer survey – need gathering methods – Expl	ores	svste	emat	icall	N -
Establishing proc	luct specification -competitive benchmarking: House	e of	Qu	ality.	Le	an
Thinking				,		
Module:4 Probl	em Solving			5	hοι	ırs
Need for design	creativity - Creative thinking - creativity and proble	m s	olvir	ıg –	TR	IZ-
Morphological app	proach				_	
Module:5 Conc	ept Generation			5	hou	ırs
Concept Generati	on - Concept Screening- Concept Scoring – Concept	Tes	ting	met	hod	s -
Case Studies	diment Design and Industrial design			6	hai	
Introduction to	ambodiment design – product architecture – Confi	aura	tion		sign	115
Parametric Desig	n - Test and Validation – Detail design - Industrial desi	guia an _	hur	nan	facto	ors
design						
Module:7 Desig	In for X, Prototype and IP			9	hοι	ırs
Design for Manu	facture - Design for Assembly - Design for service	ability	y —	des	ign	for
environment Design for Quality - Reliability - Sustainability. Failure Mode and Effect					ect	
Analysis - Test and Inspection –Warranty; Cost evaluation –categories of cost – overhead					ad	
costs - activity based costing Prototyping and Testing; Product Testing- Standards					ds,	
Certification and	Certification and Documentation Intellectual Property Rights - Patents, Design Patents					its,
Madular8 Cont			1		he:	
	emporary issues			2	not	112

				Total	Lecture hours:	45 hours
Tex	kt Book					I
1.	Karl T	. Ulrich, Steven D. Eppi	nger, Product D	esign ar	nd Development,	2015, 6 th
	Edition	, McGraw-Hill.				
Re	ference	Books				
1.	George	e E. Dieter, Linda C. Schr	nidt, Engineering	ı design,	2017, 4 th Edition,	McGraw-
	Hill.			•		
2.	Kevin (Otto, Kristin Wood, Produc	ct Design, 2004,	Pearson	Education.	
3.	Armstr	ong S, Engineering and	Product Devel	opment l	Management: The	e Holistic
	Approa	ach, 2001, Cambridge Uni	versity Press.	-	-	
Мо	Mode of Evaluation: CAT, written assignment, Quiz, FAT.					
Re	Recommended by Board of Studies 09-03-2022					
Ap	proved b	y Academic Council	No. 65	Date	17-03-2022	

BMEE309L Lean Manufacturing L T P						
	3 0					
Pre-requisite	NIL	Syllabus version				
		1.0				
Course Objectiv	es					
1. To provide pra	actical level understanding of the key elements of lean p	roduction systems.				
2. To impart know	wiedge on systematic approach for implementing value	stream mapping.				
3. To incuicate tr	te practice of operational excellence through Toyoto's w	/ay.				
At the end of the	es					
At the end of the	course, the student will be able to					
2 Apply the stab	ility and standardized work systems					
3 Demonstrate t	the IIT and lidoka and implement Lean culture					
4 Man the value	chain predict the value addition and apply the value st	ream				
5 Implement the	14 principles of Toyoto's operational excellence	icam.				
Module:1 Lean	Production System	5 hours				
Birth of lean pro	duction: Types of production systems-Craft Production	n-Mass Production-				
Ford System, G	rowing Dysfunction. Birth of lean production. Virtue	of necessity. Lean				
revolution at Tovo	ota.	···· · , _····				
Lean production	system: Why lean production? Systems and Systems th	ninking, Basic image				
of lean production	n, Customer focus, Muda, Mura, Muri.					
Module:2 Stab	ility and Standardized work	7 hours				
Stability: Standar	ds in lean system, 5S system, Total Productive Mainten	ance.				
Standardized wor	k: Lean thinking, Why standardized work? Elements of	standardized work,				
Charts Used to I	Defne Standardized Work, Manpower reduction, Overa	all efficiency versus				
Individual efficien	cy, Standardized Work and Kaizen, Common layouts.					
Module:3 Just	-in-Time Production	7 hours				
Why JIT, Princi	ples of JIT, JIT system, Kanban, Kanban rules,	Expanded role of				
conveyance, Proc	duction levelling, Three types of pull systems, Value stre	am mapping.				
Jidoka Concept:	Development of Jidoka concept, Why Jidoka, Pole	a-Yoke, Inspection				
systems and zone	e control, using Poka-Yokes and Implementing Jidoka	<u> </u>				
	uro	6 nours				
Involvement [.] W	hy involvement? Terrible waste of humanity A	ctivities supporting				
involvement. Vi	ren circle activity Practical kaizen training. Suggestion r	orograms				
Hoshin planning	What is planning? Why plan? Problems with plannin	a Hoshin planning				
Hoshin planning	system. Four phases of hoshin planning.	g, riccini planing,				
The culture of Lea	an Production: What is lean culture? How does lean cult	ture feel?				
Module:5 Valu	e Stream Management Process	6 hours				
Why Use Value S	tream Management? Attributes of Value Stream Manag	jement,				
Commit to Lean	: Management Push or Worker Pull? Key Managemen	t Activities, Invest in				
Your People, Sh	ort-Term Pains and Long-Term Gains, Implementing	Lean Transforms a				
Business Culture	, Commitment checklist.					
Choose the Value Stream: What Is a Value Stream? Selecting Value Streams for						
Improvement, Additional Considerations for Value Stream Selection.						
Learn about Lean: Training and Doing, Key Concepts of Lean, Three Stages of Lean						
Application, Ident	ity Non-Lean Conditions					
Module:6 Valu	e Stream Mapping	6 hours				
wap the Currer	it State: value Stream Mapping, How to Map the C	Jurrent State, Case				
Identify Lean	Motrice: Eundomentale Stone for Identifying Loop	Metrice Dromioro				
Manufacturing Co	wennes. Fundamentals, Steps for identifying Lean ase Study Help Identify Wastes Lean Manufacturing As					
Manufacturing Ca	State: Focus on three stares - Customer demand	- Continuous flow -				
Levelina	etater i code en anos otagos - oustomer demand					
Create and Implement Kaizen Pla	ns: Value Stream "Kai	zen" Events, Planning Recap,				
--	---	---	--	--		
Prepare for Implementation, Recomm	endations.					
Module:7 The world-class po way	wer of the loyota	6 hours				
The Toyota Way: using operational excellence as a Strategic Weapon, A storied history: How Toyota became the World's Best Manufacturer, 14 principles of Toyota way (Part 1 Philosophy: long-term systems thinking; Part 2 Process: struggle to flow value to each customer; Part 3 People: respect, challenge, and grow your people and partners toward a vision of excellence; Part 4 Problem Solving: think and act scientifically to improve toward a desired future, Part 5 Conclusion: Be thoughtful and evolve your enterprise).						
Module:8 Contemporary Issues		2 hours				
	Total Lecture hours:	45 hours				
Text Books						
1. Pascal Dennis, Lean Production Most Powerful Production Syster UK.	Simplified: A Plain-Lan n, 2015, Third Edition, C	guage Guide to the World's CRC Press-Taylor & Francis,				
 Don Tapping, Tom Luyster and Steps to Planning, Mapping, and New York, 2002 	d Tom Shuker, Value Sustaining Lean Impro	Stream Management: Eight vements, Productivity Press,				
3. Jeffrey K. Liker, The Toyota V greatest manufacturer, 2021, Se	Vay: 14 management cond edition, MaGraw-H	principles from the world's ill Edition.				
Reference Books						
1. Masaaki Imai, Gemba Kaizen: A 1997, MaGraw-Hill.	Commonsense, Low-C	cost Approach to Management,				
2. James P. Womack and Daniel T in Your Corporation, 2001, Revis	. Jones, Lean Thinking: ed Edition, Simon & Shu	Banish Waste & Create Wealth ister.				
3. Mike Rother, Learning to See: MUDA, 2003, Lean Enterprise In	Value Stream Mapping stitute.	to Create Value & Eliminate				
4. Jeffrey K Liker and Divid Meier Implementing Toyota's 4Ps, 2006	;, The Toyota Way Fiel 6, Tata MaGraw-Hill Edit	d Book: A Practical Guide for ion.				
5. John Allen, Charles Robinson a Guide, 2001, Society of Manufac	5. John Allen, Charles Robinson and David Stewart, Lean Manufacturing: A Plant Floor Guide, 2001, Society of Manufacturing Engineers, Michigan.					
6. Mike Rother, "Toyota Kata: Managing People for Improvement, Adaptiveness, and Superior Results", 2010, Tata MaGraw-Hill Edition.						
Mode of Evaluation: CAT, Written ass	ignment, Quiz, FAT					
Recommended by Board of Studies	09-03-2022					
Approved by Academic Council	No. 65 Date	17-03-2022				

BMEE310L Supply Chain Management L T					Ρ	С	
			3	0	0	3	
Pre-requisite	NIL	Syl	labı	is ve	ersi	on	
				1.0			
Course Objectives							
1. Provide an ov	erview and conceptual understanding of Supply Chain N	<i>l</i> lana	igen	ient.			
2 Introduce theoretical models and applications in the area of Supply Chain							
Management.		~			· .		
3. Equip the stu	dents with tools and concepts to manage and improve	Sup	oply	Cha	in to	or	
operational ex							
Course Outcome							
At the end of the c	zourse the student will be able to						
1 Understand s	upply chain need, and analyze the strategies, and driv	ers (of ne	∽rf∩r	mar	ICE	
of the supply of	chain			21101	man	100	
2. Evaluate diffe	rent distribution and network design options.						
3. Analyze the in	npact of information in achieving coordination.						
4. Optimize inve	ntory level in a Supply Chain.						
5. Evaluate diffe	rent transportation modes and pricing strategies.						
6. Analyze the c	challenges in the global Supply Chain network as wel	ll as	in ı	main	Itain	ing	
sustainability o	of the Supply Chain.					0	
Module:1 Intro	duction to Supply Chain Management			5	hοι	ırs	
Definition – Stage	s - Objective - Importance of SC Decisions - Decision	Pha	ses	- Pr	oces	SS	
views of a SC							
Module:2 Strate	egic Fit and Drivers of Performance			6	hοι	Irs	
SC Strategies -	Achieving strategic fit - Uncertainty and Capabilities of	of S	C -	Step	os a	ind	
Challenges in ac	chieving the fit – Scope - Measures of performance	э-	Driv	ers	Of 3	50	
Module:3 Distr	ibution Systems and Networks			6	hou	ire	
Role of distribution	on – Influence of drivers on distribution systems - D	Distrik	outio	n N	etw	ork	
Options – Impact	of online sales on distribution	15011	Julie	11 11	Clivit	211	
Factors influencin	a network design decisions – phases in design decision	s - n	node	els –	faci	litv	
location – capacity	y allocation					,	
Module:4 Coor	dination and Technology in Supply Chain			6	hοι	ırs	
Lack of coordina	tion and Bullwhip Effect – Vendor Managed Inventory	/ and	d Co	ollab	orat	ive	
Planning, Foreca	sting and Replenishment - Role of IT in the supp	oly c	chair	1 —	Mad	cro	
processes - Cust	tomer Relationship Management –Internal supply cha	ain r	nana	ager	nent	ι —	
Supplier Relation	ship Management - Supply chain IT in practice – Fut	ure	of I	i in	sup	ply	
Chain.	ing 9 Managing Inventories in a Supply Chain			- 7	<u> </u>		
The role of evelo	ing & managing inventories in a Supply Chain		olo i	<u> </u>	nou	ırs ′	
Estimating cycle	inventory – related costs in practice – the role of sa	i Cyu afetv	inve	anto	nory rv ir	/ — 1 —	
supply chain – m	anaging safety inventory in a multi echelon supply cha	in _	esti	mati	na a	ind	
managing safety i	nventorv in practice.		000		.g c		
Module:6 Sour	Module:6 Sourcing, Transporting and Pricing of Products 7 hours						
Sourcing decision	is in supply chain – transportation in the supply cha	in –	tra	nspo	ortati	ion	
infrastructure - s	uppliers of transport services - transportation mode	s ar	nd tr	ade	-offs	; –	
pricing and revenue management in the supply chain.							
Module:7 Globa	al and Sustainable Supply Chains			6	hοι	ırs	
Trend towards glo	obalization - Challenges – Off shoring Decisions – Risk	and	l Un	certa	ainty	' in	
Global SCM -	Sources – Sustainability in Supply Chain – Role	and	imp	orta	ince	-	
sustainability pilla	rs and drivers – best practices.						

Mo	8.elub	Contemporary Issues				2 hours	
1010	uule.o	Contemporary issues				2 nouis	
			Total Loctura ha			45 hours	
			Total Lecture no	urs.		45 110015	
Tex	Text Book(s)						
1.	Chopra	a, S. and Meindl, P., S	Supply Chain M	anager	nent: Strateg	y, Planning &	
	Operat	ions, 2018, 7th edition, Pe	earson India Educ	ation S	Services Pvt. L	td., India.	
Re	ference	Books					
1.	Simchi	-Levi, D. Simchi-Levi, E. F	Ravi Shankar, and	d Kamir	nsky, P., Desig	gning & Managing	
	the Su	pply Chain: Concepts, Str	ategies & Case S	tudies,	2019, 3rd Edi	ition, McGraw-Hill,	
	New Y	ork.	Ũ		·		
2.	Janat	Shah, Supply Chain Man	agement, Text a	nd Cas	ses, 2016, 2 nd	¹ edition, Pearson	
	India E	ducation Services Pvt. Ltd	d., India.				
3.	Martin	Christopher, Logistics and	d Supply Chain M	lanager	ment, 2016, 5 ^t	th edition, Pearson	
	Education Limited, UK.						
Мо	Mode of Evaluation: CAT, Digital Assignment, Quiz, FAT						
Re	Recommended by Board of Studies 09-03-2022						
Ар	proved b	y Academic Council	No. 65	Date	17-03-202	2	

BMEE316E	Industrial Robotics	L	Τ	Ρ	С		
		3	0	2	4		
Pre-requisite	BMEE207L, BMEE207P	Syllabu	is ve	ersi	on		
			1. 0				
Course Objectives							
1 To impart knowledge on the fundamentals of industrial robot types and their positioning							
systems							
2. To impart the	2. To impart the mathematic foundation of robot manipulators, trajectory planning, and						
control.	······································			,			
3. To provide kn	owledge to design, fabricate, and control the manipul	ator rob	otics	s wi	th		
gripper system	l.						
Course Outcome							
At the end of the c	course, the student will be able to	t knowle	dao	of	the		
nositioning sys	tem		suge	011	liie		
2. Represent the	rigid body motion and its transformation mathematically	_					
3. Solve and mod	lel the kinematics equations of various manipulator conf	guratior	IS.				
4. Solve and m	nodel the differential motion and dynamics of va	arious r	nani	pula	tor		
configurations.							
5. Compute the c	ollision-free trajectory planning.						
6. Identify the cha	allenges and control problems in manipulator robotics.	-					
7. Design and fac	bricate the gripping system for selected robot application	5.					
Module:1 Anat	omy and Positioning System of robot		5	hoi	Jrs		
Introduction to I	ndustrial robotics – Manipulator configuration (exam	ples w	th p	rod	uct		
specification): two	b link planar, Cartesian, Cylindrical, Polar, Articulated,	SCARA	Del	ta a	ind		
Stewart platform -	- CAD modelling of manipulator configuration (students	by own)	– A	naly	sis		
of Positioning Sys	tems (Actuator + Gear reduction unit): open-loop study	with step	oper	mot	tor,		
Closed-loop study	y with servo motor – Precision in Positioning system:	control	reso	Diutio	on,		
Module:2 Confi	iguration space and Rigid body motion	1	4	hoi	irs		
DOF – C-space	Topology and representation velocity constraints – I	Rigid bo	- dv N	Aoti	on:		
Description of pos	sition, orientations and frames – Changing descriptions f	rom fran	ne to	fra	me		
(Homogeneous m	natrix) – Operation: Translation, rotation (rotation and	Euler r	natri	x) a	ind		
transformation – D	Denavit-Hartenberg representation – Numerical.			_			
Module:3 Rob	ot kinematics		8	hοι	ırs		
Forward and Invel	rse kinematics: Two link planar (RR), cylindrical robot (R	.PP) and	1				
anticulated ann (R	RR) with Modelling and 3D virtual realization – other ma	nipulato	is				
Module:4 Diff	erential motion and dynamics of robot	<u></u> T	8	hoi	irs		
Angular velocity	– Velocity kinematic: Jacobian for 2 link planar (RPF), cyling	drica	l rol	bot		
(RPP) and articul	lated arm (RRR) – Forward and inverse dynamics of	simple	pen	dulu	ım,		
double stage pend	dulum and two link planar.	•	•				
Module:5 Mani	pulator Trajectory planning		7	hοι	Jrs		
Path Planning –	Trajectory planning – Classification of Trajectory plan	ning -	Join	spa	ace		
schemes: Cubic	polynomials – Cubic polynomials via point – Higher o	rder pol	ynon	nials	5 — .:+L		
Cartesian naths -	two link planar trajectory planning	etric pro	neid	IS W	/11/1		
Module:6 Man	ipulator control	Τ	5	hoi	ırs		
Linear control of	manipulator: second-order linear system, control of se	cond or	der s	syste	em		
trajectory followin	g control, disturbance rejection – Non-linear control: C	control p	oroble	ems	in		
manipulators, mu	lti-input and multi-output control system – Lyapunov	stability	ana	lysis	s –		

ada	ptive co	pntrol.	
Мос	dule:7	Gripper Design	6 hours
Grip	oper de	finitions and conceptual basics – Grasping in Natural system –	Prehension
stra	tegy –	Gripping procedure, conditions and force - Gripper Flexibilit	y – Gripper
clas	sificatio	on – Requirements and gripper characteristics – Planning and	selection of
grip	pers –	Impactive mechanical grippers: Single and multi-grippers- Ingress	ve gripper –
Astr	rictive p	rehension – Special grippers: Microgrippers, soft grippers, complianc	e gripper.
Moo	dule:8	Contemporary Issues	2 hours
		Total Lecture hours:	45 hours
Tex	t Book		
1.	Craig,	John. J. (2008), Introduction to Robotics: Mechanics and Contro	I, Second
	Edition	, Pearson Education, New Delhi.	
Ret	erence	Books	
1	Bruno	Siciliano (2010) Robotics Modelling, Planning and Control, Springer	Verlag
	Londo	n Limited 2010.	
2	Mikell	P. Groover, Mitchell Weiss (2013), Industrial Robotics Technology –	
	Progra	mming and Applications, McGraw Hill Edition 2.	
3	F. C. I	Park and K. M. Lynch (2017), Introduction To Robotics Mechanics, P	anning, And
	Contro	I, First Edition, Cambridge University Press.	
4	Gareth	J.Monkman, Stefan Hesse (2007) Robot Grippers, WILEY-VH Verla	g GmbH &
	<u>Co, Ke</u>	GA, Weinneim.	
IVIOC			
Indi		Experiments	0.1
1.	Devel	op the code to realize the Forward kinematics equation for the	3 nours
	select	ed manipulator configuration. <u>Matiap:</u> Minimum 2DOF to Maximum o	ſ
	4DOF		0.1
2.	Devel	op the code to realize the inverse kinematics equation for the	3 nours
		ed manipulator configuration. <u>Matiab</u> : Minimum 2DOF to Maximum o	
2		on the eads to realize the trajectory planning of single link arm using	2 houro
5.		nolynomial equation and plot the response of position, velocity and	Shours
	accele	polynomial equation and plot the response of position, velocity and aration. Matlab/Python	
Δ	Devel	on the code to realize the trajectory planning of single link arm using	3 hours
	linear	function with parabolic blend (LEPR) and plot the response of	0 nours
	nositio	n velocity and acceleration. Matlab/Python	
5	Realiz	ration of selected manipulator configuration in the virtual	3 hours
0.	enviro	nment, [Coppeliasim, gazebo simulator, Sim-Mechanics (Matlab-	o nouro
	Simul	ink) and any other virtual simulator.	
6.	Teach	the industrial robot with appropriate Tool Centre Point (TCP) valve	3 hours
	and U	SER Frame valve for the given tool and targeted location using three	
	point	teaching approach. [Simulation/Robo machine].	
7.	Progra	am the Industrial robot to execute a 2D profile in a selected plane by	3 hours
	record	ling the vertices of the 2D geometry profile using target teaching	
	appro	ach. [Simulation/Robo machine].	
8.	Progra	am the Industrial robot to execute a 2D profile in a selected plane	3 hours
	using	position register, offset and other special functions (Target	
	calcul	ation approach). [Simulation/Robo machine].	
9.	Interfa	ace an End of Arm Tool (EOAT) for the selected industrial robot and	3 hours
	estab	ish the Digital Input connection to communicate the EOAT.	
	Simu	lation/Robo machine].	
10.	Desig	n the robotic work cell for the given application along with all system	3 hours
	integr	ation components. Estimate the cycle time info with task profile.	
	Simu	lation only].	
		Total Laboratory Hour	s 30 hours

Textbook				
Lab Manual prepared by the Faculty	Lab Manual prepared by the Faculty member.			
Mode of assessment: Viva-voce exar	Mode of assessment: Viva-voce examination, Lab performance & FAT			
Recommended by Board of Studies 09-03-2022				
Approved by Academic Council	No. 65	Date	17-03-2022	

BMEE319E	Advanced Materials Characterization Methods	LTPC				
Due no maiolite						
Pre-requisite	BMEE209L, BMEE209P	Syllabus version				
Course Objectiv		1.0				
	es incidht into the structural information using variou					
technique						
2 To understand	d theory and practice of diffraction phenomena					
3. To understand	d the various characterization techniques available for m	etallic materials.				
Course Outcome	95					
At the end of the	course, the student will be able to					
1. Describe the	various specimen preparation methods for microscopic	and spectroscopic				
techniques.	fraction phonomone and indeving of materials					
2. Explain the di	different structural information by various microscopy					
J. Elucidate the	operation of SEM_TEM and EBSD					
5 Explain the a	dvanced characterization techniques such as <i>insitu</i> a	nd other combined				
techniques						
6. Apply advan	ced lighting, thermal, chemical and imaging technic	ques for materials				
characterizati	on.	1				
Module:1 Strue	ctural Analysis	5 hours				
Specimen Prepa	ration Techniques – Polishing and Etching, Developmer	nt of microstructure,				
Grain Size Measu	irements, Quantitative Metallography.	-				
Module:2 Diffra	action and Imaging	7 hours				
Crystallography,	Bragg's Law, Radiation Interaction and Respons	e Signals, X-Ray				
Diffraction, XRL	Analysis, Phase Analysis, Powdered and I e	extured Diffraction				
aberration and a	stigmatism: X_Ray reflectivity. Edward sphere, Kikuch	i nattern Indexing				
Texture of materia	als	i pattern, indexing,				
Module:3 Micr	oscopy and Spectroscopy	7 hours				
Basic principles of	of operation (optical, SEM, AFM, TEM), Principles of O	ptical and Electron				
Microscopy, Estir	nation and comparison of grain size, grain boundary ar	ea through various				
microscopes, Vo	plume fraction, Structure revealed through various	microscopy and				
comparison. Basi	c principles of operation of EDS, WDS, EPMA, and ToF	SIMS.				
Module:4 Adva	anced Characterization Techniques	7 hours				
Introduction to C	Drientation Imaging Microscopy (OIM), 3-Dimensional	FIB/EBSD, Insitu				
testing facilities,	Nano indentation, Combined spectroscopy and micro	oscopy techniques,				
l'emperature rela	ated measurement (IG+DIA) and DSC, Thermom	echanical physical				
simulator, Gleeble	e, Neutron diffraction techniques.	C haven				
Microscopic Mot	ace Properties	6 nours				
Characterizing Su	indus for Characterizing Surface Properties, Speciros	copic methods for				
	trical Characterization Techniques	5 hours				
Electrical resistivi	ty in bulk and thin films. Hall effect. Magnetoresistance	5 110013				
Module:7 Mag	netic Characterization Techniques	6 hours				
Introduction to N	Agnetism, Measurement Methods. Measuring Magnet	etization by Force				
Measuring Mag	Measuring Magnetization by Induction method. Types of measurements using					
magnetometers: M-H loop, temperature dependent magnetization, time dependent						
magnetization, M	easurements using AC susceptibility, Magneto-optical k	Kerr effect, Nuclear				
Magnetic Resona	nce, Electron Spin Resonance.					
Module:8 Cont	emporary Issues	2 hours				
Tota	Lecture hours:	45 hours				

Tex	t Books				
1.	Materials Characterization, 2019, V	/olume 10, AS	SM Handb	book.	
2.	Dalip Singh Verma, Latif Ullah Kha	an Shalendra	Kumar, S	Sher Bahadar ł	Khan, Handbook
	of Materials Characterization, , 201	8, Springer Ir	nternation	al Publishing.	
Ref	erence Books				
1.	Ranganathan N., Materials Chara	cterization M	odern Me	thods and Ap	olications, 2016,
	CRC press.				
Mod	de of Evaluation: CAT, Written assig	nment, Quiz,	FAT		
Ind	icative Experiments				
1.	Metallographic preparation of meta	allic specimer	าร		
2.	Grain Size determination by linear	intercept me	thods		
3.	Observation of structures by optica	al microscopy	and Sca	nning Electron	Microscopy
4.	Demonstration and Indexing of XF	RD peaks			
5.	XRD peak identification by various	s methods: ma	anual, dat	tabase and sof	tware
6.	Study of fracture surface of materi	als by Scann	ing Electr	on Microscopy	
7.	Image formation (bright and dark)	and interpret	ation by S	Scanning Electr	on Microscopy
8.	Demonstration of Nano Indentation	n and X-Ray	Diffractior	n Residual stre	SS
9.	Demonstration of Spectroscopic a	nalysis (ICPN	IS and XI	PS)	
10.	Demonstration of Transmission El	ectron Micros	copy and	Electron Back	scattered
	Diffraction				
		Т	otal Labo	oratory Hours	30 hours
Tex	t book				
Lab	Lab manual prepared by the Faculty member				
Mod	Mode of assessment: Continuous assessment, FAT, Oral examination				
Rec	commended by Board of Studies	09-03-2022			
Арр	proved by Academic Council	No. 65	Date	17-03-2022	

BMEE403L	MEE403L Design of Jigs Fixtures and Press Tools L T P C					
			3	0	0	3
Pre-requisite		Nil	Sylla	bus v	ersio	วท
				1.0		
Course Object	ctive	S:				
1. Io impart	kno	wledge on the principles of jigs and fixtures design	i, locat	ing pri	ncipl	les,
	eme	nts and clamping Devices.				
2. To design	2. To design and analyze Jigs, Fixtures and dies for press working.					
S. TO select a						
Course Outco	Course Outcome:					
At the end of t		uise, the student will be able to	a and c	ecom	alv	
2 Design an	nequ nd de	velop locating and clamping systems for the given of	2 and 2	ent h	ny. ased	on
geometrica	al an	d dimensional features.	Jompor		1000	OII
3. Design an	d de	velop jigs fixtures, press tools and forming dies for va	arious	manuf	actur	ring
processes	i.					Ŭ
4. Design of	smai	t work holding for industrial applications.				
5. Suggest a	nd d	esign appropriate tools for various manufacturing proc	cesses.			
Modulo:1	Too	l Dosign			1 ho	ure
Tool engineer	ing _	tool classifications— tool design objectives — tool design	ian in r	nanufa	<u>+ 110</u>	na-
challenges an	id red	uirements- standards in tool design-tool drawings -su	irface f	inish –	fits	ng
and tolerances	s - to	oling Materials.	indee i		me	
Module:2	Loc	ating elements			4 ho	urs
Jigs and Fixtu	res-	basic elements – degrees of freedom- principles of lo	cation -	- locat	ing	
methods and	devid	es – function and advantages of jigs and fixtures -red	lundan	locati	on.	
Module:3	Cla	mping elements			4 ho	urs
Principles of c	lamp	ping – mechanical actuation – pneumatic and hydrauli	c actua	tion st	anda	ard
parts – types o	of cla	amps-clamping force calculation-design of clamps-sma	art wor	k holdi	ng	
devices.	Dee	ine of line			7 6 6	
Types of jige:	Des	Ign of Jigs	turnov	or not	<u>í no</u>	urs iia
hushes types	plate	, later, channel, box, post, angle plate, angular post,	air ope	rated ii	JIYS-	Jig
design and de	s ur u svelo	nment of ites for specified components	an ope	aleu j	ys -	
Module:5	Des	ian of Fixtures			8 ho	urs
General princ	iples	of boring, lathe, milling and broaching fixtures - gr	indina.	plann	ina a	and
shaping fixture	es, a	ssembly, inspection and welding fixtures- modular fix	tures –	quick	char	nge
fixtures-desigr	n áno	d development of fixtures for specified component.		•		0
Module:6	Des	ign of Press Tool and Dies			3 ho	urs
Press working	g te	rminologies – operations – types of presses – p	oress a	access	ories	s –
computation of	of pi	ress capacity – strip layout – material utilization ·	– shea	iring a	ictior	ר ר –
clearances – p	press	s work materials – centre of pressure- design of variou	us elen	nents c	of die	×s −
design of blan	iking	, piercing dies- compound and progressive dies - des	ign coi	nsidera	ation	s in
forging, extrus	sion,	casting and plastic dies.				
Module:/	Des	Ign of Forming Dies		otiono	<u>3 no</u>	urs
of bonding dic	lwee	n bending and drawing – blank development for abov	d indir	ations	– typ	pes
nads - ejecto		variables affecting metal flow in drawing operations		-οι – μ / dia in	ncost	ure 's
draw beads- ironing – design and development of bending forming drawing reverse						
redrawing and	d co	mbination dies – blank development for axisvmme	tric. re	ctana.	ilar a	and
elliptic parts –	sing	le and double action dies.	,			
Module 8	Con	temporary issues:			2 ho	urs
		······································				

				Total Le	cture hours:	45 hours	
Text E	Text Books						
1.	Donal	dson C, Tool Design, 2012	2, Tata McGrav	w-Hill.			
2.	Edwa	rd G Hoffman, Jigs & F	ixture Design,	2004, Tł	nomson – Del	lmar Learning,	
	Singa	pore.					
Refer	ence B	ooks					
1.	Kemp	ster, Jigs & Fixtures Desig	jn, 1978, The E	English La	nguage Book S	Society.	
2.	Joshi,	P.H, Jigs & Fixtures, 2004	4, 2 nd Edition, ⊺	Fata McGr	aw-Hill Publish	ning Company	
	Limite	d, New Delhi.					
3.	Hiram	E Grant, Jigs and Fixture	, 2003, Tata M	cGraw-Hil	l, New Delhi.		
4	Funda	amentals of Tool Design, 1	983, CEEE Ec	lition, AST	ME.		
Mode	Mode of Evaluation: CAT, written assignment, Quiz, FAT.						
Recor	Recommended by Board of Studies 09-03-2022						
Appro	ved by	Academic Council	No. 65	Date	17-03-2022		

BMEE406E	Advanced Manufacturing Processes		L	Т	Ρ	С	
			3	0	2	4	
Pre-requisite	BMEE302L, BMEE302P, BMEE304L, BMEE304P Syllabus version						
			1	.0			
Course Objective	9S						
1. To impart kn processes.	owledge on the advancements of metal formin	ng and	met	al ca	asti	ng	
2. To give an i	nsight on specialized moulding process, microm	achining	i and	d fini	shi	ina	
processes with	potential applications in medical field.		,				
3. To facilitate s	tudents to understand the advanced machining	and hy	brid	macl	nini	ng	
processes.		•				•	
Course Outcome	S						
At the end of the c	ourse, the student will be able to						
1. Demonstrate t	he basics of advanced metal forming and metal cas	ting proc	cesse	s.			
Discuss variou	is advanced metal casting process with industrial ap	plicatior	ns.				
3. Select the ap	propriate machining process based on tool-world	kpiece i	ntera	ctior	n a	nd	
source of ener	gy for the end product.						
4. Recognize the	e material removal mechanism and process param	leters of	ultra	a-pre	CISI	on	
machining pro	cess and micromanulacium process.	opplicati	~ ~				
5. Identity and us	se various hybrid machining process for state of art a	application	on.				
Module:1 Adva	nced Metal forming Process			61		ire	
	Forming Methods: Classification Process P	rincinle	Δn	nlica	tion	ne	
Fauinment's Pro	cess Analysis and Die Design of Explosive For	mina S	tretcl	piica ו for	mir	13, na	
Contour roll formin	ng Laser Beam Bending and Laser Assisted Deep [Drawing, C	Micr	o Fo	rmi	ina	
Processes: Classi	fication. Process Principle and Applications of Conv	entional	Micr	o Fo	rmi	ina	
Processes, Uncor	iventional Micro-Forming Processes.						
Module:2 Adva	nced Metal casting Process			5 ł	າວບ	ırs	
Metal mould cast	ing basics, continuous casting, permanent mould	casting	j, pre	essur	e	die	
casting, Vacuum	mould casting, Evaporative pattern casting (EPC)- Hybrid	d and	d vad	cuu	m,	
Ceramic shell inve	estment casting.	-					
Module:3 Spec	ialized Molding Techniques			6 ł	າວບ	ırs	
Injection moulding	using pressurized gas assistance, Injection mould	ling usir	ng rea	actio	n g	as	
assistance, Injecti	on Moulding for Thin-Wall Applications, Multi-Mate	rial Inje	ction	Mou	ldir	٦g,	
Water-Assisted Fo	paming, Moulding by direct compounding, <u>Injection (</u>	<u>Compres</u>	<u>ssion</u>	Mou	<u>ldir</u>	<u>1g.</u>	
Ultrasonic Molding	g Technology: Recent Advances and Potential App	lications	in tr	ie Mo	edio	cal	
Industry, Variable	e Mold Temperature Technologies, Micro inject	ion mol	lding-	lssu	es	IN	
Molding Parts with	Microfeatures, Influencing Factors in Microinjection	1 Molding	g, Ap	plica	tior	าร.	
Module:4 Weld	Ing-Based Additive Manufacturing (WAM)	D		10	<u>10U</u>	Irs M	
Classification of V	VAM by motion controller, raw material and neat so	Jurce. Po	owae	r-beo	A C	IVI:	
(EBM) Wire food	based WAM: Wire and Laser Additive Manufactu					ng	
Ream Freeform F	abrication (EBE3) Wire and Arc Additive Manufactu	ring (W		, டா	500	UII	
Module:5 IIItra	-Precision Machining	<u>ning (ww</u>	v (ivi)	6 ł	וחו	irs	
Diamond turning-	mechanism of material removal - process Parame	ters an	d On	timiz	atic	<u></u>	
tool path strategie	s in surface generation- applications		u op	unnz	auc	л <u>-</u>	
Module:6 Micro	omanufacturing			7 1	າດມ	irs	
Focused ion bear	n (FIB) Micro-/Nano-fabrication Laser Micro struc	turina F	lot F	mbo	ssir	na	
Hot punching, Ro	ller Embossing, Applications-Micro optical devices	Micro	fluidi	c de	vice	es.	
Net Shape Mar	nufacture of Freestanding Ceramic Micro-com	ponents	thro	bugh	S	oft	
Lithography, mic	ro-fields-activated sintering technology (Micro-FA	AST). M	licror	nach	inir	ıg-	
Micro turning, M	icro grinding, Ultra Sonic Micromachining, Abra	sive W	ater	Jet	Mic	cro	
Machining, Chem	ical and Electro Chemical Micro Machining - El	ectric d	ischa	rge	mic	cro	

machining,	Laser Beam Micro Machining. Handling for Micromanufacturing.						
Module:7	Hybrid Machining Process (HMPs) 7 hours						
Classificati	on of Hybrid Machining process, Elements of Hybrid Machining Technology						
(Hybrid Ma	achine Tools, Hybrid Tooling, Hybrid Machining Processes, Metrology System,						
Work Han	Work Handling System, Process Monitoring Technique). Vibration assisted grinding,						
Vibration A	Assisted EDM. Ultrasonic assisted ECM. Heat Assisted HMPs. Laser assisted						
turning. la	ser-assisted ECM(LAECM). Laser-Assisted EDM (LAEDM). Magnetic Field						
assisted E	DM. Magnetic field Assisted electro discharge deposition (EDD) process. Electro						
chemical d	ischarge machining (ECDM). Electro chemical honing. Electro chemical discharge						
arindina							
Module:8	Contemporary Issues 2 hours						
mounte.o							
	Total Lecture hours: 45 hours						
Toxt Book							
	S Wien and Schmid Manufacturing Drassass for Engineering Materials, 2017, 5 th						
1. Kaipa editio	n, Prentice Hall.						
2. Hass	an Abdel-Gawad ElHofy, Fundamentals of Machining Processes (Conventional						
and N	Ionconventional Processes), 2018, 3 rd Edition, CRC press.						
3. A. Gh	nosh, and A.K. Mallik, Manufacturing Science, Affiliated East-West Press Pvt. Ltd.						
New	Delhi.						
4. V.K.J	ain, Micro manufacturing processes, 2013, CRC Press.						
Reference	Books						
1. Balas	ubramaniam R, Sarepaka RV, Subbiah S. Diamond turn machining: Theory and						
practi	ce. 2017, CRC press.						
2. Heine	R. W., Loper C. R., and Rosenthal P. C. Principles of Metal Castings, 1997, 2 nd						
Editio	n. Tata McGraw Hill. New Delhi.						
3 Murty	R I Precision Engineering in Manufacturing New Age International (P)						
l imite	ed New Delhi						
4 Mark	J. Jackson Micro and Nano fabrication 2010 CRC Press Taylor & Francis						
Grout	0						
5 Yi Qi	n Micro-Manufacturing Engineering and Technology 2010 Elsevier Publisher						
ISBN	· 978-0-8155-1545-6						
6 Muan	merKoc TrugelOzel Micro manufacturing Design and manufacturing of micro						
produ	icts 2011 Wiley Publishers						
Mode of Ev	valuation: CAT Written assignment Quiz FAT						
Indicative	Experiments						
1 Learn	the forming characteristics of sheet metal specimens with Deep Drawing						
onera	tion						
2 Extru	de a cylindrical cup by backward extrusion, determine the load variation with the						
thickr	hess of the bottom of the cup						
3 Evalu	ate the machinability of difficult to machine materials by FDM die sinking and						
	milling						
	nate the process parameters (Wire feed wire tension wire material W/M/P) for						
	ining the given material by WEDM process						
5 Study	on Electric discharge coating process by P/M tool and conventional tool						
	an Miere turning response nerve the strength to						
	on micro turning process parameters on the given job.						
	nmental investigation on metals and alloys by micro drilling process and analyzing						
the re	esponses and tool wear.						
8. Exper	rimental Analysis on drill preparation by micro drilling on natural fiber composites						
and s	tuaying the rounaness error.						
9. Exper	rimental study on slot preparation by micro milling on metals and alloys.						
10. Expe	rimental study on slot preparation by micro milling on natural fiber composites.						
	Total Laboratory Hours 30 hours						

Text book					
Lab manual prepared by the Faculty member					
Mode of assessment: Continuous assessment, FAT, Oral examination					
Recommended by Board of Studies	09-03-2022				
Approved by Academic Council	No. 65	Date	17-03-2022		

BMEE399J	E399J Summer Industrial Internship			L 0	Т 0	P 0	C 1	
Pre-requisite	NIL				Syllabus vers			ion
•					1.0			
Course Objectiv	es:							
1. The cours	se is designed so as	s to expose the s	tudents to	o industry	envirc	onmer	nt an	d to
take up or	n-site assignment as	s trainees or inter	ns.					
0								
Course Outcom	e:							
1. Demonstr	ate professional and	d ethical respons	ibility.					
2. Understar	nd the impact of eng	ineering solution	s in a glol	bal, econo	omic, e	nviro	nmer	ntal
and societ	tal context.							
Develop the second sec	he ability to engage	in research and	to involve	in life-lon	g learr	ning.		
Comprehe	end contemporary is	sues.						
Module Content								
Four weeks of work at industry site.								
Supervised by an	expert at the indus	try.						
<u>´</u>		, ,						
Mode of Evaluation: Internship Report, Presentation and Project Review								
Recommended b	y Board of Studies	09-03-2022						
Approved by Aca	demic Council	No. 65	Date	17-03-2	022			

BMEE497J	Project		Т	Ρ	С	
	Fioject - I	0	0	0	3	
Pre-requisite	NIL	Syllabus version				
		1.0				

Course Objectives:

To provide sufficient hands-on learning experience related to the design, development and analysis of suitable product / process so as to enhance the technical skill sets in the chosen field.

Course Outcome:

- 1. Demonstrate professional and ethical responsibility.
- 2. Evaluate evidence to determine and implement best practice.
- 3. Mentor and support peers to achieve excellence in practice of the discipline.
- 4. Work in multi-disciplinary teams and provide solutions to problems that arise in multidisciplinary work.

Module Content

Project may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities.

Can be individual work or a group project, with a maximum of 3 students.

In case of group projects, the individual project report of each student should specify the individual's contribution to the group project.

Carried out inside or outside the university, in any relevant industry or research institution.

Publications in the peer reviewed journals / International Conferences will be an added advantage.

Mode of Evaluation: Assessment on the project - project report to be submitted, presentation and project reviews

Recommended by Board of Studies	09-03-2022		
Approved by Academic Council	No. 65	Date	17-03-2022

	Project – II / Internship		L	Т	Ρ	С		
DIVIEE490J			0	0	0	5		
Pre-requisite	NIL				Syllabus versio			
Course Objective	35.					1.0)	
To provide sufficie	ent hands-on learning	a experience r	elated to	the desig	n, dev	elopm	ient a	and
analysis of suitabl	e product / process s	o as to enhand	ce the tec	hnical ski	l sets	in the	cho:	sen
field.								
Course Outcome):							
1 Formulate	specific problem s	statements for	well-det	fined rea	l life	prob	lems	
with reas	onable assumptions a	nd constraints				1		
2. Perform lite	erature search and / c	or patent searc	h in the ar	ea of inte	rest.			
3. Conduct e	xperiments / Design	and Analysis	/ solution	iterations	and	docun	nent	the
results.								
4. Perform er	ror analysis / benchm	arking / costing	g.					
5. Synthesize	e the results and arrive	e at scientific c	onclusion	s / produc	cts / sc	olution	ı.	
6. Document	the results in the form	n of technical r	eport / pre	esentation	•			
Module Content								
1. Project may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of								۱& sof
 data, software Project can be credits as per 	development, applied e for one or two seme the academic regulati	d research and esters based or lons	any othe n the com	r related a pletion of	requir	es. red nu	umbe	r of
3. Can be individ	ual work or a group p	roiect. with a n	naximum	of 3 stude	nts.			
4. In case of gro	up projects, the indivi	dual project re	port of ea	ch studer	it shou	uld sp	ecify	the
individual's co	ntribution to the group	o project.			-l i			
5. Carried out inside or outside the university, in any relevant industry or research							ircn	
 Publications in the peer reviewed journals / International Conferences will be an added 								
advantage.								
Mode of Evaluation: Assessment on the project - project report to be submitted								
presentation and project reviews.								
Recommended by	/ Board of Studies	09-03-2022						
Approved by Acad	demic Council	No. 65	Date	17-03-20)22			