

SCHOOL OF MECHANICAL ENGINEERING

B.Tech Mechanical Engineering Specialization in Automotive Engineering (BMA)

Curriculum & Syllabi (2021-2022 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

• Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

- World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.
- **Cutting edge Research:** An innovation ecosystem to extend knowledge and solve Critical problems.
- Impactful People: Happy, accountable, caring and impactful workforce and students.
- Rewarding Co-Creations: Active collaboration with national & international industries
 & universities for productivity and economic development.
- Service to Society: Service to the region and world through knowledge and Compassion.

VISION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

• To be a leader in imparting world class education in Mechanical Engineering, with a vision to nurture scientists and technocrats of the highest caliber engaged in global sustainable development.

MISSION STATEMENT OF THE SCHOOL OF MECHANICAL ENGINEERING

- To create and maintain an environment fostering excellence in instruction & learning, Research and Innovation in Mechanical Engineering and Allied Disciplines.
- To equip students with the required knowledge and skills to engage seamlessly in higher educational and employment sectors ensuring that societal demands are met.

B.Tech Mechanical Engineering Specialization in Automotive Engineering

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1. Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems.
- Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- 3. Graduates will function in their profession with social awareness and responsibility.
- 4. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- 5. Graduates will be successful in pursuing higher studies in engineering or management.
- 6. Graduates will pursue career paths in teaching or research.

B.Tech Mechanical Engineering

Specialization in Automotive Engineering

PROGRAMME OUTCOMES (POs)

- **PO_1**: Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO_2**: Problem Analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- **PO_3**: Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO_4: Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions for complex problems
- PO_5: Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **PO_6**: The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and

the consequent responsibilities relevant to the professional engineering practice.

- **PO_7**: Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO_8**: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO_9**: Individual and Teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO_10**: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO_11**: Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO_12**: Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

B.Tech Mechanical Engineering

Specialization in Automotive Engineering

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of B. Tech. Mechanical Engineering Specialization in Automotive Engineering programme, graduates will be able to

- **PSO_1**: Model, design and analyse mechanical systems and components taking into account social, economic and environmental implications.
- **PSO_2**: Realize components and products using appropriate materials and machine tools.
- **PSO_3**: Work professionally in Mechanical, Automotive and related systems.

Bachelor of Technology in Mechanical Engineering Specialisation in Automotive Engineering School of Mechanical Engineering

Programme	e Credit Structure		(Cre	edit	S	BENG102P BSTS101P	Technical Report Writing Quantitative Skills Practice I	0 0			1 1.5
Foundation	Core Courses			1	56		BSTS101P BSTS102P		0			1.5
	ences and Mathematics				24				-			1.5
	ng Sciences				24 17		BSTS201P		0			
-	es, Social Sciences and				1/		BSTS202P		0			1.5
	ent (HSM)				15		BFLE200L	Foreign Language	2	-		2
-	inked Engineering Science Cour				13		BHSIMZOOL	HSM Elective	3	0	0	3
		ses			13 49							
-	Core Courses				49 21		Discipline-l	inked Engineering Science Cour	ses	5		13
	lective Courses											
	ve Courses				03		BMEE209L	Materials Science and Engineer-	3	0	0	3
Project and					09			ing				
	d Credit Requirement				51		BMEE209P	Materials Science and Engineer-	0	0	2	1
Non-Grade	d Credit Requirement				11			ing Lab				
							BMEE211L	Engineering Optimization	2	1	0	3
Basic Scier	nces and Mathematics				24		BMEE407L	Artificial Intelligence	2	1	0	3
		Т	т	Р	С		BMEE308L	Control Systems	2	0	0	2
BPHV101	Engineering Physics		0		3		BMEE308P	Microcontrollers and Interfacing	0	0	2	1
	Engineering Physics Lab				1			Lab				
	Engineering Chemistry				3							
	Engineering Chemistry Lab				1		Dissipling					49
BMAT101L					3		Discipline	Core Courses				49
	Calculus Lab				1		BMFF2021	Mechanics of Solids	З	0	0	3
BMAT101P			1					Mechanics of Solids Lab	-	-	-	1
DIVIAI 102L	Transforms	5	Ŧ	0	4			Engineering Thermodynamics				3
		2	1	^	4			Fluid Mechanics and Machines				3
BIVIAIZUIL	Complex Variables and Linear	3	Т	0	4			Fluid Mechanics and Machines				1
	Algebra	2	0	^	2		DIVILL204F	Lab	0	0	2	т
	Probability and Statistics		0				BMEE206D	Machine Drawing Lab	0	Λ	л	2
BINIAIZUZP	Probability and Statistics Lab	0	0	2	T			Kinematics and Dynamics of	-	-		3
							DIVIELZUTE	Machines	5	0	0	5
Engineerin	g Sciences				17			Kinematics and Dynamics of	0	~	r	1
		_	_		_		DIVICEZUTP	Machines Lab	0	0	2	Т
BMEE102P	Engineering Design Visualisa-	0	0	4	2				2	~	~	3
	tion Lab						BIMEEZIOL	Mechatronics and Measurement	3	0	0	3
	Basic Electrical Engineering		-	-	2			Systems	~	~	2	4
	Basic Electrical Engineering Lab				1		BIMEEZIOP	Mechatronics and Measurement	0	0	2	1
	Basic Electronics				2		D1151111111111111	Systems Lab	~		_	
	Basic Electronics Lab				1			Design of Machine Elements				4
	Engineering Mechanics				3			Metal Casting and Welding				3
	Computer Programming: Python				3			Metal Casting and Welding Lab				1
BCSE103E	Computer Programming:Java	1	0	4	3			Thermal Engineering Systems				3
							BMEE303P	Thermal Engineering Systems	0	0	2	1
								Lab				
Humanities	, Social Sciences and Manageme	nt			15			Metal Forming and Machining				3
numunites	, social sciences and manageme	-110			15		BMEE304P	Metal Forming and Machining	0	0	2	1
BENG101N	Effective English Communica-	0	0	4	2			Lab				
	tion (NGC)	-	-	-	_		BMEE306L	Computer Aided Design and Fi-	3	0	0	3
BENG101	Technical English Communica-	2	0	0	2			nite Element Analysis				
	tion	-	2	5	<u> </u>		BMEE306P	Computer Aided Design and Fi-	0	0	2	1
BENG101P	Technical English Communica-	Λ	0	2	1			nite Element Analysis Lab				

BMEE401L Computer Integrated Manufac- turing	3	0	0	3	Open Elective Courses	03
BMEE401P Computer Integrated Manufac- turing Lab	0	0	2	1	Engineering Disciplines Projects Sciences Hum ties Social Sciences Liberal Arts Economics Final	
BMEE402L Heat and Mass Transfer	3	0	0	3	Entrepreneurship Management Skills Reading	•
BMEE402P Heat and Mass Transfer Lab	0	0	2	1		
Discipline Elective Courses				21	Project and Internship	9
					BMEE399J Summer Industrial Internship	1
BMEE213E Automotive Vehicles		-	2	-	BMEE497J Project-I	3
BMEE214E Automotive Electricals and Elec-	2	0	2	3	BMEE498J Project-II / Internship	5
tronics					BMEE499J One Semester Internship	14
BMEE325L Internal Combustion Engines	3	0	0	3		
BMEE327E Vehicle Dynamics	2	0	2	3	Non-Graded Credit Requirement	11
BMEE328E Hybrid and Electric Vehicles	2	0	2	3		
Technology					BMEE101N Introduction to Engineering	1
BMEE329E Noise, Vibration, and Harshness	2	0	2	3	BSSC101N Essence of Traditional Knowl-	2
BMEE404L Design of Transmission Systems	2	1	0	3	edge	
BMEE409E Computational Fluid Dynamics	2	0	2	3	BSSC102N Indian Constitution	2
BMEE413L Design of Chassis Components	2	1	0	3	BEXC100N Extracurricular Activities	2
BMEE414L Vehicle Body and Aerodynamics	3	0	0	3	BCHY102N Environmental Sciences	2
Engineering					BHUM101N Ethics and Values	2
BMEE415L Electrical Machines, Drives and	3	0	0	3		
Power Systems						
BMEE416L Autonomous Vehicle Systems	3	0	0	3		

BCHY101L	Engineering Chemistry	L	т	Ρ	С
		3	0	0	3
Pre-requisite	NIL S	yl∣ab	bus	versi	on
			1.0)	
Course Objecti					
	tudents to have fundamental understanding of the basic cond	cepts	sof	differ	ent
disciplines o					
	avenues for learning advanced concepts from school to unive			_	
•	r students with emerging concepts in applied chemistry to be	use	tui II	า	
-	societal needs analytical and computational ability with experimental skills	to cr	osto		
	competent in basic science and its by-product of its application		cuic		
	portunities to create pathways for self-reliant in terms of know		e ar	nd	
higher learn			• •		
Course Outcon					
1. Understand	I the fundamental concepts in organic, inorganic, physica	l, ar	nd a	nalyt	ical
chemistry.					
	e principles of applied chemistry in solving the societal issues	i.			
	nical concepts for the advancement of materials.				
	the fundamental principles of spectroscopy and the related a				
	w materials, energy conversion devices and new pro	otect	ive	coat	ling
techniques.				0 -	
	emical thermodynamics and kinetics	:		<u>6 ho</u>	
	dynamics - entropy change (selected processes) – spontane bbs free energy - heat transfer; Kinetics - Concept of activa				
	Arrhenius equation- effect of catalysts (homo and heterogen				
	elis-Menten Mechanism).	cou.	<i>,</i> –	L112 y	mç
·	al complexes and organometallics			6 ho	iirs
	lexes - structure, bonding and application; Organometallication;	s _			
	re and applications of metal carbonyls, ferrocene and G				
	y (haemoglobin, chlorophyll- structure and property).				,
	anic intermediates and reaction transformations			6 ho	urs
Organic interme	ediates - stability and structure of carbocations, carbanion	าธ่อ	nd	radic	als;
	naticity) and heterocycles (3, 4, 5, 6 membered and fused sy				
	for making useful drugs for specific disease targets (two	exa	ampl	es) a	and
- · ·	elimination, substitution and cross coupling reactions).				
	rgy devices			<u>6 ho</u>	
	and electrolytic cells – electrode materials with examples (s				
	blyte interface- chemistry of Li ion secondary batteries, supe				
	I solid oxide fuel cell (SOFC); Solar cells - photovoltaic cel mical cells and dye-sensitized cells.	r (sii	COL	pase	. ;
	ictional materials			7 ho	urs
	AB_2 , ABO_3 type (specific examples); Composites - types	and			
	nosetting and thermoplastic polymers – synthesis and appli		-	-	
	nducting polymers- polyacetylene and effect of doping – che				
	to OLEDs; Nano materials – introduction, bulk vs nano (qua				
	n-up approaches for synthesis, and properties of nano Au.				•
	ctroscopic, diffraction and microscopic techniques			5 ho	urs
Fundamental c	oncepts in spectroscopic and instrumental techniques	; Pr	inci	ole a	and
	JV-Visible and XRD techniques (numericals); Overview of va 8, NMR, SEM and TEM.	rious	s tec	hniq	Jes
Module:7 Indu	ustrial applications			7 ho	ure
					ui S

Water purification methods - zeolites, ion-exchange resins and reverse osmosis; Fuels and combustion -LCV, HCV, Bomb calorimeter (numericals), anti-knocking agents); Protective coatings for corrosion control: cathodic and anodic protection - PVD technique; Chemical sensors for environmental monitoring - gas sensors; Overview of computational methodologies: energy minimization and conformational analysis.

				analysis		
		Contemporary topics				2 hours
Gue	est lectu	ires from Industry and, F	Research and De	evelopment O	rganizations	
				Total Le	cture hours:	45 hours
	tbook					
1.		dore E. Brown, H Euge	-			
		lward, Matthew E. Stoltz		The Central	Science, 2017	, 14th edition,
	Pears	on Publishers, 2017. Uk	<			
Ref	erence	Books				
1.	Peter	Vollhardt, Neil Schore,	Organic Chemis	stry: Structure	and Function,	2018, 8th ed.
	WH F	reeman, London				
2.	Atkins	s' Physical Chemistry: I	nternational, 20	18, Eleventh	edition, Oxf	ord University
	Press	; UK				-
3.	Colin	Banwell, Elaine McCasl	h, Fundamental	s for Molecula	ar Spectroscop	y, 4th Edition,
		aw Hill, US				-
4.	Solid	State Chemistry and its	Applications, Ar	nthony R. We	st. 2014, 2nd	edition, Wiley,
	ŲK.	2		,		, , ,
5.	AngÃ	le Reinders, Pierre	Verlinden, Wilf	ried van Sa	ark, Alexandro	e Freundlich,
	-	voltaic solar energy: Fr				
6.	UK.				, -,	· , · ,
	Lawre	ence S. Brown and Thor	nas Holme. Che	emistry for en	aineerina stude	ents, 2018, 4 th
		n – Open access versior		,	J J	,,
Mor		aluation: CAT, Written a		z and FAT		
		nded by Board of	28.06.2021			
Stud		laca of bound of				
		by Academic Council	No. 63	Date	23.09.2021	
447.7		y nouvernie obunon	110.00	Date		

BCH	IY101P	Enginee	ering Che	mistry Lab)		L	Т	Ρ	С
							0	0	2	1
Pre-	requisite	NIL				Sy	llab	us	vers	ion
								1.0)	
	rse Objectiv									
		ical knowledge gained ir	n the theo	ry course a	and get hand	ds-or	n e>	per	ienc	e of
	opics.									
	rse Outcom									
		course the student will t				:	c	- 4 - 1		.
		nd the importance and	nands-on	experienc	e on analys	IS OI	r me	etai	ions	by
		f experiments.							_	
4		tical experience on syntlo materials in the laborate		characteri	zation of the	org	anio	c m	oleci	lies
		neir knowledge in the		mio functi	one kinotic		and	m	olec	ular
		es through the experime		nic functi	ons, kinetic	.5 0	anu		UIEC	ulai
Indi	cative Expe		11.5.							
1.		namics functions from EN	/E moasu	romonte · 7	Zine – Conne	ar ev	etor			
1. 2.		ion of reaction rate, orde								
<u>2.</u> 3.		c estimation of Ni ²⁺ us								nina
5.	methods	c estimation of Ni us	ing conve	entional an	u smart pri	one	uig	ntai-	may	Jing
4.		scale preparation of imp	ortant dri	intermed	liate - nara a	amin	onh	enc	l for	the
ч.		or acetaminophen		ag internice			opi			uio
5.		n-sea water activated	cell – F	-ffect of s	salt concent	tratio	n	on	volt	ade
0.	generation									-9-
6.	<u> </u>	iron in an alloy sample b	ov potentio	ometry						
7.		n of tin oxide by sol- gel			acterization					
8.		ident colour variation of (oton	nete	er		
9.		ion of hardness of wat							ore	and
		change process								
10.		onal Optimization of mole	ecular geo	metry usin	a Avogadro :	softv	vare	Э		
					ory Hours				urs	
Mod	e of assessr	nent: Mode of assessme								
	nination and									
Rec	ommended b	by Board of Studies	28.06.20)21						
		ademic Council	No. 63	Date	23.09.2	021				

	Engineering Physics		L	Т	Ρ	С
	anth a	_	3	0	0	3
Pre-requisite	12 th of equivalent	Sy	llab		/ers	ion
	-			1.0		
Course Objectiv						
	e dual nature of radiation and matter. rödinger's equation to solve finite and infinite potential pr	oble	me	and		alv
	is at the nanoscale.	ODIG	51115	anc	ah	Лу
	d the Maxwell's equations for electromagnetic waves and	d ar	volu	tha		
	emiconductors for engineering applications.	սսբ	PIY	uiç		
Course Outcome						
	course the student will be able to					
	the phenomenon of waves and electromagnetic waves.					
-	he principles of quantum mechanics.					
	m mechanical ideas to subatomic domain.					
4. Appreciate th	e fundamental principles of a laser and its types.					
5. Design a typ	cal optical fiber communication system using optoelectro	onic	dev	ices	i.	
	duction to waves				7 ho	
	g - Wave equation on a string (derivation) - Harmonic wa					
	aves at a boundary - Standing waves and their eigenfr					
	Superposition of waves and Fourier method (qualitative	e) -	Wa	vep	back	et -
phase velocity an						
	romagnetic waves				7 ho	
	ence - gradient and curl - surface and volume integral -					
	Continuity equation for current densities - Displa					
	vave equation in free space - Plane electromagnetic wa	ives	in f	ree	spa	ce -
Hertz's experimer					7 ho	
	ents of quantum mechanics n Mechanics: Idea of Quantization (Planck and Einsteir	<u> </u>	Con			
	Broglie hypothesis - justification of Bohr postulate -					
	e function and probability interpretation - Heisenberg un					
	iment (Heisenberg's microscope) - Schrödinger wa					
dependent and tir		•0	cqu	ano	. (inic
	cations of quantum mechanics			- (6 ho	urs
	eigenfunction of particle confined in one dimensiona	al b	ox -			
Eigenvalues and	eigenanouen er partiele commend in ene annenelene	~ ~	<u> </u>			
-	antum confinement and nanostructures - Tunnel effe	ct (d	aual	itati		and
nanophysics - Q	uantum confinement and nanostructures - Tunnel effe g microscope.	ct (d	qual	itati		and
nanophysics - Q scanning tunnelin	g microscope.	ct (qual		6 ho	
nanophysics - Q scanning tunnelin Module:5 Lase	g microscope. r s				6 ho nd t	urs
nanophysics - Q scanning tunnelin Module:5 Lase Laser characteris	g microscope. r s :tics - spatial and temporal coherence - Einstein coe	əffic	ients	(s ar	nd t	urs heir
nanophysics - Q scanning tunnelin Module:5 Lase Laser characteris significance - Pop	g microscope. r s itics - spatial and temporal coherence - Einstein coe pulation inversion - two, three and four level systems - F	effic Pum	ients ping	s ar scł	nd t nem	urs heir es -
nanophysics - Q scanning tunnelin Module:5 Lase Laser characteris significance - Pop threshold gain co	g microscope. rs tics - spatial and temporal coherence - Einstein coe pulation inversion - two, three and four level systems - F efficient - Components of a laser - He-Ne, Nd:YAG a	effic Pum	ients ping	s ar scł	nd t nem	urs heir es -
nanophysics - Q scanning tunnelin Module:5 Lase Laser characteris significance - Pop threshold gain co their engineering	g microscope. rs tics - spatial and temporal coherence - Einstein coe pulation inversion - two, three and four level systems - F efficient - Components of a laser - He-Ne, Nd:YAG a	effic Pum	ients ping	s ar scł las	nd t nem	urs heir es - and
nanophysics - Q scanning turnelin Module:5 Lase Laser characteris significance - Por threshold gain co their engineering Module:6 Prop	g microscope. rs atics - spatial and temporal coherence - Einstein coe pulation inversion - two, three and four level systems - F pefficient - Components of a laser - He-Ne, Nd:YAG a applications.	effic Pum nd (ients ping CO ₂	s ar scł las	nd t nem ers 5 ho	heir es - and
nanophysics - Q scanning turnelin Module:5 Lase Laser characteris significance - Pop threshold gain co their engineering Module:6 Prop Introduction to co Acceptance angli	g microscope. rs stics - spatial and temporal coherence - Einstein coe pulation inversion - two, three and four level systems - F pefficient - Components of a laser - He-Ne, Nd:YAG a applications. agation of EM waves in optical fibers ptical fiber communication system - light propagation e - Numerical aperture - V-parameter - Types of fibe	effic Pum nd (n there are a	ients ping CO ₂	s ar scł las gh	nd t nem ers 5 ho fiber	heir es - and urs
nanophysics - Q scanning turnelin Module:5 Lase Laser characteris significance - Pop threshold gain co their engineering Module:6 Prop Introduction to co Acceptance angli	g microscope. rs stics - spatial and temporal coherence - Einstein coe pulation inversion - two, three and four level systems - F efficient - Components of a laser - He-Ne, Nd:YAG a applications. agation of EM waves in optical fibers ptical fiber communication system - light propagation	effic Pum nd (n there are a	ients ping CO ₂	s ar sch las gh tteni	nd t nem ers 5 ho fiber uatic	es - and urs rs -
nanophysics - Q scanning turnelin Module:5 Lase Laser characteris significance - Pop threshold gain co their engineering Module:6 Prop Introduction to co Acceptance angl Dispersion-interm Module:7 Opto	g microscope. rs stics - spatial and temporal coherence - Einstein coe- pulation inversion - two, three and four level systems - F refficient - Components of a laser - He-Ne, Nd:YAG a applications. agation of EM waves in optical fibers ptical fiber communication system - light propagation = - Numerical aperture - V-parameter - Types of fiber odal and intramodal. Application of fiber in medicine - Er electronic devices	effic Pum nd (n th ers - ndos	ients ping CO ₂ nrous – At	gh	nd t nem ers 5 ho fiber uatic 5 ho	urs heir es - and urs s - on -
nanophysics - Q scanning turnelin Module:5 Lase Laser characteris significance - Por threshold gain co their engineering Module:6 Prop Introduction to co Acceptance angl Dispersion-interm Module:7 Opto Introduction to se	g microscope. rs stics - spatial and temporal coherence - Einstein coe- bulation inversion - two, three and four level systems - F befficient - Components of a laser - He-Ne, Nd:YAG a applications. agation of EM waves in optical fibers ptical fiber communication system - light propagation be - Numerical aperture - V-parameter - Types of fiber odal and intramodal. Application of fiber in medicine - Er electronic devices smiconductors - direct and indirect bandgap – p-n junct	effic Pum nd (n th ers - ndos	ients ping CO ₂ nrous – At	gh	nd t nem ers 5 ho fiber uatic 5 ho	urs heir es - and urs on -
nanophysics - Q scanning turnelin Module:5 Lase Laser characteris significance - Pop threshold gain co their engineering Module:6 Prop Introduction to co Acceptance angl Dispersion-interm Module:7 Opto Introduction to se and laser diode, F	g microscope. rs stics - spatial and temporal coherence - Einstein coe- pulation inversion - two, three and four level systems - P refficient - Components of a laser - He-Ne, Nd:YAG a applications. agation of EM waves in optical fibers ptical fiber communication system - light propagation e - Numerical aperture - V-parameter - Types of fiber odal and intramodal. Application of fiber in medicine - Er electronic devices priconductors - direct and indirect bandgap - p-n junct Photodetectors: PN and PIN	effic Pum nd (n th ers - ndos	ients ping CO ₂ nrous – At	(s ar sch las gh ttenu y, ttenu y,	nd t nem 5 ho fiber uatic 5 ho es: L	heir es - and urs s - on - urs
nanophysics - Q scanning turnelin Module:5 Lase Laser characteris significance - Pop threshold gain co their engineering Module:6 Prop Introduction to co Acceptance angl Dispersion-interm Module:7 Opto Introduction to se and laser diode, F Module:8 Cont	g microscope. rs stics - spatial and temporal coherence - Einstein coe- pulation inversion - two, three and four level systems - P pefficient - Components of a laser - He-Ne, Nd:YAG a applications. agation of EM waves in optical fibers ptical fiber communication system - light propagation e - Numerical aperture - V-parameter - Types of fiber odal and intramodal. Application of fiber in medicine - Er electronic devices emiconductors - direct and indirect bandgap – p-n junct Photodetectors: PN and PIN emporary Topics	effic Pum nd (n th ers - ndos	ients ping CO ₂ nrous – At	(s ar sch las gh ttenu y, ttenu y,	nd t nem ers 5 ho fiber uatic 5 ho	heir es - and urs s - on - urs
nanophysics - Q scanning turnelin Module:5 Lase Laser characteris significance - Pop threshold gain co their engineering Module:6 Prop Introduction to co Acceptance angl Dispersion-interm Module:7 Opto Introduction to se and laser diode, F Module:8 Cont	g microscope. rs stics - spatial and temporal coherence - Einstein coe- pulation inversion - two, three and four level systems - P refficient - Components of a laser - He-Ne, Nd:YAG a applications. agation of EM waves in optical fibers ptical fiber communication system - light propagation e - Numerical aperture - V-parameter - Types of fiber odal and intramodal. Application of fiber in medicine - Er electronic devices priconductors - direct and indirect bandgap - p-n junct Photodetectors: PN and PIN	effic Pum nd (n thers - ndos	ients ping CO ₂ nrous – At	(s ar sch las las gh ttenu yy. t urce	nd t nem 5 ho fiber uatic 5 ho es: L	urs heir es - and urs cs - on - urs ED

Text Book(s)

- 1. H. D. Young and R. A. Freedman, University Physics with Modern Physics, 2020, 15th Edition, Pearson, USA.
- 2. D. K. Mynbaev and Lowell L. Scheiner, Fiber Optic Communication Technology, 2011, Pearson, USA

Reference Books

- H. J. Pain, The Physics of vibrations and waves, 2013, 6th Edition, Wiley Publications,
 India.
- R. A. Serway, J. W. Jewett, Jr, Physics for Scientists and Engineers with Modern
- 3. Physics, 2019, 10th Edition, Cengage Learning, USA.
- 4. K. Krane, Modern Physics, 2020, 4th Edition, Wiley Edition, India.
- 5. M.N.O. Sadiku, Principles of Electromagnetics, 2015, 6th Edition, Oxford University Press, India.

W. Silfvast, Laser Fundamentals, 2012, 2nd Edition, Cambridge University Press, India. Mode of Evaluation: Written assignment, Quiz, CAT and FAT

Recommended by Board of Studies	26.06.2021		
Approved by Academic Council	No. 63	Date	23.09.2021

BPH	IY101P	Engir	neering Phys	ics Lab			L	Т	Ρ	С
							0	0	2	1
Pre-	requisite	12 th or equivalent				Syl	llab	us v	/ers	ion
								1.0		
Cou	rse Objectiv	/es								
То а	pply theoretic	cal knowledge gained i	in the theory of	course an	id get hand	s-on	exp	erie	nce	of
	opics.									
	rse Outcom									
At th	e end of the	course the student will	be able to							
		end the dual nature of i								
2		ds-on experience on	the topics	of quant	um mecha	nical	id	eas	in	the
	laboratory									
		power lasers in optics	and optical fi	ber relate	ed experime	ents.				
	cative Exper									
1.		e the dependence of f		requency	with the ler	ngth	and	ten	sion	of
		string using sonometer								
2.		e the characteristics of								
3.		e the wavelength of la		e-Ne lase	er and diode	e las	ers	of d	iffere	ənt
		s) using diffraction grat						•		
4.		rate the wave nature o					ite s	hee	t	
5.		e the Planck's constar								
6.		ally demonstrate the di								
_		r equation (e.g., particle								
7.		e the refractive index of	of a prism usi	ng spectr	ometer (ang	gle o	f pri	sm	will I	эе
8.	given)	o the officiency of a co								
÷.		the efficiency of a so			uro of on or	tion	fib			
9.		e the acceptance angl				nical	npe	1		
10.	to demonst	rate the phase velocity					20	.		
Mad	- of	anti Continuouo			oratory Hou	ns	30	hou	15	
		nent: Continuous asses	26.06.2021		ammation					
		y Board of Studies		Data	22.00.200	74				
Аррі	loved by Aca	demic Council	No. 63	Date	23.09.202	21				

BMAT101L	Calculus		L	Т	Ρ	С
P			3	0	0	3
Pre-requisite	Nil	Syl		i s v e 1.0	ersi)n
Course Objectiv				1.0		
	e requisite and relevant background necessary to understa	and t	he r	othe	r	
	ering mathematics courses offered for Engineers and Sci				•	
	mportant topics of applied mathematics, namely Single ar			aria	ble	
	ctor Calculus etc.					
	se technology to model the physical situations into mather	matic	al p	robl	ems	
	pret results, and verify conclusions.					·
Course Outcom				-		
At the end of the	course the student should be able to:					
	ariable differentiation and integration to solve applied prol	blems	s in			
	find the maxima and minima of functions					
	al derivatives, limits, total differentials, Jacobians, Taylor :	series	s an	d		
optimization prol	plems involving several variables with or without constrain	nts				
3. Evaluate multi	ple integrals in Cartesian, Polar, Cylindrical and Spherica	al coo	rdin	ate	s.	
4. Use special fu	nctions to evaluate various types of integrals.					
5. Understand gi	adient, directional derivatives, divergence, curl, Green's,	Stoke	es a	ind	Gau	SS
Divergence theo						
	le Variable Calculus				β hoι	
	Extrema on an Interval Rolle's Theorem and the Mea					
	ecreasing functionsFirst derivative test-Second derivativ					
	y. Integration-Average function value - Area between c	urves	s - \	/olu	mes	0
solids of revolution						
	ivariable Calculus				ί hoι	
	variables-limits and continuity-partial derivatives -total d	liffere	entia	ıl-Ja	icobi	ar
and its properties						
	lication of Multivariable Calculus				hou	
- ·	on for two variables–maxima and minima–constrained ma	axima	a an	d m	inim	a-
Lagrange's multi						
Module:4 Mul				-	β hoι	
	uble integrals-change of order of integration-change of v					
	plar co-ordinates - evaluation of triple integrals-change of	varia	bles	; be	twee	۱
	lindrical and spherical co-ordinates.					
	cial Functions	-41-0-0-0			i hοι	
	na functions-interrelation between beta and gamma func-					
	s using gamma and beta functions. Dirichlet's integrations	ar -⊏	rior	IU	ncuc	n is
complementary of	tor Differentiation			5	hai	
	ctor valued functions – gradient, tangent plane–dire				hοι hoι	
	curl-scalar and vector potentials. Statement of vector					
problems.	currescalar and vector potentials. Statement of vector		enu	162.	-51111	JIE
•	tor Integration			6	i hoι	
	d volume integrals - Statement of Green's, Stoke's and G	2000	dive			
	ation and evaluation of vector integrals using them.	auss	uive	nge	ance.	
	temporary Topics			2	hou	irs
	om Industry and, Research and Development Organization	ons			not	
	Total Lecture hour			45	hou	jrs
Text Book						
· ·	homas, D.Weir and J. Hass, Thomas Calculus, 201	4, 13	3th	edi	tion,	
Pearson						

Ret	ference Books						
1.	Erwin Kreyszig, Advanced Enginee	ring Mathen	natics, 20	15, 10th Edition, Wiley India			
2.	2. B.S. Grewal, Higher Engineering Mathematics, 2020, 44th Edition, Khanna Publishers						
3.	John Bird, Higher Engineering Mat	nematics, 20	017, 6th <mark>E</mark>	dition, Elsevier Limited.			
4.	James Stewart, Calculus: Early Tra	anscendenta	l, 2017, 8	th edition, Cengage Learning.			
5.	K.A.Stroud and Dexter J. Booth, Er	ngineering M	lathemati	cs, 2013, 7th Edition, Palgrave			
	Macmillan.						
Mo	de of Evaluation: CAT, Assignment,	Quiz and FA	λΤ				
Re	Recommended by Board of Studies 24.06.2021						
App	proved by Academic Council	No. 63	Date	23.09.2021			

BM/	AT101P		Calculus La	ab			L	Τ	Ρ	С
							0	0	2	1
Pre-	requisite	NIL				Syl		IS V	ersi	on
								1.0		
	rse Objectiv									
		with the basic syntax,								
		not only in calculus bu				and	scie	ence	s	
		athematical functions								
		ngle and multiple integ	grals and unde	rstand it	graphically.					
	rse Outcome									
		course the student sh								
		ATLAB code for cha								
		plays, interpret and il	iustrate elemei	ntary ma	thematical fu	Inctic	ons a	and		
	edures.	ina a taka								
	cative Exper		matrices and a							
<u>1.</u> 2.		to MATLAB through visualizing curves ar				00m	nuto	tion		
Ζ.	using MATL		id surfaces in i		- Symbolic	com	puta	uon	5	
3.		Extremum of a single	variabla functi	00						
<u> </u>		ing integration as Are								
<u>4.</u> 5.		of Volume by Integrals								
6.		naxima and minima c								
7.	-	grange multiplier opti			5103					
7. 8.		/olume under surface								
9.		riple integrals								
10.		gradient, curl and dive	eraence							
11.		ine integrals in vector								
12.		een's theorem to real		ıs						
	·				oratory Hours	s 3 () ho	urs		
Tex	t Book		-		,					
1.		hn, Daniel T. Valentin Academic Press, 7th e		ATLAB 1	for Engineers	s and	1			
Refe	erence Book		<u> </u>							
1.		MATLAB: An Introdu	ction with App	lications,	Wiley, 6/e, 2	2016	•			
2		ate, Pammy Mancha Springer, 2019	nda, Abul Has	an Siddie	qi, Calculus f	for Se	cien	tists	and	ł
Mod		ent: DA and FAT								
Rec	ommended b	y Board of Studies	24.06.2021							
		demic Council	No. 63	Date	23.09.202	1				

BMAT102L	Differential Equations and Transforms		L 3	-	P 0	<u>С</u> 4
Pre-requisite	BMAT101L, BMAT101P	Sv	Jlabu			-
	,,,	- ,		1.0		
Engineers 2. Presenting analysis. 3. Enriching t 4. Impart the	es the knowledge of Laplace transform, an important trans which requires knowledge of integration. the elementary notions of Fourier series, this is vital ir the skills in solving initial and boundary value problems. knowledge and application of difference equations and stems that are inherent in natural and physical process	n pra d the	ctical	l ha	rmc	onio
Course Outcome						
At the end of the C	course the student should be able to:					
solving par 2. Understan functions, 3. Employ the 4. Know the equations. 5. Know the	Z-transform and its application in population dynamic	blem par	ns wit tial	th p diffe	eric eren	odic ntial
processing].					
	ary Differential Equations (ODE)				ho	
Second order nor equations with w	- homogenous differential equations with constant coe variable coefficients- method of undetermined coe ameters-Solving Damped forced oscillations and I	fficie	nts-r	Diffe neth	erer nod	ntial of
•	al Differential Equations (PDE)			5	ho	urs
Formation of part	ial differential equations – Singular integrals — Solution al differential equations – Lagrange's linear equation-M			daro	d ty	pes
Module:3 Lapla	ce Transform			7	ho	urs
Definition- Propert transform of per	ties of Laplace transform-Laplace transform of standard riodic functions-Unit step function-Impulse function ractions method and by Convolution theorem.				-	
	tion to ODE and PDE by Laplace transform			7	ho	urs
Solution of ODE's	 Non-homogeneous terms involving Heaviside function nogeneous system using Laplace transform - solution to 		-	e fu	ncti	on
	ier Series			6	ho	urs
Fourier series - I	Euler's formulae- Dirichlet's conditions - Change of ir ie – Parseval's identity.	iterva	al - I			
Module:6 Four				6	ho	urs
Complex Fourier t Fourier sine and applications to sol	ransform - properties - Relation between Fourier and L cosine transforms – Parseval's identity- Convolution T ve PDE.	-		rans and	forr sim	ns Iple
Module:7 Z-Tra					ho	
Definition of Z-trar	nsform and Inverse Z-transform - Standard functions - I	Partia	al fra	ctio	ns a	an

Modul	e:8	Contemp	orary Iss	ues				2 hours
							e hours: I hours :	45 hours 15 hours
Text B	look	(s)					l	
	Indi B.S	a. Grewal,		-	-	·	015, 10th Editi 020, 44th Ec	ion, John Wiley lition, Khanna
Deferre		lishers.						
		Books						
1.			-		Engineer	ing Math	ematics, 2006	5, 2nd Edition,
	Pea	rson Educa	ation, Ind	ian edition.				
2.				erential Equa gage Publishe		h Modelli	ng Application	is, Dennis Zill,
Mode	of Ev	aluation: C	AT, writte	en assignmen	t, Quiz, F	AT		
Recom	nmer	ded by Boa	ard of Stu	Idies	24-06-20)21		
		y Academi			No. 64	Date	16-12-2021	

BMAT201L	Complex Variables and Linear Algebra			T	P (
Data and sociality		0	-	1	0 4
Pre-requisite	BMAT102L	S	/llabu		ersio
0				1.0	
Course Objectiv					
important engineers	It comprehensive, compact, and integrated treatment branches of applied mathematics namely Comp and the scientists. In the comprehensive, compact, and integrated treatme	lex v	ariable	es	to th
important and the so	branches of applied mathematics namely Linear Alg cientists.	ebra t	o the	eng	ineer
•	e students with a framework of the concepts that will out many complex problems.	help t	hem i	to a	nalys
Course Outcom					
At the end of the	course the student should be able to				
 Find the analytic fu Evaluate r Use the p 	analytic functions and find complex potential of fluid fl image of straight lines by elementary transformanctions in power series. real integrals using techniques of contour integration. ower of inner product and norm for analysis. ces and transformations for solving engineering probleme	tions			
					-
Module:1 Anal			-		hour
and Harmonic f	 Analytic functions and Cauchy – Riemann equation unctions; Construction of Harmonic conjugate an alytic functions to fluid-flow and electric field problemation 	d ana			
Module:2 Conf	ormal and Bilinear transformations			7	hour
Inversion; Expon	ng - Elementary transformations; Translation, Magnit ential and Square transformations (w = e ^z , z ²); B es of the regions bounded by straight lines	ilinear	trans	sforn	natior
Module:3 Com	plex Integration			7	hour
Functions given Residues; Integra theorem- Cauchy	by Power Series - Taylor and Laurent series-Si tion of a complex function along a contour; Statemer 's integral formula-Cauchy's residue theorem-Evalua	nts of (Cauch	ıy-G	oursa
Indented contour	integral.			Inte	egrals
Indented contour Module:4 Vector					egrals
Module:4 Vector Vector space – s			- Inde	6 pen	hour dent
Module:4 Vector Vector space – s bases; Dimension nullity.	or Spaces ubspace; linear combination - span - linearly depen		- Inde	6 pen Rar	hour dent
Module:4VectorVector space – sbases; Dimensionnullity.Module:5Linear transformation	or Spaces ubspace; linear combination - span - linearly depen ns; Finite dimensional vector space. Row and colum	nn spa ion; M	- Inde aces; latrice	6 pen Rar 6 s of	hour dent nk an hour
Module:4VectorVector space – sbases; Dimensionnullity.Module:5Linear transformations; Vector	br Spaces Subspace; linear combination - span - linearly depennes; Finite dimensional vector space. Row and columner Transformations Itions – Basic properties; Invertible linear transformat	nn spa ion; M	- Inde aces; latrice	6 Rar 6 s of	hour dent nk an hour
Module:4VectorVector space - sbases; Dimensionnullity.Module:5Linear transformations; VModule:6InnerDot products andinner products; G	br Spaces ubspace; linear combination - span - linearly depenns; Finite dimensional vector space. Row and columnar Transformations ar Transformations attions - Basic properties; Invertible linear transformations / ector space of linear transformations; Change of basic Product Spaces inner products; Lengths and angles of vectors; Matrram - Schmidt - Orthogonalization.	ion; M es; Si	- Inde aces; latrice milarit	6 Pen Rar 6 es of ty. 5	hour dent ik an hour linea
Module:4VectorVector space - sbases; Dimensionnullity.Module:5Linear transformations; VModule:6InnerDot products andinner products; G	br Spaces	ion; M es; Si	- Inde aces; latrice milarit	6 Rar 6 s of ty. 5 tatio	hour dent ik an hour linea
Module:4VectorVector space - sbases; Dimensionnullity.Module:5LinearLinear transformations; VModule:6InnerDot products andinner products; GModule:7MatriEigenvalues and	br Spaces ubspace; linear combination - span - linearly depenns; Finite dimensional vector space. Row and columnar Transformations ar Transformations attions - Basic properties; Invertible linear transformations / ector space of linear transformations; Change of basic Product Spaces inner products; Lengths and angles of vectors; Matrram - Schmidt - Orthogonalization.	nn spa ion; M es; Sii ix repi gen v	- Inde aces; latrice milarit resent	6 epen Rar 6 es of 2y. 5 tatio	hour dent ik an hour linea hour ns of hour ayley

		Lecture hours utorial hours		45 hou 15 hou
Text E	Book(s)			
	G. Dennis Zill, Patrick D. Shana applications, 2013, 3rd Edition, Jon	es and Bartlet	t Publi	shers Series in Mathematics
2.	Jin Ho Kwak, Sungpyo Hong, Linea	ar Algebra, 200	04, Seo	cond edition, Springer.
Refere	ence Books			
1.	Erwin Kreyszig, Advanced Engine Wiley & Sons (Wiley student Edition	-	natics,	2015, 10 th Edition, John
2.	Michael, D. Greenberg, Advance Pearson Education.	d Engineering	g Mat	nematics, 2006, 2 nd Edition
3.	Bernard Kolman, David, R. Hill, Intr 2011, 9th Edition Pearson Educatio		ar Alg	ebra - An applied first cours
	Gilbert Strang, Introduction to Linea B.S. Grewal, Higher Engineerin Publishers.			
Mode	of Evaluation: Digital Assignments(S	olutions by us	ing sof	t skill), Quiz, Continuous
Asses	sments, Final Assessment Test.			
Recon	nmended by Board of Studies	24-06-202	1	
Annro	ved by Academic Council	No. 64	Date	16-12-2021

BMAT202L	Probability and Statistics	L 3	T	P	C
Pre-requisite	BMAT101L, BMAT101P	3 Sylla	0 hus	0 vers	3 sion
Tre-requisite	Build Hole, Build Holl	Oyna			
descriptive 2. To analyze 3. To apply techniques Course Outcome At the end of the of 1. Compute techniques 2. Understan distribution 3. Apply sta interpreting 4. Make app	 students with a framework that will help them choose methods in various data analysis situations. distributions and relationship of real-time data. estimation and testing methods to make inferent for decision making. course the student should be able to: and interpret descriptive statistics using numerical data specific to an experiment. tistical methods like correlation, regression analyzing data. propriate decisions using statistical inference that 	cal an nd an ysis ir	d m d g app a ar	propr	iling
	tal research. ical methodology and tools in reliability engineering prol	blems.			
				<u> </u>	
	luction to Statistics			6 hc	
	ita analysis; Measures of central tendency; Meas ss-Kurtosis (Concepts only).	ure of	Dis	pers	ion,
probability distribution	s- Probability mass function, distribution and den ition and Joint density functions; Marginal, Condition - Mathematical expectation and its properties- Co	nal dist	nctic ribut	ion	loint and
Module:3 Corre	lation and Regression			4 hc	ours
	Regression – Rank Correlation; Partial and Multiple of	correlat			
Module:4 Proba	bility Distributions			7 hc	ours
	ion; Poisson distributions; Normal distribution; G ution; Weibull distribution.	amma	dist	ribut	ion;
	esis –Types of errors - Critical region, Procedure for te sts- Z test for Single Proportion- Difference of Pro	-	f hyp		sis-
Module:6 Hypo	thesis Testing-II			9 hc	ours
Small sample test	s- Student's t-test, F-test- chi-square test- goodness o gn of Experiments - Analysis of variance – One way-T		dep	ende	nce
	- 11[4				
Module:7 Relia				5 hc	urs

Reliability -	Maintainability-Preventive	e and repair main	tenance-	Availability.				
Module:8	Contemporary Issues			2 hours				
		Total lecture ho	urs:	45 hours				
Text Book	•							
 R. E. Walpole, R. H. Myers, S. L. Mayers, K. Ye, Probability and Statistics for engineers and scientists, 2012, 9th Edition, Pearson Education. 								
Reference	Books							
	uglas C. Montgomery, Ge jineers, 2016, 6 th Edition, v			Statistics and Probability for				
2. E.Ē	Balagurusamy, Reliability B	Engineering, 2017	⁷ , Tata M	cGraw Hill, Tenth reprint.				
		d Statistics, 201	2, 8 th Eo	dition, Brooks/Cole, Cengage				
	rning							
		d's, Probability ai	nd Statis	stics for Engineers, 2011, 8th				
	ion, Prentice Hall India.	McCuon Prok	ability	Statistics and Reliability for				
	ineers and Scientists, 201							
	· · ·			sessment Tests, Quiz, Final				
Assessmer				, ,				
Recommer	nded by Board of Studies	24-06-2021						
Approved b	y Academic Council	No. 64	Date	16-12-2021				

BMAT202P	Proba	bility and Stati	stics Lab		L	Τ	Ρ	С
Des esserisits		TANAD			0	0	2	1
Pre-requisite	BMAT101L, BMA	1101P		3	ynai	ous 1.0		sion
Course Objectiv						1.0		
	e the students for I	naving experime	ental knowledge of	ba	sic	cond	cepts	s of
	using R programming							
	the relationship of		and decision mak	ing	thro	bugh	tes	ting
methods	0							
	students capable to	o do experimen	tal research using	stat	istic	s in	vari	ious
engineerii	ng problems.							
Course Outcom								
	course the student s	hould be able to).					
1. Demonstr	ate R programming f	for statistical dat	a.					
2. Carry out	appropriate analysis	of statistical me	ethods through expe	rim	enta	l tec	hniq	lues
using R.								
Indicative Expen	iments							
1. Introduction	: Understanding Dat	a types: importir	na/exporting data					
	Summary Statistics			na				
	and Graphical Repre		ioudizing data doi					
	orrelation and simp		ession model to re	eal				
	nputing and interpret				Tot			
	ultiple linear regress		· · · ·	ng		oora		
	ting the multiple coe				hoi	urs:	30	
	robability distribution		ribution					
	ribution, Poisson dist typothesis for one sa		d proportion from re	ادد				
time proble		ample mean an		cai				
	ypothesis for two sa	imple means an	d proportion from re	eal				
time proble		•						
	e t-test for independe							
	ii-square test for goo	odness of fit test	and Contingency te	est				
to real data								
-	ANOVA for real			ed				
Text Book	domized Block desig	gn, Laun square	Design					
	analysis with R by	Joseph Schm	uller John wilev a	nd				
	New Jersey 2017.							
Reference Books								
	of R: A First course	e in Programmi	ng and Statistics, b	y Ti	lma	n M	Dav	ries,
	ollock, 2016.			-	.			
	a Science, by Hadle	ey Wickham an	d Garrett Grolemu	nd,	O'	≺eill	y Me	edia
Inc., 2017								
	ent: Continuous ass		Oral examination a	nd c	othe	ſS		
	y Board of Studies	24-06-2021		0.0.1				
Approved by Aca	demic Council	No. 64	Date 16-12-20	021				

BMEE102P	Engineering Design Visualization Lab		I	т	P	С
DIILLIGLI			0	0	4	2
Pre-requisite	Nil	Syl	-		-	_
		-j .		1.0		<u></u>
Course Objectiv	/es					
	e importance of basic concepts and principles of enginee	ring	drav	ving	for	
	ineering components, sections, views by graphical repre					
CAD.					-	
2. Enable the stu	dents with various concepts like dimensioning, convention	ons a	nd s	tanc	lard	s
	g drawings in order to become professionally efficient.					
•	bility to communicate with others through the language of	f tech	nica	al dra	awir	ıg
and sketching.						
	dards for the use of international and traditional units for	techr	nical	dra	wing	g.
Course Outcom						
	of this subject, the student will be able to					
	ISO standards in engineering drawing.	-				
	nstruct two dimensional drawing for engineering applicat					
	ns of point, lines, solids, sections of solids for regular pol	iyned	rons	s an	d	
	ons using computer aided drawing.			:		
	netrical solids in 3D space through orthographic and ison	netric	pro			
	oduction to Engineering Drawing	. ata	ndo		hou	
	Engineering Drawing, Drawing instruments, Drawing neering, Sheet layout, elements of dimensioning - system					
	Hand Sketching		JIIIE		hou	
	ching- Pictorial representation of engineering objects -					
	al objects in two dimensional media – need for multiple					
	s through free hand sketching of three dimensional object		5 – 1	Jeve	siop	шy
	ographic Projection	13.		8	hou	ire
	projections: General principles of orthographic proje	ction				
	ut of views - Projection of Points, Projection of lines. 2D of					
	nodelling and Projections		ig u		, <u>o</u> , hoi	
	olids: Classification of solids, Projection of solids in si	imple	nos			
Modelling.			P			
	lids: Right regular solids and auxiliary views for the	true	sha	ape	of	the
sections.	3 3			•		
Development of	Surfaces, Intersection of Solids: Intersection of two solids	5.				
	netric Projection and Perspective Projection			8	hou	Jrs
Isometric View	//Projection: Isometric scales, Isometric projection	s of	si	mple	e a	and
combination of s	olids. Conversion of pictorial view into orthographic Proj	jectio	n- 2	D d	lraw	ing
from 3D drawing	-					
•	jection: Orthographic representation of a perspective vie	ews.				
	ographic Projection into Isometric view				hou	
	thographic projection into isometric view- 3D modelling f	rom 2	2D d		<u> </u>	
	ect on Product Development			8	hou	ırs
Project on a proc	luct development related to any engineering application.					
	Total Lecture hou	Jrs		60	hoi	Jrs
Text Book		0			-	
1. Venugopal Publishers, 2	K and Prabhu Raja V, Engineering Graphics, New A 2018.	GE I	nter	natio	onal	
Reference Book						
	Engineering Drawing, Charotar Publishing House Pvt. Lt					
	Shih, SOLIDWORKS 2021 and Engineering Graphics	- An	Int	egra	ated	
Approach, S	DC Publications, 2021.					

3.	Dennis K. Lieu, Sheryl A. Sorby, Engineering Design, Delmar, Cengage			/lodeling, and	d Graphics	for
4.	Natarajan.K.V,A Textbook of Engir Chennai, 2015.			, Dhanalaksł	nmi Publishe	ers,
Ind	icative Experiments					
1	Free Hand Sketching					
2	2D drafting using CAD software					
3	Dimensioning of 2D figures					
4	Projection of points and lines -2D dra	fting				
5	Projection of solids in simple position	- 3D mod	elling			
6	Section of solids- 3D modelling					
7	Conversion of pictorial drawing into o	rthograph	nic projec	tion-CAD		
8	Conversion of orthographic projection	n into isor	netric vie	w-CAD		
9	Engineering design and visualization	of an eng	jineering	product -I		
10	Engineering design and visualization	of an eng	ineering	product -II		
		Tota	al Labor	atory Hours	60 hours	
Mod	de of Evaluation: Examination and eval	uation is d	done for	CAD exercise	s. Continuou	S
ass	essments in terms of CAD exercises, m	nodels / p	roducts	designed and	created; FA	λT &
Ora	al examination					
Rec	commended by Board of Studies 0	2.07.202	1			
App	proved by Academic Council	lo. 63	Date	23.09.2021		

BEEE101L	Basic Electrical Engineering	L	Т	Ρ	С
		2	0	0	2
Pre-requisite	NIL Sy	llabu		ersi	on
			1.0		
Course Objective					
2. Facilitate parameter	sights into relevant concepts and principles in electrical eng understand and comprehend laws, rules and theoren s of electric circuits mprehend and analyze the concepts of electrical machines	ns to		•	
Course Outcome	···				
	this course, the students will be able to				
 Evaluate D Analyze th of electrica Comprehe Understan 	DC and AC circuit parameters using various laws and theore e parameters of magnetically coupled circuits and compare al machines nd the measurement techniques of electrical parameters d the concept of electric supply system and comprehend es afety requirements	vario		ype	s
	ircuits		6	ho	Ire
Basic circuit eler connection of circ	ments and sources; Ohms law, Kirchhoff's laws; Serie uit elements; Source transformation; Node voltage analysis n power transfer theorem		nd p	bara	llel
	ircuits		6	hoi	urs
	es and currents, RMS, average, form factor, peak factor; S and parallel circuits; Power and power factor; Balance				
	ietic Circuits		4	ho	urs
Electromagnetic	Induction: Self and mutual; Magnetically coupled circu circuits; Dot convention	its; S	Serie	is a	and
Module:4 Elect	rical Machines		5	hoi	Jrs
	tion, construction and applications of DC machines, transfo ous generators, stepper motor, Brushless DC (BLDC) moto		s, ind	duct	ion
	rical Measurements			hoi	
	ction and operation of moving coil and moving iron instrume	ents;	Pow	er a	and
	ent in single phase and three phase systems				
•	trical Supply Systems & Safety			ho	
Electrical safety, E	trical power generation, transmission and distribution s Earthing; Protective devices	ysten			
	temporary Issues		2	hou	ırs
Guest lectures fro	m Industry and, Research and Development Organizations				
Text Book(s)	Total Lecture hours		30	hoi	ırs
	bley, Electrical Engineering: Principles & Applications, 201	o 7 th	- odi	ion	
Pearson Educ	cation	9, 7	eun	юп,	
Reference Books		N4 -			
Education	I J Nagrath, Basic Electric Engineering, 2019, 4 th edition,				
	lectrical Circuit Theory and Technology, 2013, 5 th editio	n, Ro	outle	dge	
Publications					
3. S. Salivahnar	n, R Rengaraj, G R Venkatakrishnan, Basic Electrical, Ele Engineering, 2018, McGraw Hill Education	ectror	nics	and	

	2011, Reem Publications					
5.	5. V K Mehta and Rohit Mehta, Principles of Power System, 2005, S. Chand					
Мо	de of Evaluation: CAT, Written A	ssignment, Quiz	, FAT			
Red	Recommended by Board of Studies 03.07.2021					
Арр	Approved by Academic Council No. 63 Date 23.09.2021					

BE	EE101P	Basic E	ectrical Engir	neering L	ab		L	Т	Ρ	С
							0	0	2	1
Pre-re	equisite	NIL				Syll	labu	IS V	ersi	on
								1.0		
Cours	se Objectiv	es								
	implement	iding the concepts ation of electrical syst owledge and skill in wi	ems	U	ering for	deve	əlop	mer	nt a	and
		comprehend and ide			uring devi	ces	for	an	elec	tric
Cours	se Outcome	}								
		this course, the stude	nts will be able	e to						
		d, analyze and validat			ameters					
		d develop electrical sy				ial ap	plic	atio	าร	
		ills for interpretation of								
		s to use modern engir						inni	ng	
	tive Exper		~~~~				•		- v	
1 \	/erification d	of Kirchhoff's voltage l	aw	I						
2 \	/erification	of Kirchhoff's current la	aw							
3 \	/erification	of maximum power tra	nsfer theorem							
4 5	Sinusoidal s	teady state response	of RLC circuits	;						
5 ۱	Viring circui	t for a single lamp and	l a fan with reg	gulator						
6 ۱	Viring circui	t for Godown with two	-way switch	-						
7 L	oad test on	single phase transfor	mer/DC motor							
1 8	Measuremei	nt of power in a single	phase AC Loa	ad						
9 [Measuremei	nt of power and energ	y consumed b	y a given	three phas	se AC) loa	d		
10 \$	Study of ear	thing and measureme	nt of ea <mark>r</mark> th pit i	resistance	÷					
		tion of residential elec								
12 E	Electrical lay	out for a residential/co	ommercial/ind	ustrial app	lication us	ing C	CAD	sof	twar	е
			Тс	tal Labo	ratory Hou	ırs		30	ho	urs
	Book(s)									
	Allan R. Han Pearson Edu	nbley, Electrical Engin ucation	eering: Princip	les & App	lications, :	2019	, 7 th	edit	ion,	
Mode	of assessm	ent: CAT, FAT, Oral e	xamination							
		y Board of Studies	03.07.2021							
Appro	ved by Aca	demic Council	No. 63	Date	23.09.20	21				

BECE101L	Basic Electronics		L	Т	Ρ	С
			2	0	0	2
Pre-requisite	Nil	Syl	labu	IS V	ersi	on
				1.0		
Course Objectiv	es					
1. To introduce	the students to the basic concepts of electronic con	npon	ents	, so	ource	es,
	nd instrumentation.	•				
2. To apply the ir	culcated knowledge for developing simple circuits using	g var	ious	ele	ctro	nic
components and	devices	-				
3. To familiarize t	ne students with the basic concepts of number systems	and	digita	al lo	gic.	
	concepts associated with multiple sensors and their ser					IS.
Course Outcome						
Students will be a	ble to					
1. Understand t	he basic electronic components, sources, and measurin	g eq	uipm	nent		
	the characteristics of diodes, transistors and their applic					
	nalyse the amplifiers and oscillators					
	mplement simple digital circuits					
	performance metrics of the measurement systems.					
	the basic concept of various sensors and their sensing	mec	hani	sms		
	ronic Components, Sources, and Measuring Equipm				hοι	urs
	tronics – Impact of Electronics in Industry and Society			ariza	ition	of
	itors, Inductors – Colour Coding – types and specific					
	ponents – Relay and Contactors – Regulated Powe					
Generator – Multi			FF-7	,		
Module:2 Junc				4	hοι	ırs
	insic semiconductors – doping - PN Junctions, Form	atior		f Ju		
	n of diode, Barrier Potential, I - V Characteristics, Recti					-
	s, Zener diode as Voltage regulator.	noro,	201			0
Module:3 Trans	· · ·			5	hou	irs
	Fransistor (BJT) - Device structure and physical operati	on (Conc			
	figuration, Transistor as a Switch, - Metal-Oxide Fiel					
	evice Structure, mode of operation and Charact				DSF	
configurations (C			,			- ·
	ifiers and Oscillators			4	hou	ırs
	lifier (CE configuration), MOSFET as an amplifier	(CS)	con			
	ot, Oscillators - Barkhaunsen's criteria for sustained os					
Shift Oscillator, L		onnat	, ion,		1 110	
	al Logics			4	hou	irs
	conversion of bases, Boolean algebra, Logic Gates, Co	ncor	t of			
	n and implementation of Boolean functions.	noop	1 01	univ	0136	
	iples of Measurement and Analysis			3	hou	irs
	lards, Errors, Functional Elements of a Measurer	nont	Sv			
	ications and Classification of Instruments, Types of me					
	ersion, Sample deviation and sample mean, Calibration					C3,
	ors and Transducers	anu	Star		hou	Ire
	entals and characteristics - General concepts ar	vd +	ermi			
	stems, Sensors and transducers - Classification of s				.	
-	eristics. Principle of Resistive Sensors, Capacitive					
-	· · ·	Sens	sors,	0.0	JUUL	IVE
	c sensors, Optical sensor, Self-generating Sensors		1	<u>_</u>	hai	
woulle's Coll	emporary issues				hοι	urs
	m Industry and Desease and Development Organization	~ ~ ~				
	m Industry and, Research and Development Organisation	ons				
	m Industry and, Research and Development Organisation				hou	

Te>	Text Book(s)							
1.	A. P. Malvino, D. J. Bates, Electronic Principles, 2017, 7/e, Tata McGraw-Hill.							
2	Albert D. Helfrick and William D). Cooper, "N	/lodern E	Electronic Instrumentation and				
	Measurement Techniques", 2016,	First Edition, F	Pearson I	Education, Noida, India.				
Ret	ference Books							
1.	1. David A Bell, Electronic Devices and Circuits, Oxford Press, 5 th Edition, 2008							
2	Robert L. Bolysted and Louis I	Nashelsky, El	ectronic	Devices and Circuit Theory,				
	Prentice Hall of India, 11th Edition, 2017							
3	D. Patranabis – Sensor and Trans	ducers (2e) Pr	entice H	all, New Delhi, 2003				
4	4 A.K. Sawhney, Puneet Sawhney, A Course In Electrical and Electronic Measurements,							
	and Instrumentation, Dhanpat Rai & Co., 2015							
Mode of Evaluation: Internal Assessment (CAT, Quizzes, Digital Assignments) & FAT								
Red	Recommended by Board of Studies 08.07.2021							
App	proved by Academic Council	No. 63	Date	23.09.2021				

BECE101P	B	asic Electroni	cs Lab			L	Т	Ρ	С
_						0	0	2	1
Pre-requisite	Nil				Syl	abus		rsio	n
Course Objecti						1	.0		
Course Objecti	ves arious characteristics	of diodes and	transistor	' C					
	d the concept of digita				h table	es			
	performance metrics of						of va	riou	s
sensors			-						
Course Outcon									
Students will be									
	arious characteristics circuits using logic gate				nsistor	S			
	physical parameters u								
		cative Experi							
	ark the terminal and fi	nd the value c	of a partic						
	ectronic components,	Study of elect	ronic me	asurement	device	əs (N	/lulti	mete	er,
	ion generator)								
	teristics of PN Junction		ener dio	des					
3 Half Wave	and Full Wave Rectifie	er circuits							
4 Zener Diod	le as a voltage regulat	or							
5 Characteris	stics of BJT in Commo	n Emitter Con	figuration						
6 Characteris	stics of MOSFE⊤ in Co	ommon Source	e Configu	ration					
7 Frequency	response of BJT sing	le stage amplif	ier						
8 Study of the	e signal generation us	ing RC Phase	Shift Oso	cillator					
9 Study of log	gic gates and impleme	entation of Boo	lean Fun	ctions					
10 Strain gaug	ge sensors for measur	ement of norm	al strain.						
11 Displacem	ent measurement usir	ng LVDT and L	DR.						
12 Temperatu	re measurement using	g RTD, Thermi	stor and	Thermocou	ple.				
			Total La	boratory H	ours	3	0 ho	ours	•
Text Book(s)		ania Duinatat	0047 7	/- T-+- NA	0	1.12.0			
1. A. P. Malvi	no, D. J. Bates, Electro Helfrick and William		, 2017, 7. Modorn	e, rata ivic	Graw	-HIII. mont	otio	n 0	nd
	ent Techniques", 2016							l a	nu
Reference Boo		, i not Editori,	r caroon	Edubation,	Hold	, m			
1. Robert L.	Bolysted and Louis all of India, 11th Editio	-	Electronic	Devices	and C	Circui	it T	heol	ry,
	bis – Sensor and Tran		Prentice H	lall, New D	elhi, 2	2003			
	ment: Continuous ass								
	by Board of Studies	08.07.2021	_						
Approved by Ac	ademic Council	No. 63	Date	23.09.202	21				

BMEE201L	Engineering Mechanics	L	Τ	Ρ	С
		2	1	0	3
Pre-requisite	NIL	Syl⊺a			sion
			1.0)	
Course Objective		- 4	. F		du
	students to apply fundamental laws and basic conce to solve problems of bodies under rest or in motion.	pis t	я по	giù i	Joury
	the students to apply conditions of static equilibrium to	onol	Veo	nhv	امماه
systems.	the students to apply conditions of static equilibrium to	anai	yse	рпу	Sical
	e the properties of areas and bodies.				
Course Outcome					
	completion of the course the students will be able to				
	resultant and analyse equilibrium (without and with frict	ion)	ofs	vstei	n of
	n particles and rigid bodies in plane and space.	,		,	
-	pport-reactions and the internal forces of the member	s of	trus	ses	and
frames.					
3. Apply transfer t	theorems to determine properties of various sections.				
	on parameters of particles and rigid bodies.				
	s of Particles			5 h	ours
Fundamental con	cepts and principles - Resolution of a force -Resultant of	force	s in	a pl	ane-
	article in a plane; Addition of concurrent forces in space				
particle in space.					
Module:2 Static	s of Rigid Bodies			7 h	ours
	ns of forces- Principle of Transmissibility - Moment of a for				
	bles and force-couple systems- Equilibrium of rigid bodies				
	s of beams, supports and reactions; Principle of virtual	work	– S	yste	m of
connected rigid bo					
	vsis of Structures			5 h	ours
· · ·	trusses - Method of joints and method of sections- Frame	s			
Module:4 Fricti		T			ours
	friction – Coefficients of Friction- Angles of Friction-	гуре	S OT	Fri	ction
	es and Ladder friction- Belt friction. erties of Surfaces and Solids			7 h	ours
	areas and lines- Centroids of composite areas and line		Tho		
	Second moment of area- Parallel axis theorem- Recta				
	a of composite areas- Radius of Gyration- Product of Iner				
	nents of Inertia- Mass moments of inertia of thin plates.			p /	0.00
Module:6 Dyna				8 h	ours
	rticles: Displacement, Velocity and Acceleration – Red	ctiline	ar r		
	n – Tangential and Normal components – Radial				
components.					
Kinetics of Particl	es: Newton's Second Law- Energy and Momentum Me	thods	s-Pri	ncip	le of
	Principle of Impulse and Momentum- Direct Central Impa	ct			
· · ·	mics of Rigid Bodies				ours
	id bodies: Translation and fixed-axis rotation- Gener		ane	mo	tion:
	eous centre of rotation- General plane motion: acceleration				
	oodies:Equations of motion -Angular momentum- Plane				
	work and energy for rigid bodies- Principle of impulse a	nd m	ome	ntur	n tor
rigid bodies.	Tatal Lasting Lange				
	Total Lecture hours:		4	FD D	ours
Text Book(s)					
1. Beer, Johnsto	on, Cornwell, David Mazurek, and Sanghi, Vector Mechar ynamics, 12 th Edition, McGraw-Companies, Inc., New Yo			ng ine	eers:

Reference Books									
1.	Russell C Hibbeler, Engineeri	ng Mechanics:	Statics a	and Dynamics (14 th Edition),					
	Pearson Education Inc., Prentice Hall, 2016.								
2.	2. Meriam J.L and Kraige L.G., Engineering Mechanics, Volume I - Statics, Volume II -								
	Dynamics, 9 th Edition, John Wiley & Sons, New York, 2018.								
Mo	Mode of Evaluation: CAT, Assignment , Quiz and FAT								
Recommended by Board of Studies 02.07.2021									
App	Approved by Academic Council 63 Date 23.09.2021								

BCSE101E	Computer Programming: Python	L	Т	P	С
		1	0	4	3
Pre-requisite	NIL Sy	yl∣abu	is ve	ersi	on
			1.0		
Course Objecti					
	posure to basic problem-solving techniques using computers			ام اس م	
	he art of logical thinking abilities and propose novel solutions	s tor re	eal w	oric	1
problems thro	ugh programming language constructs.				
Course Outcom	10				
	bus algorithmic approaches, categorize the appropriate data	a repr	eser	ntatio	on.
	trate various control constructs.				,
2. Choose app	ropriate programming paradigms, interpret and handle da	ita usi	ing t	files	to
propose solu	ution through reusable modules; idealize the importance	of mo	bdule	es a	Ind
packages.					
	oduction to Problem Solving			1 hc	
Flowchart and P	g: Definition and Steps, Problem Analysis Chart, Developir	ig an	Algo	ontri	
	non Programming Fundamentals		2	hοι	irs
	bython – Interactive and Script Mode – Indentation – Comm	ents -			
	ds – Data Types – Operators and their precedence – Expres				
	orting from Packages.				
Module:3 Con	tro Structures		2	hοι	Jrs
Decision Making	and Branching: if, if-else, nested if, multi-way if-elif statem	nents	– Lo	popi	ng:
statements.	loop – else clauses in loops, nested loops – break, cor	ntinue		-	
Module:4 Col				hοι	ırs
	cess, Slicing, Negative indices, List methods, List comprehe				
	Indexing and slicing, Operations on tuples – Dictionary: Crea Operations on dictionaries – Sets: Creation and operations.	ate, at	iu, a	na	
	ngs and Regular Expressions		2	hοι	ire
	arison, Formatting, Slicing, Splitting, Stripping – Regula	 ar E			
Matching,	alson, Formatang, Gloing, Ophang, Galpping – Rega		(p) C	50101	10.
Search and repl	ace, Patterns.				
	ctions and Files		3	hοι	ırs
Functions – Pa	arameters and Arguments: Positional arguments, Keyw	ord a	argu	mer	its,
Parameters					
	ues - Local and Global scope of variables - Function				
•	ecursive Functions – Lambda Function. Files: Create, Ope	en, Re	ead,	Wr	ite,
	se – tell and seek methods.			-	
	dules and Packages			hοι	irs
Built-in modules	 User-Defined modules – Overview of Numpy and Pandas 	раска	ages	.	
	Total Lostura hou		4 6	b a :	
Taut Deak(a)	Total Lecture hou	15.	15	hοι	112
Text Book(s)	- Duthan Crash Courses A Handa On Droiget Deced Ir				
	s, Python Crash Course: A Hands-On, Project-Based Ir	iiroau	CLIO	ιτο	
Reference Bool	ng, 2nd Edition, No starch Press, 2019				
	ks own, Python: The Complete Reference, 4th Edition, McGraw	ца п	بالطين	ahor	
2018.	with righted the complete relefence, 4th Euliton, MCGraw		upits	sner	э,
	uttag, Introduction to computation and programming usi	ים הח	thor	י. א	,ith
	to understanding data. 2nd Edition, MIT Press, 2016.	יש אי	anol	vi	
	to and orotation gradia. End Edition, WIT 1 1000, 2010.				

Мо	de of Evaluation: No separate eval	uation for t	neory compo	onent.			
Ind	icative Experiments		· · ·				
1.	Problem Analysis Chart, Flowcha	rt and Pseu	idocode Prac	ctices.			
2.	Sequential Constructs using Pyth	on Operato	rs, Expressio	ons.			
3.	. Branching (if, if-else, nested if, multi-way if-elif statements) and Looping (for, while,						
	nested						
	looping, break, continue, else in loops).						
4.	List, Tuples, Dictionaries & Sets.						
5.	Strings, Regular Expressions.						
6.	Functions, Lambda, Recursive Functions and Files.						
7.	Modules and Packages (NumPy	and Pandas	5)				
	Total Labora	tory Hours			60 hours		
Те>	kt Book(s)						
1.	. Mariano Anaya, Clean Code in Python: Develop maintainable and efficient code, 2 nd						
	Edition, Packt Publishing Limited, 2021.						
Ret	ference Books						
1.	Harsh Bhasin, Python for beginners, 1 st Edition, New Age International (P) Ltd., 2019,						
	Mode of assessment: Continuous assessments and FAT						
Re	commended by Board of Studies	03.07.202	1				
Apr	proved by Academic Council	No. 63	Date	23.09.2	021		

BCSE103E	Computer Programming : Java		L	Т	P	С
			1	0	4	3
Pre-requisite	NIL	Sy	llab	us v	/ers	ion
				1.0		
Course Objective						
	e the core language features of Java and understand t	the f	unda	ame	ntals	s of
	ented programming in Java.					
To develop	the ability of using Java to solve real world problems.					
Course Outcome						
At the end of this c	ourse, students should be able to:					
1 Understand	I besis programming expetitivates realize the final		مامد	- 5		
	basic programming constructs; realize the funda Programming in love; apply inheritance and inte					
	Programming in Java; apply inheritance and inte code reusability.	nace	9 00	nce	pts	101
-	e exception handling mechanism; process data within	n file	<u>, e</u> a	nd i	160	the
	ires in the collection framework for solving real world p				130	ш¢
	a Basics		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ho	urs
	Features of Java Language - JVM - Bytecode - Java	aroa	ram			
	ig constructs - data types - variables – Java nan					
operators.	ig constructo - duta types - vanabies - bava nan	inig	001	IV CIT		,
	ping Constructs and Arrays			2	ho	urs
	ing constructs - Arrays – one dimensional and n	nulti-	dim			
	– Strings - Wrapper classes.					
	ses and Objects			2	ho	urs
	als – Access and non-access specifiers - Declaring ob	iects	and			
	ariables – array of objects – constructors and destructor					
and "static" keywor				3-		
	eritance and Polymorphism			3	ho	urs
	s use of "super" - final keyword - Polymorphism	- Ov	/erlo	adin	g a	nd
Overriding - abstra	ct class – Interfaces.					
Module:5 Pac	kages and Exception Handling			2	ho!	urs
	ng and Accessing - Sub packages.					
	ng - Types of Exception - Control Flow in Exceptions -	Jse	of tr	y, ca	itch,	
-	ws in Exception Handling - User defined exceptions.					
Module:6 IO St					<u>ho</u>	
	s – FileInputStream & FileOutputStream – FileRe					
	& DataOutputStream – BufferedInputStream & Buffe	reau	Jutp	นเธน	rean	л —
Module:7 Colle	- Serialization and Deserialization.			2	ho	
	nd methods - Collection framework: List and Map.					urs
Cellenc classes al	in methods - conection namework. List and map.					
	Total Lecture hours:			15	ho	urs
Text Book(s)						
	ang, "Introduction to Java programming" - compreh	ensi	ve	versi	ion-1	11 th
	on publisher, 2017.					
Reference Books						
	tt , The Complete Reference -Java, Tata McGraw-Hill բ	bubli	sher	·, 10	th	
Edition, 2017.						
2 Cay Horstman	nn,"Big Java", 4th edition, John Wiley & Sons publisher	, 5 th	edi	tion,	201	5
3 E.Balagurusa	my, "Programming with Java", Tata McGraw-Hill publis	hers	, 6 th	edi	tion,	
2019	· · · ·					

Mode of Evaluation: No separate evaluation for theory component.

Indicative Experiments

- 1. Programs using sequential and branching structures.
- 2. Experiment the use of looping, arrays and strings.
- 3. Demonstrate basic Object-Oriented programming elements.
- 4. Experiment the use of inheritance, polymorphism and abstract classes.
- 5. Designing packages and demonstrate exception handling.
- 6. Demonstrate the use of IO streams, file handling and serialization.
- 7. Program to discover application of collections. Total Laboratory Hours 60 hours

Text Book(s)

	1.	Marc Loy, Patrick Niemeyer and Daniel Leuck, Learning Java, O'Reilly Media, Inc.,
		5 th Edition, 2020.
1		· · · · · · · · · · · · · · · · · · ·

Reference Books

1.	Dhruti Shah, 100+ Solutions in Java: A Hands-On Introduction to Programming in
	Java, BPB Publications, 1 st Edition, 2020.

Mode of assessment: Continuous assessments and FAT

Recommended by Board of Studie	es	03.07.2021	
Approved by Academic Council	No. 63	Date	23.09.2021

BENG	UTL	Technical English Communication		2	<u>T</u>	P	2
D			0	2	0	0	
Pre-re	quisite	NIL	Sylla		<mark>s ve</mark> 1.0	ersi	or
Course	e Objectivo				1.0		
		So LSRW skills for effective communication in professional	Leitur	atio	200		
		e knowledge of grammar and vocabulary for meaningful				tion	
		tand information from diverse texts for effective technical					
5.	TO UNDERS		com	mui	lica	non	
Course	Outcome	S.,					
		nar and vocabulary appropriately while writing and speal	dina				
		concepts of communication skills in formal and informal s		ons			
		ate effective reading and listening skills to synthesize an				iaer	nt
2.	inferences		~ ~ ~			.9*.	
4.		ly and significantly in academic and general contexts					
Modul		duction to Communication		4	4 ho	ours	5
		ss - Types of communication: Intra-personal, Interpersor					d
		mmunication / Cross-cultural Communication - Commun			Sarri	ers	
		good communication - Principles of Effective Communication	ations				
Modul		nmatical Aspects			4 nc	ours	•
		- Modal Verbs - Concord (SVA) - Conditionals - Error de	tectio		4 1		
Modul		en Correspondence			4 nc	ours	;
		etters - Resume Writing - Statement of Purpose					
Modul		ness Correspondence				ours	;
		Calling for Quotation, Complaint & Sales Letter – Memo	- Min	utes	s of		
		ing products and processes					
Modul		essional Writing				ours	;
		ummarizing - Executive Summary - Structure and Types	of Pr	орс	sal	-	
	mendation						
Modul		n Building & Leadership Skills			4 hc	ours	•
•		lership - Team Leadership Model - Negotiation Skills - Co	onflict				
Manag		1 384 141					
Modul		earch Writing				ours)
		nalysing a research article - Approaches to Review Pape	er Wri	iting] -		
		earch article - Referencing					
Modul	e:8 Gues	st Lecture from Industry and R&D organizations			2 hc	ours	,
Conter	nporary Iss	ues					
		Total Lecture hou	rs:	3	0 h	our	s
Text B	ook(e)			-		-	_
	\ /	nakshi & Sangeeta Sharma. (2015). Technical Commun.	icatio	n · C	Drine	vinic	
		(3 rd Edition). India: Oxford University Press.	cauor	n. r	m	hie	i0
	nce Books						
		> y & Chandra .V. (2010). Communication for Business A I	Dracti	cal	Anr	irna	cl
		dia: Pearson Longman.	raom	car	ΠPF	100	01
		y & Pushpalatha. (2018). English Language and Commu	inicat	ion	Ski	lle fr	nr
		dia: Oxford University Press.	moun	011	Onn	10 10	л
	-	i. (2020). English Language Skills for Engineers. India: N	lcGra	w⊢	lill		
	ucation.	. Lordy. English Eanguage Online for Engineers. India. IV		4¥ I			
		af. (2018). Effective Technical Communication 2 nd Editio	n Ch	ann	nai.		
4 1 1 1 1 1			n. OI	CII	ıа.		
	Graw Hill F	Iducation					
Mo	Graw Hill E	Education. na & Muralikrishna,C. (2014) <i>. Communication Skills for E</i>	nain	or	n lo	dia	

6. Watkins, P. (2018). *Teaching and Developing Reading Skills: Cambridge Handbooks for Language teachers*. India: Cambridge University Press.

Mode of Evaluation : CAT / Assignment / Quiz / FAT / Group Discussion									
Recommended by Board of Studies	Recommended by Board of Studies 28.06.2021								
Approved by Academic Council	No. 63	Date	23.09.2021						

REV	NG101P	Technical English Communication Lab		T	P						
Dre	roquicito		0 diabi	0	2	1					
rre-	requisite	NIL Sy	/llabu	<u>us v</u> 1.0	ersi	or					
Cou	Irse Objectiv	/es'		1.0							
	•	riate grammatical structures in professional communication									
		glish communication skills for better employability									
	•	eaningful communication skills in writing and public speaking	r								
	rse Outcom		2								
		rofessional rhetoric and articulate ideas effectively									
		rial on technology and deliver eloquent presentations									
		e and productive skills in real life situations and develop wo	rkplad	ce							
	munication		•								
Indi	cative Expe	riments				-					
1.	Grammar	& Vocabulary									
	Error Detec										
	-	Worksheets									
2.		to Narratives									
	Interviews of eminent personalities & Ted Talks										
		istening Comprehension / Summarising									
3.	Video Res										
		SWOT Analysis & digital resume techniques									
4		Preparing a digital résumé for mock interview									
4.		Process Description									
		and Sequencing									
5.	Mock Mee	Demonstration of product and process									
5.		neetings and meeting etiquette									
		conduct of meetings and drafting minutes of the meeting	r								
6.		esearch article	2								
0.	-	nd Technical articles									
		Vriting Literature review									
7.	Analytical										
	Case Studies on Communication, Team Building and Leadership										
		Group Discussion									
8.	Presentati										
	Preparing Conference/Seminar paper										
		ndividual/ Group presentations									
9.	Intensive										
	Scientific documentaries										
	Activity: Note taking and Summarising										
10.	Interview										
		uestions and techniques									
		Alock Interviews	001								
	I	Total Laboratory Hours	30 h								
		ment: Continuous Assessment / FAT / Written Assignments	s / Qu	iiz/ (Jral						
		Group Activity.									
		by Board of Studies 28.06.2021									
<u>арр</u>	roved by Aca	idemic Council No. 63 Date 23.09.2021									

BE	NG101N	Effective	English Com	municat	ion		L	Т	Ρ	С
	<u> </u>						0	0	4	2
Pre	-requisite	Nil				Syl			ersi	on
								1.0		
	urse Objectiv									
		RW skills for effective co								
		communication skills for								
		al communication skills	in writing and	public s	peaking					
	urse Outcom									
		e sentences using appr			•					
		rly in everyday conversa								
		given listening inputs for								
		nt reading strategies to	various texts a	and use	them appro	priat	ely			
	icative Expe					_				
1.		ntals of Grammar: Parl		Articles	Tenses, S	Sente	nce	Str	uctu	re,
		entences, Subject-Verb								
		xercises and worksheet								
2.	•	for Self-Expression: Fo		oduction	Expressi	ng Or	nese	lf		
		elf-Introduction, Just a N								
3.		ening: Listening to Simp	ole Conversation	ons, Sho	ort Speeche	es/Sto	ories	;		
		ap fill exercises								
4.	-	kills: Reading Strategie	•		•					
		loze reading, Reading of								
5.		aragraphs: Keywords E	•	Writing F	'aragraphs	using	g Co	nne	ctive	es
~		icture and poster interpr			D				144	
6.		y Enrichment: Synon								
		One Word Substitution,	Frequently us	sea laior	hs and Phr	ases,	ΗQ	mop	non	es
	and Homor	5	uarkobaata							
7		rossword puzzles and v			Listaning	4- No	+1			
7.	-	for Pronunciation: Intro Listening to Various Ac		onemes	Listening	เบ เงล	uve			
		istening and imitating, S								
0	-	Speaking: Everyday C	•	Toom Ir	toractions	Sim	Ilatio	200		
8.		ituational role plays	onversations,	i eann n	neractions,	Sint	Jiau	5115		
		Letter Writing: Types a	and Format of	Emoile	nd Lattara					
0	Email and	fficial e-mails and letter								
9.	Δctivity: Ω		o, personar ieu	010						
	-		ort Stories by I	Indian M	ritore					
9. 10.	Reading for	or Comprehension: Sh		Indian W	riters					
	Reading for		ng			re		03	her	
10.	Reading fo Activity: S	or Comprehension: Shummarising, loud readir	ng Tota	I Labor	atory Hou				hou	Irs
10. Mo	Reading fo Activity: S de of Evalua	or Comprehension: Shummarising, loud readir tion: Continuous asses	ng Tota	I Labor	atory Hou		ui z /			Irs
10. Mo exa	Reading fo Activity: S de of Evalua mination / Gr	or Comprehension: Shummarising, loud readir tion: Continuous asses	ng Tota	I Labor	atory Hou		uiz/			Irs

BSTS101P	Quantitative Skills Practice I	L	T	P	C
D	A1''	0	0	3	1.5
Pre-requisite	Nil	Syllat	1.0		lon
Course Objectiv			1.0		
	e the logical reasoning skills of the students and help the	m imn	rove	`	
	olving abilities		1070	•	
	skills required to solve quantitative aptitude problems				
	the verbal ability of the students for academic and profess	sional	purp	ose	s
	· · · · · · · · · · · · · · · · · · ·				
Course Outcome	es;				
1. Exhibit so	und knowledge to solve problems of Quantitative Aptitude	Э			
	ate ability to solve problems of Logical Reasoning				
	e ability to tackle questions of Verbal Ability				
Module:1 Logic				5 ho	ours
	gorization questions				
	involving students grouping words into right group orders	s of log	lical	sen	se
Cryptarithmetic					
	arrangements and Blood relations			6 hc	ours
-	ent - Circular Arrangement - Multi-dimensional Arrangeme	ent - B	ood		
Relations				~ -	
Module:3 Ratio		A. 1		<u>6 h</u> c	our
•	n - Variation - Simple equations - Problems on Ages - N	lixture	s an	a	
alligations	when a second commence by the second			<u></u>	
	entages, Simple and Compound Interest			<u>6 hc</u>	
	ractions and Decimals - Percentage Increase / Decrease	e - Sin	npie	Inte	res
Module:5 Num	rest - Relation Between Simple and Compound Interest			6 hc	
	Power cycle - Remainder cycle - Factors, Multiples - H				Jura
	ntial grammar for Placement			7 hc	VIII
 Prepositio 				/ 110	/ul
•	and Adverbs				
 Tense 					
 Speech ar 	nd Voice				
•	d Phrasal Verbs				
	ns, Gerunds and Infinitives				
	nd Indefinite Articles				
Omission					
 Prepositio 					
-	Prepositions and Prepositional Phrases				
•	• •				
 Interrogati 				3 ho	surg
 Interrogati Module:7 Read 				•	
Module:7 Read	ing Comprehension for Placement				
Module:7 Read Types of question	ing Comprehension for Placement s - Comprehension strategies - Practice exercises			6 ha	our
Module:7 Read Types of question Module:8 Voca	ing Comprehension for Placement s - Comprehension strategies - Practice exercises bulary for Placement	usina v		6 ho s -	ours
Module:7 Read Types of question Module:8 Voca Exposure to ques	ing Comprehension for Placement s - Comprehension strategies - Practice exercises bulary for Placement tions related to Synonyms – Antonyms – Analogy - Confu	using v			ours
Module:7 Read Types of question Module:8 Voca	ing Comprehension for Placement s - Comprehension strategies - Practice exercises bulary for Placement tions related to Synonyms – Antonyms – Analogy - Confu ess	-	vord	s -	
Module:7 Read Types of questior Module:8 Voca Exposure to ques	ing Comprehension for Placement s - Comprehension strategies - Practice exercises bulary for Placement tions related to Synonyms – Antonyms – Analogy - Confu	-	vord		
Module:7 Read Types of questior Module:8 Voca Exposure to ques Spelling correctne	ing Comprehension for Placement s - Comprehension strategies - Practice exercises bulary for Placement tions related to Synonyms – Antonyms – Analogy - Confu ess	-	vord	s -	
Module:7 Read Types of question Module:8 Voca Exposure to ques Spelling correctne Text Book(s)	ing Comprehension for Placement s - Comprehension strategies - Practice exercises bulary for Placement tions related to Synonyms – Antonyms – Analogy - Confu ess Total Lecture hou	rs:	vord	s -	
Module:7 Read Types of question Module:8 Voca Exposure to ques Spelling correctne Text Book(s) 1. SMART. (201	ing Comprehension for Placement s - Comprehension strategies - Practice exercises bulary for Placement tions related to Synonyms – Antonyms – Analogy - Confu ess	rs:	vord: 4	s - 5 ho	bur

3.	FACE. (2016). Aptipedia Aptitude Encyclopedia 1st (Ed.). New Delhi: Wiley										
	Publications.										
4.	ETHNUS. (2016). Aptimithra,1 st (Ed.) Bangalore: McGraw-Hill Education Pvt. Ltd.										
Reference Books											
1.	Sharma Arun. (2016). <i>Quantitative Aptitude</i> , 7 th (Ed.). Noida: McGraw Hill Education Pvt.										
	Ltd.	-									
Мо	Mode of evaluation: CAT, Assessments and FAT (Computer Based Test)										
Re	Recommended by Board of Studies 28.06.2021										
Ap	proved by Academic Council	23.09.2021									

BSTS102P	Quantitative Skills Practice II		_		P	<u>C</u>
Dro roguioito	Nil				3	1.5
Pre-requisite		Syl		<u>5 \</u> 1.0	vers	sion
Course Objectiv	es'			0.1		
	gger the students' logical thinking skills and apply it in rea	al-life	sce	na	rios	
	leploy the strategies of solving quantitative ability problem					
	the verbal ability of students					
4. Assist to r	un the gamut of employability skills					
Course Outcom	•					
	roficient in interacting and using decision making models					
	derstand the given concepts expressly to deliver an impa					ion
•	nowledge of solving quantitative aptitude and verbal ability	y que	estio	ns		
effortlessly	/					
Module:1 Logi	cal Reasoning puzzles - Advanced			2	2 ha	ours
Advanced puzzle				-		
Sudoku	-					
 Mind-ben 	der style word statement puzzles					
 Anagram 	S .					
 Rebus pt 						
	cal connectives, Syllogism and Venn			2	2 hc	ours
diag			4		- - -	
	ves - Advanced Syllogisms - 4, 5, 6 and other multiple st	tatem	ient	pro	opie	ems
	n Diagram questions: Set theory nutation, Combination and Probability				1.64	ours
	vanced			4	+ 110	Juis
	Inting Principle- Permutation and Combination - Compu	Itatio	n of			
	vanced problems - Circular Permutations - Computatio				nati	on -
	ns -Advanced probability		0011			011
•	. ,					
	titative Aptitude		-	6	6 ho	ours
	gressions, Geometry and Quadratic equations - Adva	ance	d			
Logarithm						
	Progression					
	c Progression					
Geometry						
Mensurat						
Coded ine	•					
	Equations					
•	d by advanced questions of CAT level e interpretation			-) ha	ours
	tion: Methods - Exposure to image interpretation question	ne th	rour		2 110	<u>/ui ə</u>
brainstorming and		nə ul	ոսն	, , ,		
	al Reasoning - Advanced			3	3 ha	ours
Concepts of Critic	cal Reasoning - Exposure to advanced questions of GMA	T lev	/el			
Module:7 Recr	uitment Essentials			8	3 ha	ours
Mock interviews						
Cracking other k	kinds of interviews					

Slave		lanhania intonviowa				
		lephonic interviews rviews				
		erviews				
Gues						
		st methods to approach Gues	stimation aug	etione		
		actice with impromptu interview			uestions	
		ies/ situational interview		nation q		
0400		Scientific strategies to answe	r case study a	and situ	ational interview que	stions
		Best ways to present cases				
		Practice on presenting cases	and answerir	ng situat	ional interviews ask	əd in
		recruitment rounds		5		
Modu	ule:8	Problem solving and Algor	rithmic skills			18 hours
Logic	cal me	ethods to solve problem stater	nents in Prog	ramming	J - Basic algorithms	
introd	luced					
		T - 4 - 1	I 4 I			45 1
		lota	Lecture hou	irs:		45 hours
Text						
1. S	SMAR	T. (2018). <i>Place Mentor</i> 1 st (E	d.). Chennai:	Oxford	University Press.	
2. A	\aaan	wal R.S. (2017). Quantitative	Antitude for (Competit	ive Evaminations 3 ⁿ	
		elhi: S. Chand Publishing.	Aplitude for C	ompear		(L u.).
'		eini, 5, chang i ubiisining.				
3. F	ACE.	(2016). Aptipedia Aptitude Er	ncyclopedia 1 ⁴	st (Ed.).	New Delhi: Wiley	
		ations.	•	. ,	·	
			<u> </u>			
		JS. (2016). Aptimithra,1 st (Ed	.) Bangalore:	McGrav	w-Hill Education Pvt.	Ltd.
		Books				
		a Arun. (2016). Quantitative A	Aptitude, 7 ^{er} (E	d.). Noid	a: McGraw Hill Edu	cation Pvt.
	.td.				Deced Test	
wode	e ot e	valuation: CAT, Assessments	and FAT (Co	omputer	Based Test)	
Reco	mme	nded by Board of Studies	28.06.2021			
		by Academic Council		Date	23.09.2021	
			I		1	

BN	IEE101N	Introduction to Engineer	ring		L	Τ	Ρ	С
					0	0	0	1
Pre	e-requisite	Nil		Syll			ersi	ion
					1	.0		
Co	urse Objectiv							
•		student comfortable and get familiarized w	ith the facilitie	es avai	labl	e or	n	
	campus							
•		student aware of the exciting opportunities	and usefulne	ess of e	engi	nee	ering	j to
	society	student understand the philosophy of angi	nooring					
•	TO Make the	student understand the philosophy of engi	leening					
Со	urse Outcom	e:						
•		nfrastructure facilities available on campus	 }					
•		utilize the facilities during their term for the		al grow	th			
•	•	e the engineering principles, involve in life-	•	•		д		
		ractice as a service to society	0 0			•		
Ge	neral Guideli							
		hould observe and involve in the activities						ie.
	•	eral activities and those which are disciplin	e-specific sho	ould be	inc	lude	ed	
	here.							
		hould get familiarized with the infrastructur					npu	s
		e general induction, school induction progra al website.	amme and als	so from	i the	9		
		hould attend the lecture by industries, inclu	iding those o	n care	⊃r			
		ties, organized by the School and probably				elf'		
		r projects involving reverse-engineering.		e it je				
		under 'Do-it-Yourself' will be detailed by th	e School.					
	5. Student s	hould prepare a report on the activities and	d observation	is, as p	er t	he		
	•	format, and submit the same in institutiona	I LMS, VTOF	P for fur	the	r		
	evaluatio	1						
	Conorali	activities on formatting. Desument to be a	roporod with	the title				
		nstruction on formatting: Document to be p ate; Arial type with font size of 12 to be use						24
		ument as per the requirement; 1.5 line spa			i ne	IIIC	luue	;u
		ament as per the requirement, 1.0 inte spe	toing to be us	JCu.				
Мо	de of Evaluat	on: Evaluation of the submitted report and	interaction w	ith the	stud	den	ts	
Re	commended b	y Board of Studies 02.07.2021						
		demic Council No. 63 Date	23.09.202	21				
ΛP			20.00.202					

BSSC101N								
Pre-requisite	Nil	Syll			rsic	on		
-			1	0.1				
Course Objective								
2. To enable	the knowledge on Indian tradition and Culture. the students to acquire the traditional knowledge in diffe e and understand the Science, Management and					ge		
Course Outcome	es:							
 Familiarize Explore the Analyze ar Gives a cle basic princ 	e the concept of Traditional Indian Culture and Knowledge Indian religion, philosophy and practices. Ind understand the Indian Languages, Culture, Literature ear understanding on the Indian perspective of modern siples of Yoga and holistic health care system of India. powledge on Legal framework and traditional knowledge.	e and scien			ld a	ınd		
	smedge on Legal namowork and dataonal knowledge.	·						
	duction to Traditional Knowledge							
traditional knowle vis Indigenous kno	edge: Definition, nature and characteristics, scope and i dge, Indigenous Knowledge, characteristics, Traditiona owledge, Traditional knowledge Vs Western Knowledge	al kno						
	re and Civilization							
	ulture and Civilization, Culture and Heritage, Charact portance of Culture, Cultural practices in Ancient India,							
Module:3 Lang	uages and Literature							
	and Literature: the role of Sanskrit, significance of s ilosophies, other Sanskrit literature and literatures of So			to c	curre	ent		
	ion and Philosophy							
Religion and Philo	psophy: Religion and Philosophy in ancient India, Relig Religious Reform Movements in Modern India (selected							
	Arts in India		eme	51118	Uni	<u>y)</u> .		
Indian Painting, Ir music, Dance an ancient, medieval Pranayama practi	ndian handicrafts, Music, divisions of Indian classic mu d Drama. Science and Technology in India, Develop l and modern India. Traditional Medicine – Herbal H ces.	ment	of	scie	nce	in		
Module:6 Tradi	tional Knowledge in different sectors							
in agriculture, D Importance of cor biodiversity and P	edge and engineering, Traditional medicine system, Traditional Societies on food and h nservation and sustainable development of environmen rotection of Traditional knowledge.	nealth	care	e ne	ede	s;		
Module:7 Legal	framework and Traditional Knowledge							
Other Traditional Protection and Fa	egal framework and Traditional Knowledge: The Sch Forest Dwellers (Recognition of Forest Rights) Act, 20 armer's Rights Act, 2001 (PPVFR Act); The Biological The protection of traditional knowledge bill, 2016.	DO6, F	Plant	t Va	arieti	ies		
	Total Lecture Hours:			60	hou	ırs		
Text Books :		I						
1. Shikha Ja	ain, Parul G Munjal And Somya Joshi,(2020) Trad and Cultural Heritage, Aryan Books International, India.	dition	al k	(nov	vled	lge		
^{2.} Anindya B	hukta(2020), Legal Protection for Traditional Knowledg	je: To	owar	ds /		ew		

	Law for Indigenous Intellectual Property, Emerald Publishing Limited, United									
	Kingdom.									
Refer	ence Books :									
1.	Traditional Knowledge System in India, by Amit Jha, 2009.									
	Basant Kumar Mohanta & Vipin Kumar Singh (2012), "Traditional Knowledge System									
2.	& Technology in India", Pratibha Prakashan, India.									
3.	S. Baliyan, Indian Art and Culture, Oxford University Press, India.									
4	http://indiafacts.org/author/michel-danino/									
5.	GN Jha (Eng. Trans.) Ed. R N Jha, Yoga-darshanam with Vyasa Bhashya, Vidyanidhi Prakasham, Delhi,2016.									
Mode	Mode of Evaluation: Quiz and Term End – Quiz									
Reco	mmended by Board of Studies 16-11-2021									
Appro	ved by Academic Council No. 64 Date 16-12-2021									

BCHY102N	Environmental Sciences	L	T	Ρ	С
		0	0	0	2
Pre-requisite	NIL	Syllabu		ersi	on
Course Objectiv		1	.0		
Course Objectiv	es: ned at students to				
	nd and appreciate the unity of life in all its forms a	and their	~		
	is of life style on the environment.				
	e different causes for environmental degradation.				
•	dividual's contribution to environmental pollution.				
•	the impact of pollution at the global/local level and	d find			
	for remediation.				
Course Outcome					
	course, the students will be able to:				-
	e the environmental issues in a problem-oriented, i	nterdisci	olina	ary	
perspectiv	•				
2. Classify t	he key environmental issues, the science behind tho	se prob	lem	s an	ıd
potential s					
	ate the significance of biodiversity and its preservation.				
•	rious environmental hazards.				
•	rious methods for the conservation of resources.				
	e action plans for sustainable alternatives that incor	porate s	cier	nce,	
	and social aspects.				
	vironment and Ecosystem inition; Earth–life support system. Ecosystem definition	5 h			
chain, food web a	onmental problems, their basic causes and sustainabl and their significance, Energy flow in ecosystem; Ecolo primary and secondary succession - hydrarch, mesarch,	ogical su	ссе		
	odiversity		our		
endangered and	ition, levels and importance. Species: roles: types: rare species. Hot-spots –Significance, Mega-biodive o natural and anthropogenic activities, Conservation me disadvantages.	ersity. T	hre	ats	to
Module: 3 Su	staining Environmental Quality	4 h	our	S	
			_/ 		
COVID-19), Cher	azards: definition, types, causes and solutions: Bi mical (BPA, heavy metals), and Nuclear (Chernobyl); A ent and conservation; Solid waste management method	Air, wate			
	n and Green Energy	5 h			
energy. Wind ene	gy resources: Solar energy-thermal and photovolta ergy, Ocean thermal energy; Geothermal energy; Energ ; Solar-hydrogen revolution. Electric and CNG vehicles.				
Module: 5 Env	ironmental Protection Policies	4 h	our	s	
and Wild life pro	rotection (EPA) objectives; Air Act, water Act, Forest otection Act. Environmental Impact Analysis: guidelin int methodologies.				
Vodule: 6 ∣Sust	ainable development	4 h	our	S	
human societies:	on-urban environmental problems; Population age str tools in economics, sustainable development goals S en and child welfare, Women empowerment.				

Module: 7 Global Climate Change				4 hours						
Global climate change and green-house	effect. Kyd	oto Proto	col-carbon	credits, The Paris						
Agreement, carbon sequestration: definit	Agreement, carbon sequestration: definition, types and methodologies. Ozone layer									
depletion: causes and impacts. Mitigation o	f ozone lay	/er depleti	on- Montrea	al Protocol. Role of						
nformation Technology in environment.										
Total Lecture hours:30 hours										
Assessment: Seminars, Quiz, Case Studies, Final Assessment Test.										
Text Books										
1. G. Tyler Miller and Scott E. Spoolman (2	016), Envir	ronmenta	Science, 1	5 th Edition,						
Cengagelearning.			*15							
2. Benny Joseph, (2012), Environmental So			ing, 5 ^m Editi	ion, Tata						
McGraw Hill Education Private Limited, Nev	v Delhi, Ind	dia.								
Reference Book(s)			Dawa /0044							
1. David M. Hassenzahl, Mary Catherin			Berg (2011), visualizing						
Environmental Science, 4 th Edition, John W				action Driveto						
2. Raj Kumar Singh, (2012), Environmental Limited, New Delhi, India.	Studies, I	ata wcgi		cation Private						
3. George Tyler Miller, Jr. and Scott Spooln	an (2012)	Living in	the Enviror	amont						
Principles, Connections and Solutions, 17 th	Ealuon, BI	OOKS/COP	e, USA.							
Recommended by Board of Studies	14-02-20)22								
Approved by Academic Council	No. 65	Date	17-03-202	2						

BHUM101N	Ethics and Values	L T P C
B	A111	
Pre-requisite	Nil	Syllabus version
Course Objectiv	081	1.0
	es. stand and appreciate the ethical issues faced by an indi-	vidual in profession
society an		
-	tand the negative health impacts of certain unhealthy be	havior
	ciate the need and importance of physical, emotional	
health.		
Expected Cours	e Outcomes:	
	will be able to:	
2. Follow so	und morals and ethical values scrupulously to prove as	good citizens.
	nd various social problems and learn to act ethically.	
	nd the concept of addiction and how it will affect the p	physical and mental
health.		
5. Identify e	thical concerns in research and intellectual contexts,	including academic
	use and citation of sources, the objective presentatic	
treatment	of human subjects.	
6. Identify t	he main typologies, characteristics, activities, acte	ors and forms of
cybercrim	е.	
	g Good and Responsible	
	such as truth and non-violence - Comparative analysis	
-	Society's interests versus self-interests - Personal So	ocial Responsibility:
	y, charity and serving the society.	
Module:2 Soci		
	pes - Prevention of harassment, Violence and Terrorism).
Module:3 Soci		
	al values, causes, impact, laws, prevention – Electoral n	nalpractices;
	es - Tax evasions – Unfair trade practices.	
	ction and Health	
	Alcoholism: Ethical values, causes, impact, laws, preve	ntion – III effects of
smoking - Prever		
	revention and impact of pre-marital pregnancy and S	exually I ransmitted
Diseases.	A h	
	Abuse	
	t types of legal and illegal drugs: Ethical values, cause	s, impact, laws and
prevention. Module:6 Pers	onal and Professional Ethics	
	aling - Malpractices in Examinations – Plagiarism. e of Technologies	
	e of rechnologies er cyber crimes, Addiction to mobile phone usage, Vide	amon and Sociel
networking websi		yames and Sould
networking websi	Total Lecture Hours;	60 hours
Text Books :		00 110013
R R Gaur	, R Asthana, G P Bagaria, "A Foundation Course in Hu	iman Values and
	al Ethics", 2019, 2nd Revised Edition, Excel Books, Net	
	, N., "Moral Values", 2017, United Kingdom: Taylor & F	
Reference Book		oonbu" Oth adition
	James & Stuart Rachels, "The Elements of Moral Philo Vort: McGraw Hill Education	sopny, sur equion,
	VYork: McGraw-Hill Education.	

2.	Blackburn, S. "Ethics: A Very Short Introduction", 2001, Oxford University Press.									
3. Dhaliwal, K.K , "Gandhian Philosophy of Ethics: A Study of Relationship betw										
5.	Presupposition and Precepts", 2016, Writers Choice, New Delhi, India.									
4 Ministry of Social Justice and Empowerment, "Magnitude of Substance Use in I										
4	2019, Government of India.									
5.	Ministry of Home Affairs, "Accidental Deaths and Suicides in India", 2019,									
5.	Government of India.									
6.	Ministry of Home Affairs, "A Hand	book for Ado	lescents/	Students on Cyber Safety",						
0.	2018, Government of India.									
Mode	of Evaluation: Poster making, Quiz a	and Term End	d - Quiz							
Recor	Recommended by Board of Studies 27-10-2021									
Appro	Approved by Academic Council No. 64 Date 16-12-2021									
-										

BMEE209L	Materials Science and Engineering			Т	Ρ	С
DIVIEEZUAL	Materials Science and Engineering		⊔ 3	0	P 0	3
Pre-requisite	Nil	Sylla	-	-	-	-
		Oyne		.0	1510	
Course Objectiv	/es		•	.0		
	knowledge on the correlation between structure-proper	tv of m	nate	rials	i.	
	de knowledge on mechanical properties of materials					ina
mechanis				5		5
3. To give ir	nsight into advanced materials such as polymers, ceran	nics ar	nd c	omp	oosi	tes
and their	applications.			-		
Course Outcom						
	f the course, the student will be able to					
	different structures based on the atomic arrangement.					
	various phases of metals and alloys using phase diagra		-l -			
	e mechanical behaviour of materials according to the st and suitable heat treatment and surface hardening proce					
	the suitable material based on the structure-property relation					
0. 1100030	and calculate matchar based on the structure-property lea	200131	iha			
Module:1 Fund	damentals to Materials engineering			3	hou	Jrs
	ective of materials, materials science, Materials en	aineer	ina.			
	aterials tetrahedron, Engineering requirement of adva					
	- Diversified applications.					
	tallography and Defects				hou	
	oncepts, Crystal geometry, Unit Cell, Classification of					
	coordinates, Crystallographic Directions and Planes					
	ngle and Poly crystalline materials, Non-crystalline/Ar					
	of Metals, Ceramics and Polymers, Defects in crystals					
	ions), Characteristics of Dislocations, Slip Systems, Sl					tal,
	wining, surface defects and volume defects, Microscopi	c exar			hou	
	dification, Diffusion and Phase Transformation mogeneous and Heterogeneous Nucleation- Growth	of cr	veta			
	tic growth. Diffusion: Introduction – Fick's Law of [
	eady state and non-steady state diffusion. Basics of ph					
	r rule, Unary phase Diagrams, Binary Isomorphous ar		-			
•	Phase Diagram, Iron – iron carbide phase diagram – S					
	oid steels, Phase transformations in steels and cast iron			0		•
	hanical behaviour of Materials			7	ho	urs
	g of Materials, Tensile properties of the materials, E					
	Fracture of Metals - Ductile Fracture, Brittle Fracture					
	erature (DBTT), Fatigue – Endurance limit, Fatigue test					
	, structural changes accompanying fatigue; Creep a					
	reep – stages of creep and creep test, Mechanisms	of St	reng	the	ning	In
Metals and alloys				7	ha	
Module:5 Heat	sformation diagrams and Continuous Cooing Trans	form	 ation		ho agra	
	at treatment, Annealing, Concept of Recovery, Recrys				-	
	zing, Hardening, Tempering, Solutionizing, Ageing, Sp					
	emepering, Martempering, Ausforming, Hardenability of					
changes during h		,				-
	ng processes - Carburizing – Nitriding – Cyaniding	and c	carb	o-ni	tridi	∩g,
	me hardening, Laser and Electron beam hardening.					-
Module:6 Meta	Ilic Materials				hou	
Steels – Types	of Steels, Effect of alloying elements on structure and	prope	rties	of	stee	els,

Alloy Steel – Tool and Die Steel, Stainless steel, Speciality steel, Cast iron- White, Grey, Malleable and Nodular - Properties and application of cast irons. Non-ferrous Alloys, Aluminium, copper, Nickel, Magnesium and Titanium.							
Мо	odule:7 Non-metallic and Co Environmental, and soci Engineering	mposite Ma etal issues i	aterials n materia		6 hours		
	ion of glass,						
	operties and application of glass;						
	olication of polymers; Fibers: Natur				Classification		
	Composite Materials, Properties and	Application of	or Compo	site materials.	0 h a una		
IVIO	odule:8 Contemporary Issues				2 hours		
			Total	Lecture hours:	45 hours		
Tax			TULA	Lecture nours.	45 110015		
-	xt Books	<u> </u>	0 11 1				
1.	,,				ience and		
	Engineering, 2018, 10 th edition, Jo	hn Wiley & So	ons, Inc.,	United states.			
2.				sn, Materials sci	ence and		
De	Engineering, 2017, 5 th edition, McC ference Books		ications.				
					·· -· ·		
1.	Michael F. Ashby, Materials Select Butterworth-Heinemann.	tion in Mech	anical De	sign, 2016, 5" edi	tion, Elsevier		
2		Engineering	f Mataria	la SI Edition 2011	- 7 th adition		
Ζ	Donald R. Askeland, Science and Springer, Boston, MA.		n materia	IS, SI EUIUON, 2013			
			0045				
3	Raghavan V, Materials Science ar	•	g, 2015,	6 th edition, Prentic	e Hall India		
	Learning Private Limited, United K	0		-nd			
4	Sidney Avner, Introduction to Phys	sical Metallurg	y, 2017, 2	2 [™] edition, McGra	w Hill		
	Education						
	de of Evaluation: CAT / Written assi						
	commended by Board of Studies	09-03-2022					
Ар	proved by Academic Council	No. 65	Date	17-03-2022			

BME	E209P	Materials Science and Engineering Lab		L	Τ	Ρ	С
				0	0	2	1
Pre-r	requisite	Nil	Sy	llabu	s ve	ersi	on
					1.0		
Cour	rse Objectiv	9	·				
1. To	o impart pra	ctical exposure on optical microscopy, furnace, a	nd me	chani	cal	test	ing
ec	quipment.						
2. To	o provide har	ds-on experience on image analysis software.					
	rse Outcome						
		course, the student will be able to					
	•	phases in the microstructure of samples.					
		chanical properties as per the ASTM standards.					
3. De	evelop and pr	opose the industrial heat treatments.					
lua ali a							
	ative Experi		nd ron	ort th		uto	otio
1.	temperature	alysis of Pb-Sn alloy (To produce cooling curve a	nu rep		ie e	ule	JUC
2.		nic sample preparation.					
3.		e microstructure of Ferrous Materials a) Steel b) S	tainles	e Ste			aet
5.	Iron.		lannes	5 010		,, 0	สอเ
4.		microstructure of Non- Ferrous Materials.					
5.		nd annealed microstructure of alloys (Ferrous/Non-fe	rrous)				
6.		ient of Steel (Annealing, Normalising, Quenching and	,)		
7.		ng studies of Aluminium alloys.	remp	cring	<i>)</i> .		
8.		face hardened Steel – Case Depth, hardness and m	crostru	icture			
9.		easurement of ferrous and non-ferrous alloys.	0100010		•		
10.		y of Steels by Jominy end quench test according to A	STM s	tanda	ards		
		perty evaluation of ductile and brittle materials					ТМ
	standards.						
12.	Quantitative	metallography and image analysis					
		Total Laboratory He	ours	30 ho	urs		
Text	Book(s)						
	William D. (Callister Jr., David G. Rethwisch, Callister's Mat		Scien	се	and	
		2018, 10 th edition, John Wiley & Sons, Inc., United s					
		Smith, Javad Hasemi and Ravi Prakash, Mate	rials :	scien	се	and	
		2017, McGraw Hill Publications, 5 th edition.					
		prepared by course faculty member					
	rence Book	-					
		Ashby, Materials Selection in Mechanical Design,	Elsev	ier B	utte	rwoi	th-
		2016, 5th edition.					
		keland, Science and Engineering of Materials, SI Ec	lition, 2	2015,	7 ^m e	editi	on,
	Springer, Bos						
	v	, Materials Science and Engineering, 2015, 6 th edit	on, Pr	entice	e Ha	ll In	dia
		ate Limited, United Kingdom					
		Ashby, Materials Selection in Mechanical Design,	Elsev	ier B	utte	rwor	th-
		2016, 5th edition.					
		ent: Continuous assessment / FAT / Oral examination	[]				
		y Board of Studies 09-03-2022	0000				
Appr	oveu by Aca	demic Council No. 65 Date 17-03-	2022				

BMEE211L	Engineering Optimization	L	T	P	С
		2	1	0	3
Pre-requisite	Nil Sy	/llabi	IS Ve	ersid	on
			1.0		
Course Objectiv	es				
1. To impart know	ledge on linear, non-linear optimization problems and techr	nique	s to :	solv	Э
them.		-			
2. To develop mo	delling skills and to solve engineering optimization problems	s.			
3. To demonstrate	e the use of software to solve optimization problems.				
	skills of using modern heuristic search algorithms.				
Course Outcome					
	the course, the student will be able to				
	engineering problems as optimization problems.				
	lity conditions for unconstrained and constrained optimization	on pro	oblei	ms.	
	ogramming problems.				
	algorithm and solve constraint & unconstraint optimization p		ems.		
	heuristic search algorithms for solving optimization problem	ns.			
	num Problem Formulation			hοι	
	pptimization – Statement of an Optimization Problem – C				
	blem – Optimum Problem Formulation: Problem Formu	latio	n Pr	oce	SS,
	ems related Engineering Design and Manufacturing.				
Module:2 Optim	•			hou	
	ptimality Criterion: Single variable problems – Optimali				
	blems. Multivariable Optimization problems – Optimali				for
	nization problems: Lagrangian Multiplier, Kuhn-Tucker				
	ns to identify optimality conditions for unconstrained a	ana c	cons	train	ea
problems (Hand (b a :	
	ar Programming andard form of a LPP problem - Graphical solution for		-	hou	-
	d Simplex method – Duality in LPP – Modelling of Transpo				
as an Ontimize	tion problem – Exercise problems (limited to simple		mot	hod	
Demonstration: S	olving LPP problems using software tool (MATLAB).		met	nou	
	Linear Programming – Unconstrained Optimizati	ion	5	hou	irs
			Ŭ		
Introduction – St	andard form of an unconstrained problem – Unimodal	and	Mult	timo	dal
	duction to One Dimensional minimization methods: Elim				
	od. Interpolation methods: Newton Method Exercise I	DIODIE	51113		
calculation - Ne	iod. Interpolation methods: Newton Method Exercise p wton and Secant method) – Solving 1D problems usin				
(MATLAB).	wton and Secant method) – Solving 1D problems usin	ig so			
(MATLAB).		ig so	ftwa	hou	irs
(MATLAB). Module:5 Non- II	wton and Secant method) – Solving 1D problems usin	ig so on	ftwa 6		
(MATLAB). Module:5 Non- II Multi variable und	wton and Secant method) – Solving 1D problems usin Linear Programming – Unconstrained Optimization	on tern o	ftwa 6 direc	tion	s –
(MATLAB). Module:5 Non- II Multi variable und Conjugate Direct	wton and Secant method) – Solving 1D problems usin Linear Programming – Unconstrained Optimization constraint optimization algorithms: Univariate Method – Pat ion method (Powell's method) - Steepest Descent met	on tern o hod	ftwa 6 direc – E	tion: xerc	s – ise
(MATLAB). Module:5 Non- II Multi variable und Conjugate Direct problems (hand	wton and Secant method) – Solving 1D problems usin Linear Programming – Unconstrained Optimization constraint optimization algorithms: Univariate Method – Pat ion method (Powell's method) - Steepest Descent method) calculation – Univariate and Steepest Descent method)	on tern o hod	ftwa 6 direc – E	tion: xerc	s – ise
(MATLAB). Module:5 Non- II Multi variable und Conjugate Direct problems (hand Solving unconstra	wton and Secant method) – Solving 1D problems usin Linear Programming – Unconstrained Optimization constraint optimization algorithms: Univariate Method – Pat ion method (Powell's method) - Steepest Descent met	on tern o hod	ftwa 6 direc – E nons	tion: xerc	s – ise on:
(MATLAB). Module:5 Non- II Multi variable und Conjugate Direct problems (hand Solving unconstra Module:6 Non-	wton and Secant method) – Solving 1D problems usin Linear Programming – Unconstrained Optimization constraint optimization algorithms: Univariate Method – Pat ion method (Powell's method) - Steepest Descent method calculation – Univariate and Steepest Descent method) aint problems using software tool (MATLAB).	ig so on tern o hod Den	ftwa 6 direc – E nons 5	tion: xerc tration hou	s – ise on: urs
(MATLAB). Module:5 Non- II Multi variable und Conjugate Direct problems (hand Solving unconstra Module:6 Non- Introduction - Sta	wton and Secant method) – Solving 1D problems using Linear Programming – Unconstrained Optimization constraint optimization algorithms: Univariate Method – Pation ion method (Powell's method) - Steepest Descent method calculation – Univariate and Steepest Descent method) int problems using software tool (MATLAB). Linear Programming – Constrained Optimization	ng so on tern o hod Den nethoo	ftwa 6 direc – E nons 5 ds- I	tion: xerc tration hou Pena	s – ise on: urs alty
(MATLAB). Module:5 Non- II Multi variable und Conjugate Direct problems (hand Solving unconstrat Module:6 Non- Introduction - Stat function method:	wton and Secant method) – Solving 1D problems usin Linear Programming – Unconstrained Optimization constraint optimization algorithms: Univariate Method – Pat ion method (Powell's method) - Steepest Descent method calculation – Univariate and Steepest Descent method) aint problems using software tool (MATLAB). Linear Programming – Constrained Optimization indard form of a constrained problem – Transformation m	ig so on tern o hod Den nethoo ting o	ftwa 6 direc – E nons 5 ds- I cons	tion: xerc tration hou Pena train	s – ise on: urs alty
(MATLAB). Module:5 Non- II Multi variable und Conjugate Direct problems (hand Solving unconstrat Module:6 Non- Introduction - Stat function method: problem into un	wton and Secant method) – Solving 1D problems usin Linear Programming – Unconstrained Optimization constraint optimization algorithms: Univariate Method – Pat ion method (Powell's method) - Steepest Descent method calculation – Univariate and Steepest Descent method) int problems using software tool (MATLAB). Linear Programming – Constrained Optimization indard form of a constrained problem – Transformation methods - Exercise problems: Conver	ig so on tern o hod Den nethoo ting o	ftwa 6 direc – E nons 5 ds- I cons	tion: xerc tration hou Pena train	s – ise on: u rs alty
(MATLAB). Module:5 Non- II Multi variable und Conjugate Direct problems (hand Solving unconstrat Module:6 Non- Introduction - Stat function method: problem into un Solving Constrain	wton and Secant method) – Solving 1D problems using Linear Programming – Unconstrained Optimization constraint optimization algorithms: Univariate Method – Pation ion method (Powell's method) - Steepest Descent method calculation – Univariate and Steepest Descent method) int problems using software tool (MATLAB). Linear Programming – Constrained Optimization indard form of a constrained problem – Transformation methods Interior and Exterior methods - Exercise problems: Conver constrained problems using various penalty function –	ig so on tern o hod Den nethoo ting o	ftwa direc – E nons 5 ds- F cons	tion: xerc tration hou Pena train	s – ise on: u rs alty ied
(MATLAB). Module:5 Non- II Multi variable und Conjugate Direct problems (hand Solving unconstrat Module:6 Non- Introduction - Stat function method: problem into un Solving Constrain Module:7 Mod	wton and Secant method) – Solving 1D problems using Linear Programming – Unconstrained Optimization constraint optimization algorithms: Univariate Method – Pati ion method (Powell's method) - Steepest Descent method calculation – Univariate and Steepest Descent method) aint problems using software tool (MATLAB). Linear Programming – Constrained Optimization indard form of a constrained problem – Transformation method Interior and Exterior methods - Exercise problems: Convert constrained problems using various penalty function – t problems using software tool (MATLAB).	on tern o hod Den tethoo ting o Den	ftwa 6 direc – E nons 5 ds- I cons nons 7	tion: xerc tration hou Pena train tration hou	s – ise on: urs alty ied on: urs
Module:5Non- IIModule:5Non- IIMulti variable und Conjugate Direct problems (hand Solving unconstrationModule:6Non- Introduction - State function method: problem into und Solving Constrain Module:7Module:7Mod Introduction: Heudon of P, NP, NP-constrain	wton and Secant method) – Solving 1D problems using Linear Programming – Unconstrained Optimization constraint optimization algorithms: Univariate Method – Pation method (Powell's method) - Steepest Descent method) intervention – Univariate and Steepest Descent method) ant problems using software tool (MATLAB). Linear Programming – Constrained Optimization indard form of a constrained problem – Transformation method Interior and Exterior methods - Exercise problems: Convert constrained problems using various penalty function – t problems using software tool (MATLAB). ern Methods of Optimization	on tern o hod Den ting o ting o nethoo ting o nethoo	ftwa 6 direcc – E nons 5 5 ds- I cons nons 7 - Ex Alg	tions xerc tration Pena train tration hou amp orith	s – ise on: urs alty ied on: urs les

PS	O using	Software tools (MATLAB)						
Мо	odule:8	Contemporary Issue	s			2 hours		
				Tota	I Lecture hours:	45 hours		
Text Book(s)								
1.	Rao S.	S, Engineering optimization	on: theory and pr	actice, 20)20, 5 th Edition, Joh	n Wiley		
	& Sons	, Inc., USA.						
2.	Deb K	, Optimization for engine	ering design: Al	gorithms	and examples, 20)12, PHI		
	Learnir	ng Pvt. Ltd., India.						
Re	ference							
1.	Arora J	I.S, Introduction to Optimu	ım Design, 2016,	4 th Editio	n, Academic Press			
2.	Igor Gr	iva, Stephen G. Nash, Ari	ela Sofer, Linear	and Non-	Linear Optimizator	n, 2009, 2 nd		
	Edition	, Society of Industrial and	Applied Mathem	atics.				
Мо	de of Ev	aluation: CAT / written as	signment / Quiz /	FAT				
Re	commer	nded by Board of Studies	09-03-2022					
Ар	Approved by Academic Council No. 65 Date 17-03-2022							

BMEE308L	Control Systems		L	Т	Ρ	С
			2	0	0	2
Pre-requisite	Nil	Sylla			rsic	<u>n</u>
Course Ohios			1	.0		
Course Object						
	the students to classical methods of control engineering,	physica	ai sy	/ste	m	
modelling a		ono				
	he students to design control system for various applicati			tral		
	e ability of the students to analyse the performance of dy	/namic	COL	uoi		
systems. Course Outco	ma					
	of the course, the student will be able to					
	oncepts of control systems and modelling techniques.					
	rious representations of system based on the first princip	loo onr	roo	ah		
	main specifications from the time and frequency respons		лоа	CH.		
	stability of closed-loop systems using different technique					
	e the state-space representation and modern control the					
	ropriate control systems for different applications.	ory.				
0. Design app	rophate control systems for different applications.					
						-
Module:1 In	troduction			2	hou	urs
Concept of co	ntrol system, Classification of control systems - Open-I	oop ar	nd c	lose	ed-lo	op
control syster	ns, Examples of control systems- Effects of fe	edbad	ж,	Fee	edba	ack
Characteristics						
Module:2 M	odel Representations			4	ho	urs
Transfer Fund	tions of LTI Systems, Concepts of Poles and Zei	ros, B	lock	dia	agra	۹m,
	e Transfer function from Block Diagrams, Signal flow					
using Mason's	gain formula.	•				
Module:3 M	odelling of Physical Systems			5	ho	urs
	f mathematical models: mechanical, electrical, electror	nechar	nical	, Tł	nern	nal
Hydraulic and F	Pneumatic systems.			-		
	me Response Analysis			6	ho	urs
	signals, Time response of first order systems and se	cond c	orde	r sy	ster	ms
	onse of second order systems – Time domain specific					
	r constants, General Controllers – P, PI, PD and PID con				, ,	
	ability Analysis			4	ho	urs
	of stability – Routh-Hurwitz's stability criterion – qua	alitative	sta			
	pility – Root Locus Technique: Concept of root locus –					
locus.						
Module:6 Fr	equency Response Analysis			4	ho	urs
	nain specifications, Bode plot, Phase margin and Gain	margi	n, F	ola	r plo	ots
Nyquist Criteria	· · · ·	0			•	
	troduction to State Space Analysis			3	ho	urs
	te, state variables and state model, Modelling system in	state	spac			
	ant state equations, State Transition Matrix, Concepts					
Observability.					2	
	ontemporary Issues			2	hou	urs
I	-					
	Total Lecture h	ours:		30	hou	urs
Text Book(s)					A	
1. Nagrath I.J	, and Gopal M, Control Systems Engineering, 2017, 6 th al Publishers	editior	1, No	ew /	٩ge	
1. Nagrath I.J. Internation	, and Gopal M, Control Systems Engineering, 2017, 6 th al Publishers. <i>I</i> odern Control Engineering, 2015, 5 th Edition, Prentice				•	

Re	ference Books					
1. Norman S Nise, Control Systems Engineering, 2018, 7 th edition, John Wiley and Sor						
	Inc.					
2.	2. Benjamin C. Ku, Farid Golnaraghi, Automatic Control Systems, 2017, 10th edition					
	McGraw-Hill Education.		-			
Мо	de of Evaluation: CAT / Written assig	gnment / Quiz / FAT	/ Seminar / Case studies			
Re	Recommended by Board of Studies 09-03-2022					
Ар	proved by Academic Council	No. 65	Date 17-03-2022			

BMI	EE308P	Microcontrollers and Interfacing Lab		L	Τ	Ρ	С
				0	0	2	1
Pre	-requisite	Nil	Syl	labu		ersio	วท
				1	0.1		
	Irse Objectiv						
		e students to fundamentals of Microcontrollers.					
		d the functions of microcontroller programming and in					
3.	l o enable the	e students to design appropriate microcontroller-based	systen	ns.			
Сог	Irse Outcom	es					
		the course, the student will be able to					
		and interface microcontroller with sensors and actuate	ors.				
		ed control techniques using microcontroller.					
		simulation model using control system tool box.					
		f Experiments					
1		bedded systems using microcontrollers and its archite		eatu	res.		
2		, Keypad and Display Interfacing with microcontroller.					
3		ng Traffic Light Control using microcontroller.					
4	· · ·	JItrasonic Sensor with microcontroller.					
5 6		Speed and direction control of a DC motor using micro		ler.			
0	microcontro	Speed control of a DC motor based on PID Controlle	rusing				
7		Stepper motor with microcontroller.					
8		ller Interfacing and Data transmission using RF/Blueto	oth/WI	FI.			
9		nt of a line following robot.					
10	Developme	nt of IoT enabled data transmission from sensors.					
11	Creating lin	ear models of your control system using transfer funct	ion, sta	te-sp	bace	e, ar	nd
		entations using MATLab Control System toolbox.					
12		d visualize system behaviour in the time domain and f	requen	cy d	oma	in	
	using MATL	ab control system toolbox.		0 6 6			
Tor	t Book(s)	Total Laboratory Ho	urs 3	0 ho	urs		
1.		, and Gopal M., Control Systems Engineering, 2017, 6	th aditic	n Na	/ بررد	مەر	
1.		l Publishers.	eunic		5VV F	٩ye	
2.		odern Control Engineering, 2015, 5 th Edition, Prentice	Hall of	Indi	a P\	/t. I	td
3.		prepared by course faculty members.					
	erence Book						
1.	Norman S N Inc	lise, Control Systems Engineering, 2018, 7 th edition Jo	ohn Wile	ey ai	nd S	Sons	i,
2.	Benjamin C McGraw-Hil	. Ku and Farid Golnaraghi, "Automatic Control System I Education.	s", 201	7, 10) th e	ditio	n
Moc		nent: Viva-voce examination, Lab performance & FAT					
		y Board of Studies 09-03-2022					
App	roved by Aca	demic Council No. 65 Date 17-03-2	022				

BMEE407L	Artificial Intelligence	L	Τ	Ρ	С
		2	1	0	3
Pre-requisite	BMAT202L, BMAT202P	Syllabu	is ve	ersio	on
			1.0		
Course Objectives					
-	asic understanding on Artificial Intelligence with its su	ıb-sets.			
	owledge of search algorithm, logics, reasoning and u		y.		
3. To introduce	e the basic concepts of machine learning and	l its ap	olicat	ion	in
mechanical e	engineering.				
Course Outcome					
	urse, the student will be able to				
	e characteristics of artificial intelligence and its sub-se				
	ppropriate algorithm for problem solving by searching				
	e logical agents and familiar in the application of fuzz				
	ecision making algorithm with the reasoning of uncer				
	chine learning programs based on supervised, unsup	ervised a	nd		
reinforcemer	•				
	he benefit of neural network in deep learning. ne learning approach to solve problems related to me	chonical			
engineering.	• • • •	chanical			
engineering.					
Module:1 Four	ndation of Al		1	hou	ire
	Indations of AI – Evolution of AI – Intelligent A	aents: A			
	cept of rationality, structure of agents – Structure of				
system - Risks and			uge	543	cu
· · · · · · · · · · · · · · · · · · ·	blem-solving by searching		6	hou	irs
	Breath first search, Depth first search, iterative de	opoping			
	rch, A*search – Adversarial search: Minimax search,				
	ic (Knowledge, reasoning and planning)	aipiia-be		hou	
	– First Order Logic – Inference in First Order L	odic –			
	utomated planning. Fuzzy: Fuzzy sets, operation and	•			•
	tions, fuzzification and defuzzification, Fuzzy logic rule				
	soning with uncertainty			hou	
	rtainty – Probabilistic reasoning – Making Sir	nple De			
	Decisions – Multiagent decision making.	•			
. .	hine Learning		6	hοι	urs
Supervised learning	: Decision trees, linear regressing and classification,	and sup	port	vec	tor
machine - Unsup		rincipal	com	pone	ent
analysis - Reinford	cement: Passive and active reinforcement learning.				
	p Learning			hou	
	networks – Computation graph for deep learning – Co			ural	
	g algorithms – generalization – Recurrent Neural Netw	vorks - D	еер		
reinforcement learni	0			_	
	cases			hou	
	g process: Materials characterization and machin	•			
• •	y chain management - Prediction of mechanica	•	n fa	llure	; —
<u> </u>	Human-in-loop for Machine human collaborative task	κ. 	-	I	
Module:8 Cont	emporary Issues			hou	
	Total Lecture h	iours:	45	hou	ırs
Text Books		I			
IEXI DUUKS					
	lorvig P, Artificial Intelligence - A Modern Approach,	2021. 4 ^{tr}	edit	ion.	

 Ivan Vasilev, Advanced Deep Learning with Python: Design and implement advanced next-generation AI solutions using TensorFlow and PyTorch, 2019, 1st edition, Packt Publishing Ltd. Reference Books Bishop C. M, Pattern Recognition and Machine Learning, 2011, 2nd edition, Springer Nilsson N.J, Artificial Intelligence: A New Synthesis, 1998, 1st edition, Morgan Kaufmann. Mode of Evaluation: CAT / Written assignment / Quiz / FAT / 						
Refere	ence Books					
1.						
2.	Nilsson N.J, Artificial Intelligen	ice: A New Synt	hesis, 19	98, 1 st edition, Morgan		
	Kaufmann.					
Mode	of Evaluation: CAT / Written ass	signment / Quiz	/ FAT /			
	nmended by Board of Studies	09-03-2022				
Approv	ved by Academic Council	No. 65	Date	17-03-2022		

BMEE202L	Mechanics of Solids		L	Т	Ρ	С
			3	0	0	3
Pre-requisite	BMEE201L	Sylla			rsic	'n
O		<u> </u>	1.	.0		
Course Objectiv			liday	inc	Judi	na
	d the fundamental concepts of mechanics of deforma um, geometry of deformation, and material constitutive I			IIIC	Juui	ng
	tudents with exposure on systematic methods for			nain	oori	na
-	blid mechanics.	301111	y ci	igin	CON	ng
	e basic mechanical principles underlying modern appr	oache	s for	des	sian	of
	ural members subjected to axial load, torsion, bending,					
	mbined loading.		J ,			
	ecessary theoretical background for structural analysis a	and de	sign	col	urse	s.
Course Outcom						
At the end of the	course, the student will be able to					
1. Analyse stres	ses and strains in simple and compound bars					
2. Illustrate the	relationship among load, shear force and bending	mome	nt fo	or v	ario	us
beams						
	bending and shear stresses for beams with varying cros	ss sect	ions			
	slope and deflection of various beams					
	equation for shafts and helical springs					
6. Analyse the f	ailure of columns, thin and thick shells					
Madula 4 Circu		r			<u> </u>	
-	ble stresses and strains		ahaa		hou	
	tion of normal stress, shear stress, and normal strain					
	gram for brittle and ductile materials - Poisson's ratio & – relationship between elastic constants and Poisson's					
	beformation of simple and compound bars – Creep					
	dual, sudden, impact and shock loadings – thermal stre		airi	CIIC	яgy	_
	xial stress system			6	hou	irs
	tresses on an inclined section of a bar under axial l	oadinc	1 – 0	-		-
	al and tangential stresses on an inclined plane for bia					
	ormal stresses accompanied by a state of simple shea					
	ain, Strain rosette – Principal stresses and strains – Ana					
solutions. Theorie	es of failures.			•	•	
	ar Force and Bending Moment				hοι	
	m – Types of beams – Concept of shear force and be	•				
	ns for cantilever, simply supported and overhanging					
	ormly distributed loads, uniformly varying loads and c					
	contra flexure – Relation between S.F., B.M and rate of	f loadir	ng at	as	sect	ion
of a beam.						
	sses in beams				hou	
	bending – Assumptions – Derivation of bending equa					
	bending stresses – section modulus of rectangular a					
	w), I, T, Angle and Channel sections – Design of sir					
	Derivation of formula – Shear stress distribution ac	TOSS V	ano	us	bea	ms
	angular, circular, triangular, I, T sections. ection of beams	r		F	hοι	ire
	ams by Double integration method – Macaulay's met	hod	Ara			
	ams by Double integration method – macaulay's method iputation of slopes and deflections in beams – Conjugat					31 I L
Module:6 Tors		re negi			οά. hοι	Ire
	Forsion – derivation of shear strain – Torsion form	<u></u>	stro			
	circular and hollow shafts – Stepped shafts – shafts fix					
stresses in helica	••			,501	GII	JJ,

		Thin and Thick Cylinders, Columns		6 hours						
	•	ers and shells – deformation of thin cylinders and shells; Thi	ck Cy	linders, Shrink						
		bunding.								
	Theory of columns – Long column and short column - Euler's formula – Rankine's formula.									
Module:8 Contemporary Issues 2 hours										
		Total Lecture ho	urs:	45 hours						
Тех	ctbooks									
1.	Ferdina	and P. Beer, E. Russell Johnston, John T. DeWolf, David F. M	lazure	ek, Sanjeev						
		, Mechanics of Materials, 2020, 8 th Edition, McGraw Hill Educa								
2.	Russe	ll C. Hibbeler, Mechanics of Materials in SI Units, 9 th Edition;	; 2018	8, Pearson						
		tion, India.								
	ference									
1.		M. Gere, Barry J. Goodno, Mechanics of Materials, 2019, 9	^m Edi	ition, Cengage						
		ng India Pvt. Ltd.								
2.		S. S., Strength of Materials, 2017, 3 rd edition, McGraw Hill Ed		· .						
3.		mrutham S, Narayanan R, Strength of Materials, 2020, 20 th E	dition	i, Dhanpat Rai						
		ning Company, India.								
4.		E. P, Nagarajan S, Lu Z. A; Mechanics of materials, SI vers	ion, 2	2015, Prentice-						
	Hall of									
5.		M. Gere, and Stephen Timoshenko, Mechanics of Materials	s; 200	04, 2 ^{na} edition,						
		ublishers and distributors.								
		/aluation: CAT, Written assignment, Quiz , FAT								
-		nded by Board of Studies 09-03-2022								
App	proved b	by Academic Council No. 65 Date 17-03-202	22							

BME	EE202P	Mechanics of Solids Lab		L	Т	Ρ	С
				0	0	2	1
Pre-	requisite	BMEE201L	Sylla			ersi	on
				1	0.1		
0							
	rse Objectiv						
		ctical skills in investigating the mechanical behavior of n				aani	أمما
	properties.	ate the importance of testing standards in the determin	ation		neci	an	cal
1	Sioperties.						
Cou	rse Outcom	0					
		course, the student will be able to					
		tic constants of engineering materials as per the ASTM	standa	ards	5.		
		s-strain diagram of engineering materials as per the AS				S.	
		impact behavior of ductile materials as per the ASTM sta					
Indi	cative Exper	iments					
1.		d compression tests on the given specimens for d	etermi	inin	gΥ	oun	g's
		materials using Universal Testing Machine.					
2.		ion of the Poisson's ratio of a metallic specimen in the	linear	ela	stic	rar	ıge
	of loading.						
3.		of Notch Toughness of the metallic bar using Charpy/	Izod li	mpa	ict T	「est	ing
	Machines.						
4.		ion of the ultimate shear strength of mild steel specim	en by	dol	lpie	sn	ear
5.	test.	ion of Vouna's modulus of the motallis/non-motalli	<u> </u>				the
э.		ion of Young's modulus of the metallic/non-metalli est method.	c bes		usii	ıg	line
6.		of the Maxwell's Reciprocal Theorem.					
7.		ion of the Maximum bending stress of a mild steel be	am us	ina	det	lect	ion
1.	test method		un uc	, ing	uci	1001	1011
8.		ests using Brinell and Rockwell test rigs.					
9.		of the stiffness and the rigidity modulus of the given	helical	sp	ring	un	der
	axial loadin	U ,		•	0		
10.		t on mild steel or cast-iron specimens to find out modulu					
11.		of the Euler buckling equations using steel columns s	ubject	ed t	o d	iffer	ent
	end conditi						
12.	Strain mea	surement of the given beam using the Rosette Strain Ga					
		Total Laboratory Hou	rs	30	ho	urs	
Tara							
1 ext	t Book(s)	P. Beer, E. Russell Johnston, John T. DeWolf, David F.	Mazur	<u>بام</u>	S	nieo	V
1.		chanics of Materials, 2020, 8 th Edition, McGraw Hill Edu				ijee	v
2.		Hibbeler, Mechanics of Materials in SI Units, 2018, 9 th E				n	
۷.	Education,		union,	гe	ai 50		
3.		I prepared by course faculty members					
0.							
Refe	erence Book	S					
1.		Gere, Barry J. Goodno, Mechanics of Materials, 2019, 9	th Edit	ion	Ce	naa	ae
		dia Pvt. Ltd.		,		.94	55
2.	•	5, Strength of Materials, 2017, 3rd edition, McGraw Hill E	Educat	ion	Inc	lia.	
3.		nam S, Narayanan R, Strength of Materials, 2020, 20th					
		ing Company, India.				•	
4.		, Nagarajan S, Lu Z. A; Mechanics of materials, SI vers	sion, 2	015	,		

	Prentice-Hall of India.						
5. James M. Gere, and Stephen Timoshenko, Mechanics of Materials; 2004, 2 nd edition							
CBS publishers and distributors.							
Mode	e of assessment: Viva-voce exam	nination, Lab pe	erformanc	e & FAT			
Reco	ommended by Board of Studies	09-03-2022					
Appr	oved by Academic Council	No. 65	Date	17-03-2022			

BMEE203L	Engineering Thermodynamics	L	Τ	Ρ	С
N 1 1		2	1	0	3
Pre-requisite	Nil	Syllab		ersio	on
<u> </u>			1.0		
Course Objectiv					
	aws of thermodynamics and describe their significance.				
	ndamental knowledge of ideal and real gases.				
5	apour, gas power cycles and determining properties of ga			ad 1	ha
	the relationship between commonly measurable pr at cannot be measured directly.	openie	5 a	iu i	ne
Course Outcom	e				
	course, the student will be able to				
	the understanding of basic thermodynamics concepts	such a	s sy	vsten	ns,
	gy - work and heat, temperature.		,		
	roperties of pure substances, ideal and real gases.				
3. Apply the first	law of thermodynamics for closed and open systems.				
4. Apply the s	econd law of thermodynamics and entropy principle	s for e	engir	neeri	ing
systems.					
	erformance of vapour and gas power cycles.				
	mixture properties using gas laws.				
	ubstance properties using thermodynamic relations.	1			
	duction and basic concepts of thermodynamics	 		hou	
	ntrol volume, properties of a system, state and equili				
	esses and cycles, forms of energy, pressure, work a	and ne	ลเเ	ans	ier,
	the Zeroth law of thermodynamics.		6	hοι	ire
	e substance, phase change process of pure substances,	nroper			
	processes, vapour property tables, Ideal gas equation o				
	quation of state, compressibility factor, Benedict-Webb Ru				00
	first law of thermodynamics			hou	ırs
	of closed and open systems, energy analysis of steady f	ow dev	-		-
	hangers, pumps and nozzles, energy analysis of unstead				
	first law of thermodynamics.	5			
Module:4 The	second law of thermodynamics		8	hou	urs
Thermal energy	reservoirs, heat engines, heat pumps and refrigerators,	Kelvin-	Plan	ick a	and
	ent and their equivalence, reversible and irreversible				
	inciples, thermodynamic temperature scale, Entropy, C				
	ntropy change, entropy balance, the increase of entropy	principl	es, I	Exer	gy-
availability and in		1			
	our and gas power cycles			hou	
-	power cycle, Ideal Rankine cycle, ideal re-heat Ra		•		
	nkine cycle, the effect of isentropic efficiencies, Air stan e, Brayton, Stirling cycle and Ericsson cycles.	uaru as	sun	ιριιο	ns,
Module:6 Gas			1	hou	ire
	the gas mixture, mole and mass fractions, Dalton's la	i w Δm			
properties of gas	•	4 99 , All	aya		,
	modynamic property relations	1	Δ	hou	ILS
	, Clapeyron equation, General equations for du, dh, ds,	Cv and			
Thomson coeffici		S. and			
	emporary Issues		2	hοι	ırs
	Total Lecture hours:			hou	
		1	-		-

 Yunus A. Cengel, Michael A. Boles and Mehmet Kanoglu, Thermodynamics: An Engineering Approach, 2019, 9th Edition, McGraw Hill Education.
 Reference Books

 Michael J Moran, Howard N Shapiro, Daisie D. Boettner and Margaret B. Bailey

Fundamentals of Engineering Thermodynamics, 2015, 8th Edition, Wiley.
2. Nag P. K., Engineering Thermodynamics, 2017, 6th Edition, McGraw Hill Education.
Mode of Evaluation: CAT, Written assignment, Quiz, EAT.

ivide of Evaluation: CAT, written assig	nmeni, Quiz, F	-AT.	
Recommended by Board of Studies	09-03-2022		
Approved by Academic Council	No. 65	Date	17-03-2022

BMEE204L		Fluid Mechanics and Machines		L	Τ	Ρ	С
				3	0	0	3
Pre-requis	ite	NIL	Syl	labu		ersio	n
					1.0		
Course Ob							
		rostatic law, principle of mass and momentum in flui	d flov	vs, c	conc	epts	ir
		ernoulli equations.					
		ndamental knowledge of fluids, its properties and beha	aviou	r un	der v	aric	us
		nternal and external flows.				4 -	
		the losses in a flow system, flow through pipes, bounda	ary ia	yer o	conc	epts	•
		the student with the various pumps and turbines.					
Course Ou							
		course, the student will be able to the significance of fluid properties and laws of fluid si	tation	to	nair	voori	inc
1. Demon system		the significance of huld properties and laws of huld si	laucs	10 6	ngii	leen	ng
		low fields using Lagrangian and Eulerian approaches.					
		table governing equations to solve fluid flow problems.					
		scous flow through pipes and determine various losses					
		nsional analysis of various flow problems.					
		ndary layer concept and predict the flow separation.					
		erformance of hydraulic pumps and turbines.					
		Statics and Buoyancy			8	hou	Jr
		d, Concept of continuum, Fluid properties, Rheol	ogica	l cla			
		Hydrostatic pressure and its measurement -Manometr					
		s on Plane, Inclined and Curved surfaces, Buoy		, Co	ondit	tion	0
		bmerged and Floating Bodies, Centre of Buoyancy.	,				
Module:2	Fluid	Kinematics			5	hou	Jr
Description	of flu	id motion – Lagrangian and Eulerian approach, Typ	es o	f flov	ws,	Con	tro
volume, Ma	aterial	derivative and acceleration, Streamlines, Pathlines and	l Stre	aklir	ies,	Stre	an
		city potential function, The Reynolds transport theorem.					
		Dynamics				hou	
		uation, The Euler and Bernoulli equations – venturimet					
		m equation and its application – forces on pipe	ben	ds,	mon	nent	0
	,	Navier–Stokes Equations.					
		ous Flow in pipes				hou	
		eristics of pipe flow, Fully-developed laminar flow		•			
		nt flow, Darcy–Weisbach equation, Moody chart, maj	or an	d mi	inor	loss	es
Multiple pip						_	
		nsional Analysis		_		hou	
		logeneity, Rayleigh's method, Buckingham π theore	m, N	lon-c	lime	nsio	na
		aws and distorted models, Modelling and similitude.				-	
Module:6		Idary layer flow				hou	
		Laminar flow and turbulent flow, Boundary layer th					
. .		Drag and lift, Separation of boundary layer, Method	ds of	pre	vent	ing	Ine
boundary la						I = = -	
		aulic Machines	D			hοι	
		entrifugal pumps – Work done - Head developed					
		ming - minimum starting speed - performance of					
		nods of prevention - Pump characteristics – Classif			•		
		wheel - Francis turbine - Kaplan and Propeller turbines				shee	u
Module:8		be - Governing - Performance characteristics - Selectio emporary issues		uiDlí		hοι	150
		emporary 199069			2	not	.13
	1	Total Lecture hours:			AF	hou	Irc
					40	not	11 3

Text Books										
1.	Som S K, Gautam Biswas, Chakraborty S, Introduction to Fluid Mechanics and Fluid									
	Machines, 2017, McGraw Hill.									
2.	Fox and McDonald, Introduction to Fluid Mechanics, 2020, 10 th Edition, Wiley.									
Reference Books										
1.	Yunus A. Cengel and John.	M. Cimbala,	Fluid Mee	chanics: Fundamentals and						
	Applications, 2019, 4 th Edition, McGraw Hill.									
Mode of Evaluation: CAT, Written assignment, Quiz, FAT										
Recommended by Board of Studies 09-03-2022										
Approved by Academic Council		No. 65	Date	17-03-2022						

BM	EE204P	Fluid	Mechanics an	nd Machines L	_ab	L	Т	Ρ	С
_						0	0	2	1
Pre-requisite		NIL					Syllabus version		
Car	rea Obiactiv						1.0		
1.	discharge of c	nts practically with prifice, mouthpiece	, notches, orif	ice meter and	venturi mete	er.	of		
	To train the students to determine the friction factor and minor losses in pipe components.								
	To equip the s results.	students to perforr	n experiments	in hydraulic m	achines and	d analy	/se t	he	
	Irse Outcome								
		course, the studer							
		riments on various					nonc	nto	
		riments to determi riments on hydrau					pone	mis.	
0.					periormano	0.			
List	of Experime	nts							
1	Determinat	ion of coefficient c	of discharge of	an orifice.					
2	Determinat	ion of coefficient c	of discharge of	a mouthpiece					
3	Determination of coefficient of discharge of a rectangular/ triangular notch.								
4	Determinat	ion of coefficient c	of discharge of	a venturi mete	er / orifice m	eter.			
5		of friction factor of	• •						
6		of minor losses in	•						
7	Verification	of the Bernoulli T	heorem.						
8	Study and o	calibration of a pite	ot static tube.						
9	To study the performance of a centrifugal pump.								
10	Study the performance of a Pelton Turbine.								
11	Determinat	ion of static press	ure distributior	n around an air	foil.				
-			Tot	al Laboratory	/ Hours		30	hοι	ırs
	t Books	Coutom Diowes O	hokrobort	Introduction +-		onice	ond	<u> </u>	1
1	Som S K, Gautam Biswas, Chakraborty S, Introduction to Fluid Mechanics and Fluid Machines, 2017, McGraw Hill								
2		I prepared by cou							
		ent: Continuous a			ination				
		y Board of Studies							
App	roved by Aca	demic Council	No. 65	Date	17-03-202	2			

BME	E206P		Mach	ine Drav	wing	Lab			L	Т	Ρ	С
									0	0	4	2
Pre-	requisite	BMEE102F)						Sylla		/ersic	on
										1.0		
	rse Objectiv											
		e knowledge										
		nts to excel i							cal co	mpon	ents.	
3.10	o impart skill	s in applying	CAD too	ols for co	oncept	ualizin	g prod	uct.				
Cou	rse Outcom											
		course, the	student	will be a	hle to							
		s efficiently t				ents						
		the use of IS					drawin	a				
		cepts of conv						0	S.			
		elative motio										
			0	, 1								
Indic	cative Expe	riments										
		n to Machi									nd Di	rawing
		Use of softw										
		Machine										
		ion of standa							Keys	s, Pins	s, Wa	shers;
		ughness and							· – ·			
		mits, Fits a										
		nology, Meth									ypes	of Fits
		nces. Readir n to Limits									oorp	orotina
		I Tolerance										
	engineering				ng, c		Symbo	13, LI	vi C , i	viiviC,	CONC	ерс п
		eling of m	achine	compo	nents	: 3D	Mode	lina	of sta	andar	d m	achine
		s i.e. Shaft, F								arraar	a 111	
		rawing of							oart o	comp	onent	s into
		drawing-Orth								1		
7.	Modeling a	and Assemb	bly of m	achine	eleme	ents: 3	BD Mo	deling	ofs	tanda	rd m	achine
		e.Universal C										
		Prawing of									ment	s into
		ic, Isometric										
		Assembly Di										
		udy of Ass			•		•		poner	its in	ass	embly.
0.	Understand	ing Constrai	nts Relat		•			m.				
Toyt	Pooko			Total La	aborat	ory Ho	urs				60	hours
	Books	Machine Dra	wing 20		rotor I	Dublich	ing Uc		Diet Li	mitod	India	
		E, Vierch, C										
	Technology		J. J, and		, IX. C	л., спу	lineeni	ig Di	awing	anu	Orap	ліс
		prepared by	COURSE	faculty n	embe	ers						
	erence Bool		000130	labulty II		/0.						
		K.L., Kannaia	h. Pan	nd Venka	ata Re	ddv K	Mach	ine D	rawin	a. 20	16 5 ^t	^h Fd
	•	ternational P				y 1X,				g, 20	. 5, 5	_ .,
		Text Book of			ia. 200)9. PH	l Learr	nina P	vt. Lto	d.		
		, Giesecke,									C C	Good
		chnical Drav										
	Kingdom.		5	J	5	•	•					
		ayanan, V.,										

Computer							
Graphics), 2007, 12th Ed, Jain Brothers, India.							
SP 46: 1988 Engineering Drawing Practice for Schools and Colleges, 1988, Bureau of							
Indian Standards.							
Design Data: Data Book of Engin	eers by P	SG Colleg	e, 2019, 4 th Ed., Kalaikathir				
Achagham Coimbatore publicatio	n, India.	· ·					
de of assessment: Viva-voce exam	ination, La	ab perform	ance & FAT				
Recommended by Board of Studies 09-03-2022							
Approved by Academic Council No. 65 Date 17-03-2022							
	Graphics), 2007, 12th Ed, Jain Br SP 46: 1988 Engineering Drawin Indian Standards. Design Data: Data Book of Engin Achagham Coimbatore publicatio de of assessment: Viva-voce exam commended by Board of Studies	Graphics), 2007, 12th Ed, Jain Brothers, In SP 46: 1988 Engineering Drawing Practice Indian Standards. Design Data: Data Book of Engineers by Ps Achagham Coimbatore publication, India. de of assessment: Viva-voce examination, La commended by Board of Studies 09-03-20	Graphics), 2007, 12th Ed, Jain Brothers, India. SP 46: 1988 Engineering Drawing Practice for Scho Indian Standards. Design Data: Data Book of Engineers by PSG Colleg Achagham Coimbatore publication, India. de of assessment: Viva-voce examination, Lab perform commended by Board of Studies 09-03-2022				

BMEE207L	Kinematics & Dynamics of Machines		LT	Ρ	С			
			3 0	0	3			
Pre-requisite	BMEE201L	Sylla	abus ve	ersio	วท			
			1.0					
Course Objectives								
 To facilitate stu To impart kn mechanism. 	dents to understand the fundamental concepts of mecha udents to understand the functions of cams, gears, and nowledge on design of mechanisms and dynamic le ght on the concepts of balancing, vibration and speed g	flywhe oads a	el. acting					
Course Outcom								
 Examine the k Construct velo Analyse kinem Investigate the Analyse the base 	course, the student will be able to inematic behaviour of various planar mechanisms. ocity and acceleration diagrams for various planar mech natics of cam and gear-train mechanisms. e dynamic forces acting on planar mechanisms. alancing of masses and vibrations of mechanical system aracteristics of governors and gyroscopic effects.		5.					
	hanisms and kinematics		6	i hoi	ure			
	echanisms and machines, terminology, planar mech	naniem	-	-				
diagram and inv	ersion, Mobility, Coincident joints, Grubbler and Gras							
Module:2 Velo	city and Accelerations in Mechanisms		8	ho	urs			
Velocity and ac	cceleration in planar mechanisms - Relative veloci	ty me	thod,	Cori	olis			
component of ac	celeration, Kennedy's Theorem, Instantaneous Centre r	nethod	l.					
Module:3 Kine	ematic analysis of Cams and Gears		7	' ho	urs			
of cam profiles. undercutting, mir epicyclic.	cams – Types of followers – Definitions – Motions of th Gear: terminology, fundamental of gearing, involute pro nimum number of teeth, contact ratio - Gear trains: sir	file, in	terferer compou	nce a ind a	and and			
	hesis of planar mechanism			ho				
methods - Freude		phical		•				
	amic Force Analysis			i ho				
Equivalent dyna engine-design of press.	lembert's principle-static and inertial force analysis of r mic system. Turning moment diagram-four stroke flywheel of IC engine-design of flywheel rim- design of ncing and Vibration	engin	e-multie el of pu	cylin	ider ning			
	mic Balancing of Rotating Masses, Balancing of Re	ciproc						
Introduction to undamped- free	vibration - Terminologies - Single degree of free and forced vibration – Vibration isolation and Transm ifts – Whirling of shaft -Torsional vibration of single r	dom- iissibili	dampe ty. Trai	ed a nsve	and erse			
	ernors and Gyroscope		4	ho	urs			
Governors: Cent	trifugal Governors- types and its characteristics - Note Note Note the Movement of the Movement of the Movement		g prino	ciple	of			
	emporary Issues		2	2 ho	urs			
Text Book(s)	Total Lecture hou	rs:		5 ho				
	Theory of Machines, Tata McGraw Hill, 2019							
1. Nallah 3. 3,	Theory of Machines, Tala McGraw Hill, 2019							

Ret	Reference Books									
1.	Joseph Edward Shigley and Johr	n Joseph	Uicker .	Ir., Theory of Machines and						
	Mechanisms SI Edition, 2014, Oxford University Press									
2	Norton R. L, Kinematics and Dynamics of Machinery, , 2017, McGraw-Hill Education									
3	Norton R. L., Design of Machinery, A	n Introduct	ion to the	Synthesis and Analysis of						
	Mechanisms and Machines, 2019Mc	Graw-Hill F	ligher Ed	ucation						
Мо	de of Evaluation: CAT, Written assignr	nent, Quiz,	FAT							
Re	Recommended by Board of Studies 09-03-2022									
Арр	Approved by Academic Council No. 65 Date 17-03-2022									

BM	EE207P	Kinematics	& Dynamics	of Mach	ines Lab		L T	P	С
						() ()	2	1
Pre	-requisite	BMEE201L				Syllab	ous ve	rsio	n
							1.0		
Соι	urse Objectiv	/e							
1.	To impart pra	actical skills in analyzi	ng different m	nechanism	າ.				
		the use of cams and							
3. 1	Γo demonstra	te the importance of	governors and	d gyroscop	oes.				
_									
	urse Outcom								
		course, the student v							
		kinematic behaviour							
		ee, forced, and damp							
3. 11	nvestigate the	e performance of vari	ous governors	and the g	gyroscope.				
امط	iootivo Evno	rimonto							
1.	icative Expe	erent planar mechan	cmc						
1. 2.		on of the Coriolis cor		eleration					
2. 3.		nalysis of gear and g							
3. 4.									
4. 5.		esis and jump phenon on of the natural vibra		ring maga	avetem				
5. 6.		on of the free torsiona							
0. 7.		on of the radius of gy							
<i>1</i> . 8.		on of the critical spee				nt fivinas			
9.		on of equilibrium spee				it iixiiige	•		
10		on of equilibrium spec							
11		on of equilibrium spec			~				
12		on of gyroscopic cour							
12	Dotorriniatio				oratory Hou	rs	30	hou	ırs
Тех	t Book(s)								
1.		Theory of Machines,	Tata McGraw	Hill, 2019	9.				
2.		prepared by course f							
Ref	erence Book	,	,						
1.		vard Shigley and	lohn Joseph	Uicker 、	Jr., Theorv	of Ma	chines	s a	nd
		SI Edition, 2014, Ox			. J				
2		Kinematics and Dyna			17, McGraw	-Hill Edu	ucatior	۱	
3		Design of Machinery							
	Mechanisms and Machines, 2019, McGraw-Hill Higher Education								
Mo	Mode of assessment: Viva-voce examination, Lab performance & FAT								
Rec	commended b	by Board of Studies	09-03-2022						
App	proved by Aca	ademic Council	No. 65	Date	17-03-202	22			

BMEE210L	Mechatronics and Measurement Systems		LT	-	С
Dro roquioito	Nil	6 ,41,4	30	-	3
Pre-requisite		Sylla	abus v 1.0		<u>)</u>
Course Objectiv	/05		1.0		
 To familiarize and technique To impart the 	e key elements of mechatronics system, impart knowle es involved in mechatronics systems for industrial auton theoretical and practical aspects of measurement syste of to the principles of sensors & actuators, and their inte	nation. em des	sign.		
Course Outcom	AS				
	course, the student will be able to				
 Demonstrate Analyze vario Compare vario 	the basic concepts, applications and elements of mecha ous measuring instruments for different applications. ious types of sensors and actuators used in mechatronic ncept of signal processing and use of interfacing system	cs sys		ms.	
Madula 4 Dag	size of Machatkanian Systems			<u>C</u> ha	
	sics of Mechatronics Systems n mechatronics, Mechatronics systems design approa			6 ho	
mechatronics symechatronics sys	/stem, Role of sensors, actuators and measure stems- Emerging application areas of mechatronics.		-Feed	back	in
	asurement System			6 ho	
	measurement, Standards of measurement, Modes				
	asurement system, Applications of Measurement				
	ources of errors. Specifications: Sensitivity, resolution nic characteristics- System response.	, dias	, dead	i spa	ce-
Module: 3 Bas				7 ho	ure
Position and Spe Variable Differen Electrical Resist	eed Measurement- Proximity Sensors and Switches, P tial Transformer, Digital Optical Encoder; Stress and S ance Strain Gauge, Measuring Resistance Changes g Different States of Stress with Strain Gauges.	train N	omete ⁄Ieasu	r, Lin remei	ear nt -
Module: 4 Adv				7 ho	urs
Thermometer, Bi and Acceleratio Measurement;	ment with Load Cells; Temperature Measureme metallic Strip, Electrical Resistance Thermometer, The n Measurement - Piezoelectric Accelerometer; F Capative sensors- Fiber optic sensors-Semicondu hanical Devices:IMU,Gyroscope.	rmoco Pressu	re an	√ibrat id F	tion Iow
Module: 5 Act	• •			6 ho	urs
Electromagnetic Motors-Hydraulic	Principles-Solenoids and Relays-Electric Motors- s- Hydraulic Valves, Hydraulic Actuators; Pneumatics.		∕lotors∙	-Step	per
Analog Conversi	Pata Acquisition-Quantizing Theory-Analog-to-Digital Co on-Signal Conditioning-Computer Based Instrumentatic evelopment-Data Recording and Logging-The Inte	n Sys	ion- D tems-\$	Softw	-to- are
•	surement Systems			5 ho	urs
of straightness, f machines, Optica	lar measurements – taper measurement, threads, surfa flatness and alignment- Comparators - Gear testing-C al Tool Maker's Microscope, Profile Projector.		ate m	easur	ring
Module:8 Cont	temporary Issues			2 hou	Jrs
	Total Lecture hours:		4	5 hou	Jrs

Tex	xt Book(s)					
1	Alciatore, D.G. and Histand, M.B.	Introductio	on to me	echatronics and measurement		
	systems. 2019, New York, Ny: Mcgra	aw-Hill Educ	cation.			
2	Bewoor, A.K. and Kulkarni, V.A.,	Metrology	& Mea	surement, 2009, McGraw-Hill		
	Education.					
Re	ference Books					
1.	DeSilva, C.W., Farbod Khoshnoud	d, Li, M.	and Hal	gamuge, S.K, Mechatronics :		
	Fundamentals and Applications. B	oca Raton	2016,	CRC Press, Taylor & Francis		
	Group.					
2	William Charles Bolton, Mechatronic			ol systems in mechanical and		
	electrical engineering. 2019, Harlow,					
3.	Thomas G. Beckwith, Roy D. Marang	goni, John H	H. Lienha	rd, Mechanical Measurements,		
	2009, Pearson Education.					
4	Cesare Onwubolu Godfrey C Fantuz	zzi, Mechatr	onics: Pr	inciples and applications, 2020,		
	S.L.: Butterworth-Heinemann Ltd.					
5	Bentley, J.P. (2008). Principles of me	easurement	systems	. Harlow Pearson Prentice Hall.		
Mo	de of Evaluation: CAT, Written assign	ment, Quiz,	FAT.			
Re	Recommended by Board of Studies 09-03-2022					
Ap	Approved by Academic Council No. 65 Date 17-03-2022					

Park, II: The Goodheart-Willcox Company, Inc. 3. National Instruments (Firm (2003). LabVIEW : measurements manual. Austin, Tex.: National Instruments. 4. Lab Manual of prepared by course faculty members. Reference Books 1. Fluid Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manual. 2. LabVIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment: Viva-voce examination, Lab performance & FAT Recommended by Board of Studies 09-03-2022	BM	IEE2	10P	Mechatronics and Measurement Systems Lab		L	Т	Ρ	С
1.0 1.0 Course Objectives 1.0 1. To integrate the mechanical systems with electrical, electronics and computer systems for providing multidisciplinary approach. 2. To familiarize the use of transducers, sensors and actuators. 3. To use of software tools for measurement, perception and signal conditioning. Course Outcome At the end of the course, the student will be able to 1.0 1. Practice the various fluid power systems. 2. 2. Inplement different sensors for various industrial applications. 3. Caliberate measuring instruments and measure various geometrical features. Indicative Experiments				•		0	0	2	1
Course Objectives 1. To integrate the mechanical systems with electrical, electronics and computer systems for providing multidisciplinary approach. 2. To familiarize the use of transducers, sensors and actuators. 3. To use of software tools for measurement, perception and signal conditioning. Course Outcome At the end of the course, the student will be able to 1. Practice the various fluid power systems. 2. Implement different sensors for various industrial applications. 3. Caliberate measuring instruments and measure various geometrical features. Indicative Experiments 1. Design and analysis of hydraulic, pneumatic and electro-pneumatic circuits using automation software and hardware. 2. Stepper motor, Traffic light, HMI Programming interface using a PLC. 3. Force and Torque measurement using strain gauge. 4. Measurement of speed and displacement using linear and rotary sensors. 5. Pressure measurement using RTD and thermocouple. 7. Vibration and acceleration measurements using Micrometer, Mechanical Comparator, Vernier Caliper and Dial Gauge. 9. Calibration and dimensional measurement using Micrometer, Mechanical Comparator, Vernier Caliper and Dial Gauge. 10. Measurement of flatness of the object using dial gauge and taper angle using Bevel Protractor, Dial Gauge and Sine-Bar. Measurement of bores by using Micrometer and Dial bore indicator. 11. Measure	Pre	e-req	uisite	Nil	Sylla	abus	s ve	ersio	วท
 To integrate the mechanical systems with electrical, electronics and computer systems for providing multidisciplinary approach. To familiarize the use of transducers, sensors and actuators. To use of software tools for measurement, perception and signal conditioning. Course Outcome At the end of the course, the student will be able to Practice the various fluid power systems. Implement different sensors for various industrial applications. Caliberate measuring instruments and measure various geometrical features. Indicative Experiments Design and analysis of hydraulic, pneumatic and electro-pneumatic circuits using automation software and hardware. Stepper motor, Traffic light, HMI Programming interface using a PLC. Fore and Torque measurement using strain gauge. Measurement of speed and displacement using linear and rotary sensors. Pressure measurement systems using sensors. Temperature measurement using RTD and thermocouple. Vibration and acceleration measurement using Micrometer, Mechanical Comparator, Vernier Caliper and Dial Gauge. Measurement of flatness of the object using dial gauge and taper angle using Bevel Protractor, Dial Gauge and Sine-Bar. Measurement of bores by using Micrometer and Dial bore indicator. Measurement of Gear tooth thickness by using Gear tooth Vernier. Surface roughness measurement of such ashined component. Total Laboratory Hours 30 hours Text Books Autor: Anthony Esposito (2014). Fluid power with applications. Editorial: Harlow: Pearson Education Limited. Park, It: The Goodheart-Willcox Company, Inc. National Instruments (Firm (2003). LabVIEW : measurements manual. Austin, Tex.: National Instruments. Heating and prepared by course faculty members.						1	.0		
providing multidisciplinary approach. 2. To familiarize the use of transducers, sensors and actuators. 3. To use of software tools for measurement, perception and signal conditioning. Course Outcome At the end of the course, the student will be able to 1. Practice the various fluid power systems. 2. Implement different sensors for various industrial applications. 3. Caliberate measuring instruments and measure various geometrical features. Indicative Experiments 1. Design and analysis of hydraulic, pneumatic and electro-pneumatic circuits using automation software and hardware. 2. Stepper motor, Traffic light, HMI Programming interface using a PLC. 3. Force and Torque measurement using strain gauge. . 4. Measurement of speed and displacement using linear and rotary sensors. . 5. Presure measurement systems using Plezo electric sensor. . 8. Development of data logging using virtual instrument software. . 9. Calibration and dimensional measurement using Micrometer, Mechanical Comparator, Vernier Caliper and Dial Gauge. . 10. Measurement of Gaer tooth thickness by using Gear tooth Vernier. . 12. Surface roughness measurement of machined component. . 11. Measurement of Gaera tooth thickness by using Gear tooth Vernier.									
Course Outcome At the end of the course, the student will be able to 1. Practice the various fluid power systems. 2. Implement different sensors for various industrial applications. 3. Caliberate measuring instruments and measure various geometrical features. Indicative Experiments 1. Design and analysis of hydraulic, pneumatic and electro-pneumatic circuits using automation software and hardware. 2. Stepper motor, Traffic light, HMI Programming interface using a PLC. 3. Force and Torque measurement using strain gauge. 4. Measurement of speed and displacement using linear and rotary sensors. 5. Pressure measurement systems using sensors. 6. Temperature measurement using RTD and thermocouple. 7. Vibration and acceleration measurements using Piezo electric sensor. 8. Development of data logging using virtual instrument software. 9. Calibration and dimensional measurement using Micrometer, Mechanical Comparator, Vernier Caliper and Dial Gauge. 10. Measurement of flatness of the object using dial gauge and taper angle using Bevel Protractor, Dial Gauge and Sine-Bar. Measurement of bores by using Micrometer and Dial bore indicator. 11. Measurement of Gear tooth thickness by using Gear tooth Vernier. 12. Surface roughness measureme	2.	provi To fa	ding mul ^ı miliarize	idisciplinary approach. the use of transducers, sensors and actuators.	-		yste	ems	for
At the end of the course, the student will be able to	3.	lou	se of soft	ware tools for measurement, perception and signal cond	itionin	ıg.			
 Practice the various fluid power systems. Implement different sensors for various industrial applications. Caliberate measuring instruments and measure various geometrical features. Indicative Experiments Design and analysis of hydraulic, pneumatic and electro-pneumatic circuits using automation software and hardware. Stepper motor, Traffic light, HMI Programming interface using a PLC. Force and Torque measurement using strain gauge. Measurement of speed and displacement using linear and rotary sensors. Pressure measurement using RTD and thermocouple. Vibration and acceleration measurements using Piezo electric sensor. Development of data logging using virtual instrument software. Calibration and dimensional measurement using Micrometer, Mechanical Comparator, Vernier Caliper and Dial Gauge. Measurement of flatness of the object using dial gauge and taper angle using Bevel Protractor, Dial Gauge and Sine-Bar. Measurement of bores by using Micrometer and Dial bore indicator. Measurement of Gear tooth thickness by using Gear tooth Vernier. Surface roughness measurement of machined component. Total Laboratory Hours 30 hours Text Books Autor: Anthony Esposito (2014). Fluid power with applications. Editorial: Harlow: Pearson Education Limited. Rabiee, M. (2018). Programmable logic controllers : hardware and programming. Tinley Park, II: The Goodheart-Willcox Company, Inc. National Instruments. Lab Manual of prepared by course faculty members. Reference Books Fluid Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manu	Со	urse	Outcom	e					
 Implement different sensors for various industrial applications. Caliberate measuring instruments and measure various geometrical features. Indicative Experiments Design and analysis of hydraulic, pneumatic and electro-pneumatic circuits using automation software and hardware. Stepper motor, Traffic light, HMI Programming interface using a PLC. Force and Torque measurement using strain gauge. Measurement of speed and displacement using linear and rotary sensors. Pressure measurement systems using sensors. Temperature measurement using RTD and thermocouple. Vibration and acceleration measurements using Piezo electric sensor. Development of data logging using virtual instrument software. Calibration and dimensional measurement using Micrometer, Mechanical Comparator, Vernier Caliper and Dial Gauge. Measurement of Gear tooth thickness by using Gear tooth Vernier. Surface roughness measurement of machined component. Surface roughness measurement of machined component. Rabiee, M. (2018). Programmable logic controllers : hardware and programming. Tinley Park, II: The Goodheart-Willcox Company, Inc. National Instruments (Firm (2003). LabVIEW : measurements manual. Austin, Tex.: National Instruments. Lab Manual of prepared by course faculty members. Reference Books Eludi Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manual. LabVIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment. Viva-voce examination, Lab performance & FAT Recommended by Board of Studies [09-03-2022] 	At t	the e	nd of the	course, the student will be able to					
 Caliberate measuring instruments and measure various geometrical features. Indicative Experiments Design and analysis of hydraulic, pneumatic and electro-pneumatic circuits using automation software and hardware. Stepper motor, Traffic light, HMI Programming interface using a PLC. Force and Torque measurement using strain gauge. Measurement of speed and displacement using linear and rotary sensors. Pressure measurement using RTD and thermocouple. Vibration and acceleration measurements using Piezo electric sensor. Development of data logging using virtual instrument software. Calibration and dimensional measurement using Micrometer, Mechanical Comparator, Vernier Caliper and Dial Gauge. Measurement of flatness of the object using dial gauge and taper angle using Bevel Protractor, Dial Gauge and Sine-Bar. Measurement of bores by using Micrometer and Dial bore indicator. Measurement of Gear tooth thickness by using Gear tooth Vernier. Surface roughness measurement of machined component. Autor: Anthony Esposito (2014). Fluid power with applications. Editorial: Harlow: Pearson Education Limited. Rabiee, M. (2018). Programmable logic controllers : hardware and programming. Tinley Park, II: The Goodheart-Willcox Company, Inc. National Instruments. Lab Manual of prepared by course faculty members. Reference Books Fluid Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manual. Lab VIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment: Viva-voce examination, Lab performance & FAT Recommended by Board of Studies 09-03-2022 	1.	Prac	tice the v	arious fluid power systems.					
Indicative Experiments 1. Design and analysis of hydraulic, pneumatic and electro-pneumatic circuits using automation software and hardware. 2. Stepper motor, Traffic light, HMI Programming interface using a PLC. 3. Force and Torque measurement using strain gauge. 4. Measurement of speed and displacement using linear and rotary sensors. 5. Pressure measurement systems using sensors. 6. Temperature measurement using RTD and thermocouple. 7. Vibration and acceleration measurements using Piezo electric sensor. 8. Development of data logging using virtual instrument software. 9. Calibration and dimensional measurement using Micrometer, Mechanical Comparator, Vernier Caliper and Dial Gauge. 10. Measurement of flatness of the object using dial gauge and taper angle using Bevel Protractor, Dial Gauge and Sine-Bar. Measurement of bores by using Micrometer and Dial bore indicator. 11. Measurement of Gear tooth thickness by using Gear tooth Vernier. 12. Surface roughness measurement of machined component. Total Laboratory Hours 30 hours Text Books 1. Autor: Anthony Esposito (2014). Fluid power with applications. Editorial: Harlow: Pearson Education Limited. 2. Rabiee, M. (2018). Programmable logic controllers : hardware and pro	2.	Imple	ement dif	ferent sensors for various industrial applications.					
1. Design and analysis of hydraulic, pneumatic and electro-pneumatic circuits using automation software and hardware. 2. Stepper motor, Traffic light, HMI Programming interface using a PLC. 3. Force and Torque measurement using strain gauge. 4. Measurement of speed and displacement using linear and rotary sensors. 5. Pressure measurement systems using sensors. 6. Temperature measurement using RTD and thermocouple. 7. Vibration and acceleration measurements using Piezo electric sensor. 8. Development of data logging using virtual instrument software. 9. Calibration and dimensional measurement using Micrometer, Mechanical Comparator, Vernier Caliper and Dial Gauge. 10. Measurement of flatness of the object using dial gauge and taper angle using Bevel Protractor, Dial Gauge and Sine-Bar. Measurement of bores by using Micrometer and Dial bore indicator. 11. Measurement of Gear tooth thickness by using Gear tooth Vernier. 12. Surface roughness measurement of machined component. Total Laboratory Hours 30 hours Text Books 1. Autor: Anthony Esposito (2014). Fluid power with applications. Editorial: Harlow: Pearson Education Limited. 2. Rabiee, M. (2018). Programmable logic controllers : hardware and programming. Tinley Park, II: The Goodheart-Willcox Company,					eature	s.			
1. Design and analysis of hydraulic, pneumatic and electro-pneumatic circuits using automation software and hardware. 2. Stepper motor, Traffic light, HMI Programming interface using a PLC. 3. Force and Torque measurement using strain gauge. 4. Measurement of speed and displacement using linear and rotary sensors. 5. Pressure measurement systems using sensors. 6. Temperature measurement using RTD and thermocouple. 7. Vibration and acceleration measurements using Piezo electric sensor. 8. Development of data logging using virtual instrument software. 9. Calibration and dimensional measurement using Micrometer, Mechanical Comparator, Vernier Caliper and Dial Gauge. 10. Measurement of flatness of the object using dial gauge and taper angle using Bevel Protractor, Dial Gauge and Sine-Bar. Measurement of bores by using Micrometer and Dial bore indicator. 11. Measurement of Gear tooth thickness by using Gear tooth Vernier. 12. Surface roughness measurement of machined component. Total Laboratory Hours 30 hours Text Books 1. Autor: Anthony Esposito (2014). Fluid power with applications. Editorial: Harlow: Pearson Education Limited. 2. Rabiee, M. (2018). Programmable logic controllers : hardware and programming. Tinley Park, II: The Goodheart-Willcox Company,									
automation software and hardware. 2. Stepper motor, Traffic light, HMI Programming interface using a PLC. 3. Force and Torque measurement using strain gauge. 4. Measurement of speed and displacement using linear and rotary sensors. 5. Pressure measurement using RTD and thermocouple. 7. Vibration and acceleration measurements using Piezo electric sensor. 8. Development of data logging using virtual instrument software. 9. Calibration and dimensional measurement using Micrometer, Mechanical Comparator, Vernier Caliper and Dial Gauge. 10. Measurement of flatness of the object using dial gauge and taper angle using Bevel Protractor, Dial Gauge and Sine-Bar. Measurement of bores by using Micrometer and Dial bore indicator. 11. Measurement of Gear tooth thickness by using Gear tooth Vernier. 12. Surface roughness measurement of machined component. Total Laboratory Hours 30 hours Text Books 1. Autor: Anthony Esposito (2014). Fluid power with applications. Editorial: Harlow: Pearson Education Limited. 2. Rabiee, M. (2018). Programmable logic controllers : hardware and programming. Tinley Park, II: The Goodheart-Willcox Company, Inc. 3. National Instruments. 4. Lab Manual of prepared by course faculty members.	Ind	licati							
2. Stepper motor, Traffic light, HMI Programming interface using a PLC. 3. Force and Torque measurement using strain gauge. 4. Measurement of speed and displacement using linear and rotary sensors. 5. Pressure measurement systems using sensors. 6. Temperature measurement using RTD and thermocouple. 7. Vibration and acceleration measurements using Piezo electric sensor. 8. Development of data logging using virtual instrument software. 9. Calibration and dimensional measurement using Micrometer, Mechanical Comparator, Vernier Caliper and Dial Gauge. 10. Measurement of flatness of the object using dial gauge and taper angle using Bevel Protractor, Dial Gauge and Sine-Bar. Measurement of bores by using Micrometer and Dial bore indicator. 11. Measurement of Gear tooth thickness by using Gear tooth Vernier. 12. Surface roughness measurement of machined component. Total Laboratory Hours 30 hours Text Books 1. Autor: Anthony Esposito (2014). Fluid power with applications. Editorial: Harlow: Pearson Education Limited. 2. Rabiee, M. (2018). Programmable logic controllers : hardware and programming. Tinley Park, II: The Goodheart-Willcox Company, Inc. 3. National Instruments (Firm (2003). LabVIEW : measurements manual. Austin, Tex.: National Instruments.		1.			matic	circ	uits	s us	ing
 Force and Torque measurement using strain gauge. Measurement of speed and displacement using linear and rotary sensors. Pressure measurement systems using sensors. Temperature measurement using RTD and thermocouple. Vibration and acceleration measurements using Piezo electric sensor. Development of data logging using virtual instrument software. Calibration and dimensional measurement using Micrometer, Mechanical Comparator, Vernier Caliper and Dial Gauge. Measurement of flatness of the object using dial gauge and taper angle using Bevel Protractor, Dial Gauge and Sine-Bar. Measurement of bores by using Micrometer and Dial bore indicator. Measurement of Gear tooth thickness by using Gear tooth Vernier. Surface roughness measurement of machined component. Total Laboratory Hours 30 hours Autor: Anthony Esposito (2014). Fluid power with applications. Editorial: Harlow: Pearson Education Limited. Rabiee, M. (2018). Programmable logic controllers : hardware and programming. Tinley Park, II: The Goodheart-Willcox Company, Inc. National Instruments (Firm (2003). LabVIEW : measurements manual. Austin, Tex.: National Instruments. Lab Manual of prepared by course faculty members. Reference Books Fluid Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manual. LabVIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment: Viva-voce examination, Lab performance & FAT Recommended by Board of Studies 09-03-2022 									
 Measurement of speed and displacement using linear and rotary sensors. Pressure measurement systems using sensors. Temperature measurement using RTD and thermocouple. Vibration and acceleration measurements using Piezo electric sensor. Development of data logging using virtual instrument software. Calibration and dimensional measurement using Micrometer, Mechanical Comparator, Vernier Caliper and Dial Gauge. Measurement of flatness of the object using dial gauge and taper angle using Bevel Protractor, Dial Gauge and Sine-Bar. Measurement of bores by using Micrometer and Dial bore indicator. Measurement of Gear tooth thickness by using Gear tooth Vernier. Surface roughness measurement of machined component. Surface roughness measurement of machined component. Autor: Anthony Esposito (2014). Fluid power with applications. Editorial: Harlow: Pearson Education Limited. Rabiee, M. (2018). Programmable logic controllers : hardware and programming. Tinley Park, II: The Goodheart-Willcox Company, Inc. National Instruments (Firm (2003). LabVIEW : measurements manual. Austin, Tex.: National Instruments. Lab Manual of prepared by course faculty members. Reference Books Fluid Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manual. LabVIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment: Viva-voce examination, Lab performance & FAT 					PLC.				
 Pressure measurement systems using sensors. Temperature measurement using RTD and thermocouple. Vibration and acceleration measurements using Piezo electric sensor. Development of data logging using virtual instrument software. Calibration and dimensional measurement using Micrometer, Mechanical Comparator, Vernier Caliper and Dial Gauge. Measurement of flatness of the object using dial gauge and taper angle using Bevel Protractor, Dial Gauge and Sine-Bar. Measurement of bores by using Micrometer and Dial bore indicator. Measurement of Gear tooth thickness by using Gear tooth Vernier. Surface roughness measurement of machined component. Surface roughness measurement of machined component. Autor: Anthony Esposito (2014). Fluid power with applications. Editorial: Harlow: Pearson Education Limited. Rabiee, M. (2018). Programmable logic controllers : hardware and programming. Tinley Park, II: The Goodheart-Wilcox Company, Inc. National Instruments (Firm (2003). LabVIEW : measurements manual. Austin, Tex.: National Instruments. Lab Manual of prepared by course faculty members. Reference Books Fluid Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manual. LabVIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment: Viva-voce examination, Lab performance & FAT Recommended by Board of Studies 09-03-2022 		3.							
 6. Temperature measurement using RTD and thermocouple. 7. Vibration and acceleration measurements using Piezo electric sensor. 8. Development of data logging using virtual instrument software. 9. Calibration and dimensional measurement using Micrometer, Mechanical Comparator, Vernier Caliper and Dial Gauge. 10. Measurement of flatness of the object using dial gauge and taper angle using Bevel Protractor, Dial Gauge and Sine-Bar. Measurement of bores by using Micrometer and Dial bore indicator. 11. Measurement of Gear tooth thickness by using Gear tooth Vernier. 12. Surface roughness measurement of machined component. Text Books 1. Autor: Anthony Esposito (2014). Fluid power with applications. Editorial: Harlow: Pearson Education Limited. 2. Rabiee, M. (2018). Programmable logic controllers : hardware and programming. Tinley Park, II: The Goodheart-Willcox Company, Inc. 3. National Instruments (Firm (2003). LabVIEW : measurements manual. Austin, Tex.: National Instruments. 4. Lab Manual of prepared by course faculty members. Reference Books 1. Fluid Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manual. 2. LabVIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment: Viva-voce examination, Lab performance & FAT Recommended by Board of Studies 09-03-2022 					/ sens	ors.			
 7. Vibration and acceleration measurements using Piezo electric sensor. 8. Development of data logging using virtual instrument software. 9. Calibration and dimensional measurement using Micrometer, Mechanical Comparator, Vernier Caliper and Dial Gauge. 10. Measurement of flatness of the object using dial gauge and taper angle using Bevel Protractor, Dial Gauge and Sine-Bar. Measurement of bores by using Micrometer and Dial bore indicator. 11. Measurement of Gear tooth thickness by using Gear tooth Vernier. 12. Surface roughness measurement of machined component. Total Laboratory Hours 30 hours Text Books 1. Autor: Anthony Esposito (2014). Fluid power with applications. Editorial: Harlow: Pearson Education Limited. 2. Rabiee, M. (2018). Programmable logic controllers : hardware and programming. Tinley Park, II: The Goodheart-Willcox Company, Inc. 3. National Instruments. 4. Lab Manual of prepared by course faculty members. Reference Books 1. Fluid Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manual. 2. LabVIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment: Viva-voce examination, Lab performance & FAT Recommended by Board of Studies 09-03-2022 		5.							
 8. Development of data logging using virtual instrument software. 9. Calibration and dimensional measurement using Micrometer, Mechanical Comparator, Vernier Caliper and Dial Gauge. 10. Measurement of flatness of the object using dial gauge and taper angle using Bevel Protractor, Dial Gauge and Sine-Bar. Measurement of bores by using Micrometer and Dial bore indicator. 11. Measurement of Gear tooth thickness by using Gear tooth Vernier. 12. Surface roughness measurement of machined component. Total Laboratory Hours 30 hours Text Books 1. Autor: Anthony Esposito (2014). Fluid power with applications. Editorial: Harlow: Pearson Education Limited. 2. Rabiee, M. (2018). Programmable logic controllers : hardware and programming. Tinley Park, II: The Goodheart-Willcox Company, Inc. 3. National Instruments (Firm (2003). LabVIEW : measurements manual. Austin, Tex.: National Instruments. 4. Lab Manual of prepared by course faculty members. Reference Books 1. Fluid Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manual. 2. LabVIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment: Viva-voce examination, Lab performance & FAT Recommended by Board of Studies 09-03-2022 									
 9. Calibration and dimensional measurement using Micrometer, Mechanical Comparator, Vernier Caliper and Dial Gauge. 10. Measurement of flatness of the object using dial gauge and taper angle using Bevel Protractor, Dial Gauge and Sine-Bar. Measurement of bores by using Micrometer and Dial bore indicator. 11. Measurement of Gear tooth thickness by using Gear tooth Vernier. 12. Surface roughness measurement of machined component. Text Books 1. Autor: Anthony Esposito (2014). Fluid power with applications. Editorial: Harlow: Pearson Education Limited. 2. Rabiee, M. (2018). Programmable logic controllers : hardware and programming. Tinley Park, II: The Goodheart-Willcox Company, Inc. 3. National Instruments (Firm (2003). LabVIEW : measurements manual. Austin, Tex.: National Instruments. 4. Lab Manual of prepared by course faculty members. Reference Books 1. Fluid Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manual. 2. LabVIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment: Viva-voce examination, Lab performance & FAT Recommended by Board of Studies 		7.			ensor.				
Comparator, Vernier Caliper and Dial Gauge. 10. Measurement of flatness of the object using dial gauge and taper angle using Bevel Protractor, Dial Gauge and Sine-Bar. Measurement of bores by using Micrometer and Dial bore indicator. 11. Measurement of Gear tooth thickness by using Gear tooth Vernier. 12. Surface roughness measurement of machined component. Total Laboratory Hours 30 hours Text Books 1. Autor: Anthony Esposito (2014). Fluid power with applications. Editorial: Harlow: Pearson Education Limited. 2. Rabiee, M. (2018). Programmable logic controllers : hardware and programming. Tinley Park, II: The Goodheart-Willcox Company, Inc. 3. National Instruments (Firm (2003). LabVIEW : measurements manual. Austin, Tex.: National Instruments. 4. Lab Manual of prepared by course faculty members. Reference Books 1. Fluid Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manual. 2. LabVIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment: Viva-voce examination, Lab performance & FAT Recommended by Board of Studies 09-03-2022									
Protractor, Dial Gauge and Sine-Bar. Measurement of bores by using Micrometer and Dial bore indicator. 11. Measurement of Gear tooth thickness by using Gear tooth Vernier. 12. Surface roughness measurement of machined component. Total Laboratory Hours 30 hours Total Laboratory Hours Jone Surface roughness measurement of machined component. Total Laboratory Hours Jone Surface roughness measurement of machined component. Total Laboratory Hours Jone Surface roughness measurement of machined component. Total Laboratory Hours Jone Surface roughness measurement of machined component. Total Laboratory Hours Jone Surface roughness measurement of machined component. Total Laboratory Hours Jone Surface roughness measurement of machined component. Park Rutor: Anthony Esposito (2014). Fluid power with applications. Editorial: Harlow: Pearson Education Limited. National Instruments (Firm (2003). LabVIEW : measurements manual. Austin, Tex.: National Instruments. 4. Lab Manual of prepared by cours		9.	-	0	meter,	, №	lecł	nani	cal
12. Surface roughness measurement of machined component. Total Laboratory Hours 30 hours Text Books 1. Autor: Anthony Esposito (2014). Fluid power with applications. Editorial: Harlow: Pearson Education Limited. 2. Rabiee, M. (2018). Programmable logic controllers : hardware and programming. Tinley Park, II: The Goodheart-Willcox Company, Inc. 3. National Instruments (Firm (2003). LabVIEW : measurements manual. Austin, Tex.: National Instruments. 4. Lab Manual of prepared by course faculty members. Reference Books 1. Fluid Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manual. 2. LabVIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment: Viva-voce examination, Lab performance & FAT Recommended by Board of Studies 09-03-2022		10.	Protract	or, Dial Gauge and Sine-Bar. Measurement of bores b					
12. Surface roughness measurement of machined component. Total Laboratory Hours 30 hours Text Books 1. Autor: Anthony Esposito (2014). Fluid power with applications. Editorial: Harlow: Pearson Education Limited. 2. Rabiee, M. (2018). Programmable logic controllers : hardware and programming. Tinley Park, II: The Goodheart-Willcox Company, Inc. 3. National Instruments (Firm (2003). LabVIEW : measurements manual. Austin, Tex.: National Instruments. 4. Lab Manual of prepared by course faculty members. Reference Books 1. Fluid Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manual. 2. LabVIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment: Viva-voce examination, Lab performance & FAT Recommended by Board of Studies 09-03-2022		11.	Measur	ement of Gear tooth thickness by using Gear tooth Verni	er.				
Total Laboratory Hours 30 hours Text Books . 1. Autor: Anthony Esposito (2014). Fluid power with applications. Editorial: Harlow: Pearson Education Limited. 2. Rabiee, M. (2018). Programmable logic controllers : hardware and programming. Tinley Park, II: The Goodheart-Willcox Company, Inc. 3. National Instruments (Firm (2003). LabVIEW : measurements manual. Austin, Tex.: National Instruments. 4. Lab Manual of prepared by course faculty members. Reference Books . 1. Fluid Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manual. 2. LabVIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment: Viva-voce examination, Lab performance & FAT Recommended by Board of Studies 09-03-2022		12.							
Text Books 1. Autor: Anthony Esposito (2014). Fluid power with applications. Editorial: Harlow: Pearson Education Limited. 2. Rabiee, M. (2018). Programmable logic controllers : hardware and programming. Tinley Park, II: The Goodheart-Willcox Company, Inc. 3. National Instruments (Firm (2003). LabVIEW : measurements manual. Austin, Tex.: National Instruments. 4. Lab Manual of prepared by course faculty members. Reference Books 1. Fluid Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manual. 2. LabVIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment: Viva-voce examination, Lab performance & FAT Recommended by Board of Studies 09-03-2022		l			s 30) ho	urs		
 Pearson Education Limited. Rabiee, M. (2018). Programmable logic controllers : hardware and programming. Tinley Park, II: The Goodheart-Willcox Company, Inc. National Instruments (Firm (2003). LabVIEW : measurements manual. Austin, Tex.: National Instruments. Lab Manual of prepared by course faculty members. Reference Books Fluid Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manual. LabVIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment: Viva-voce examination, Lab performance & FAT Recommended by Board of Studies 	Tex	kt Bo	oks	· · · · · ·					
Park, II: The Goodheart-Willcox Company, Inc. 3. National Instruments (Firm (2003). LabVIEW : measurements manual. Austin, Tex.: National Instruments. 4. Lab Manual of prepared by course faculty members. Reference Books 1. Fluid Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manual. 2. LabVIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment: Viva-voce examination, Lab performance & FAT Recommended by Board of Studies 09-03-2022	1.				ial: Ha	arlov	V:		
 National Instruments (Firm (2003). LabVIEW : measurements manual. Austin, Tex.: National Instruments. Lab Manual of prepared by course faculty members. Reference Books Fluid Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manual. LabVIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment: Viva-voce examination, Lab performance & FAT Recommended by Board of Studies 09-03-2022 	2.				ogran	nmir	ng	Tinle	у
 4. Lab Manual of prepared by course faculty members. Reference Books Fluid Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manual. LabVIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment: Viva-voce examination, Lab performance & FAT Recommended by Board of Studies 09-03-2022 	3.	Nat	ional Inst	ruments (Firm (2003). LabVIEW : measurements manua	l. Aus	tin,	Tex	.:	
Reference Books 1. Fluid Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manual. 2. LabVIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment: Viva-voce examination, Lab performance & FAT Recommended by Board of Studies 09-03-2022	4.								
1. Fluid Power: Hydraulics and Pneumatics, 3rd Edition, Lab Manual. 2. LabVIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment: Viva-voce examination, Lab performance & FAT Recommended by Board of Studies 09-03-2022									
2. LabVIEW TM User Manual LabVIEW User Manual. (2003). Mode of assessment: Viva-voce examination, Lab performance & FAT Recommended by Board of Studies 09-03-2022									
Mode of assessment: Viva-voce examination, Lab performance & FATRecommended by Board of Studies09-03-2022									
Recommended by Board of Studies 09-03-2022									
ADDITIVED DY ADDIETTIC COUTCIL IND. 00 IDDIE DALE IT/-00-2022					22				

	Design of Machine Elements		т	D	<u> </u>
BMEE301L	Design of Machine Elements	 3	Т 1	<u>Р</u> 0	С 4
Pre-requisite	BMEE202L, BMEE202P	ງ Syllabu	-	-	-
rie-iequisite		-	1.0	51 510	Л
Course Objective			1.0		
-	knowledge on materials selection in design				
	the effects of various types of loading on machine parts.				
	e design methodology for mechanical components used in	n indust	ries		
	us standards in the design process.	1 maaot			
Course Outcome	98				
	course, the student will be able to				
	esign of machine components using theories of failure.				
	ine components subjected to dynamic loads against fatig	ue failui	e.		
3. Recommend s	suitable mechanical springs for various applications.				
4. Design shafts,	keys and couplings as per the international standards.				
5. Investigate the	e design aspects of temporary and permanent joints.				
6. Design and de	evelop the engine components.				
	duction to Design			hοι	
	 Factors Considered in Design – Selection of Materials – 				
	t, Bending and Torsional Stresses in Machine Elements -	Factor	of S	afet	у —
–	heories of Failures.				
Module:2 Fatig	•			hou	
	ation – Theoretical Stress Concentration Factor – Size				
	Fatigue Stress Concentration Factor – Notch Sensitivi				
	atigue Strength – S-N Curve – Gerber, Soderberg and Go	bodmar	i Ed	uatio	ons
	c Stresses – Minor's rule – Basquin's equation. gn of Mechanical Springs		0	hou	
	flections of Helical Springs – Extension Springs – Comp	vroccior			
	ue Loading, Energy Storage Capacity – Leaf Springs				
Springs – Flat Spi			Jai	1013	
	gn of Shafts, Keys and Couplings		9	hou	irs
	nd Hollow Shafts for Strength and Rigidity – Design of Sh	afts for			
	and Axial Loads – Design of Keys-Stresses in Keys – D				
Flexible couplings	• • •				
Module:5 Desi			9	hou	irs
	eners				
Design of Rivete	d Joints – Design of Welded Joints – Design of Bolted	Assemb	oly –	Dire	ect
Loading and Ecce			-		
	gn of Cotter and Knuckle Joints			hou	
	otter and Knuckle Joints - Design of Cotter Joints – S	pigot a	nd	Sock	æt,
	r, Gib and Cotter – Design of Knuckle Joint.				
	gn of Engine Components			hοι	
	C engine components – Classification - Design of Flyw	vheel –	De	sign	of
	- Design of Crankshaft – Design of Piston.		-	_	
Module:8 Cont	emporary Issues		2	hοι	irs
	Total lecture hours:		60	hou	irs
Text Book(s)					
• •	ri, Design of Machine Elements, 2020, 5 th Edition, Tata M	lcGraw	Hill.		
Reference Books					
1. Richard G. B	udynas and Keith Nisbett J, Shigley Mechanical Enginee	ring De	sign	, 202	20,

	11 th Edition (in SI Units), McGraw	/ Hill							
2.		na, A. P., Hornberger, L. E., Shoup, T. E., Spotts, M. F., Design of Machine							
	Elements, 2019, Pearson India Education Services Pvt. Limited.								
3.	Robert L. Norton, Machine Design, 2018, 5 th Edition, Pearson.								
4.	Juvinal, R.C and Kurt M.Marshek	, Machine Comp	onent De	sign, 2016, Wiley.					
5.	PSG Design Data: Data Book of	Engineers, 2020	, Kalaikatl	nir Achchagam.					
Mo	de of Evaluation: CAT, Written ass	signment, Quiz, F	AT						
Re	Recommended by Board of Studies 09-03-2022								
Арр	Approved by Academic Council No. 65 Date 17-03-2022								

BMEE302L	Metal Casting and Welding		LT	P	С			
			3 0	0	3			
Pre-requisite	BMEE209L, BMEE209P	Svlla	bus v	-	-			
	,		1.0					
Course Objectiv	/es							
	n insight on the casting fundamentals and processes.							
2. To impart knowledge on the welding processes for developing various joints.								
I	5 51 15	,						
Course Outcom	es							
At the end of the	course, the student will be able to							
	olidification characteristics for designing gating system.							
	working principle of various casting processes.							
	nelting practices and explore casting defects.							
	welding process for different functional requirements.							
	defects and suggest suitable methods to assess weld of	ualitv.						
	55	. ,						
Module:1 Cast	ing Fundamentals		7	′ ho	urs			
	pure metals and alloys. Mechanism of columnar ar	nd den		-				
	ressive and directional solidifications. Solidification til							
	f fluid flow: Bernoulli's theorem and law of mass contin							
	functions. Design of the gating System. Different typ							
	nctions. Definition and functions of the riser. Types							
	ign of riser. Aspiration effect. Use of insulating mate							
compounds in ris								
-	endable Mould Casting			6 ho	urs			
	ypes and properties of sand – Types, features and ste	eps invo						
	making, pattern allowances - Mould and Core mater							
	-moulding machines – Procedural steps and applicat							
	and Ceramic mould casting, Lost-foam Casting, Investm							
	nanent Mould Casting			5 ho				
	and applications of Vacuum casting, Slush casting, Lo	w-pres						
	ot chamber and cold chamber, Centrifugal casting				•			
	d Rheocasting, Casting Techniques for single-crystal co				0,			
	ing Technology and Casting Defects	•		b ho	urs			
	for ferrous and non-ferrous foundries. Electric and	fuel fi						
U U	es; Types of Furnaces, Electromagnetic Stirring, pow							
	energy considerations. Melting practice - ferrous, nor							
	posites. Melting practices; Fluxing, inoculation, de							
refinement treatr	nents. Control of pouring temperature Heat treatment	s of ca	astings	s, Šł	lop			
floor melt quality			0					
	s and Casting defects and factors responsible for them.	Differe	ent ins	pect	ion			
	ods to evaluate the casting.							
Module:5 Join			8	3 ho	urs			
	welding processes -Fusion welding: Oxy-fuel gas	weldir						
	, Arc welding: power sources -methods of arc initiatio							
	y cycle, metal transfer. Non-consumable electrode - (
	ctrode - SMAW, SAW, GMAW, FCAW, EGW, ESW							
	velding (EBW & LBW).							
	ding: Cold welding and roll bonding, Ultrasonic welding	ng, Frie	ction \	veldi	ing,			
Friction stir welding, Resistance welding, Explosion welding, Diffusion welding, Thermit								
welding.								
U U	i ng and adhesive bonding: Principle of Operation, adv	antage	s, Lim	itatic	ons			
and application.		-						
	damentals of welding		Ę	5 ho	urs			
	~							

Solidification of the weld metal, Heat flow in welding, Metallurgical transformation in and around weldment, Implication of cooling rates, Heat affected zone (HAZ), Shielding gases, Classification of Filler metals and Fluxes, Weldability of plain carbon steels, Low Carbon Steels, Stainless steels and Aluminium Alloys.

	110y5.						
Module:7 Welding Defects and Testin	ng			6 hours			
Spatter, Under-cutting, and over lappir	ng Crack- I	nitiation a	and Propaga	tion - Incomplete			
Penetration, Inclusions, Porosity and blowholes, Lack of fusion, Distortion (Distortion and							
residual stresses, Concept of distortion	, Types of	distortion	Control of w	velding distortion)			
causes and remedies for weld defects.							
Testing and Inspection of welding: Vis	sual Inspect	tion, Wele	dability, Dest	ructive testing of			
welds, Non-destructive testing of welds a	ind Hot Crac	cking Test	ts.	U U			
Module:8 Contemporary Issues				2 hours			
	•	Total Lec	ture hours:	45 hours			
Text Books							
1. John K.C, Metal casting and Joining,	, 2015, PHI	publicatio	ns.				
2. P. L. Jain, Principles of Foundry Tec	hnology, 20	09, 5th eo	dition, TMH P	ublications.			
3. Parmar R.S, Welding Engineering ar	nd Technolo	gy, 2013,	Khanna Pub	lishers.			
Reference Books							
1. Serope Kalpakjian, and Steven Scl	hmid, Manu	facturing	Engineering	and Technology,			
2020, 8 th edition, Pearson education		-					
2. P.N. Rao, Manufacturing Technology	y Foundry, F	orming a	nd Welding, 2	2003, 2nd Edition.			
Mode of Evaluation: CAT, Written assignment, Quiz, FAT							
Recommended by Board of Studies 09	9-03-2022						
Approved by Academic Council No. 65 Date 17-03-2022							
··· ·							

BMEE302P	Metal C	asting and W	/eldina	Lab	L	. Т	Ρ	С		
		<u></u>	J		0	0	2	1		
Pre-requisite	BMEE209L, BMEE2	209P			Syllab	us v	ersi	on		
-	· · · · · · · · · · · · · · · · · · ·					1.0				
Course Objectiv	es									
1. To provide an	n insight on foundry pra	actices.								
2. To impart pra	ctical exposure on the	effect of weld	ing para	meters on j	oint chai	acte	ristic	s.		
Course Outcom										
At the end of the course, the student will be able to										
	1. Assess the properties of moulding sand and demonstrate the melting practices.									
	effect of welding parar		rostructu	ire and weld	d quality.					
3. Investigate th	e weldability of various	s materials.								
In dia atiwa Evenar										
Indicative Exper1.Determination		oor strongth	and con	nroccion o	tranath	of th	. aiı	<u>(0</u>)		
foundry san	on of permeability, sh	lear strength	and con	ipression s	liengin	JIII	e gr	/en		
	on of the grain finenes	s of the given	foundry	sand						
	on of clay content for				le and t	n sti	ıdv	the		
	compression strength					0 50	July	uio		
	on of flowability for the									
	mould for the given p	<u> </u>	/	sina two bo	xes and	thre	e – ł	oox		
moulding pr	U									
	elting practice – demor	stration.								
	e effect of heat input		cture of	weld metal	and HA	Z of	AI /	Ni		
alloys perfor	rmed under GTAW pro	ocess.								
	e effect of FSW proce		s (tool r	otational sp	eed, axi	al loa	ad, a	and		
	d) on the butt welding o									
	bead on plate experir			enetration,	and its	dilut	ion)	on		
	tainless steel by using									
	e weldability of plastic									
-	e residual stress meas	urement of the	e triction	stir welded	specime	en				
(Demonstra		old porformon	an of C	1010/ 05000		o otu	<u>dv</u>)			
12. Effect of shi	ielding gases on the w			pratory Hou						
Text Books		10		Ji alor y Tiou		Juis	,			
	letal Casting and Join	ing 2015 PH	Inublica	tions						
	Principles of Foundry T				H Public	ation	\$			
	, Welding Engineering	~ ~ ~					J.			
	prepared by course fa		- 37, 201	e, raiania						
Reference Book	· · ·									
2. Richard L Little, Welding and welding technology, 2020, Mc Graw Hill										
Mode of assessment: Continuous assessment, FAT, Oral examination										
Recommended by Board of Studies 09-03-2022										
Approved by Aca	demic Council	No. 65	Date	17-03-20	22					
		· · · · · · · · · · · · · · · · · · ·								

BMEE303L	Thermal Engineering Systems	L	T	Ρ	С			
D		3	-	0	3			
Pre-requisite	BMEE203L	Syllab		ersio)n			
Course Objectiv			1.0					
Course Objectiv		tions of t	orm					
systems.	tudents to apply the laws of thermodynamics in applica		lenn	ai				
	nts gain essential and basic knowledge of various types	of intern	al an	Ч				
•	ustion engines and train them with the procedures for t			u				
engines and fu			,					
	tudents to analyse steam turbine, gas turbine cycles, re	efrigeratio	n an	d air	· _			
conditioning systems.								
Course Outcom								
	course, the student will be able to							
	modynamics laws to the working of IC engines.							
	rmance parameters of IC engines.							
	m nozzle for thermal power plant and analyze the perfo	rmance c	of					
	air compressors.							
	erformance parameters of steam and gas power cycles							
	ous refrigeration systems based on their performance.							
6. Evaluate the c	cooling load requirements for conditioned space.							
	•							
Module:1 IC Er		. I		hou				
	e of 2-stroke and 4-stroke SI and CI engines - Va							
	el engine, simple carburettor - Ignition system - Com							
	Knocking and detonation - Fuel injection system - MPFI system, Lubrication system - super charging and Turbe			Rai	ing			
	ngines Performance	5 charging		hou	irs			
	st - Measurement of Brake power, Indicated power a	and Fricti						
	n, Air consumption - Heat balance test - Morse test an							
IC engine.	, 1							
Module:3 Air C	Compressor		6	hou	Jrs			
Reciprocating co	mpressors - Construction - Working - Effect of clearanc	e volume	– M	ulti-				
	etric efficiency – Isothermal efficiency.							
Module:4 Stea				hοι				
	One-dimensional steady flow of steam through a conv	ergent an	d div	erge	ent			
nozzle – Metasta								
	m turbine and Gas turbine		6	hou	Jrs			
	mpulse and Reaction turbine – Performance							
	en and Closed cycle gas turbine, Reheating, Regenera	tion and I			<u> </u>			
	igeration			hou				
	system - Vapour compression refrigeration system - Co iagrams - Calculation of COP - Effect of sub-cooling							
Selection and properties of refrigerant - Vapour absorption system - NH ₃ - water system, Vapour adsorption system. Cryogenic engineering - Introduction, Application, Cryo-coolers.								
Module:7 Air-conditioning 6 hours								
	litioning system and its working principle – Psychromet	rv - Psych						
properties, processes and chart – heating and cooling load calculations.								
	emporary issues		2	hou	urs			
	· ·							
	Total Lecture hours:		45	hou	Jrs			

Text Book

1. Rajput R.K., Thermal Engineering, 2017, 10th Edition, Laxmi Publications (P) Ltd. **Reference Books**

- 1. Ganesan, V., Internal combustion engines. 2012, McGraw Hill Education (India) Pvt Ltd.
- Manohar Prasad., Refrigeration and Air Conditioning, 2015, 3rd Edition, New Age International.
 Samon K. Thormal Engineering, 2011, PHI Learning Put, 1td

3. Soman, K., Thermal Engineering. 2011, PHI Learning Pvt. Ltd.

Mode of Evaluation: CAT, Written assignment, Quiz, FAT.

Recommended by Board of Studies	09-03-2022		
Approved by Academic Council	No. 65	Date	17-03-2022

BMB	EE303P	Thermal I	Engineering	Systems	s Lab		L	T	Ρ	С
							-	0	2	1
Pre-	-requisite	BMEE203L				Sylla	bus	ve	rsio	<u>)</u>
							1.	0		
	Irse Objectiv									
	To apply theo topic.	retical knowledge gain	ied in theory a	and get h	ands-on ex	perien	ce o	f th	е	
2	To train students practically with the procedures for testing of engines, air compressor, efrigeration and air conditioning.									
3	To equip the s	o equip the students to analyse the experimental data of IC engines, air compressor, frigeration and air conditioning.								
	Irse Outcome									
At th	ne end of the	course, the student wil	ll be able to							
		xperiments on IC engi		s their pe	erformance.					
2. I	Perform expe	iments on refrigeration	n and air con	ditioning	systems to	predict	t the	ir C	OP	·
3. (Conduct the e	xperiments on air com	pressor and	air blowe	r to assess	their p	erfo	rma	ance	ə.
	cative Experi									
1.		ve timing and port tim al value and give your		or the giv	/en engines	and c	omp	are	e wit	h
2.		e properties of differen		forming	lash point, t	fire poi	nt, v	visc	osit	y
	and calorific	value tests and find o	ut which is su	itable for	the better	perforn	nano	ce d	of th	ie
	given engine) .								
3.		e performance of a sin								
		ers and suggest a suita								
4.		e energy distribution of								
_		ers and suggest a suit								
5.		rmance test on a sing								
	results.	pecifications. Suggest					•	-		
6.	Determine the test and con	ne friction power of a g npare the results with \	given four-cyli Willan's line n	nder peti nethod.	rol engine b	y perfc	ormir	ng l	Mor	se
7.		ne friction power of a g est and compare the re				e by pe	rforr	nin	g	
8.	Determine the	ne actual index of com	pression and	compare	e with the is	entropi	ic			
		n for a given reciprocat								
9.		e performance of air bl								
10.		e COP of the given va				tem ar	nd ai	r-		
	conditioning system and compare with the theoretical calculation.									
	11. Compare the power output for the steam turbine at different load conditions.									
12.	Compare the	e boiler efficiency for d			•					
T	4 D l-			otal Labo	oratory Hou	rs 30	hou	rs		
	t Book									
1.		prepared by the faculty		Oral						
		ent: Continuous asses		Ural exa	mination					
		/ Board of Studies	09-03-2022	Dete	17 02 000	<u>)</u>)				
нрр	IOVED BY ACA	demic Council	No. 65	Date	17-03-202	22				

BMEE304L	Metal Forming and Machining		ТΙ	P	С				
		3	0	0	3				
Pre-requisite	BMEE209L, BMEE209P	Sylla	-	-	-				
		- j	1.						
Course Object	ives			-					
	owledge on the basic principles of metal forming theories a	and p	roce	sses	5.				
•	nsight on metal cutting theories, machine tools, and machin	•							
Course Outco		<u></u>							
	e course, the student will be able to								
	yield criterion and workability behaviors of materials.								
2. Evaluate various bulk and sheet metal forming processes for different functional									
requirement	S.								
3. Demonstrat	e various machine tools and machining operations.								
4. Analyse the	mechanics of metal cutting processes.								
5. Investigate	the heat flow, tool life and tool wear during metal cutting pro	ocess							
	ndamentals of Metal Forming				ours				
	elations in elastic and plastic deformation, stress tensor,								
	al shear stress and shear strains, invariants of stress st								
	deformations of crystals temperature and strain								
	f flow stress- Slab analysis - Upper bound analysis - Slip	line	field	ana	lysis,				
recrystallization	, Deformation zone geometry - Numerical problems.								
	Ik Forming of Metals	_			ours				
	ification of forging processes – Forging machines & equi								
	id in open die forging and closed die forging - Friction								
	Metal flowlines in forging – Forging defects – Residual st	resse	s in	forg	ing -				
Powder metallu				-					
	Rolling : Classification of rolling processes – Types of rolling mills – Expression for rolling								
load - Forces and geometrical relationships in rolling - Effect of front & back tension -									
	and geometrical relationships in rolling - Effect of front								
Friction hill – De	and geometrical relationships in rolling – Effect of front effects in rolled product.	& ba	ack 1	tensi	on –				
Friction hill – De Extrusion : Cla	and geometrical relationships in rolling – Effect of front efects in rolled product. ssification of extrusion processes – Extrusion equipment	`&ba ťs –	ack f	tensi orma	on –				
Friction hill – De Extrusion : Cla lubrication & de	and geometrical relationships in rolling – Effect of front efects in rolled product. ssification of extrusion processes – Extrusion equipment fects – Extrusion of tubes & seamless pipes – Hydrostatic e	* & ba t's – extrus	Defe Defe	tensi orma	on – ition,				
Friction hill – De Extrusion: Cla lubrication & de Drawing: Draw	and geometrical relationships in rolling – Effect of front efects in rolled product. ssification of extrusion processes – Extrusion equipment fects – Extrusion of tubes & seamless pipes – Hydrostatic e ving equipment's & Dies – Determination of drawing	& ba ťs – extrus force	Defe bion. &	tensi orma powe	on – ition, er –				
Friction hill – De Extrusion: Cla lubrication & de Drawing: Draw Estimation of r	and geometrical relationships in rolling – Effect of front efects in rolled product. ssification of extrusion processes – Extrusion equipment fects – Extrusion of tubes & seamless pipes – Hydrostatic e ving equipment's & Dies – Determination of drawing edundant work – Optimal cone angle & dead zone for	& ba ťs – extrus force	Defe bion. &	tensi orma powe	on – ition, er –				
Friction hill – De Extrusion : Cla lubrication & de Drawing : Draw Estimation of r variables – Tub	and geometrical relationships in rolling – Effect of front efects in rolled product. ssification of extrusion processes – Extrusion equipment fects – Extrusion of tubes & seamless pipes – Hydrostatic e ving equipment's & Dies – Determination of drawing redundant work – Optimal cone angle & dead zone for e drawing processes.	& ba ťs – extrus force	Defe bion. &	orma powe Dra	on – ition, er – wing				
Friction hill – De Extrusion: Cla lubrication & de Drawing: Draw Estimation of r variables – Tub Module:3 Sh	and geometrical relationships in rolling – Effect of front effects in rolled product. ssification of extrusion processes – Extrusion equipment fects – Extrusion of tubes & seamless pipes – Hydrostatic eving equipment's & Dies – Determination of drawing redundant work – Optimal cone angle & dead zone for e drawing processes. eet Metal Forming	& ba t's – extrus force matio	Defe sion. & n –	tensi orma powe Dra 5 h	on – tion, er – wing ours				
Friction hill – De Extrusion: Cla lubrication & de Drawing: Draw Estimation of r variables – Tub Module:3 Sh Conventional p	and geometrical relationships in rolling – Effect of front effects in rolled product. ssification of extrusion processes – Extrusion equipment fects – Extrusion of tubes & seamless pipes – Hydrostatic eving equipment's & Dies – Determination of drawing redundant work – Optimal cone angle & dead zone for e drawing processes. eet Metal Forming rocesses, Forces in circular cup drawing, Redrawing, draw	& ba t's – extrus force matio wing	Defesion. & n –	tensi orma powe Dra 5 h lbes	on – ition, er – wing ours from				
Friction hill – De Extrusion : Cla lubrication & de Drawing : Draw Estimation of r variables – Tub Module:3 Sh Conventional p annular sheet	and geometrical relationships in rolling – Effect of front effects in rolled product. ssification of extrusion processes – Extrusion equipment fects – Extrusion of tubes & seamless pipes – Hydrostatic eving equipment's & Dies – Determination of drawing redundant work – Optimal cone angle & dead zone for e drawing processes. eet Metal Forming rocesses, Forces in circular cup drawing, Redrawing, draw dies, forming limit diagram, forming with hydrostatic p	& ba t's – extrus force matio wing ressu	Defesion. & n – of ture,	tensi orma powe Dra 5 h ibes explo	on – tion, er – wing ours from osive				
Friction hill – De Extrusion: Cla lubrication & de Drawing: Draw Estimation of r variables – Tub Module:3 Sh Conventional p annular sheet forming, electro	and geometrical relationships in rolling – Effect of front effects in rolled product. ssification of extrusion processes – Extrusion equipment fects – Extrusion of tubes & seamless pipes – Hydrostatic eving equipment's & Dies – Determination of drawing redundant work – Optimal cone angle & dead zone for e drawing processes. eet Metal Forming rocesses, Forces in circular cup drawing, Redrawing, draw dies, forming limit diagram, forming with hydrostatic p ohydraulic forming, magnetic pulse forming, HERF, electro	& ba t's – extrus force matio wing ressu	Defe sion. 8 n – of tu re, netic	tensi porma Dra 5 h ibes explo	on – tion, er – wing ours from psive ning.				
Friction hill – De Extrusion: Cla lubrication & de Drawing: Drav Estimation of r variables – Tub Module:3 Sh Conventional p annular sheet forming, electro Forming limit cr	and geometrical relationships in rolling – Effect of front effects in rolled product. ssification of extrusion processes – Extrusion equipment fects – Extrusion of tubes & seamless pipes – Hydrostatic eving equipment's & Dies – Determination of drawing redundant work – Optimal cone angle & dead zone for e drawing processes. eet Metal Forming rocesses, Forces in circular cup drawing, Redrawing, draw dies, forming limit diagram, forming with hydrostatic p ohydraulic forming, magnetic pulse forming, HERF, electro iteria, defect in formed parts, principles and process param	& ba t's – extrus force matio wing ressu	Defe sion. 8 n – of tu re, netic	tensi porma Dra 5 h ibes explo	on – tion, er – wing ours from psive ning.				
Friction hill – De Extrusion: Cla lubrication & de Drawing: Draw Estimation of r variables – Tub Module:3 Sh Conventional p annular sheet forming, electro Forming limit cr -Limitations and	and geometrical relationships in rolling – Effect of front effects in rolled product. ssification of extrusion processes – Extrusion equipment fects – Extrusion of tubes & seamless pipes – Hydrostatic eving equipment's & Dies – Determination of drawing redundant work – Optimal cone angle & dead zone for e drawing processes. eet Metal Forming rocesses, Forces in circular cup drawing, Redrawing, draw dies, forming limit diagram, forming with hydrostatic p ohydraulic forming, magnetic pulse forming, HERF, electro iteria, defect in formed parts, principles and process param d Applications.	& ba t's – extrus force matio wing ressu	Defe sion. 8 n – of tu re, netic	powe powe Dra 5 h bes explo forr vant	on – ition, er – wing ours from psive ning. ages				
Friction hill – De Extrusion: Cla lubrication & de Drawing: Drav Estimation of r variables – Tub Module:3 Sh Conventional p annular sheet forming, electror Forming limit cr -Limitations and Module:4 Ma	and geometrical relationships in rolling – Effect of front effects in rolled product. ssification of extrusion processes – Extrusion equipment fects – Extrusion of tubes & seamless pipes – Hydrostatic event ving equipment's & Dies – Determination of drawing redundant work – Optimal cone angle & dead zone for e drawing processes. eet Metal Forming rocesses, Forces in circular cup drawing, Redrawing, draw dies, forming limit diagram, forming with hydrostatic p ohydraulic forming, magnetic pulse forming, HERF, electro iteria, defect in formed parts, principles and process param d Applications.	& ba t's – extrus force matio wing ressu omag neters	Defesion. & n – of tu re, netic	brma powe Dra Dra 5 h ibes explo forr vant 6 h	on – ition, er – wing ours from osive ning. ages ours				
Friction hill – De Extrusion: Cla lubrication & de Drawing: Drav Estimation of r variables – Tub Module:3 Sh Conventional p annular sheet forming, electro Forming limit cr -Limitations and Module:4 Ma Generating mo	and geometrical relationships in rolling – Effect of front effects in rolled product. ssification of extrusion processes – Extrusion equipment fects – Extrusion of tubes & seamless pipes – Hydrostatic eving equipment's & Dies – Determination of drawing redundant work – Optimal cone angle & dead zone for e drawing processes. eet Metal Forming rocesses, Forces in circular cup drawing, Redrawing, draw dies, forming limit diagram, forming with hydrostatic p ohydraulic forming, magnetic pulse forming, HERF, electro iteria, defect in formed parts, principles and process param d Applications.	& ba t's – extrus force matio wing ressu omag neters	Defo sion. & n – of tu re, netic - Ad	brma powe Dra 5 h lbes explo forr vant 6 h tions	on – ition, er – wing ours from osive ning. ages ours and				
Friction hill – De Extrusion: Cla lubrication & de Drawing: Drav Estimation of r variables – Tub Module:3 Sh Conventional p annular sheet forming, electro Forming limit cr -Limitations and Generating mo process param	and geometrical relationships in rolling – Effect of front effects in rolled product. ssification of extrusion processes – Extrusion equipment fects – Extrusion of tubes & seamless pipes – Hydrostatic event wing equipment's & Dies – Determination of drawing redundant work – Optimal cone angle & dead zone for e drawing processes. eet Metal Forming rocesses, Forces in circular cup drawing, Redrawing, draw dies, forming limit diagram, forming with hydrostatic p ohydraulic forming, magnetic pulse forming, HERF, electro iteria, defect in formed parts, principles and process param d Applications. chine Tools and Operations tions of machine tools, Machines using single-point too	& ba t's – extrus force matio wing ressu omag neters	Defo sion. & n – of tu re, netic - Ad	brma powe Dra 5 h lbes explo forr vant 6 h tions	on – ition, er – wing ours from osive ning. ages ours and				
Friction hill – De Extrusion: Cla lubrication & de Drawing: Draw Estimation of r variables – Tub Module:3 Sh Conventional p annular sheet forming, electro Forming limit cr -Limitations and Module:4 Ma Generating mo process param shaping machin	and geometrical relationships in rolling – Effect of front effects in rolled product. ssification of extrusion processes – Extrusion equipment fects – Extrusion of tubes & seamless pipes – Hydrostatic event of equipment's & Dies – Determination of drawing redundant work – Optimal cone angle & dead zone for e drawing processes. eet Metal Forming rocesses, Forces in circular cup drawing, Redrawing, draw dies, forming limit diagram, forming with hydrostatic p ohydraulic forming, magnetic pulse forming, HERF, electro iteria, defect in formed parts, principles and process param d Applications. Ichine Tools and Operations tions of machine tools, Machines using single-point too eters – work and tool holding in engine lathe, horizontal	& ba t's – extrus force matio wing ressu omag neters ls, op al-bor	ack 1 Defa sion. & n – of tu re, netic - Ad	tensi powe Dra Dra 5 h ibes explo forr vant 6 h itons mac	on – ttion, er – wing ours from osive ning. ages ours and hine,				
Friction hill – De Extrusion: Cla lubrication & de Drawing: Drav Estimation of r variables – Tub Module:3 Sh Conventional p annular sheet forming, electro Forming limit cr -Limitations and Module:4 Ma Generating mo process param shaping machir Machines using	and geometrical relationships in rolling – Effect of front effects in rolled product. ssification of extrusion processes – Extrusion equipment fects – Extrusion of tubes & seamless pipes – Hydrostatic event wing equipment's & Dies – Determination of drawing edundant work – Optimal cone angle & dead zone for e drawing processes. eet Metal Forming rocesses, Forces in circular cup drawing, Redrawing, draw dies, forming limit diagram, forming with hydrostatic p ohydraulic forming, magnetic pulse forming, HERF, electro iteria, defect in formed parts, principles and process param d Applications. chine Tools and Operations tions of machine tools, Machines using single-point too eters – work and tool holding in engine lathe, horizonta e, planning machine.	& ba t's – extrus force matio wing ressu omag neters ls, op al-bor - drill	ack 1 Defo sion. & n – of tu re, netic - Ad perat	tensi porma powe Dra 5 h ibes explo forr vant 6 h ions mac	on – ttion, er – wing ours from osive ning. ages ours and hine,				
Friction hill – De Extrusion: Cla lubrication & de Drawing: Drav Estimation of r variables – Tub Module:3 Sh Conventional p annular sheet forming, electro Forming limit cr -Limitations and Generating mo process param shaping machir Machines using horizontal-millin Machines using	and geometrical relationships in rolling – Effect of front effects in rolled product. ssification of extrusion processes – Extrusion equipment fects – Extrusion of tubes & seamless pipes – Hydrostatic event of equipment's & Dies – Determination of drawing redundant work – Optimal cone angle & dead zone for e drawing processes. eet Metal Forming rocesses, Forces in circular cup drawing, Redrawing, draw dies, forming limit diagram, forming with hydrostatic p ohydraulic forming, magnetic pulse forming, HERF, electro iteria, defect in formed parts, principles and process paramet Applications. Ichine Tools and Operations tions of machine tools, Machines using single-point too eters – work and tool holding in engine lathe, horizonta e, planning machine. g multipoint tools, operations and process parameters – ig machine, vertical-milling machine, broaching machine, ta g abrasive wheels, operations and process parameters –	& ba t's – extrus force matio wing ressu omag neters ls, op al-bor al-bor - drill aps ar	ack 1 Defo sion. & n – of tu rre, netic Ad 	brma powe Dra 5 h lbes explo forr vant 6 h lions mac macl es. al-spi	on – ition, er – wing ours from osive ning. ages and hine, hine,				
Friction hill – De Extrusion: Cla lubrication & de Drawing: Draw Estimation of r variables – Tub Module:3 Sh Conventional p annular sheet forming, electro Forming limit cr -Limitations and Module:4 Ma Generating mo process param shaping machin Machines using horizontal-millin Machines using	and geometrical relationships in rolling – Effect of front effects in rolled product. ssification of extrusion processes – Extrusion equipment fects – Extrusion of tubes & seamless pipes – Hydrostatic event wing equipment's & Dies – Determination of drawing redundant work – Optimal cone angle & dead zone for e drawing processes. eet Metal Forming rocesses, Forces in circular cup drawing, Redrawing, draw dies, forming limit diagram, forming with hydrostatic p bhydraulic forming, magnetic pulse forming, HERF, electro iteria, defect in formed parts, principles and process param d Applications. chine Tools and Operations tions of machine tools, Machines using single-point too eters – work and tool holding in engine lathe, horizonta e, planning machine. g multipoint tools, operations and process parameters – g machine, vertical-milling machine, broaching machine, ta g abrasive wheels, operations and process parameters – g machine, vertical-spindle surface-grinding machine, for a machine, vertical-spindle surface-grinding machine, for g machine surface-grinding machine, for g machine surface-grinding ma	& ba t's – extrus force matio wing ressu omag neters ls, op al-bor al-bor - drill aps ar	ack 1 Defo sion. & n – of tu rre, netic Ad 	brma powe Dra 5 h lbes explo forr vant 6 h lions mac macl es. al-spi	on – ition, er – wing ours from osive ning. ages and hine, hine,				
Friction hill – De Extrusion: Cla lubrication & de Drawing: Draw Estimation of r variables – Tub Module:3 Sh Conventional p annular sheet forming, electro Forming limit cr -Limitations and Module:4 Ma Generating mo process param shaping machin Machines using horizontal-millin Machines using surface-grinding	and geometrical relationships in rolling – Effect of front effects in rolled product. ssification of extrusion processes – Extrusion equipment fects – Extrusion of tubes & seamless pipes – Hydrostatic event wing equipment's & Dies – Determination of drawing redundant work – Optimal cone angle & dead zone for e drawing processes. eet Metal Forming rocesses, Forces in circular cup drawing, Redrawing, draw dies, forming limit diagram, forming with hydrostatic p bydraulic forming, magnetic pulse forming, HERF, electro iteria, defect in formed parts, principles and process param d Applications. chine Tools and Operations tions of machine tools, Machines using single-point too eters – work and tool holding in engine lathe, horizonta e, planning machine. g multipoint tools, operations and process parameters – g machine, vertical-milling machine, broaching machine, ta g abrasive wheels, operations and process parameters – g machine, vertical-spindle surface-grinding machine, a al-grinding machine, centerless grinding machines.	& ba	ack 1 Defo sion. & n – of tu re, netic - Ad oerat ing ing ing d di zonta	tensi powe Dra Dra 5 h ibes explo forr vant 6 h tions mac macl es. al-spi -grin	on – ition, er – wing ours from osive ning. ages and hine, hine, indle				
Friction hill – De Extrusion: Cla lubrication & de Drawing: Drav Estimation of r variables – Tub Module:3 Sh Conventional p annular sheet forming, electro Forming limit cr -Limitations and Module:4 Ma Generating mo process param shaping machin Machines using horizontal-millin Machines using surface-grinding machine, intern Cutting tool nor	and geometrical relationships in rolling – Effect of front effects in rolled product. ssification of extrusion processes – Extrusion equipment fects – Extrusion of tubes & seamless pipes – Hydrostatic event ving equipment's & Dies – Determination of drawing redundant work – Optimal cone angle & dead zone for e drawing processes. eet Metal Forming rocesses, Forces in circular cup drawing, Redrawing, draw dies, forming limit diagram, forming with hydrostatic p ohydraulic forming, magnetic pulse forming, HERF, electro iteria, defect in formed parts, principles and process param d Applications. Ichine Tools and Operations tions of machine tools, Machines using single-point too eters – work and tool holding in engine lathe, horizonta e, planning machine. g multipoint tools, operations and process parameters – g machine, vertical-milling machine, broaching machine, ta g abrasive wheels, operations and process parameters – g machine, vertical-spindle surface-grinding machine, a al-grinding machine, centerless grinding machines. menclatures. Numerical expressions and simple problems	& ba	ack 1 Defo sion. & n – of tu re, netic - Ad oerat ing ing ing d di zonta	tensi powe Dra Dra 5 h ibes explo forr vant 6 h tions mac macl es. al-spi -grin	on – ition, er – wing ours from osive ning. ages and hine, hine, indle				
Friction hill – De Extrusion: Cla lubrication & de Drawing: Drav Estimation of r variables – Tub Module:3 Sh Conventional p annular sheet forming, electro Forming limit cr -Limitations and Module:4 Ma Generating mo process param shaping machir Machines using horizontal-millin Machines using surface-grinding machine, intern Cutting tool nor and material ref	and geometrical relationships in rolling – Effect of front effects in rolled product. ssification of extrusion processes – Extrusion equipment fects – Extrusion of tubes & seamless pipes – Hydrostatic event wing equipment's & Dies – Determination of drawing edundant work – Optimal cone angle & dead zone for e drawing processes. eet Metal Forming rocesses, Forces in circular cup drawing, Redrawing, draw dies, forming limit diagram, forming with hydrostatic p ohydraulic forming, magnetic pulse forming, HERF, electro iteria, defect in formed parts, principles and process parame Applications. chine Tools and Operations tions of machine tools, Machines using single-point too eters – work and tool holding in engine lathe, horizonta e, planning machine. g multipoint tools, operations and process parameters – g machine, vertical-milling machine, broaching machine, ta g abrasive wheels, operations and process parameters – g machine, vertical-spindle surface-grinding machine, ta g al-grinding machine, centerless grinding machines. nenclatures. Numerical expressions and simple problems moval rate.	& ba	ack 1 Defo sion. & n – of tu re, netic - Ad oerat ing ing ing d di zonta	tensi powe Dra 5 h lbes explo forr vant 6 h ions mac es. al-spi -grin	on – ttion, er – wing ours from osive ning. ages and hine, hine, hine, time				
Friction hill – De Extrusion: Cla lubrication & de Drawing: Draw Estimation of r variables – Tub Module:3 Sh Conventional p annular sheet forming, electro Forming limit cr -Limitations and Module:4 Ma Generating mo process param shaping machin Machines using horizontal-millin Machines using surface-grinding machine, intern Cutting tool nor and material ref	and geometrical relationships in rolling – Effect of front effects in rolled product. ssification of extrusion processes – Extrusion equipment fects – Extrusion of tubes & seamless pipes – Hydrostatic event ving equipment's & Dies – Determination of drawing redundant work – Optimal cone angle & dead zone for e drawing processes. eet Metal Forming rocesses, Forces in circular cup drawing, Redrawing, draw dies, forming limit diagram, forming with hydrostatic p ohydraulic forming, magnetic pulse forming, HERF, electro iteria, defect in formed parts, principles and process param d Applications. Ichine Tools and Operations tions of machine tools, Machines using single-point too eters – work and tool holding in engine lathe, horizonta e, planning machine. g multipoint tools, operations and process parameters – g machine, vertical-milling machine, broaching machine, ta g abrasive wheels, operations and process parameters – g machine, vertical-spindle surface-grinding machine, a al-grinding machine, centerless grinding machines. menclatures. Numerical expressions and simple problems	& ba	ack 1 Defo sion. & n – of tu re, netic - Ad oerat ing ing d di zonta king achin	tensi powe Dra 5 h bes explo forr vant 6 h ions mac macl es. al-spi -grin ning 7 h	on – ttion, er – wing ours from osive ning. ages ours and hine, hine, indle iding time ours				

Shaf cuttir cuttir turnin Mod Heat in ab temp meth Tool	fer's th ng proc ng forc ng, mill ule:6 gener osence berature nods, e life, Ta	retical determination of cutting forces – Ernst an heory, Oxley's theory. shear angle relation, friction ress, Kronenberg relation and velocity relation, chip es, stress on tool, stress distribution, Dynamom ing and drilling, numerical problems. Heat Flow in Metal Cutting and Tool Life ation in metal cutting, heat at tool-work interface, h of flow zone, Temperature distribution in metal cut e – Work-tool Thermocouple, direct thermocoup valuation of machinability.	on in metal deviation a leters for m neat at tool- utting, Measu uple measu tool life cau	I cutting, energy in and other effects on neasuring forces in 7 hours chip interface, heat surement of cutting urements, radiation uses of tool failures,			
lubrio meas	cants,	ear in metal cutting, cutting tool materials, cutting application of cutting fluids, surface roughr ent, tool geometries for improved surface finish	ness in n	nachining and its			
Module:7Gear generation and Unconventional machining5 hoursmethods5							
Clas: ECM	sificatio I, LBM	ating principles - Gear Hobber - Gear finishing met on of unconventional machining process – Princip – Process characteristics – Applications.		WJM, USM, EDM,			
Mod	ule:8	Contemporary Issues		2 hours			
		Total Lectu	re hours:	45 hours			
Text	Books	6					
1.		Juneja, Fundamentals of Metal Forming Processe ational.	s, 2010, 2 ⁿ	^d edition, New Age			
2.	K.C. Ltd.	Jain, A.K. Chitale, Textbook of Production Engined	ering, 2014	, PHI Learning Pvt.			
Refe	rence	Books					
1.	Geor	ge E Dieter, Mechanical Metallurgy, Tata McGraw I	Hill, 1988				
2.	Tech Franc	A. Youssef, Hassan A. El-Hofy, Mahmouc nology: Materials, Processes, and Equipment, is Group	2011, CR0	C Press, Taylor &			
3.	Heinz York	z Tschaetsch, Metal Forming Practise, 2005, Sp	ringer Berli	in Heidelberg New			
4.	editio	ord W.F. Caddell R.M., Metal Forming – Mechan n, Cambridge University Press.					
5.	Geof	rey Boothroyd and Winston. A. Knight, Fundament , 2005, CRC Press, 3 rd edition	tals of Macł	nining and Machine			
6.	Amita Agen	bha Battacharyya, Metal Cutting: Theory and Prac cy	ctice, 2011,	New Central Book			
7.	Amita Press	bha Ghosh and A.K. Mallik, Manufacturing Science	e, 2010, 2 nd	edition, East-West			
8.		U.S. and Ganesh Narayanan R, Metal Formir Iling, 2013, McGraw-Hill Education, Noida	ng: Techno	logy and Process			
9.							
10.							
11.	11. P. L. B. Oxley, "The Mechanics of Machining", 1989, Ellis Horwood Ltd.						
	Mode of Evaluation: CAT, Written assignment, Quiz, FAT.						
	Recommended by Board of Studies 09-03-2022						
		5	ate	17-03-2022			

BMEE304P Metal Forming and Machining Lab L										
Pre-	requisite	BMEE209L, BMEE209P	Sylla	0 abu	0 SVE	2 ersio	<u>1</u> 5n			
		, 			1.0					
	irse Objecti									
	• •	ractical exposure on deformation behavior of ferrous and r nds-on experience on machine tools and machining proce			us r	neta	IS.			
	•	·		-						
	Irse Outcon	nes e course, the student will be able to								
		the deformation characteristics of ferrous and non-ferro	ous r	neta	als a	as p	ber			
/	ASTM standard.									
Indi	cative Expe	priments								
1.	Erichsen c metals.	upping test to determine the formability of ferrous metals a	ınd n	onfe	erro	JS				
2.	Rolling of f	errous metals and non-ferrous metals.					-			
3.	Compressi	on test for flow stress analysis.								
4.	Deformatio	on and recrystallization in copper.								
5.	Cold work-	annealing cycle for deformation of low carbon steel.								
6.	Study the e	effect of cutting parameters on temperature generation in r	nach	inin	g.					
7.	Measurem	ent and analysis of cutting forces in turning operation.								
8.	Measurem	ent of surface finish in grinding operation.								
9.	Grinding of	f single point cutting tool using tool and cutter grinder.								
10.	Gear manı	ufacturing in milling machine.								
11.	Helical gea	ar cutting using gear hobbing and gear shaping.								
12.	Programin	g and profile cutting in wire-EDM.								
	I	Total Laboratory Hours	s 3 (0 hc	ours					
Text	t Books									
1.	B.L.Juneja 2 nd edition.	, Fundamentals of Metal Forming Processes, 2010, New A	Age li	nter	natio	onal	,			
2.		oothroyd and Winston. A. Knight, Fundamentals of Machir 5, CRC Press, 3 rd edition.	ning a	and	Mad	chin	Э			
3.	-	A. K. Chitale, Textbook of Production Engineering, 2014,	PHIL	_ear	ming	g Pv	t.			
4. Pofe	Lab Manua Erence Boo	al prepared by course faculty.								
			40.0	nd	-l'+'					
1.	East-West									
2.		and Ganesh Narayanan R, Metal Forming: Technol 2013, McGraw-Hill Education, Noida.	ogy	and	1 P	roce	SS			
3.	Dieter G.E	., Mechanical Metallurgy, 1995, McGraw-Hill.								

4.	Hosford W.F. Caddell R.M., Metal Forming – Mechanics and Metallurgy, 2011, 4 th edition, Cambridge University Press.							
5.	Amitabha Battacharyya, "Metal Cutting, Theory and Practice", 1984, New Central Book Agency.							
6.	Hassan Abdel-Gawad ElHofy, Fundamentals of Machining Processes (Conventional and Nonconventional Processes), 2018, CRC press, 3rd Edition.							
7.	Rao P.N., Manufacturing Technology: Metal Cutting and Machine Tools, 2018, Volume 2, 4 th Edition, McGraw Hill Education.							
Мос	le of assessment: Continuous asse	essment, FAT, Oral ex	amination					
Rec	Recommended by Board of Studies 09-03-2022							
Арр	Approved by Academic CouncilNo. 65Date17-03-2022							

	Computer Aided Design and Finite Element Analysis	L	T	P	C
Dra raquiaita	DMEE2021 DMEE202D	3 Syllobu	0	0 oion	3
Pre-requisite	BMEE202L, BMEE202P	Syllabu	<u>s ver</u> 1.0	sion	
Course Objectives			1.0		
	ledge on the design of engineering products and processes at	continuu	m sca	مام	
	to convert the physical problem into an engineering problem				al
	nodelling capabilities.	anough	geom	ouno	
	the application of finite element methods on structural, the	ermal ar	nd dv	nam	ic
problems.		orman ar	ia ay	nam	
	knowledge and skills needed to evaluate design solutions.				
Course Outcome					
	urse, the student will be able to				
	ot model into CAD model using geometric modelling techniques				- 1
	product data exchange techniques to convert geometric m	odel into	num	neric	aı
model.	emotion representation of company conference and calida usin	a intern			
3. Generate math approximation of	ematical representation of curves, surfaces and solids usin	ig interp	olatio	n an	a
	nd 2D finite element equations at element and assembly level	for stati	- etru	ctura	
	namic applications.	IUI Statio	5 Silu	ciura	п,
	nent formulations using linear and quadratic shape functions	to comp	ute d	osiro	Ь
results.		to comp	uic u	Conc	u
	engineering problem using the first principles and commercial (/I tool	s.	
		57 (B71 E1		•.	
Module:1 Introc	uction to CAD		4	hou	irs
	ics-Coordinate systems-Database structures for graphic m	nodelling			
Data Managemer	t system- Transformation of geometry-3D Transformat	ions-Clir	nina-	Hidd	er
line/surface remova		.ion3-011p	/ping-	muu	
	etric modelling – Analytical and Synthetic curves	1	4	hou	irs
	geometric modelling-Wireframe modelling-analytical curves	-Cubic s			
	RBS- Solving analytical and synthetic curve problems	-	•		
	etric modelling – Surface and solid modelling-CAD		5	hou	rs
Stand	•				
0	tion-Analytical and Synthetic surfaces-Solid representation			1	
Surface representa		methods	-cons	strain	ec
based modelling-p	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software				
based modelling-p software modules-s	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software		delling		ta-
based modelling-p software modules-s Module:4 Introc	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software uction to approximation methods	of mod	delling 4	g da hou	ta- irs
based modelling-p software modules-s Module:4 Introc Introduction to Finit	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software uction to approximation methods e Element Method - Direct formulation - Minimum total potenti	of mod	delling 4	g da hou	ta- irs
based modelling-p software modules-s Module:4 Introc Introduction to Finit - Variational approa	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software uction to approximation methods	of mod	delling 4 / form	g da hou	ta- irs or
based modelling-p software modules-s Module:4 Introc Introduction to Finit - Variational approa Module:5 Interp	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software uction to approximation methods e Element Method - Direct formulation - Minimum total potenti ch - Weighted Residual formulation – Weak Formulation olation Functions	of mod al energy	delling 4 / form 8	da hou nulati hou	ta Irs or
based modelling-p software modules-s Module:4 Introc Introduction to Finit - Variational approa Module:5 Interp Polynomial form of	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software uction to approximation methods e Element Method - Direct formulation - Minimum total potenti ch - Weighted Residual formulation – Weak Formulation olation Functions interpolation functions - Simplex, Complex, Multiplex elements	of mod al energy s, Selecti	delling 4 / form 8 ion of	hou hou nulati hou	ta Irs or
based modelling-p software modules-s Module:4 Introc Introduction to Finit - Variational approa Module:5 Interp Polynomial form of of interpolation func	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software uction to approximation methods e Element Method - Direct formulation - Minimum total potenti ch - Weighted Residual formulation – Weak Formulation olation Functions interpolation functions - Simplex, Complex, Multiplex elements tions, Convergence requirements, Global local and natural coo	of mod al energy s, Selecti rdinates	delling 4 7 form 8 on of syste	hou nulati hou orde	ta or rs
based modelling-p software modules-s Module:4 Introc Introduction to Finit - Variational approa Module:5 Interp Polynomial form of of interpolation func Derivation of shap	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software uction to approximation methods e Element Method - Direct formulation - Minimum total potenti ch - Weighted Residual formulation – Weak Formulation olation Functions interpolation functions - Simplex, Complex, Multiplex elements	of moo al energy s, Selecti rdinates al elem	delling 4 7 form 8 ion of syste ent (hou hou nulati hou orde m. linea	ta or rs
based modelling-p software modules-s Module:4 Introc Introduction to Finit - Variational approa Module:5 Interp Polynomial form of of interpolation func Derivation of shap	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software uction to approximation methods e Element Method - Direct formulation - Minimum total potenti ch - Weighted Residual formulation – Weak Formulation olation Functions interpolation functions - Simplex, Complex, Multiplex elements tions, Convergence requirements, Global local and natural coo e function equation for various elements: One dimension	of moo al energy s, Selecti rdinates al elem	delling 4 7 form 8 ion of syste ent (hou hou nulati hou orde m. linea	ta or rs
based modelling-p software modules-s Module:4 Introc Introduction to Finit - Variational approa Module:5 Interp Polynomial form of of interpolation func Derivation of shap quadratic and cubic	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software uction to approximation methods e Element Method - Direct formulation - Minimum total potenti ch - Weighted Residual formulation – Weak Formulation olation Functions interpolation functions - Simplex, Complex, Multiplex elements tions, Convergence requirements, Global local and natural coo e function equation for various elements: One dimensior), Two dimensional elements – linear, bilinear and quadratic - E	of moo al energy s, Selecti rdinates al elem	delling 4 7 form 8 on of syste ent (ment	hou nulati hou orde m. linea	ta∙ irs or rs r,
based modelling-p software modules-s Module:4 Introc Introduction to Finit - Variational approa Module:5 Interp Polynomial form of of interpolation func Derivation of shap quadratic and cubic Module:6 Analy	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software uction to approximation methods e Element Method - Direct formulation - Minimum total potenti ch - Weighted Residual formulation – Weak Formulation olation Functions interpolation functions - Simplex, Complex, Multiplex elements tions, Convergence requirements, Global local and natural coo e function equation for various elements: One dimension), Two dimensional elements – linear, bilinear and quadratic - E sis of One Dimensional and Two-dimensional problems	of mod al energy s, Selecti rdinates al elem Beam ele	delling 4 7 form 8 on of syste ent (ment 14	hou hou nulati hou orde m. linea	ta or rs er r,
based modelling-p software modules-s Module:4 Introc Introduction to Finit - Variational approa Module:5 Interp Polynomial form of of interpolation func Derivation of shap quadratic and cubic Module:6 Analy Generic form of	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software uction to approximation methods e Element Method - Direct formulation - Minimum total potenti ch - Weighted Residual formulation – Weak Formulation olation Functions interpolation functions - Simplex, Complex, Multiplex elements tions, Convergence requirements, Global local and natural coo e function equation for various elements: One dimension), Two dimensional elements – linear, bilinear and quadratic - E sis of One Dimensional and Two-dimensional problems D finite element equations –Bar, Truss, Beam -1D there	of mod al energy s, Selecti rdinates al elem Beam ele	delling 4 7 form 8 on of syste ent (ment 14	hou hou nulati hou orde m. linea	ta or rs er r,
based modelling-p software modules-s Module:4 Introc Introduction to Finit - Variational approa Module:5 Interp Polynomial form of of interpolation func Derivation of shap quadratic and cubic Module:6 Analy Generic form of elements-Numerica	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software uction to approximation methods e Element Method - Direct formulation - Minimum total potenti ch - Weighted Residual formulation – Weak Formulation olation Functions interpolation functions - Simplex, Complex, Multiplex elements tions, Convergence requirements, Global local and natural coor e function equation for various elements: One dimension), Two dimensional elements – linear, bilinear and quadratic - E sis of One Dimensional and Two-dimensional problems D finite element equations –Bar, Truss, Beam -1D therr I Integration-Problem solving	of mod al energy s, Selecti rdinates al elem Beam ele mal – Is	delling form 8 on of syste ent (ment 14 sopara	hou nulati hou orde m. linea hou amet	ta- or rs er r, Irs
based modelling-p software modules-s Module:4 Introc Introduction to Finit - Variational approa Module:5 Interp Polynomial form of of interpolation func Derivation of shap quadratic and cubic Module:6 Analy Generic form of elements-Numerica Generic form of	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software uction to approximation methods e Element Method - Direct formulation - Minimum total potenti ch - Weighted Residual formulation – Weak Formulation olation Functions interpolation functions - Simplex, Complex, Multiplex elements tions, Convergence requirements, Global local and natural coo e function equation for various elements: One dimensior), Two dimensional elements – linear, bilinear and quadratic - E sis of One Dimensional and Two-dimensional problems D finite element equations –Bar, Truss, Beam -1D there Integration-Problem solving 2D finite element equations - Triangular element - Recta	of mod al energy s, Selecti rdinates hal elem Beam ele mal – Is ngular e	delling 4 7 form 8 on of syste ent (ment 14 sopar	hou nulati hou orde m. linea hou amet	ta- or rs er r, Irs
based modelling-p software modules-s Module:4 Introc Introduction to Finit - Variational approa Module:5 Interp Polynomial form of of interpolation func Derivation of shap quadratic and cubic Module:6 Analy Generic form of elements-Numerica Generic form of 2 Applications in solic	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software uction to approximation methods e Element Method - Direct formulation - Minimum total potenti ch - Weighted Residual formulation – Weak Formulation olation Functions interpolation functions - Simplex, Complex, Multiplex elements tions, Convergence requirements, Global local and natural coo e function equation for various elements: One dimension), Two dimensional elements – linear, bilinear and quadratic - E sis of One Dimensional and Two-dimensional problems D finite element equations –Bar, Truss, Beam -1D therr Integration-Problem solving 2D finite element equations - Triangular element - Recta mechanics (plane stress, plane strain and axisymmetric) and	of mod al energy s, Selecti rdinates hal elem Beam ele mal – Is ngular e	delling 4 7 form 8 on of syste ent (ment 14 sopar sleme sfer	da hou nulati hou orde m. linea hou amet	ta- or rs er r, Irs ric
based modelling-p software modules-s Module:4 Introc Introduction to Finit - Variational approa Module:5 Interp Polynomial form of of interpolation func Derivation of shap quadratic and cubic Module:6 Analy Generic form of 2 Applications in solic Module:7 Dyna	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software uction to approximation methods e Element Method - Direct formulation - Minimum total potenti ch - Weighted Residual formulation – Weak Formulation olation Functions interpolation functions - Simplex, Complex, Multiplex elements tions, Convergence requirements, Global local and natural coo e function equation for various elements: One dimension), Two dimensional elements – linear, bilinear and quadratic - E sis of One Dimensional and Two-dimensional problems D finite element equations –Bar, Truss, Beam -1D therr Integration-Problem solving 2D finite element equations - Triangular element - Recta mechanics (plane stress, plane strain and axisymmetric) and nic Problems	of mod al energy s, Selecti rdinates al elem Beam ele mal – Is ngular e heat tran	delling 4 7 form 8 on of syste ent (ment 14 sopar eleme sfer 4	y da hou nulati hou orde m. linea hou amet nts- hou	ta- or rs r, rr, rr, rr,
based modelling-p software modules-s Module:4 Introc Introduction to Finit - Variational approa Module:5 Interp Polynomial form of of interpolation func Derivation of shap quadratic and cubic Module:6 Analy Generic form of elements-Numerica Generic form of 2 Applications in solic Module:7 Dynam	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software uction to approximation methods e Element Method - Direct formulation - Minimum total potenti ch - Weighted Residual formulation – Weak Formulation olation Functions interpolation functions - Simplex, Complex, Multiplex elements tions, Convergence requirements, Global local and natural coo e function equation for various elements: One dimensior), Two dimensional elements – linear, bilinear and quadratic - E sis of One Dimensional and Two-dimensional problems D finite element equations – Bar, Truss, Beam -1D therr Integration-Problem solving 2D finite element equations - Triangular element - Recta mechanics (plane stress, plane strain and axisymmetric) and nic Problems Ising finite element method -Eigen value and Eigen vectors-	of mod al energy s, Selecti rdinates al elem Beam ele mal – Is ngular e heat tran	delling 4 7 form 8 on of syste ent (ment 14 sopar eleme sfer 4	y da hou nulati hou orde m. linea hou amet nts- hou	ta- or rs r, rr, rr, rr,
based modelling-p software modules-s Module:4 Introc Introduction to Finit - Variational approa Module:5 Interp Polynomial form of of interpolation func Derivation of shap quadratic and cubic Module:6 Analy Generic form of elements-Numerica Generic form of 2 Applications in solic Module:7 Dynai Dynamic analysis to vibration problems	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software uction to approximation methods e Element Method - Direct formulation - Minimum total potenti ch - Weighted Residual formulation – Weak Formulation olation Functions interpolation functions - Simplex, Complex, Multiplex elements tions, Convergence requirements, Global local and natural coo e function equation for various elements: One dimensior), Two dimensional elements – linear, bilinear and quadratic - E sis of One Dimensional and Two-dimensional problems D finite element equations – Bar, Truss, Beam -1D therr I Integration-Problem solving 2D finite element equations - Triangular element - Recta mechanics (plane stress, plane strain and axisymmetric) and nic Problems Ising finite element method -Eigen value and Eigen vectors- -Problem solving	of mod al energy s, Selecti rdinates al elem Beam ele mal – Is ngular e heat tran	delling 4 y form 8 5 5 5 5 6 6 6 6 7 4 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1	y da hou nulati hou orde m. linea m. linea m. hou amet hou Bean	ta- irs on rs r, iric - rs n-
based modelling-p software modules-s Module:4 Introc Introduction to Finit - Variational approa Module:5 Interp Polynomial form of of interpolation func Derivation of shap quadratic and cubic Module:6 Analy Generic form of elements-Numerica Generic form of 2 Applications in solic Module:7 Dyna Dynamic analysis u	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software uction to approximation methods e Element Method - Direct formulation - Minimum total potenti ch - Weighted Residual formulation – Weak Formulation olation Functions interpolation functions - Simplex, Complex, Multiplex elements tions, Convergence requirements, Global local and natural coo e function equation for various elements: One dimension), Two dimensional elements – linear, bilinear and quadratic - E sis of One Dimensional and Two-dimensional problems D finite element equations - Bar, Truss, Beam -1D there Integration-Problem solving 2D finite element equations - Triangular element - Recta mechanics (plane stress, plane strain and axisymmetric) and nic Problems Ising finite element method -Eigen value and Eigen vectors- -Problem solving	of mod al energy s, Selecti rdinates al elem Beam ele mal – Is ngular e heat tran	delling 4 y form 8 on of syste ent (ment 14 sopara eleme sfer 4 and 1 2	y da hou nulati hou orde m. linea m. linea m. hou amet nts- hou Bean hou	r, rs r, rs r, rs ric rs
based modelling-p software modules-s Module:4 Introc Introduction to Finit - Variational approa Module:5 Interp Polynomial form of of interpolation func Derivation of shap quadratic and cubic Module:6 Analy Generic form of 2 Applications in solic Module:7 Dyna Dynamic analysis o vibration problems Module:8 Conte	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software uction to approximation methods e Element Method - Direct formulation - Minimum total potenti ch - Weighted Residual formulation – Weak Formulation olation Functions interpolation functions - Simplex, Complex, Multiplex elements tions, Convergence requirements, Global local and natural coo e function equation for various elements: One dimensior), Two dimensional elements – linear, bilinear and quadratic - E sis of One Dimensional and Two-dimensional problems D finite element equations – Bar, Truss, Beam -1D therr I Integration-Problem solving 2D finite element equations - Triangular element - Recta mechanics (plane stress, plane strain and axisymmetric) and nic Problems Ising finite element method -Eigen value and Eigen vectors- -Problem solving	of mod al energy s, Selecti rdinates al elem Beam ele mal – Is ngular e heat tran	delling 4 y form 8 on of syste ent (ment 14 sopara eleme sfer 4 and 1 2	y da hou nulati hou orde m. linea m. linea m. hou amet hou Bean	r, rs r, rs ric rs rs
based modelling-p software modules-s Module:4 Introc Introduction to Finit - Variational approa Module:5 Interp Polynomial form of of interpolation func Derivation of shap quadratic and cubic Module:6 Analy Generic form of elements-Numerica Generic form of Applications in solic Module:7 Dynar Dynamic analysis to vibration problems Module:8 Conter Text Books	arametric modelling- Standardisation in graphics-Exchange oftware development-Efficient use of CAD software uction to approximation methods e Element Method - Direct formulation - Minimum total potenti ch - Weighted Residual formulation – Weak Formulation olation Functions interpolation functions - Simplex, Complex, Multiplex elements tions, Convergence requirements, Global local and natural coo e function equation for various elements: One dimension), Two dimensional elements – linear, bilinear and quadratic - E sis of One Dimensional and Two-dimensional problems D finite element equations - Bar, Truss, Beam -1D there Integration-Problem solving 2D finite element equations - Triangular element - Recta mechanics (plane stress, plane strain and axisymmetric) and nic Problems Ising finite element method -Eigen value and Eigen vectors- -Problem solving	of mod al energy s, Selecti rdinates al elem Beam ele mal – Is ngular e heat tran 1D Bar	delling 4 7 form 8 6 on of syste ent (ment 14 sopara eleme sfer 4 and 1 2 45	y da hou nulati hou orde m. linea m. linea m. hou amet nts- hou Bean hou	r, rs r, rs r, rs ric rs

Rao S. S., Finite Element Method in Engineering, 2010, 5th edition, Butterworth-Heinemann. 2 **Reference Books** Saeed Moaveni, Finite Element Analysis, Theory and Application with ANSYS, 2021, Pearson 1. Fifth Edition. 2. Tirupathi R. Chandrupatla and Ashok D. Belugundu, Introduction to Finite Elements in Engineering, 2011, 4th Edition, Prentice Hall. Seshu. P, Finite Element Analysis, 2013, Prentice Hall of India. 3. J.N.Reddy, Introduction to Finite Element Method, 2019, McGraw -Hill International Edition. 4. Mode of Evaluation: CAT, Written assignment, Quiz, FAT Recommended by Board of Studies 09-03-2022 Approved by Academic Council Date 17-03-2022 No. 65

BM	EE306P	Computer Aided E	Design and Fi Lab	nite Elen	nent Analysi	s	L	Т	Ρ	С
			Lub				0	0	2	1
Pre	-requisite	BMEE202L, BMEE2	02P				-	-		
110			021			Oyin	llabus versior 1.0			
Co	urse Objecti	Ves						1.0		
		the student's skills i	n CAD and	FFM so	ftware that o	can h	he	lise	d a	and
••		d for various engineeri						usc	u u	ma
2		proficiency in the a			e element m	hetho	d (mo	delli	na
		d interpretation of resu					<u> </u>	(inter	aoim	ng,
_				-						
Co	urse Outcor			4 -						
4		f the course, the stude			unturna maank	ine n	t		n d	
1.		and FE models for tru					an	s, a	na	
2		components using ger d interpret the results of								
Ζ.				s or engi	leening proble	ems.				
	icative Expe						~ -			
1.		modelling – Curves, s			•			nour		
2.		and exporting the CAD						nour		
3.		f loading and stress di					6 h	our	S	
		ent cross section area								
4.		f beam deflection under different types of loading						nour		
5.		of stress on a flat plate with a hole at its centre 2 hours								
6.	_	fer analysis using pure conduction and heat generation. 2 hours								
7.		netric analysis						nour		
8.	Determinir	ng the natural frequenc	ies and mode	shapes f	or simple		2 h	our	S	
9.		armonic analysis on sir	mple structure	and plot	the frequency	y	2 h	our	s	
	response f									
10	Analysis o	f a 3D model						our		
				Total L	aboratory Ho	urs	30	hou	ırs	
-	t Books			<u> </u>					0.15	
1		id, "Mastering CAD/CA							SIE	:.
2		Finite Element Method	d in Engineerin	ig, 2010,	5 th edition, B	utterv	vor	th-		
	Heineman		C 11							
3		al of prepared by cours	se faculty mem	bers						
-	ference Boo	-	An altraite The		A	.:+L_ A				~
1.	Pearson F	aveni, Finite Element ifth Edition.	-	•						
2.		8. Chandrupatla and As	•	undu, Inti	oduction to F	inite	Ele	mei	nts i	n
		g, 2011, 4th Edition, P								
3.		Finite Element Analysi								
4.	Reddy J.N Edition.	, Introduction to Finite	Element Metho	od, 2019	, McGraw -Hi	ll Inte	erna	atior	al	
Mo	de of assess	ment: Continuous ass	essment, FAT,	Oral exa	mination					
		by Board of Studies	09-03-2022							
		ademic Council	No. 65	Date	17-03-202	2				

Digital Transformation in manufacturing-Trends and Challenges, Industry 4.0, function applications and benefits. Internet of Things (IOT), IOT applications in manufacturing, B Data and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physic manufacturing systems.	BMEE401L		Computer Integrated Manufacturing	ſ	LT	Ρ	С				
1. To impart knowledge of CIM, various concepts of automation and applications. 2. To provide in-depth knowledge on digital manufacturing, IoT and Industry 4.0. Course Outcomes At the end of the course, the student will be able to 1. Differentiate the concepts of automation, CIM, CAD, and CAM. 2. Develop CNC part programs. 3. Interface real-time simulation with intelligent CNC machine tools using Digital Twins. 4. Apply CAM software tools for solving real time component machining. 5. Analyze the automated flow lines through FMS. 6. Visualize the concepts of future automated factory environments to digital transformatio Module:1 Basics of CIM and Automation Introduction to Automation, Basic elements of automated systems. levels of automatic Advanced automation functions, Automation to Autonomy. Introduction to Computing at Manufacturing, Nature and role of the elements of CIM system, Product life cyv Magement and Collaborative Product Development. Module:2 Module:2 Computer Numerical Control 6 hou Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Motion of CNC Machines, Practical design considerations for CNC machined parts, CP Controllers-Open architecture, PC based, Look ahead functions, Parallel kinematic Machin Tools, Multitasking CNC machines. 7 hou Module:3 CAM Programming 7 hou			· · ·		3 0	0	3				
Course Objectives 1. To impart knowledge of CIM, various concepts of automation and applications. 2. To provide in-depth knowledge on digital manufacturing, IoT and Industry 4.0. Course Outcomes At the end of the course, the student will be able to 1. Differentiate the concepts of automation, CIM, CAD, and CAM. 2. Develop CNC part programs. 3. Interface real-time simulation with intelligent CNC machine tools using Digital Twins. 4. Apply CAM software tools for solving real time component machining. 5. Analyze the automated flow lines through FMS. 6. Visualize the concepts of future automated factory environments to digital transformatio Module:1 Basics of CIM and Automation Integrated Manufacturing, computerized elements of a cIM system, Evolution of Computintegrated Manufacturing, Nature and role of the elements of CIM System, Product life cyr. Management and Collaborative Product Development. Module:2 Module:2 Computer Numerical Control 6 hou Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Motion of CNC Machines, Practical design considerations for CNC machined parts, CT Module:3 CAM Programming, Computer assisted part programming, Automated programming of CNC-machine tools, Machining of Free form surfaces, Tolerance based Machinir Automatic Real-time CAP Module:4 Intelligent Manufacturin	Pre-requisi	ite	Nil	Sylla	bus v	ersi	on				
1. To impart knowledge of CIM, various concepts of automation and applications. 2. To provide in-depth knowledge on digital manufacturing, IoT and Industry 4.0. Course Outcomes At the end of the course, the student will be able to 1. Differentiate the concepts of automation, CIM, CAD, and CAM. 2. Develop CNC part programs. 3. Interface real-time simulation with intelligent CNC machine tools using Digital Twins. 4. Apply CAM software tools for solving real time component machining. 5. Analyze the automated flow lines through FMS. 6. Visualize the concepts of future automated factory environments to digital transformatio Introduction to Automation, Basic elements of automated systems- levels of automatic Advanced automation functions, Automation to Autonomy. Introduction to Comput Integrated Manufacturing, Nature and role of the elements of CIM system, Product life cymanagement and Collaborative Product Development. Module:2 Computer Numerical Control 6 hou Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Motion of CNC Machines. 6 hou Module:3 CAM Programming 7 hou Manual part programming, Computer assisted part programming, Automated programming to CNC machines. 6 hou Module:3 CAM Programming of Free form surfaces, Tolerance based Machinir, Automatic Feature Recognition in CAM Programming, Knowledge based machining, Intelligent fu a					1.0						
2. To provide in-depth knowledge on digital manufacturing, IoT and Industry 4.0. Course Outcomes At the end of the course, the student will be able to 1. Differentiate the concepts of automation, CIM, CAD, and CAM. 2. Develop CNC part programs. 3. Interface real-time simulation with intelligent CNC machine tools using Digital Twins. 4. Apply CAM software tools for solving real time component machining. 5. Analyze the automated flow lines through FMS. 6. Visualize the concepts of future automated factory environments to digital transformatio Module:1 Basics of CIM and Automation Advanced automation functions, Automation to Autonomy. Introduction to Computintegrated Manufacturing, computerized elements of acIM system, Product life cymulangement and Collaborative Product Development. Module:2 Computer Numerical Control 6 hou Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Module:3 Module:3 CAM Programming 7 hou Module:4 Intelligent Manufacturing systems 6 hou Principles elements tools, Machining of Free form surfaces, Tolerance based Machining Machine Module:3 CAM Programming, Computer assisted part programming, Automated programming, Computer Aided programming, Colarce based Machining. 6 hou Module:5	Course Objectives										
2. To provide in-depth knowledge on digital manufacturing, IoT and Industry 4.0. Course Outcomes At the end of the course, the student will be able to 1. Differentiate the concepts of automation, CIM, CAD, and CAM. 2. Develop CNC part programs. 3. Interface real-time simulation with intelligent CNC machine tools using Digital Twins. 4. Apply CAM software tools for solving real time component machining. 5. Analyze the automated flow lines through FMS. 6. Visualize the concepts of future automated factory environments to digital transformatio Module:1 Basics of CIM and Automation Advanced automation functions, Automation to Autonomy. Introduction to Computintegrated Manufacturing, computerized elements of acIM system, Product life cymulangement and Collaborative Product Development. Module:2 Computer Numerical Control 6 hou Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Module:3 Module:3 CAM Programming 7 hou Module:4 Intelligent Manufacturing systems 6 hou Principles elements tools, Machining of Free form surfaces, Tolerance based Machining Machine Module:3 CAM Programming, Computer assisted part programming, Automated programming, Computer Aided programming, Colarce based Machining. 6 hou Module:5											
At the end of the course, the student will be able to 1. Differentiate the concepts of automation, CIM, CAD, and CAM. 2. Develop CNC part programs. 3. Interface real-time simulation with intelligent CNC machine tools using Digital Twins. 4. Apply CAM software tools for solving real time component machining. 5. Analyze the automated flow lines through FMS. 6. Visualize the concepts of future automated factory environments to digital transformatio Module:1 Basics of CIM and Automation 6 hou Introduction to Automation, Basic elements of automated systems- levels of automatic Advanced automation functions, Automation to Autonomy. Introduction to Computerized Manufacturing, computerized elements of a CIM system, Evolution of Computentered Manufacturing, Nature and role of the elements of CIM system, Product life cyr. Module:2 Computer Numerical Control 6 hou Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Motion of CNC Machines, Practical design considerations for CNC machine parts, CT 7 hou Module:3 CAM Programming 7 hou Manual part programming, Computer assisted part programming, Automated programming of CNC-machine tools, Machining of Free form surfaces, Tolerance based Machinir Automate reature Recognition in CAM Programming, Knowledge based machinig, Intelligent fu autonomous CNC Machine tool, Real-Time Machine Monitoring, Real-time CA simulation for Digital Manufacturing systems 6 hou System </td <td colspan="11"></td>											
At the end of the course, the student will be able to 1. Differentiate the concepts of automation, CIM, CAD, and CAM. 2. Develop CNC part programs. 3. Interface real-time simulation with intelligent CNC machine tools using Digital Twins. 4. Apply CAM software tools for solving real time component machining. 5. Analyze the automated flow lines through FMS. 6. Visualize the concepts of future automated factory environments to digital transformatio Module:1 Basics of CIM and Automation 6 hou Introduction to Automation, Basic elements of automated systems- levels of automatic Advanced automation functions, Automation to Autonomy. Introduction to Computerized Manufacturing, computerized elements of a CIM system, Evolution of Computentered Manufacturing, Nature and role of the elements of CIM system, Product life cyr. Module:2 Computer Numerical Control 6 hou Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Motion of CNC Machines, Practical design considerations for CNC machine parts, CT 7 hou Module:3 CAM Programming 7 hou Manual part programming, Computer assisted part programming, Automated programming of CNC-machine tools, Machining of Free form surfaces, Tolerance based Machinir Automate reature Recognition in CAM Programming, Knowledge based machinig, Intelligent fu autonomous CNC Machine tool, Real-Time Machine Monitoring, Real-time CA simulation for Digital Manufacturing systems 6 hou System </td <td></td> <td></td> <th></th> <td>-</td> <th></th> <th></th> <td></td>				-							
1. Differentiate the concepts of automation, CIM, CAD, and CAM. 2. Develop CNC part programs. 3. Interface real-time simulation with intelligent CNC machine tools using Digital Twins. 4. Apply CAM software tools for solving real time component machining. 5. Analyze the automated flow lines through FMS. 6. Visualize the concepts of future automated factory environments to digital transformatio Module:1 Basics of CIM and Automation Introduction to Automation, Basic elements of automated systems. levels of automatic Advanced automation functions, Automation to Autonomy. Introduction to Comput Integrated Manufacturing, Nature and role of the elements of CIM System, Product life cymenagement and Collaborative Product Development. Module:2 Computer Numerical Control 6 hou Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Motion of CNC Machines, Practical design considerations for CNC machined parts, Ct Controllers-Open architecture, PC based, Look ahead functions, Parallel kinematic Machi Tools, Multitasking CNC machines of Free form surfaces, Tolerance based Machini Touls, Multitasking CNC machines of CNC Machine Tools, Designation of Axis a Motion of Digramming, Computer assisted part programming, Automated programmi of CNC-machine tools, Machining of Free form surfaces, Tolerance based Machining, Multitasking CNC machines to CA Real-Time Machine Monitoring, Real-time CA simulation for Digital Manufacturing systems 6 hou Module:3 CAM Programming, Computer assisted part programming, Automated programming of CNC-machine tools, Machining of Free f	Course Out	tcom	es				-				
 Develop CNC part programs. Interface real-time simulation with intelligent CNC machine tools using Digital Twins. Apply CAM software tools for solving real time component machining. Analyze the automated flow lines through FMS. Visualize the concepts of future automated factory environments to digital transformatio Module:1 Basics of CIM and Automation 6 hou Introduction to Automation, Basic elements of automated systems- levels of automatic Advanced automation functions, Automation to Autonomy. Introduction to Computintegrated Manufacturing, Nature and role of the elements of CIM system, Evolution of Computintegrated Manufacturing, Nature and role of the elements of CIM system, Product life cyt. Management and Collaborative Product Development. Module:2 Computer Numerical Control 6 hou Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Motion of CNC Machines, Practical design considerations for CNC machined parts, CC Controllers-Open architecture, PC based, Look ahead functions, Parallel kinematic Machi Tools, Multitasking CNC machines. Module:3 CAM Programming, Computer assisted part programming, Automated programming of CNC-machine tools, Machining of Free form surfaces, Tolerance based Machinir, Automatic Feature Recognition in CAM Programming in CNC Machines. Module:4 Intelligent Manufacturing systems 6 hou Artificial Intelligent Manufacturing and Digital Twins. Module:5 Computer deal Manufacturing and Digital Twins. Module:6 Group Technology and Flexible Manufacturing Systems, benefits of CAF computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer Aided Process Planning, Retrieval and Generative	At the end c	of the	course, the student will be able to								
 Develop CNC part programs. Interface real-time simulation with intelligent CNC machine tools using Digital Twins. Apply CAM software tools for solving real time component machining. Analyze the automated flow lines through FMS. Visualize the concepts of future automated factory environments to digital transformatio Module:1 Basics of CIM and Automation 6 hou Introduction to Automation, Basic elements of automated systems- levels of automatic Advanced automation functions, Automation to Autonomy. Introduction to Computintegrated Manufacturing, Nature and role of the elements of CIM system, Evolution of Computintegrated Manufacturing, Nature and role of the elements of CIM system, Product life cyt. Management and Collaborative Product Development. Module:2 Computer Numerical Control 6 hou Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Motion of CNC Machines, Practical design considerations for CNC machined parts, CC Controllers-Open architecture, PC based, Look ahead functions, Parallel kinematic Machi Tools, Multitasking CNC machines. Module:3 CAM Programming, Computer assisted part programming, Automated programming of CNC-machine tools, Machining of Free form surfaces, Tolerance based Machinir, Automatic Feature Recognition in CAM Programming, Knowledge based machining, Intelligent fu autonomous CNC Machine tool, Real-Time Machine Monitoring, Real-time CA simulation for Digital Manufacturing and Digital Twins. Module:5 Computer Added Process Planning, Retrieval and Generative Systems, benefits of CAF computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF compute											
 Interface real-time simulation with intelligent CNC machine tools using Digital Twins. Apply CAM software tools for solving real time component machining. Analyze the automated flow lines through FMS. Visualize the concepts of future automated factory environments to digital transformatio Module:1 Basics of CIM and Automation 6 how Introduction to Automation, Basic elements of automated systems- levels of automatic Advanced automation functions, Automation to Autonomy. Introduction to Computintegrated Manufacturing, computerized elements of a CIM system, Evolution of Computintegrated Manufacturing, Nature and role of the elements of CIM System, Product life cyr. Module:2 Computer Numerical Control 6 how Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Motion of CNC Machines, Practical design considerations for CNC machined parts, CP Controllers-Open architecture, PC based, Look ahead functions, Parallel kinematic Machi Tools, Multitasking CNC machines. Module:3 CAM Programming 7 how Manual part programming, Computer assisted part programming, Automated programming of CNC-machine tools, Machining of Free form surfaces, Tolerance based Machinir Automatic Feature Recognition in CAM Programming, Knowledge based machining, Module:4 Intelligent Manufacturing systems 6 how Artificial Intelligent Manufacturing and Digital Twins. Module:5 Computerized Manufacture Planning and Control System, Sol4649 STEPNC in Machining, Computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer integrated production management system, Integration CAD/CAPP/CAW/CI based on STEP Standards, ISO14649 STEPNC in Machining and storage syste applications, hop floor control. Module:6 Group Technology and Flexible Manufacturing and Systems. Module:7 Future of Automated Factory 6 how											
 Apply CAM software tools for solving real time component machining. Analyze the automated flow lines through FMS. Visualize the concepts of future automated factory environments to digital transformatio Module:1 Basics of CIM and Automation 6 hou Introduction to Automation, Basic elements of automated systems- levels of automatic Advanced automation functions, Automation to Autonomy. Introduction to Computintegrated Manufacturing, computerized elements of a CIM system, Evolution of Computintegrated Manufacturing, Nature and role of the elements of CIM System, Product life cyte Management and Collaborative Product Development. Module:2 Computer Numerical Control 6 hou Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Motion of CNC Machines, Practical design considerations for CNC machined parts, CC Controllers-Open architecture, PC based, Look ahead functions, Parallel kinematic Machin Tools, Multitasking CNC machines. Module:3 CAM Programming Module:4 Intelligent Manufacturing systems A hou Antificial Intelligence and Machine Learning impact on CNC Machining, Intelligent futuring system Artificial Intelligence and Machine Learning impact on CNC Machining, Intelligent CA simulation for Digital Manufacturing and Digital Twins. Module:5 Computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer				g Digita	al Twir	IS.					
5. Analyze the automated flow lines through FMS. 6. Visualize the concepts of future automated factory environments to digital transformatio 6. Visualize the concepts of future automated factory environments to digital transformatio 6 hou Introduction to Automation, Basic elements of automated systems- levels of automatic Advanced automation functions, Automation to Autonomy. Introduction to Comput Integrated Manufacturing, computerized elements of a CIM system, Evolution of Comput Integrated Manufacturing, Nature and role of the elements of CIM System, Product life cytomagement and Collaborative Product Development. Module:2 Computer Numerical Control 6 hou Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Motion of CNC Machines, Practical design considerations for CNC machined parts, Ch Controllers-Open architecture, PC based, Look ahead functions, Parallel kinematic Machi Tools, Multitasking CNC machines. 7 hou Module:3 CAM Programming 7 hou Manual part programming, Computer assisted part programming, Automated programming 6 hou Artificial Intelligent Manufacturing systems 6 hou Artificial Intelligent Manufacturing and Digital Twins. 6 hou Module:5 Computerized Manufacture Planning and Control 6 hou System Computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer integrated production management system, Integration CAD/CAPP/CAM/CD based on STEP Standards, ISO14649 STEPNC in Machining, C											
6. Visualize the concepts of future automated factory environments to digital transformation 6 hou Module:1 Basics of CIM and Automation 6 hou Introduction to Automation, Basic elements of automated systems- levels of automation Advanced Advanced automation functions, Automation to Autonomy. Introduction to Computent Integrated Manufacturing, computerized elements of a CIM system, Evolution of Computent 6 hou Module:2 Computer Numerical Control 6 hou Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Motion of CNC Machines, Practical design considerations for CNC machined parts, CN Module:3 CAM Programming 7 hou Module:3 CAM Programming, Computer assisted part programming, Automated programming 7 hou Manual part programming, Computer assisted part programming, Automated programming 6 hou Module:4 Intelligent Manufacturing systems 6 hou Artificial Intelligence and Machine Learning impact on CNC Machining, Intelligent fu autonomous System Computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAPP/CAM/CI Based on STEP Standards, ISO14649 STEPNC in Machining, Computer Aided Qua Control. 6 hou Systems Group Technology and Flexible Manufacturing and Stor											
Module:1 Basics of CIM and Automation 6 hou Introduction to Automation, Basic elements of automated systems- levels of automatic Advanced automation functions, Automation to Autonomy. Introduction to Computintegrated Manufacturing, Nature and role of the elements of CIM system, Evolution of Computintegrated Manufacturing, Nature and role of the elements of CIM system, Product life cystemane and Collaborative Product Development. Module:2 Computer Numerical Control 6 hou Module:2 Computer Numerical Control 6 hou Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Motion of CNC Machines, Practical design considerations for CNC machined parts, CM Controllers-Open architecture, PC based, Look ahead functions, Parallel kinematic Machi Tools, Multitasking CNC machines. Module:3 CAM Programming 7 hou Manual part programming, Computer assisted part programming, Automated programming 7 hou Manual Module:3 CAM Programming impact on CNC Machining, Intelligent fu automate reactive Recognition in CAM Programming, Knowledge based machining, Module:4 Intelligence and Machine Learning impact on CNC Machining, Intelligent fu autonomous CNC Module:5 Computerized Manufacturing and Digital Twins. Module:6 Computerized Manufacture Planning and Control 6 hou <t< td=""><td>6. Visualize</td><td>e the o</td><th>concepts of future automated factory environments to d</th><td>igital tra</td><th>ansfor</th><th>matio</th><td>on.</td></t<>	6. Visualize	e the o	concepts of future automated factory environments to d	igital tra	ansfor	matio	on.				
Introduction to Automation, Basic elements of automated systems- levels of automatic Advanced automation functions, Automation to Autonomy. Introduction to Compu Integrated Manufacturing, computerized elements of a CIM system, Evolution of Compu Integrated Manufacturing, Nature and role of the elements of CIM system, Product life cyc Management and Collaborative Product Development. Module:2 Computer Numerical Control Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Motion of CNC Machines, Practical design considerations, Parallel kinematic Machi Tools, Multitasking CNC machines. Module:3 CAM Programming Manual part programming, Computer assisted part programming, Automated programming Of CNC-machine tools, Machining of Free form surfaces, Tolerance based Machinir Automatic Feature Recognition in CAM Programming, Knowledge based machining, Module:4 Intelligent Manufacturing systems 6 hou Artificial Intelligence and Machine Learning impact on CNC Machining, Intelligent fu autonomous CNC Machine tool, Real-Time Machine Monitoring, Real-time CA simulation for Digital Manufacturing and Digital Twins. Gomputer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF Computer Aided Process Planning, Retrieval and Generative Systems, benefits of Auc <t< td=""><td></td><td></td><th></th><td>-</td><th></th><th></th><td></td></t<>				-							
Advanced automation functions, Automation to Autonomy. Introduction to Comput Integrated Manufacturing, computerized elements of a CIM system, Evolution of Comput Management and Collaborative Product Development. Module:2 Computer Numerical Control 6 hou Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Motion of CNC Machines, Practical design considerations for CNC machined parts, CN Controllers-Open architecture, PC based, Look ahead functions, Parallel kinematic Machi Tools, Multitasking CNC machines. 7 hou Manual part programming, Computer assisted part programming, Automated programming 7 hou Manual: Part programming, Computer assisted part programming, Automated programming 6 hou Module:3 CAM Programming of Free form surfaces, Tolerance based Machining, Automatic Feature Recognition in CAM Programming, Knowledge based machining, Module:4 Intelligent Manufacturing systems 6 hou Artificial Intelligence and Machine Learning impact on CNC Machining, Intelligent fu autonomous CNC Machine tool, Real-Time Machine Monitoring, Real-time CA simulation for Digital Manufacturing and Digital Twins. 6 hou Module:5 Computerized Manufacture Planning and Control system 6 hou System Sol14649 STEPNC in Machining, Computer Aided Qua control, Shop floor control. 6 hou Module:6 Group Technology and Flexible Manufacturing systems, types of FMS, FMS components, Mater											
Integrated Manufacturing, computerized elements of a CIM system, Evolution of Computerized Manufacturing, Nature and role of the elements of CIM System, Product life cyonal Management and Collaborative Product Development. Module:2 Computer Numerical Control 6 hou Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Motion of CNC Machines, Practical design considerations for CNC machined parts, CN Controllers-Open architecture, PC based, Look ahead functions, Parallel kinematic Machi Tools, Multitasking CNC machines. 7 hou Module:3 CAM Programming 7 hou Manual part programming, Computer assisted part programming, Automated programmi of CNC-machine tools, Machining of Free form surfaces, Tolerance based Machinir Automatic Feature Recognition in CAM Programming, Knowledge based machining, Intelligent fu autonomous CNC Machine tool, Real-Time Machine Monitoring, Real-time CA simulation for Digital Manufacturing and Digital Twins. 6 hou Module:5 Computerized Manufacture Planning and Control System 6 hou System Computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer integrated production management system, Integration CAD/CAPP/CAM/CI based on STEP Standards, ISO14649 STEPNC in Machining, and storage syste applications, benefits, computer control systems. 6 hou Systems Group Technology and Flexible Manufacturing and storage syste applications, benefits, computer control systems. 6 hou Module:6 Group Technology and Flexible Manufacturing and storage syste applicat											
Integrated Manufacturing, Nature and role of the elements of CIM System, Product life cycle Management and Collaborative Product Development. Module:2 Computer Numerical Control 6 hou Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Motion of CNC Machines, Practical design considerations for CNC machined parts, C/ Controllers-Open architecture, PC based, Look ahead functions, Parallel kinematic Machi Tools, Multitasking CNC machines. Module:3 CAM Programming Manual part programming, Computer assisted part programming, Automated programming Automatic Feature Recognition in CAM Programming, Knowledge based machining, Module:4 Intelligent Manufacturing systems 6 hou Artificial Intelligence and Machine Learning impact on CNC Machining, Intelligent fu autonomous CNC Machine tool, Real-Time Machine Monitoring, Real-time CA simulation for Digital Manufacturing and Digital Twins. 6 hou System Computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF Computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer Aided Pro											
Management and Collaborative Product Development. Genou Module:2 Computer Numerical Control 6 hou Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Motion of CNC Machines, Practical design considerations for CNC machined parts, CN Controllers-Open architecture, PC based, Look ahead functions, Parallel kinematic Machi Tools, Multitasking CNC machines. 7 hou Module:3 CAM Programming 7 hou Manual part programming, Computer assisted part programming, Automated programmi of CNC-machine tools, Machining of Free form surfaces, Tolerance based Machinir Automatic Feature Recognition in CAM Programming, Knowledge based machining, Module:4 Intelligent Manufacturing systems 6 hou Artificial Intelligent Manufacturing systems 6 hou 6 hou Simulation for Digital Manufacturing and Digital Twins. 6 hou Module:5 Computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAP computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAP computer integrated production management system, Integration CAD/CAPP/CAM/CI based on STEP Standards, ISO14649 STEPNC in Machining, Computer Aided Qua Control, Shop floor control. 6 hou Module:7 Future of Automated Factory 6 hou Systems 6 Houd Systems. 6 hou Systems, types of FMS, FMS components, Material handling											
Module:2 Computer Numerical Control 6 hou Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Motion of CNC Machines, Practical design considerations for CNC machined parts, CN Controllers-Open architecture, PC based, Look ahead functions, Parallel kinematic Machi Tools, Multitasking CNC machines. Module:3 CAM Programming Manual part programming, Computer assisted part programming, Automated programmi of CNC-machine tools, Machining of Free form surfaces, Tolerance based Machinir Automatic Feature Recognition in CAM Programming, Knowledge based machining, Module:4 Intelligence and Machine Learning impact on CNC Machining, Intelligent fu autonomous CNC Machine tool, Real-Time Machine Monitoring, Real-time CA simulation for Digital Manufacturing and Digital Twins. 6 hou System Computer rided Process Planning, Retrieval and Generative Systems, benefits of CAF computer integrated production management system, Integration CAD/CAPP/CAM/CI 6 hou Systems Systems Fundamentals of Group Technology and Flexible Manufacturing 6 hou Systems Group Technology and Flexible Manufacturing and storage syste Applications, benefits, computer control systems. 6 hou Systems	U U		0	em, Pro	duct li	fe cy	ycle				
Principles elements of CNC system, Typical CNC Machine Tools, Designation of Axis a Motion of CNC Machines, Practical design considerations for CNC machined parts, CN Controllers-Open architecture, PC based, Look ahead functions, Parallel kinematic Machi Tools, Multitasking CNC machines. Module:3 CAM Programming 7 hou Manual part programming, Computer assisted part programming, Automated programmi of CNC-machine tools, Machining of Free form surfaces, Tolerance based Machinir, Automatic Feature Recognition in CAM Programming, Knowledge based machining, 6 hou Module:4 Intelligent Manufacturing systems 6 hou Artificial Intelligence and Machine Learning impact on CNC Machining, Intelligent fu autonomous CNC Machine tool, Real-Time Machine Monitoring, Real-time CA simulation for Digital Manufacturing and Digital Twins. Module:5 Computerized Manufacture Planning and Control System 6 hou Computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer integrated production management system, Integration CAD/CAPP/CAM/Ct based on STEP Standards, ISO14649 STEPNC in Machining, Computer Aided Qua Control, Shop floor control. 6 hou Module:6 Group Technology and Flexible Manufacturing and Storage system applications, benefits, computer control systems. 6 hou Systems fundamentals of Group Technology-types of part families and Flexible Manufacturing systems. 6 hou Digital Transformation in manufacturing-Trends and Challenges, Industry 4.0, functior applications,											
Motion of CNC Machines, Practical design considerations for CNC machined parts, CN Controllers-Open architecture, PC based, Look ahead functions, Parallel kinematic Machi Tools, Multitasking CNC machines. Module:3 CAM Programming 7 hou Manual part programming, Computer assisted part programming, Automated programming of CNC-machine tools, Machining of Free form surfaces, Tolerance based Machinir Automatic Feature Recognition in CAM Programming, Knowledge based machining, Module:4 Intelligent Manufacturing systems 6 hou Artificial Intelligence and Machine Learning impact on CNC Machining, Intelligent fu autonomous simulation for Digital Manufacturing and Digital Twins. 6 hou Module:5 Computer Added Process Planning, Retrieval and Generative Systems, benefits of CAF computer integrated production management system, Integration CAD/CAPP/CAM/CI based on STEP Standards, ISO14649 STEPNC in Machining, Computer Added Qua Control, Shop floor control. 6 hou Module:6 Group Technology and Flexible Manufacturing systems 6 hou Systems Fundamentals of Group Technology-types of part families and Flexible Manufacturing systems, types of FMS, FMS components, Material handling and storage syste applications, benefits, computer control systems. 6 hou Module:7 Future of Automated Factory 6 hou Digital Transformation in manufacturing. Transformation in manufacturing, Blockchain in Manufacturing, cyber-physid manufacturing, systems. 6											
Controllers-Open architecture, PC based, Look ahead functions, Parallel kinematic Machi Tools, Multitasking CNC machines. Module:3 CAM Programming 7 hou Manual part programming, Computer assisted part programming, Automated programming 7 hou Manual part programming, Computer assisted part programming, Automated programming 6 hou Automatic Feature Recognition in CAM Programming, Knowledge based machining, 6 hou Module:4 Intelligence and Machine Learning impact on CNC Machining, Intelligent fu autonomous CNC Machine tool, Real-Time Machine Monitoring, Real-time CA simulation for Digital Manufacturing and Digital Twins. 6 hou Module:5 Computerized Manufacture Planning and Control 6 hou System Computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF Computer integrated production management system, Integration CAD/CAPP/CAM/CI based on STEP Standards, ISO14649 STEPNC in Machining, Computer Aided Qua Control, Shop floor control. Module:6 Group Technology and Flexible Manufacturing 6 hou Systems Fundamentals of Group Technology-types of part families and Flexible Manufacturing 6 hou Systems, types of FMS, FMS components, Material handling and storage system applications, benefits. Internet of Things (IOT), IOT applications in manufacturing, B <td></td> <td></td> <th></th> <td></td> <th></th> <th></th> <td></td>											
Tools, Multitasking CNC machines. Module:3 CAM Programming 7 hou Manual part programming, Computer assisted part programming, Automated programmi of CNC-machine tools, Machining of Free form surfaces, Tolerance based Machinir Automatic Feature Recognition in CAM Programming, Knowledge based machining, 6 hou Module:4 Intelligent Manufacturing systems 6 hou Artificial Intelligence and Machine Learning impact on CNC Machining, Intelligent fur autonomous CNC Machine tool, Real-Time Machine Monitoring, Real-time CA Simulation for Digital Manufacturing and Digital Twins. Module:5 Computerized Manufacture Planning and Control 6 hou System Computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF Computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAP Computer integrated production management system, Integration CAD/CAPP/CAM/CI based on STEP Standards, ISO14649 STEPNC in Machining, Computer Aided Qua 6 hou Systems Group Technology and Flexible Manufacturing 6 hou Systems, types of FMS, FMS components, Material handling and storage system 6 hou Systems, types of FMS, FMS components, Material handling and storage system 6 hou Digital Transformation in manufacturing-Trends and Challenges, Industry 4.0, functior 6 hou	Motion of C	CNC I	Machines, Practical design considerations for CNC m	nachine	d part	s, C	;NC				
Module:3CAM Programming7 houManual part programming, Computer assisted part programming, Automated programmi of CNC-machine tools, Machining of Free form surfaces, Tolerance based Machinir Automatic Feature Recognition in CAM Programming, Knowledge based machining,Module:4Intelligent Manufacturing systems6 houArtificial Intelligence and Machine Learning impact on CNC Machining, Intelligent fu autonomous6 houArtificial Intelligence and Machine Learning impact on CNC Machining, Intelligent fu autonomous6 houSimulation for Digital Manufacturing and Digital Twins.6 houModule:5Computerized Manufacture Planning and Control System6 houComputer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer integrated production management system, Integration CAD/CAPP/CAM/CI based on STEP Standards, ISO14649 STEPNC in Machining, Computer Aided Qua Control.6 houModule:6Group Technology and Flexible Manufacturing Systems6 houFundamentals of Group Technology-types of part families and Flexible Manufacturi Systems, types of FMS, FMS components, Material handling and storage syste applications, benefits, computer control systems.6 houModule:7Future of Automated Factory6 houDigital Transformation in manufacturing-Trends and Challenges, Industry 4.0, functior applications and benefits. Internet of Things (IOT), IOT applications in manufacturing, B Data and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physic manufacturing systems.	Controllers-	Open	architecture, PC based, Look ahead functions, Paralle	el kinen	natic N	/ ach	nine				
Manual part programming, Computer assisted part programming, Automated programming of CNC-machine tools, Machining of Free form surfaces, Tolerance based Machinin Automatic Feature Recognition in CAM Programming, Knowledge based machining, Module:4 Intelligent Manufacturing systems 6 hou Artificial Intelligence and Machine Learning impact on CNC Machining, Intelligent fu autonomous 6 hou Artificial Intelligence and Machine Learning impact on CNC Machining, Intelligent fu autonomous 6 hou Simulation for Digital Manufacturing and Digital Twins. 6 hou Module:5 Computerized Manufacture Planning and Control 6 hou System Computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer integrated production management system, Integration CAD/CAPP/CAM/Ct based on STEP Standards, ISO14649 STEPNC in Machining, Computer Aided Qua Control, Shop floor control. 6 hou Module:6 Group Technology and Flexible Manufacturing Systems 6 hou Fundamentals of Group Technology-types of part families and Flexible Manufacturi systems, types of FMS, FMS components, Material handling and storage system applications, benefits. computer control systems. 6 hou Module:7 Future of Automated Factory 6 hou Digital Transformation in manufacturing-Trends and Challenges, Industry 4.0, function applications and benefits. Internet of Things (IOT), IOT applications in manufacturing, B Data and Data Analytics in manufacturin	Tools, Multit	taskin	g CNC machines.								
of CNC-machine tools, Machining of Free form surfaces, Tolerance based Machinin Automatic Feature Recognition in CAM Programming, Knowledge based machining, Module:4 Intelligent Manufacturing systems 6 hou Artificial Intelligence and Machine Learning impact on CNC Machining, Intelligent fu autonomous CNC Machine tool, Real-Time Machine Monitoring, Real-time CA simulation for Digital Manufacturing and Digital Twins. 6 hou Module:5 Computerized Manufacture Planning and Control System 6 hou Computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer integrated production management system, Integration CAD/CAPP/CAM/CI based on STEP Standards, ISO14649 STEPNC in Machining, Computer Aided Qua Control, Shop floor control. 6 hou Module:6 Group Technology and Flexible Manufacturing Systems 6 hou Fundamentals of Group Technology-types of part families and Flexible Manufacturing Systems, types of FMS, FMS components, Material handling and storage system applications, benefits, computer control systems. 6 hou Module:7 Future of Automated Factory 6 hou Digital Transformation in manufacturing-Trends and Challenges, Industry 4.0, function applications and benefits. Internet of Things (IOT), IOT applications in manufacturing, B Data and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physic manufacturing systems.											
Automatic Feature Recognition in CAM Programming, Knowledge based machining,Module:4Intelligent Manufacturing systems6 houArtificial Intelligence and Machine Learning impact on CNC Machining, Intelligent fu autonomousCNC Machine tool, Real-Time Machine Monitoring, Real-time CAsimulation for Digital Manufacturing and Digital Twins.Module:5Computerized Manufacture Planning and Control System6 houComputer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer integrated production management system, Integration CAD/CAPP/CAM/CI based on STEP Standards, ISO14649 STEPNC in Machining, Computer Aided Qua Control, Shop floor control.6 houModule:6Group Technology and Flexible Manufacturing Systems6 houFundamentals of Group Technology-types of part families and Flexible Manufacturi Systems, types of FMS, FMS components, Material handling and storage syste applications, benefits, computer control systems.6 houModule:7Future of Automated Factory6 houDigital Transformation in manufacturing-Trends and Challenges, Industry 4.0, functior applications and benefits. Internet of Things (IOT), IOT applications in manufacturing, B6 houData and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physic manufacturing systems.6 hou											
Module:4Intelligent Manufacturing systems6 houArtificial Intelligence and Machine Learning impact on CNC Machining, Intelligent fuautonomousCNCSimulation for Digital Manufacturing and Digital Twins.Module:5Computerized Manufacture Planning and ControlSystem6 houComputer Aided Process Planning, Retrieval and Generative Systems, benefits of CAFComputer integrated production management system, Integration CAD/CAPP/CAM/CIbased on STEP Standards, ISO14649 STEPNC in Machining, Computer Aided QuaControl, Shop floor control.Module:6Group Technology and Flexible Manufacturing SystemsFundamentals of Group Technology-types of part families and Flexible Manufacturi Systems, types of FMS, FMS components, Material handling and storage syste applications, benefits, computer control systems.Module:7Future of Automated FactoryObjectal Transformation in manufacturing-Trends and Challenges, Industry 4.0, functior applications and benefits. Internet of Things (IOT), IOT applications in manufacturing, B Data and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physic manufacturing systems.						chini	ing,				
Artificial Intelligence and Machine Learning impact on CNC Machining, Intelligent fu autonomous CNC Machine tool, Real-Time Machine Monitoring, Real-time CA simulation for Digital Manufacturing and Digital Twins.Module:5Computerized Manufacture Planning and Control System6 houComputer Aided Process Planning, Retrieval and Generative Systems, benefits of CAP computer integrated production management system, Integration CAD/CAPP/CAM/CI based on STEP Standards, ISO14649 STEPNC in Machining, Computer Aided Qua Control, Shop floor control.6 houModule:6Group Technology and Flexible Manufacturing Systems6 houFundamentals of Group Technology-types of part families and Flexible Manufacturing Systems, types of FMS, FMS components, Material handling and storage syste applications, benefits, computer control systems.6 houModule:7Future of Automated Factory6 houDigital Transformation in manufacturing-Trends and Challenges, Industry 4.0, function applications and benefits. Internet of Things (IOT), IOT applications in manufacturing, B Data and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physic manufacturing systems.				d machi							
autonomous CNC Machine tool, Real-Time Machine Monitoring, Real-time CA simulation for Digital Manufacturing and Digital Twins. Module:5 Computerized Manufacture Planning and Control 6 hou System Computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer integrated production management system, Integration CAD/CAPP/CAM/CI based on STEP Standards, ISO14649 STEPNC in Machining, Computer Aided Qua Control, Shop floor control. Module:6 Group Technology and Flexible Manufacturing 6 hou Systems Systems Fundamentals of Group Technology-types of part families and Flexible Manufacturing 6 hou Systems, types of FMS, FMS components, Material handling and storage system applications, benefits, computer control systems. Module:7 Future of Automated Factory 6 hou Digital Transformation in manufacturing-Trends and Challenges, Industry 4.0, function applications and benefits. Internet of Things (IOT), IOT applications in manufacturing, B Data and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physic manufacturing systems.											
simulation for Digital Manufacturing and Digital Twins. Module:5 Computerized Manufacture Planning and Control System 6 hou Computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer integrated production management system, Integration CAD/CAPP/CAM/CN based on STEP Standards, ISO14649 STEPNC in Machining, Computer Aided Qua Control, Shop floor control. Module:6 Group Technology and Flexible Manufacturing Systems 6 hou Fundamentals of Group Technology-types of part families and Flexible Manufacturi Systems, types of FMS, FMS components, Material handling and storage system applications, benefits, computer control systems. 6 hou Module:7 Future of Automated Factory 6 hou Digital Transformation in manufacturing-Trends and Challenges, Industry 4.0, function applications and benefits. Internet of Things (IOT), IOT applications in manufacturing, B Data and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physic manufacturing systems.	Artificial In	tellig	ence and Machine Learning impact on CNC Machin	ing, In	tellige	ent fu	ully				
Module:5Computerized Manufacture Planning and Control6 houSystemSystemComputer Aided Process Planning, Retrieval and Generative Systems, benefits of CAPcomputer integrated production management system, Integration CAD/CAPP/CAM/CIbased on STEP Standards, ISO14649 STEPNC in Machining, Computer Aided QuaControl, Shop floor control.Module:6Group Technology and Flexible Manufacturing SystemsFundamentals of Group Technology-types of part families and Flexible Manufacturi Systems, types of FMS, FMS components, Material handling and storage syste applications, benefits, computer control systems.Module:7Future of Automated FactoryDigital Transformation in manufacturing-Trends and Challenges, Industry 4.0, functior applications and benefits. Internet of Things (IOT), IOT applications in manufacturing, B Data and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physic manufacturing systems.	autonomous	s CN	IC Machine tool, Real-Time Machine Monitorin	g, Re	al-time	e C	AM				
SystemComputer Aided Process Planning, Retrieval and Generative Systems, benefits of CAPcomputer integrated production management system, Integration CAD/CAPP/CAM/CNbased on STEP Standards, ISO14649 STEPNC in Machining, Computer Aided QuaControl, Shop floor control.Module:6Group Technology and Flexible ManufacturingSystemsFundamentals of Group Technology-types of part families and Flexible ManufacturiSystems, types of FMS, FMS components, Material handling and storage systemapplications, benefits, computer control systems.Module:7Future of Automated FactoryObjectations and benefits. Internet of Things (IOT), IOT applications in manufacturing, BData and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physicmanufacturing systems.											
Computer Aided Process Planning, Retrieval and Generative Systems, benefits of CAF computer integrated production management system, Integration CAD/CAPP/CAM/CI based on STEP Standards, ISO14649 STEPNC in Machining, Computer Aided Qua Control, Shop floor control.Module:6Group Technology and Flexible Manufacturing Systems6 houFundamentals of Group Technology-types of part families and Flexible Manufacturi Systems, types of FMS, FMS components, Material handling and storage syste applications, benefits, computer control systems.6 houModule:7Future of Automated Factory Digital Transformation in manufacturing-Trends and Challenges, Industry 4.0, function applications and benefits. Internet of Things (IOT), IOT applications in manufacturing, B Data and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physic manufacturing systems.	Module:5		Ŭ		(6 ho	urs				
computer integrated production management system, Integration CAD/CAPP/CAM/CM based on STEP Standards, ISO14649 STEPNC in Machining, Computer Aided Qua Control, Shop floor control.Module:6Group Technology and Flexible Manufacturing Systems6 houFundamentals of Group Technology-types of part families and Flexible Manufacturing Systems, types of FMS, FMS components, Material handling and storage system applications, benefits, computer control systems.6 houModule:7Future of Automated Factory6 houDigital Transformation in manufacturing-Trends and Challenges, Industry 4.0, function applications and benefits. Internet of Things (IOT), IOT applications in manufacturing, B Data and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physic manufacturing systems.											
based on STEP Standards, ISO14649 STEPNC in Machining, Computer Aided Qua Control, Shop floor control.Module:6Group Technology and Flexible Manufacturing Systems6 houFundamentals of Group Technology-types of part families and Flexible Manufacturing Systems, types of FMS, FMS components, Material handling and storage system applications, benefits, computer control systems.6 houModule:7Future of Automated Factory6 houDigital Transformation in manufacturing-Trends and Challenges, Industry 4.0, function applications and benefits. Internet of Things (IOT), IOT applications in manufacturing, B Data and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physic manufacturing systems.											
Control, Shop floor control. Module:6 Group Technology and Flexible Manufacturing Systems 6 hou Fundamentals of Group Technology-types of part families and Flexible Manufacturin Systems, types of FMS, FMS components, Material handling and storage system applications, benefits, computer control systems. 6 hou Module:7 Future of Automated Factory 6 hou Digital Transformation in manufacturing-Trends and Challenges, Industry 4.0, function applications and benefits. Internet of Things (IOT), IOT applications in manufacturing, B Data and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physic manufacturing systems.											
Module:6Group Technology and Flexible Manufacturing Systems6 houFundamentals of Group Technology-types of part families and Flexible Manufacturing Systems, types of FMS, FMS components, Material handling and storage system applications, benefits, computer control systems.6 houModule:7Future of Automated Factory6 houDigital Transformation in manufacturing-Trends and Challenges, Industry 4.0, function applications and benefits. Internet of Things (IOT), IOT applications in manufacturing, B Data and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physic manufacturing systems.			0	nputer	Aided	Qua	ality				
SystemsFundamentals of Group Technology-types of part families and Flexible ManufacturiSystems, types of FMS, FMS components, Material handling and storage systeapplications, benefits, computer control systems.Module:7Future of Automated FactoryDigital Transformation in manufacturing-Trends and Challenges, Industry 4.0, functionapplications and benefits. Internet of Things (IOT), IOT applications in manufacturing, BData and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physicmanufacturing systems.											
FundamentalsofGroupTechnology-typesofpartfamiliesandFlexibleManufacturingSystems, typesofFMS, FMScomponents, Materialhandlingandstoragesystemapplications, benefits, computer control systems.Module:7Future of Automated Factory6 houDigital Transformation in manufacturing-TrendsandChallenges, Industry4.0, functionapplicationsandbenefits.Internet of Things (IOT), IOT applications in manufacturing, BDataandDataAnalytics in manufacturing, Blockchain in Manufacturing, cyber-physicmanufacturing systems.	Module:6				(6 ho	urs				
Systems, types of FMS, FMS components, Material handling and storage syste applications, benefits, computer control systems.Module:7Future of Automated Factory6 houDigital Transformation in manufacturing-Trends and Challenges, Industry 4.0, function applications and benefits. Internet of Things (IOT), IOT applications in manufacturing, B Data and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physic manufacturing systems.											
Systems, types of FMS, FMS components, Material handling and storage systemapplications, benefits, computer control systems.Module:7Future of Automated Factory6 hourDigital Transformation in manufacturing-Trends and Challenges, Industry 4.0, functionapplications and benefits. Internet of Things (IOT), IOT applications in manufacturing, BData and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physicmanufacturing systems.	Fundament	als o	f Group Technology-types of part families and Fle	exible l	Manuf	actu	ring				
Module:7Future of Automated Factory6 houDigital Transformation in manufacturing-Trends and Challenges, Industry 4.0, function applications and benefits. Internet of Things (IOT), IOT applications in manufacturing, B Data and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physic manufacturing systems.				nd sto	rage	syst	em,				
Digital Transformation in manufacturing-Trends and Challenges, Industry 4.0, function applications and benefits. Internet of Things (IOT), IOT applications in manufacturing, B Data and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physic manufacturing systems.			•								
applications and benefits. Internet of Things (IOT), IOT applications in manufacturing, B Data and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physic manufacturing systems.	Module:7Future of Automated Factory6 hours										
Data and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physic manufacturing systems.	•			•							
manufacturing systems.	applications	s and	benefits. Internet of Things (IOT), IOT applications in	manuf	facturii	ng, E	3ig-				
	Data and Data Analytics in manufacturing, Blockchain in Manufacturing, cyber-physical										
Module:8 Contemporary Issues 2 hou				-	-	-					
	Module:8	Cont	emporary Issues								
Total Lecture hours: 45 hou					4	5 ho	urs				

Tex	xt Books						
1.	Mikell P Groover, Automation, Manufacturing, 2019, 5 th edition, Pear		System	ns and Computer-Integrated			
2.	Xun Xu, Integrating Advanced C Numerical Control: Principles and Imp	plementatio	ns, 2015,	, IGI Global.			
3.	B. Radhakrishnan P, CADC/CAM/CIM, 2018, New Age International (P) Ltd.						
Ret	ference Books						
1.	Kant Vajpayee S, Principles of Computer Integrated Manufacturing, 1999, Prentice Hall						
	of India, New Delhi.						
2.	· · · ·	Aided Manu	facturing	Tata McGraw Hill Pub, 2017,			
	New Delhi.						
3.			stems, S	Smart Factories and Industry			
	4.0: A General Overview, 2019, 1 st	Edition.					
4.	Yáñez, Fran, and Brea, Francisco Yá						
	Smart Factories: The Road to the I	Digital Fact	ory of th	e Future. 2017, Independently			
	Published.						
Mo	ode of Evaluation: CAT, Written assignn	ment, Quiz,	FAT				
Ree	commended by Board of Studies 0	09-03-2022					
Арр	proved by Academic Council N	No. 65	Date	17-03-2022			

BM	EE401P	Computer I	ntegrated Man	ufacturing	Lab	L	T	Ρ	С
						0	0	2	1
Pre	-requisite	Nil				Syllabus version			
							1.0)	
	urse Objectiv								
		wledge on CAM & C							
2.	To develop pi	oficiency in the appl	ication of CIM t	o the realis	tic engine	ering p	roble	ems.	
0									
	urse Outcom								
		course, the student v programs for variou			and CIM a	oftword			
	•	interpret flexible inte	Q	U U		onware	3.		
۷.				actory syste	51115.				
Indi	icative Exper	iments							
1.	-	gramming for CNC T	unina / Millina	Machine.					
2.		cation of CNC progra	<u> </u>		imulator.				
3.		ased Part Programn				Milling	Mac	hine.	
4.		e automatic feature r							
5.	CNC tool pa	th verification and o	ptimization usir	ig digital ma	anufacturir	ng soft	ware		
6.		o predict and optimiz			achining o	peratio	ns.		
7.		e factory shop floor o							
8.		d Simulation of CIM		software.					
9.		on flexible manufactu	<u> </u>						
10	Virtual Real	ty simulation of digit							
_				Total Labo	ratory Ho	urs 3	0 ho	urs	
	t Books								
1.		ntegrating Advance					ring,	and	נ
2.		Control: Principles an						ndha	
Ζ.		nard Kief, Helmut A							
3.	-	prepared by course			y 1 .0, 202	. i, inde	131110		,33.
	erence Book		labarty.						
1.	Mikell P.		on, Production	Systems	and C	ompute	er-In	teara	ated
		ng, 2019, Pearson E						3	
2.		nan P, Computer Nu			and Comp	uter A	ided		
		e, 2018, New Age Int			•				
Мос	de of assessm	ent: Continuous ass	sessment, FAT,	Oral exam	ination				
		y Board of Studies	09-03-2022						
Арр	proved by Aca	demic Council	No. 65	Date	17-03-20	22			

	02L	Heat and Mass Transfer		L	Т	P	С
				3	0	0	3
Pre-rec	uisite	Nil	Sylla			ersio	on
				1	.0		
	Objectiv						
		omprehensive knowledge of various modes of heat and			iste	r.	
		the students for solving heat transfer problems in the in-	austry.				
	equip the s	student in the design of heat exchangers.					
		course, the student will be able to					
		ady and unsteady heat conduction problems for simple	aeome	etrie	s		
		atural and forced convective heat transfer processes	geenne		•		
		at exchangers using the LMTD and effectiveness-NTU	metho	ods			
		ation heat transfer problems					
		arious mass transfer processes					
Module	e:1 Conc	luction – I			8	ho	urs
		ws; Identification of significant modes of heat t				racti	
		neral equation of heat conduction in cartesian, cylin					
		Dimensional steady state conduction in simple geor					
		herical shells; Electrical analogy; Conduction in compo					
		of insulation; Thermal contact resistance; Overall hea					
		steady conduction heat transfer with internal heat	genera	atioi	n In	pla	ane
		nd spheres.				ha	
		luction – II	t tran	for		ho	
		es (Fins). Conduction shape factor; Unsteady state hea ernal resistance - Lumped heat capacity analysis; Infini					
	• •	errai resistance - cumped near capacity analysis, minin ere; Semi-Infinite bodies - Chart solutions.		162	- 11a	t pie	ile,
		ed Convection			7	ho	ire
		servation of mass, momentum and energy. Boundary la	avers 1	for f			
		l objects and flow through circular pipes. External					
•		and bank of tubes; Internal flow through circular and no					,
Module		ral Convection				ho	urs
Flow o	ver vertio	al, horizontal and inclined plates; Flow over cylir	iders	and	sp	her	es;
		nd forced Convection; Introductory concepts of boiling a					
Module	e:5 Heat	Exchangers			6	ho	urs
Classif	ication of	heat exchanger, LMTD, AMTD, Design of heat exchan	iger; C	onc	enti	ric p	ipe
	0 /	shell and tube heat exchanger, cross - flow heat	excha	ngei	; А	naly	/sis
		thod; Introduction to compact heat exchanger.					
	e:6 Radi						urs
		laws; black body, gray body; Radiation from real					
		v factor; Equivalent emissivity method, electrical and	alogy	- รเ	irfa	ce a	and
		s. Radiation shields.	1			I	
		s Transfer		tet-			urs
		diffusion mass transfer - Fick's law of diffusion - ste					
		ective mass transfer - momentum, heat and mass transfer correlations.	uans	i ei	alla	alog	у -
Module		emporary Issues			2	ho	ILE
module		Total Lecture hours:				ho	
Text B	noke						
1. Yu	nus A Ce	ngel and Afshin J Ghajar, Heat and Mass Transfer: F 2015, 5 th edition, McGraw-Hill.	undam	nent	als	and	
2. Sa	chdeva R	C, Fundamentals of Engineering Heat and Mass Ti Age International.	ransfei	⁻ , 20	017	, 5 th	

3.	Necati Ozisik M, Heat Transfer – A	A Basic Approa	ach, 2016	, McGraw Hill, New York.							
Ref	Reference Books										
1.	5 / 1 / 1 /										
	Fundamentals of Heat and Mass Transfer, 2018, 8th edition, Wiley.										
2.	J P Holman and Souvik Bhattacharyya, Heat Transfer, 2016, 10 th edition, McGraw-Hill.										
3.											
	International, New Delhi.			_							
Mo	de of Evaluation: CAT, Written assi	ignment, Quiz,	FAT								
Red	commended by Board of Studies	09-03-2022									
App	proved by Academic Council	No. 65	Date	17-03-2022							

Cours 1. To 2. To 3. To At the 1. Co 3. Un 4. De Indica 1. Co 3. Un 4. De Indica 1. Co Co 3. H 4. So 5. C Co Co 7. F Co Co 8. So So So Co 9. C Co Co Co 10. C Co Co Co 7. F Co Co Co 10. C Co Co Co 11. C Co Co Co Co 11. C Co	empower to equip the s equip the s end of the onduct the e nduct the nduct the n	mprehensive knowledge of various modes on the students for solving heat transfer problem tudent in the design of heat exchangers. s course, the student will be able to xperiments on different heat transfer modes xperiments on pin fin to assess its performa e various pool boiling regimes he mass transfer mechanism ments n of the thermal conductivity of a given meta- ues. n of the thermal conductivity of a given liqui- ues. tion in spherical coordinate system. t conduction by electrical analogy: experime	ns in the ind	mass trai dustry.	1.0 nsfe	r.	1 on 			
Cours 1. To 2. To 3. To At the 1. Co 3. Un 4. De Indica 1. Co 3. Un 4. De Indica 1. Co Co 3. H 4. So 5. C Co Co 7. F Co Co 8. So So So Co 9. C Co Co Co 10. C Co Co Co 7. F Co Co Co 10. C Co Co Co 11. C Co Co Co Co 11. C Co	se Objective impart a co empower to equip the second end of the onduct the enderstand the enderstand the emonstrate abulated va Determination abulated va Determination	es mprehensive knowledge of various modes on he students for solving heat transfer problem tudent in the design of heat exchangers. s course, the student will be able to xperiments on different heat transfer modes xperiments on pin fin to assess its performa e various pool boiling regimes he mass transfer mechanism ments n of the thermal conductivity of a given meta- ues. n of the thermal conductivity of a given liqui- ues. tion in spherical coordinate system. t conduction by electrical analogy: experime	ns in the ind	mass trai dustry.	1.0 nsfe	r.				
1. To 2. To 3. To At the 1. 1. Co 2. Co 3. Un 4. De Indica I. 1. I. 2. Co 3. Un 4. De 3. H 4. S 5. I. 2. Co 7. F 8. S 9. I. 10. I. 11. I. Text E Text E	empower to empower to equip the s equip the s end of the onduct the e onduct the e	mprehensive knowledge of various modes on the students for solving heat transfer problem tudent in the design of heat exchangers. s course, the student will be able to xperiments on different heat transfer modes xperiments on pin fin to assess its performa e various pool boiling regimes he mass transfer mechanism ments n of the thermal conductivity of a given meta- ues. n of the thermal conductivity of a given liqui- ues. tion in spherical coordinate system. t conduction by electrical analogy: experime	ns in the ind	mass trai dustry.	nsfe					
1. To 2. To 3. To At the 1. 1. Co 2. Co 3. Un 4. De Indica I. 1. I. 2. Co 3. Un 4. De 3. H 4. S 5. I. 2. Co 7. F 8. S 9. I. 10. I. 11. I. Text E Text E	empower to empower to equip the s equip the s end of the onduct the e onduct the e	mprehensive knowledge of various modes on the students for solving heat transfer problem tudent in the design of heat exchangers. s course, the student will be able to xperiments on different heat transfer modes xperiments on pin fin to assess its performa e various pool boiling regimes he mass transfer mechanism ments n of the thermal conductivity of a given meta- ues. n of the thermal conductivity of a given liqui- ues. tion in spherical coordinate system. t conduction by electrical analogy: experime	ns in the ind	ustry.						
2. To 3. To 3. To Cours At the 1. Co 2. Co 3. Un 4. De Indica 1. L 2. Co 3. Un 4. De Indica 1. Co 5. Co 5. Co 6. Co 7. F 0. Co 8. S 9. Co 10. C	empower to equip the s equip the s end of the onduct the e nduct the nduct the n	ne students for solving heat transfer problem tudent in the design of heat exchangers. s course, the student will be able to xperiments on different heat transfer modes xperiments on pin fin to assess its performa e various pool boiling regimes he mass transfer mechanism ments n of the thermal conductivity of a given meta- ues. n of the thermal conductivity of a given liqui- ues. tion in spherical coordinate system. t conduction by electrical analogy: experime	ns in the ind	ustry.						
3. To Cours At the 1. Co 2. Co 3. Un 4. De De De Indica 1. L L 3. H 4. S S 3. H 4. S S 5. C C C 6. C C C 7. F C C 9. C 10. C 11. C C C 7. F C C 9. C C C 10. C C C 11. C C C Text E C C C 11. C C C	equip the s e Outcome end of the onduct the e onduct the e nderstand the emonstrate ative Exper Determination abulated van Determination abulated van Heat conduct Study of hea Determination	tudent in the design of heat exchangers. s course, the student will be able to xperiments on different heat transfer modes xperiments on pin fin to assess its performa e various pool boiling regimes he mass transfer mechanism ments n of the thermal conductivity of a given meta- ues. n of the thermal conductivity of a given liqui- ues. tion in spherical coordinate system. t conduction by electrical analogy: experiments	nce al sample a	ind compa	arisc	n wi				
Cours At the 1. Co 2. Co 3. Un 4. De Indica Indica 1. I 2. Indica 3. H 4. S 5. I 6. I 7. F 9. I 10. I 11. I Text E I	se Outcome end of the onduct the enderstand the emonstrate ative Exper Determination abulated van Determination abulated van Heat conductor Study of heat Determination	s course, the student will be able to xperiments on different heat transfer modes xperiments on pin fin to assess its performa e various pool boiling regimes he mass transfer mechanism ments on of the thermal conductivity of a given meta- lues. on of the thermal conductivity of a given liqui- lues. tion in spherical coordinate system. t conduction by electrical analogy: experime	nce al sample a		arisc					
At the 1. Co 2. Co 3. Un 4. De Indica 1. C ta 2. C ta 3. H 4. S 5. C 2 6. C 7. F 8. S 9. C 10. C 11. C Text E	end of the onduct the e onduct the e nderstand the emonstrate ative Exper Determination abulated van Determination abulated van Heat conduct Study of hea Determination	course, the student will be able to xperiments on different heat transfer modes xperiments on pin fin to assess its performa e various pool boiling regimes he mass transfer mechanism ments mo of the thermal conductivity of a given meta- ues. on of the thermal conductivity of a given liqui- ues. tion in spherical coordinate system. t conduction by electrical analogy: experimen-	nce al sample a		arisc	n wi				
1. Co 2. Co 3. Un 4. De Indica ta 1. C 2. C 3. H 4. S 5. C 6. C 7. F 8. S 9. C 10. C 11. C Text E C	onduct the enderstand the enderstand the emonstrate ative Exper Determination abulated van Determination abulated van Heat conduct Study of heat Determination	xperiments on different heat transfer modes xperiments on pin fin to assess its performa e various pool boiling regimes he mass transfer mechanism ments on of the thermal conductivity of a given meta- ues. In of the thermal conductivity of a given liqui- ues. tion in spherical coordinate system. t conduction by electrical analogy: experime	nce al sample a		arisc	n wi				
2. Co 3. Un 4. De Indica 1. C ta 2. C ta 3. H 4. S 5. C 2 6. C 7. F 8. S 9. C 10. C 11. C Text E	anduct the enderstand the emonstrate ative Exper Determination abulated va Determination abulated va Heat conduct Study of heat Determination	xperiments on pin fin to assess its performa e various pool boiling regimes he mass transfer mechanism ments on of the thermal conductivity of a given meta- ues. In of the thermal conductivity of a given liqui- ues. tion in spherical coordinate system. t conduction by electrical analogy: experime	nce al sample a		arisc	n Wi				
3. Un 4. De Indica 1. C 4. S 5. C 6. C 7. F 8. S 9. C 10. C 11. C 11. C	ative Exper Determination abulated var Determination abulated var Determination abulated var Heat conduct Study of heat Determination	e various pool boiling regimes he mass transfer mechanism ments n of the thermal conductivity of a given meta ues. n of the thermal conductivity of a given liqui ues. tion in spherical coordinate system. t conduction by electrical analogy: experime	al sample a		arisc	n wi				
4. De Indica 1. C ta 2. C ta 3. H 4. S 5. C 2 6. C 7. F 6. C 7. F 0. C 8. S 9. C 10. C 11. C Text E	emonstrate ative Exper Determination abulated van Determination abulated van Heat conduct Study of heat Determination	he mass transfer mechanism ments n of the thermal conductivity of a given meta- lues. n of the thermal conductivity of a given liqui- lues. tion in spherical coordinate system. t conduction by electrical analogy: experime			arisc	n wi				
Indica 1. I 1. I 2. I 3. H 4. S 5. I 2. I 6. I 7. F 9. I 10. I 11. I Text E	ative Exper Determination abulated van Determination abulated van Heat conduct Study of heat Determination	ments In of the thermal conductivity of a given meta lues. In of the thermal conductivity of a given liqui lues. Ition in spherical coordinate system. It conduction by electrical analogy: experime			arisc	n wi				
1. E 2. E 3. H 4. S 5. E 6. E 7. F 8. S 9. E 10. E 11. E	Determination abulated var Determination abulated var Heat conduct Study of heat Determination	n of the thermal conductivity of a given meta ues. n of the thermal conductivity of a given liqui ues. tion in spherical coordinate system. t conduction by electrical analogy: experime			arisc	n wi				
1. E 2. E 3. H 4. S 5. E 6. E 7. F 8. S 9. E 10. E 11. E	Determination abulated var Determination abulated var Heat conduct Study of heat Determination	n of the thermal conductivity of a given meta ues. n of the thermal conductivity of a given liqui ues. tion in spherical coordinate system. t conduction by electrical analogy: experime			arisc	n w				
ta 2. L 3. H 4. S 5. L 2 C 6. L 7. F 8. S 9. L 10. L 11. L	abulated va Determinatio abulated va Heat conduo Study of hea Determinatio	ues. In of the thermal conductivity of a given liqui lues. tion in spherical coordinate system. t conduction by electrical analogy: experime			an 50	UL W	ith			
2. [ta 3. + 4. 5 5. [2 6. [7. F 6. 5 9. [10. [11. [L Text E	Determination abulated van Heat conduct Study of heat Determination	n of the thermal conductivity of a given liqui lues. tion in spherical coordinate system. t conduction by electrical analogy: experime	d and comp	oarison wi			i li l			
ta 3. H 4. S 5. C 22 6. C 7. F 8. S 9. C 10. C 11. C Text E	abulated va leat conduc Study of hea Determinatio	ues. tion in spherical coordinate system. t conduction by electrical analogy: experime			th					
4. 5 5. 2 6. 2 7. F 8. 5 9. 1 10. 1 11. 1 L Text E	Study of hea Determination	t conduction by electrical analogy: experime								
4. 5 5. 2 6. 2 7. F 8. 5 9. 1 10. 1 11. 1 L Text E	Study of hea Determination	t conduction by electrical analogy: experime								
5. [2 6. [2 7. F 8. 5 9. [2 10. [2 11. [2 11. [2 11. [2]	Determinatio		ent on a cor	nposite w	all.					
6. C 7. F 8. S 9. C 10. C 11. C Text E	2 hours and	Determination of rate of heat transfer in natural convection from a cylinder								
7. F 8. S 9. C 10. C 11. C L		comparison with theoretical calculations.								
7. F 8. S 9. C 10. C 11. C L Text E	Determinatio	n of rate of heat transfer in forced convection	on from a he	eated pipe	e an	d				
8. 5 9. [] 10. [] 11. [] Text E		with theoretical calculations.								
8. 5 9. [] 10. [] 11. [] Text E		temperature distribution and efficiency of a		er forced	and	free				
9. [10. [11. [L Text E		nd comparison with theoretical calculations.								
10. [11. [L Text E		regimes of pool boiling and determination of	f critical hea	at flux.						
11. [L Text E		n of emissivity of a given surface.	ricon with r	oforonoo						
Text E		n of Stefan-Boltzmann constant and compa			valu	<u>e</u> .				
Text E		on of condenser, heat pipe and mass transfe	ei apparatu	5.						
		xaminations (model and final) Total Labo	oratory Hou	rs 30 hc	nirs					
	Books		Jiatory 110a		Juio					
		ngel and Afshin J Ghajar, Heat and Mass ⁻	Transfer: F	undamen	tals	and				
A	Applications	2015, 5 th edition, McGraw-Hill.								
2. 8	Sachdeva F	C, Fundamentals of Engineering Heat ar	nd Mass Tr	ransfer, 2	017	, 5 th				
		Age International.								
		KM, Heat Transfer –A Basic Approach, 2016	6, McGraw	Hill, New	Yorl	κ.				
		prepared by course faculty								
	ence Book									
		Bergman, Adrienne S. Lavine, Frank P	•		Р . [JeW	itt,			
		Is of Heat and Mass Transfer, 2018, 8th edi			Crai					
		and Souvik Bhattacharyya, Heat Transfer, 2 nan, C.P, "Fundamentals of Heat and Ma								
			ass induste	a, ∠015,	ive	w A	ye			
	nternationa	ent: Continuous assessment, FAT, Oral exa	mination							
	nternationa									
Approv	of assessm	Board of Studies 09-03-2022		22						

BMEE399J		Summ	ner Industrial Internship				Т	Ρ	С
DIVI	EE3993	Summe	ar muustnai mternsnip				0	0	1
Pre-re	equisite	NIL				Syll	abus	vers	sion
							1.0)	
	e Objective								
 The course is designed so as to expose the students to indus 						enviro	onmei	nt an	d to
	take up on	i-site assignment as	s trainees or in	iterns.					
Cours	e Outcome):							
1.	Demonstra	ate professional and	d ethical respo	nsibility.					
2.	Understan and societ	d the impact of eng al context.	ineering solut	ions in a gl	obal, econo	omic, e	nviro	nmer	ntal
3.	Develop th	ne ability to engage	in research ar	nd to involv	e in life-lon	g learr	ning.		
		end contemporary is				Ũ	0		
Modu	le Content	· · ·							
Four v	veeks of wo	rk at industry site.		·					
Super	vised by an	expert at the indust	try.						
Mode	of Evaluati	ion: Internship Rep	ort, Presentati	on and Pro	ject Reviev	V			
Recon	nmended by	y Board of Studies	09-03-2022						
	ved by Acad				17-03-2				

BMEE497J	Project - I	L	Т	Ρ	С
	Fioject - I	0	0	0	3
Pre-requisite	NIL	Syll	abus	vers	ion
			1.0)	

Course Objectives:

To provide sufficient hands-on learning experience related to the design, development and analysis of suitable product / process so as to enhance the technical skill sets in the chosen field.

Course Outcome:

- 1. Demonstrate professional and ethical responsibility.
- 2. Evaluate evidence to determine and implement best practice.
- 3. Mentor and support peers to achieve excellence in practice of the discipline.
- 4. Work in multi-disciplinary teams and provide solutions to problems that arise in multidisciplinary work.

Module Content

Project may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities.

Can be individual work or a group project, with a maximum of 3 students.

In case of group projects, the individual project report of each student should specify the individual's contribution to the group project.

Carried out inside or outside the university, in any relevant industry or research institution.

Publications in the peer reviewed journals / International Conferences will be an added advantage.

Mode	of	Evaluation:	Assessment	on	the	project	-	project	report	to	be	submitted,
presen	tatic	on and project	reviews									

Recommended by Board of Studies	09-03-2022		
Approved by Academic Council	No. 65	Date	17-03-2022

BMEE498J	Projec	ct – II / Interns	ship		L	Т	Р	C
Pre-requisite	, NIL		•		0 Svili	0 abus		5
Fie-requisite					Sylia	<u>abus</u> 1.0		
Course Objective	es:					1.0	,	
	ent hands-on learning	a experience r	elated to	the desig	n, dev	elopn	nent	and
analysis of suitab field.	le product / process s	o as to enhan	ce the tec	hnical ski	ll sets	in the	e cho	sen
Course Outcome):							
	specific problem s onable assumptions a			fined rea	l life	prob	lems	
2. Perform lit	erature search and / c	or patent searc	h in the a	ea of inte	rest.			
 Conduct e results. 	experiments / Design	and Analysis	/ solution	iterations	and o	docun	nent	the
4. Perform er	rror analysis / benchm	arking / costin	g.					
5. Synthesize	e the results and arrive	e at scientific c	onclusion	s / produc	cts / so	lution	ı.	
6. Document	the results in the form	n of technical r	eport / pre	sentation				
Module Content								
 analysis, prot data, software Project can be credits as per Can be individ In case of gro individual's co Carried out in institution. 	be a theoretical an otype design, fabrica e development, applied e for one or two seme the academic regulati lual work or a group p up projects, the individ ntribution to the group nside or outside the n the peer reviewed je	tion of new e d research and sters based o ons. roject, with a r dual project re o project. e university, f	equipment I any othe n the com naximum port of ea in any re	, correlat r related a pletion of of 3 stude ch studen levant in	ion an activitie requir nts. at shou dustry	id an es. ed nu ild sp or r	alysis umbe ecify resea	s of er of the arch
Mode of Evaluation and	ition: : Assessment project reviews.	on the proje	ect - proj	ect repor	t to b	e su	bmitt	ted,
Recommended by	y Board of Studies	09-03-2022						
Approved by Acad	demic Council	No. 65	Date	17-03-20)22			